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Abstract

This thesis is chiefly concerned with a classical conjecture of Littlewood’s re-
garding the L'-norm of the Fourier transform, and the closely related idem-
potent theorem. The vast majority of the results regarding these problems
are, in some sense, qualitative or at the very least infinitary and it has become
increasingly apparent that a quantitative state of affairs is desirable.
Broadly speaking, the first part of the thesis develops three new tools
for tackling the problems above: We prove a new structural theorem for the
spectrum of functions in A(G); we extend the notion of local Fourier anal-
ysis, pioneered by Bourgain, to a much more general structure, and localize
Chang’s classic structure theorem as well as our own spectral structure the-
orem; and we refine some aspects of Freiman’s celebrated theorem regarding
the structure of sets with small doubling. These tools lead to improvements
in a number of existing additive results which we indicate, but for us the
main purpose is in application to the analytic problems mentioned above.
The second part of the thesis discusses a natural version of Littlewood’s
problem for finite abelian groups. Here the situation varies wildly with the
underlying group and we pay special attention first to the finite field case
(where we use Chang’s Theorem) and then to the case of residues modulo
a prime where we require our new local structure theorem for A(G). We
complete the consideration of Littlewood’s problem for finite abelian groups
by using the local version of Chang’s Theorem we have developed. Finally we
deploy the Freiman tools along with the extended Fourier analytic techniques

to yield a fully quantitative version of the idempotent theorem.
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Chapter 1
Introduction

In recent years it has become increasingly apparent that a lot of results
from the harmonic analysis of the 70s and 80s have applications in additive
combinatorics, and a number of the tools of additive combinatorics can be
applied to yield quantitative version of analytic results from that period. It
is this modern, quantitative, perspective on harmonic problems which guides

our work.

The thesis is essentially a union of the papers [San06, San08c, San07a,
San07b] and [GSO8b], the last of these being coauthored with Ben Green.
It has three main chapters. In the first two (Chapters 2 and 3) we develop
some new tools; we believe this is the most interesting part of the thesis
and provides the most scope for future applications. Chapter 4 applies the

preceding results to the main questions addressed by the thesis.

The general objective in additive combinatorics is to understand additive
structure in sets of integers. For example, if A is a finite set of integers
we may well ask how many three term arithmetic progression or additive
quadruples A contains. Recall that a three term arithmetic progression is a
triple (x,y, z) such that z + z = 2y and an additive quadruple is a quadruple
(x,y, z,w) such that x +y = z+w. To do this we try to count the quantities

D La(@)la(W) a2y —x) and Y 1a(2)1a(y)la(2)la(z +y — 2)

T, YEL z,y,2€7
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CHAPTER 1. INTRODUCTION

respectively. To see these expressions more clearly we introduce some nota-
tion. We write (-,-) for the usual inner product on ¢%(Z) and for functions

f,g € IY(Z) we define their convolution to be

Frgla)= > fly
Yy+z=x
Using this the number of three term arithmetic progressions and additive
quadruples in A are
<1A * 1A712A> and <1A * 1A71A * 1A>

respectively.

A great strength of the operators g — f % g is that they all commute
and so are simultaneously diagonalizable. The basis we pick with respect
to which they are all diagonal is called the Fourier basis and the Fourier
transform describes the decomposition of a function in this basis; it maps
f €MZ) to f € L¥(T) defined by

Zf z) exp(—2miz0).

z2€Z

The fact that the Fourier transform is a change of basis is encoded in the

Fourier inversion theorem which tells us that
1 ~
= / f(0)e(z0)dl for all x € Z.
0

Moverover, the transform is in fact an orthogonal change of basis, a fact

called Plancherel’s theorem:

/f G(0)d6 for all f,g € (*(Z).

As we have said the Fourier transform maps convolution to multiplication

so that the expressions for the number of three term arithmetic progressions
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and additive quadruples in A can be made even simpler: they become

1 - 1
/ T3(0)2154(0)d0 and / T3(0)|do.
0 0

We restrict our attention to counting additive quadruples for the moment.
A certainly can’t have more than |A[> additive quadruples and if it has close
to this number, in the sense of having at least ¢|A|* for some small ¢ > 0,
then counting them more precisely is fairly easy because we can restrict our

attention in the Fourier expression above to those 6 at which 1,4 is large. Let
M= {0 T:|140)| = €Al}.

We have
1 —~ —_~ —_—~
/ Ta0)'do = / T2(0))"do + / Ta(0)] a0
0 m me

= [in@ras+o(eup [ ihers)

- [ Tt +o (62|A|2 / 1 |ﬁ<e>|2de)
S AGIRENCER

- [ moraro(ce [ mora)

— (140 /W Ta(6)]'a6

by Holder’s inequality and Plancherel’s theorem.

The reader unfamiliar with this derivation need not be overly concerned,
the point is simply that calculating the number of additive quadruples in A

has been reduced to understanding where the Fourier transform 1, is ‘large’.

By Plancherel’s theorem we see that if |A| is large then the Lebesgue

measure of 91 is small. In particular we have

(el A)2u(am) < / T2(6)[2d0 = | A,
3



CHAPTER 1. INTRODUCTION

whence p(9M) < e 2/|A|. Very roughly this means that f, defined by f =
ﬁ|gm, is a considerably ‘lower complexity’ object, and therefore easier to
understand, than ﬁ. One the other hand, our calculation shows that for the
purpose of counting additive quadruples f has roughly as good as 14!

While proximity of Fourier transforms in L*(T) does ensure that two
functions have a similar number of additive quadruples it is harder to find
other ways in which the functions are similar. Contrastingly if ]?and a are
close in L*(T) then, by Plancherel’s theorem, we have that f and 14 are close
in (?(Z) — they are very similar. Indeed, for almost any arithmetic way in
which one may care to compare f and 14 they will end up being very similar
if || f = 1al|2(z) is small. It becomes natural then to ask when 14 has a ‘low
complexity’ approximation in ¢?(Z).

Suppose that [|14] pry < M. Then, by the same argument we used
above, we have that f, defined by f: ﬁlm, has

1 —~ o~
If = a2 = / Ta(6) — F(0)2d6

= [ @) < M = M La] g,

In fact one could use any LP(T)-norm of 14 with p < 2; the choice of p = 1,
however, ensures some useful algebraic properties. Indeed, the norm || -
lazy == |[ller(my is often called the algebra norm because of the algebra
property

1falla@) < I flla@llgllag for all f,g € £1(Z).

A natural question now arises as to which sets A actually have ||14]|4z) <
M. It was Littlewood in [HL48] who first asked this question, although he
came from an entirely different starting point. The now proved Littlewood
conjecture asserts that in fact one needs |A| to be rather small for this to

hold; specifically there is the following theorem.

Theorem. (Littlewood’s conjecture, [Kon81, MPS81]) Suppose that A is a
finite set of integers with ||14|lazy < M. Then |A] < exp(O(M)).

In this thesis we are concerned first and foremost with understanding
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the above problems in abelian groups other than Z — it turns out to be a
considerably richer problem in the general case because of the possibility of
non-trivial compact subgroups. The Fourier transform has a totally natural
generalization to locally compact abelian groups, the details of which are
addressed in Chapter 2; they are not important for this discussion.

It is instructive to begin by considering the group T. If A C T has
1 1allacry £ M we cannot expect to show that A is finite: if A has measure
zero then ||14]| ¢ty = 0 and if A has measure one then ||14[| 4y = 1. However,
it turns out that these are all the exceptions: A must have either measure zero
or one. A rigorous proof of this easy fact appears in Chapter 4 but for now
we shall accept it and turn to regarding the torus as a good qualitative model
for the groups Z/pZ where p is a prime. The following discrete analogue of

Littlewood’s conjecture is one of our main results.

Theorem 1.1. (Theorem 4.8) Suppose that A C Z/pZ has density bounded
away from 0 and 1, and ||1A||A(Z/pZ) < M. Then |A] < exp(O(MQJrO(l)))‘

One might make the ‘discrete Littlewood conjecture’, by analogy with the
Littlewood conjecture, that the 2 4+ o(1) can be replaced by 1, and, indeed,
this may well be the case. However, while the formal similarity between the
two problems is rather striking, the methods we require to prove our theorem
are very different.

A key challenge in the result above is leveraging the fact that A is not
close to being the whole of Z/pZ. If A = Z/pZ then ||14]/a@z/pz) = 1 and
more generally if H < G then [|1g|a) < 1, so while the only compact
subgroup of Z is {0}, for more general groups we have other possibilities. A
class of groups with a lot of subgroups are the dyadic groups Fy. For these

groups we prove the following theorem.

Theorem. (Theorem 4.1.2) Suppose that A C Fy has density as close to 1/3
as possible and ||14||a@y) < M. Then |A| < exp(exp(O(M))).

The density condition essentially encodes the fact that A is not remotely
close to being a subgroup, and it is the handling of the rich subgroup structure
here which costs us in the form of a considerably weaker bound. The following

is an equivalent, but arguably more attractive, formulation of the above.
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CHAPTER 1. INTRODUCTION

Theorem. Suppose that A C F° has density o with |a — 1/3| < e. Then
| Lall a@wgey > loglog e

To understand the role which subgroups play in our work we return to the
qualitative view point. The earlier argument for the torus has a considerable
generalization to arbitrary locally compact abelian groups called Cohen’s
idempotent theorem [Coh60]. Cohen began by defining the coset ring. This
is the collection of subsets of G which is closed under unions and intersections
and which contains every coset of every open subgroup. It is easy to convince
oneself using the triangle inequality and the algebra property of the norm
|| - [|ac) that every set A in the coset ring has ||14]|4) < oo. Remarkably

the converse is also true.

Theorem (Idempotent theorem). Suppose that G is a locally compact abelian

group and A C G has |[14]|a) < 0o. Then A is in the coset ring of G.

Concretely if a set is in the coset ring then there is some L < oo such
that

L
1A: E Ujlxj+Hj
j=1

where 0; € {—1,1}, z; € G and H; is an open subgroup of G for each
j€{1,...,L}. A main result of the thesis (which is joint with Ben Green) is

a quantitative version of Cohen’s idempotent theorem.

Theorem. (Theorem 4.12) Suppose that G is a locally compact abelian group
and A C G has ||1alla) < M. Then there is an integer L < exp(exp(O(M*)))]]
such that

L
Iy = E 0jle1m;
j=1

where 0; € {—1,1}, x; € G and H; is an open subgroup of G for each
jed{l,...L}.

It is natural to conjecture that one may take L < exp(O(M)), and a proof
of this would not only yield the discrete Littlewood conjecture but also a new
proof of Littlewood’s conjecture and Cohen’s idempotent theorem. Suffice to

say it would be a very appealing result.



Before closing out this introduction it is worth mentioning a little bit
about how we go about proving the above results. The main tools are de-
veloped in Chapters 2 & 3. In the first of these we develop some structural
results for understanding the spectrum (essentially the set 9t above) of func-
tions in A(G). This is a key ingredient which enables us to achieve the bound
we do for the discrete Littlewood problem.

The second aspect of Chapter 2 is a framework, developed from work of
Bourgain [Bou99], in which to conduct a sort of ‘approximate group theory’.
Basically a lot of our arguments would ideally involve passing to subgroups.
Unfortunately most groups do not have a rich enough subgroup structure
for this to be effective and we have to make do with a sort of ‘approximate
subgroup’. The details occupy a considerable portion of the chapter.

In Chapter 3 we develop some additive results and on the way improve
a version of a famous result of Freiman’s regarding the additive structure of
certain sets. The results there actually address more classical results from
additive combinatorics although our purpose for them is in proving the results
above.

Our modern outlook manifests itself particularly strongly in two ways:
First, we shall work entirely with finite structures, principally concerning
ourselves with specific bounds and dependencies. Secondly, we shall take
advantage of the model setting of dyadic groups, popularized by Green in
[Gre05], for exhibiting some of our methods. It turns out that arguments
can very often be modelled in this setting in a way which vastly reduces their
technical difficulty whilst retaining their conceptual content, thus making it
an ideal illustrative environment.

Finally a word on notational conventions. We use both the Hardy-
Littlewood big-O and Vinogradov notations in the normal way wviz. ¢ =
O(f) and g < f both mean that there is an absolute constant C' > 0 such
that |g(x)| < C|f(z)| for all z > C. We also write f < g when both f > ¢
and f < g hold.
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Chapter 2
Fourier analytic tools

We are interested in the Fourier transform on finite abelian groups and we
begin by fixing the basic definitions and notation. It will often be useful,
for the purpose of motivation, to have the transform available to us in the
more general setting of locally compact abelian groups. However, presenting
it in that setting seems to add undesirable technicalities so we shall restrict
ourselves to supplementing our exposition of the finite case with rough indi-
cations of how results extend. A more detailed explanation can be found in
Rudin [Rud90].

We start with some elementary function spaces. Suppose that X is a
finite set. We write M (X) for the space of complex valued measures on X
endowed with the norm |||l := [ d|u|. Now suppose that p is non-negative.

For p € [1,00) we write LP(u) for the space of complex valued functions on

1o = ( / |f|pdu)",

and similarly L>(u) for the space of complex valued functions on X with

X with norm

norm

[ fllzoe ) == esssup,ex | f(2)] = sup |f(2)].

TESUpp U
It will also be useful to use ¢7(X) to denote the space LP(u) in the specific
case where p is counting measure, that is, the measure ascribing mass 1 to

each element of X.



CHAPTER 2. FOURIER ANALYTIC TOOLS

We shall be working with finite abelian groups; suppose G is such. It will
be useful for us to consider not just sums of elements, but also sums of sets
of elements. Suppose A and B are subsets of G. Then we write A + B for
the set {a +b:a € A,b € B}. Similarly, if k£ and [ are integers we write
kA — B for the set

{al +..4a,—b—...—0: Ay, ..., € A, bl, ...,bl € B}

The dual group of G is the finite abelian group of homomorphisms 7 :
G — S, where S' := {z € C : |2| = 1}; we denote it G. Although
the natural group operation on G corresponds to pointwise multiplication of
characters we shall denote it by ‘+’ in alignment with contemporary work.
We write ug for the unique translation invariant probability measure on G,

pe assigns mass |G| to each z € G.

The fact that G is a group and pg is translation invariant makes L'(ug)
into a normed algebra when combined with the operation of convolution. If

f,9 € L' (ug) we define the convolution of f and g to be

frg(x):= /f(w —4)9(y)duc(y).

Furthermore, the measure pg can be used to define the Fourier transform on
L'(ue): it is the map which takes f € L'(ug) to

f:@%C;VH/ﬁduc-

This transform has the crucial property of being an algebra homomorphism
V2.

Frg=fgforal fge L'(ug).

We shall occasionally find ourselves taking the Fourier transform of a partic-

ularly complicated expression E in which case we shall use (E)" to denote

~

E.

Similar structure can be placed on M(G). If u,v € M(G) then we define

10



the convolution of p and v to be (the measure induced by)

fes / £+ y)du()dv(y).

The Fourier(-Stieltjes) transform is the map which takes p € M(G) to
ﬁ:@—ﬂc;vﬁ/ﬁdu,

which, as before, is an algebra homomorphism. Convolution of measures
with functions is defined in the obvious manner.

Having set up the machinery we can define one last function space of
importance to us: A(G) is the space of complex valued functions on G with
norm

1 lla@ ==X IF I
~ed
This norm is variously called the Wiener algebra norm or simply the algebra
norm.

In the general case of G a locally compact abelian group it can be shown
(see Halmos [Hal50]) that there is a unique (up to scalar multiplication)
translation invariant measure on . This measure takes the role of yg and
can be used to define the Fourier transform in the same way as above. It is
also necessary to restrict the various spaces we have defined to include only
those functions for which the appropriate norm is finite. So, for example,
L'(uc) is the space of functions f such that || f|| 11 () < 00

It may be helpful to consider some concrete examples at this stage. We
shall look at cyclic groups and the model dyadic groups. First, the charac-
ters on Z/NZ are simply the maps z +— exp(2mizr/N) where r € Z/NZ.
Consequently we can identify Z//N\Z with Z/NZ and if f : Z/NZ — C then

the Fourier transform is given by

Fir) =5 3 Fa)exp(2riar/N).

2€Z/NZ

Secondly, if z,y € F} then we write z.y for the sum x4y, + ... + ,y,, and the

11



CHAPTER 2. FOURIER ANALYTIC TOOLS

characters on I} are simply the maps © — (—1)*¥ where y € F5. These are
sometimes called the Walsh functions in the literature. Consequently we can

identify @ with Fy and if f : Fy — C then the Fourier transform is given by

Fl) = 5 3 )17,

z€Fy

We begin the convention now, that unless otherwise stated, GG is always
assumed to be a finite abelian group.

With these definitions in place we are in a position to record two essential
tools. Both results can be proved easily from the fact that the elements of G
form an orthonormal basis for the complex valued functions on G. This fact

is, in turn, easy to prove directly in the case when G is finite.

Theorem (Fourier inversion formula). Suppose that f € L'(ug) N A(G).
Then
F=Y_fn

~e@

Theorem (Plancherel’s Theorem). Suppose that f,g € L*(ug). Then

(f, 9 r2(ue) = (f, 9e@):

Note that we shall often refer to Parseval’s Theorem, which is just the
special case of Plancherel’s Theorem corresponding to f = g.

There are two ideas we shall find ourselves using repeatedly through-
out this work. First we are often interested in some average behaviour of
a function f, and very loosely speaking the Fourier inversion formula and
Plancherel’s theorem relate these to the large values of f For example we
may be interested in the inner produce of f with some other function g. In

this case by Plancherel’s Theorem we have

(£, 9 r2uey = F(05)3(02) + > F(1)a().

7705
Here we have separated out the trivial mode (which is usually easy to com-

12



2.1. SPECTRAL STRUCTURES

pute), and we would hope to show that the remaining term is a small error.

We certainly have

~ _— ~

(s 9)12(10) = F(08)3(0g) + O(llglla) sup [f (7)),
Y#0a
and to understand this, in §2.1, we establish some tools which describe the
structure of the sets of characters at which ]/”\is large in an appropriate sense.
If we know where this happens then we can hope to understand the situations
when the error term above is not guaranteed to be small, and hence know
when we can have a good idea of what the average (f, ) r2(u) is-

The second idea is the iterative method: we shall often want to pass to a
subgroup of G on which the behaviour of a given function is somehow better
understood. Because there are many important groups (e.g. Z/pZ for p a
prime) with a paucity of subgroups we shall need to consider more general
substructures, which behave in some approximate sense like groups. It turns
out that so called Bohr sets are natural candidates and we develop this idea
in §2.2. There we also extend some of the basic results of Fourier analysis on
groups to approximate groups, a process which is often called localizing.

Naturally it will be useful to have the results of §2.1 not just for functions
on groups but, more generally, for functions on these approximate groups.
Proving these generalizations is the work of §2.3.

Finally, in §2.4, we formalize, as Bourgain systems, the aspects of Bohr
sets which make them suitable for the role of approximate groups. Both Bohr
sets and their more general counterparts have different uses in the thesis: The
structure of Bohr sets is better understood than that of Bourgain systems
and this extra information is sometimes useful (c.f. §4.3); on other occasions

the generality of Bourgain systems is necessary (c.f. §4.4).

2.1 Spectral structures
A natural realization of the sets of characters at which fis large is the sets

{y € G 1F )] = el flln e} for e € (0,1].

13



CHAPTER 2. FOURIER ANALYTIC TOOLS

The study of these sets has been surveyed by Green in [Gre04] so we are
brief and only recall the key facts. Write I' = {y € G : |f(7)] > el fllrue }-

Plancherel’s Theorem (or really Bessel’s inequality) yields

P11 By < 1712 g < 15 2

which can be rearranged to give

T < €2 lz2uan 11 2 ) (2.1.1)

Note that by nesting of norms we have ”fHL?(ua)Hf”le(#G) > 1. Now, there
is a result of Chang from [Cha02] which refines (2.1.1) if [| f]| 2 ue) | F1 21
is much larger than 1. We require some further notation to state this. If A

is a set of characters on G and m € Z* then put

m.\ = ZmA.)\ and |m| := Z ImaJ,

AEA AEA

where the second “.’ in the first definition is the natural action of Z on G.

Write (A) for the span of A, the set of all £-sums of elements of A, namely
(A) == {m.A:me {-1,0,1}"}.

Theorem 2.1.1 (Chang’s Theorem). Suppose that f € L*(ug) and € € (0, 1]
is a parameter. Write T := {y € G : |f(7)| > el fllzt(ue)}- Then there is a
set of characters A such that I' C (A) and

Al < (1 +10g [ f 1| 2 (uy 1|t ) -

To understand Chang’s Theorem more fully it can be helpful to consider
the case f = 14. Here the quantity ||f||L2(“G)||f||211(M) = a2 where a
is the density of A in G. The bound in (2.1.1) tells us that I', the set of
large characters, is contained in a set of size O(e 2a~'). Chang’s Theorem
tells us that it is contained in the span of a set of size O(e ?loga™!). In

typical applications there is no difference between the large spectrum being

14



2.1. SPECTRAL STRUCTURES

contained in a small set and being contained in the span of a small set, so
Chang’s theorem provides an enormous strengthening when A is thin.

Later on we shall be in a situation where we want to examine the large
spectrum of functions which we control in A(G)-norm rather than in L?(ug)-
norm, so we develop an analogue of Chang’s Theorem in this setting. Here
it turns out that the natural realization of the sets of characters at which J?

is large is the sets

{y € G 1FMN] > el fllouer } for € € (0,1].

There is an easy analogue of (2.1.1): Write

P={yeG:f(V)] = el flleme)}-

Then

~

IPlell ooy < Il = 1l

and so as before
T < (Il Il ) - (2.1.2)

A trivial instance of Hausdorfl’s inequality tells us that || f||a@) || f]l 1~ (o) =
1, and indeed the quantity ||f||A(G)||f||Z§O(MG) plays the same role in A(G)
as the quantity HfHLQ(HG)Hszll(HG) does in L?(ug). To complete the square,

then, we shall prove the following.

Theorem 2.1.2. Suppose that f € A(G) and e € (0, 1] is a parameter. Write
I={yeaq: |J/C\(7)| > €| fllzeoque) - Then there is a set of characters A
such that I' C (A) and

Al < e (1 +Tog || flla 1Al T ) -
2.1.1 The proof of Theorem 2.1.2
We say that a set of characters A is dissociated if
m e {—1,0,1}* and m.A = 0g imply that m = 0.

15



CHAPTER 2. FOURIER ANALYTIC TOOLS

We have the following simple lemma regarding dissociated sets.

Lemma 2.1.3. Suppose that " is a set of characters on G and A is a mazimal
dissociated subset of I'. Then I" C (A).

To prove this one supposes, for a contradiction, that there is ay € T'\ (A).
If one adds this v to A it is easy to see that the resulting set is strictly larger

and dissociated.

In view of this lemma Theorem 2.1.2 follows from:

Proposition 2.1.4. Suppose that f € A(G), and A a dissociated subset of
{ve G |f(V)] = €llflleee)} for some € € (0,1]. Then

Al < e 1+ log || Flla@ll Il )

We prove this using a standard argument for which we require an auxiliary

measure.

Proposition 2.1.5 (Auxiliary measure). Suppose that A is a dissociated set
of characters on G and w € {*°(A) has ||w||gea) < 1. Then for any n € (0,1]
there is a measure p,, € M(G) such that

Iinla = w, |||l < (1 +logn™") and |, (v)| < n for all v & A.

Constructing these measures is the heart of the argument, so before we
do this we finish off Proposition 2.1.4.

Proof of Proposition 2.1.4. We define

w(A) = for all A € A.

w € £*(A) and ||[w||ge(a)y < 1 so we may apply Proposition 2.1.5 to get the

auxiliary measure p, corresponding to w. We examine the inner product

16



2.1. SPECTRAL STRUCTURES

{f tin)-
()| = | Z J?(’y)ﬁ;(fm by Plancherel’s Theorem,
~eG
= D FNVaN) + > F()m()]
AEA vgA
> 1) N =1 F)m(0)
AEA VEA
> | Z f(/\)w()\)] — nz ]f(’y)| from the properties of ),
AEA +EA
> Y 1O =l fllae)
AeA
> [Alell Fllzeeue) = nllflla)-
However
[ ] < F Iz (o | << ooy (1 + Tog ™),
so that
£ ey (1 +1og ™) > [Alell fll 2o ey — nll.flace)-
Choosjng 7]_1 = HfHA(G)Hszolo(,uG) yields the result. O]

2.1.2 Constructing the auxiliary measure

The construction of the auxiliary measure is best illustrated in the model
setting of [}, where we benefit from two simplifications. Suppose that A is a

set of characters on F3. Then
e (A) is simply the subspace of G generated by A;
e A is dissociated if and only if it is linearly independent over @

The first of these is simply a convenience while the second represents the
major obstacle in transferring the arguments of this subsection to the general

setting. We shall prove the following result.

17



CHAPTER 2. FOURIER ANALYTIC TOOLS

Proposition 2.1.6. Suppose that A is a linearly independent set of charac-
ters on B4 and w : A — [—1,1]. Then for any n € (0,1] there is a measure
p, € M(F3) such that

Finla = w, [lp|] < (1+logn™") and |1, (v)| < n for all v € A.

In the next section we engage in the technical process of extending this

argument to arbitrary finite abelian groups.

Riesz products are the building blocks of the measure; we record the basic

definition now.

Riesz products

Suppose that A is a set of characters. If w : A — [—1, 1] then we define the
product

po = [ (1 +wM)N). (2.1.3)

AEA
Such a product is called a Riesz product, and although it has formally been
defined as a function we think of it as a measure. It is easy to see that it
is real and non-negative from which it follows that ||p,| = pu(0g5). Further,

expanding out the product reveals that supp p, C (A).

If A is linearly independent then we can easily compute the Fourier trans-
form of a Riesz product. Suppose that v € (A). Then there is a unique
m : A — {0,1} such that v = m.A by the linear independence of A, so

A= T w.
ek,

This leads to the observation that ||p,|| = pw(0g) = 1 and p,|an = w. More-

over if t € [—1,1] then

Pro(m.A) := t™ g (m.A) where, as before, |m| = Z |m|.
AEA

18
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So, if |m| > 1 then
e (m- )] < [t (m-A)| < [Pl ]| = [

It follows that a lot of the Fourier coefficients of py, are already small if |¢] is
small. By taking p, := 1 'p,, we get a well known primitive version of the

auxiliary measure of Proposition 2.1.5.

Proposition 2.1.7 (Primitive auxiliary measure). Suppose that A is a lin-
early independent set of characters on Fy and w : A — [—1,1]. Then for any
n € (0,1] there is a measure p1,, € M(F3) such that

finla = w, |yl < 07" and [fig(7)| < n for all v & AU {0g}.

The basic idea for improving the measure of Proposition 2.1.7 rests on
the observation that if |m| is large then |py,(m.A)| is in fact guaranteed to
be very small. To construct a better measure we take linear combinations
of Riesz products so that their Fourier transforms cancel on the characters

m.A where |m| is small (except of course for |m| = 1). Begin by considering

1
Vg = i(th —p—tw)-

Then

Dila = tw, 1]l < 1, B (mA)| < 6™

and
vy(m.A) =0if jm|=0 (mod 2).

It follows that

Ui a = tw, |lve]l < 1 and |7(7)| < ¢* for all v & A.

If we put u1, = v s then we have a version of Proposition 2.1.6 with ||u, || <
n~1/% instead of ||p,| < (1 +logn™?).

19



CHAPTER 2. FOURIER ANALYTIC TOOLS

More generally we consider a measure 7 on [—1, 1] and put

%:/mm@

Then

lv-ll < sup |lpeol-[I7l[ = [I7]] and 7 (m.A) Z/t'm'dT(t)ﬁu(m-A)-

te[—1,1]

Following the idea of trying to get the Fourier transforms of the Riesz prod-
ucts in v, to cancel on {m.A : |m| = r}, we should like a measure 7; with

||77|| minimal subject to

/tkdn(t) =0for1<k< l,/dn(t) =0, and /tdn(t) =1

Méla, in [MéI82], already had this idea, and moreover for the purpose of
constructing essentially the auxiliary measure we want. To produce 7; he

constructs a measure o; with the following properties:

Lemma 2.1.8. ([Mél82, Lemma 4, §7]) Suppose that | > 1 is an integer.

Then there is a measure o, on [0, 1] such that
/szk_ldal(s) =0 for2<k< l,/sdal(s) =1 and ||oy|| =21 - 1.
He chooses 0, to be (the measure induced by) the polynomial

s+ ((=1)'/(20 = 1)) Pu-a(s)

where Py is the Chebychev polynomial of order 2l — 1. Once this is known
it is not hard to verify the properties of o;.

We take 79 to be the odd measure on [—1,1] which extends 20;(2s) on
[0,1/2], and the null measure on [1/2,1]. It is easy, then, to verify the

following.

Lemma 2.1.9. Suppose that | > 1 is an integer. Then the measure 9 on
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2.1. SPECTRAL STRUCTURES

[—1,1] has ||| < 2(20 — 1),

O k<2 and k #1
/ thdry(t) = / 7
lifk=1

and | [ t*dry(t)] < 2% for all k.

Proposition 2.1.6 follows from this by writing I = [27!log, n~!] and then
letting p, = vy,,.

2.1.3 The general construction of the auxiliary mea-

sure

To construct the measure in the general case we also requires Riesz products.

Here, however, they are slightly more complicated.

Riesz products

Suppose that A is a finite set of characters. We say that w € £*°(AU —A) is

hermitian if

w AT = w(N) for all A € A;

if w also satisfies ||wl[se(au—a) < 1 then we define the product

o =[] (1 LW W(A_1>A_1). (2.1.4)

2
A€A

As before such a product is called a Riesz product and is regarded as a
measure. Again it is easy to see that it is real and non-negative from which
it follows that |p.| = pw(0g). Further expanding out the product reveals
that supp p., C (A).

We had an easy time computing the Fourier transform of Riesz products

in F7. In general it is more complicated. We can expand out the product in
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CHAPTER 2. FOURIER ANALYTIC TOOLS

(2.1.4) to see that:

p= Y I (215

me{—1,0,1}:m. A=y A€A:
{ } Vsl

To keep track of this we say that p, defined on {—1,0,1}%, is a formal Fourier
transform! for p € M(G) if

p(y) = Z p(m) for all v € G. (2.1.6)
m:m.A=y

The measures which we are interested in are of the form

b= /ptwdT(t),

for w € £>°(A U —A) hermitian with ||w||geau—a) < 1, and 7 a real measure
on [—1,1]. It follows from (2.1.5) and linearity of the Fourier transform that
p defined by

m
ﬁmy:/HWﬂwIlwz)bumme§mau& (2.1.7)
AEA:
mx#0

is a formal Fourier transform for p.

If A is dissociated then when v = 0Oz there is only one summand in the

expression for p,(7y) given in (2.1.5) and that has a value of 1, so

1Poll = Pu(0g) = 1. (2.1.8)

Dissociativity makes computing the Fourier transform easy for v = 0g by
restricting the number of non-zero summands in (2.1.5); a lemma of Rider’s

[Rid66] provides a result for more general ~:

Lemma 2.1.10. Suppose that A is a dissociated set of characters on G.

IFormal Fourier transforms are not in general unique.
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2.1. SPECTRAL STRUCTURES

Then for all v € G
{m e {-=1,0,1}* : jm| =r,m.A =~} < 2"

Proof. Let w be the hermitian function which takes A to 1. For this choice
of w (2.1.5) is

pu(y) =) 27 {m e {=1,0,1}" : |m| = r,m.A = 7}

r>0

But |po,(7)] < ||pw|| = 1 since A is dissociated which yields the conclusion. [

Proposition 2.1.11. Suppose that A is a dissociated set of characters on
G with no elements of order 2 and w € (*(A U —A) is hermitian and has
|wllese(au—n) < 1. Then for any n € (0,1] there is a measure v, € M(G) such
that

Uplav—n = w, ||yl < (1 + logn_l) and |Uy(y)| < n for all v ¢ AU —A.

Proof. Fix an integer [ > 1 to be optimized later and let 75; be the measure
yielded by Lemma 2.1.9. Define

pi= /ptwdTZZ(t)a

and let p be the formal Fourier transform for p defined by (2.1.7). p(m) =0
if |m| = 0 by definition of 75, and p, so

p(y) — Z p(m)| < Z Z |p(m)| by definition (2.1.6),

Im|=1 22 |m|=r
m. A=~ m. A=~

< Z Z |p(m)| since /trdTgl(t) =0 for r < 21,

r>20 |m|=r
m.A=~

< Y sup [B(m)[[{m: |m| = r,m.A =},

|m|=r
r>21 A=y
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Now A is dissociated, so Lemma 2.1.10 applies to give

ply)— Y Bm)| < D2 sup [p(m)],

|m|=1 r>21 \m/\\:_r
m.A=~ m-A=y

N\

> 2 [ Car(t)@ lomo-n)

r>21

> 227 wllee(au-n))" since | / " dry (1) < 247,

r>21
217 |wll e (au-a)- (2.1.9)

N

N

Now let I be such that 232 < but [ < (1 + logn~!) and put v\ := 2p.

Then

(i). If v € AU —A then

v (1) = w0 < 227wl au-n) < 27 |wllewao-n). (2.1.10)

so by (2.1.9)

—

i (] < 27 gl ). (2.1.11)
(iii). [|i”| < 2||7| by p and the triangle inequality.
(iv). y,gl)\ Au—A 1s hermitian since 7y is real.

We can apply the foregoing recursively to the hermitian functions w, 2(w —
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1/7(71))|AU_A, 2(2(w — 1/7(71)) - V7(72))|AU_A,... to get a sequence of measures 1/7(71),

y,(72), y,(73) ... such that:

(i). If v € AU —A then

1y (B o
13 20y (4) —w(y) <27
k=1

(ii). If v ¢ AU —A then

(k1) ()
2P )
k=1

N\
~
=
L
MO |3
/A
3

(ii).

n

127 %) < 27 I Pl < 22l
k=1 k=1

The sum ) ;_, 2*(’“*1)V7(,k) converges to a measure v, € M(G) with the re-

quired properties since ||7y|| < 1 < (1+ logn™). O

Finally we modify the above proposition so that the Fourier transform is
small on —A '\ A.

Proof of Proposition 2.1.5. Note that the three element set H := {z € C :
z3 = 1} is a subgroup of S' under multiplication. Let G’ := G x H and
identify its dual with G x (Z/3Z). Let A’ = A x {1+3Z}, which is dissociated
since A is dissociated, and has no elements of order 2 since 1 + 37Z is not of
order 2 in Z/3Z. Let w' be the hermitian map on A’ U —A’ induced by
W'(A\, 1+ 3Z) := w(\). Apply Proposition 2.1.11 to G’, A’ and ' to get the
measure v, € M(G'). Let p, be the measure induced by

[ f(@)zdvy(z, 2).
(z,2) G’
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If v € G then
() = /( T 2) = 70,1 4+32)
z,2)EG’

We verify the three properties of u, from the corresponding properties of v,:
(i). If A € A then p,(A) = 75(A\, 1 +3Z) = ' (A, 1+ 3Z) = w(N).
(ii).

eyl = sup
f:||f||L°C(HG)<1

|t < vl < 0+ log)
(z,2) G’

(iii). If v & A then (v,1+43Z) ¢ AU —A' s0 |, (7)| < .

2.1.4 Remarks on Theorem 2.1.2

The technique of applying Lemma 2.1.3 to reduce Theorem 2.1.2 to Propo-
sition 2.1.4 is used by Chang, [Cha02], in the proof of Theorem 2.1.1. The
analogue of Proposition 2.1.4 in that case is proved using the dual formu-
lation of Rudin’s Inequality, which states that if A is a dissociated set of
characters on G and f € L?(ug) then

7l < 251l for 1 < p <2

Haldsz, [Hal81], uses the inner product technique of Proposition 2.1.4 to prove
a non-Fourier result in discrepancy theory and employs a Riesz product (for a
different Hilbert space) as the auxiliary measure. An exposition of his result
may be found in Chazelle [Cha00] and this was the original motivation for
our result.

Green pointed out the fact that Méla, in [Mél82], had already used the
method of linear combinations of Riesz products to construct the auxiliary

measure we require. Méla uses it as an example to show that a result of
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his regarding e-idempotent measures is essentially best possible. In fact it
follows from Méla’s work that essentially no better auxiliary measure than

the one we have constructed exists.

2.2 Fourier analysis on Bohr sets

Our attention now turns to developing the ‘approximate groups’ which were

mentioned at the start of the chapter, and Fourier analysis ‘local’ to them.

If I' is a set of characters then we define the annihilator of T" to be
I :={reG:y(zx)=1foralyecT}

The annihilator is a subgroup of G. It is easy to localize the Fourier transform

to o’ +I'*: The local transform is the map
LMa + prs) = (G f = (fd(a + pro))”,

where we recall the measure 2’ + pur1 denotes the measure pp. translated by
2’. Note that the right hand side is constant on cosets of ['*+ (defined in the

obvious manner) and so can be thought of as an element of £>°(G/T+4).

Bourgain, in [Bou99], observed that one can localize the Fourier transform
to translates of typical ‘approximate’ annihilators and retain approximate
versions of a number of the standard results for the Fourier transform on finite
abelian groups. Since his original work various expositions and extensions
have appeared most notably in the various papers of Green and Tao. Indeed

all the results of this section can be found in [GT08], for example.

Throughout the remainder of the section I' is a set of characters on G

and ¢ € (0,1]. We can define a natural valuation on S', namely

l2ll == = inf [27n + arg 2|
?|| = 5 inf [2mn + arg 2],

which can be used to measure how far y(z) is from 1. Consequently we define
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a prototype for an approximate annihilator:
B(I',0) :={x € G : ||y(z)]] <9 for all y € I'},

called a Bohr set. A translate of such a set is called a Bohr neighborhood.
We adopt the convention that if B(I',0) is a Bohr set then the size of T is
denoted by d.

The following simple averaging argument will be very useful. We include
the proof, which appears in many places, but in particular in [TV06], for

completeness.

Lemma 2.2.1. Suppose that B(T,6) is a Bohr set. Then ug(B(T,8)) = &4

where, as our convention states, d := |I'|.

Proof. For each § € T' define the set
By :={z € G : ||y(z) — exp(27ib,)|| < 0/2 for all v € '} .

If ' € By then the map x — x—2’ is an injection from By to B(I', ), whence
pc(Bo) < pa(B(T, 9)).

If we pix € uniformly at random, then for a fixed z € G it is easy to see
that P(x € By) = 6% It follows by linearity of expectation that Eug(Bg) = §¢
from which the bound follows. O

Hence we write fr 5 for the measure induced on B(I, §) by p¢, normalised
so that ||frs|| = 1. This is sometimes referred to as the normalised Bohr
cutoff.

Annihilators are subgroups of G, a property which, at least in an ap-
proximate form, we would like to recover. Suppose that n € (0,1]. Then
B(T',d) + B(I',nd) < B(T', (1 4+ n)d). If B(T,(1+ n)d) is not much bigger
than B(I', ) then we have a sort of approximate additive closure in the sense
that B(I',9) + B(I',nd) =~ B(I', (1 + n)d). Not all Bohr sets have this prop-
erty, however, Bourgain showed that typically they do. For our purposes we

have the following proposition.
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Proposition 2.2.2. Suppose that I' a set of d characters on G and 6 € (0, 1].
There is an absolute constant cr > 0 and a 0" € [§/2,0) such that

pe (B, (1+ £)0'))
UG(B(Fa 5/))

=1+ O(|x]d)

whenever |k|d < cg.

This result is not as easy as the rest of the section. It uses a covering
argument; a nice proof can be found in [GT08|, but see also the proof of
Proposition 2.4.5. We say that ¢’ is regular for I' or that B(T',d’) is regular
if

pa(B(L, (1+ K)d"))
e (B(I',0'))

It is regular Bohr sets to which we localize the Fourier transform and we

= 1+ O(|k|d) whenever |s|d < cg.

begin by observing that regular Bohr cutoffs are approximately translation

invariant and so function as normalised approximate Haar measures.

Lemma 2.2.3. Suppose that B(I',0) is a reqular Bohr set. If y € B(I',d)
then ||(y + Brs) — Brsl| < dd'6~' where we recall that y + Brs denotes the

measure PBr s translated by y.

Proof. Note that supp ((y + fr.s) — frs) C B(I',0+0")\ B(T',0 — ¢') whence

¢(B(I,6+0")\ B(I',§ - "))
pa(B(I,9))

| (y + Prs) — Brsll < a < dy's!

by regularity. ]

In applications the following two simple corollaries will be useful but they

should be ignored until they are used.

Corollary 2.2.4. Suppose that B(I',0) is a reqular Bohr set. If n € M(G)
has supp i © BT, &) then |8 i — g [ dull < 48’5,

Proof. The measures fr sxp and Or s [ dp agree inside B(T', 6—4") and outside
B(T, 6 + &), furthermore ||Brs * p| < ||pl| and ||Brs [ dull < ||p||, whence

(B(I',6 + ")\ B(L',6 — "))
pa(B(T,0))

29
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CHAPTER 2. FOURIER ANALYTIC TOOLS

by regularity. O

Corollary 2.2.5. Suppose that B(T',0) is a reqgular Bohr set. If f € L*™(ug)
then

sug 1f* Brs — [ Brs(@) | ooy ) < | f1] 2o (uey @'
HAS
Proof. Note that

|f* Brs(x+y) = f*Prs(@)] = [f*((—y+Brs)— Brs) (@)
< Nl =y + Brs) — Bresll-

The result follows by Lemma 2.2.3. ]

With an approximate Haar measure we are in a position to define the local
Fourier transform: Suppose that '+ B(I, d) is a regular Bohr neighborhood
(defined in the obvious way). Then we define the Fourier transform local to
'+ B(I', ) by

L2+ Brs) — 2(G); f — (fd(z' + Brs))"

The translation of the Bohr set by x’ simply twists the Fourier transform and
is unimportant for the most part so we tend to restrict ourselves to the case
when 2’ = 0.

Jm was constant on cosets of I't*. In the approximate setting we have
an approximate analogue on which % does not vary too much. There

are a number of possibilities:

{v:[1=7(x)| <eforall z € B(I',d)} foree(0,]1]

{v: 1= Bra(1)| < €} for e € (0, 1]
(v [Brs(m) = € for ¢ € (0,1].

In applications each of these classes of sets is useful and so we should like all
of them to be approximately equivalent. There is a clear chain of inclusions

between the classes, where the first is contained in the second is contained in
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the third for all € € (0,1]. For a small cost in the width of the Bohr set we

can ensure that the sets in the third class are contained in those in the first.

Lemma 2.2.6. Suppose that B(T',d) is a reqular Bohr set. Suppose that
ni,n2 > 0. Then there is a §' > mnd/d such that

{7 1Bra(y)| = m} € {y: 1 = v(x)| <2 for all w € B(T,&)}.

Proof. If x € B(I',¢') then we have

i1 = 7(@)] < [Brs()II1 =A@ = (& + Brs) — Brs)(7)] < do's~"

by Lemma 2.2.3. It follows that we may pick ¢’ > m1126/d such that |1 —
y(z)| < mp for all x € B(T,d"). O

2.3 Local spectral structures

In §2.1 we recorded four different results regarding the structure of collections
of characters supporting large values of the Fourier transform; in this section
we prove local versions of these.

In [GT08] Green and Tao localized (2.1.1) when they proved the following

proposition.

Proposition 2.3.1 (Localized (2.1.1)). Suppose that B(I',0) is a regular
Bohr set. Suppose that f € L*(Brs) and e,n € (0,1]. Write Ly for the
quantity HfHLQ(ﬁr,a)HfHle(/aw)- Then there is a set A of characters and a
d" € (0, 1] with

A < 6_2L? and &' > ¢*nd /dL3,

such that
{yeG:|fdBrs(V)| = el fllLrsrs )

1s contained in
{veG:|1—~x)| <nforalzeBTUA,J)}.
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To see how this is a localization of (2.1.1) consider the case when B(T', §) =
G. In this instance once can essentially ignore ¢’ and we have the conclusion
that the characters supporting the large values of ]?, that is the set A := {~v:

-~

|f(V)| = €l fll1(ue) }» are contained in the set
{7 :7(x) ~ 1 for all z for which A(z) ~ 1 for all A € A}

where A is a set of size O(e™?[| f[|72 )Hf||212(uc)). Now this set is in fact much

e
larger than A since it contains all smaller linear combinations of elements of
A. However, as we have mentioned before, this does not turn out to be an
important difference.

As it happens, it is even easier to prove a local version of (2.1.2):

Proposition 2.3.2 (Localized (2.1.2)). Suppose that B(I',9d) is a regular
Bohr set. Suppose that f € A(G) and e,n € (0,1]. Write Ay for the quantity
HfHA(G)”fHZ«}o(@N)- Then there is a set A of characters and a §' € (0, 1] with

Al < et A; and & > end/dAy,

such that
{1y € G |fdB(Y)] = el fllze(srs)}

1s contained in
{(veG:|1—y@)| <nforalzeBITUA,J)}

We shall not concern ourselves with the proof of Proposition 2.3.2 because
it is simpler than the proof of Proposition 2.3.1 and will in any case follow
from the forthcoming local version of Theorem 2.1.2.

The objective of this section, then, is to prove local versions of Chang’s
Theorem (Theorem 2.1.1) and Theorem 2.1.2. Specifically we shall prove the

following two results.

%In actual fact one might argue that a local version of (2.1.2) would have A equal to
B(r.ollac o , however 1t 1s most usetul for our work to work with the version
La s la@ 117 gy 50 b it i ful f k to work with th i
of Ay which we have chosen.
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Proposition 2.3.3 (Localized Chang’s Theorem). Suppose that B(T',0) is
a reqular Bohr set. Suppose that f € L*(Brs) and e,n € (0,1]. Write Ly for

the quantity HfHLQ(,BF,(s)‘|f”£11(5m)- Then there is a set of characters A and a
0" € (0, 1] with

Al < e (1 +1logLy) and &' > éne*/d*(1 +log Ly),

such that
{yeG:|fdBrs(V)| = el fllLrses )

18 contained in
{(veG:|1—y@)| <nforalzeBITUA,J)}.

Proposition 2.3.4 (Localized Theorem 2.1.2). Suppose that B(I',6) a reg-
ular Bohr set. Suppose that f € A(G) and e,n € (0,1]. Write As for

the quantity HfHA(G)HfHZ;(gF,é)- Then there is a set of characters A and a
0" € (0, 1] with

Al < e (1 +1log Af) and &' > €nd/d*(1 + log Ay),

such that
{7 € G: |fd6F,6(7)| 2 EHfHLOO(,BF,a)}

18 contained in
{(veG:|1—y@)| <nforalzeBITUA,J)}.

A key tool in the proof of Chang’s Theorem and Theorem 2.1.2 is that of
dissociativity; in the local setting we use the following variant. If S is a non-
empty symmetric neighborhood of Oz then we say that A is S-dissociated
if

m € {—1,0,1}"* and m.A € S implies that m = 0.
Vanilla dissociativity corresponds to taking S = {0z}, and typically in the

local setting S will be a set of characters at which Ep; is large for some Bohr
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set B(T', ).

We require the following local version of Lemma 2.1.3.

Lemma 2.3.5. Suppose that B(I',6) is a reqular Bohr set. Suppose that
n',n € (0,1] and A is a set of characters on G. If A is a mazximal {~ :
|E~\5(7)| > n'}-dissociated subset of A then there is a &' > min{n/|A|,n'nd/d}
such that

AcC{y:[1—=7(x)| <n foralxze BLCUAJ)}.

Then Proposition 2.3.3 and Proposition 2.3.4 follow from this lemma and

the next two lemmas respectively.

Lemma 2.3.6. Suppose that B(T',0) is a reqular Bohr set. Suppose that
f € L*(Brs) and e,n € (0,1]. Write Ly for the quantity HfHLQ(Br,a)HfHle(,BF,é)-
Then there is a &' > €25/d(1 + log Ly) regular for T such that if A is a {7 :
Brr () > 1/3}-dissociated subset of {7 € G  |FdBra(n)| > elflli o}
then
Al < € *(1+log Ly).

Lemma 2.3.7. Suppose that B(T',0) is a reqular Bohr set. Suppose that
f € A(G) and e,n € (0,1]. Write Ay for the quantity HfHA(G)HfHZio(gM)-
Then there is a &' > €2§/d(1 + log Ay) regqular for T' such that if A is a {7 :

|B/F;,(7)| > 1/3}-dissociated subset of {7y € G - | fdBrs(V)| = €l flle@rs
then

IA] < e (1 +log Aj).

2.3.1 The proof of Lemma 2.3.5

Lemma 2.1.3 corresponds to the case S = {05} of the following.

Lemma 2.3.8. Suppose that S is a non-empty symmetric neighborhood of
Og. Suppose that A is a set of characters on G and A is a mazimal S-
dissociated subset of A. Then A C (A) + S.

Proof. It \g € A\ ((A) +S) then we put A’ := AU {\¢}, which is a strict

superset of A, and a subset of A. It turns out that A’ is also S-dissociated
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which contradicts the maximality of A. Suppose that m : A’ — {—1,0,1}

and m.A" € S. Then we have three possibilities for the value of m,,:

(i). m.A" = Ao + m|a.A, in which case \g € —m[p. A +S C (A) + S5 - a

contradiction;

(ii). m.A" = —Xg + mx.A, in which case \g € m|y.A —S C (A)+ S - a
contradiction;

(iii). m.A" = m|s.A, in which case m|y = 0 since A is S-dissociated and

hence m = 0.
It follows that m.A’ € S = m = 01i.e. A’ is S-dissociated as claimed. O
Lemma 2.3.5 then follows from the above and the next lemma.

Lemma 2.3.9. Suppose that B(T',d) is a reqular Bohr set. Suppose that
n',n € (0,1] and A is a set of characters on G. Then there is a &' >
min{n/|A|,n'nd/d} such that

(A)+ {7 1Brs(y)| =0} € {v: 1 —v(x)] < for all = € BT UA, &)},

Proof. The lemma has two parts.

(i). If X € (A) then
1@l < S - X)),

NeA

so there is a ¢” > n/|A| such that

(A) C{y:]1 —~(x)] <n/2forall x € B(A,d")}.
(ii). By Lemma 2.2.6 there is a 6" > nn/d/d such that
{y: 1B =0} C{y:[1 =) <n/2 for all x € B(T',8")}.

Taking ¢ = min{¢”, 0"} we have the result by the triangle inequality. ]
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2.3.2 The proof of Lemma 2.3.7

In both the proof of Lemma 2.3.7 and Lemma 2.3.6 we introduce some
smoothed measures. They are slightly different in each case so for this section

only we make the following definition.

Suppose that B(I',d) is a regular Bohr set. For L € N and s € (0, 1] we

write

~L7 . L
51('; = 51“,(1—/-@)6 * 61“,,{5/1:,

where 6197,{5 L denotes the convolution of 8r .5/, with itself L times. Bﬁ; is

a good approximation to frs in M(G):

1855 = Brosll < 1Brsa—r) * 1t — Brsa—m |l + 1Brsa— — Brasl

where = BFLM /L the convolution of fBr .5/, with itself L times. We deal

with the first term using Corollary 2.2.4 which yields

||5r,5(1—n) * p— Brs(1-r) || < kd,

since supp u C B(I', k9). For the second term we have

||BF75(1*K) - BF#?” < ”BF,&(l—n) - BF,6|B(F,6(17;~;))|| + ||ﬁr,5|B(p,5)\B(p75(1,n))||
- (1 _ pe(B(I0(1 - K)))
= O(rd) + ||Brs|Brs)\B(rs01-r)| by regularity,
MG(B<F7 5)) _ NG(B<F7 5(1 - H))))
= O(kd) + (
) REEN)

= O(kd) by regularity.

+ || Br.s| BrspBrsa—nyll

It follows that ||5~1]3; — Brsll = O(kd) and hence if f € L*®(frs) we have

FABER(Y) = FaBra()] < 1| an oyl (23.1)

The proof now follows the proof of Proposition 2.1.4 with this additional

ingredient.
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Proof of Lemma 2.5.7. We begin by fixing x and L in the smoothed measure
Bﬁf so that we may dispense with the superscripts and subscripts and simply
write 3. Take L = 2R, where R will be chosen later and x > €/d so that

fdBEs (v) = FdBrs(y)] < 27 el fll oo ),

which we may certainly do by (2.3.1), and also so that ¢’ := kd/L is regular
for I'. As usual this last requirement is possible by Proposition 2.2.2. It
follows that

[FdBrs(N)| 2 el fllz=(ar) = IFABO)] = 27 el fll ()

Henceforth write g for fr s and 8 for Or .

Suppose that A is a {7 : \3’(7)] > 1/3}-dissociated subset of {y € G :
|ﬁd\67)| > €| fllz=} and that A" C A has size at most R. A’ is certainly
still {~ : |§’(7)\ > 1/3}-dissociated. We define

—_

w(A) = M for all A € A,
|

fdB(N)|

w € L2(N), ||wlle=ary < 1Tand A is dissociated (since it is {7y : |5A’(7)| > 1/3}-
dissociated) so we may apply Proposition 2.1.5 to get the auxiliary measure

iy To leverage the stronger dissociativity condition we introduce a Riesz

g:=1] (1+¥).

AEN

product:

Recall (from §2.1.3 if necessary) that ¢ is non-negative and since A’ is cer-

tainly dissociated, ||q|| = 1.

Plancherel’s Theorem gives

(fdB, i+ q) =) BT ()-

ved

We begin by bounding the right hand side from below using the bound on
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7mn(\)| for X & G.

S BT = | BTN + S FBN TN
el e AZA!
> 1S FdBONTN] — | S FABONTN O]
AEA’ AZA
> 1S FBVTN] 0 S GV FABO
AeN’ pV=te!
Now g(A\) > 1/2if A€ A/, so
S fBTEM = 27 S 1B
~eG AEN
=13 > @NIFMBA =)l
e@ ~e@
> 271 " |fdB(N)
AEN
il 1L sup S ENB =)
V€G \e@

For any v € G we can estimate the last sum in a manner independent of

v by using a positivity argument:

S @B = = D1y = VB by symmetry of 3,

\ed AeG
'(A)¥| by definition of £,

= Y @ = MIIBVF

\e@G

> Gy = VB (W)]F since [B(V)] <

xeG

N

18]I =1,

qd/B\’L(v) since L is even and ¢ > 0,
lgdB™ |
qdB'“(05) by non-negativity of gds’",

> GWIB(W)[* by symmetry of .
\eG

A
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We estimate this by splitting the range of summation into two parts:

SaNBFWE< DT amBwE+ > B WIE. (23.2)

AeG A:|BI(N)[=1/3 X|B(N)|<1/3

(i). For the first sum: |g(A)| < |lglli = 1 and |B/(\)?] < ||8%]| = 1 so that

each summand is at most 1, furthermore supp ¢ C (A’) so
> aIBEMmIF < > 1.
B (V)[>1/3 AR (N)[21/3

This range of summation contains at most 1 element by {~ : | B )| =

1/3}-dissociativity of A’, and hence the sum is bounded above by 1.

(ii). For the second sum: |g(A\)| < |lg|ly =1 and |§’()\)L| < 371 for X in the
range of summation so that each summand is at most 9714l however
supp ¢ C (A’) and [{A’)] < 3V so

Z |5/ Z 9~V < 1.

A:\@<A>|<1/3 AE(AT)

It follows that the right hand side of (2.3.2) is bounded above by 2, and

working backwards these estimates combine to show that

ST IEMNIBO =) < 2 for all y € G,
Ae@G

and hence that

(fdB, py @) = 27 S 1FABO)] = 20l (2.3.3)

AEN!

To estimate the inner product from above we have:

1(fdB, 1+ ) < I f e 1Bl llllalls < N1l (L +logn ™)
by the estimate for ||, || given in Proposition 2.1.5. Combining this with our
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lower bound for the inner product in (2.3.3) and the fact that if A € A’ then
[fdBN)] = 27 || f|l oo (s) glves

11|z (s) (1 +log ™) +nll flLaey > [Alell fllze s)-
Choosing ! = ||f||A(G)||f||ZiO(B) yields that
AN < e (1 +1log Ay).

Let C' be the absolute constant implicit in the notation on the right so that
IA'| < Cem (1 +1og Ay) is always true, and set R := [Ce (1 +log As)] + 1.
If |Alisa {y: \B’(’yﬂ > 1/3}-dissociated set of size greater than R, then let
A be a subset of A of size R, which is automatically {v : [#(y)| = 1/3}-
dissociated because A is {7 : |B\’(7)| > 1/3}-dissociated. By the above

Ce'(1+1logAf) < [Ce'(1+1logAy)|+1=R=|N| < Ce'(1+logAy),
which is a contradiction and hence if A is {7 : |BA’ (v)] = 1/3}-dissociated

then |A| < R < e '(1+log Ay) as required. O

2.3.3 Proof of Lemma 2.3.6

The proof has three main ingredients. The first is Rudin’s inequality, which

is the analogue of Proposition 2.1.5 for Chang’s Theorem.

Proposition 2.3.10 (Rudin’s Inequality). Suppose that A is a dissociated

set of characters on GG. Then

1 llezy < VBNl ot sy for all f € L ()
and all conjugate exponents p and p’ with p’ € (1,2].

For a proof of this see, for example, Chapter 5 of Rudin [Rud90].
The second ingredient in an almost-orthogonality lemma introduced by

Green and Tao to prove Proposition 2.3.1.
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Lemma 2.3.11 (Cotlar’s almost-orthogonality lemma). Suppose that v and

(w;) are elements of a complex inner product space. Then
S o wl? < (o) mas S i )|
j i

For a proof of this see, for example, Chapter VII of Stein [Ste93].

Finally we require some smoothed measures. This time they are a little
simpler.

Suppose that B(I',d) is a regular Bohr set. We produce a range of
smoothed alternatives to the measure fr ;; specifically suppose that L € N

and k € (0,1]. Then we may define

~L7 . L
BF,; = ﬁF,(lJm)é * 5r7,.;5/1;7

where ﬁ}Lﬁé /L denotes the convolution of S s/, with itself L times. This
measure has the property that it is supported on B(T", (14 2k)d) and uniform
on B(I',0), indeed

35 sy = palBr.s) _ pe(B(T,9))
Lol = (BT, (L + #)8)) <<r,<1+n> ))

Brs.  (2.34)

—

It follows that every f € L'(Brs) has % well approximated by fdﬁﬁ’;
Specifically

fABEs () = (14 O(kd)) fdBrs(7) (2.3.5)
by regularity of B(T,?).
We use almost-orthogonality and the smoothed measures to show the

following localization of Rudin’s Inequality. The proof of the lemma to which

this section is devoted then follows the usual proof of Chang’s Theorem.

Lemma 2.3.12. Suppose that B(T',0) is a reqular Bohr set and R is a natural
number. Then there is a &' > §/dR regular for T' such that if A is a {v :
\,B/F\y(fy)] > 1/3}-dissociated set of size at most R then

1fdBrsllemy < VoIl gy Jor all f € L7 (Brs)
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and all conjugate exponents p and p' with p’ € (1,2].

Proof. Begin by fixing the level of smoothing (i.e. the parameters x and L
of Bﬁf) that we require and write 3 for Bﬁf . Set L := 2R and recall (2.3.5):

—

9dB(v) = (1 + O(xd))gdfrs(7) for all g € L*(Brs);

so we can pick &' > d~! such that for all k < &’

1, — S 3 —
§|gdﬂr,5(7)| < JgdB(v)] < §|gdﬂr,5(7)| for all g € L'(Br).

By Proposition 2.2.2, we can take £ with ' > x> d~! such that ¢’ := ké/L
is regular. Henceforth write § for fr s and g’ for fr .
Define the Riesz product

g(z) =[] (1 + w)

A€A

Recall (from §2.1.3 if necessary) that ¢ is non-negative and that we can

compute the Fourier transform of ¢:

gy = > 27 (2.3.6)

m:m. A=~y

Since A is {7 : |BA’ (7)] = 1/3}-dissociated, it is certainly dissociated and
hence q(05) = 1 and so, by non-negativity of ¢, ||¢|| = 1.
Use ¢ to define the map

T:LYB) = LY(G); g — (9dB) *q,
and note that

1Tgllz1 () = (9dB) * dll 1) < ll9llrs)llall = llgllz )

by the triangle inequality. The following claim, which we defer proof of, is a

corresponding result for || Tgl|2(.,)-
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Claim. If g € L2(8) then | Tgll 12 < g2,

Assuming this claim, by the Riesz-Thorin interpolation theorem we have
1Tl 1o (uery < N9l 1o () for any p" € [1,2]. (2.3.7)
Hence, if f € LP'(B) then

%”J@Hﬁ(/\) < |IFdBllea) since G(A) = 1/2 for all A € A,
= ||ﬂ||g2(/\) by the definition of T,
< VPITfll 1w (ue) by Rudin’s Inequality,
< VPl by (237).

The lemma follows. It remains to prove the claim.

Proof of Claim. Begin by noting the following consequence of (2.3.4).

17912200 = (MG%(FZ;?(;’(;)H)))) 1(gdB) * qlf2 (... (2.3.8)

By Plancherel’s Theorem

1(gdp) * qll72(ue) = Z (gdP) Z (9,4 L2(5)|

76@ 'yEG

Cotlar’s almost-orthogonality lemma applied to the second sum gives
1(9dB) * allizey < (99) 1205 mgxz @)Y @)Y ) 23]
< NliZaas, maxz VB =)

For any v € G we can estimate the last sum in a manner independent of ~
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by using a positivity argument:

S @B - = 3 at—2)B()F () by definition of 3,
v'e@ v'e@

> Gty =B

7’6@

since |B(+/)] < [18] = 1 and

N

Y

>0
>0

) R)

qg\ﬁ’L(”y) since L is even and ,

/N

lallzr e
qdﬁlL(Oé) by non—negativity of qu/L’

S G)IF ()| by symmetry of G
'y’eé

We estimate this in turn by splitting the range of summation into two parts:

DG LG SO0 | U GO T S N CO I CO 1
v'eG VB (V) |=1/3 B (N)I<1/3
(2.3.9)

(i). For the first sum: |§(v')| < |lgls = 1 and |3'(7)] < ||8%]| = 1 so that

each summand is at most 1, furthermore supp ¢ C (A) so
DD COICUCHIIEES oo
1B ()=1/3 Y E(A:IB (v)]21/3

This range of summation contains at most 1 element by {v : | B (7)) =

1/3}-dissociativity of A, and hence the sum is bounded above by 1.

(ii). For the second sum: |(7')| < |l¢|l1 = 1 and |3'(v')%| < 37% for 7/ in the
range of summation so that each summand is at most 971*, however
supp ¢ C (A) and [{A)]| < 3% 5o

Yoo aAMFEF< Y 9 <
V'E(A)

VB (V)I<1/3
It follows that the right hand side of (2.3.9) is bounded above by 2 and hence
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that
1(948) * al2gu) < 2123

This, (2.3.8) and (2.3.4) yield

2 pe(B(L,0(1+K))) 1o
HTgHLZ([LG) = ,ng(B(F,(S)) Hg”L2(B)7

from which the claim follows by regularity. ]

]
Proof of Lemma 2.5.6. Fix R to be optimized later and suppose that A’ C A
has |A’| < R. By Lemma 2.3.12, for any p’ € (1, 2] we have

INLENF 12150y < D 1FdBrsNIP = 1 FdBrsllE ey < IS0 0,

AeN
where p is the conjugate exponent of p’. The log-convexity of ||.|| (6r 5) BiVES
il g
p
’A,| < 6_2p( L2(5F,6)> )
[RAITAIENS

Setting p = 1 + log Ly yields |A'| < ¢ (1 + logLys). Let C > 0 be the
absolute constant implicit in this expression, so |A’/| < Ce ?(1+41log Ly). Set
R=[Ce?(1+logLs)] + 1. If |A| > R then let A’ be a subset of A of size
R. We then conclude that

R<Ce?(1+logLy) < R—1.

This contradiction ensures that |A] < R and the lemma is proved. O]

2.3.4 Remarks on the Proofs

The proofs Lemmas 2.3.7 and 2.3.6 are rather similar and one might expect to
be able to use the same smoothed measures for both. As it happens one can
use the simpler measures of Lemma 2.3.6 for Lemma 2.3.7. However, there is

some loss. One has to be willing to accept a version of Proposition 2.3.4 with
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|| f1B(rs) |l a(c) rather than || f|| () in the expression for A;. Unfortunately in
applications we only have control over || f||aq), and || f1pr.s)lae) may still
be large while this is small (consider, for example, G = Z/pZ for p a large
prime, f = 1g and B(I',0) a centred interval around the origin of length
(r—1)/2).

Rather than convolving with the Riesz product ¢, as we did in the proof
of Lemma 2.3.7 (and the proof of Lemma 2.3.6), one can construct a local
version of the auxiliary measure (respectively, Rudin’s Inequality) directly.
However, doing so seems only to serve to obfuscate the underlying construc-

tions with technical details.

2.4 Fourier analysis on Bourgain systems

In an exposition of Bourgain’s paper [Bou99|, Tao (in work now summarized
in [TV06]) showed how to further relax the properties Bourgain required of
Bohr sets for their use as ‘approximate groups’. In view of this an abstract
formulation of ‘approximate groups’ is now possible. Indeed it is possible to
carry out a number (although not all) of the main results of this paper with
Bourgain systems in place of Bohr sets. This leads to technically slightly
weaker statements (Bohr sets have more structure than Bourgain systems)
although for most practical purposes they seem equivalent. The work of this
section is from the joint paper [GS08b] of Green and the author where these
structures were first formalized.

Before making a formal definition we shall try to understand the notion of
‘approximate group’ or, more properly, ‘approximate subgroup’ a little more
clearly. A subgroup of an abelian group G is a symmetric neighborhood of 0g
which is closed under addition. Bourgain noticed that in a number of cases
there are symmetric neighborhoods of Og which are in some sense nearly
closed under addition and, furthermore, for many problems these structures
can replace subgroups. Suppose that B is a subset of Z¢. Generically B + B
will need |B| translates of B to cover it; however, if B is the (>°(Z%) unit cube,
for example, then B+ B is covered by 2¢ translates of B so is ‘approximately

closed’. Bourgain effectively restricted his attention to the balls we have just
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described. However, Freiman’s Theorem (which we will discuss in Chapter
3) has, as a consequence, that any symmetric neighborhood B of 0gwith
B+ B C T+ B for some set T' with |7'| small enough looks a lot like the unit

cube of a suitable lattice. In view of this we make the following definition.

Definition (Bourgain systems). A Bourgain system B of dimension d is
a collection (B,),c(0,4) of subsets of G such that the following axioms are
satisfied:

Bsl (Nesting) If p’ < p we have B, C B,;

BS2 (Zero) Og € By;

BS3 (Symmetry) If z € B, then —x € B);

Bs4 (Addition) For all p, p" such that p+ p' < 4 we have B, + B, C B, ;

BS5 (Doubling) If p < 1 then there is a set T of size at most 2¢ such that
B2p - UteTt + Bp'

We refer to ug(Bi) as the density of the system B, and write pg(B) for this
quantity.

Note that if B is a Bourgain system of dimension d then it is also a
Bourgain system of dimension d’ for any d > d. This apparent ambiguity
will not be a problem in practice.

We define the analogue of normalized Bohr cutoffs for Bourgain systems:
Write 3, for the probability measure induced on B, by pq.

If B = (B,), is a Bourgain system, then, for any A € (0,1], so is the
dilated Bourgain system AB := (B),),.

The following easy averaging argument (c.f. the proof of Lemma 2.2.1)

concerning dilated Bourgain systems will be useful in the sequel.

Lemma 2.4.1. Suppose that B is a Bourgain system of dimension d, and

suppose that X € (0,1]. Then AB is a Bourgain system of dimension d and
ua(AB) = (7/2)ua(B).
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The first important example of a Bourgain system is a system of Bohr

sets.

Lemma 2.4.2. Suppose that T is a set of characters and 6 € (0,1]. Then

(B(I',0))s is a Bourgain system of dimension at most 2|U| and density at

least &1,

Proof. All the properties are immediate except BS5. As with Lemma 2.2.1,
for each 6 € TV define the set

By :={x € G :||y(x) — exp(2mif,)|| < 6/2 for all y € T'}.

If ' € By then the map = — x — 2’ is an injection from By to B(T, J).
Putting

O =[] {-30/2,—5/2.6/2,30/2}

vyel

we have that {By : 0 € ©} is a cover of B(I',26) from which BS5 follows. [J

We now proceed to develop the basic theory of Bourgain systems, which

for the most part parallels the theory of Bohr sets developed earlier.

Lemma 2.4.3. Suppose that p < 1. The group G may be covered by at most
(4/p)uc(B)™" translates of B,.

Proof. Pick T' C G’ maximal such that the sets t + B, are all disjoint. It
follows that each v € G has x + B,s N T + B,/» # (), whence

GCT+B,s—B,, CT+ B,.

Moreover

7| < < (4/p) ' puc(B),

HG (Bp/ 2)
yielding the result. O]

The intersection of two Bohr sets is (essentially) another Bohr set; the

following lemma addresses this fact in general.
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Lemma 2.4.4 (Intersections of Bourgain systems). Suppose that BY, ... B®)
are Bourgan systems with dimension dy, . .., d;, respectively. Then BYN--.N

B%) is a Bourgain system of dimension 2(dy + - - - + dy,) with
,uG(B(l) N---N B(k)) > 2—3(d1+-~~+dk)MG(B(1)) B -NG(B(k))-

Proof. Tt is trivial to verify properties Bs1-Bs4. To show BS5 suppose that
p < 1. For each i there is a set T; with |T;| < 22 such that B(l) CcT,+ B(Z/)2
It follows that

BY)n--NBY (T + B,p1))n---n (T + BY).

2p p/2
Suppose that = € (t; + B(/)Q) N (tg + B(/)Q) Then the map 2’ +— 2’ — z is
an injection from this set into B(l) N B . It follows that we have BSH
with a set of size at most |T7] ... |T}| and the claimed bound follows.

It remains to obtain a lower bound for the density of this system. To do
this we apply Lemma 2.4.3 to cover G by at most 8% ug(B®)~! translates of
Bil/)Z It follows by averaging that there are elements ¢y, ..., t; such that

na((t+ Bip) N0 (g + BYj)) 2 87+ 16 (BY) . ug(BW).
To compete the estimate we note that for fixed x € (tl—i-BSé)ﬂ- . ﬂ(tk—i-Bi%)
the map 2’ — z’ — z is an injection into Bg) N« N B%k). O

If B and B’ are Bourgain systems and B, C B, for all p then we say that
B is a Bourgain subsystem of B’. Clearly BN B’ is always a subsystem of B
and B'.

As with Bohr sets not all Bourgain systems behave as well as we might
like. However, the following analogue of Proposition 2.2.2 basically asserts

that typically they do.

Proposition 2.4.5. Suppose B is a Bourgain system. There is an absolute
constant cg > 0 and a A € [1/2,1) such that

i (Bagi1x))

G (By) =14+ O(d|x|)
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whenever d|k| < cr.

Proof. Let f :[0,1] — R be the function f(a) := Xlog, pe(Bas). Observe
that f is non-decreasing in a and that f(1) — f(0) < 1. We claim that there
is an a € [}, 2] such that | f(a + z) — f(a)| < 3|z| for all || < ;. If no such
&, 2] there is an interval I(a) of length at most
% having one endpoint equal to a and with [ 1) U > [, 3dx. These intervals

a exists then for every a € |

cover [%, %], which has total length % A simple covering lemma [GKO09,
Lemma 3.4] then allows us to pass to a disjoint subcollection I; U ... U I,, of

these intervals with total length at least % However we now have

1 n n 1
1> [ =Y [ar>Y [sas s
0 i=1 71 i=1 71

a contradiction. It follows that there is indeed an a such that |f(a + z) —
f(a)] < 3lz| for all |z] < §. Setting A := 27, it is casy to sce that

B
< e (1+H)A)

exp(—5dr) < 1o (By) < exp(hdk)

whenever d|r| < 1/10. Since 1 —2|z| < exp(z) < 1+ 2|z| when |z| < 1. The
result follows with cg = 1/10. O

We say that B is regular if

HJG’(BH-H)

1o (By) =1+ O(d|k])

whenever d|x| < cg.
As with Bohr sets it is reqular Bourgain systems to which we localize

Fourier analysis.

Lemma 2.4.6. Suppose that B is a reqular Bourgain system of dimension
d. Ify € B, then ||[(y + B1) — Bi|| < dk, where we recall that y + (1 denotes

the measure 31 composed with translation by y.
Proof. Same as Lemma 2.2.3. [
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2.4. FOURIER ANALYSIS ON BOURGAIN SYSTEMS

In applications the following simple corollary will be useful but it should

be ignored until it is used.

Corollary 2.4.7. Suppose that B is a reqular Bourgain system. If f €
L*>®(ug) then

Sup 1 # By = f o Pr(@) ]| oo @) KM llzoe (ues) A5
S

Proof. Same as Corollary 2.2.5. O

Finally the following lemma ensures that the various candidates for the

dual of a Bourgain system are essentially equivalent.

Lemma 2.4.8. Suppose that B is a regular Bourgain system of dimension d
and that n1,m2 > 0. Then there is a k > mn/d such that

(v 180 = m} C {711 —y(@)| < m2 for all z € By}

Proof. Same as Lemma 2.2.6. ]
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Chapter 3

Additive structure and

Freiman’s Theorem

Sumsets are a fundamental object of interest in additive combinatorics and
one of the first questions which arises is a question of Freiman’s regarding
their structure. We say that a set A has doubling K if |A + A| < K|AJ;
Freiman asked which sets have small doubling. In [Fre73] (see [Bil99] for an
exposition) he famously described the structure of the finite sets of integers
with small doubling. To state his result we require the following definition.

P is a multidimensional progression of dimension d if
P= {.CEO + l1.$1 + ...+ ld.ﬂjd -0 < lz < Lz}
for some integers xy, ..., 4 and natural numbers L, ..., L.

Theorem 3.1 (Freiman’s Theorem). Suppose that A C Z is finite with |A +
Al < K|A|. Then A is contained in a d(K)-dimensional progression of size
at most f(K)|A|.

Here, of course, d and f are dependent only on K. Qualitatively this is
a complete description of such sets, insofar as if A is contained in a multidi-

mensional progression P of dimension d and size f|A|. Then
|A+ Al < |P+ P| < 2YP| < f29A]
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CHAPTER 3. ADDITIVE STRUCTURE

Quantitatively, however, Freiman’s Theorem gives little information. In the
90s Ruzsa ([Ruz94]) provided a strong new proof of Freiman’s Theorem which
was then refined by Chang in [Cha02].

Theorem 3.2 (Chang’s quantitative version of the Freiman-Ruzsa Theo-
rem). Suppose that A C 7 is finite with |A + Al < KJ|A|. Then A is
contained in a O(K?log®(1 + K))-dimensional progression of size at most

exp(O(K?1og?(1 4 K)))|A].

In fact Chang also showed how to improve the dimension to essentially
the optimal one for very little cost in the size but this is not important to us.

In the paper [Ruz99] Ruzsa considers Freiman’s Theorem for torsion
groups. These groups are at the other end of the spectrum from Z which has
no torsion. In this case, although multidimensional progressions make sense,
bounding their dimension is not possible as the case A = G = F} clearly
demonstrates. Here A has doubling 1, however it is not contained in a mul-
tidimensional progression of dimension less than n. However, A is contained
in a coset of a subgroup (namely G itself) and replacing multidimensional
progressions with cosets turns out to be the appropriate idea. Ruzsa proved

the following result.

Theorem 3.3 (Freiman’s Theorem for torsion groups). Suppose that G is
an abelian group in which every element has order at most r. Suppose that
A C G is finite with |A+ A] < K|A|. Then A is contained in a coset of a

subgroup of size at most KQTK4|A|.

Finally in [GRO7] Green and Ruzsa combine this work with Chang’s quan-
titative version of Freiman’s Theorem to prove Freiman’s Theorem in arbi-
trary abelian groups. To do this a slightly more general notion of progression
is required combining cosets with multidimensional progressions: P is a mul-

tidimensional coset progression of dimension d if

for some elements xg, ..., x4 € G, natural numbers L4, ..., Ly and a subgroup

H.
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Theorem 3.4 (Freiman’s Theorem in arbitrary abelian groups). Suppose
that G is an abelian group and A C G is finite with |A+ A| < K|A|. Then
A is contained in a O(K*log(1 + K))-dimensional coset progression of size
at most exp(O(K*log*(1 + K)))|A|.

The first section of this chapter is a refinement of Freiman’s theorem
for vector spaces over Fy. It is principally of interest as a method and was
recently used by Bourgain [Bou08] (see [San08b] to improve the bounds in
Freiman’s Theorem for Z, specifically the bounds on the dimension and size
of the progression in Theorem 3.2 are improved to O(K7/*log*(1 4+ K)) and
exp(O(K™*1log®(1 + K)))|A| respectively.

Although of interest in its own right, Freiman’s Theorem has found a
number of applications (see, for example, [BC03, Bou03, GS08a, SSV05])
following the work of Gowers [Gow98] who introduced a fundamental proof
method which employs it. As a tool we can often find ourselves interested not
so much in containing A in a coset progression but rather simply something
which behaves like an ‘approximate group’.

In proving his theorem Freiman introduced the fundamental concept of
Freiman homomorphisms. If G and G’ are two abelian groups containing
the sets A and A’ respectively then we say that ¢ : A — A’ is a Freiman

s-homomorphism if whenever ay, ..., as, by, ..., bs € A satisfy
ay + ... +ag :b1+...+b5

we have

¢lar) + .. + @las) = ¢(b) + ... + ¢(b).

If ¢ has an inverse which is also an s-homomorphism then we say that ¢ is
a Freiman s-isomorphism.

We naturally want the Freiman homomorphic image of an ‘approximate
group’ to be an approximate group and Bohr sets are insufficient for this
purpose. This precipitated the introduction of Bourgain systems in [GS08b]
whose structure is preserved under Freiman homomorphisms. In the second

section of this chapter, building on work of Green and Tao [GT09b], we prove
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CHAPTER 3. ADDITIVE STRUCTURE

what might be called a partially polynomial version of Freiman’s Theorem

local to Bourgain systems. A more detailed discussion may be found there.

3.1 Freiman’s Theorem in finite fields

In this section we shall improve the bounds in Theorem 3.3 in the special case
of r = 2. While finite field models are an important tool for understanding
problems in general abelian groups, this result has independent significance
in coding theory and has been pursued by a number of authors. We do not
attempt a comprehensive survey here, but mention a few papers which are
important from our standpoint.

The first improvements on this was in the paper [DHP04] of Deshouillers,
Hennecart and Plagne. There, the authors present a relatively simple argu-
ment which shows that one may take the coset in which A is contained to
be of size at most K25°)=1|A|. The bulk of their paper concerns refined
estimates for the case when K is small; by contrast our interest lies in the
asymptotics.

In a recent paper, [GR07], Green and Ruzsa improve the bound from
[DHP04] when they show that one may take a size bound of K?22K*=2]| 4],

K3/2log(14+K)) |A|

Our result, then, gives a size bound of 29( Specifically we

prove the following theorem.

Theorem 3.1.1 (Freiman’s Theorem in finite fields). Suppose that G is a
vector space over Fo. Suppose that A C G is a finite set with |A+A| < K|A|.
Then A is contained in a coset of size at most 200/ 1os(+F)) | 4]

For comparison we record the following well known example which shows
that one cannot have a size bound better than 225+°(5)| A|. Let H be a finite
subgroup of G and ¢; + H,...,g2x—1 + H be 2K — 1 linearly independent
cosets of H in the quotient space G/H. Let A be the union of H and the
representatives gi, ..., gaxg—1. Then |[A| = |H|+2K — 1~ |H| and

A+ Al < K(|H|+K)~ K|H| < KA.
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However A contains a linearly independent set of size dim H +2K — 1 and so
A is not contained in a coset of dimension less than dim H + 2K — 2 hence

if H' is a coset containing A then
|H/| 2 2dimH+2K—2 — 22K—2|H| z 22K_2|A|.

Very recently in [GT09a], Green and Tao have improved Theorem 3.1.1 fur-
ther and showed that the above example is essentially extremal; specifically

they have proved a size bound of 225+o(K)| 4|,

3.1.1 Proof of Theorem 3.1.1

Our proof is really a refinement of Green and Ruzsa’s proof of Freiman’s
Theorem for arbitrary abelian groups.

Their method becomes significantly simpler in the vector space setting,
and would immediately give us the following weak version of the main theo-

rem.

Theorem 3.1.2. Suppose that G is a vector space over Fy. Suppose that
A C G is a finite set with |A+ A| < K|A|. Then A is contained in a coset

of size at most 200 108(1+K)| A
The proof involves three main step.

e (Finding a good model) First we use the fact that |[A 4+ A| < K|A4| to
show that A can be embedded as a dense subset of F} in a way which

preserves much of its additive structure.

e (Bogoliouboff’s argument) Next we show that if A is a dense subset of

F? and A has small doubling then 24 — 2A contains a large subspace.

e (Pullback and covering) Finally we use our embedding to pull back this
subspace to a coset in the original setting. A covering argument then

gives us the result.
Our refinement of this argument occurs at the second stage.

27



CHAPTER 3. ADDITIVE STRUCTURE

Finding a good model

A simple but elegant argument establishes the existence of a small vector

space into which we can embed our set via a Freiman isomorphism.

Proposition 3.1.3. ([GR07, Proposition 6.1]) Suppose that A is a subset of
a vector space over Fy. Suppose that |A+ A| < K|A|. Then there is a vector
space G' over Fy with |G'| < K*|A| with a set A C G', and a Freiman
s-isomorphism ¢ : A — A'.

Bogoliouboff’s argument

Originally (in [Ruz96]) Ruzsa employed an argument of Bogoliouboff (see
[Bog39]) for this stage. In [Cha02] Chang refined this further when she
proved the following.!

Proposition 3.1.4. Suppose that G = Fy. Suppose that A C G has density o
and pe(A+A) < Kug(A). Then 2A—2A contains a subspace of codimension
O(K loga™).

We prove the following refinement of this.

Proposition 3.1.5. Suppose that G = Fy. Suppose that A C G has density o
and pa(A+A) < Kug(A). Then 2A—2A contains a subspace of codimension
O(K'Y?loga™).

To prove this we require the following pure density version of the propo-

sition.

Proposition 3.1.6. ([San08a, Theorem 2.4]) Suppose that G is a finite vec-
tor space over Fy. Suppose that A C G has density . Then 2A—2A contains

a subspace of codimension O(a~"/?).

The proof in [San08a] is for general finite abelian groups and becomes
significantly simpler in the vector space setting; the basic technique is itera-

tive.

! Although in [Cha02] it is stated for G = Z/NZ, the same proof applies to any finite
abelian group and in particular to F7.

58



3.1. FREIMAN’S THEOREM IN FINITE FIELDS

Lemma 3.1.7 (Iteration lemma). Suppose that G is a finite vector space over
Fy. Suppose that A C G has density a. Then at least one of the following is

true.
(1). 2A — 2A contains all of G.

(i1). There is a 1 dimensional subspace V' of @, an element x € G and a set
A" C V+ with the following properties.
e x + A CA;
o pyi(A) = all+271al/?).
Proof. As usual with problems of this type studying the sumset 24 — 2A is
difficult so we turn instead to g := 14 % 14 x 1_4 % 1_4 which has support

equal to 24 — 2A. One can easily compute the Fourier transform of ¢ in

terms of that of 14:
G(v) = [14(7)[* for all y € G,

from which it follows that g is very smooth. Specifically g € zé(é) since
PN —
I =D 1)) =« (3.1.1)
76@ 76@

by Parseval’s Theorem. We may assume that pug(24 —2A) < 1 since other-
wise we are in the first case of the lemma, so S := (24 — 2A4)¢ has positive

density, say o. Plancherel’s Theorem gives

0=(ls.9) = > Ls(1)3(7) = ITs(05)50) < Y [Ts(MF()l.

~eQ 7#0a

~

g(05) = a*, 15(05) = 0 and 11s(y)| < 1 1s]|L1(ue) = o, s0 the above yields

oot <o Z 9(7)] = a* < Z |g(7)| since o > 0.
7705 7705

Finding a non-trivial character at which ¢ is large is now simple since g €
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02(G).

< sup [Ta(v)[.a
7705

N
N

> 15l

76@

ot < sup [§(7))|
7705

by (3.1.1). Rearranging this we have

— 3
sup [T3()] > at.
7#0s

We pick a character, v, which attains this maximum and proceed with a
standard L>°-density-increment argument. Let V := {05,7} and f := 14—«
Then

[ s =0 and 17 5 sl ey > 177 ey = 120301

Adding these we conclude that

Ta)| < 2 / (f * i) s dpic

= 2/(1A * flyL — @) dpG

< 2(||1A * ,LL‘/J_HLOO(NG) — Oé).

Here, of course, (f * py,1), denotes the function max{f * py(x),0}.

Hence there is some z € G with
La* pys () = |La * prys || 2o (ug) = (1 +27 /).

The result follows on taking A’ =z + A. O

Proof of Proposition 3.1.6. We define a nested sequence of subspaces Vj <
Vi < ... < G, elements 7, € V- and subsets Ay of V;- with density ay, such
that x;, + Ar C Ap_1. We begin the iteration with V; := {05}, A¢ := A and
zo = Og.

Suppose that we are at stage k of the iteration. If puy . (24) — 2A;) <1
then we apply Lemma 3.1.7 to Aj, considered as a subset of V-, We get a

vector space Viiq with dimVi,; = 1 + dim Vj, an element x5, € G and a
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set Agyq such that
Trp1 + Appr C Ap and agyq > ap(1+ 271 1/2)_

It follows from the density increment that if m, = 204,;1/ % then Ol = 200
Define the sequence (IV;); recursively by Ny = 0 and Ny = my, + N;. The

density ay, is easily estimated:

!
ay, = 2'a and N, < Z ‘1/2 < 2071/222 2 = O(aV/2),

=0 s=0

Since density cannot be greater than 1 there is some stage k with k =
O(a~'/?) when the iteration cannot proceed i.e. for which 24; — 2A; con-
tains all of V-, By construction of the Ays there is a translate of A; which is
contained in Ay = A and hence 24, —2A,;, is contained in 24 —2A. It follows
that 24 — 2A contains a subspace of G of codimension k = O(a™/2). O

The key ingredient in the proof of Proposition 3.1.5 is the following iter-

ation lemma, which has a number of similarities with Lemma 3.1.8.

Lemma 3.1.8. Suppose that G = Fy. Suppose that A, B C G have pg(A +
B) < Kug(B). Write a for the density of A. Then at least one of the

following is true.
(i). B contains a subspace of codimension O(K/?).

(i1). There is a 1 dimensional subspace V' of CA}, elements x,y € G and sets
A", B' C V* with the following properties.
e r+ A CAandy+ B' C B;
o i (A) > a(l+ 232K 1),
o uyi(A'+ B < Kuy (B).
Proof. If ug(B) > (2K)~! then we apply Proposition 3.1.6 to get that B

contains a subspace of codimension O(K'/?) and we are in the first case of

the lemma. Hence we assume that pug(B) < (2K)™!

61



CHAPTER 3. ADDITIVE STRUCTURE

Write (8 for the density of B. We have

(aB) = (/ lA*leuG)2

< pe(A+ B) / (14 * 15)*dug by Cauchy-Schwarz,

< Kﬁ/ (14 * 15)*dug by hypothesis,

= KBZHA )[2[15(7)|? by Parseval’s Theorem.  (3.1.2)

'yEG

The main term in the sum on the right is the contribution from the trivial

character, in particular
Ta(06)*[T5(05)* = o8,
while

SR < sup [Ta@)P) - [1a()P

7#0¢ 706 veG
= Bsup [1a(y))?
7#0g

by Parseval’s Theorem for 15. Putting these last two observations in (3.1.2)
gives

a?B? < KB%a? + K2 sup |14(7)[%
7#0g

Since K8 < 27! we can rearrange this to conclude that

sup [Ta(7)] > (2K) .
1#05

As before we may pick a character v which attains this maximum and proceed
with a standard L*°-density-increment argument. Let V := {0g,7} and
f: =14 —«a. Then

/f * pyrdpc =0 and || f o pyal[prug) 2 1 avEll @y = [La(y)]-
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Adding these we conclude that

|1A(/7)| < 2/ (f *MvL>+duG
< 2([[1a * prya || oo ey — @)-
It follows that there is some x for which

Lg% pyo(z) > a(l 4+ 2732 K12,

Let 2/ + V+ := G\ (x + V1) be the other coset of V+ in G. Write A; =
AN(z+V4Y), Bi=BnN(x+V*)and By = BN (2’ + V1), Now 4; C A so

(A1 + B) U (A + By) C A+ By U Bs,

and A, + B, C V! while A, + B, C 242’ + V' so these two sets are disjoint

and we conclude that

,ug(Al + Bl) + /Lg(Al + Bz) ,U,G«Al + Bl) U (Al + Bg))
/Lg(A + Bl U Bg)
K ug(By U Bs) by hypothesis

K(pa(Bi1) + pa(Bz)).

V/AN/ANV/AN

Hence, by averaging, there is some ¢ such that
pa(Ar + B;) < Kua(B;).
We take A’ = x4+ A; and, if i = 1, B = 2 + By and y = x, while if i = 2,

B' =2’ + By and y = /. The result follows. ]

Proof of Proposition 3.1.5. We define a nested sequence of subspaces V) <
Vi <...< é, elements xy, yr € V,f, and subsets A; and By, of V,j such that
A+ x, C Ap_1 and By, + y, C Bi_1 and fhy L (Ap + Bi) < K,LLVkL(Bk). We
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write oy, for the density of Ay in V. Begin the iteration with V; := {05},
By = Ay := A and g = yy = O¢.

Suppose that we are at stage k of the iteration. We apply Lemma 3.1.8
to Ay and By, inside V- (which we can do since pv 2 (Ax+By) < Kpys (By)).
It follows that either 2B), — 2B, contains a subspace of codimension O(K'/?)
in V,j or we get a subspace Vi1 < \7k with dim Vi1 = 1 4+ dim V}, elements

Tht1, Yk+1 € V,j and sets Ayy1 and By, with the following properties.
® Tpy1 + App1r C A and ypy1 + By C By
o pyi(Apin) = ap(1+ 272K 12);
o pyi(Appr + Bit1) < Kpyr (Byga).

It follows from the density increment that if m = 23/2K"/2 then Qpam = 200,
and hence the iteration must terminate (because density can be at most
1) at some stage k with & = O(K'/?loga™"). The iteration terminates if
2B, — 2B}, contains a subspace of codimension O(K'/2) in V;*, from which
it follows that 2A — 2A D 2B;, — 2B, contains a subspace of codimension
k4 O(KY?) = O(K'"?loga™). O

Pullback and covering

We now complete the proof of the main theorem using a covering argument.

We are given A C G finite with |A + A| < K|A|. By Proposition 3.1.3
there is a finite vector space (over Fy) G’ with |G'| < K'%|A| and a subset A’
with A" Freiman 8-isomorphic to A. It follows that

per(A) = K% and pe (A + A) < Kpg(A).

We apply Proposition 3.1.5 to conclude that 24" — 2A’ contains a subspace
of codimension O(K'/?log(1 + K)). However, A is 8-isomorphic to A’ so
2A — 2A is 2-isomorphic to 24" — 2A" and it is easy to check that the 2-
isomorphic pullback of a subspace is a coset so 24 — 2A contains a coset of
size

2—0(K1/2 log(1+K))‘G/| > 2—0(1(1/2 1og(1+K))|A"
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The following covering result of Chang [Cha02] converts this large coset
contained in 24 — 2A into a small coset containing A. It is true in more

generality than we state; we only require the version below.

Proposition 3.1.9. Suppose that G is a vector space over Fy. Suppose
that A C G is a finite set with |A + A| < K|A|. Suppose that 2A — 2A

contains a coset of size n|A|. Then A is contained in a coset of size at most
QO(KlogKn_l)’A‘.

Theorem 3.1.1 follows immediately from this proposition and the argu-

ment preceding it.

3.2 A weak Freiman theorem

The example at the start of the previous section can be adapted to show that
one cannot hope to improve the size bound on the progression in Theorem
3.2 to have sub-exponential dependence on the doubling. Often we would
like polynomial dependence, and sometimes it is sufficient to have a large
progression which intersects A in a polynomially large proportion of itself.
Such a result was originally proved by Green and Tao in [GT09b]; our proof
is from the joint paper [GS08b] of Green and the author and uses a method
similar to the previous section.

There is a second direction in which the main result of the section differs
from standard Freiman theorems: it is stated relative to Bourgain systems.
Here, the crucial property of Bourgain systems is that they are preserved by

Freiman homomorphisms:

Lemma 3.2.1. Suppose that B = (B,), is a Bourgain system and that ¢ :
By — G’ is some Freiman 2-isomorphism such that ¢(0) = 0. Then ¢(B) :=

(0(B,)), is a Bourgain system of the same dimension and size.
We are now in a position to state the key result.

Proposition 3.2.2. Suppose that G is a finite abelian group, and that A C G
is a finite set with |A+ A| < K|A|. Then there is a regular Bourgain system
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B = (B,), of dimension at most O(K°W) and with
11c(B) = exp(—O(K°D))ug(A) and |14 * Bil| oo (ue) > K.

We begin as in the previous section.

Finding a good model

Proposition 3.2.3. (Good Models, [GR07, Proposition 1.2]) Suppose that
G is an abelian group and A C G is finite with |A + A| < K|A|. Suppose
that s > 2 is an integer. Then there is an abelian group G' with |G'| <
(10sK)'%°|A| such that A is Freiman s-isomorphic to a subset of G.

Bogoliouboft’s argument

This is very close to the variant of Bogoliouboft’s argument due to Chang

which we alluded to in the previous section (see Proposition 3.1.4).

Proposition 3.2.4. Suppose that G is a finite abelian group, and that A C G
has density o and |A+ A| < K|A|. Then there is a reqular Bourgain system
B of dimension d = O(K loga™") and with

pie(B) = exp(—O(dlog(1 +d))) and ||14 * Bi| o (ug) > K,

such that By C 2A — 2A.

Proof. Set

[={yeG:[la(v)| =2 W}

and apply Chang’s Theorem to get a set of characters A with |[A] < K(1+
loga™) and T' C (A). Now if v € T then v = m.A for some m : A —
{=1,0,1}. Thus by the triangle inequality we have

1=@)] <Y 11— M)l

A€A
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Now if z € B(A,1/107|A]) and v € I" then

[1=~(x)] < [Afsup [l = A(z)]
A€A

= [Alsup v/2(T — cos(rAE])

< 2/5. (3.2.1)

Now by the inversion formula we have

Tallfy g — Laxlaxlgx1_4(z) = [TaMNI*(1 = 7(x))
@

veG

Y L)L = (@)

vel

+> L)'= (@)

v¢r

N

2~ a?
—||1AH;}4 @t ﬁHlAHQL%MG)
03

= ||1AHg4 +ﬁ

N

However the fact that |[A + A| < K|A| implies, using the Cauchy-Schwarz
inequality, that

HlAH;(@) = HlA * 1AH%2(MG) > 053/K- (3.2.2)
It follows that
-~ 2 1
Eally = 1a ax 1oa s 1alo) < (34 5 ) IEallgy < IEall

and hence 14 % 14 % 1_4 % 1_4(x) > 0, so z € 24 — 2A. It follows that
B(A,1/107|A]) C 2A — 2A.

Take
B = (B,), where B, = B(I', p/407|A|).

The previous argument ensures that By C 2A — 2A. Moreover by Lemma

2.4.2 we conclude that B is a Bourgain system with dimension d = 2|A| =
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O(K loga™') and density at least exp(—O(dlog(1 + d))).
It remains to show that |14 * 1] rec(ug) > K1 By (3.2.1), if x € By
and v € T then |1 —~(z)| < 2/5. It follows that |1 — 31(7)| < 2/5 and hence

1T Billesay = 3/5) D [LatnI* > 114 * Bulls .

yel’
It follows from (3.2.2) that
/K < |[La*Billg = l1a*BixLax* Billf2g.,

< ||1A*61||L00(MG)O{3.

This yields the result. O]

Pullback

The different goal of this result means that we are no longer concerned with
the covering aspect of the ‘Pullback and covering’ part of the last section.
Moreover, Lemma 3.2.1 lets us pullback the Bourgain system to another

Bourgain system directly.

Proof of Proposition 3.2.2. By Proposition 3.2.3 there is an abelian group
G, |G < exp(O(K?log(1l + K)))|A|, and a subset A’ C G’ such that A’ is
14-isomorphic to A. We apply Proposition 3.2.4 to this set A’ the density of
which we denote by a. Noting that o > exp(—O(K?log(1+ K))), we obtain
a Bourgain system B’ = (B)), with dimension O(K°W),

|B1| > exp(=O(KW))|A'| and |1 Byl (ue) > K7,

and Bj C 2A" — 2A’. Write ¢ : A’ — A for the Freiman 14-isomorphism
between A" and A. The map ¢ extends to a well-defined 1-1 map on kA" — (A’
for any k,l with k£ + [ < 14. By abuse of notation we write ¢ for any such
map. In particular ¢(0) is well-defined and we may define a ‘centred’ Freiman
14-isomorphism ¢g(x) := ¢(z) — ¢(0).

Define B := ¢o(B'). Since B) C 2A"'—2A’ ¢ is a Freiman 2-isomorphism
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on Bj with ¢¢(0) = 0. Therefore B is indeed a Bourgain system, with the
same dimension as B’ and |B;| = |Bj].

It remains to check that ||14 % B1]|roo(ue) > K. The fact that |[1a *
Bl Lo (ue) > K~ means that there is z such that |14 % 8] (x)| > K~'. Since
suppf; C B} € B) C 2A" — 2A’, we must have z € 34" — 24". We claim
that 14 % B1(¢(x)) = 14 % B](x), which clearly suffices to prove the result.
Recalling the definition of 3y, 5], we see that this amounts to showing that

the number of solutions to
r=ad —t)+t;, witha' € A’ t; € By,
is the same as the number of solutions to
¢o(7) = ¢o(a’) — do(t)) + ¢o(ts), with o’ € A"t € B.

All we need check is that if y € TA" — TA" then ¢o(y) = 0 only if y = 0. But
since 0 € TA'—T7A’, this follows from the fact that ¢ is 1-1 on TA'—T7A’. O
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Chapter 4

Littlewood’s conjecture and the

idempotent theorem

It is a long standing question of Littlewood’s (see [HL48]) to determine the
smallest possible value of || 14| 4z) when A is a set of size N. It may be useful
to recall that

1
HlAHA(Z):/ |Zexp(27ra9)|d9.
0

acA
The quantity ||14]/4z) is a sort of measure of the complexity of the set A: if
|14l az) is small then most of the Fourier mass is supported on a few modes
so it is a ‘low complexity’ object, conversely if it is large then the Fourier
mass is spread out and it is a ‘high complexity’ object. In view of this it
becomes interesting to ask how ‘simple’ a set can be; it is natural to consider

the case when A is an arithmetic progression. Here

4
1Talla@z) = —log N + O(1),

a result which may be found in, for example, Zygmund [Zyg02, Section 11.12],
although in any case it is not hard to convince oneself that ||14 || az) > log N.
The problem then becomes one of trying to show that this is best possible.
A lot of work was done before this was proved, independently, in the early
1980s by Konyagin [Kon81] and McGehee, Pigno and Smith [MPS81].

Theorem 4.1 (Littlewood conjecture). Suppose that A is a finite set of N
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integers. Then |14l az) > log N.

This, however, did not completely finish the problem and there is still the

question of the strong Littlewood conjecture.

Conjecture 4.2 (Strong Littlewood conjecture). Suppose that A is a finite
set of N integers. Then

4
11alla@) = —log N + O(1).

In a different direction it is rather natural to consider the problem for
other abelian groups. Here, however, a difficulty arises. Suppose that G is a
finite abelian group. Cosets of subgroups of G have characteristic functions
with very small algebra norm. Suppose that V' < G and A =2+ VL. Then

a simple calculation gives

()| VIt ifyeV

La(y) = _
0 otherwise.
It follows that ||14||ae) = 1, and hence (since ||.||a(q) is an algebra norm)

that any small combination of unions and intersections of cosets will also
have small norm.

In the more general setting of a locally compact abelian group G we
define the coset ring to be the smallest family of subsets of G containing all
open subgroups of G and which is closed under complements, unions and
intersections. It is a remarkable result of Cohen [Coh60], that this includes
all the subsets of G with characteristic functions in A(G).

Theorem 4.3 (Idempotent theorem). Suppose that G is a locally compact
abelian group. Suppose that A C G has 14 € A(G). Then A is in the coset
ring of G.

In words, what the theorem says is that if 14 € A(G), i.e. its algebra
norm is finite, then it can be written as a finite £-sum of indicator functions

of cosets. For example, suppose that K < H < G are open subgroups of GG
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and A= H \ K. Then 14 € A(G) and, moreover,
1y=1g —1x.

The converse is trivially true: any finite +-sum of indicator functions of
cosets is in A(G), so the theorem provides an exact characterization of those
sets whose indicator functions are in A(G).

In the finite setting Cohen’s result has no content, but there are two
obvious ways in which one might go about making it quantitative and so
effective in the finite setting. First note the following immediate consequence
of the idempotent theorem for which there is also an easy and direct proof.

If x is a real then we write {x} for the fractional part of z.

Proposition 4.4. Suppose that G is a compact abelian group. Suppose that
A C G has density o and for all finite V < G we have {a|V[}(1—{a|V]}) >
0. Then 14 ¢ A(G).

We have written the hypothesis on « in a slightly peculiar fashion to
make clear the connection to the quantitative version of the result. All the
condition really says is that o # nug(H) for any integer n and open subgroup
H; this sort of condition is fairly natural in the light of the idempotent
theorem. We shall prove a theorem of the following form to make Proposition

4.4 quantitative.

Theorem 4.5. Suppose that G is a finite abelian group. Suppose that A C G
has density o and for all V < G with |V| < M we have {a|V|}(1—{a|V|}) >
1. Then

Malla@) > f(M)

for some function f for which f(M) — oo as M — oc.

It turns out that different groups require very different methods, with
the dyadic groups at one end of the spectrum and the arithmetic groups at
the other. We begin with the dyadic groups and in §4.1 prove the following

theorem.
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Theorem 4.6. Suppose that G = F3. Suppose that A C G has density o
and for all V < G with |V| < M we have {a|V|}(1 — {a|V|}) > 1. Then

|14l a(c) > loglog M.

Possibly the most interesting case, and one which captures the essence
of the problem is when « is roughly 1/3. Specifically if | — 1/3| < 1/2M,
then the hypotheses of the theorem are satisfied. This example is discussed
in more detail in §4.1, but the idea is that if A is a set with a density which
can’t be easily written as a £-sum of powers of 2, then 1, cannot be written
as a +-sum of a small number of cosets.

In that section we present a simple example to show that nothing better

than the following conjecture can be true.

Conjecture 4.7. Suppose that G = 3. Suppose that A C G has density a
and for all V < G with |V| < M we have {a|V|}(1 — {a|V]}) > 1. Then

||1AHA > log M.

In §4.2 we consider the arithmetic groups and prove the following (al-

though it is stated in a slightly different manner).

Theorem 4.8. Suppose that G = Z/pZ for some prime p. Suppose that
A C G has density « and for all V < G with |V| < M we have {a|V[}(1 —
{a|V]}) > 1. Then

log M 1/2
1 _— .
ILalla@) > ((loglogM)3)

Note that in this result the density condition collapses to a being bounded
away from 0 and 1, and M may be taken as large as p — 1 (provided it is at

least 1!). Analogy with the Littlewood conjecture leads one to the following.

Conjecture 4.9. Suppose that G = Z/pZ for some prime p. Suppose that
A C @G has density « and for all V < G with |V| < M we have {a|V[}(1 —
{a|V]}) > 1. Then

114l 4 > log M.
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Finally in §4.3 we combine the rather different methods of §4.1 and §4.2
to prove the following general result. The combination is a little more tricky

than one might hope which is why we get a rather weak bound.

Theorem 4.10. Suppose that G is a finite abelian group. Suppose that A C
G has density o and for all V. < G with V| < M we have {a|V|}(1 —
{a|V|}) > 1. Then

114l (e > logloglog M.

One might make the following conjecture.

Conjecture 4.11. Suppose that G is a finite abelian group. Suppose that
A C G has density a and for all V < G with |V| < M we have {a|V|}(1 —
{a|V]}) > 1. Then

[1alla) > log M.

The alternative approach to the above is to try to make the idempotent
theorem quantitative directly wviz. if A has ||1alla@) < M then A can be
made out of not too many cosets in G using not too many complements,
intersections and unions. ‘Too many’ here is of course a function of M.
Realizing this objective is the content of §4.4 where we prove the following

theorem.

Theorem 4.12. Suppose that G is a finite abelian group. Suppose that A C
G has |1allaqey < M. Then there is an integer L < exp(exp(O(M?))) such
that

L
1A: E Ujlxj+Hj
Jj=1

where 0; € {—1,1}, x; € G and H; < G for each j € {1,..., L}.

This result actually implies (weaker) bounds for all the stated theorems as
well as Littlewood’s original problem; we shall discuss this in the concluding
remarks in §4.4.6.

Finally it is worth remarking that fairly straightforward limiting argu-
ments allow us to extend a number of these results to slightly wider classes

of groups. In particular, Theorem 4.6 is extended to all compact vector
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spaces over Fy in [San07a], Theorem 4.10 is extended to all compact abelian
groups in [San06], and Theorem 4.12 to all locally compact abelian groups
in [GSO8b]. In some sense this is attractive because it includes the motivat-
ing qualitative results, however the resulting analysis tends to obscure the

underlying ideas so we do not include these arguments here.

4.1 Dyadic groups

Before beginning the proof of Theorem 4.6 it is instructive to mention the
following special case which nevertheless captures the essence of the result.
Suppose that G is a compact vector space over Fs. Since finite subgroups of
G all have size a power of 2, if A C G has density a = 1/3 then

{a|V[}(1 = {a|V[}) = 1/9 for all finite V < G,

whence Proposition 4.4 specializes to the following.

Proposition 4.1.1. Suppose that G is a compact vector space over Fy and
A C G has density 1/3. Then 14 ¢ A(G).

The next result is the corresponding consequence of Theorem 4.6.

Theorem 4.1.2. Suppose that G = F} and A C G has density o with
o —1/3] < e. Then
11allage) > logloge™.

The section now splits into five subsections. §4.1.1 provides some ex-
amples which complement our results and are worth bearing in mind when
following the proof. §4.1.2 is the central iterative argument; in this section
we prove a result with the conclusion of Theorem 4.6 but with a more cum-
bersome hypothesis on A. §4.1.3 then provides some physical space estimates
to show that sets of density close to 1/3 (or, indeed, satisfying the more gen-
eral hypothesis of Theorem 4.6) are included in the range of sets covered in
the previous section. Finally, §4.1.4 combines the preceding work to prove
a result which immediately implies Theorem 4.6. It then concludes with a

discussion of the limitations of our methods.
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For the remainder of this section G' = F5.

4.1.1 Sets with small A(G)-norm

We address the question of how to construct subsets of G of a prescribed
density whose characteristic function has small A(G)-norm.

Every coset in G has density 27¢ for some integer d; to produce a set with
a density not of this form we take unions of cosets.

Suppose that we are given « € [0, 1], a terminating binary number. Write

k
o= E 2~di,
i=1

where the d; are strictly increasing. If we can find a sequence of disjoint
cosets Ay, ..., Ay such that pug(A;) = 27%, then their union A := Ule A; has

k k
11alla@) = | Z Lalla@) < Z 114, |4y =K (4.1.1)
i=1 i=1
by the triangle inequality, and density
k k
pa(A) = ZNG(Ai) = Z 2% = q
i=1 i=1

since the elements of the union are disjoint. To produce such cosets we take
{06} = Ao < Ay < o < Ap < @, a nested sequence of subspaces with
dimA; = d;. Choose a sequence of vectors {7; : 1 < i < k} such that
~vi € Ay \ Aj_q for 1 < i@ < k. Tt is easy to see that this sequence must be
linearly independent so we may take a sequence {z; : 1 < i < k — 1} such
that

Vi (@) = b (4.1.2)

-1 ifj=1

foralll <i<k—1. Put

Ai =21+ ...+xi 1+ AZJ_
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First we note that ug(A;) = 27% and second that the sets A; are pairwise
disjoint: Suppose j >iand z € A; then v = z1+...4+2;_; +2' where 2’ € AjL
so that

Yi(x) = (@) yi(@j-1)7i (7).

Now j >4, so A; > A; from which it follows that v;(z') = 1. Consequently
vi(x) = vi(z;) = —1 by (4.1.2). However if x € A; then by a similar calcula-
tion v;(x) = 1.
It follows that Aq,..., Ay are disjoint cosets of the appropriate size and
hence their union, A := Jf_, A;, has density a and 11allac) < k.
We shall apply this construction to two different densities. The first is
! + ! I =
4016 4k’
the second will come in §4.1.4 to illustrate the limitations of our method.

The set A we produce has density « and the following two properties.

~

(i). A satisfies the hypotheses of Theorem 4.6 with M =4F — 1. f V < G
and |V| < M then |V| = 2¢ for some d < k and

2 d —z d d 1
37 Z 2047 ={a2%} > NETEESEAVE
i=|d/2|+1
and hence {a|V|}(1 — {a|V]}) > 1/12.
(i1). [|Tallae) =< k: ||1allae) < K follows by construction; ||1ala) > k is
slightly more involved:
—~ A7y (xy) (i) iy €A,
0 otherwise.

Hence we can bound |14(7)| from below using the linearity of the

Fourier transform.

|1A 4_7' Z 4~ J —. if’}/GAi\Ai_l,

Jj=i+1
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and so

o 2,3
||1AHA(G) = Z 54_Z-|Az‘\Ai—1| = Zzl g4_’,14Z =

=1

k
a

Now, the conclusion of Theorem 4.6 implies that ||14]|4) > logk which
should be compared with the fact that actually ||14la) =< k.

4.1.2 An iteration argument in Fourier space

Throughout this section A C G has density «.

A trivial lower bound

Suppose that o > 0. It is natural to try to bound |14 4() by a combination

of Holder’s inequality and Plancherel’s Theorem:

Iala@ I Tl > 1TAI2 ) = 114l (413
non-negativity of 14 means that ﬁ(Oa) = [|1al|L1(ue) SO
allzr ey 2 [N allzewe) = 140g) = [1allLrue)

which implies that

HlAHL‘X’(uc) = HlA”Ll(MG)- (4.1.4)

14 = 1% s0 [[1allZ2,,) = [Lallzt(ue) = @, which is positive, and hence (4.1.3)
tells us that

11alla@ = 1. (4.1.5)

Taking A = G shows that in general we can do no better.

A weak iteration lemma

A weakness in the above deduction is that we have no good upper bound for

||TZH€OO(@). In fact, as we saw, HTZHZOO(@) is necessarily large because 14 is
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large at the trivial character. However, we know nothing about how large ﬁ

is at any other character, a fact which we shall now exploit.

Write f for the balanced function of 14 i.e. f =14 — . Then

. 0 if v =05
f(y) = e

1a(7) otherwise.

Applying Holder’s inequality and Plancherel’s Theorem in the same way as

before we have
alla) [ fllpe@ = (La, ) = (1a, f) = @ — o (4.1.6)

Now, fix € > 0 to be optimized later. If « is bounded away from 0 and 1 by
an absolute constant then either ||14la@c) > €' or ||f||€oo(§) > €. In the
former case we are done (since ||14||a() is large) and in the latter we have
a non-trivial character at which 1, is large; we should like to start building

up a collection of such characters.

Suppose that I' C G is a collection of characters on which we know ﬂ
has large ¢!-mass. We want to produce a superset IV of I' by adding some
more characters which support a significant £*-mass of ﬁ. To find characters
outside T on which 14 has large ¢!-mass we might replace f with a function

fr (by analogy with the earlier replacement of 14 by f) defined by inversion:

—~ 0 ityel
fr(v) =9 ~ _ (4.1.7)
1a(y) otherwise.

The problem with this is that for general I' we can say very little about fr.

ItV < C/;\, however, then fy has a particularly simple form:

fy = Zﬁ(fy)(l — i (Y)Y =1a*x (0 —pyr) =1a — 1o pyo.

el

G. We want to try to add characters to V'
with > v |a(’y)] ‘significantly larger’ than

Now suppose that I' = V' <
to get a superspace V' < G
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doev \ﬂ(fy)| We can use the idea in (4.1.6) to do this; replace f by fy in

that argument:

Mallae vl @ = (La, fr) = (La, fv)- (4.1.8)

Before, an easy calculation gave us (14, f) = (1 — «). To compute (14, fv)

we have a slightly more involved calculation.

Lemma 4.1.3.
HfVHLl(,LLG) = 2<1A7 fV> (419)

Proof. 1 is a probability measure so 0 < 14 % uy 1 (z) < 1. Hence, fy(x) <
0 for all z € A and fy(z) > 0 for all x € A; consequently

Nl ue) = / Lafvdug + / (1 =14)(=fv)dua = 2(1a, fv) — /deNG'
But [ fydue = 0since [1aduc = [ 14 * pyrdug, so we are done. O

It follows that

vzt (ue)

5 (4.1.10)

[Lalla@ [ fv @) 2

L or there is a character v such that |?;(7)| >

So either |[14lla@) = €
€|l fvllzi(ug)/2- By construction of fir we have ?;(’y’) = 01if 7/ € V so that
v &V —~is a genuinely new character. Letting V' be the space generated

by v and V', we have our first iteration lemma:

Lemma 4.1.4 (Weak iteration lemma). Suppose that V < G and A C G.
Suppose that € € (0,1]. Then either ||14]|a) = €' or there is a superspace
V' of V with dim V' = dim V' + 1 for which

S Tl > Ileee s~ i)

yev’ yeV
[terating this lemma leads to the following proposition.
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Proposition 4.1.5. Suppose that A C G is such that for all V < < G with
V| < M we have || fv||L1(ue) > 1, where fyy = 14 — 14 % pyr. Then

11allace) > /1og M.

We omit the proof (it is not difficult and all the ideas are contained in
the proof of Proposition 4.1.7) since the hypotheses the proposition assumes

on A are prohibitively strong; nevertheless we can make use of these ideas.

A stronger iteration lemma

The main weakness of the above approach is that each time we apply the weak
iteration lemma to find characters supporting more ¢!-mass of 14 (assuming
we are not in the case when ||14]|a(q) is automatically large) we do not find
very much ('-mass, in fact we find mass in proportion to || fv||11(.g) which
consequently has to be assumed large. We can improve this by adding to V'
not just one character at which ?‘7 is large but all such characters. This idea

would not work but for two essential facts.

(i). There are a lot of characters at which ?; is large, in the sense that the

characters at which f; is large actually support a large amount of the
sum (14, fv).

(ii). Chang’s Theorem ensures that the characters at which ?\: is large are

contained in a subspace of relatively small dimension.
We are in a position to show:

Lemma 4.1.6. Suppose that V < G, A € G and ||fv | > 0, where
fv =1a—1a%pyr. Then there is a non-negative integer s and a superspace

V' of V' such that

(ra)

S A=Y 1Ay |>>(4)S

yev’ yeV

and
dim V' — dim V < 4*(1 + log || f | 1 .0))-
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Proof. By Plancherel’s Theorem and Lemma 4.1.3 we have
— P 1
Z La()fv(y) = (1a, fv) = EHfVHLl(MG)-
veG

To make use of this we apply the triangle inequality to the left hand side and

get the driving inequality of the lemma

1 S
sl < DL (4.1.11)

ved

Write L for the set of characters at which f; is non-zero. Partition £ by
a dyadic decomposition of the range of values of |f;| Specifically, for each

non-negative integer s, let

Lyi= {7 €627 frlloue) = v > 27V frllige -

For all characters v we have | fy(7)] < | fvllLi(ue) and if v € £ then Fr(y)| >
0 so certainly the I'gs cover L£; they are clearly disjoint and hence form a

partition of £. Write L, for the ¢*-norm of ﬁ supported on I':

Y€l
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The right hand side of (4.1.11) can now be rewritten using these definitions:

Z|1A ||fv = Z|1A ||fv )| by the definition of £
'yEG yeL
= ZZHA WFv ()]
s=0 vel's

since {I's}s>0 is a partition of L,

Yo > L2 vl ey

s=0 vel's
by the definition of T,

N

= ZLSQ_SHfVHH(“G) by the definition of L.

s=0

Combining this with (4.1.11) and dividing by || fv||£1(.) (Which is possible

since || fy||21(ue) > 0) we get

N | —

<Y 2L, (4.1.12)
s=0
Now, if for every non-negative integer s we have

1/4\°
Li<=|=],
i(5)

then

Chang’s Theorem gives a space W for which

Loy eG: 1M 22V flnpe} W
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and
dim W << 2% (1 + log (|l fv [l 2 ue v 174 ) -

To tidy this up we note that fyy = 14— 1axuyr and 14(z), La*pyo(z) €
[0,1], so fv(x) € [-1,1] for € G and hence || fv | 12(u) < 1, from which it
follows that

dim W < 4°(1 + log || fvl| 4 ,..,))-

Let V' be the space generated by V and W. Then

dim V' — dim V < 4°(1 + log || fv [l 71 1)) -

Finally we note that I's NV = () since ?;(7) =0if vy € V (recall ?‘7 from
(4.1.7)) and |fy ()| > 25+ fy|l1 = 0 if v € T',. Hence

— 1 4 § —
)MCIED SERCIED WL E) IS L
yeV! v€l's yeV yeV

This gives the result. [

By iterating this lemma we prove the following result.

Proposition 4.1.7. Suppose that A C G is such that for all V < G with
V| < M we have log ||fv ;' < log|V|. Then

114l a() > loglog M.

Proof. Fix € € (0,1] to be optimized later. We construct a sequence Vj <

1 <...< G iteratively, writing d; := dim V; and

L= Z EZ(’Y)

vEV;

We start the construction by letting Vj := {0z}. Suppose that we are given
Vi.. If |Vi| < M then apply the iteration lemma to Vj;, and A to get an integer
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sg+1 and vector space Vi1 with
Sk+1
dk+1 — dk < 4Sk+1(1 + log ||ka||1_1) and Lk+1 - Lk > (g) . (4113)

First we note that the iteration terminates since certainly L; > k, but also
Ly < [[1alla@) < oo
Since log || fv, [|;* < log |Vi| < dy it follows from (4.1.13) that

gy < A%F41dy,, (4.1.14)

from which, in turn, we get

k s k
A4\ %
L, > E (g) > E s; > log dy,. (4.1.15)
=0 =0

Let K be the stage of the iteration at which it terminates i.e. |Vi| > M.

We have two possibilities.

(i). dg_1 = logy |[Vx_1| < VlogM: in which case di > +/log M.dg_;.
(4.1.14) then tells us that 4°% > \/log M. However the first inequality
in (4.1.15) tells us that ||[1alla@) = Lk > (4/3)°% and so certainly
[1allae) > loglog M.

(ii). Alternatively dx_1 = log, |[Vk—_1] = /log M: in which case by (4.1.15)
we have Lg_; > logdg_1 > loglog M and so certainly ||14|la) >
log log M.

In either case the proof is complete. O

4.1.3 Physical space estimates

To realize the hypothesis of Proposition 4.1.7 regarding fy as a density con-

dition we have the following lemma:

Lemma 4.1.8. Suppose that V < G and A C G has density . Then
1£vllzruey = 114 = La s pvallzaguey 2 21Vl VIFE = {a|V]}).
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We need the following technical lemma:

Lemma 4.1.9. Let 4y, ...,0,, € [0,1] and put v ={>_;", 8;}. Then

i 6 —02) = v(1— 7). (4.1.16)

=1

Proof. We may assume that 0 < v < 1. Suppose that we have ¢ # j such
that 0 < d;,0; < 1. Put 6 = 9; +9; < 2 and we have two cases:

(). 6 < 1: In this case we may replace §; and d; by § and 0. This preserves

~ and since
0 — 07 +6; =07 = (0; +6;) — (6; +6;)> +0— 0%,
it does not increase the sum in (4.1.16).

(ii). 2 > 6 > 1: In this case we may replace ¢; and ; by 1 and 6 — 1. This

preserves v and since

0 =1)0;=1) =0
= 0 > —26;0; + 2(6; + 0;) —
= 6= 00— 00 28— 00— 0% — 26,0, + 2(6; + 6;) —
= 0 —07+0;—06 =(6;+6,—1)— 0+ —1)°+1—17

it does not increase the sum in (4.1.16).

In both cases we can reduce the number of is for which 0 < §; < 1 without
increasing the sum in (4.1.16), so we may assume that there is only one j
such that 0 < ¢; < 1. Then

5+ 6=+ Zm;»(sj—v— Z =) 4,

i# i=1 i#

but the right hand side is an integer and —1 < ¢; — v < 1 so ¢; = v and
(4.1.16) follows. [
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Proof of Lemma 4.1.8. Lemma 4.1.3 states that || fy | 11(.) = 2(14, fv) so

Ivllee) = 2/lA(lA— Lg* py1)dpc

= 2/ /1A(1A — Lax prys )dpiy v dpc (),
el

(this is just conditional expectation). 14 * uy 1 is constant on cosets of V+

and 1% = 14 so that

Il = 2 / . / Ladpta s (1— Lo % e (2))dac (2)

-2 L ()= L e (o)),

There are |V| cosets of V- in G, and 14 * 1 is constant on cosets of V+
so this integral is really a finite sum with |V| terms in it. Let C be a set of

coset representatives for V4 in G then |C| = |V| and

1l = % S Lk s () (1= Ly # g (2)).

z'eC

We can now apply Lemma 4.1.9 to the quantities 14 * puy-1 (2') with m = |C].

This gives ) )
e = —B(1— B) = —B(1 —
vl > 167801 = ) = 601 = )
where
g = {Z Ta* /LVL(l’/)} = {|C|/ 1a */ﬂﬂ.((lﬁ)dﬂg(&l)} =A{|Vl]a}.
z'eC z€G

Nothing better than Lemma 4.1.8 can be true: Let A be the union of
|a|V|] cosets of V+ and a subset of a coset of V= of relative density {a|V|}.
Equality is attained in Lemma 4.1.8 for this set.
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4.1.4 The result, remarks and examples

As an easy corollary of Proposition 4.1.7 and Lemma 4.1.8 we have:

Theorem 4.1.10. Suppose that G = Fy. Suppose that A C G has density
a and for all V < G with |V| < M we have {a|V|}(1 — {a|V]}) > [V| .
Then

11allace) > loglog M.

Theorem 4.6 is simply a weaker version of this result.

There are strong similarities between this work and the work of Bourgain
in [Bou02]. In particular a slight variation on the calculation in Lemma 4.1.3
is in his work and he proves a result using Beckner’s Inequality (which is
essentially equivalent to Chang’s Theorem) which shows that if A C F3 has
density o with a(1 — ) > 1 then either 1,4 is large at a non-trivial character
or there is significant /?>-mass in the tail of the Fourier transform.

Theorem 4.1.10 is sharp up to the constant and hence demonstrates a

limitation of our method as regards improving Theorem 4.6. Let

11 1

We showed in §4.1.1 that there is a set A of density o with ||14]|a@) < k.
However A also satisfies the hypotheses of Theorem 4.1.10 with M = 22" 1
If V < G has |[V| < M then |V] = 27 for some d < 2F-1,

{a|V]} = > 24972 < > 9-2"

min{0,log, d}<m<k—1 min{0,log, d}<m<k—1
- 7
< Z 2—2 < g;
m=0
and
{a|V]} = > 9d 972" > gd g2t 5 9-d 1|1

min{0,log, d}<m<k—1
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Hence
{aV}(1 = {alV]}) > [V]T"

Theorem 4.1.10 applied to A tells us that |[14]|a) > k.

4.2 Arithmetic groups

In this section we consider groups at the arithmetic, rather than algebraic,
end of the spectrum, namely G = Z/pZ for p a prime. Again there is an
attractive qualitative analogue that can be concluded from Cohen’s theorem.

We shall discuss a direct proof shortly.

Proposition 4.2.1. Suppose that A C T has density o with 0 < a < 1.
Then 14 ¢ A(T).

A quantitative version of this was first proved by Green and Konyagin in
[GK09]. They proved the following result.

Theorem 4.2.2. Suppose that p is a prime number and A C Z/pZ has

density bounded away from 0 and 1 by an absolute constant. Then

logp )1/3

1 >
11allaz/pzy <log logp

By analogy with the original problem of Littlewood they observe that

more is probably true, indeed one might make the following conjecture.

Conjecture 4.2.3 (Green-Konyagin-Littlewood conjecture). Suppose that p
is a prime number and A C Z/pZ has density bounded away from 0 and 1

by an absolute constant. Then

ILalla@z/pz) > logp.

Certainly no more than this is true as any arithmetic progression of den-
sity bounded away from 0 and 1 shows. Consider, for example a symmetric

interval I. It is well known that its Fourier transform is just the Dirichlet
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kernel: (|11 /p)
~ sin(7r
1;(r) = 20IEVP)
psin(nr/p)

Thus, since |sinz| < |x|, we have

p—1

| sin(ar|1]/p)]
illae) > Y —— ="+
r=1

Now suppose, for example, that |[I|/p ~ 1/2. Then [sin(zr|I|/p)] > 1

whenever r is odd so that

(r—1)/2
1r[l ae) > Z i > log p.

r’'=1

A similar argument works for any || with 1 < (|I|/p)(1 — (||/p)).
In this section we improve Theorem 4.2.2, increasing the exponent of log p

from 1/3 — € to 1/2 — e. Specifically we show the following.

Theorem 4.2.4. Suppose that p is a prime number and A C Z/pZ has

density bounded away from 0 and 1 by an absolute constant. Then

log 1/2
: _ logp .
11alla@z/pzy > ((loglogp)3>

It is easy to see that this is equivalent to Theorem 4.8.

4.2.1 A qualitative argument

It is instructive to begin considering the problem by looking at a proof of
Proposition 4.2.1. The proof proceeds in three stages, the first two of which

are naturally set in an arbitrary compact abelian group G.

(). (Fourier inversion) First, if f € A(G) then we may define the function

f@) =" f(n)(x),

ved
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(ii).

which is continuous since it is the uniform limit of continuous functions.

The Fourier inversion theorem tells us that ||f — | Lo (ue) = 0.

. (Averaging) Secondly, by averaging there are elements xq,z; € G such

that
J?(QCO) < /fdMG < f(xl)a

since [ fdug = ffd,u(;.

(Intermediate value theorem) Finally we suppose (for a contradiction)
that 14 € A(T) so that by the intermediate value theorem there is some
x € T such that f;(:v) = «. Continuity ensures that there is an open
ball z + B on which 14 is very close to «, and in particular, since a €
(0,1), on which 1, only takes values in (0,1). Since ]\1A—1A;|]Loo((;) =0
and pu(x + B) > 0 it follows that 14 equals 14 for some point in z + B,
but this contradicts the fact that 14 can only take the values 0 or 1.

If we try to transfer this argument to G = Z/pZ it breaks down at the third

stage when we apply the intermediate value theorem. It is easy enough to

remedy this and prove a sensible discrete analogue of the intermediate value

theorem; the following, for example, is in [GK09]. It is also a corollary of the

more general Lemma 4.3.3 which is proved later.

Proposition 4.2.5 (Discrete intermediate value theorem). Suppose that p is

prime number. Suppose that f : Z/pZ — R and that there is some non-zero
y € Z/pZ such that

[f (@ +y) = [(@)] < ellflleue) for all x € Z/pZ.

Then there is some x € Z/pZ such that

() - / Fduzyzl < 276l .

Of course this has only moved the difficulty: to use this result we need

to replace the continuity in the first stage of our argument with the sort of

quantitative continuity used in this proposition.
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It turns out that we already have a ready supply of functions which are
continuous in this new sense: Suppose that f € L*(ug) and B(I',9) is a
regular Bohr set. Then, by Lemma 2.2.5, we may pick ¢’ > €d/d such that

1f * Brs = f * Brs(@) | oo @rar 5) < €llflleue)-

Now if ug(B(T,d")) > p~! then B(T', ') has a non-identity element and hence

the discrete intermediate value theorem applies.

Essentially the same argument which shows that if f € A(G) then ||f —
ﬂ| L (ug) = 0 for some continuous function fv can be made quantitative to
show that there is a regular Bohr set B(I', 0) such that || f — f* Brs|| oo (ue) 18

small and, by our previous observations, f * r 5 is quantitatively Contlnuous.

To be concrete suppose that G is a compact abelian group, f € A(G)
and write Ay 1= ||fHA(G)||f||Zic(MG). Then there is a finite set of characters I'
such that

S I < A Fllae.
€l
Pick § > EAJTI such that
B, §) Cc{xeG: |1 —~(x)| < eA]T1 for all v € '},
and such that ¢§ is regular for I' by Proposition 2.2.2. It is easy to see that
1= Bra(nl < edjtify €T,

and it follows that

If = F* Brollimey < 11— Brs(IIF()]

veG
< Z|1—5F5 F(y |+Z|1—5F6 1F()]
el v¢l’
< A1+ 2D 1)
»ye@ v¢l

< 3eA7 M fllae) < Bell fllzoe(ue)-
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In slightly formal language this has proved the following qualitative result.

Theorem 4.2.6. Suppose that G is a compact abelian group, f € A(G) and
e € (0,1]. Write Ay == ||f||A(G)||f||E;(MG). Then there is a Bohr set B(T',0)
with

d<ooandd ' < e Ay,

and a narrower Bohr set B(T',0") with &' > €d/d such that

sup 1f * Brs — f* Brs(@)|| 1o @rpr 5 < €llf Lo (ue)
e

and

Sup 1f = f * Brosll oo @rsr ) < €llfIl Lo (ue)-

Of course, as we observed before, this is only useful to us if B(I",d’)
contains a non-zero element. We can use Lemma 2.2.1 to estimate its size:
If G =Z/pZ, then B(I',¢') contains a non-zero element if

(cezAfl/d)d > p~! for some absolute ¢ > 0.

Unfortunately, because we have no control over d, we have no way of ensuring
this inequality. The content of this section can be seen as an effort to make
this method work by getting control of d; the main result is the following

quantitative version of Theorem 4.2.6.

Theorem 4.2.7. Suppose that G is a finite abelian group, f € A(G) and
e € (0,1]. Write Ay := ||f||A(G)||f||Zolo(uG). Then there is a Bohr set B(T', )
with

d< e ?Aslog Asloge A and logd™' < e *Ay(loge ' Af)?,
and a narrower Bohr set B(T',0") with &' > €d/d such that
Sup 1 Brs — [ * Brs(@)|| Lo @8 ) < €llf || Lo ue)
Te
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and

sup 1f = f = Brsllezse ) < €l flleue)-

Note that to gain control of d we have had to sacrifice some control of §
and of the error in approximating f by f * frs.

There are now three remaining subsections to the section.
e §4.2.2 details our arguments in the model setting of G = F3.
e 64.2.3 proves Theorem 4.2.7 following the outline of §4.2.2.

e Finally §4.2.4 completes the proof of Theorem 4.2.4 and concludes with

some remarks and a conjecture.

4.2.2 The argument in a model setting

We shall prove the following model version of Theorem 4.2.7.

Theorem 4.2.8. Suppose that G = F45. Suppose that f € A(G) and € €
(0,1). Write Ay := HfHA(G)HfH;o(#G)- Then there is a subspace V' of G with

codimV < e 2A;(1 +log Af)(1 +loge 1 Ay),

and

sup 1f = vz < ellflloee)-

The first part of the conclusion of Theorem 4.2.7 is unnecessary since

f * py is constant on cosets of V' and hence

Sug |f* p — f MV<x)||Lm(I+MV) =0.
TE

The basic quantitative argument

We begin with an argument which proves the following weak version of The-

orem 4.2.8; the argument will form the basis of our proof of that theorem.
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Theorem 4.2.9. Suppose that G = F4. Suppose that f € A(G) and € €
(0,1]. Write Ay := HfHA(G)HfHZiO(y,G)‘ Then there is a subspace V' of G with

codimV < 236_4A?c,

and

sup 1f = f*uvlrz@im) < €llfllzee)-

The technique is iterative, with the driving component being the following

lemma.

Lemma 4.2.10 (Iteration lemma 1). Suppose that G = F3 and T'* is an
annshilator in G. Suppose that f € A(G) and € € (0,1]. Write Ay :=
HfHA(G)HfHZL}o(HG)- Then at least one of the following is true.

(i). (f is close to a continuous function)

SUp [[f = f o sl 2oy < €l llzegue)-

(it). There is a set of characters A with |A| < 2¢72A} such that

ST 1FDI= D0 1O =272l e

~E(TUA)+LL ~yer++

Essentially this says that if f does not satisfy the conclusion of Theorem
4.2.9 for some annihilator Tt then there is a smaller (but not too much
smaller) annihilator I"* which supports more A(G)-norm of f.

To control the size of I+ we we use Proposition 2.3.2; in F} its statement

is particularly simple:

Proposition 4.2.11. (Model analogue of Proposition 2.3.2) Suppose that
G =TF3 and Tt is an annihilator in G. Suppose that f € A(G) and € € (0,1].

Then there is a set A of characters with

A< €Ml 115 gy
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such that

{v € G: [fdpre(3)] = ellflregu)} © TUA)*

Proof of Lemma 4.2.10. Suppose that
Sup 1f = fxprcllez@rn,) 2 €lflleee):

Since G is finite there is some 2’ € G which, without loss of generality, is

equal to Og such that

1 = % sl > el fllmguo. (1.2.1)

For ease of notation write g = f — f * up., and observe that g satisfies the

inequalities

l9llae) < [ flla@) and [|gllrequ., ) < 2[fll L (ue)- (4.2.2)

To see the first of these note that

lglla) =D 11 =Bz NIF ()] < sup 1= mer (DI fllae) < [1F 14,

~e@G VEC

and for the second

191l o= i) S Mgllzoeuey < M F ey +1LF * gz gy < 21z ey

Returning to (4.2.1) we may apply Plancherel’s Theorem and then the

triangle inequality to give us a Fourier statement:

S 19 DT = ElF 3 e (4.2.3)

'yGG
The characters supporting large values of g/d/_LE make the principal contri-
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bution to this sum. Specifically put

C:={y€G:lgdurs(V] > €llgllou.)}

where

¢ =27 A7l llgl o )

Then

S g NGO < 27 AT Fllemguey D 10)]
v¢€C Y€€

< 27 ATl oy 91l ace
< 2_162||f||%oo(uc) since [|g|a) < ||f]la)-

Substituting this into (4.2.3) we conclude that

D 1gdurs NG| = 27 )L f I e (4.2.4)

yeC

Now certainly |gdjrs (7)] < 2| f || L(ue) SO that

2726 fll Lo (uey < Y 1501

yeC

We now apply Proposition 4.2.11 to C to get a set of characters A with

Al < (€)M lgllao gl )
< 26_2A?c,

such that C C (I' U A)*+. The lemma follows. O
We are now in a position to iterate this and prove Theorem 4.2.9.

Proof of Theorem 4.2.9. We construct a sequence of annihilators 'y itera-
tively. Write
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and initiate the iteration with I'g := {05}.

Suppose that we are at stage k of the iteration. Apply the iteration lemma
(Lemma 4.2.10). If we are in the first case of the lemma then put V = I'y
and terminate; if not then we get a set of characters A and put 'y, = 'y UA.

It follows from the properties of A that
D] < [Tkl + 267247 and Lyy — L 2 27262| f1] 2o (uey)-
By induction we have that after k iterations
ITk| < k.2¢” 2A2 and Ly, = k.27%€%|| | oo (ue)-
Since Ly < || f||a) we conclude that the iteration terminates and
)| < 234 A3
The theorem follows. O

Refining the basic argument: the proof of Theorem 4.2.8

To achieve the result in Theorem 4.2.8 we make two important improvements

to the iteration lemma (Lemma 4.2.10) of the previous argument.

e (Dyadic decomposition) Our first improvement is the observation that

having derived

> lgdir (DG > 27l f ey (4:29),

yel

we can do something better than simply adding all the characters in
C to I'. Partition the characters in C by dyadically decomposing the
range of values of | gg,LE] and pick the characters in a dyadic class
contributing maximal mass to (4.2.4). The A(G)-norm of f supported
on this class is more closely related to the size of C which yields an

improvement.

o (Structure theorem for the Fourier spectrum) The second improvement
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replaces the application of Proposition 4.2.11 with the stronger Propo-
sition 2.3.4, which in the model setting has the following simpler state-

ment.

Proposition 4.2.12. (Model analogue of Proposition 2.3.4) Suppose
that G = Fy and T+ is an annihilator in G. Suppose that f € A(G)
and € € (0,1]. Write Ay := HfHA(G)HfHZi(#FL). Then there is a set A
of characters with |A| < e *log Ay such that

{7 € G [Fdprs ()] 2 €ll flleupn} € (CUA

By implementing these two refinements we prove the following iteration

lemma.

Lemma 4.2.13 (Iteration lemma 2). Suppose that G = F3 and ' is an
annihilator in G. Suppose that f € A(G) and € € (0,1]. Write Ay :=
\|f|\A(G)||f||Z§O(G). Then at least one of the following is true.

(i). (f is close to a continuous function)

sup || f — f * prsllz2@rpn) < €llfllzegue)-
zeG

(ii). There is a set of characters A and a non-negative integer s with |A| <
2°(1 +log Ay) such that

Z O Z ()| > €| fllre (ue)

—1 .
~E(TUA)LL JerLL 1+ loge Ay

Proof. We proceed as in the proof of Lemma 4.2.10 up to the point where

we conclude that

D 1gdurs NG| = 27 €| flIF 0 gy (4:24).
~vel
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Write I := (275 fll 2o (ue)> 27V fll 20 (uer)] and partition C into the sets
C,={yecC: |gﬁ/§(7)| € I} for 0 < s <1+ logy e 2A;.
Note that {Cs: 0 < s < 1+ log, e 2A;} covers C since

sup |gdpur. ()| < sup [gdprs (V)] < [|9llzee(un) < 20 f |22 (ue)
= ~veG

and
yelg lgdpre (V)] > 27 AT fll oo ue)

so that (4.2.4) may be rewritten to yield

1+log, €72 A5

> S 1gdur G = 2713 -

vECs

It follows by the pigeonhole principle that there is some s for which

N7 e
1+loge 1Ay’

> lgdur (NG| >

v€ECs

and since |gdﬁ('y)’ <276 VN fll 2o (e if v € Cs we get

~ 2°€|| 2> (ug)
219001 T =

v€Cs

Now

Co € {7+ lgdpr (] > @71 o |9l 2 o )9l o gy}
and since ||g||a) < || f]|ae) we may apply Proposition 4.2.12 to get a set of
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characters A such that C, C (I' U A)*+. Moreover |A| satisfies

Al < 2 F Il oy 191l 2o gy (1 + Tog [lg ) gl 2, )
< 2°(1+log llglla) 1 Fll oo ) since [1gllzoo gy < 201 F 1l 200 g
< 2°(L+log Ay) since [|g]lae) < [1flla)-

The lemma follows. O

Iterating this in the same way as before yields Theorem 4.2.8.

4.2.3 The proof of Theorem 4.2.7

We begin by extending the second iteration lemma (Lemma 4.2.13) from the

model setting to that of general finite abelian groups.

Lemma 4.2.14. Suppose that G is a finite abelian group and B(T', ) a reg-
ular Bohr set. Suppose that f € A(G) and € € (0,1]. Write Ay for the
quantity ||f||A(G)||f||Z§O(MG). Then at least one of the following is true.

(i). (f is close to a continuous function) There is a Bohr set B(T',d") with
&' > ed/d such that

Sup 1f*B =[x B@)lze@rpr g < ellfllzeue)

and

sup [ = £ # Bralles e 0 < €l =i

(i1). For all n € (0,1] there is a set of characters A, a 6" € (0,1] and a

non-negative integer s with
|A] < 2°(1 4 log Ay) and 6" > €A /d°,

such that

S B IFe)] >~ e
’ min{2%, 1 +loge 1A}

yeL
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where

L:={y:|1—~(x)] <n foralze BITUA,JI)}.

Proof. Choosing ¢’ is easy: By Corollary 2.2.5 and Proposition 2.2.2 there is
a 0’ > de/d regular for I" such that

sup 1f * Brs — f* Brs(@) | zoe@rpn ) < ellflleue)-
Te

Now, suppose that

sup Hf — [* 6F,5||L2(w+5r,5/) > EHfHLOO(MG)'
zelG

It follows that there is some 2’ € G which, without loss of generality, is equal

to Og such that

1f = F * Brosllea@ s ) 2 €lf ooy (4.2.5)

For ease of notation write g = f — f * Br s, and observe that g satisfies the

inequalities

l9lla@) < 2l fllae) and (gl ) < 20 fll ue)-

To see the first of these note that

lgllay = > 11 = BrasIIF ()] < sup 1= Brs(MII Fllae < 201fllae),

~eG V€G

and for the second

gllzoe(sp o) < Ngllua) A llzeotuey + 1 * Brosllzeeuey < 21 fllzoe(ue)-

Returning to (4.2.5) we may apply Plancherel’s Theorem and then the
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triangle inequality to give us a Fourier statement:

S 19dBrs NGO = ElLF 12w - (4.2.6)

'yEG

The characters supporting large values of gd/’ép\ﬁ/ make the principal contri-

bution to this sum. Specifically put

C={yeaG: |gdﬂr,5/(7>’ > EIHQHL"O(ﬁr,y)}?

where

€ =272 AN f |l e 190 Lo 5.

Then

> 19@Bra MG < 272 A7 Fllguey 9 15(7)

Sac Y€€
< 27 AL e 91l ace
<

270 € £l e ey since llgllae) < 20 fllace)-

Substituting this into (4.2.6) we conclude that

> 19dBrs NG| = 27 1 f 17w (s (4.2.7)

veC

Write Iy := (25| fl| oo (ue)s 277V £l b (ue)) and partition C into the sets
C,={yeC: |mfﬁp\,5/(7)| € I,} for 0 < s <3+ logye 2Ay.
Notice that {Cs : 0 < s < 3+ log, e 2A;} covers C since

sup [gd .o (V)] < sup [gdfr.s (V)] < [lgllzee sy 50 < 20 f 12 (e

and

inf |gdfr,y (7)] > 272 A7 f | oo (e
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so that (4.2.7) may be rewritten to yield

3+logy e 2Ay

> S 19dBrs (DT 2 27 3

vECs

Writing S" := {s € Ny : 2° < 3 +log,e 2A;} and S” := {s € Ny :

3+ logy e 2A;} it follows that either

Y2720 gdBra NIFMN] = 272 f I e

ses’! v€ECs

or

S S 19dBrs NG = 2726 3 -

seS" veCs

By the pigeonhole principle there is some s for which

N e ey

1+ 10g 6_1Af

S~ lgdBry()I[G()] >

~€ECs

if 2° > 3+ log, e 2A;

e 2| 12
—_— 6 o0
S |gdBrs (IIG()] > —— )

if 2° < 3+ logy e 2A;.

25
v€ECs
l.e. there is some s such that
—— N1 f117
> lgdBra (NG| > — o)

= min{2s, 1+ loge 1A}

Since |gdBrs (V)] < 277V fllwue) if 7 € Cs we get

N 2%¢ 00
Z G(7)| > — - [R41F? ui)l .
min{2%,1 4 loge 1A}

vy€ECs

Now

Co € {7+ 1gdBos ()] = @1l g5, ) 25000 -
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and g € A(G) so we may apply Proposition 2.3.4 to get a set of characters
A and a ¢” regular for I' U A such that

CsC{y:|1—7()| <nforallze BTUA,)}.
Moreover |A| satisfies

Al < 2l ey 912 (81 5y (1 + og gl acen 191 2 s, )
< 2| Fll oo (e 911 o0 (5 ) (1 + log2||f||A(G)||9||Zic(ﬁr,y))

since [|g]la@) < 2l flla@), so
AL <€ 2l o 9l 5 (1 + 108 24 L1972 s, )
So, writing X for HfHZio(ﬂG)||9HL°°(BF,5/) we have
Al < 2°X (1 +1og2A; X1,

but [|g]|ze(a. ;) < 2| fllzoo(ue) 50 X < 2 and therefore

Br.s

Al < 2° sup X'(1+41log2A4;X' ™) < 2°(1 +log Ay).
X'€(0,2]

Furthermore §” satisfies

& > 2‘28Hf\|2mo(uc)HgHZi(BM,)W/d?(l + log HQHA(G)HgI!Zolo(ﬁM,))
> 2728”f”%°°(uc)775//d2HgH,%l(G)
> AL e o190 Py y since 27 < 2]
> 64A]7477(5//d2 since Hg”A(G) < 2HfHA(G)-
The lemma follows. O

We are now in a position to iterate this lemma.

Proof of Theorem 4.2.7. Fix n to be optimized at the end of the argument.

We construct a sequence of regular Bohr sets B(I'y,dy) iteratively using
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Lemma 4.2.14. Put
Lr:={y:|1—=7(x)| <nforal xe BTy, )}

and

di =Ty and Ly == > |f(7)].

YEL
We initialize the iteration with I'y := {0z} and dy > 1 regular for Iy, chosen
so by Proposition 2.2.2.

Suppose that we are at stage k. Apply the iteration lemma (Lemma
4.2.14) to f and the regular Bohr set B(I'y,dy). If we are in the first case
terminate with the desired conclusion; if not then we get a set of characters
A, ad” € (0,1] and an integer s. Let I'y1y = 'y U A, pick dpy1 € (67/2,0"]

regular for 'y, by Proposition 2.2.2; and let s;1; = s. We are given that
dk+1 —dp < 25k+1(1 + log Af) and 5k+1 > €5A;4n5k/di,

and furthermore

2541€%|| 1| oo (uer)

2(Lgy1 — L L '
(Lisa k) + 0Ly > min{2sk+1,1 + log C_lAf}

Since Ly < |[[f|la@) and s > 0 it follows that we can pick n > 63A]72
(independently of k) such that

251 €2| f | oo ()

Ly — L .
bt k> min{2s+1, 1+ loge 1A}

Hence by induction we have

k k

21 .
Li > € fllroe) Y (T log e AL and di < > 2% (1 +log Ay).
=1 ! =1
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Again since s, > 0 it follows that the iteration terminates. Hence we have

k
D 2 < Lie | fll g oy (1 log e P Ap) < €2 Ap(1 +log e Ay),
=1

since || f|la) = Lg. It follows that
dp < € 2Ap(1+1log Af)(1+loge ' Ay).
The bound on 7 and dj, gives us
041 > 61714}1551@,
and hence

logd,' < k(1+loge 'Ay)
k
2%k
< :
12:1: min{2, 1 +loge 1A}
< € 2Ap(1+1loge Ay).

(1+loge tAy)

The result follows. O

4.2.4 The proof of Theorem 3.1.1 and concluding re-
marks

Having proved Theorem 4.2.7 it is essentially a formality to carry out the

rest of the argument detailed in §4.2.1.

Proof of Theorem 3.1.1. Write G for Z/pZ and a := pug(A) = |A|/p. We
apply Theorem 4.2.7 to f = 14 with ¢ = 272a(1 — a). This gives a Bohr set
B(T', §) with

d <o [1alla@) (1 +log|[1alla@)?

and
log 0" < ||1alla) (1 +1og |14l ac)),
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and a narrower Bohr set B(T",d") with ¢’ >, ¢/d such that
sug ||1A * ﬁn(g — 1A * BF75($)||L0<>($+/5F’6/) < 2_2a(1 — CY)
xe

and
sup |14 — 1a % Brsll 2@ty ) < 27%a(1 — ). (4.2.8)

zeG
Suppose that pg(Br.s) > p~'. Then there is a non-zero y € B(T,¢’), and
such a y has the property that |14 x Ors(x +y) — 14 * frs(z)] < 272a(1 — «)
for all z € G. It follows that we may apply the discrete intermediate value
theorem (Proposition 4.2.5) to 14%/r s and conclude that there is some xz € G
such that
114 Brs(z) —al <27%(1 — a).

Furthermore (4.2.8) ensures that there is some 2’ €  + B(I', §') such that
[1a(2") — 1% Brs()| < 27%(1 — ).
Since [14(2") — af is at most
[1a(z") = 1o Brs(a’)] 4+ |1a * Brs(z’) — 1a * Brs(z)| + |14 % frs(x) — af

by the triangle inequality, we conclude that it is at most a(l — «). This
contradicts the fact that 14(2’) € {0,1}, and hence ug(B(T,d)) < p '
Lemma 2.2.1 then lets us infer that d(1 + logd’~') > logp from which, on

inserting the bounds on d and ¢’, the result follows. ]

In [GKO09] Green and Konyagin essentially prove a version of Theorem
4.2.7 with different bounds:

Theorem 4.2.15. Suppose that G is a finite abelian group, f € A(G) and
e € (0,1]. Write Ay for the quantity ||f||A(G)||f||Z°10(uG)' Then there is a Bohr
set B(T',0) with

I <« e_zAfc and log ™' < e T Af(1 +loge T Ay),
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and a narrower Bohr set B(T',0") with &' > €d/d such that
sup 1f * Brs — f* Brs(@)|| 1oo@rpr 5 < €llf oo (ue)
Te

and

sup 1f = f * Brollz@+se 5) < €llf 2o ue)-

The crucial difference between our proof of Theorem 4.2.7 and their proof
of Theorem 4.2.15 is that in their iteration lemma they find only a few char-
acters at which fis large, whereas we find all characters at which fis large.
Their approach leads to superior bounds in the basic version of their argu-
ment, however it prevents them from using a tool such as Proposition 2.3.4,
which is where our argument gains its edge.

In both our argument and the argument of Green and Konyagin the width
of the Bohr set which one eventually finds narrows exponentially with the
number of times one has to use the (appropriate) iteration lemma. Green
and Konyagin employ a neat trick to reduce this — the natural version of their
argument has log 6~ < e ?A7(1 + loge ' Ay) — which leads to the superior
e-dependence for logd~! in Theorem 4.2.15. It is possible to add their trick
to our argument and hence improve the e-dependence of log ! in Theorem
4.2.7 too, however this would have no effect on our application.

Finally it would be interesting to know what the true bounds in Theorem
4.2.7 should be. As far as the model analogue, Theorem 4.2.8, is concerned

it would probably be surprising if one could beat the following.

Conjecture 4.2.16. Suppose that G =F3, f € A(G) and € € (0,1]. Write
Ay for the quantity ||f||A(G)||f||ZiO(MG). Then there is a subspace V' of G with

codimV <« e’QAf,

and

S}é% Hf - f(x/)HLQ(w”ruv) < €||f||LOO(HG)‘

It is, however, not clear what an argument giving this might provide in

the general setting. If the argument is iterative in the style of this paper
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then to provide an improvement in the exponent of logp in Theorem 3.1.1

one would require some way of cutting down the number of times we iterate.

4.3 Finite abelian groups

In this section we prove Theorem 4.10 which we recall now for convenience.

Theorem (Theorem 4.10). Suppose that G is a finite abelian group. Sup-
pose that A C G has density o and for all V < G with V| < M we have
{a|V]}1 = {a|V|}) > 1. Then

[1al[a(@) > logloglog M.

The proof is a combination of the work of the previous two sections with
an extra ingredient. In §4.3.1 we prove the main Fourier argument and then
in §4.3.2 establish some appropriate physical space estimates. These are
analogues of the discrete intermediate value theorem (Proposition 4.2.5) and
Lemma 4.1.8 for arbitrary finite abelian groups. However, some extra work
needs to be done to ensure the stronger conditions we require in §4.3.1. This
work involves a pigeonhole argument and some structural information from

the geometry of numbers. In §4.3.3 we complete the proof of Theorem 4.10.

4.3.1 An iteration argument in Fourier space

The main result of this section takes physical space information about a set
A C G and converts it into Fourier information. The lemma is a sort of

‘local” version of Lemma 4.1.6 with two main modifications:

e We have to assume the comparability of the local L?-norm squared and
local L'-norm; ensuring this hypothesis is the principal extra compli-
cation of §4.3.2.

e We are less careful in our analysis because the physical space estimates
available to us in the general setting are sufficiently weak as to render

any more care irrelevant.
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Lemma 4.3.1 (Iteration lemma). Suppose that G is a finite abelian group,
B(T', ) is a Bohr set and B(T',0") is a reqular Bohr set. Suppose that A C G
and write f := 14 — 14 * Brs. Suppose, additionally, that

11725 gy = N8 gy amd (1 £ T2sy, ) > O-

Suppose that € € (0,1] is a parameter. Then either ||14]|aq) > € or there
is a set of characters A and a regular Bohr set B(I' U A, ") such that

A< €21+ log | fllz2(5,,0) " and 8" > 86 JdP(1 +og | Fll ks, ).

where, as usual, d :=|T'|, and

leA ‘>>1

~YEN\O

where O = {7y : |1—7y(x)| < € for allz € B(T',0)} and N := { : |1—7(z)| <
€ for allx € BT UA,J")}.

Proof. By Plancherel’s Theorem we have

S F ) FaBrs (1) = 1112 (4.3.1)

'yGG

Write
L:={y:|fdBrs (M| = €llf g0}

and suppose that

S T FaBra (1) = 1 1Base /2 (43.2)

vEL

Note that

[ fllay = 114 = La* Brsllac) < [lallae) + 114 * Brsllae) < 2[1alla@
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whence

Z NfdBrs (7)< el fller el fllae

ZL
< 2¢|Lall a1 f 1z sy )

< elllalla@ 1 Iz2 s, -

If (4.3.2) holds then the left hand side of this is at least HfH%Q(ﬁr /2 and so
(dividing by HfHL?(B }) we conclude that [[14[[a) > €

Thus we may suppose that (4.3.2) is not true and therefore, by (4.3.1),
that

S F3) FdBra(7) > || fl1Z2s, /2

YyEL

By Proposition 2.3.3 there is a set of characters A and a " (regular for TUA
by Proposition 2.2.2), with

A< 21+ log £l 725, ) 1 s ) < €20+ log £l s, )

and

0" > 81 & (14 10g | FII (s, | 206 ) > '€/ (1 + Mog 1S s, ):
such that
LC{y:|1—7(x) <eforallz e BT UA,§)}=N.

Since £ C N we have

Z F() FdBrs ()] > HfH%?(ﬁw,)/Q-

~yeEN

Now
[FdBrs (N < I fllasr g < 12250 )
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hence
lf(y)] > 1. (4.3.3)
~yeN
Finally suppose that
N 1 N
Sl = 3 S (4.3.4)
€0 yeN

By the definition of O we have

ST = ST~ Brs()]

~veO veO

< |[Lallaysup |1 = Brs(7)] < €l|Lalla)-
yeO

It follows that if (4.3.4) holds then, in view of (4.3.3), ||1alag) > €' Thus

we may assume it does not and hence that

> >t
~YEN\O
Noting that | f(v)| < 2/14(7)| completes the proof. O

4.3.2 Physical space estimates

The objective of this section is to prove the following result.

Proposition 4.3.2. Suppose that G is a finite abelian group and B(I',0) is
a regular Bohr set in G. Suppose that A C G has density a and for all finite
V < G with |V]| < M we have {a|V[}(1 = {a|V|}) > 1. Then either

log M < d(log ™" + dlog d)
or there is an x" € G and reals §' and ", both reqular for I", with 0’ < 4,

log 06’ ! < dlogd and log "' < d(logé* + dlog d)
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such that
114 = La* BrollTa@ripy ) < 114 = Lax Brllriorr gy o (4.3.5)
and
log ||1A — 1A * ﬁp75/||z22(x,,+5r ) < d(lOg 6_1 + dlog d) (436)

Of the two parts (4.3.5) and (4.3.6) the second is the easiest to derive and
comes essentially from a straightforward generalization of the physical space
estimates of §4.1 and the discrete intermediate value theorem (Proposition
4.2.5). First we record an appropriate version of the intermediate value

theorem.

Lemma 4.3.3 (Discrete intermediate value theorem). Suppose that G is a

finite abelian group and that B is a subset of G. Suppose that g : G — R has

sup l9(z) — g(y)| < n. (4.3.7)

Suppose that o, r1 € G have xg—x1 € B++. Then for any c € [g(xo), g(z1)],

there is an xo € G such that

lg(22) — | <

N3

Proof. We write H for the group, B+, generated by B and define
- . n
ST i={r €+ H:g(x) <c—§}

and
St={rex + H: g >c+g}.

If the conclusion of the lemma is false then S := {S7, 5"} is a partition of
To + H.

By the continuity hypothesis (4.3.7) we have that if z € S~ and y € B
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then

n
9z +y) —g(@)| <n=g(z+y) <c+3.

It follows that x +y € ST and since S is a partition of 2o + H we conclude
that = +y € S~. We have shown that S™ =S5~ + H.

Now g(z¢) < ¢ < g(x1) and S is a partition of xq + H, whence zq € S~
and z; € ST. However S~ = S~ + H, whence S~ = 2o+ H and so z; € S™.
This contradicts the fact that S~ and ST are disjoint and so proves the

lemma. L]

The following is a slightly simpler proof of Lemma 4.1.8 in the general

setting which gives worse (although functionally equivalent) bounds.

Lemma 4.3.4. Suppose that G is a finite abelian group. Suppose that f €
L*(ug) maps G into [0,1] and that V < G has

A2 ue VI = {2 [V ]3) > 1

Then there is a coset x' + V* with
[ () > pe(VE) and (1= f) s (&) > (V4.
Proof. f * puy,. is constant on cosets of V+ so we define

1 if fxpp(z)>1/2

0 otherwise.

g(z) ==

Since ¢ is integral on cosets of V' there is some integer n such that

/gd/m = nuc(V*).
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However
mmwﬂ—mmwn=|/mM—/mM|

\/gduc—/f*uwducl

/ lg — [ * pye|dpc

supmind f sy (), 1= 4 - (2)}

= Sup min{ f * puy2 (2), (1 = f) * pye(2) .

/N

/A

Now

npc(VE) = 1 fllee) = eV D)= VIl o)
> (VO lVIHE = {2 uey V1)
> MG(V )7

}_

and the conclusion of the lemma follows. ]

The next lemma is the extra ingredient necessary for dealing with the

general case.

Lemma 4.3.5. Suppose that G is a finite abelian group and B(T',J) is a
Bohr set in G. Then there are reals &' and 6" both reqular for T' with §' < 6,

log 60" ' < dlogd and §" > ¢'/d

such that
BT, &) = B(T,0")*

and
[f# Bror — [ Brs (@) | oo (ot gy < | floo/4

forallz € G and f € L™(uq).

Proof. We define a sequence (¢;); iteratively and write
B; = Pre, and H; := B(I',§;)"".
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To begin with we apply Proposition 2.2.2 to get some dy regular for I' with
0 = 0o > 6. Now, if we have constructed ¢; for some ¢ > 0, we apply Corollary
2.2.5 (and Proposition 2.2.2) to get a d;41 regular for I with §; > 6;11 > §;/d

and
1f* B — f* Bi(@) | @rprs,. ) < N lz(ue) /4

for all z € G and f € L>®(ug). We are done if we can show that there is

i+1

some ¢ < d such that H; = H,; ;. This follows by the pigeon-hole principle

from the following claim.

Claim. Suppose that ko € (0,1]. Then there is a sequence of elements
X1, ...,xq € G such that for each k € (Ko, 1] there is some 0 < i < d such that

BT, k) = {zy, ..,z )+ ﬂ ker .
yel’

Proof. The proof of the claim is based on ideas from the geometry of num-
bers introduced to the area by Ruzsa in [Ruz96|; [GRO7]| contains a neat
exposition. By quotienting we may assume that () . kery = {0g}.

Let ¢ : G — T% x +— (7())ser and define the lattice £ := |J ¢(G) < R<.
Since (), cp kery = {Og} there is a natural homomorphism 1 : £ — G which
takes b € £ to the unique x € G such that ¢(x) = b+ Z¢, with kernel Z.

We write @ for the unit cube centered at the origin in R? and note that
Y(kQ) = B(T',k). We choose linearly independent vectors by,...,by € L

inductively so that
1]l oo < Inf{A : AQ N L contains 7 linearly independent vectors}.

Let z; = v(b;). Since ¢ is a homomorphism we have B(T, k) = ¢ ((kQ)*),
but to each k € (0, 1] there corresponds an 1 < i < d such that k@) contains
at most ¢ linearly independent vectors and k() contains by,...,b;. Hence
(kQ)*t = {by,...,b; }*+. Again, the fact that ¢ is a homomorphism gives the
result. ]

]
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Proof of Proposition 4.3.2. Applying Lemma 4.3.5 we get reals ¢’ < ¢ and
0" both regular for I with

log 66! < dlogd and 6" > §'/d

such that
B(I, &)t =BT, 8" =V,
and
HlA * Bp,y — lA * 61",5’(‘%‘)”L°°(Z+ﬁn(;m) < 1/4 fOI‘ all x - G (438)
Now

V™ = ue(V?) 2 ne(B(T, ) = (8)% (4.3.9)

the last inequality by Lemma 2.2.1. If M < |V then we are in the first case
of the lemma. Otherwise by hypothesis {a|V|}(1 — {a|V]|}) > 1. If we put
[ =1a%pprs then || f| 11y = o and f maps G into [0, 1] whence, by Lemma
4.3.4, there is some x" € G such that

La* PBrg * pye(z™) > pig(V*) and (1—14 % Br) * py () > p(V*).
(4.3.10)

The argument now splits into three cases.

(i). There are elements g,z € o + V* such that 14 % Brs(xe) = 1/2
and 14 * Bry(x1) < 1/2. Here g — 2y € V+ = B(T,8"”)*, so by
the discrete intermediate value theorem (Lemma 4.3.3) and (4.3.8) we

conclude that there is some z5 € 2" + V- such that

w

< 1ax* Bre(r) <

co| ot

8
Further by (4.3.8) we conclude that

for all z € zo + B(T',48").

ool

1
3 <la*fBre(r) <
Since 14 only takes values in {0, 1} it follows that |14 — 14 % frs| <1
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on xg + B(I',6"). Thus

114 = 1a % Bro T2 (oas gy gy < G (B(T,8")),

and

”1A - 1A * 6F,5/"L1(Z‘2+BF,5///) = /J/G(B<F7 5///))'

The result follows on putting §” = §”’; Lemma 2.2.1 then gives (4.3.6).

i). 1a% Bro(x) < 1/2 for all z € 2" + V*+. Suppose that 6” < ¢. Then

B(T',¢") C B(T',¢") so we have B(T',6")*+ C B(T,¢')*+, whence f, 5 *

fyL = fyr = PBrg * pyr. Thus we define
o =14 % By * pyr (") =14 % 5/r,5/ * oy (),

which has

o > pe(V>) = (6)9)71> 0
by (4.3.10) and (4.3.9). By Corollary 2.2.5 we can pick a §” (regular
for T' by Proposition 2.2.2) with ¢ > §” > §'a’/d such that

114 = 1a * Bro (@) || Lo @ty ) < o for all x € G. (4.3.11)

We write
L= {ZL‘ S 2" + VL : 1A * 6}75/($) = O//Q}

and note that

| LB @i (2 1) < sup L (o) < /2,
L zZL

SO
R N B
rel
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If 14 % Bp g5 (7) # 0 then 14  Br 5 () # 0, whence

La * B 5 ()
o2 < / 14 % Bp.g (z) 2082
/ wer, B )1A*5r,6/(50)

< o' sup M
= vel lax fro(x)’

dpy . (2" — )

Dividing by o (which we have previously observed is positive) we con-
clude that there is some z” € L such that

La* Bp g (2”) = 1a % Brs(2”) /4.

If v € An(a” + B(T',d")) then |14(z) — 14 * fro(x)] < 1 since 14 *
Brs(x) < 1/2 by the hypothesis of this case. If z € A°N (2" 4 B(I", "))
then

[La(@) = La* Bry(@)| < [Lax*fry(2)] < 1axPre(a”) +0() = O(d),
where the second inequality is a result of (4.3.11). It follows that
||]-A — 1A * /8F76/||L1($”+ﬁ1"’5”) > ]-A * ﬁrjé//(gj'//)’

and

114 = La* Brollmi@rise,m < Oaxfre(a”)) +O(a))
= O(la* Bre(z"))

since 14 * frgv(2") > o since 2” € L. Similarly we have
||1A - 1A * BF75/||%2($N+51“,5//) >> ].A * BF75//(1‘//)’
and

114 = 1a* Brolltowr s, < Ola* Bra(a”)) +O()
= O(la* s (z")).
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It follows that

114 = La* Brolli@ripn gm < 114 — 1a* 5r,5'||%2(x~+,3m,,),

and

HlA - 1A * BF’J/H%%IH‘Fﬁr,(sH) > O/.

(iii). 14 * Bre(z) = 1/2 for all x € ™ + V*+. This follows by replacing A

by A€ in the previous case.

The proof is complete. O

4.3.3 Proof of Theorem 4.10

Proof of Theorem 4.10. In what follows it is convenient to let C' > 0 denote
an absolute constant which may vary from instance to instance.

Fix € € (0, 1] to be optimized later. We define three sequences (0x)x, (0}, )k
and (97)y of reals, one sequence (zy)x, of elements of G, and one sequence (I'y)y

of sets of characters inductively. We write

Br = Bry s By := Bry.s, and By = Br, s,
as well as dj, := |['y| and
Lip:={y:|1—=v(x)| <eforall z € B(T'y, )}
We shall ensure the following properties.
(i). B(I'g,0x), B(I'k, ;) and B(I'y,d}) are regular;
(ii).

HlA - 1A * BkH%z(aEk—&-ﬂrk’%) = HlA —lax ﬁl@“Ll(IkJrﬁFk’%/);

d 2
[Ta—1a* 512”%2(%%%5;!) > 83t/ (Cdp)™;
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(iv).

0k = 0 > 0/ (Cdi)™ and 6 > 6 > 0T /(Cdy,) ittt

dk+1 < Eizdk(lOg (5];1 + dk lOg dk),

O = ey > 00 (Cdy ) Bt 0 Jog 6.1

S L) > L

YELE 41\ Lk

We initialize the iteration with I'y = {0s}. Pick & > 1 regular for
Iy by Proposition 2.2.2. Apply Proposition 4.3.2 (assuming that we have
ob(Cdy)¥ < M) to get xo &, and & satisfying properties (i),(ii),(iii) and
(iv). By translating A by —zy, if necessary, we can apply Lemma 4.3.1
(assuming that we do not have ||14]/4) > € ') to get T’y and d; such that
properties (v), (vi) and (vii) are satisfied.

Given I'y and d; we can proceed as we just have (assuming that we have
6,?"‘(C'dk)di < M) to generate xy, 0y, 0y, dpr1 and I'giq.

By property (vii) (and the leftmost inequality in (vi)) we have |14 4(c) >
k, so either |14 a) > €', or the iteration terminates with k& < e '.

(v) and (vi) imply
drpi1 < e 2d, log (5,;1 and log 6,;; < di log 5,;1 + log el
whence
diy1 < € %dylog 6, " and € log 5,;&1 < € %dylog 5}t

Ck
It follows that dj1 < di and so dj, < 229" and 6, > 22° . For the iteration
to terminate we must have M < 5gk(0dk)di; for this to happen for some
k < e we need exp(exp(exp(Ce™1))) = M. The result follows. O
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4.4 A quantitative version of the idempotent

theorem

In this section we shall prove Theorem 4.12 which we recall now for conve-

nience. This work is from the joint paper [GSO8b] of Green and the author.

Theorem (Theorem 4.12). Suppose that A C G. Then there is an integer
L < exp(exp(O(1 + || 1allae))?)) such that

L
Iy = E 0ile;qm;
j=1

where 0; € {—1,1}, z; € G and H; < G for each j € {1,...,L}.

In our arguments we are, in fact, forced to work with a wider class of
functions than simply boolean functions; we consider all functions which
only take values close to integers. Suppose that f: G — R. We write fz for
the function G — 7Z defined by

[f@)] i [f(2)] = flz) < 1/2

fz(l’) = '
| f(x)] otherwise.

We say that f is e-almost integer valued if || f — fz|| Lo (ug) < €. In words this
just means that f(x) is always within € of an integer.

It turns out that what is important in Theorem 4.12 is that we can par-
tition the codomain of 1, into well separated sets. In general if we have a
function f € A(G) which is e-almost integer valued for sufficiently small e,

then we can describe the structure of the sets
L,={zeG:|f(x)—z2|<e}={2€G: fz(x) =z}

for any z € Z. By and large they will be empty, but they will always be
elements of the coset ring. The following theorem is a precise statement of

this and yields Theorem 4.12 immediately.
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Theorem 4.4.1. There is an absolute constant C > 0 such that if f € A(G)
has real range and is e-almost integer valued for some ¢ < exp(—C(1 +
| flla))?), then there is an integer L < exp(exp(O(1+ || f]la))*)) such that

L
fZ: § O-j]-l’j—l—Hj?
J=1

where 0; € {—1,1}, z; € G and H; < G for each j € {1, ..., L}.

The proof involves a number of the techniques which we have developed
already. First, in §4.4.1, we introduce the notion of arithmetic connected-
ness and combine it with some of the work of §3.2 to show how arithmetic
connectedness implies large inner product with a Bourgain system. In §4.4.2
we show how we can pass from information about the algebra norm to the
arithmetic connectedness condition, before proving a quantitative continuity
result in §4.4.3. We conclude by showing that combining these sections leads
to concentration on a coset and hence prove the theorem inductively. §4.4.5

includes this proof and some concluding remarks are presented in §4.4.6.

4.4.1 Arithmetic connectedness

In his, by now, well-known work on Szemerédi’s theorem Gowers ([Gow98])
introduced the following strong quantitative version of the Balog-Szemerédi

theorem.

Proposition 4.4.2. (Balog-Szemerédi-Gowers Theorem [Gow98, Proposi-
tion 12]). Suppose that A is a subset of G with at least 5|A|* quadruples
(a1, as,as,a4) € A* such that a; + ay = az + ayg. Then there is a set A’ C A
with |A’| = §°W|A| such that |A' + A’| < §°W|A4').

Combining this with Proposition 3.2.2 immediately yields the following

result.

Proposition 4.4.3. Suppose that A is a subset of G with at least §|A|?

quadruples (ay,as,as,aq) € At such that a; + ay = asz + a4. Then there is a
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regular Bourgain system B of dimension O(6~°W) with
By| = exp(—O(6 D)) |A| and |14 % Br|| ooy > 670

Recall that we call a quadruple (1, To, 73, 24) € G* an additive quadruple
if 21 + 29 = 23 + 24.

To leverage this result we have to convert control of the algebra norm
into bounds on the number of additive quadruples; doing this involves the

introduction of the concept of ‘arithmetic connectedness’.

Definition (Arithmetic connectedness). Suppose A is a subset of G with
0 ¢ A and m is a natural number. We say that A is m-arithmetically

connected if, for any set A’ C A with |A’| = m we have either
(i). A’ is not dissociated or
(ii). A’ 1is dissociated but there is some x € A\ A" with x € (A).

A typical example of an arithmetically connected set is a union of a
few cosets. Indeed, the next proposition shows that if A is arithmetically
connected then it intersects a large Bourgain system.

The reason for the definition, however, only becomes apparent in the
proof of Proposition 4.4.6. Suppose that A C G and |[14]|aq) < M. Then
it is easy to deduce from Holder’s Inequality and Parseval’s Theorem that A
contains at least |A|>/M? additive quadruples. Hence by Proposition 4.4.3
A intersects a large Bourgain system. However, as we have already noted we
can’t simply deal with sets, we have to deal with the more general almost in-
teger valued functions. Doing so naturally leads to the concept of arithmetic

connectedness in the proof of Proposition 4.4.6.

Proposition 4.4.4. Suppose A is an m-arithmetically connected subset of
G and m is a natural number. Then there is a regular Bourgain system B of

dimension exp(O(m)) and with
pia(B) = exp(—exp(O(m)))pua(A) and [[1a * b1 Lo ) = exp(=0O(m)).
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Proof. By Proposition 4.4.3, it suffices to prove that an m-arithmetically
connected set A has at least exp(—O(m))|AJ]® additive quadruples. If |A| <
m? this result is trivial, so we may assume that |A| > m?. Pick any m-tuple
(a1, ..., an) of distinct elements of A. With the stipulated lower bound on |A|,
there are at least |A|™/2 such m-tuples. We know that either the elements
ai, ..., a,, are not dissociated, or else there is a further a’ € A such that a’
lies in the span of the a;s. In either situation there is some non-trivial linear
relation
Aar + -+ At + Nd' =0

where X := (A, ..., Am, N) has elements in {—1,0,1} and, since 0 ¢ A
and the a;s (and ) are distinct, at least three of the components of X are
nonzero. By the pigeonhole principle, it follows that there is some X such

that the linear equation
MT1+ oo+ AT + N2 =0

has at least 2713~ (™+1)| A|™ solutions with zy, ..., 2,2’ € A. Removing the
zero coefficients, we may thus assert that there are some non-negative integers

r1,72, 3 <1y +1ry < m—+ 1, such that the equation
1+ i+ Ty —Y1— . — Y, =0

has at least (6m?)~137™|A["*T271 > exp(—O(m))|A|"* "2~ solutions with
Tl ooy Ty s Y1y ooy Yy € A.

We may deduce directly from this the claim that there are at least
exp(—O(m))|A]® additive quadruples in A. To do this observe that what

we have shown may be recast in the form

Low s Taxlog e 1a(0) > exp(=O(m)I LAl

where there are r; copies of 14 and ro copies of 1_4.
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Applying the inversion formula gives
ITall ) = D Ta) " Ta(7)™ > exp(=O(m))[[Lal 7"
VGG

By Holder’s inequality this implies that

ITallfsa ||1A|!Z%I’fg?ff4(@) > exp(=O(m))|[1all 72 (4.4.1)

However if k is an integer then |[14|2% . |G|'7?* times the number of

gZIc

solutions to a3 + ... + a, = a} + ... + a; With a;,a; € A, and this latter
quantity is clearly at most |A|2k_1. Thus

1-1/2k
< alli

HlAHpk L'(ug)"

Setting k = 11 + ro — 2 and substituting into (4.4.1), we immediately obtain

[Tallt, ) > ep(~00m) [Lal[21 .

which is equivalent to the result we claimed about the number of additive

quadruples in A. m

4.4.2 Concentration on a Bourgain system

We now combine the previous two sections to produce a concentration of

mass on a Bourgain system.

Proposition 4.4.5. Suppose that [ € A(G) is exp(—2°(1+]| f|| a))*)-almost
integer valued and has real range. Then there is a regular Bourgain system
B of dimension exp(O(1 + || f|la))*) with

pa(B) = exp(—exp(O(L + [|fll.a@) ) I fzll 2 guer

such that
£ * Bill L (ue) = exp(—=O(1 + || flla)")-
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The proof of this splits into two parts. It is easier to prove the result
with the additional assumption that f is non-negative, so to begin with we
prove the following proposition. A technical lemma will then complete the

argument.

Proposition 4.4.6. Suppose that f € A(G) has f =0 and || f — fz|| L (ue) <
exp(—2*(1 + || fllae))?). Then there is a reqular Bourgain system B of di-
mension exp(O(1 + || fl a))?) with

1 (B) = exp(—exp(O(1+ || flla@) DIzl ()

and
1f * Bill L (ue) = exp(—=O(L + || flla@))?)-

Proof. Write A := supp(fz), and m = [13(1+|| f||a))?]- If A = G we take
B to be the regular Bourgain system with all balls equal to G and the result

is trivial since
f(x)>1—exp(—2*Y) >1/2forallz € G.

Otherwise, by subjecting f to a suitable translation, we may assume that
0 ¢ A. We claim that A is m-arithmetically connected. If this is not the
case then there are dissociated elements aq,...,a,, € A such that there is
no further = € A lying in the span (ay, ..., a,,). Consider the function p(x)

defined in terms of its Fourier transform by

P =TT + 5@ + (@)

i=1

Note that p is a Riesz product and, recalling §2.1.3 if necessary, we see that

Ipllae) =1 and suppp C (ay, ..., ap,). Thus we have

Ifplla) < IfllallPllac) = 11fllae)
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and

I(f = fz)plla < Z \(f = fz)pLliay || ace)
TE(A1,..,am)

< 3" f = falleeoquey < 1

It follows, by the triangle inequality, that ||fzp|lac) < 1+ ||f|la@). Now

since AN (ay,...,an) = (a1, ..., a,) we have

(fzp)(x :EE:: fz(ai)p(ai)lq, ().

Again recalling from §2.1.3 if necessary we have

SO

and

. 1
1fzplliaa = P ) Hfz a; )p(ai, )

11,492,134
Qi1+ =03 +az4

3 il 2 2 3 — 4
@(Z falap(a)l®)” < Gl Fepllig,

VAN

the middle inequality following from the fact that a;, + a;, = a;, + a;, only if
’il = ig,’ig = i4 or il = i4, iz = i3 or ’il = ig,’ig = i4. From Holder’s inequality

we thus obtain

HfZPHz? 1o

||prHA(G) 12

‘|fzp||g4(g)

Recalling our choice of m, we see that this contradicts the upper bound
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| fzpllaey < 14 || fllae) we obtained earlier.
This proves our claim that A is [13(1 + || f]|a())?] -arithmetically con-
nected. It follows from Proposition 4.4.4 that there is a regular Bourgain

system B of dimension exp(O(1 + || f]| ae))?) with

11 (B) = exp(—exp(O(1 + || flla@)?)) na(A)

and
114 % B Lo (ug) = exp(—O + || fll ae))?)-

Since ||l < [1flLace) and A = supp(f)z we get

11(B) = exp(—exp(O(1 + || flla@) ) fzll L1 (ues):

and non-negativity of f yields

1f * Bill e uay = exp(=O(L + || flla))?).
]

The following technical lemma is essentially a standard L°°-density incre-

ment argument in disguise.

Lemma 4.4.7. Suppose that B is a reqular Bourgain system of dimension d
and f € A(G) has || f||L2s) = 1. Then there is a regular Bourgain system
B' of dimension d' < 2d + 4 with

oll) > (51, ))O(d)w)

21+ [ fllae

and
1f * Bill 2o (uery > 17/ fll ace)

Proof. We can apply Plancherel’s Theorem to get

S FFAB () = 1By = 7

"/EG
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The triangle inequality then tells us that

sup| [ F(y)v(y)dbi(y)| = sup [FdB ()] = n*/11 fllacc)-

Ve€G yeG

Let " € G be a character for which the leftmost maximum is attained. Now

[1=7"(@)] < V21 = cos(4my"(x))) < dal|y" (x)]].
Thus if pg = n?/127(1 + || f|la(c))?, then
1= 9" (@) <n*/3(1+ [Iflla)” for all z € B({y"}, po)-

Pick p; with
p1 = /d(L+ || flla)?,

so that

I+ B1) = Bull < 0*/3(1+ [ fllag)” for all @ € B,

by Lemma 2.4.6. Pick A € [1/2,1) such that B = A(p1 BN (B({~"}, pod))s)
is regular by Proposition 2.4.5. Now

[1=2"(@) <7*/3(1+ [|flla)” for all z € By,

and
181 % B, — Ball < n?/3(1 + ||fHA(G))27

by Lemma 2.4.6. In view of this last bound and the fact || f{| Lo () < ||l a)

we have

|/f(u+z)W"(U)dﬂi(U)Wﬂ(if)dﬁl(l”)| = I/f(y)v”(y)dﬂl*@i(y)l
> 20° /3| fllacey,
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by the triangle inequality. The first (again with || f|| zeo(ue) < || fllaq)) vields

| [ 218w @ @) > 7 31 Lo
This leads to the conclusion of the lemma; Lemma 2.4.4 yields the appropriate

bounds. O

Proof of Proposition 4.4.5. Note that || f?||a) < [[f[%q), and

12 = il neue) < @l la) + DI = fzllpeue) < exp(=24(1 + || )l a))-

It follows that we may apply Proposition 4.4.6 to get a regular Bourgain
system B’ of dimension exp(O(1 + || f|| a())*) such that

pe(B') = exp(—exp(O(L + || flla@) DIFZN 1 (e

and
172 % Bl Lo ey = exp(=O(1 + || flla))?)-

Now by translation we way assume that the maximum on the left is attained
at = Og, and hence apply Lemma 4.4.7 to conclude that there is a regular

Bourgain system with the required properties. O

4.4.3 Continuity relative to a Bourgain system

The main result of this section states that if we are given a Bourgain system
B and a function f then we can refine it to a system B’ on which f is
‘quantitatively continuous’ in the sense of §4.2. The specific dependencies of
the result are rather unimportant and could be improved by including the

techniques of §4.2.

Proposition 4.4.8. Suppose that B is a reqular Bourgain system of dimen-
sion d. Suppose that f € A(G) and € € (0,1] is a parameter. Then there is a
reqular Bourgain system B' of dimension d < d+ O(e (1 + | f|lae)))? with

pa(B') = exp(=0(e (1 + || flla))dlog(1 + d))) ua(B)
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and a p>>€/d(1+ || f|la@)) such that
sug ILf* B — f*Bu(x)| Lo (ars,) <€
xe

and

sup || f — f * Billz2@+s,) < €
el
The proof is an iteration of the following lemma.

Lemma 4.4.9 (Iteration lemma). Suppose that G is a finite abelian group
and B is a Bourgain system of dimension d. Suppose that f € A(G) and

e € (0,1] is a parameter. Then at least one of the following is true.

(i). (f is close to a continuous function) There is a p > €/d(1+ || f|la))
such that

sup If* B — f*Br(7)| po(ers,) <€
S

and

sup || f — f * il r2@+s,) < €
zeG

(ii). There is a p' > € /d*(1 + || flla)® and a Bourgain system B' of di-
mension 2 with B' N (p'B) regular and

pa(B) > /(1 + 1 flaw)?
such that

ST =BIFO) = /41l flla)

vyeL

where
£o={y: 1 =) < E/8(1+ |[flla)® for all v € BN By},

Proof. Apply Corollary 2.4.7 and Proposition 2.4.5 to pick p > €/d(1 +
| fllacc)) so that pB is regular and

sug |\f* B — fx* ﬁl(x)HLw(rwp) SE
S

134



4.4. A QUANTITATIVE IDEMPOTENT THEOREM

Either we are in the first case of the lemma or we may assume that there is

some x € G (without loss of generality equal to Og) such that

1f = Bill2(ess,) > €

Squaring both sides and applying Plancherel’s Theorem we get

e < ||f—f*51||%2(x+5p)
= S (-1 #B) N = * B)dB) ()

veG

< 2l flla sup [((f = f = B)dB,)" ()],

veG

by the triangle inequality and the fact that

If = f*Billaey < I flla) + IIf * Billaey < 2] flla)-

Rearranging we get

sup|((f — f* B1)dB,)" ()| = € /2[| | ae;

yeG

fix a 4" for which this maximum is attained and we get

SN = £ B0 B =) = €72 fll ae.

v'e@

Write £ = {y € G : |3,(7)] > /8] f|I%c) ), and note by the triangle
inequality that

ST = B OB =) < /4l Nl a)-

,yl g,yll_)'_ﬁl

It follows that

o = B0 D = /4 la)-

,\/le,yll_i_ﬁl
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Set n = €*/8(1 + || f|l ace))?. Since

1= ()] = v2(1 = cos(dn(ly(2)])) < 4n|ly(2)]

we have

(v} C{y € G: 1= ~(x)| < n/2 for all z € B({y"},1/8m)}.
Furthermore by Lemma 2.4.8 there is a £ > €2/d(1 + || f|| az))? such that
L ci{ve G:|1—~(z)| <n/2forallae B}

Pick A € [1/2,1) such that B” := ApknB N (B({y"},dn/8x))s) is regular.
Now set p' := Aprn and B’ := (B({~"}, Adon/87))s. The result follows since
pe((B({v}, Adn/8m))s) > n by Lemma 2.2.1. O

Proof of Proposition 4.4.8. We construct a sequence of regular Bourgain sys-

tems B iteratively. Write
Ly :={ye G- 11— ~(2)] < €/8(1+ ||flla))? for all z € Bfk)},

and

Ly = Z 1F ()]

YELE

Initially set B© = B. At stage k we apply the above iteration lemma, and
either we are in the first case, in which case we are done, or we are in the

second and get a regular Bourgain system B*#+1) := B'®) 1 (p’B*)) such that

S 1= BIIF = /4l flla.

YELK 41

It follows by the triangle inequality that

2(Lys1 — L) + €/8(1 + || fllae) = €/4 fllac)
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and so
L, > €2k/24‘|,4(g)

by induction. Since L, < | f|la), the iteration must terminate in stage
(i) after at most 2| f||% €2 steps. If the iteration terminates at stage k
then we set B’ := B®*) and note that it satisfies the required dimension and
density hypotheses by Lemma 2.4.4 as it is the intersection of k+ 1 Bourgain

systems. 0

4.4.4 Concentration on a subspace

In this section we prove the following proposition which combines all our

previous work.

Proposition 4.4.10. There is an absolute constant C' > 0 such that the
following holds. Suppose that f € A(G) has real range and is e-almost integer
valued for some € < exp(—C(1+ || flla))*). Then there is a subgroup K of
G with

pe () = exp(—e 7 exp(O(L + || flae) NIzl e

and
1 * picll oo uey = 1/2,

such that f * ug is 4e-almost integer valued.

Proof. Let C' > 0 be the absolute constant implicit in the last estimate of
Proposition 4.4.5. If

e <exp(—(C"+2°) (1 + || flla)?)

then we may apply Proposition 4.4.5 to get a regular Bourgain system B of
dimension exp(O(1 + || f]| ae))*) with

pa(B) = exp(—exp(O(L + || flla@) DSzl e

and
£ * Bill L (ue) = exp(—=C'(1 + || flla)?)-
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Apply Corollary 2.4.6 and Proposition 2.4.5 to pick a regular Bourgain sub-
system B’ of B with

pe(B') = exp(—e " exp(O(L + || fllae) DSzl 1 (e

such that
[(y + B1) — Bi]| < e for all y € By.

Apply Proposition 4.4.8 to f and the Bourgain system B’ with parameter e

to get a regular Bourgain subsystem B’ of dimension d” < e 2exp(O(1 +

1f1la))") with
pG(B") = exp(—e exp(O(L + || fllae) NI fzll 1 (e
and a p > eexp(—O(1 + || flla)*) such that
sup 1f * BY — f* B (@)oo wrpy) <€

and

sup [|f — f* By lr2@rpn) < €
ze€G

Let K := (B))**. Then
pa(K) = pluc(B") = exp(—e > exp(O(1 + || flla@) NI fzll 2 ue)-
Now write f” := f 3] and note that
[fz(x) = f(@)] = nf [z = (@) < |l fz = [ (@) |21y
But this last expression is at most
1z = fllo@rayy + I1f = o B 2@rpn) + 1f % 87 — f* B(2)] oo era,
which, in turn, is at most 3e.

Claim. f} is constant on cosets of K.
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Proof. Suppose that there are zo and x; with xy — 27 € K and f//(zg) <

7(x1). Since € < 1/6 there is a number z + 1/2 with z an integer and
[ 07 (z0) < fr(xo) +3e < z+1/2 < f7/(x1) — 3¢ < f = B (x1).
It follows from Lemma 4.3.3 that there is an z € xo + K such that
[f*Bi(z) = (z+1/2)| < €/2.

But fx*/}(x) is within 3¢ of an integer which is a contradiction since € < 1/7.
The claim follows. O

Now

N

|f = fzl* pxe ()
= |f = fzl = B+ pc(x)

1

< (If = 2P *B)) % * px (@)

|f* prc(x) — f7, % pc ()|

by the Cauchy-Schwarz inequality. Hence

1

|f * prc(2) = f7x pc(@)| < (If = F* B *5)) % * e ()
+(1f % 8] = f217 % 8) % * pc ()
< e

Since fJ is constant on coset of K we conclude that f/ * pux(z) = ff/(x) and

hence that f * g is 4e-almost integer valued.

Finally since B” is a subsystem of B’ we have

181 — B * 57| <,
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hence

1(f * pr)zlleee)y = 1fZlLe(ue)
> ||f * BY ] Lo (ue) — 3¢
= f * Billpeeue) — 4e.

Since 4e < exp(—C'(1 + || f|l ae))*) we conclude that ||(f * pir )z Lo (ue) > 0
and hence, since it is an integer, ||(f * ptx)z||Loo(ue) = 1. The result follows

since f * pg is 4de-almost integer valued and € < 1/8. O]

4.4.5 Proof of Theorem 4.12

We shall prove the result inductively using the following lemma.

Lemma 4.4.11 (Inductive Step). There is an absolute constant C' such that
if f € A(G) has real range and is e-almost integer valued for some € <

exp(—C(1+ || flla))?), then we may write f = fi + fo, where

(i). either || fillac) < [1fllae) — 1/2 or else

L
(fi)z = Z ==l PO e

Jj=1

where K < G and L < exp(exp(O(1 + ||f||A(G))4));'
(ii). | f2llae) < [ fllay —1/2 and
(1). f1 and fo are be-almost integer valued.
Proof. Applying Proposition 4.4.10 to f, we obtain a subgroup K with
pe(K) = exp(—e " exp(O(L + [ flla@) NI fzll 21 ue)

and

Lf* gl oo gy = 1/2.
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We define f; := f * ux and fy := f — f1, noting immediately that they are
both 5e-almost integer valued. It follows that || fil|a) = ||f1llrowe) = 1/2,
whence || fa|la) < || f]la@e) — 1/2, since

Ifllae) = IIf * pxlla) + I1f = F pllac) = Lfillae + 1240

It remains to deal with the possibility that | fil|a) > ||flla@ — 1/2. If
this is so then || fa|la) < 1/2, and thus || fol|eo(ug) < 1/2. It follows that

(f2)z = 0, and hence f7 = (f1)z, so we may write
L
fz = Z tls 4k
j=1

for some j = 1,..., L, where we may take L < || fz|lr1(ue)/ |1kl 2t (ue)- The

result follows. O]

Proof of Theorem 4.4.1. Let C’ be the absolute constant in Lemma 4.4.11.
For each k > 0 let ¢, := 5%¢. If g : G — C then we say that g has property

o Py(g, k) if g is e,-almost integer valued;

e Py(g) if there is a subgroup H, < G, an integer

Ly < exp(e” exp(O(1 + || flla)™)

and for each j with 1 < j < L, a sign aj(.g) € {—1,1} and an element
a:g-g) € G such that

Lg
_§ : (9) .
(g)Z_ ' 1Uj 1m§-g)+Hg’
]:

o Po(g,k) if |glla) < [Ifllae) — k/2.

We construct a sequence of collections of functions (Fy)x>o iteratively such

that the following properties hold.

4 PO(k) f: defk g.
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o Pi(k): |Fp| <28
o Py(k): If g € Fy then Py(g, k) holds.

o Pi(k): If g € Fy, then either Pi(g) or Py(g, k) holds.

We initiate the iteration with Fo = {f}. In this case it is trivial to verify
that Py(0), P1(0), P»(0) and P;(0) hold.

Suppose that for some 0 < k < [2||f|la@) | + 2 we have constructed F,
such that Py(k), Pi(k), Py(k) and P3(k) hold. Suppose that g € F;,. We have

two cases.

(i). Pi(g) holds: Since Py(g,k) holds and €, < €41 we conclude that
Py(g,k + 1) holds. We add g into Fi;.

(ii). P(g, k) holds: Since k < 2| f]|a(e)| + 2 we conclude that
e, < 25ClFlae+3) ¢ < exp(—C'(1 + ||f||A(G))4),

so we may apply Lemma 4.4.11 to get g = g1 + g2, where for each
i € {1,2} g; is 2% = ex1-almost integer valued and either Pi(g;)
holds or ||gi||a) < ||9lla) — 1/2; in the second case we combine this
with the fact Py(g, k) holds to get that Py(g;, k + 1) holds. We add ¢;

and gy into Fryq.

This construction ensures that Py(k 4+ 1) and Ps(k + 1) hold. Since Py(k)
holds and for each g € F; we either added g or two functions summing to g
into Fr.1 we conclude that Py(k+ 1) holds. Finally since for each g € F, we
added at most two functions to Fj we conclude that |Fri1] < 2|Fg|. It then
follows that since P;(k) holds, P;(k + 1) holds.

If K =[2|flla@)] + 1 then P(g, K) can never hold. It follows that for
each g € Fg, Pi(g) holds. Now

1Nz =Y @alimpe < If = (Nellixwe

9EFK

+|Fx| sup [lg — (9)zll Lo (uer)
geEFK

< € + 2K€K < 24K+16.
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The left hand side is integer valued and 2*%*'e < 27! so we can conclude
that

It remains to note that

Lg
2 (@= 3 > 0 ey,

9gEFK geFK j=1

Now we may in fact assume that e = exp(—O(1 + || f|| a())*) whereupon the

result follows. H

4.4.6 Concluding remarks

As it stands, our argument ‘loses an exponential’ in two places. First of all
the almost integer parameter must not be allowed to get too large during
the iteration leading to the proof of Theorem 4.4.1. This requires it to be
exponentially small in 1 + || f||a() at the beginning of the argument. This
parameter then gets exponentiated again in any application of Proposition
4.4.8. Méla’s work, [MéI82], in fact shows that one cannot hope for a result
which only asks for || f — fzllre(ue) < exp(—o(1 + || fllaw))), essentially by
considering the example of the auxiliary measures we constructed in §2.1.3,

so our result is at most ‘one exponential out’.

Write L(M) for the smallest integer L such that for every finite abelian
group G and subset A with ||14|[4) < M one can write 14 as a f-sum of

at most L indicator functions of cosets in G. Theorem 4.12 asserts that
L(M) = exp(exp(O(1 + M)")),

Limitations on how small L(M) can be seem to be dependent on the un-
derlying group. Consider the arithmetic group Z/pZ where p is a prime. If
A C 7Z/pZ has density bounded away from 0 and 1 then 1, cannot be written
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as a £-sum of o(p) indicator functions of cosets in Z/pZ. It follows that

p < L(||1all azypz)) = exp(exp(O(1 + |Lall azypz))?))-

Rearranging this implies that
1Lall az/pz) > (loglog p)*/*.

Note that this is a very weak version of the result of §4.2. A straightforward
calculation shows that if A is an arithmetic progression then ||14]|az/pz) <
log p whence log L(M) > M and Theorem 4.12 is out by at most one ex-
ponential. Similarly, when Theorem 4.12 is extended to all locally compact
abelian groups one can conclude a weak version of Littlewood’s conjecture
ViZ.

114l az) > (loglog | A[)*/*.

Of course the example of an arithmetic progression does not exist in the
model setting of F4, where it may be that L(M) (restricted to cover only these
model groups) can be taken to be polynomial in M. Note that a random
set can be used to see that this polynomial must be at least quadratic. This
case was treated first by Green and the author in [GS08a]; the arguments
there are slightly different from those here but ultimately yield a bound of

the same shape.

Because of the abundance of subgroups in the model setting the bound
Theorem 4.12 implies for the results of the dyadic setting, §4.1, are far weaker
than for the arithmetic setting. Suppose A C F7 is a set with density « such
that o —1/3| < e. Then a straightforward pigeon-hole argument shows that
there is no decomposition of 14 as the +-sum of o(log 1) indicator functions

of cosets. Thus, our quantitative idempotent theorem implies that

loge™ < L([[1allagey) < exp(exp(O(1+ || Lallaeg)")),
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which gives the rather poor bound
|| 1A||A(]F§”) > (log log log 6_1)1/4.

The same argument gives the same bound for the case of G any finite abelian
group.

Finally, recall that ||[14|lae) > 1 for all nonempty subsets A of G. It
seems natural, by analogy with Freiman’s Theorem, to consider in more
detail what the structure of A C G might be when |14/ is close to 1;
say less than 3/2. Some work on this problem has been done by Saeki see
[Sae68a, Sae68b).
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