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History

Jim Hugunin wrote Numeric in 1995, while a graduate student at MIT. Hugunin
based his package on previous work by Jim Fulton, then working at the US
Geological Survey, with input from many others. After he graduated, Paul
Dubois at the Lawrence Livermore National Laboratory became the maintainer.
Many people contributed to the project including T.E.O. (a co-author of this
paper), David Ascher, Tim Peters, and Konrad Hinsen.

In 1998 the Space Telescope Science Institute started using Python and in
2000 began developing a new array package called Numarray, written almost en-
tirely by Jay Todd Miller, starting from a prototype developed by Perry Green-
field. Other contributors included Richard L. White, J. C. Hsu, Jochen Krupper,
and Phil Hodge. The Numeric/Numarray split divided the community, yet ul-
timately pushed progress much further and faster than would otherwise have
been possible.

Shortly after Numarray development started, T.E.O. took over maintenance
of Numeric. In 2005, he led the effort and did most of the work to unify Numeric
and Numarray, and produce the first version of NumPy.

Eric Jones co-founded (along with T.E.O. and P.P.) the SciPy community,
gave early feedback on array implementations, and provided funding and travel
support to several community members. Numerous people contributed to the
creation and growth of the larger SciPy ecosystem, which gives NumPy much of
its value. Others injected new energy and ideas by creating experimental array
packages.

Version control and collaboration

We use Git for version control and GitHub as the public hosting service for
our official upstream repository (https://github.com/numpy/numpy). We each
work in our own copy (or fork) of the project and use the upstream repository
as our integration point. To get new code into the upstream repository, we use
GitHub’s pull request (PR) mechanism. This allows us to review code before
integrating it as well as to run a large number of tests on the modified code to
ensure that the changes do not break expected behavior.

We also use GitHub’s issue tracking system to collect and triage problems
and proposed improvements.


https://github.com/numpy/numpy

Library organization

Broadly, the NumPy library consists of the following parts: the NumPy array
data structure ndarray; the so-called universal functions; a set of library func-
tions for manipulating arrays and doing scientific computation; infrastructure
libraries for unit tests and Python package building; and the program f2py for
wrapping Fortran code in Python [1]. The ndarray and the universal functions
are generally considered the core of the library. In the following, we give a brief
summary of these components of the library.

Core

The ndarray data structure and the universal functions make up the core of
NumPy.

The ndarray is the data structure at the heart of NumPy. The data struc-
ture stores regularly strided homogeneous data types inside a contiguous block
memory, allowing for the efficient representation of n-dimensional data. More
details about the data structure are given in “The NumPy array: a structure
for efficient numerical computation” [2].

The universal functions, or more concisely, ufuncs, are functions written in
C that implement efficient looping over NumPy arrays. An important feature of
ufuncs is the built-in implementation of broadcasting. For example, the function
arctan2(x, y) is a ufunc that accepts two values and computes tan™'(y/z).
When arrays are passed in as the arguments, the ufunc will take care of looping
over the dimensions of the inputs in such a way that if, say, x is a 1-D array
with length 3, and y is a 2-D array with shape 2 x 1, the output will be an
array with shape 2 x 3. The ufunc machinery takes care of calling the function
with all the appropriate combinations of input array elements to complete the
output array. The elementary arithmetic operations of addition, multiplication,
etc., are implemented as ufuncs, so that broadcasting also applies to expressions
suchasx + y * z.

Computing libraries

NumPy provides a large library of functions for array manipulation and scien-
tific computing, including functions for: creating, reshaping, concatenating, and
padding arrays; searching, sorting and counting data in arrays; computing ele-
mentary statistics, such as the mean, median, variance, and standard deviation;
file I/O; and more.

NumPy’s linear algebra library includes functionality for: solving linear sys-
tems of equations; calculating various matrix properties such as the determi-
nant, the norm, the inverse, the pseudo-inverse; and computing the Cholesky,
eigenvalue, and singular value decompositions of a matrix.

The NumPy module mainly provides interfaces to established implementa-
tions of the LAPACK (Linear Algebra PACKage) [3] interface. LAPACK itself,



which was first released in 1992, is, in turn, based on the EISPACK and LIN-
PACK open-source libraries. It is part of Netlib, a repository of mathematical
software, papers, and databases, that has a long history of open, community-
wide development [4, 5]. For improved performance, NumPy links to an accel-
erated BLAS (Basic Linear Algebra Subprograms) implementation, most com-
monly OpenBLAS (http://www.openblas.net/).

The random number generator library in NumPy provides alternative bit
stream generators that provide the core function of generating random integers.
A higher-level generator class that implements an assortment of probability
distributions is provided. It includes the beta, gamma and Weibull distributions,
the univariate and multivariate normal distributions, and more.

A suite of functions for computing the fast Fourier transform (FFT) and its
inverse is provided.

Infrastructure libraries

NumPy provides utilities for writing tests and for building Python packages.
The testing subpackage provides functions such as assert_allclose(actual,
desired) that may be used in test suites for code that uses NumPy arrays.
NumPy provides the subpackage distutils which includes functions and
classes to facilitate configuration, installation, and packaging of libraries de-
pending on NumPy. These can be used, for example, when publishing to the
PyPI website.

F2PY

The program f2py is a tool for building NumPy-aware Python wrappers of
Fortran functions. NumPy itself does not use any Fortran code; F2PY is part
of NumPy for historical reasons.

Governance

NumPy adopted an official Governance Document on October 5, 2015 (https:
//numpy . org/devdocs/dev/governance/governance.html). Project decisions
are usually made by consensus of interested contributors. This means that, for
most decisions, everyone is entrusted with veto power. A Steering Council,
currently composed of 12 members, facilitates this process and oversees daily
development of the project by contributing code and reviewing contributions
from the community.

NumPy’s official Code of Conduct was approved on September 1, 2018
(https://numpy.org/devdocs/dev/conduct/code_of _conduct.html). In brief,
we strive to: be open; be empathetic, welcoming, friendly, and patient; be col-
laborative; be inquisitive; and be careful in the words that we choose. The Code
of Conduct also specifies how breaches can be reported and outlines the process
for responding to such reports.
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Funding

In 2017, NumPy received its first large grants totaling 1.3M USD from the
Gordon & Betty Moore and the Alfred P. Sloan foundations. Stéfan van der
Walt is the PI and manages four programmers working on the project. These
two grants focus on addressing the technical debt accrued over the years and
on setting in place standards and architecture to encourage more sustainable
development.

NumPy received a third grant for 195K USD from the Chan Zuckerberg
Initiative at the end of 2019 with Ralf Gommers as the PI. This grant focuses on
better serving NumPy’s large number of beginning to intermediate level users
and on growing the community of NumPy contributors. It will also provide
support to OpenBLAS, on which NumPy depends for accelerated linear algebra.

Finally, since May 2019 the project receives a small amount annually from
Tidelift, which is used to fund things like documentation and website improve-
ments.

Developers

NumPy is currently maintained by a group of 23 contributors with commit
rights to the NumPy code base. Out of these, 17 maintainers were active in
2019, 4 of whom were paid to work on the project full-time. Additionally, there
are a few long term developers who contributed and maintain specific parts of
NumPy, but are not officially maintainers.

Over the course of its history, NumPy has attracted PRs by 823 contributors.
However, its development relies heavily on a small number of active maintainers,
who share more than half of the contributions among themselves.

At a release cycle of about every half year, the five recent releases in the
years 2018 and 2019 have averaged about 450 PRs each,! with each release
attracting more than a hundred new contributors. Figure 1 shows the number
of PRs merged into the NumPy master branch. Although the number of PRs
being merged fluctuates, the plot indicates an increased number of contributions
over the past years.

Community calls

The massive number of scientific Python packages that built on NumPy meant
that it had an unusually high need for stability. So to guide our development
we formalized the feature proposal process, and constructed a development
roadmap with extensive input and feedback from the community.

Weekly community calls alternate between triage and higher level discussion.
The calls not only involve developers from the community, but provide a venue

INote that before mid 2011, NumPy development did not happen on github.com. All data
provided here is based on the development which happened through GitHub PRs. In some
cases contributions by maintainers may not be categorized as such.
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Figure 1: Number of pull requests merged into the NumPy master
branch for each quarter since 2012. The total number of PRs is indicated,
with the lower blue area showing the portion contributed by current or previous
maintainers.

for vendors and other external groups to provide input. For example, after Intel
produced a forked version of NumPy, one of their developers joined a call to
discuss community concerns.

NumPy enhancement proposals

Given the complexity of the codebase and the massive number of projects de-
pending on it, large changes require careful planning and substantial work.
NumPy Enhancement Proposals (NEPs) are modeled after Python Enhance-
ment Proposals (PEPs) for “proposing major new features, for collecting com-
munity input on an issue, and for documenting the design decisions that have
gone into Python”2. Since then there have been 19 proposed NEPS—6 have
been implemented, 4 have been accepted and are being implemented, 4 are un-
der consideration, 3 have been deferred or superseded, and 2 have been rejected
or withdrawn.

2https://numpy.org/neps/nep-0000.html
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Central role

NumPy plays a central role in building and standardizing much of the scientific
Python community infrastructure. NumPy’s docstring standard is now widely
adopted. We are also now using the NEP system as a way to help coordinate
the larger scientific Python community. For example, in NEP 29, we recom-
mend, along with leaders from various other projects, that all projects across
the Scientific Python ecosystem adopt a common “time window-based” policy
for support of Python and NumPy versions. This standard will simplify down-
stream project and release planning.

Wheels build system

A Python wheel (https://www.python.org/dev/peps/pep-0427/) is a stan-
dard file format for distributing Python libraries. In addition to Python code,
a wheel may include compiled C extensions and other binary data. This is im-
portant, because many libraries, including NumPy, require a C compiler and
other build tools to build the software from the source code, making it difficult
for many users to install the software on their own. The introduction of wheels
to the Python packaging system has made it much easier for users to install
precompiled libraries.

A GitHub repository containing scripts to build NumPy wheels has been
configured so that a simple commit to the repository triggers an automated build
system that creates NumPy wheels for several computer platforms, including
Windows, Mac OSX and Linux. The wheels are uploaded to a public server and
made available for anyone to use. This system makes it easy for users to install
precompiled versions of NumPy on these platforms.

The technology that is used to build the wheels evolves continually. At the
time this paper is being written, a key component is the multibuild suite of
tools developed by Matthew Brett and other developers (https://github. com/
matthew-brett/multibuild). Currently, scripts using multibuild are written
for the continuous integration platforms Travis-CI (for Linux and Mac OSX)
and Appveyor (for Windows).

Recent technical improvements

With the recent infusion of funding and a clear process for coordinating with
the developer community, we have been able to tackle a number of important
large scale changes. We highlight two of those below, as well as changes made
to our testing infrastructure to support hardware platforms used in large scale
computing.
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Array function protocol

A vast number of projects are built on NumPy; these projects are consumers of
the NumPy API. Over the last several years, a growing number of projects are
providers of a NumPy-like API and array objects targeting audiences with spe-
cialized needs beyond NumPy’s capabilities. For example, the NumPy API is
implemented by several popular tensor computation libraries including CuPy?,
JAX*, and Apache MXNet®. PyTorch® and Tensorflow” provide tensor APIs
with NumPy-inspired semantics. It is also implemented in packages that sup-
port sparse arrays such as scipy.sparse and PyData/Sparse. Another notable
example is Dask, a library for parallel computing in Python. Dask adopts the
NumPy API and therefore presents a familiar interface to existing NumPy users,
while adding powerful abilities to parallelize and distribute tasks.

The multitude of specialized projects creates the difficulty that consumers
of these NumPy-like APIs write code specific to a single project and do not
support all of the above array providers. This is a burden for users relying
on the specialized array-like, since a tool they need may not work for them.
It also creates challenges for end-users who need to transition from NumPy to
a more specialized array. The growing multitude of specialized projects with
NumPy-like APIs threatened to again fracture the scientific Python community.

To address these issues NumPy has the goal of providing the fundamental
API for interoperability between the various NumPy-like APIs. An earlier step
in this direction was the implementation of the __array ufunc__ protocol in
NumPy 1.13, which enabled interoperability for most mathematical functions
(https://numpy.org/neps/nep-0013-ufunc-overrides.html). In 2019 this
was expanded more generally with the inclusion of the __array function__ pro-
tocol into NumPy 1.17. These two protocols allow providers of array objects to
be interoperable with the NumPy API: their arrays work correctly with almost
all NumPy functions (https://numpy.org/neps/nep-0018-array-function-protocol.
html). For the users relying on specialized array projects it means that even
though much code is written specifically for NumPy arrays and uses the NumPy
API as import numpy as np, it can nevertheless work for them. For example,
here is how a CuPy GPU array can be passed through NumPy for processing,
with all operations being dispatched back to CuPy:

import numpy as np
import cupy as cp

x_gpu = cp.array([1, 2, 3])
y = np.sum(x_gpu) # Returns a GPU array

Similarly, user defined functions composed using NumPy can now be applied
to, e.g., multi-node distributed Dask arrays:

Shttps://cupy.chainer.org/
4https://jax.readthedocs.io/en/latest/jax.numpy.html
Shttps://numpy.mxnet.io/
Shttps://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html
"https://www.tensorflow.org/tutorials/customization/basics
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import numpy as np
import dask.array as da

def f(x):
"""Function using NumPy API calls
y = np.tensordot(x, x.T)
return np.mean(np.log(y + 1))

nun

x_local = np.random.random([10000, 10000]) # random local array
x_distr = da.random.random ([10000, 10000]) # random distributed
array

f(x_local) # returns a NumPy array
f(x_distr) # works, returns a Dask array

Random number generation

The NumPy random module provides pseudorandom numbers from a wide range
of distributions. In legacy versions of NumPy, simulated random values are pro-
duced by a RandomState object that: handles seeding and state initialization;
wraps the core pseudorandom number generator based on a Mersenne Twister
implementation®; interfaces with the underlying code that transforms random
bits into variates from other distributions; and supplies a singleton instance
exposed in the root of the random module.

The RandomState object makes a compatibility guarantee so that a fixed seed
and sequence of function calls produce the same set of values. This guarantee
has slowed progress since improving the underlying code requires extending the
API with additional keyword arguments. This guarantee continues to apply to
RandomState.

NumPy 1.17 introduced a new API for generating random numbers that
use a more flexible structure that can be extended by libraries or end-users.
The new API is built using components that separate the steps required to
generate random variates. Pseudorandom bits are generated by a bit generator.
These bits are then transformed into variates from complex distributions by a
generator. Finally, seeding is handled by an object that produces sequences of
high-quality initial values.

Bit generators are simple classes that manage the state of an underlying
pseudorandom number generator. NumPy ships with four bit generators. The
default bit generator is a 64-bit implementation of the Permuted Congruential
Generator [6] (PCG64). The three other bit generators are a 64-bit version of
the Philox generator [7] (Philox), Chris Doty-Humphrey’s Small Fast Chaotic
generator [8] (SFC64), and the 32-bit Mersenne Twister [9] (MT19937) which
has been used in older versions of NumPy.? Bit generators provide functions,
exposed both in Python and C, for generating random integer and floating point

8to be precise, the standard 32-bit version of MT19937
9The randomgen project supplies a wide range of alternative bit generators such as a
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numbers. The three new bit generators were chosen for their combination of
statistical soundness and performance. The PCG family of generators have been
widely tested using state-of-the-art statistical tests and found to perform well
[11]. All three of the new generators were tested using the PractRand test suite
[8] with four TB of random values. Each was tested using a single generator
and using a composite generator assembled from multiple copies of the same bit
generator, each seeded from a shared SeedSequence.

The Generator consumes one of the bit generators and produces variates
from complicated distributions. Many improved methods for generating random
variates from common distributions were implemented, including the Ziggurat
method for normal, exponential and gamma variates [12], and Lemire’s method
for bounded random integer generation [13]. The Generator is more similar
to the legacy RandomState, and its API is substantially the same. The key
differences all relate to state management, which has been delegated to the bit
generator. The Generator does not make the same stream guarantee as the
RandomState object, and so variates may differ across versions as improved
generation algorithms are introduced.!®

Finally, a SeedSequence is used to initialize a bit generator. The seed se-
quence can be initialized with no arguments, in which case it reads entropy from
a system-dependent provider, or with a user-provided seed. The seed sequence
then transforms the initial set of entropy into a sequence of high-quality pseu-
dorandom integers, which can be used to initialize multiple bit generators deter-
ministically. The key feature of a seed sequence is that it can be used to spawn
child SeedSequences to initialize multiple distinct bit generators. This capabil-
ity allows a seed sequence to facilitate large distributed applications where the
number of workers required is not known. The sequences generated from the
same initial entropy and spawns are fully deterministic to ensure reproducibility.

The three components are combined to construct a complete random number
generator.

from numpy.random import (

Generator,
PCG64 ,

SeedSequence,

)

seq = SeedSequence (1030424547444117993331016959)
pcg = PCG64 (seq)
gen = Generator (pcg)

This approach retains access to the seed sequence which can then be used
to spawn additional generators.

children = seq.spawn(2)
gen_0 = Generator (PCG64 (children[0]))

cryptographic counter-based generators (AESCtr) and generators that expose hardware random
number generators (RDRAND) [10].

10Despite the removal of the compatibility guarantee, simple reproducibility across versions
is encouraged, and minor changes that do not produce meaningful performance gains or fix
underlying bug are not generally adopted.
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gen_1 = Generator (PCG64 (children[1]))

While this approach retains complete flexibility, the method np.random.default_rng
can be used to instantiate a Generator when reproducibility is not needed.

The final goal of the new API is to improve extensibility. RandomState is a
monolithic object that obscures all of the underlying state and functions. The
component architecture is one part of the extensibility improvements. The un-
derlying functions (written in C) which transform the output of a bit generator
to other distributions are available for use in CFFI. This allows the same code
to be run in both NumPy and dependent that can consume CFFI, e.g., Numba.

Both the bit generators and the low-level functions can also be used in C or
Cython code.'!

Testing on multiple architectures

At the time of writing the two fastest supercomputers in the world, Summit
and Sierra, both have IBM POWERY architectures (https://www.top500.org/
lists/2019/11/). In late 2018, Astra, the first ARM-based supercomputer
to enter the TOP500 list, went into production (https://en.wikichip.org/
wiki/supercomputers/astra). Furthermore, over 100 billion ARM proces-
sors have been produced as of 2017 (https://en.wikipedia.org/wiki/ARM_
architecture), making it the most widely used instruction set architecture in
the world.

Clearly there are motivations for a large scientific computing software library
to support POWER and ARM architectures. We’ve extended our continuous in-
tegration (CI) testing to include ppc64le (POWERS on Travis CI) and ARMv8
(on Shippable service). We also test with the $390x architecture (IBM Z CPUs
on Travis CI) so that we can probe the behavior of our library on a big-endian
machine. This satisfies one of the major components of improved CI testing laid
out in a version of our roadmap—specifically, “CI for more exotic platforms.”

PEP 599 (https://www.python.org/dev/peps/pep-0599/) lays out a plan
for new Python binary wheel distribution support, manylinux2014, that adds
support for a number of architectures supported by the CentOS Alternative Ar-
chitecture Special Interest Group, including ARMvS, ppc64le, as well as s390x.
We are thus well-positioned for a future where provision of binaries on these
architectures will be expected for a library at the base of the ecosystem.
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