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1. INTRODUCTION
Many fundamental algorithmic problems concern combinatorial structures, like
graphs. Such structures provide the right level of abstraction for formulating a large
variety of real-world problems, while hiding unnecessary detail and revealing the es-
sential computational challenges. In practice, algorithms solving problems on combi-
natorial structures often violate the level of abstraction with which the problem is
described. For instance, an algorithm for a graph problem may assume that the set
of vertices is indexed by natural numbers and may use this indexing to process the
vertices in a particular order. This violates the principle of abstraction, but the reason
for doing so is clear: it appears to permit more efficient algorithms.
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Maximum matching is a consequential graph problem that exemplifies this phe-
nomenon. Given a graph G = (V,E) the goal of the problem is to determine the maxi-
mum size of a set of edges M ⊆ E so that no two edges in M are incident on the same
vertex. This problem is an abstraction of a wide range of practical problems arising
in areas such as scheduling, game theory, molecular biology and computer vision, and
algorithms for solving it have been extensively studied (c.f., e.g., [Grötschel et al. 1988;
Duan and Pettie 2014]).

One of the fastest algorithms solving maximum matching is the O(
√
|V ||E|) algo-

rithm of [Micali and Vazirani 1980]. In order to prove the algorithm is correct Vazirani
develops a number of structural results about graphs, but then defines the notion of
an anomaly and notes that it is an “algorithmic convenience” that does not appear in
the structure theory [Vazirani 1994, p.97]. Indeed, it is instructive to verify that the
property of being an anomaly is not a property of the graph G, i.e., whether or not
an edge in the graph is an anomaly is determined, not by the graph G alone, but by
the particular choices made by the algorithm in constructing a matching up to that
point. It does not seem possible to describe the Micali-Vazirani algorithm at the level
of abstraction where the only structure on the vertices is given by the graph’s edges.

Can an efficient algorithm for maximum matching respect the abstraction?

More generally, is it possible to give such an algorithm for any graph problem that ad-
mits an efficient algorithmic solution? Such questions motivated Blass, Gurevich and
Shelah to introduce the model of choiceless polynomial time with counting CPTC, a
model of computation aimed at formalising polynomial-time algorithms that cannot
make arbitrary choices [Blass et al. 1999]. They showed in [Blass et al. 2002] that
the problem of determining whether a bipartite graph has a perfect matching is ex-
pressible in CPTC and posed as an open question whether the existence of a perfect
matching on general graphs can be defined in this formalism. Indeed, this question
first appears in [Blass et al. 1999] (also see [Blass and Gurevich 2005; Rossman 2010])
where it is stated that it seems “unlikely” that this problem can be decided in CPTC.
As one main contribution of this paper we settle this question by showing that the
size of a maximum matching can be defined even in the weaker formalism of FPC, the
extension of inflationary fixed-point logic by counting terms.

Fixed-point logic with counting originated in the field of descriptive complexity
theory—whose central question generalises those considered above:

Is there a logic that characterises those problems solvable in polynomial time?

This question first appeared in the work of [Chandra and Harel 1982] in the context
of database query languages. At one time it was conjectured that FPC would suffice
to express all polynomial-time properties, but this was refuted by Cai, Fürer and Im-
merman [Cai et al. 1992]. Since then, a number of logics have been proposed whose
expressive power is strictly greater than that of FPC but still contained within P, the
class of problems decidable by a polynomial-time Turing machine. Among these are
FPR, fixed-point logic with rank operators [Dawar et al. 2009], and CPTC, mentioned
above. For both of these it remains open whether their expressive power is strictly
weaker than P.

Although it is known that FPC does not express all polynomial-time computable
properties, it still forms a natural class within P. For instance, FPC can express all
polynomial-time properties on many graph classes, such as any class of proper minor-
closed graphs [Grohe 2012]. Reinforcing the view that FPC represents a natural level
of expressiveness inside P is the recent result of [Anderson and Dawar 2014] showing
that a graph property is definable in FPC if, and only if, it is decidable by a uniform
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polynomial-size family of symmetric threshold circuits. Here, a circuit C that takes as
input the

(
n
2

)
potential edges of an n vertex graph is said to be symmetric if any per-

mutation of the n vertices extends to an automorphism of C. This symmetry condition
seems a natural way to express that the computation encoded by C does not depend
on arbitrary choices.

Delimiting the expressive power of FPC therefore remains an interesting challenge.
In particular, it is of interest to establish what non-trivial polynomial-time algorith-
mic techniques can be expressed in this logic. The conjecture that FPC captures P
was based on the intuition that the logic can define all “obvious” polynomial-time algo-
rithms. The result of [Cai et al. 1992] and the subsequent work of [Atserias et al. 2009]
showed that one important technique—that of Gaussian elimination for matrices over
finite fields—is not captured by FPC. The question remains what other natural prob-
lems for which membership in P is established by non-trivial algorithmic methods
might be expressible in FPC.

Linear programming is a fundamental problem in geometric optimisation with deep
connections to combinatorial optimisation, including the maximum matching problem,
and, moreover, is only known to be efficiently solvable via involved algorithmic tech-
niques (e.g., [Khachiyan 1980; Karmarkar 1984]). As our main technical result we
show that there is a formula of FPC expressing linear programming, i.e., it defines
from a polytope a point inside the polytope maximising a given linear objective func-
tion, if such a point exists. Here, a polytope is a convex set in Euclidean space given by
finite intersections of linear inequalities (or constraints) over a set of variables, suit-
ably represented as a relational structure without assuming an ordering on the sets of
variables or constraints.

In particular, we consider representations where, as in many applications of linear
programming, the set of constraints is not given explicitly (indeed, the set may be
exponentially large), but is determined instead by a separation oracle. This is a pro-
cedure which, given a candidate point x, determines whether x is feasible, i.e., it is
within the polytope, and, if it is not, returns a constraint that is violated by x. It is
well known that Khachiyan’s polynomial-time algorithm for linear programming—the
ellipsoid method—can be extended to prove that the linear programming and separa-
tion problems are polynomial-time equivalent (c.f., [Khachiyan 1980; Grötschel et al.
1981; Grötschel et al. 1988]). Our main technical result is an analog for FPC.

THEOREM 1.1 (INFORMAL, SEE THEOREM 4.2). If a separation oracle for a class
of polytopes is expressible in FPC, then linear programming on that class is expressible
in FPC.

Our approach is inspired by the following observation. Although the set of variables
is not inherently ordered, the separation oracle induces a natural equivalence rela-
tion on these variables whereby two variables are equivalent if they are not distin-
guished in any invocation of the oracle. Given a linear ordering on the induced equiv-
alence classes, we can define in FPC a reduction of the optimisation problem to an
instance with an ordered set of variables by taking the quotient of the polytope un-
der the equivalence relation. We show that solving the optimisation problem on this
quotient polytope—now using the classical polynomial-time reduction made possible
by the ordering—allows us to recover a solution to the original problem. In practice,
neither the equivalence classes nor the order are given beforehand; rather they are
iteratively refined via the invocations of the separation oracle made while optimising
over the quotient polytope. The details of this argument are presented in Section 4.

Thus to express the solution to a linear program in FPC it suffices to express a
separation oracle in FPC. A key obstacle to expressing separation oracles in FPC is
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that a particular violated constraint must be chosen. We show, in Section 3, that when
the constraints are given explicitly, a canonical violated constraint can be defined by
taking the sum of all the violated constraints. This implies that the class of feasible
linear programs, when explicitly given, can be expressed in FPC. When the constraints
are not given explicitly, it may still be possible to express canonical violated constraints
(and hence separation oracles) using domain knowledge.

In total our construction shows that the ellipsoid method can be implemented in a
way that respects the symmetries of the problem it solves and yields new insight into
this fundamental algorithmic technique. In some cases, this may even lead to more
efficient uses of the method by allowing one to reduce the dimension of the polytope by
factoring out its symmetries. In a related result, [Grohe et al. 2013] show how vertex
colour-refinement techniques can be used to reduce the dimension of linear programs
and in doing so heuristically improve running times of optimisation algorithms.

Applications of linear programming in combinatorial optimisation are myriad. We
use the FPC-definability of linear programming as a tool to show that some of the
problems that reduce to it are also FPC definable.

First, in Section 5.1, we use the definability of explicitly-given linear programs to
show that a maximum flow in a capacitated graph G = (V, c) is definable in FPC.
Indeed, this follows rather directly from the first result, since the flow polytope is
specified by a polynomial number, in |V |, of explicitly-given constraints, and hence a
separation oracle for the flow polytope can be easily defined from G in FPC.

Next, in Section 5.2, we use the definability of maximum flows to show that min-
imum (s, t)-cuts are also definable in FPC. That is, in the vocabulary of capacitated
graphs, there is a formula which defines a set of vertices Cs,t corresponding to a min-
imum value cut separating the vertex s from the vertex t. The cut Cs,t defined in this
way is canonical in a strong sense: we show that it is the smallest (under set-inclusion)
minimum cut separating s from t.

Finally, we turn to the maximum matching problem. For a graph G = (V,E), the
matching polytope is given by a set of constraints of size exponential in the size of G
[Edmonds 1965]. We show that there is a separation oracle for the matching polytope
definable from G in FPC, using the definability of minimum cuts. To be precise, we
use the fact that a separation oracle for the matching polytope can be obtained from
a computation of minimum odd-size cuts in a derived graph [Padberg and Rao 1982].
Indeed, there is always a pair of vertices s, t such that a canonical minimum (s, t)-cut is
a minimum odd-size cut [Goemans and Ramakrishnan 1995]. This, combined with the
definability of canonical minimum cuts, gives us the separation oracle for the matching
polytope that we seek.

Combining this separation oracle with Theorem 1.1 yields that an optimum of the
matching polytope can be expressed in FPC. However, such an optimum need only
achieve the maximum objective value—it need not indicate a particular maximum
matching. This is a consequence of FPC being necessarily invariant under automor-
phisms of G. To see this, consider G = Kn, the complete graph on n vertices; Kn con-
tains an exponential number, in n, of maximum matchings and for any two of these
matchings, there is an automorphism of the graph taking one to the other. Thus, it is
not possible for any formula of FPC to pick out a particular matching in this situation.
What we can do, however, is define a formula that expresses the size of the maximum
matching in a graph using an optimum point in the polytope. This, in turn, enables us
to write a sentence of FPC that is true in a graph G if, and only if, it contains a perfect
matching. Our results on matching are presented in Section 5.4.
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2. BACKGROUND
We write [n] to denote the set of positive integers {0, . . . , n − 1}. Given sets I and A, a
column vector u over A indexed by I is a function u : I → A, and we write AI for the
set of all such vectors. Similarly, an I, J-matrix over A is a function M : I × J → A and
we write Mij for M(i, j) and Mi for the row (vector) of M indexed by i. For an integer
z, |z| denotes its absolute value, and 〈z〉 denotes dlog2(|z|) + 1e, i.e. the number of bits
required to represent |z|. For a vector v ∈ QI , ‖v‖∞ := maxi∈I |vi| denotes its infinity
norm.

2.1. Logics and Structures
A relational vocabulary τ is a finite sequence of relation and constant symbols
(R1, . . . , Rk, c1, . . . , c`), where every relation symbol Ri has a fixed arity ai ∈ N. A
structure A = (dom(A), RA

1 , . . . , R
A
k , c

A
1 , . . . , c

A
` ) over the vocabulary τ (or a τ -structure)

consists of a non-empty set dom(A), called the domain of A, together with relations
RA
i ⊆ dom(A)ai and constants cAj ∈ dom(A) for each 1 ≤ i ≤ k and 1 ≤ j ≤ `. Members

of the set dom(A) are called the elements of A and we define the size of A, denoted
|A|, to be the cardinality of its domain. In what follows, we often consider multi-sorted
structures. That is, dom(A) is given as the disjoint union of a number of different sorts.
In this paper we consider only finite structures, that is structures over a finite domain.
For a particular vocabulary τ we use fin[τ ] to denote the set of all finite τ -structures.

Fixed-point logic with counting (FPC) is an extension of inflationary fixed-point logic
with the ability to express the cardinality of definable sets. The logic has two types of
first-order variables: element variables, which range over elements of the structure on
which a formula is interpreted in the usual way, and number variables, which range
over some initial segment of the natural numbers.

The atomic formulas of FPC[τ ] are all formulas of the form: µ ≤ η, where µ, η are
number variables; s = t where s, t are element variables or constant symbols from
τ ; and R(t1, . . . , tm), where R is a relation symbol (either from the vocabulary τ or a
variable with associated type σ ∈ {elem,num}∗); each ti is an element variable or a
constant symbol (if σi = elem) or a number variable (if σi = num). The set FPC[τ ] of
FPC formulas over τ is built up from the atomic formulas by applying an inflation-
ary fixed-point operator which builds formulas [ifpR,~xφ](~t) when φ is a formula, R is
a relation variable of type σ, ~x is a σ-tuple of variables and ~t is a σ-tuple of terms;
forming counting terms #xφ, where φ is a formula and x an element variable; forming
formulas of the form s ≤ t where s, t are number variables or counting terms; as well
as the standard first-order operations of negation, conjunction, disjunction, universal
and existential quantification. Collectively, we refer to element variables and constant
symbols as element terms, and to number variables and counting terms as number
terms.

For the semantics, number terms take values in [n + 1] and element terms take
values in dom(A) where n := |dom(A)|. The semantics of atomic formulas, fixed-points
and first-order operations are defined as usual (c.f., e.g., [Ebbinghaus and Flum 1999]
for details), with comparison of number terms µ ≤ η interpreted by comparing the
corresponding integers in [n+ 1]. Finally, for a counting term of the form #xφ, where φ
is a formula and x an element variable, the intended semantics is that it denotes the
number (i.e., the element of [n+ 1]) of elements satisfying the formula φ.

In general, a formula φ(~x, ~µ) of FPC defines a relation over dom(A) ] [n + 1] that is
invariant under automorphisms of A. For a more detailed definition of FPC, we refer
the reader to [Ebbinghaus and Flum 1999; Libkin 2004].
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It is known, by the results of Immerman and Vardi [Immerman 1986; Vardi 1982],
that every polynomial-time decidable property of ordered structures is definable in
fixed-point logic, and therefore also in FPC. Here, an ordered structure is one which
includes a binary relation which is a linear order of its domain. For reference, we state
this result as follows.

THEOREM 2.1 (IMMERMAN-VARDI THEOREM). A property of finite ordered struc-
tures is decidable in polynomial time if, and only if, that property can be defined by a
formula of FPC.

Logical interpretations. We frequently consider ways of defining one structure
within another in some logic L, such as first-order logic or fixed-point logic with count-
ing. Consider two vocabularies σ and τ and a logic L. An m-ary L-interpretation of τ in
σ is a sequence of formulae of L in vocabulary σ consisting of: (i) a formula δ(~x); (ii) a
formula ε(~x, ~y); (iii) for each relation symbol R ∈ τ of arity k, a formula φR(~x1, . . . , ~xk);
and (iv) for each constant symbol c ∈ τ , a formula γc(~x), where each ~x, ~y or ~xi is an
m-tuple of free variables. We call m the width of the interpretation. We say that an
interpretation Θ associates a τ -structure B to a σ-structure A if there is a surjective
map h from the m-tuples {~a ∈ (dom(A) ] [n+ 1])m | A |= δ[~a]} to B such that:

(1) h(~a1) = h(~a2) if, and only if, A |= ε[~a1,~a2];
(2) RB(h(~a1), . . . , h(~ak)) if, and only if, A |= φR[~a1, . . . ,~ak]; and
(3) h(~a) = cB if, and only if, A |= γc[~a].

Note that an interpretation Θ associates a τ -structure with A only if ε defines an equiv-
alence relation on (dom(A)][n+1])m which is a congruence with respect to the relations
defined by the formulae φR and γc. In such cases, however, B is uniquely defined up to
isomorphism and we write Θ(A) := B.

It is not difficult to show that formulas of FPC compose with reductions in the sense
that, given an interpretation Θ of σ in τ and a σ-formula φ, we can define a τ -formula φ′
such that A |= φ′ if, and only if, Θ(A) |= φ (see [Immerman 1999, Sec. 3.2]) In particular,
if Θ(A) is an ordered structure, for all A, then by the Immerman-Vardi theorem above,
for any polynomial-time decidable class C, there is an FPC formula φ such that A |= φ
if, and only if, Θ(A) ∈ C.

2.2. Numbers, Vectors and Matrices
Let z and b be integers with b ≥ 〈z〉, B = [b] and write bit(x, k) to denote the k-th
(starting with k = 0) least-significant bit in the binary expansion of x ∈ N. We view
the integer z = s · x as a product of a sign s ∈ {−1, 1} and a natural number x. We can
represent z as a single-sorted structure B on a domain of bits B over the vocabulary
τZ := {X,S,≤B}. Here ≤B is interpreted as a linear ordering of B, the unary relation
S indicates that the sign s of the integer is 1 if SB = ∅ and −1 otherwise, and the
unary relation X is interpreted as XB = {k ∈ B | bit(x, k) = 1}. That is k ∈ XB when
the “the k-th bit in the binary expansion of x is 1.” Similarly we consider a rational
number q = s · xd as a structure on the domain of bits B = [b] (where b ≥ 〈x〉, 〈d〉) over
τQ := {X,D, S,≤B}, where X and S are as before and D is interpreted as the binary
encoding of the denominator d when DB 6= ∅.

We now generalise these notions and consider unordered tensors over the rationals
(the case of integers is completely analogous). Let J1, . . . , Jr be a family of finite non-
empty sets. An unordered tensor T of order r over Q is a function T : J1× · · · × Jr → Q.
We write tj1...jr = sj1...jr

xj1...jr
dj1...jr

to denote the element of T indexed by (j1, . . . , jr) ∈
J1× · · · × Jr. Writing m ∈ N for the the maximum absolute value of integers appearing
as either numerators or denominators of elements in the range of T , let b ≥ 〈m〉 and
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B = [b]. The tensor T is then an (r + 1)-sorted structure T with r index sorts J1, . . . , Jr
and a bit sort B over the vocabulary σten,r := {X,D, S,≤B}. Here ≤B is interpreted
as before, the (r + 1)-ary relation S is interpreted as indicating the value of the sign
sj1...jr ∈ {−1, 1} as before, the (r + 1)-ary relation X is interpreted as

{(j1, . . . , jr, k) ∈ J1 × · · · × Jr ×B | bit(xj1...jr , k) = 1},
and the (r + 1)-ary relation D is similarly interpreted as the binary representation
of the denominators of T . We are only interested in the case of rational vectors and
matrices and so define the vocabularies τvec := σten,1 and τmat := σten,2.

In [Holm 2010] it is shown that a variety of basic linear-algebraic operations on
unordered vectors and matrices can be expressed in fixed-point logic with counting.
We gather some of these results in the following proposition, for later reference.

PROPOSITION 2.2 (OPERATIONS ON VECTORS AND MATRICES). The following op-
erations on rational vectors and matrices described as finite structures in the signatures
τvec and τmat, respectively, can be expressed in FPC.

— EQUALITY. A = B for matrices A,B ∈ QI×J and x = y for vectors x, y ∈ QI .
— POINTWISE ORDERING. x ≤ y for vectors x, y ∈ QI , where x ≤ y if, and only if, xi ≤ yi

for all i ∈ I.
— PRODUCT. AB, Ax and x>y, for matrices A ∈ QI×J , B ∈ QJ×K and vectors x, y ∈ QJ .
— BIG SUMS.

∑
i∈I xi where I is a finite set and each xi ∈ QJ is a vector.

— INFINITY NORM. ||x||∞ for a vector x ∈ QI .

2.3. Linear Programming
We recall some basic definitions from combinatorics and linear optimisation. For fur-
ther background, see, for example, the textbook [Grötschel et al. 1988].

Polytopes. Consider the rational Euclidean space QV indexed by a set V . The solu-
tions to a system of linear equalities and inequalities over QV is the intersection of
some number of half-spaces of the kind {x ∈ QV | a>x ≤ β} specified by the constraint
a>x ≤ β, where a ∈ QV and β ∈ Q. A (rational) polytope is a convex set P ⊆ QV
which is the intersection of a finite number of half-spaces.1 That is to say, there are
a set of constraints C, a constraint matrix A ∈ QC×V and vector b ∈ QC , such that
P = PA,b := {x ∈ QV | Ax ≤ b}. We say two polytopes P ⊆ QV and P ′ ⊆ QV ′

are iso-
morphic, P ∼= P ′, if there is a bijection h : V → V ′ such that for any vector a ∈ QV with
a = (av)v∈V , a ∈ P iff (ah(v))v∈V ∈ P ′.

Polytopes have an alternative characterisation as a combination of convex hulls and
cones. Let S be a finite set of vectors in QV and define the convex hull of S

conv(S) :=

{∑
s∈S

λss

∣∣∣∣∣ λs ∈ Q≥0,∀s ∈ S and
∑
s∈S

λs = 1

}
,

and similarly define the cone of S

cone(S) :=

{∑
s∈S

λss

∣∣∣∣∣ λs ∈ Q≥0,∀s ∈ S

}
.

If P is a polytope in QV , then there exist finite sets S1, S2 ⊆ QV such that P = PS1,S2
:=

conv(S1) + cone(S2) = {x1 + x2 | x1 ∈ conv(S1), x2 ∈ cone(S2)}.

1In the literature of some fields the term “polyhedron” denotes what we call a “polytope”, and the term
“polytope” is used to denote a polyhedron that is the convex hull of a finite number of points.
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The size, or bit complexity, of a vector a ∈ QV (denoted 〈a〉) is the number of bits
required to encode the components of a in some standard encoding of rational numbers.
Note that 〈a〉 is at least |V |. The size of a constraint a>x ≤ β is then 〈a〉+ 〈β〉. If Ax ≤ b
is a system of linear inequalities then its size is the maximum over the sizes of its
individual constraints. Note that this measure is explicitly independent of the number
of constraints in the system. The facet complexity 〈P 〉f of a polytope P is the minimum
over the sizes of the systems Ax ≤ b such that P = PA,b. When P = QV , we take
〈P 〉f = |V | + 1. The vertex complexity 〈P 〉v of a polytope P is the minimum over the
maximum vector size in the union of sets S1, S2 ⊆ QV such that P = conv(S1)+cone(S2).
When P = ∅ ⊆ QV , we take 〈P 〉v = |V |. The facet and vertex complexity of a polytope
are polynomially related: 〈P 〉v ≤ 4|V |2〈P 〉f and 〈P 〉f ≤ 3|V |2〈P 〉v [Grötschel et al. 1988,
Lemma 6.2.4]. As we are not concerned with polynomial factors, we simply write 〈P 〉
for the complexity of P where either will do.

Problems on polytopes. We are interested in two fundamental combinatorial prob-
lems on polytopes: linear optimisation and separation.

Problem 2.3 (Linear Optimisation). Let V be a set, P ⊆ QV be a polytope and
c ∈ QV . The linear optimisation problem on P is the problem of determining either (i)
an element y ∈ P such that c>y = max{c>x | x ∈ P}, (ii) that P = ∅ or (iii) that P is
unbounded in the direction of c.

An instance of the linear optimisation problem is called a linear program and the
linear function x 7→ c>x is called the objective function. Over the years, a number
of algorithms for solving linear programs have been studied. Early work by [Dantzig
1963] gave a combinatorial algorithm—the simplex method—which traverses the ver-
tices (extremal points) of the polytope favouring vertices that improve the objective
value. Although the simplex method is useful in practice, it tends not to be theoreti-
cally useful because strong worst-case performance guarantees are not known and, in
some cases, known not to exist2. A series of works studying linear programming from
a geometric perspective [Shor 1972; Yudin and Nemirovskii 1976; Shor 1977] culmi-
nated in the breakthrough of [Khachiyan 1980] which established a polynomial-time
algorithm—the ellipsoid method—for solving linear programs. One of the strengths
of the ellipsoid method is that it can be applied to linear programs where the con-
straints are not given explicitly. In such implicitly-defined linear programs, we are
instead given a polynomial-time algorithm, known as a separation oracle, for solving
the following separation problem.

Problem 2.4 (Separation). Let V be a set, P ⊆ QV be a polytope and y ∈ QV . The
separation problem on P is the problem of determining either (i) that y ∈ P or (ii) a
vector c ∈ QV with c>y > max{c>x | x ∈ P} and ‖c‖∞ = 1.

Over families of rational polytopes, the optimisation and separation problems are
polynomial-time equivalent (see Section 4).

2.4. Representing polytopes by relational structures
When we deal with polytopes as objects in a computation, we need to choose a repre-
sentation which gives a finite description of a polytope. In particular, in dealing with
logical definability of problems on polytopes, we need to choose a representation of
polytopes by relational structures.

2See [Klee and Minty 1972] for an example of an exponential worst-case time lower bound for the simplex
method. Stronger upper bounds are known for the average-case and smoothed complexity of the simplex
method [Spielman and Teng 2004].
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Definition 2.5. A representation of a class P of polytopes is a relational vocabulary
τ along with an onto function ν : fin[τ ] → P which is isomorphism invariant, that is,
A ∼= B implies ν(A) ∼= ν(B).

For concreteness, consider the vocabulary τ := τmat ] τvec obtained by taking the
disjoint union of the vocabularies for rational matrices and vectors. A τ -structure over
a domain consisting of a set V of variables and a set C of constraints describes a
constraint matrix A ∈ QC×V and bound vector b ∈ QC . Thus, the function taking such
a structure to the polytope PA,b is a representation of the class of rational polytopes.
We call this the explicit representation.

Note that the explicit representation of polytopes has the property that both the
size of the polytope (i.e., the maximum size of any constraint) and the number of con-
straints of ν(A) are polynomially bounded in the size of A. We will also be interested
in representations ν where the number of constraints in ν(A) is exponential in |A|,
but we always confine ourselves to representations where the size of the constraints is
bounded by a polynomial in A. We formalise this by saying that a representation ν is
well described if there is a polynomial p such that 〈ν(A)〉 ≤ p(|A|), for all τ -structures A.
We say that a class of polytopes is well described if it has a representation that is well
described. Note that this is not the same as the well-described polyhedrons of Grötschel
et al. [Grötschel et al. 1988]. However, it is easily seen that from a well-described rep-
resentation of a polytope, we can easily obtain a well-described polytope also in their
sense. Observe that well-described polytopes ν(A) have dimension bounded by a poly-
nomial in |A|. We are now ready to define what it means to express the linear optimi-
sation and separation problems in FPC.

Definition 2.6. We say that the linear optimisation problem for a class of polytopes
P is expressible in FPC with respect to a representation ν : fin[τ ] → P if there is an
FPC interpretation of τQ ] τvec in τ ] τvec which takes a τ ] τvec-structure encoding a
τ -structure A and a vector c ∈ QV over a domain of bits B such that

— ν(A) ⊆ QV ; and
— 〈ν(A)〉 ≤ |B|

to a rational f and vector y such that either (i) f = 1, y = 0V , and ν(A) is unbounded in
the direction of c, or (ii) f = 0, and ν(A) 6= ∅ iff y ∈ ν(A) and c>y = max{c>x | x ∈ ν(A)}.

Definition 2.7. The separation problem for a class of polytopes P is expressible in
FPC with respect to a representation ν : fin[τ ] → P if there is an FPC interpretation
of τvec in τ ] τvec which takes a τ ] τvec-structure encoding a τ -structure A and a vector
y ∈ QV over a domain of bits B such that

— ν(A) ⊆ QV ; and
— 〈ν(A)〉 ≤ |B|

to a vector c such that either (i) y ∈ ν(A) and c = 0V , or (ii) c ∈ QV \{0V } with c>y >
max{c>x | x ∈ ν(A)} and ‖c‖∞ = 1.

3. EXPRESSING THE SEPARATION PROBLEM IN FPC
Let A ∈ QC×V be a constraint matrix and b ∈ QC a constraint vector of the polytope
PA,b. Algorithm 1 presents a straightforward procedure ∆ for solving the separation
problem for the explicitly-represented polytope PA,b. It is not hard to see that the al-
gorithm ∆ can be implemented in time polynomial in the size of the natural explicit
representation of inputs A, b and x.

Consider expressing the algorithm ∆ in fixed-point logic with counting. First note
that, by Proposition 2.2, we can define in FPC all the relevant manipulations on ra-
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ALGORITHM 1: ∆—a separation oracle for explicitly-represented rational polytopes.

Input: A ∈ QC×V , b ∈ QC and x ∈ QV .
Output: c ∈ QV solving the separation problem for the polytope PA,b and x.

1 if Ax ≤ b then return 0V ;
2 select k ∈ C with Akx > bk;
3 if Ak = 0V then return 1V ;
4 return Ak

||Ak||∞
;

tional values, vectors and matrices, such as norms, addition and multiplication, even
when they are indexed by unordered sets. This implies that both lines 1 and 4 of the
separation algorithm can be simulated in FPC. However, line 2 poses a problem—FPC
is, in general, not able to choose a particular element from an unordered set. Our key
observation here is that linearity implies that the sum of all such violated constraints
is itself a violated constraint for non-empty polytopes and hence the choice made by ∆
is superfluous. This can be formally stated as follows.

PROPOSITION 3.1. Let A ∈ QC×V , b ∈ QC , x ∈ QV and C ⊇ S 6= ∅. Suppose
PA,b is non-empty and (Ax)s 6≤ bs for all s ∈ S. Define aS :=

∑
s∈S As. Then a>S x >

max{a>S y | y ∈ PA,b} and aS 6= 0V .

PROOF. Define bS :=
∑
s∈S bs. That a>S x > bS is immediate from linearity. Since

the polytope is non-empty pick any point y ∈ PA,b. By definition, Ay ≤ b. Linearity
implies that a>S y ≤ bS . Thus a>S x > bS ≥ max{a>S y | y ∈ PA,b}. This also implies that
aS 6= 0V .

This observation leads to a definition in FPC of the separation problem for the class
of explicitly-represented polytopes.

THEOREM 3.2. There is an FPC interpretation of τvec in τmat ] τvec ] τvec expressing
the separation problem with respect to the explicit representation of polytopes.

PROOF. Let X = A] b]x be a structure of signature τmat]τvec]τvec, whereA ∈ QC×V
is a constraint matrix, b ∈ QC is a constraint vector of the polytope PA,b, and x ∈ QV
is a vector. It follows from Proposition 2.2 that the product Ax can be expressed in
FPC. From this interpreted product we can construct a formula φ(s) of FPC for which
S := φ(s)X ⊆ C is the set of constraints which violate the inequality Ax ≤ b, this is
done by comparing the components of the interpreted vector against the components
of b. If S is empty, expressing c = 0V correctly indicates that x ∈ PA,b. Otherwise
S is non-empty; let aS be the sum of the constraints which x violates. Since the set
S is definable in FPC so is the sum of constraints indexed by S, by Proposition 2.2. If
aS 6= 0V , Proposition 3.1 implies that expressing c as the division of aS by its (non-zero)
infinity norm correctly indicates a separating hyperplane for PA,b through x; moreover,
both operations can be formalised in FPC. Otherwise, aS = 0V and Proposition 3.1
indicates that PA,b is empty. This means that any non-zero vector defines a separating
hyperplane for PA,b. Thus it suffices for the interpretation to express the vector c = 1V .
Combining all of the above, we have a proof of the theorem.

4. REDUCING OPTIMISATION TO SEPARATION IN FPC
In this section we present our main technical result: an FPC reduction from optimisa-
tion to separation using the classical polynomial-time reduction of the corresponding
problems as a subroutine. The classical result can be stated as follows.
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THEOREM 4.1 (C.F., E.G., [GRÖTSCHEL ET AL. 1988, THEOREM 6.4.9]). The lin-
ear optimisation problem can be solved in polynomial time for well-described polytopes
given by polynomial-time oracles solving their separation problems.3

Below, we prove the following analogous result for fixed-point logic with counting,
which formalises Theorem 1.1 from the introduction.

THEOREM 4.2 (OPTIMISATION TO SEPARATION). Let P be a class of well-described
rational polytopes represented by τ -structures and the function ν. Let there be an FPC
interpretation of τvec in τ ] τvec expressing the separation problem for P with respect to
ν. Then there is an FPC interpretation of τQ ] τvec in τ ] τvec which expresses the linear
optimisation problem for P with respect to ν.

Observe that these theorems do not imply that every linear optimisation problem can
be solved in FPC (or even in polynomial time). Rather one can solve particular classes
of linear optimisation problems where domain knowledge can be used to solve the
separation problem. Note that because we are using an FPC interpretation to express
a solution to a linear optimisation problem, the solution it describes must be canonical
in some sense. Moreover, this canonical solution need not, and in the case of matching
maximum cannot (see Section 5.4), be a vertex of the polytope as is usually the case in
the standard algorithms for linear programming.

We have the following generic consequence in the case of explicitly-represented poly-
topes when Theorem 4.2 is combined with Theorem 3.2.

THEOREM 4.3 (EXPLICIT OPTIMISATION). There is an FPC-interpretation of τQ ]
τvec in τmat ] τvec ] τvec expressing the linear optimisation problem with respect to the
explicit representation of polytopes.

4.1. Sketch of the Reduction
The main idea behind the proof of Theorem 4.2 is as follows. Suppose we are given a
polytope P ⊆ QV by an FPC-interpretation ΣP that expresses the separation problem
for P . A priori the elements of V are indistinguishable. However, ΣP may expose an
underlying order in V as it expresses answers to the separation problem for P . For
example, suppose ΣP on some input expresses a vector d ∈ QV where the components
du and dv for u, v ∈ V are different. This information can be used to distinguish the
components u and v; moreover, it can be used to order the components because du
and dv are distinct elements of a field with a total order. As ΣP is repeatedly applied it
may expose additional information about the asymmetry of P . This partial information
can be represented by a sequence of equivalence classes (Vi)

k
i=1 partitioning V , and is

progressively refined through further invocations of the separation oracle. Initially all
elements of V reside in a single class.

It is natural to consider the polytope P ′ derived from P by taking its quotient under
the equivalence relation defined in this way. Intuitively, this maps polytopes in QV to
polytopes in Qk by summing the components in each equivalence class to form a single
new component which is ordered by the sequence. We call this process folding (defined
formally in Definition 4.4 below). We observe that a separation oracle for P ′ can be
constructed using ΣP , provided the answers of ΣP never expose more asymmetry than
was used to derive P ′. However, failing to meet this proviso is informative—it further
distinguishes the elements of V—and refines the sequence of equivalences classes.

These observations suggest the following algorithm. Start with a sequence (V1) of
exactly one class that contains all of V . Construct the folded polytope P ′ with respect

3The reverse of this theorem also holds: An oracle for the linear optimisation problem can be used to solve
the separation problem.
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to this sequence and the associated separation oracle ΣP ′ from ΣP . Attempt to solve
the linear optimisation problem on the folded polytope, which lies in an ordered space,
using the Immerman-Vardi Theorem (Theorem 2.1) and the classical polynomial-time
reduction from optimisation to separation (Theorem 4.1). Should ΣP at any point an-
swer with a vector that distinguishes more elements of V than the current sequence
of equivalence classes, then we: (i) abort the run; (ii) refine the equivalence classes
and the folded polytope with this new information; and, finally, (iii) restart the optimi-
sation procedure on this more representative problem instance. Since the number of
equivalence classes increases each time the algorithm aborts, it eventually solves the
optimisation problem for some P ′ without aborting. We argue that this solution for P ′
can be translated into a solution for P .

A key aspect of this approach is that it treats the polynomial-time reduction from
optimisation to separation as a blackbox, i.e., it assumes nothing about how the reduc-
tion works internally.4 Before formally describing the algorithm we establish a number
of useful definitions and technical properties.

4.2. Folding
Let V be a set. For k ≤ |V |, let σ : V → [k] be an onto map. We call σ an index map. For
i ∈ [k] define Vi := {s ∈ V | σ(s) = i}. The sequence of sets Vi is a partition of V .

Definition 4.4 (Folding).
For a vector x ∈ QV let the almost-folded vector [x]σ̃ ∈ Qk be given by

([x]σ̃)i :=
∑
v∈Vi

xv, for i ∈ [k].

For a vector x ∈ QV let the folded vector [x]σ ∈ Qk be given by

([x]σ)i :=
[x]σ̃

|Vi|
, for i ∈ [k].

For a vector x ∈ Qk let the unfolded vector [x]−σ ∈ QV be given by

([x]−σ)v := xi, with Vi 3 v, for v ∈ V.

We say a vector x ∈ QV agrees with σ when for all v, v′ ∈ V , σ(v) = σ(v′) implies xv =
xv′ . It easily follows that if x agrees with σ then [[x]σ]−σ = x. When vectors agree with
σ and σ is clear from context we often use the font, as above with x and x, to indicate
whether a vector is unfolded and lies in QV , or folded and lies in Qk, respectively.
The notion of folding naturally extends to a set S ⊆ QV (and hence polytopes): let
[S]σ := {[s]σ | s ∈ S}. See Figures 1 and 2 for examples of folding polytopes. Note that
[P ]σ is a projection of P into the k-dimensional space Qk. Several useful properties of
folding and unfolding follow directly from their definitions.

PROPOSITION 4.5. Let σ : V → [k] be an index map and c, x ∈ QV such that c agrees
with σ. Then,

c>[[x]σ]−σ = c>x = [c]σ̃
>

[x]σ.

4It is, in fact, possible to translate the classical reduction from optimisation to separation directly into FPC
in the spirit of Section 3. However, this translation quickly becomes mired in intricate error analysis which
is both tedious and opaque.
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Fig. 1. Folding and unfolding a polytope P ⊆ Q{u,v} with respect to σ = {u→ 0, v → 0}.

Fig. 2. Folding and unfolding a polytope P ⊆ Q{u,v,w} with respect to σ = {u→ 0, v → 0, w → 1}.

PROOF. We begin by proving the first equality. Fix i ∈ [k]. Definition 4.4 implies
that ∑

v∈Vi

([[x]σ]−σ)v − xv =
∑
v∈Vi

([x]σ)i −
∑
v∈Vi

xv =
|Vi|
|Vi|

∑
v′∈Vi

xv′ −
∑
v∈Vi

xv = 0. (1)

Using linearity, the fact that c agrees with σ, and (1) we conclude that

c>([[x]σ]−σ − x) =
∑
i∈[k]

∑
v∈Vi

cv(([[x]σ]−σ)v − xv) =
∑
i∈[k]

([c]σ̃)i
|Vi|

∑
v∈Vi

([[x]σ]−σ)v − xv = 0.

A similar analysis proves the second equality.

c>x =
∑
i∈[k]

∑
v∈Vi

cvxv =
∑
i∈[k]

(∑
v′∈Vi

cv′

)(
1

|Vi|
∑
v∈Vi

xv

)
= [c]σ̃

>
[x]σ.
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We conclude by showing that the operations of folding and unfolding can be expressed
in FPC. Here, we represent an index map σ : V → [k] over a τ -structure A with domain
V as a linear pre-order ., whose equivalence classes are the sets V1, V2, . . . , Vk in the
order they appear in the pre-order5. We also represent vectors in Qk as finite structures
X over vocabulary τ ord

vec := τvec]{6}, where 6X is interpreted as a total ordering of some
subset of dom(X) of size k.

LEMMA 4.6 (FOLDING AND UNFOLDING IN FPC).

(1) There is an FPC interpretation Θfold of τ ord
vec in τvec ] {.} such that for any vector-

index-map pair x]σ, where x ∈ QV and σ : V → [k], it holds that Θfold(x]σ) = [x]σ.
(2) There is an FPC interpretation Θunfold of τvec in τ ord

vec ] {.} such that for any vector-
index-map pair x ] σ with domain V , where x ∈ Qk and σ : V → [k], it holds that
Θunfold(x ] σ) = [x]−σ.

PROOF. Firstly, we observe that in FPC we can count the number of equiva-
lence classes of . satisfying a particular condition [Laubner 2011, Lemma 2.4.3] and
thereby, define the classes Vi for i ∈ [k]. Furthermore, for a particular index i, it follows
from Proposition 2.2 that we can define

∑
v∈Vi xv in FPC in the usual binary repre-

sentation. Combining these two observations, it follows that the folding operation can
be expressed as an interpretation in FPC. The fact that we can define the equivalence
classes of . also implies directly that unfolding is definable in FPC.

4.3. Folding Polytopes
The diagrams in Figures 1 and 2 suggest intuitively that the result of folding a polytope
is itself a polytope; the following proposition makes this connection concrete.

PROPOSITION 4.7. Let P be a polytope in QV and let σ : V → [k] be an index map.
Then the folded set [P ]σ is a polytope with 〈[P ]σ〉f ≤ 108k3|V |4〈P 〉f .

PROOF. Let P = conv(S1) + cone(S2) for two finite sets of points S1, S2 ⊆ QV . By the
linearity of [·]σ we have

[P ]σ = [conv(S1) + cone(S2)]
σ

= [conv(S1)]σ + [cone(S2)]σ

= conv([S1]σ) + cone([S2]σ).

We conclude that [P ]σ is a polytope and that the extremal points of [P ]σ are the folded
extremal points of P .

By [Grötschel et al. 1988, Lemma 6.2.4], we have 〈[P ]σ〉f ≤ 3k2〈[P ]σ〉v. To bound
the latter consider an extremal point of u ∈ P such that [u]σ is an extremal point of
[P ]σ. Write u = (xvdv )v∈V . We bound 〈[u]σ〉 by expanding it and collecting a common
denominator.

〈[u]σ〉 =
∑
i∈[k]

〈
1

|Vi|
·
∑
v∈Vi

xv
dv

〉
≤ k ·max

i∈[k]

〈
1

|Vi| ·
∏
v∈Vi dv

·
∑
v∈Vi

xv ·
∏

w∈Vi\{v}

dw

〉
.

5Alternatively, we could represent the index map σ : V → [k] as a number term η(x) with one free element
variable x, so that for all v ∈ V it holds that σ(v) = i if, and only if, η[v]A = i. The two representations are
clearly inter-definable in FPC.
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Using the trivial bounds of |Vi| ≤ |V |, 〈xv〉, 〈dv〉 ≤ 〈u〉, and |V | ≥ 1 we have

〈[u]σ〉 ≤ k · (dlog |V |+ 1e+ |V | · 〈u〉+ dlog |V |+ 1e · |V | · 〈u〉)
≤ 3k · dlog |V |+ 1e · |V | · 〈u〉 ≤ 3k · (3 · |V |) · |V | · 〈u〉.

From this we conclude that 〈[P ]σ〉v ≤ 9k|V |2〈P 〉v and

〈[P ]σ〉f ≤ 3k2〈[P ]σ〉v ≤ 3k2 · 9k|V |2〈P 〉v ≤ 27k3|V |2 · 4|V |2〈P 〉f = 108k3|V |4〈P 〉f .

For a polytope P ⊆ QV and a point x ∈ QV (with x 6∈ P ) we say that all separating
hyperplanes at x disagree with σ if there is no c ∈ QV which both agrees with σ and has
c>x > max{c>y | y ∈ P}. This induces an alternative characterisation of the polytope
[P ]σ.

LEMMA 4.8. Let P be a polytope in QV and σ : V → [k] be an index map. Then

[P ]σ = P ′ :=

{
x ∈ Qk

∣∣∣∣ [x]−σ ∈ P or all separating hyperplanes
at [x]−σ disagree with σ

}
.

PROOF. We show both inclusions.
1. [P ]σ ⊆ P ′: Let x ∈ [P ]σ. By definition there is a point x ∈ P such that [x]σ = x.
Suppose x = [x]−σ, then [x]−σ ∈ P and hence x ∈ P ′. Thus assume [x]−σ 6= x. Let c ∈ QV
be any vector agreeing with σ. By Proposition 4.5 we have c>[x]−σ = c>[[x]σ]−σ = c>x.
Since x ∈ P , c is not the normal of a separating hyperplane through [x]−σ. We conclude
that all separating hyperplanes through [x]−σ disagree with σ and hence that x ∈ P ′.

2. [P ]σ ⊇ P ′: Let x ∈ P ′. Suppose [x]−σ ∈ P , then x = [[x]−σ]σ ∈ [P ]σ. Thus assume
that [x]−σ 6∈ P and that all separating hyperplanes through [x]−σ disagree with σ. This
means that for any vector c ∈ QV that agrees with σ the hyperplane through [x]−σ with
normal c intersects P and thus there is a point y ∈ P which has c>[x]−σ = c>y. This
further implies that c>[x]−σ ≤ max{c>y | y ∈ P}. Since c agrees with σ, Proposition 4.5
implies that

[c]σ̃
>

x ≤ max{[c]σ̃>[y]σ | y ∈ P}.
Observe [{c ∈ QV | c agrees with σ}]σ̃ = Qk. This means for any vector c′ ∈ Qk, c′>x ≤
max{c′>[y]σ | y ∈ P}. In particular, for every constraint defining the polytope [P ]σ, x
also satisfies that constraint. We conclude that x ∈ [P ]σ.

4.4. Expressing Optimisation in FPC
Suppose we are given a polytope P ⊆ QV via a separation oracle ∆P , and a vector c
indicating a linear objective. The algorithm maintains an index map σ : V → [k] that
indicates a sequence of equivalence classes of V which have not been distinguished
by the algorithm so far. Initially this index map is given by ordering variables accord-
ing to their relative values in c. Under the assumption that σ accurately describes
the symmetries of P we execute the polynomial-time reduction from optimisation to
separation on the polytope [P ]σ and objective [c]σ̃. Since [P ]σ lies in an ordered space,
it follows from the Immerman-Vardi theorem that the reduction can be expressed in
fixed-point logic with counting.

To this end, a separation oracle ∆[P ]σ must be specified for the polytope [P ]σ. Given
a point x ∈ Qk, we argue that the result of applying ∆P to the unfolding of x either
determines that it is in P , and hence x is in [P ]σ; or determines a separating hyper-
plane for P . If a separating hyperplane is determined, it can be folded into a separating
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ALGORITHM 2: OPT∗—an instrumentation of the reduction from optimisation to separation.
Input:
— A well-described polytope P ⊆ QV with a separation oracle ∆P , and
— a linear objective c ∈ QV .

Output:

— f = 1 and y = 0V , if P is unbounded along c; or otherwise
— f = 0 and y ∈ QV , s.t. if P 6= ∅ then y ∈ P and c>y = max{c>x | x ∈ P}.

1 σ ← REFINE(0V , c);
2 while true do
3 (f, x)← OPT([P ]σ,∆[P ]σ , [c]

σ̃);
4 if aborted with σ′ then
5 σ ← σ′;
6 else
7 if f = 1 then return (1, 0V );
8 σ′ ← REFINE(σ,∆P ([x]−σ));
9 if σ 6= σ′ then σ ← σ′ else return (0, [x]−σ);

10 end
11 end

12 oracle ∆[P ]σ (x) :
13 d← ∆P ([x]−σ);
14 σ′ ← REFINE(σ, d);
15 if σ 6= σ′ then abort(σ′);
16 if d = 0V then return [0V ]σ̃;
17 return [d]σ̃

||[d]σ̃||∞
;

18 end

hyperplane for [P ]σ, but only if the hyperplane normal agrees with σ. In the case the
separating hyperplane disagrees with σ, our assumption about P is violated, and our
separation oracle does not have enough information to proceed. Indeed, folding the re-
sulting normal may produce 0k which is not a valid answer. In this case, the algorithm
aborts the run of the linear optimisation algorithm, and returns the disagreeing hyper-
plane normal. The algorithm then combines the disagreeing normal with its current
index map σ to produce a new index map which is consistent with σ and agrees with
the disagreeable hyperplane normal. This strictly increases the number of equivalence
classes of variables induced by the index map. The above procedure can abort at most
|V | times before σ exactly characterises the order of V relative to P . After this point
the linear optimisation algorithm cannot abort and hence must solve the optimisation
problem for [P ]σ which can be unfolded into a solution for P .

With this intuition in mind the formal proof is as follows.

PROOF OF THEOREM 4.2. For completeness the entire procedure OPT∗ is described
in Algorithm 2. The algorithm uses two subroutines REFINE and OPT. The subroutine
REFINE(σ, d) takes as input an index map σ of V represented in NV and a vector d ∈ QV
and computes a new index map σ′ with the following two properties:

— for all v, v′ ∈ V with σ(v) < σ(v′), σ′(v) < σ′(v′), and
— for all v, v′ ∈ V with σ(v) = σ(v′), σ′(v) < σ′(v′) iff dv < dv′ .
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It is straightforward to observe that when REFINE(σ, d) produces an index map σ′

which is different from σ, then σ′ induces strictly more equivalence classes on V than σ
does. Clearly, no index map can induce more than |V | equivalence classes. The subrou-
tine OPT solves the linear optimisation problem on an ordered space Qk with a given
linear objective and a polytope given by a separation oracle. Mirroring Definition 2.6,
OPT returns an integer-vector pair (f, y) which is (1, 0k) when the objective value is
unbounded and (0, y), where y ∈ Qk is an optimal point in the polytope if, and only if,
the polytope is non-empty.

We first argue that the algorithm is correct, assuming the correctness of OPT and
REFINE. For any index map σ : V → [k], [P ]σ is a polytope by Proposition 4.7. We
show that the procedure ∆[P ]σ described in lines 12 to 18 acts as a separation ora-
cle for [P ]σ provided the answer given by the separation oracle ∆P agrees with σ. If
∆P ([x]−σ) outputs d = 0V , then this indicates that [x]−σ ∈ P , and hence x ∈ [P ]σ

by Proposition 4.8. Trivially 0V agrees with σ, so [0V ]σ̃ = 0k is returned by ∆[P ]σ

correctly indicating that x ∈ [P ]σ. Otherwise, d 6= 0V and indicates that [x]−σ 6∈ P
but d>[x]−σ > max{d>y | y ∈ P}. If d agrees with σ we have, by Proposition 4.5,
[d]σ̃

>x > max{[d]σ̃
>

[y]σ | y ∈ P}. This is equivalent to [d]σ̃
>x > max{[d]σ̃

>y | y ∈ [P ]σ}.
Hence [d]σ̃

> is the normal of a separating hyperplane of [P ]σ through x. Since d agrees
with σ, σ′ = σ and [d]σ̃

||[d]σ̃||∞ is correctly returned. If d does not agree with σ, then REFINE

produces a σ′ 6= σ and the procedure aborts. We conclude that (i) when ∆[P ]σ does not
abort it behaves as a separation oracle for [P ]σ, and (ii) when ∆[P ]σ aborts the returned
index map σ′ is a strict refinement of σ. Thus ∆[P ]σ is a separation oracle for [P ]σ, pro-
vided it does not abort. When OPT runs on ∆[P ]σ without aborting the result must be
a solution to the linear optimisation problem on [P ]σ.

Let x ∈ [P ]σ be such that [c]σ̃
>x ≥ max{[c]σ̃>y | y ∈ [P ]σ}, i.e., it is a solution to

the linear optimisation problem on [P ]σ along [c]σ̃. By Proposition 4.8 this means that
either (i) [x]−σ ∈ P or (ii) ∆P ([x]−σ) must disagree with σ. Applying ∆P to [x]−σ distin-
guishes these two cases. In case (i), [c]σ̃

>x = c>[x]−σ ≥ max{c>y | y ∈ P} by Proposi-
tion 4.5, because the initialisation of σ forces c to agree with σ. This means that [x]−σ is
a solution to the linear optimisation problem for the polytope P and the objective c. In
case (ii), [x]−σ 6∈ P but ∆P ([x]−σ) is guaranteed to improve the index map. In the case
that the linear optimisation algorithm returns that [P ]σ is unbounded in the direction
of [c]σ̃, it implies, via similar analysis, that P is unbounded in the direction c. Finally,
when the optimisation algorithm reports that [P ]σ is empty we conclude that P must
be empty as well, because if P contains at least one point then [P ]σ must also contain
at least one point. The algorithm correctly translates the solutions for the linear opti-
misation problem for [P ]σ back to solutions for P . This means that OPT∗ returns the
correct result.

We now observe that this algorithm runs in polynomial time. The main loop cannot
execute more than |V | times, because, as established above, at each step either the
index map σ is improved to induce more equivalence classes—up to |V | classes—or
the algorithm returns a correct solution to the linear optimisation problem on P . The
size of all of the objects referred to by the algorithm can be polynomially bounded by a
function of the input length. In particular, since P is well described by ∆P , there is a
polynomial bound on its bit complexity and this induces a bound on the bit complexity
of [P ]σ through Proposition 4.7 and implies that [P ]σ is well described. This implies
that the bit complexity of values in the algorithm can be bounded by some fixed poly-
nomial. This means that folding and unfolding can be computed in polynomial time.
Similarly, a naive implementation of the subroutine REFINE can be seen to run in poly-
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nomial time in |V | and the bit complexity of its input rational vector. Since [P ]σ is a
well-described polytope with a polynomial-time separation oracle ∆[P ]σ we can use the
polynomial-time algorithm for OPT from Theorem 4.1 to solve the linear optimisation
problem on [P ]σ. Combining all these parts implies that OPT∗ is a polynomial-time
algorithm.

We conclude by arguing that the behavior of OPT∗ can be simulated in FPC. By
Lemma 4.6, vector folding and unfolding relative to an index map σ can be expressed
in FPC. It is similarly routine to express REFINE in FPC by defining the equivalence
classes and then counting sizes to determine the correct position of each equivalence
class relative to an FPC-definable σ and vector—see [Laubner 2011, Lemma 2.4.3] for
details. In the next claim we establish that the separation problem for [P ]σ can be
defined in FPC.

To be precise, we want to code in a single oracle the separation problem for [P ]σ for
arbitrary σ. For this, we consider the vocabulary τS := τ ∪ {S} ∪ τvec where S is a new
binary relation symbol. We think of a structure over this vocabulary as consisting of
a τ -structure A, representing the polytope ν(A) ⊆ QV ; a vector y ∈ QV and a linear
pre-order S on V coding the index map σ, so that S(x, y) iff σ(x) ≤ σ(y). We define the
[P ]σ-separation problem analogously to Definition 2.7. That is to say, this problem is
expressible in FPC if there is an FPC-interpretation that takes a τS-structure repre-
senting a polytope P , a vector y and index map σ to a τvec structure representing a
vector that is a solution to the separation problem for [P ]σ.

CLAIM 1. The [P ]σ-separation problem is expressible in FPC.

PROOF OF CLAIM. By assumption, there is an FPC interpretation ΣP expressing
the separation problem for P . Furthermore, as noted above, there is an FPC interpre-
tation for expressing the REFINE routine. Finally, by Lemma 4.6 we can define the
folding of a definable vector and hence can define d := ∆P ([x]−σ) in FPC. Composing
all of these interpretations, we can conclude that the [P ]σ-separation problem can be
expressed in FPC.

By the claim, it follows that there is an FPC-interpretation for the combination of OPT
and the separation oracle given by Σ[P ]σ , because the polytope [P ]σ lies in an ordered
space and the Immerman-Vardi Theorem (Theorem 2.1) indicates that any polynomial-
time property of ordered structures can be defined in FPC. It is easy to see that the
algorithm’s main loop and control structure can be simulated in FPC. Combining ev-
erything, and using the fact that FPC is closed under composition (see p. 6), gives an
FPC-interpretation simulating OPT∗. This also shows that there is an interpretation in
FPC that can express the linear optimisation problem for P , assuming the separation
problem for P can also be defined in the logic. This concludes the proof of Theorem 4.2.

5. APPLICATIONS IN COMBINATORIAL OPTIMISATION
In this section we demonstrate a number of applications of our main technical result,
Theorem 4.2, for expressing combinatorial optimisation problems in fixed-point logic
with counting. We sequentially build up FPC interpretations for the maximum flow,
minimum cut, minimum odd cut and maximum matching problems. In doing so we
show that these graph problems can be solved efficiently while respecting the under-
lying graph abstraction.

5.1. Maximum Flows
Let G = (V, c) be a graph with non-negative edge capacities, that is, c : V × V →
Q≥0. A capacitated graph G = (V, c) is symmetric if for all u, v ∈ V , c(u, v) = c(v, u).
For a pair of distinct vertices s, t ∈ V an (s, t)-flow is a function f : V × V → Q≥0
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satisfying capacity constraints 0 ≤ f(u, v) ≤ c(u, v) on each pair of distinct u, v ∈ V and
conservation constraints

∑
v∈V (f(v, u) − f(u, v)) = 0 on all vertices u ∈ V \{s, t}. The

value val(f) of the flow f is simply the difference between in-flow and out-flow at t, i.e.,∑
v∈V (f(v, t)− f(t, v)). Observe that any flow f can be normalised to f ′ so that for any

pair of distinct u, v ∈ V at least one of f ′(u, v) and f ′(v, u) is zero (i.e., if f(u, v) ≥ f(v, u),
set f ′(u, v) := f(u, v) − f(v, u) and f ′(v, u) := 0; obviously this preserves the capacity
constraints, the conservation constraints and the value of the flow). A maximum (s, t)-
flow of G is a flow whose value is maximum over all (s, t)-flows. Observe that if f1, f2
are two (s, t)-flows in G, and α ∈ Q with 0 ≤ α ≤ 1, then f ′ := α · f1 + (1 − α) · f2 is
an (s, t)-flow of G and val(f ′) = α · val(f1) + (1 − α) · val(f2). Moreover, if f1 and f2 are
maximum (s, t)-flows, then so is any convex combination f ′. Let G|f := (V, c−f) denote
the residual graph of G with respect to the flow f .

The standard formulation of the maximum (s, t)-flow problem as a linear program is
as follows:

max
∑
v∈V

(f(v, t)− f(t, v)) subject to

∑
v∈V

(f(v, u)− f(u, v)) = 0, ∀u ∈ V \{s, t}

0 ≤ f(u, v) ≤ c(u, v), ∀u 6= v ∈ V.

(2)

By explicitly interpreting the above flow polytope from a given capacitated graph
G and then applying Theorem 4.3 we can express maximum flows in G via an FPC
interpretation.

THEOREM 5.1. There is an FPC interpretation Φ(s, t) of τmat in τmat which takes a
τmat-structure coding a capacitated graph G, along with vertices s 6= t to a τmat-structure
coding a maximum (s, t)-flow of G.

PROOF. Observe that there are |V |(|V | − 1) variables in linear program (2) corre-
sponding to f(u, v) for distinct u, v ∈ V . The program has 2|V |2 − 4 constraints. Both
the variables and constraints can be indexed by tuples of elements from V . The vari-
ables are naturally indexed by I = {(u, v) | u, v ∈ V and u 6= v}. For each u ∈ V \{s, t}
there are two constraints corresponding to the second line of (2) which we can index
by the triples (u, u, s) and (u, u, t); and for each u, v ∈ V with u 6= v there are two con-
straints corresponding to the third line of (2), which we index by (u, v, s) and (u, v, t)
respectively. Write J for the set of triples in V 3 that index the constraints. It can then
easily be established that the maximum (s, t)-flow linear program can be defined by an
FPC interpretation. That is to say, suppose that a capacitated graph (V, c) is given as a
τmat-structure with domain V where the rational matrix c ∈ QV×V≥0 codes the capacities.
Then, there is an FPC interpretation from τmat to τmat ] τvec that takes a capacitated
graph (V, c) and a pair s, t ∈ V and explicitly defines the I × J constraint matrix A
and J-vector b encoding the corresponding flow polytope. Note that the flow polytope is
(i) bounded, because each variable is constrained from both above and below, and (ii)
non-empty, because the capacities in G are non-negative and hence the zero flow is a
member of the polytope. Properties (i) and (ii) imply that solving the linear optimisa-
tion problem on the flow polytope must produce an optimum point (flow). Thus, because
the interpreted flow polytope is explicitly represented, Theorem 4.3 immediately gives
an FPC interpretation expressing the optimisation problem for the interpreted flow
linear program, and hence a maximum (s, t)-flow of (V, c).

Note that as the interpretation Φ defines a particular flow, the flow must, in some
sense, be canonical because it is produced without making any choices. Informally, it is
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a convex combination of maximum flows resulting from the consideration of all order-
ings consistent with the most refined index map determined by the FPC interpretation
of Theorem 4.2. This is possible because convex combinations of flows are also flows. In
our remaining applications—minimum (odd) cut and maximum matching—the analo-
gous property does not hold: convex combinations of cuts or matchings are not neces-
sarily cuts or matchings. In the former case it is still possible to define the notion of a
canonical optimum. In the latter case it is easy to observe, as discussed at the end of
the introduction, that defining a canonical maximum matching is not possible.

5.2. Minimum Cuts
An (s, t)-cut of a capacitated graph G = (V, c) is a subset C of the vertices V which con-
tains s but not t. The value val(C) of the cut C is the sum of the capacity of edges going
from vertices in C to vertices in V \C. A minimum (s, t)-cut of G is a cut whose value
is the minimum over all (s, t)-cuts. A minimum cut of G is a minimum (s, t)-cut over
all choices of distinct vertices s, t. By the max-flow/min-cut theorem, a maximum (s, t)-
flow and a minimum (s, t)-cut have the same value (c.f., e.g., [Cormen et al. 2009]). This
duality allows the construction of minimum cuts from maximum flows. In this section
we describe an FPC formula defining a canonical minimum (s, t)-cut in a graph using
the FPC interpretation for the maximum (s, t)-flow problem given by Theorem 5.1.

Expressing Canonical Minimum Cut in FPC. First, we define a notion of directed
reachability in capacitated graphs. A vertex v is reachable from a vertex u if there
is a path in the graph which follows directed edges with non-zero capacity (this
is exactly directed reachability in the graph induced by eliminating zero capacity
edges). Let f be a maximum (s, t)-flow in G = (V, c) with normalised flow f ′. Define
Cf := {v ∈ V | v reachable from s in G|f ′}. Cf is a minimum (s, t)-cut in G. Since f ′

is normalised, every edge leaving Cf must be at full capacity in f ′. Note that, in the
residual flow graph G|f ′ , t is not reachable from s and, by definition, Cf = Cf ′ .

In fact, the cut Cf does not depend on f at all; indeed, Cf is the smallest minimum
(s, t)-cut in the sense that it is contained in all other minimum (s, t)-cuts of G.

LEMMA 5.2. Let G = (V, c) be a capacitated graph with distinct vertices s, t ∈ V .
Then the cut Cf is independent of the choice of a maximum (s, t)-flow f of G. Moreover,
Cf is the intersection of all minimum (s, t)-cuts of G.

PROOF. Suppose not. There are two distinct minimum (s, t)-cuts C := Cf and C ′ :=
Cf ′ with corresponding normalised (s, t)-flows f and f ′, respectively. Since C and C ′

are different there exists, without loss of generality, v ∈ C ′\C. Consider the flows
through C ∩ C ′. We use a, a′, b, b′, c, c′ to denote the net flows into and out of this set.
See Figure 3 for definitions. By definition of C and C ′ there is no flow in f from C to
C nor is there flow in f ′ from C ′ to C ′ as otherwise vertices in the complementary cuts
would be reachable from s.

The flow conservation constraints require the flow into C ∩ C ′ be matched by the
outflow in both f and f ′. This implies that a + b = c and a′ = b′ + c′. In addition
a ≥ a′ and c′ ≥ c, because these edges must be at full capacity in f and f ′ respectively.
Combining these equalities and inequalities produces a+ b ≤ c′ and b′+ c′ ≤ a. Adding
these two constraints together gives a + b + b′ + c′ ≤ a + c′. Since all values are non-
negative we have b = b′ = 0. This implies a = c and a′ = c′. Then, reusing a ≥ a′ and
c′ ≥ c we conclude a = c = a′ = c′. This means that in f ′ the edges going from C ∩C ′ to
C ∩ C ′ are at full capacity, and thus no vertex in C ∩ C ′ is reachable from s in flow f ′.
This is a contradiction.
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Fig. 3. Diagram for the proof of Lemma 5.2. Here the labels indicate the net flow between two sets under
flows f and f ′.

Since the flow between C ∩ C ′ and C ∩ C ′ is the same in both f and f ′, flow f ′

witnesses that C ∩C ′ is a minimum (s, t)-cut of G. This implies the “moreover” part of
the statement and completes the proof.6

Lemma 5.2 implies that for any maximum (s, t)-flow f , Cf is a unique (s, t)-cut of
the graph G and for this reason we call it the canonical minimum (s, t)-cut of G: KG,s,t.
Given the FPC interpretation Φ from Theorem 5.1 expressing a maximum (s, t)-flow
f , it is not difficult to construct a formula of FPC which defines the normalised flow f ′

and then the set of vertices Cf = KG,s,t using the inflationary fixed-point operator to
determine reachability. This argument is formalised in the following theorem.

THEOREM 5.3. There is a formula ξ(x, s, t) of FPC which given a τmat-structure
coding a capacitated graph G = (V, c), along with distinct vertices s and t, defines the
vertices in KG,s,t.

5.3. Minimum Odd Cuts
An odd cut of a capacitated graph G = (V, c) is a proper subset C of the vertices V with
|C| odd. We can extend a capacitated graph G = (V, c) to a marked capacitated graph
G′ = (V, c,R) with a marking R ⊆ V , and use τmark to denote the vocabulary containing
a single unary relation symbol for R. A cut C ′ of a marked graph G′ is said to be a
marked cut, if both C ′ and V \C ′ contain a vertex in R. A marked cut C ′ of a marked
graph G′ = (V, c,R) with |R| even is said to be an odd marked cut if |C ′∩R| is odd (note
that this corresponds to the simpler notion of an odd cut when R = V ). The goal of the
minimum odd (marked) cut problem is to determine a minimum-value odd (marked)
cut of a given input graph. The following result by Goemans and Ramakrishnan shows
that the set of all canonical minimum marked (s, t)-cuts of a graph G′ captures some
minimum odd marked cut of G′.

THEOREM 5.4 (IMPLICIT IN [GOEMANS AND RAMAKRISHNAN 1995, THEOREM 2]).
Let G′ = (V, c,R) be a marked symmetric capacitated graph with |R| even and nonzero.
There exists distinct vertices s, t ∈ R such that KG′,s,t is a minimum odd marked cut of
G′.7

6Note that this proof is similar to the “lemma on a quadrangle” from [Dinitz et al. 1976], but that proof does
not immediately go through because C ∩ C′ may not be a (s, t)-cut.
7Note that the conference version [Anderson et al. 2013] of the present paper includes an independent proof
of this theorem.
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Combining Theorems 5.3 & 5.4 gives an FPC formula describing exactly those min-
imum odd marked cuts.

THEOREM 5.5. There is a formula κ(s, t) of FPC which given a (τmat ] τmark)-
structure coding a marked symmetric capacitated graph G′ = (V, c,R), defines those
pairs of distinct vertices s, t ∈ R where KG′,s,t is a minimum odd marked cut of G′. If
|R| is even and nonzero, the relation defined by this formula is not empty.

PROOF. Consider the following procedure for locating a set of minimum odd marked
cuts in G′: for all distinct s, t ∈ R compute the canonical minimum (s, t)-cut KG′,s,t,
eliminate those cuts which are not odd, then eliminate those cuts which are not mini-
mal. If |R| is even and nonzero, then Theorem 5.4 indicates that some cuts remain and
that those cuts are minimum odd marked cuts of G′.

This procedure can be implemented in an FPC formula using the formula ξ defining
the canonical minimum (s, t)-cut of G′ given by Theorem 5.3. We define the auxiliary
FPC formula

ODD(s, t) := #x[ξ(x, s, t) ∧ x ∈ R] ≡ 1 (mod 2)

indicating whether KG′,s,t is an odd marked cut. We again use ξ, now naturally viewed
as a number (0 or 1), to define in FPC

VAL(s, t) :=
∑
x

ξ(x, s, t) ·
∑
y

(1− ξ(y, s, t)) · c(x, y)

indicating the rational number val(KG′,s,t). Finally, define

κ(s, t) := s 6= t ∧ s, t ∈ R ∧ ODD(s, t) ∧#x[x ∈ R] ≡ 0 (mod 2)

∧ ∀u, v(u 6= v ∧ u, v ∈ R ∧ ODD(u, v))⇒ VAL(s, t) ≤ VAL(u, v).

The FPC formula κ is critical to expressing the separation problem for the matching
polytope in FPC.

5.4. Maximum Matching
Let G = (V,E) be an undirected graph. A matching M ⊆ E is defined by the property
that no two edges in M are incident to the same vertex. A matching M is maximum if
no matchings with size larger than M exist. A maximum matching is perfect if every
vertex in G is incident to some edge in the matching, i.e., |M | = |V |

2 .

Maximum Matching Program. Maximum matching has an elegant representation
as a linear program. In fact, it is an instance of a slightly more general problem: b-
matching. Let c ∈ QE≥0, b ∈ NV and A ∈ {0, 1}V×E be the incidence matrix of the
undirected graph G = (V,E): the columns of A correspond to the edges E and the rows
to the vertices V , and Ave = 1 if edge e is incident on vertex v. Alternatively we view
edges e ∈ E as two-element subsets of V . The goal of the b-matching problem is to
determine an optimum of the following integer linear program

max c>y subject to Ay ≤ b, y ≥ 0E . (3)

We obtain the usual maximum matching problem in the special case where b = 1V and
c = 1E .

Generically, integer programming is NP-complete, so instead of trying to directly
solve the above program we consider the following relaxation, due to Edmonds, as a
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rational linear program.

max c>y subject to
Ay ≤ b,
y ≥ 0E ,

y(W ) ≤ 1

2
(b(W )− 1), ∀W ⊆ V with b(W ) odd,

(4)

where y(W ) :=
∑
e∈E,e⊆W ye and b(W ) :=

∑
v∈W bv. Here we have added a new set

of constraints over subsets of the vertices. The integral points which satisfy (3), also
satisfy the additional constraints that are added in (4). To see this, let y be a feasible
integral solution, consider some set W with b(W ) odd. If |W | = 1, then y(W ) = 0
because no edges have both endpoints inW , so assume |W | ≥ 2. It follows that 2y(W ) ≤
b(W ), by summing the constraints of Ay ≤ b over W with respect to only the edges with
both endpoints in W . Since b(W ) is odd, 1

2b(W ) is half integral, but y(W ) is integral
because y is an integral solution; this means the constraint y(W ) ≤ 1

2 (b(W ) − 1) is
a valid constraint for all integral solutions. In fact [Edmonds 1965] shows something
stronger.

LEMMA 5.6 ([EDMONDS 1965, THEOREM P]). The extremal points of (4) are inte-
gral and are the extremal solutions to the b-matching problem.

Thus to solve b-matching it suffices to solve the relaxed linear program (4). As men-
tioned before, it will not be possible to show that FPC can generally define a particular
maximum matching, there can be simply too many. However, the above lemma means
that the existence of a (likely non-integral) feasible point y of (4) with value c>y wit-
nesses the existence of a maximum b-matching with value at least c>y. In addition, the
number of constraints in this linear program is exponential in the size of the graph G.8
Thus, we cannot hope to interpret this linear program directly in G, using FPC. Rather
what we can show is that there is an FPC interpretation which, given G, b and c, ex-
presses the separation problem for the b-matching polytope in (4). Combining this with
Theorem 4.2 gives an FPC interpretation expressing the b-matching optimum.

Expressing Maximum Matching in FPC. The b-matching polytopes have a natural
representation over τmatch := τmat ] τvec. Although the number of constraints in the
b-matching polytope may be large, the individual constraints have size at most a poly-
nomial in the size of the matching instance. Thus this representation is well described.

We now describe an FPC interpretation expressing the separation problem for the
b-matching polytope given a τmatch-structure coding the matrix A and bound vector b.
As in the explicit constraint setting, our approach is to come up with a definable set
of violated constraints iff the candidate point is infeasible. We then define a canonical
violated constraint by summing this definable violated set. Identifying violated vertex
and edge constraints can easily be done in FPC as before. However, it is not immedi-
ately clear how to do this for the odd set constraints.

To overcome this hurdle we follow the approach of [Padberg and Rao 1982]. Let y be
the point which we wish to separate from the matching polytope. Define s := b − Ay
to be the slack in the constraints Ay ≤ b. Analogous to b(W ), define s(W ) :=

∑
v∈W sv.

Observe that 2y(W ) + y(W : V \W ) + s(W ) = b(W ) (here y(W : V \W ) is sum of edge
variables with one endpoint in W and one in V \W ). This translates the constraints
y(W ) ≤ 1

2 (b(W ) − 1) exactly to y(W : V \W ) + s(W ) ≥ 1. This means to find a violated

8Recently this was shown to be tight in a strong sense [Rothvoß 2013].
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constraint of this type it suffices to find W , with b(W ) odd, such that y(W : V \W ) +
s(W ) < 1.

Define a marked symmetric graph H over vertex set U := V ∪ {z} where z is a new
vertex. Let H have symmetric capacity d: d(u, v) := ye when u, v ∈ V and u, v ∈ e, and
d(u, v) := sv when u = z and v ∈ V . Let R := {v ∈ V | bv is odd}. If |R| is odd, add z to R.
Thus we have a marked symmetric graphH = (U, d,R). Note that it is easy to interpret
in FPC the graph H from the input τmatch-structure coding the b-matching instance
and the point y interpreted as a τvec-structure. To define the universe V ∪{z} from V , a
standard way is to take the set of all pairs in V ×V and quotient under the equivalence
relation that identifies (x, y) with (x′, y′) whenever x 6= y and x′ 6= y′. Consider any odd
marked cutW ofH, without loss of generality z 6∈W (otherwise, take the complement).
Observe that the value of edges crossing the cut is exactly y(W : V \W ) + s(W ); also
note that s(W ) is odd. Thus there is a minimum odd marked cut W of H with value
less than 1 iff there is a violated odd set constraint in (4).

By Theorem 5.4, there is a violated odd set constraint iff for some s, t ∈ R the canon-
ical minimum (s, t)-cut is a minimum odd marked cut with value less than 1. For each
pair s, t ∈ R there is at most one minimum odd marked cut Ws,t with this property,
and it is definable from the parameters s and t. We conclude, using Theorem 5.3 and
Lemma 5.2, that we can define a family of violated set constraints within FPC. Sum-
ming these defined violated constraints produces a canonical violated constraint which
must be non-trivial by Proposition 3.1. Thus, as in Theorem 3.2 there is an FPC inter-
pretation expressing the separation problem for the polytope in the linear program
(4).

LEMMA 5.7. There is an FPC interpretation of τvec in τmatch]τvec expressing the sepa-
ration problem for the b-matching polytopes with respect to their natural representation
as τmatch-structures.

Like the maximum flow problem in Section 5.1, the b-matching polytope is both com-
pact and non-empty. By combining Lemma 5.7 and Theorem 4.2 with respect to the
natural well-described representation of b-matching polytopes, we conclude that there
is an FPC interpretation expressing the value of the maximum b-matching of a graph.

THEOREM 5.8. There is an FPC interpretation of τQ in τmatch ] τvec which takes a
τmatch]τvec-structure coding a b-matching polytope P and a vector c to a rational number
m indicating the value of the maximum b-matching of P with respect to c.

6. CONCLUSION
We prove that the linear programming problem can be expressed in fixed-point logic
with counting—indeed, that the linear optimisation problem can be expressed in FPC
for any class of polytopes for which the separation problem can be defined in FPC.
As a consequence, we solve an open problem of [Blass et al. 1999] by concluding that
there is a formula of fixed-point logic with counting that defines the size of a maximum
b-matching in a graph. More generally, we demonstrate that a number of combinato-
rial graph problems that can be efficiently solved can also be efficiently solved while
respecting the graph abstraction. It is our hope that our results provide some insight
towards the eventual resolution of Chandra and Harel’s question about the existence
of a logical characterisation of P. From here, there are number of natural research
directions to consider.

Convex programming. A polytope is an instance of much more general geometric
object: a convex set. The robust nature of the ellipsoid method means it has been ex-
tended to help solve more general geometric optimisation problems, e.g., those with
semi-definite or quadratic constraints. It is possible that our methods for efficiently
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preserving abstraction can be extended to these settings. To be more concrete, the
standard method for solving the separation problem on semi-definite programs in-
volves locating eigenvectors with non-positive eigenvalues to witness violations of the
positive-semi-definitiness constraints. Naı̈vely, these eigenvectors are determined by
constructing an eigenbasis of the constraint matrix. Such a choice of basis cannot be
expressed in FPC! The proof of Theorem 4.2 sidesteps a similar basis choice by col-
lapsing spaces with indistinguishable coordinates—can this approach be generalised
to semi-definite programs?

Completeness. Linear programming is complete for polynomial time under logspace
reductions [Dobkin et al. 1979]. It follows from our results that it cannot be complete
for P under logical reductions such as first-order interpretations, since this would im-
ply that P is contained in FPC. Could it still be the case that linear programming
(under the explicit representation) is complete for FPC under such weak reductions,
or, perhaps, first-order interpretations with counting? Even if linear programming is
not complete, there may be other interesting combinatorial problems that can be ex-
pressed in FPC via a reduction to linear programming. There has been some work
examining generalisations and improvements to the b-matching approach we followed
(c.f., e.g., [Caprara and Fischetti 1996; Letchford et al. 2004]), is it possible to translate
these results into FPC?

LP hierarchies and FPC. Another intriguing connection between counting logics and
linear programming is established in [Atserias and Maneva 2012; Grohe and Otto
2012] where it is shown that the hierarchy of Sherali-Adams relaxations [Sherali and
Adams 1990] of the graph isomorphism integer program interleaves with equivalence
in k-variable logic with counting (Ck). It is suggested [Atserias and Maneva 2012]
that inexpressibility results for Ck could be used to derive integrality gaps for such
relaxations. It is a consequence of the results in this paper that the Sherali-Adams
approximations of not only isomorphism, but of other combinatorial problems can be
expressed in FPC, as long as the approximating LP is given by an FPC interpretation
over the problem instance. It would be interesting to investigate the consequences of
this to see how inexpressibility results in FPC can be translated to lower bound results
on integrality gaps or other measures.

ACKNOWLEDGMENT

The authors would like to thank Siddharth Barman for his helpful comments on an early draft of this paper
and the anonymous reviewers for their constructive suggestions.

REFERENCES
M. Anderson and A. Dawar. 2014. On Symmetric Circuits and Fixed-Point Logics. In STACS. LIPIcs, 41–52.
M. Anderson, A. Dawar, and B. Holm. 2013. Maximum Matching and Linear Programming in Fixed-Point

Logic with Counting. In LICS. IEEE, 173–182.
A. Atserias, A. Bulatov, and A. Dawar. 2009. Affine systems of equations and counting infinitary logic. Theor.

Comput. Sci. 410, 18 (2009), 1666–1683.
A. Atserias and E. Maneva. 2012. Sherali-Adams relaxations and indistinguishability in counting logics. In

ITCS. ACM, 367–379.
A. Blass and Y. Gurevich. 2005. A Quick Update on Open Problems in Blass-Gurevich-Shelah’s article ‘On

Polynomial Time Computations Over Unordered Structures’. Online at http://research.microsoft.com/
∼gurevich/annotated.html. (2005). [Accessed July 19, 2010].

A. Blass, Y. Gurevich, and S. Shelah. 1999. Choiceless polynomial time. Ann. Pure Appl. Logic 100 (1999),
141–187.

A. Blass, Y. Gurevich, and S. Shelah. 2002. On polynomial time computation over unordered structures. J.
Symbolic Logic 67, 3 (2002), 1093–1125.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.

http://research.microsoft.com/~gurevich/annotated.html
http://research.microsoft.com/~gurevich/annotated.html


A:26 Matthew Anderson et al.

J-Y. Cai, M. Fürer, and N. Immerman. 1992. An Optimal Lower Bound on the Number of Variables for Graph
Identification. Combinatorica 12, 4 (1992), 389–410.
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