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Abstract

This thesis is chiefly concerned with a classical conjecture of Littlewood’s re-

garding the L1-norm of the Fourier transform, and the closely related idem-

potent theorem. The vast majority of the results regarding these problems

are, in some sense, qualitative or at the very least infinitary and it has become

increasingly apparent that a quantitative state of affairs is desirable.

Broadly speaking, the first part of the thesis develops three new tools

for tackling the problems above: We prove a new structural theorem for the

spectrum of functions in A(G); we extend the notion of local Fourier anal-

ysis, pioneered by Bourgain, to a much more general structure, and localize

Chang’s classic structure theorem as well as our own spectral structure the-

orem; and we refine some aspects of Frĕıman’s celebrated theorem regarding

the structure of sets with small doubling. These tools lead to improvements

in a number of existing additive results which we indicate, but for us the

main purpose is in application to the analytic problems mentioned above.

The second part of the thesis discusses a natural version of Littlewood’s

problem for finite abelian groups. Here the situation varies wildly with the

underlying group and we pay special attention first to the finite field case

(where we use Chang’s Theorem) and then to the case of residues modulo

a prime where we require our new local structure theorem for A(G). We

complete the consideration of Littlewood’s problem for finite abelian groups

by using the local version of Chang’s Theorem we have developed. Finally we

deploy the Frĕıman tools along with the extended Fourier analytic techniques

to yield a fully quantitative version of the idempotent theorem.
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Chapter 1

Introduction

In recent years it has become increasingly apparent that a lot of results

from the harmonic analysis of the 70s and 80s have applications in additive

combinatorics, and a number of the tools of additive combinatorics can be

applied to yield quantitative version of analytic results from that period. It

is this modern, quantitative, perspective on harmonic problems which guides

our work.

The thesis is essentially a union of the papers [San06, San08c, San07a,

San07b] and [GS08b], the last of these being coauthored with Ben Green.

It has three main chapters. In the first two (Chapters 2 and 3) we develop

some new tools; we believe this is the most interesting part of the thesis

and provides the most scope for future applications. Chapter 4 applies the

preceding results to the main questions addressed by the thesis.

The general objective in additive combinatorics is to understand additive

structure in sets of integers. For example, if A is a finite set of integers

we may well ask how many three term arithmetic progression or additive

quadruples A contains. Recall that a three term arithmetic progression is a

triple (x, y, z) such that x+ z = 2y and an additive quadruple is a quadruple

(x, y, z, w) such that x+y = z+w. To do this we try to count the quantities∑
x,y∈Z

1A(x)1A(y)1A(2y − x) and
∑

x,y,z∈Z

1A(x)1A(y)1A(z)1A(x+ y − z)
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CHAPTER 1. INTRODUCTION

respectively. To see these expressions more clearly we introduce some nota-

tion. We write 〈·, ·〉 for the usual inner product on `2(Z) and for functions

f, g ∈ `1(Z) we define their convolution to be

f ∗ g(x) :=
∑
y+z=x

f(y)g(z).

Using this the number of three term arithmetic progressions and additive

quadruples in A are

〈1A ∗ 1A, 12A〉 and 〈1A ∗ 1A, 1A ∗ 1A〉

respectively.

A great strength of the operators g 7→ f ∗ g is that they all commute

and so are simultaneously diagonalizable. The basis we pick with respect

to which they are all diagonal is called the Fourier basis and the Fourier

transform describes the decomposition of a function in this basis; it maps

f ∈ `1(Z) to f̂ ∈ L∞(T) defined by

f̂(θ) :=
∑
z∈Z

f(z) exp(−2πizθ).

The fact that the Fourier transform is a change of basis is encoded in the

Fourier inversion theorem which tells us that

f(x) =

∫ 1

0

f̂(θ)e(xθ)dθ for all x ∈ Z.

Moverover, the transform is in fact an orthogonal change of basis, a fact

called Plancherel’s theorem:

〈f, g〉 =

∫ 1

0

f̂(θ)ĝ(θ)dθ for all f, g ∈ `2(Z).

As we have said the Fourier transform maps convolution to multiplication

so that the expressions for the number of three term arithmetic progressions

2



and additive quadruples in A can be made even simpler: they become∫ 1

0

1̂A(θ)21̂2A(θ)dθ and

∫ 1

0

|1̂A(θ)|4dθ.

We restrict our attention to counting additive quadruples for the moment.

A certainly can’t have more than |A|3 additive quadruples and if it has close

to this number, in the sense of having at least c|A|3 for some small c > 0,

then counting them more precisely is fairly easy because we can restrict our

attention in the Fourier expression above to those θ at which 1̂A is large. Let

M := {θ ∈ T : |1̂A(θ)| > ε|A|}.

We have∫ 1

0

|1̂A(θ)|4dθ =

∫
M

|1̂A(θ)|4dθ +

∫
Mc

|1̂A(θ)|4dθ

=

∫
M

|1̂A(θ)|4dθ +O

(
ε2|A|2

∫
Mc

|1̂A(θ)|2dθ
)

=

∫
M

|1̂A(θ)|4dθ +O

(
ε2|A|2

∫ 1

0

|1̂A(θ)|2dθ
)

=

∫
M

|1̂A(θ)|4dθ +O(ε2|A|3)

=

∫
M

|1̂A(θ)|4dθ +O

(
c−1ε2

∫ 1

0

|1̂A(θ)|4dθ
)

= (1 +O(c−1ε2))

∫
M

|1̂A(θ)|4dθ

by Hölder’s inequality and Plancherel’s theorem.

The reader unfamiliar with this derivation need not be overly concerned,

the point is simply that calculating the number of additive quadruples in A

has been reduced to understanding where the Fourier transform 1̂A is ‘large’.

By Plancherel’s theorem we see that if |A| is large then the Lebesgue

measure of M is small. In particular we have

(ε|A|)2µ(M) 6
∫ 1

0

|1̂A(θ)|2dθ = |A|,
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CHAPTER 1. INTRODUCTION

whence µ(M) 6 ε−2/|A|. Very roughly this means that f , defined by f̂ :=

1̂A|M, is a considerably ‘lower complexity’ object, and therefore easier to

understand, than 1̂A. One the other hand, our calculation shows that for the

purpose of counting additive quadruples f has roughly as good as 1A!

While proximity of Fourier transforms in L4(T) does ensure that two

functions have a similar number of additive quadruples it is harder to find

other ways in which the functions are similar. Contrastingly if f̂ and 1̂A are

close in L2(T) then, by Plancherel’s theorem, we have that f and 1A are close

in `2(Z) – they are very similar. Indeed, for almost any arithmetic way in

which one may care to compare f and 1A they will end up being very similar

if ‖f − 1A‖`2(Z) is small. It becomes natural then to ask when 1A has a ‘low

complexity’ approximation in `2(Z).

Suppose that ‖1̂A‖L1(T) 6 M . Then, by the same argument we used

above, we have that f , defined by f̂ = 1̂A1M, has

‖f − 1A‖2
`2(Z) =

∫ 1

0

|1̂A(θ)− f̂(θ)|2dθ

=

∫
Mc

|1̂A(θ)|2dθ 6 ε|A|M = εM‖1A‖2
`2(Z).

In fact one could use any Lp(T)-norm of 1̂A with p < 2; the choice of p = 1,

however, ensures some useful algebraic properties. Indeed, the norm ‖ ·
‖A(Z) := ‖̂·‖L1(T) is often called the algebra norm because of the algebra

property

‖fg‖A(Z) 6 ‖f‖A(Z)‖g‖A(Z) for all f, g ∈ `1(Z).

A natural question now arises as to which sets A actually have ‖1A‖A(Z) 6

M . It was Littlewood in [HL48] who first asked this question, although he

came from an entirely different starting point. The now proved Littlewood

conjecture asserts that in fact one needs |A| to be rather small for this to

hold; specifically there is the following theorem.

Theorem. (Littlewood’s conjecture, [Kon81, MPS81]) Suppose that A is a

finite set of integers with ‖1A‖A(Z) 6M . Then |A| 6 exp(O(M)).

In this thesis we are concerned first and foremost with understanding
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the above problems in abelian groups other than Z – it turns out to be a

considerably richer problem in the general case because of the possibility of

non-trivial compact subgroups. The Fourier transform has a totally natural

generalization to locally compact abelian groups, the details of which are

addressed in Chapter 2; they are not important for this discussion.

It is instructive to begin by considering the group T. If A ⊂ T has

‖1A‖A(T) 6 M we cannot expect to show that A is finite: if A has measure

zero then ‖1A‖A(T) = 0 and if A has measure one then ‖1A‖A(T) = 1. However,

it turns out that these are all the exceptions: A must have either measure zero

or one. A rigorous proof of this easy fact appears in Chapter 4 but for now

we shall accept it and turn to regarding the torus as a good qualitative model

for the groups Z/pZ where p is a prime. The following discrete analogue of

Littlewood’s conjecture is one of our main results.

Theorem 1.1. (Theorem 4.8) Suppose that A ⊂ Z/pZ has density bounded

away from 0 and 1, and ‖1A‖A(Z/pZ) 6M . Then |A| 6 exp(O(M2+o(1))).

One might make the ‘discrete Littlewood conjecture’, by analogy with the

Littlewood conjecture, that the 2 + o(1) can be replaced by 1, and, indeed,

this may well be the case. However, while the formal similarity between the

two problems is rather striking, the methods we require to prove our theorem

are very different.

A key challenge in the result above is leveraging the fact that A is not

close to being the whole of Z/pZ. If A = Z/pZ then ‖1A‖A(Z/pZ) = 1 and

more generally if H 6 G then ‖1H‖A(G) 6 1, so while the only compact

subgroup of Z is {0}, for more general groups we have other possibilities. A

class of groups with a lot of subgroups are the dyadic groups Fn2 . For these

groups we prove the following theorem.

Theorem. (Theorem 4.1.2) Suppose that A ⊂ Fn2 has density as close to 1/3

as possible and ‖1A‖A(Fn2 ) 6M . Then |A| 6 exp(exp(O(M))).

The density condition essentially encodes the fact that A is not remotely

close to being a subgroup, and it is the handling of the rich subgroup structure

here which costs us in the form of a considerably weaker bound. The following

is an equivalent, but arguably more attractive, formulation of the above.
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CHAPTER 1. INTRODUCTION

Theorem. Suppose that A ⊂ F∞2 has density α with |α − 1/3| 6 ε. Then

‖1A‖A(F∞2 ) � log log ε−1.

To understand the rôle which subgroups play in our work we return to the

qualitative view point. The earlier argument for the torus has a considerable

generalization to arbitrary locally compact abelian groups called Cohen’s

idempotent theorem [Coh60]. Cohen began by defining the coset ring. This

is the collection of subsets of G which is closed under unions and intersections

and which contains every coset of every open subgroup. It is easy to convince

oneself using the triangle inequality and the algebra property of the norm

‖ · ‖A(G) that every set A in the coset ring has ‖1A‖A(G) < ∞. Remarkably

the converse is also true.

Theorem (Idempotent theorem). Suppose that G is a locally compact abelian

group and A ⊂ G has ‖1A‖A(G) <∞. Then A is in the coset ring of G.

Concretely if a set is in the coset ring then there is some L < ∞ such

that

1A =
L∑
j=1

σj1xj+Hj

where σj ∈ {−1, 1}, xj ∈ G and Hj is an open subgroup of G for each

j ∈ {1, ..., L}. A main result of the thesis (which is joint with Ben Green) is

a quantitative version of Cohen’s idempotent theorem.

Theorem. (Theorem 4.12) Suppose that G is a locally compact abelian group

and A ⊂ G has ‖1A‖A(G) 6M . Then there is an integer L 6 exp(exp(O(M4)))

such that

1A =
L∑
j=1

σj1xj+Hj

where σj ∈ {−1, 1}, xj ∈ G and Hj is an open subgroup of G for each

j ∈ {1, ..., L}.

It is natural to conjecture that one may take L 6 exp(O(M)), and a proof

of this would not only yield the discrete Littlewood conjecture but also a new

proof of Littlewood’s conjecture and Cohen’s idempotent theorem. Suffice to

say it would be a very appealing result.
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Before closing out this introduction it is worth mentioning a little bit

about how we go about proving the above results. The main tools are de-

veloped in Chapters 2 & 3. In the first of these we develop some structural

results for understanding the spectrum (essentially the set M above) of func-

tions in A(G). This is a key ingredient which enables us to achieve the bound

we do for the discrete Littlewood problem.

The second aspect of Chapter 2 is a framework, developed from work of

Bourgain [Bou99], in which to conduct a sort of ‘approximate group theory’.

Basically a lot of our arguments would ideally involve passing to subgroups.

Unfortunately most groups do not have a rich enough subgroup structure

for this to be effective and we have to make do with a sort of ‘approximate

subgroup’. The details occupy a considerable portion of the chapter.

In Chapter 3 we develop some additive results and on the way improve

a version of a famous result of Frĕıman’s regarding the additive structure of

certain sets. The results there actually address more classical results from

additive combinatorics although our purpose for them is in proving the results

above.

Our modern outlook manifests itself particularly strongly in two ways:

First, we shall work entirely with finite structures, principally concerning

ourselves with specific bounds and dependencies. Secondly, we shall take

advantage of the model setting of dyadic groups, popularized by Green in

[Gre05], for exhibiting some of our methods. It turns out that arguments

can very often be modelled in this setting in a way which vastly reduces their

technical difficulty whilst retaining their conceptual content, thus making it

an ideal illustrative environment.

Finally a word on notational conventions. We use both the Hardy-

Littlewood big-O and Vinogradov notations in the normal way viz. g =

O(f) and g � f both mean that there is an absolute constant C > 0 such

that |g(x)| 6 C|f(x)| for all x > C. We also write f � g when both f � g

and f � g hold.
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Chapter 2

Fourier analytic tools

We are interested in the Fourier transform on finite abelian groups and we

begin by fixing the basic definitions and notation. It will often be useful,

for the purpose of motivation, to have the transform available to us in the

more general setting of locally compact abelian groups. However, presenting

it in that setting seems to add undesirable technicalities so we shall restrict

ourselves to supplementing our exposition of the finite case with rough indi-

cations of how results extend. A more detailed explanation can be found in

Rudin [Rud90].

We start with some elementary function spaces. Suppose that X is a

finite set. We write M(X) for the space of complex valued measures on X

endowed with the norm ‖µ‖ :=
∫
d|µ|. Now suppose that µ is non-negative.

For p ∈ [1,∞) we write Lp(µ) for the space of complex valued functions on

X with norm

‖f‖Lp(µ) :=

(∫
|f |pdµ

) 1
p

,

and similarly L∞(µ) for the space of complex valued functions on X with

norm

‖f‖L∞(µ) := esssupx∈X |f(x)| = sup
x∈suppµ

|f(x)|.

It will also be useful to use `p(X) to denote the space Lp(µ) in the specific

case where µ is counting measure, that is, the measure ascribing mass 1 to

each element of X.

9



CHAPTER 2. FOURIER ANALYTIC TOOLS

We shall be working with finite abelian groups; suppose G is such. It will

be useful for us to consider not just sums of elements, but also sums of sets

of elements. Suppose A and B are subsets of G. Then we write A + B for

the set {a + b : a ∈ A, b ∈ B}. Similarly, if k and l are integers we write

kA− lB for the set

{a1 + ...+ ak − b1 − ...− bl : a1, ..., ak ∈ A, b1, ..., bl ∈ B}.

The dual group of G is the finite abelian group of homomorphisms γ :

G → S1, where S1 := {z ∈ C : |z| = 1}; we denote it Ĝ. Although

the natural group operation on Ĝ corresponds to pointwise multiplication of

characters we shall denote it by ‘+’ in alignment with contemporary work.

We write µG for the unique translation invariant probability measure on G;

µG assigns mass |G|−1 to each x ∈ G.

The fact that G is a group and µG is translation invariant makes L1(µG)

into a normed algebra when combined with the operation of convolution. If

f, g ∈ L1(µG) we define the convolution of f and g to be

f ∗ g(x) :=

∫
f(x− y)g(y)dµG(y).

Furthermore, the measure µG can be used to define the Fourier transform on

L1(µG): it is the map which takes f ∈ L1(µG) to

f̂ : Ĝ→ C; γ 7→
∫
fγdµG.

This transform has the crucial property of being an algebra homomorphism

viz.

f̂ ∗ g = f̂ ĝ for all f, g ∈ L1(µG).

We shall occasionally find ourselves taking the Fourier transform of a partic-

ularly complicated expression E in which case we shall use (E)∧ to denote

Ê.

Similar structure can be placed on M(G). If µ, ν ∈M(G) then we define

10



the convolution of µ and ν to be (the measure induced by)

f 7→
∫
f(x+ y)dµ(x)dν(y).

The Fourier(-Stieltjes) transform is the map which takes µ ∈M(G) to

µ̂ : Ĝ→ C; γ 7→
∫
γdµ,

which, as before, is an algebra homomorphism. Convolution of measures

with functions is defined in the obvious manner.

Having set up the machinery we can define one last function space of

importance to us: A(G) is the space of complex valued functions on G with

norm

‖f‖A(G) :=
∑
γ∈Ĝ

|f̂(γ)|.

This norm is variously called the Wiener algebra norm or simply the algebra

norm.

In the general case of G a locally compact abelian group it can be shown

(see Halmos [Hal50]) that there is a unique (up to scalar multiplication)

translation invariant measure on G. This measure takes the rôle of µG and

can be used to define the Fourier transform in the same way as above. It is

also necessary to restrict the various spaces we have defined to include only

those functions for which the appropriate norm is finite. So, for example,

L1(µG) is the space of functions f such that ‖f‖L1(µG) <∞.

It may be helpful to consider some concrete examples at this stage. We

shall look at cyclic groups and the model dyadic groups. First, the charac-

ters on Z/NZ are simply the maps x 7→ exp(2πixr/N) where r ∈ Z/NZ.

Consequently we can identify Ẑ/NZ with Z/NZ and if f : Z/NZ→ C then

the Fourier transform is given by

f̂(r) :=
1

N

∑
x∈Z/NZ

f(x) exp(2πixr/N).

Secondly, if x, y ∈ Fn2 then we write x.y for the sum x1y1 + ...+xnyn, and the

11



CHAPTER 2. FOURIER ANALYTIC TOOLS

characters on Fn2 are simply the maps x 7→ (−1)x.y where y ∈ Fn2 . These are

sometimes called the Walsh functions in the literature. Consequently we can

identify F̂n2 with Fn2 and if f : Fn2 → C then the Fourier transform is given by

f̂(y) :=
1

2n

∑
x∈Fn2

f(x)(−1)x.y.

We begin the convention now, that unless otherwise stated, G is always

assumed to be a finite abelian group.

With these definitions in place we are in a position to record two essential

tools. Both results can be proved easily from the fact that the elements of Ĝ

form an orthonormal basis for the complex valued functions on G. This fact

is, in turn, easy to prove directly in the case when G is finite.

Theorem (Fourier inversion formula). Suppose that f ∈ L1(µG) ∩ A(G).

Then

f =
∑
γ∈Ĝ

f̂(γ)γ.

Theorem (Plancherel’s Theorem). Suppose that f, g ∈ L2(µG). Then

〈f, g〉L2(µG) = 〈f̂ , ĝ〉`2(Ĝ).

Note that we shall often refer to Parseval’s Theorem, which is just the

special case of Plancherel’s Theorem corresponding to f = g.

There are two ideas we shall find ourselves using repeatedly through-

out this work. First we are often interested in some average behaviour of

a function f , and very loosely speaking the Fourier inversion formula and

Plancherel’s theorem relate these to the large values of f̂ . For example we

may be interested in the inner produce of f with some other function g. In

this case by Plancherel’s Theorem we have

〈f, g〉L2(µG) = f̂(0Ĝ)ĝ(0Ĝ) +
∑
γ 6=0

Ĝ

f̂(γ)ĝ(γ).

Here we have separated out the trivial mode (which is usually easy to com-
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pute), and we would hope to show that the remaining term is a small error.

We certainly have

〈f, g〉L2(µG) = f̂(0Ĝ)ĝ(0Ĝ) +O(‖g‖A(G) sup
γ 6=0

Ĝ

|f̂(γ)|),

and to understand this, in §2.1, we establish some tools which describe the

structure of the sets of characters at which f̂ is large in an appropriate sense.

If we know where this happens then we can hope to understand the situations

when the error term above is not guaranteed to be small, and hence know

when we can have a good idea of what the average 〈f, g〉L2(µG) is.

The second idea is the iterative method: we shall often want to pass to a

subgroup of G on which the behaviour of a given function is somehow better

understood. Because there are many important groups (e.g. Z/pZ for p a

prime) with a paucity of subgroups we shall need to consider more general

substructures, which behave in some approximate sense like groups. It turns

out that so called Bohr sets are natural candidates and we develop this idea

in §2.2. There we also extend some of the basic results of Fourier analysis on

groups to approximate groups, a process which is often called localizing.

Naturally it will be useful to have the results of §2.1 not just for functions

on groups but, more generally, for functions on these approximate groups.

Proving these generalizations is the work of §2.3.

Finally, in §2.4, we formalize, as Bourgain systems, the aspects of Bohr

sets which make them suitable for the rôle of approximate groups. Both Bohr

sets and their more general counterparts have different uses in the thesis: The

structure of Bohr sets is better understood than that of Bourgain systems

and this extra information is sometimes useful (c.f. §4.3); on other occasions

the generality of Bourgain systems is necessary (c.f. §4.4).

2.1 Spectral structures

A natural realization of the sets of characters at which f̂ is large is the sets

{γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L1(µG)} for ε ∈ (0, 1].

13
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The study of these sets has been surveyed by Green in [Gre04] so we are

brief and only recall the key facts. Write Γ = {γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L1(µG)}.
Plancherel’s Theorem (or really Bessel’s inequality) yields

|Γ|ε2‖f‖2
L1(µG) 6 ‖f̂‖2

`2(Ĝ)
6 ‖f‖2

L2(µG)

which can be rearranged to give

|Γ| 6 ε−2(‖f‖L2(µG)‖f‖−1
L1(µG))

2. (2.1.1)

Note that by nesting of norms we have ‖f‖L2(µG)‖f‖−1
L1(µG) > 1. Now, there

is a result of Chang from [Cha02] which refines (2.1.1) if ‖f‖L2(µG)‖f‖−1
L1(µG)

is much larger than 1. We require some further notation to state this. If Λ

is a set of characters on G and m ∈ ZΛ then put

m.Λ :=
∑
λ∈Λ

mλ.λ and |m| :=
∑
λ∈Λ

|mλ|,

where the second ‘.’ in the first definition is the natural action of Z on Ĝ.

Write 〈Λ〉 for the span of Λ, the set of all ±-sums of elements of Λ, namely

〈Λ〉 :=
{
m.Λ : m ∈ {−1, 0, 1}Λ

}
.

Theorem 2.1.1 (Chang’s Theorem). Suppose that f ∈ L2(µG) and ε ∈ (0, 1]

is a parameter. Write Γ := {γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L1(µG)}. Then there is a

set of characters Λ such that Γ ⊂ 〈Λ〉 and

|Λ| � ε−2(1 + log ‖f‖L2(µG)‖f‖−1
L1(µG)).

To understand Chang’s Theorem more fully it can be helpful to consider

the case f = 1A. Here the quantity ‖f‖L2(µG)‖f‖−1
L1(µG) = α−1/2 where α

is the density of A in G. The bound in (2.1.1) tells us that Γ, the set of

large characters, is contained in a set of size O(ε−2α−1). Chang’s Theorem

tells us that it is contained in the span of a set of size O(ε−2 logα−1). In

typical applications there is no difference between the large spectrum being

14
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contained in a small set and being contained in the span of a small set, so

Chang’s theorem provides an enormous strengthening when A is thin.

Later on we shall be in a situation where we want to examine the large

spectrum of functions which we control in A(G)-norm rather than in L2(µG)-

norm, so we develop an analogue of Chang’s Theorem in this setting. Here

it turns out that the natural realization of the sets of characters at which f̂

is large is the sets

{γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L∞(µG)} for ε ∈ (0, 1].

There is an easy analogue of (2.1.1): Write

Γ = {γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L∞(µG)}.

Then

|Γ|ε‖f‖L∞(µG) 6 ‖f̂‖`1(Ĝ) = ‖f‖A(G),

and so as before

|Γ| 6 ε−1
(
‖f‖A(G)‖f‖−1

L∞(µG)

)
. (2.1.2)

A trivial instance of Hausdorff’s inequality tells us that ‖f‖A(G)‖f‖−1
L∞(µG) >

1, and indeed the quantity ‖f‖A(G)‖f‖−1
L∞(µG) plays the same rôle in A(G)

as the quantity ‖f‖L2(µG)‖f‖−1
L1(µG) does in L2(µG). To complete the square,

then, we shall prove the following.

Theorem 2.1.2. Suppose that f ∈ A(G) and ε ∈ (0, 1] is a parameter. Write

Γ := {γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L∞(µG)}. Then there is a set of characters Λ

such that Γ ⊂ 〈Λ〉 and

|Λ| � ε−1(1 + log ‖f‖A(G)‖f‖−1
L∞(µG)).

2.1.1 The proof of Theorem 2.1.2

We say that a set of characters Λ is dissociated if

m ∈ {−1, 0, 1}Λ and m.Λ = 0Ĝ imply that m ≡ 0.

15



CHAPTER 2. FOURIER ANALYTIC TOOLS

We have the following simple lemma regarding dissociated sets.

Lemma 2.1.3. Suppose that Γ is a set of characters on G and Λ is a maximal

dissociated subset of Γ. Then Γ ⊂ 〈Λ〉.

To prove this one supposes, for a contradiction, that there is a γ ∈ Γ\〈Λ〉.
If one adds this γ to Λ it is easy to see that the resulting set is strictly larger

and dissociated.

In view of this lemma Theorem 2.1.2 follows from:

Proposition 2.1.4. Suppose that f ∈ A(G), and Λ a dissociated subset of

{γ ∈ Ĝ : |f̂(γ)| > ε‖f‖L∞(µG)} for some ε ∈ (0, 1]. Then

|Λ| � ε−1(1 + log ‖f‖A(G)‖f‖−1
L∞(µG)).

We prove this using a standard argument for which we require an auxiliary

measure.

Proposition 2.1.5 (Auxiliary measure). Suppose that Λ is a dissociated set

of characters on G and ω ∈ `∞(Λ) has ‖ω‖`∞(Λ) 6 1. Then for any η ∈ (0, 1]

there is a measure µη ∈M(G) such that

µ̂η|Λ = ω, ‖µη‖ � (1 + log η−1) and |µ̂η(γ)| 6 η for all γ 6∈ Λ.

Constructing these measures is the heart of the argument, so before we

do this we finish off Proposition 2.1.4.

Proof of Proposition 2.1.4. We define

ω(λ) :=
f̂(λ)

|f̂(λ)|
for all λ ∈ Λ.

ω ∈ `∞(Λ) and ‖ω‖`∞(Λ) 6 1 so we may apply Proposition 2.1.5 to get the

auxiliary measure µη corresponding to ω. We examine the inner product

16
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〈f, µη〉.

|〈f, µη〉| = |
∑
γ∈Ĝ

f̂(γ)µ̂η(γ)| by Plancherel’s Theorem,

= |
∑
λ∈Λ

f̂(λ)µ̂η(λ) +
∑
γ 6∈Λ

f̂(γ)µ̂η(γ)|

> |
∑
λ∈Λ

f̂(λ)µ̂η(λ)| − |
∑
γ 6∈Λ

f̂(γ)µ̂η(γ)|

> |
∑
λ∈Λ

f̂(λ)ω(λ)| − η
∑
γ 6∈Λ

|f̂(γ)| from the properties of µη,

>
∑
λ∈Λ

|f̂(λ)| − η‖f‖A(G)

> |Λ|ε‖f‖L∞(µG) − η‖f‖A(G).

However

|〈f, µη〉| 6 ‖f‖L∞(µG)‖µη‖ � ‖f‖L∞(µG)(1 + log η−1),

so that

‖f‖L∞(µG)(1 + log η−1)� |Λ|ε‖f‖L∞(µG) − η‖f‖A(G).

Choosing η−1 = ‖f‖A(G)‖f‖−1
L∞(µG) yields the result.

2.1.2 Constructing the auxiliary measure

The construction of the auxiliary measure is best illustrated in the model

setting of Fn2 where we benefit from two simplifications. Suppose that Λ is a

set of characters on Fn2 . Then

• 〈Λ〉 is simply the subspace of Ĝ generated by Λ;

• Λ is dissociated if and only if it is linearly independent over F̂n2 .

The first of these is simply a convenience while the second represents the

major obstacle in transferring the arguments of this subsection to the general

setting. We shall prove the following result.

17
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Proposition 2.1.6. Suppose that Λ is a linearly independent set of charac-

ters on Fn2 and ω : Λ → [−1, 1]. Then for any η ∈ (0, 1] there is a measure

µη ∈M(Fn2 ) such that

µ̂η|Λ = ω, ‖µη‖ � (1 + log η−1) and |µ̂η(γ)| 6 η for all γ 6∈ Λ.

In the next section we engage in the technical process of extending this

argument to arbitrary finite abelian groups.

Riesz products are the building blocks of the measure; we record the basic

definition now.

Riesz products

Suppose that Λ is a set of characters. If ω : Λ → [−1, 1] then we define the

product

pω :=
∏
λ∈Λ

(1 + ω(λ)λ). (2.1.3)

Such a product is called a Riesz product, and although it has formally been

defined as a function we think of it as a measure. It is easy to see that it

is real and non-negative from which it follows that ‖pω‖ = p̂ω(0Ĝ). Further,

expanding out the product reveals that supp p̂ω ⊂ 〈Λ〉.

If Λ is linearly independent then we can easily compute the Fourier trans-

form of a Riesz product. Suppose that γ ∈ 〈Λ〉. Then there is a unique

m : Λ→ {0, 1} such that γ = m.Λ by the linear independence of Λ, so

p̂ω(γ) :=
∏
λ∈Λ
mλ 6=0

ω(λ).

This leads to the observation that ‖pω‖ = p̂ω(0Ĝ) = 1 and p̂ω|Λ = ω. More-

over if t ∈ [−1, 1] then

p̂tω(m.Λ) := t|m|p̂ω(m.Λ) where, as before, |m| =
∑
λ∈Λ

|mλ|.

18
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So, if |m| > 1 then

|p̂tω(m.Λ)| 6 |t|2|p̂ω(m.Λ)| 6 |t|2‖pω‖ = |t|2

It follows that a lot of the Fourier coefficients of ptω are already small if |t| is
small. By taking µη := η−1pηω we get a well known primitive version of the

auxiliary measure of Proposition 2.1.5.

Proposition 2.1.7 (Primitive auxiliary measure). Suppose that Λ is a lin-

early independent set of characters on Fn2 and ω : Λ→ [−1, 1]. Then for any

η ∈ (0, 1] there is a measure µη ∈M(Fn2 ) such that

µ̂η|Λ = ω, ‖µη‖ � η−1 and |µ̂η(γ)| 6 η for all γ 6∈ Λ ∪ {0Ĝ}.

The basic idea for improving the measure of Proposition 2.1.7 rests on

the observation that if |m| is large then |p̂tω(m.Λ)| is in fact guaranteed to

be very small. To construct a better measure we take linear combinations

of Riesz products so that their Fourier transforms cancel on the characters

m.Λ where |m| is small (except of course for |m| = 1). Begin by considering

νt :=
1

2
(ptω − p−tω).

Then

ν̂t|Λ = tω, ‖νt‖ 6 1, |ν̂t(m.Λ)| 6 t|m|

and

ν̂t(m.Λ) = 0 if |m| ≡ 0 (mod 2).

It follows that

ν̂t|Λ = tω, ‖νt‖ 6 1 and |ν̂t(γ)| 6 t3 for all γ 6∈ Λ.

If we put µη = ν√η then we have a version of Proposition 2.1.6 with ‖µη‖ �
η−1/2 instead of ‖µη‖ � (1 + log η−1).
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More generally we consider a measure τ on [−1, 1] and put

ντ :=

∫
ptωdτ(t).

Then

‖ντ‖ 6 sup
t∈[−1,1]

‖ptω‖.‖τ‖ = ‖τ‖ and ν̂τ (m.Λ) =

∫
t|m|dτ(t)p̂ω(m.Λ).

Following the idea of trying to get the Fourier transforms of the Riesz prod-

ucts in ντ to cancel on {m.Λ : |m| = r}, we should like a measure τl with

‖τl‖ minimal subject to∫
tkdτl(t) = 0 for 1 < k 6 l,

∫
dτl(t) = 0, and

∫
tdτl(t) = 1.

Méla, in [Mél82], already had this idea, and moreover for the purpose of

constructing essentially the auxiliary measure we want. To produce τl he

constructs a measure σl with the following properties:

Lemma 2.1.8. ([Mél82, Lemma 4, §7]) Suppose that l > 1 is an integer.

Then there is a measure σl on [0, 1] such that∫
s2k−1dσl(s) = 0 for 2 6 k 6 l,

∫
sdσl(s) = 1 and ‖σl‖ = 2l − 1.

He chooses σl to be (the measure induced by) the polynomial

s+ ((−1)l/(2l − 1))P2l−1(s)

where P2l−1 is the Chebychev polynomial of order 2l− 1. Once this is known

it is not hard to verify the properties of σl.

We take τ2l to be the odd measure on [−1, 1] which extends 2σl(2s) on

[0, 1/2], and the null measure on [1/2, 1]. It is easy, then, to verify the

following.

Lemma 2.1.9. Suppose that l > 1 is an integer. Then the measure τ2l on
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[−1, 1] has ‖τ2l‖ 6 2(2l − 1),

∫
tkdτ2l(t) =

0 if k 6 2l and k 6= 1

1 if k = 1

and |
∫
tkdτ2l(t)| 6 21−k for all k.

Proposition 2.1.6 follows from this by writing l = d2−1 log2 η
−1e and then

letting µη = ντ2l .

2.1.3 The general construction of the auxiliary mea-

sure

To construct the measure in the general case we also requires Riesz products.

Here, however, they are slightly more complicated.

Riesz products

Suppose that Λ is a finite set of characters. We say that ω ∈ `∞(Λ ∪ −Λ) is

hermitian if

ω(λ−1) = ω(λ) for all λ ∈ Λ;

if ω also satisfies ‖ω‖`∞(Λ∪−Λ) 6 1 then we define the product

pω :=
∏
λ∈Λ

(
1 +

ω(λ)λ+ ω(λ−1)λ−1

2

)
. (2.1.4)

As before such a product is called a Riesz product and is regarded as a

measure. Again it is easy to see that it is real and non-negative from which

it follows that ‖pω‖ = p̂ω(0Ĝ). Further expanding out the product reveals

that supp p̂ω ⊂ 〈Λ〉.
We had an easy time computing the Fourier transform of Riesz products

in Fn2 . In general it is more complicated. We can expand out the product in
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(2.1.4) to see that:

p̂ω(γ) =
∑

m∈{−1,0,1}Λ:m.Λ=γ

∏
λ∈Λ:
mλ 6=0

ω(λmλ)

2
. (2.1.5)

To keep track of this we say that p̃, defined on {−1, 0, 1}Λ, is a formal Fourier

transform1 for p ∈M(G) if

p̂(γ) =
∑

m:m.Λ=γ

p̃(m) for all γ ∈ Ĝ. (2.1.6)

The measures which we are interested in are of the form

p :=

∫
ptωdτ(t),

for ω ∈ `∞(Λ ∪ −Λ) hermitian with ‖ω‖`∞(Λ∪−Λ) 6 1, and τ a real measure

on [−1, 1]. It follows from (2.1.5) and linearity of the Fourier transform that

p̃ defined by

p̃(m) :=

∫
t|m|dτ(t).

∏
λ∈Λ:
mλ 6=0

ω(λmλ)

2
for all m ∈ {−1, 0, 1}Λ, (2.1.7)

is a formal Fourier transform for p.

If Λ is dissociated then when γ = 0Ĝ there is only one summand in the

expression for p̂ω(γ) given in (2.1.5) and that has a value of 1, so

‖pω‖ = p̂ω(0Ĝ) = 1. (2.1.8)

Dissociativity makes computing the Fourier transform easy for γ = 0Ĝ by

restricting the number of non-zero summands in (2.1.5); a lemma of Rider’s

[Rid66] provides a result for more general γ:

Lemma 2.1.10. Suppose that Λ is a dissociated set of characters on G.

1Formal Fourier transforms are not in general unique.
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Then for all γ ∈ Ĝ

|{m ∈ {−1, 0, 1}Λ : |m| = r,m.Λ = γ}| 6 2r.

Proof. Let ω be the hermitian function which takes Λ to 1. For this choice

of ω (2.1.5) is

p̂ω(γ) =
∑
r>0

2−r|{m ∈ {−1, 0, 1}Λ : |m| = r,m.Λ = γ}|

But |p̂ω(γ)| 6 ‖pω‖ = 1 since Λ is dissociated which yields the conclusion.

Proposition 2.1.11. Suppose that Λ is a dissociated set of characters on

G with no elements of order 2 and ω ∈ `∞(Λ ∪ −Λ) is hermitian and has

‖ω‖`∞(Λ∪−Λ) 6 1. Then for any η ∈ (0, 1] there is a measure νη ∈M(G) such

that

ν̂η|Λ∪−Λ = ω, ‖νη‖1 � (1 + log η−1) and |ν̂η(γ)| 6 η for all γ 6∈ Λ ∪ −Λ.

Proof. Fix an integer l > 1 to be optimized later and let τ2l be the measure

yielded by Lemma 2.1.9. Define

p :=

∫
ptωdτ2l(t),

and let p̃ be the formal Fourier transform for p defined by (2.1.7). p̃(m) = 0

if |m| = 0 by definition of τ2l and p̃, so∣∣∣∣∣∣∣∣p̂(γ)−
∑
|m|=1
m.Λ=γ

p̃(m)

∣∣∣∣∣∣∣∣ 6
∑
r>2

∑
|m|=r
m.Λ=γ

|p̃(m)| by definition (2.1.6),

6
∑
r>2l

∑
|m|=r
m.Λ=γ

|p̃(m)| since

∫
trdτ2l(t) = 0 for r 6 2l,

6
∑
r>2l

sup
|m|=r
m.Λ=γ

|p̃(m)||{m : |m| = r,m.Λ = γ}|.
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Now Λ is dissociated, so Lemma 2.1.10 applies to give∣∣∣∣∣∣∣∣p̂(γ)−
∑
|m|=1
m.Λ=γ

p̃(m)

∣∣∣∣∣∣∣∣ 6
∑
r>2l

2r sup
|m|=r
m.Λ=γ

|p̃(m)|,

6
∑
r>2l

2r
∫
trdτ2l(t)(2

−1‖ω‖`∞(Λ∪−Λ))
r

6
∑
r>2l

2(2−1‖ω‖`∞(Λ∪−Λ))
r since |

∫
trdτ2l(t)| 6 21−r,

6 21−2l‖ω‖`∞(Λ∪−Λ). (2.1.9)

Now let l be such that 23−2l 6 η but l � (1 + log η−1) and put ν
(1)
η := 2p.

Then

(i). If γ ∈ Λ ∪ −Λ then

∑
|m|=1
m.Λ=γ

p̃(m) =

∫
tdτ2l(t)

ω(γ)

2
=
ω(γ)

2

since Λ has no elements of order 2. Hence by (2.1.9)

|ν̂(1)
η (γ)− ω(γ)| 6 22−2l‖ω‖`∞(Λ∪−Λ) 6 2−1‖ω‖`∞(Λ∪−Λ). (2.1.10)

(ii). If γ 6∈ Λ ∪ −Λ then ∑
|m|=1
m.Λ=γ

p̃(m) = 0,

so by (2.1.9)

|ν̂(1)
η (γ)| 6 2−1η‖ω‖`∞(Λ∪−Λ). (2.1.11)

(iii). ‖ν(1)
η ‖ 6 2‖τ2l‖ by p and the triangle inequality.

(iv). ν̂
(1)
η |Λ∪−Λ is hermitian since τ2l is real.

We can apply the foregoing recursively to the hermitian functions ω, 2(ω −
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ν
(1)
η )|Λ∪−Λ, 2(2(ω − ν(1)

η ) − ν(2)
η )|Λ∪−Λ,... to get a sequence of measures ν

(1)
η ,

ν
(2)
η , ν

(3)
η ,... such that:

(i). If γ ∈ Λ ∪ −Λ then

|
n∑
k=1

2−(k−1)ν̂
(k)
η (γ)− ω(γ)| 6 2−n.

(ii). If γ 6∈ Λ ∪ −Λ then

|
n∑
k=1

2−(k−1)ν̂
(k)
η (γ)| 6

n∑
k=1

2−(k−1).
η

2
6 η.

(iii).

‖
n∑
k=1

2−(k−1)ν(k)
η ‖ 6

n∑
k=1

2−(k−1)‖ν(k)
η ‖ 6 22‖τ2l‖

The sum
∑n

k=1 2−(k−1)ν
(k)
η converges to a measure νη ∈ M(G) with the re-

quired properties since ‖τ2l‖ � l� (1 + log η−1).

Finally we modify the above proposition so that the Fourier transform is

small on −Λ \ Λ.

Proof of Proposition 2.1.5. Note that the three element set H := {z ∈ C :

z3 = 1} is a subgroup of S1 under multiplication. Let G′ := G × H and

identify its dual with Ĝ×(Z/3Z). Let Λ′ = Λ×{1+3Z}, which is dissociated

since Λ is dissociated, and has no elements of order 2 since 1 + 3Z is not of

order 2 in Z/3Z. Let ω′ be the hermitian map on Λ′ ∪ −Λ′ induced by

ω′(λ, 1 + 3Z) := ω(λ). Apply Proposition 2.1.11 to G′, Λ′ and ω′ to get the

measure νη ∈M(G′). Let µη be the measure induced by

f 7→
∫

(x,z)∈G′
f(x)zdνη(x, z).
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If γ ∈ Ĝ then

µ̂η(γ) =

∫
(x,z)∈G′

γ(x)zdνη(x, z) = ν̂η(γ, 1 + 3Z).

We verify the three properties of µη from the corresponding properties of νη:

(i). If λ ∈ Λ then µ̂η(λ) = ν̂η(λ, 1 + 3Z) = ω′(λ, 1 + 3Z) = ω(λ).

(ii).

‖µη‖ = sup
f :‖f‖L∞(µG)61

∣∣∣∣∫
(x,z)∈G′

f(x)zdνη(x, z)

∣∣∣∣ 6 ‖νη‖ � (1 + log η−1).

(iii). If γ 6∈ Λ then (γ, 1 + 3Z) 6∈ Λ′ ∪ −Λ′ so |µ̂η(γ)| 6 η.

2.1.4 Remarks on Theorem 2.1.2

The technique of applying Lemma 2.1.3 to reduce Theorem 2.1.2 to Propo-

sition 2.1.4 is used by Chang, [Cha02], in the proof of Theorem 2.1.1. The

analogue of Proposition 2.1.4 in that case is proved using the dual formu-

lation of Rudin’s Inequality, which states that if Λ is a dissociated set of

characters on G and f ∈ L2(µG) then

‖f̂ |Λ‖2 �
√

p

p− 1
‖f‖p for 1 < p 6 2.

Halász, [Hal81], uses the inner product technique of Proposition 2.1.4 to prove

a non-Fourier result in discrepancy theory and employs a Riesz product (for a

different Hilbert space) as the auxiliary measure. An exposition of his result

may be found in Chazelle [Cha00] and this was the original motivation for

our result.

Green pointed out the fact that Méla, in [Mél82], had already used the

method of linear combinations of Riesz products to construct the auxiliary

measure we require. Méla uses it as an example to show that a result of
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his regarding ε-idempotent measures is essentially best possible. In fact it

follows from Méla’s work that essentially no better auxiliary measure than

the one we have constructed exists.

2.2 Fourier analysis on Bohr sets

Our attention now turns to developing the ‘approximate groups’ which were

mentioned at the start of the chapter, and Fourier analysis ‘local’ to them.

If Γ is a set of characters then we define the annihilator of Γ to be

Γ⊥ := {x ∈ G : γ(x) = 1 for all γ ∈ Γ}.

The annihilator is a subgroup of G. It is easy to localize the Fourier transform

to x′ + Γ⊥: The local transform is the map

L1(x′ + µΓ⊥)→ `∞(Ĝ); f 7→ (fd(x′ + µΓ⊥))∧,

where we recall the measure x′+µΓ⊥ denotes the measure µΓ⊥ translated by

x′. Note that the right hand side is constant on cosets of Γ⊥⊥ (defined in the

obvious manner) and so can be thought of as an element of `∞(Ĝ/Γ⊥⊥).

Bourgain, in [Bou99], observed that one can localize the Fourier transform

to translates of typical ‘approximate’ annihilators and retain approximate

versions of a number of the standard results for the Fourier transform on finite

abelian groups. Since his original work various expositions and extensions

have appeared most notably in the various papers of Green and Tao. Indeed

all the results of this section can be found in [GT08], for example.

Throughout the remainder of the section Γ is a set of characters on G

and δ ∈ (0, 1]. We can define a natural valuation on S1, namely

‖z‖ :=
1

2π
inf
n∈Z
|2πn+ arg z|,

which can be used to measure how far γ(x) is from 1. Consequently we define
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a prototype for an approximate annihilator:

B(Γ, δ) := {x ∈ G : ‖γ(x)‖ 6 δ for all γ ∈ Γ},

called a Bohr set. A translate of such a set is called a Bohr neighborhood.

We adopt the convention that if B(Γ, δ) is a Bohr set then the size of Γ is

denoted by d.

The following simple averaging argument will be very useful. We include

the proof, which appears in many places, but in particular in [TV06], for

completeness.

Lemma 2.2.1. Suppose that B(Γ, δ) is a Bohr set. Then µG(B(Γ, δ)) > δd

where, as our convention states, d := |Γ|.

Proof. For each θ ∈ TΓ define the set

Bθ := {x ∈ G : ‖γ(x)− exp(2πiθγ)‖ 6 δ/2 for all γ ∈ Γ} .

If x′ ∈ Bθ then the map x 7→ x−x′ is an injection from Bθ to B(Γ, δ), whence

µG(Bθ) 6 µG(B(Γ, δ)).

If we pix θ uniformly at random, then for a fixed x ∈ G it is easy to see

that P(x ∈ Bθ) = δd. It follows by linearity of expectation that EµG(Bθ) = δd

from which the bound follows.

Hence we write βΓ,δ for the measure induced on B(Γ, δ) by µG, normalised

so that ‖βΓ,δ‖ = 1. This is sometimes referred to as the normalised Bohr

cutoff.

Annihilators are subgroups of G, a property which, at least in an ap-

proximate form, we would like to recover. Suppose that η ∈ (0, 1]. Then

B(Γ, δ) + B(Γ, ηδ) ⊂ B(Γ, (1 + η)δ). If B(Γ, (1 + η)δ) is not much bigger

than B(Γ, δ) then we have a sort of approximate additive closure in the sense

that B(Γ, δ) + B(Γ, ηδ) ≈ B(Γ, (1 + η)δ). Not all Bohr sets have this prop-

erty, however, Bourgain showed that typically they do. For our purposes we

have the following proposition.
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Proposition 2.2.2. Suppose that Γ a set of d characters on G and δ ∈ (0, 1].

There is an absolute constant cR > 0 and a δ′ ∈ [δ/2, δ) such that

µG(B(Γ, (1 + κ)δ′))

µG(B(Γ, δ′))
= 1 +O(|κ|d)

whenever |κ|d 6 cR.

This result is not as easy as the rest of the section. It uses a covering

argument; a nice proof can be found in [GT08], but see also the proof of

Proposition 2.4.5. We say that δ′ is regular for Γ or that B(Γ, δ′) is regular

if
µG(B(Γ, (1 + κ)δ′))

µG(B(Γ, δ′))
= 1 +O(|κ|d) whenever |κ|d 6 cR.

It is regular Bohr sets to which we localize the Fourier transform and we

begin by observing that regular Bohr cutoffs are approximately translation

invariant and so function as normalised approximate Haar measures.

Lemma 2.2.3. Suppose that B(Γ, δ) is a regular Bohr set. If y ∈ B(Γ, δ′)

then ‖(y + βΓ,δ) − βΓ,δ‖ � dδ′δ−1 where we recall that y + βΓ,δ denotes the

measure βΓ,δ translated by y.

Proof. Note that supp ((y + βΓ,δ)− βΓ,δ) ⊂ B(Γ, δ+ δ′)\B(Γ, δ− δ′) whence

‖(y + βΓ,δ)− βΓ,δ‖ 6
µG(B(Γ, δ + δ′) \B(Γ, δ − δ′))

µG(B(Γ, δ))
� dδ′δ−1

by regularity.

In applications the following two simple corollaries will be useful but they

should be ignored until they are used.

Corollary 2.2.4. Suppose that B(Γ, δ) is a regular Bohr set. If µ ∈ M(G)

has suppµ ⊂ B(Γ, δ′) then ‖βΓ,δ ∗ µ− βΓ,δ

∫
dµ‖ � ‖µ‖dδ′δ−1.

Proof. The measures βΓ,δ∗µ and βΓ,δ

∫
dµ agree inside B(Γ, δ−δ′) and outside

B(Γ, δ + δ′), furthermore ‖βΓ,δ ∗ µ‖ 6 ‖µ‖ and ‖βΓ,δ

∫
dµ‖ 6 ‖µ‖, whence

‖βΓ,δ ∗ µ− βΓ,δ

∫
dµ‖ � ‖µ‖µG(B(Γ, δ + δ′) \B(Γ, δ − δ′))

µG(B(Γ, δ))
� ‖µ‖dδ′δ−1
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by regularity.

Corollary 2.2.5. Suppose that B(Γ, δ) is a regular Bohr set. If f ∈ L∞(µG)

then

sup
x∈G
‖f ∗ βΓ,δ − f ∗ βΓ,δ(x)‖L∞(x+βΓ,δ′ )

� ‖f‖L∞(µG)dδ
′δ−1.

Proof. Note that

|f ∗ βΓ,δ(x+ y)− f ∗ βΓ,δ(x)| = |f ∗ ((−y + βΓ,δ)− βΓ,δ)(x)|

6 ‖f‖L∞(µG)‖(−y + βΓ,δ)− βΓ,δ‖.

The result follows by Lemma 2.2.3.

With an approximate Haar measure we are in a position to define the local

Fourier transform: Suppose that x′+B(Γ, δ) is a regular Bohr neighborhood

(defined in the obvious way). Then we define the Fourier transform local to

x′ +B(Γ, δ) by

L1(x′ + βΓ,δ)→ `∞(Ĝ); f 7→ (fd(x′ + βΓ,δ))
∧.

The translation of the Bohr set by x′ simply twists the Fourier transform and

is unimportant for the most part so we tend to restrict ourselves to the case

when x′ = 0G.

f̂dµΓ⊥ was constant on cosets of Γ⊥⊥. In the approximate setting we have

an approximate analogue on which f̂dβΓ,δ does not vary too much. There

are a number of possibilities:

{γ : |1− γ(x)| 6 ε for all x ∈ B(Γ, δ)} for ε ∈ (0, 1]

{γ : |1− β̂Γ,δ(γ)| 6 ε} for ε ∈ (0, 1]

{γ : |β̂Γ,δ(γ)| > ε} for ε ∈ (0, 1].

In applications each of these classes of sets is useful and so we should like all

of them to be approximately equivalent. There is a clear chain of inclusions

between the classes, where the first is contained in the second is contained in
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the third for all ε ∈ (0, 1]. For a small cost in the width of the Bohr set we

can ensure that the sets in the third class are contained in those in the first.

Lemma 2.2.6. Suppose that B(Γ, δ) is a regular Bohr set. Suppose that

η1, η2 > 0. Then there is a δ′ � η1η2δ/d such that

{γ : |β̂Γ,δ(γ)| > η1} ⊂ {γ : |1− γ(x)| 6 η2 for all x ∈ B(Γ, δ′)}.

Proof. If x ∈ B(Γ, δ′) then we have

η1|1− γ(x)| 6 |β̂Γ,δ(γ)||1− γ(x)| = | ̂((x+ βΓ,δ)− βΓ,δ)(γ)| � dδ′δ−1

by Lemma 2.2.3. It follows that we may pick δ′ � η1η2δ/d such that |1 −
γ(x)| 6 η2 for all x ∈ B(Γ, δ′).

2.3 Local spectral structures

In §2.1 we recorded four different results regarding the structure of collections

of characters supporting large values of the Fourier transform; in this section

we prove local versions of these.

In [GT08] Green and Tao localized (2.1.1) when they proved the following

proposition.

Proposition 2.3.1 (Localized (2.1.1)). Suppose that B(Γ, δ) is a regular

Bohr set. Suppose that f ∈ L2(βΓ,δ) and ε, η ∈ (0, 1]. Write Lf for the

quantity ‖f‖L2(βΓ,δ)‖f‖
−1
L1(βΓ,δ)

. Then there is a set Λ of characters and a

δ′ ∈ (0, 1] with

|Λ| � ε−2L2
f and δ′ � ε2ηδ/dL2

f ,

such that

{γ ∈ Ĝ : |f̂dβΓ,δ(γ)| > ε‖f‖L1(βΓ,δ)}

is contained in

{γ ∈ Ĝ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′)}.
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To see how this is a localization of (2.1.1) consider the case whenB(Γ, δ) =

G. In this instance once can essentially ignore δ′ and we have the conclusion

that the characters supporting the large values of f̂ , that is the set ∆ := {γ :

|f̂(γ)| > ε‖f‖L1(µG)}, are contained in the set

{γ : γ(x) ≈ 1 for all x for which λ(x) ≈ 1 for all λ ∈ Λ}

where Λ is a set of size O(ε−2‖f‖2
L2(µG)‖f‖

−2
L1(µG)). Now this set is in fact much

larger than Λ since it contains all smaller linear combinations of elements of

Λ. However, as we have mentioned before, this does not turn out to be an

important difference.

As it happens, it is even easier to prove a local version of (2.1.2):2

Proposition 2.3.2 (Localized (2.1.2)). Suppose that B(Γ, δ) is a regular

Bohr set. Suppose that f ∈ A(G) and ε, η ∈ (0, 1]. Write Af for the quantity

‖f‖A(G)‖f‖−1
L∞(βΓ,δ)

. Then there is a set Λ of characters and a δ′ ∈ (0, 1] with

|Λ| � ε−1Af and δ′ � εηδ/dAf ,

such that

{γ ∈ Ĝ : |f̂dβ(γ)| > ε‖f‖L∞(βΓ,δ)}

is contained in

{γ ∈ Ĝ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′)}.

We shall not concern ourselves with the proof of Proposition 2.3.2 because

it is simpler than the proof of Proposition 2.3.1 and will in any case follow

from the forthcoming local version of Theorem 2.1.2.

The objective of this section, then, is to prove local versions of Chang’s

Theorem (Theorem 2.1.1) and Theorem 2.1.2. Specifically we shall prove the

following two results.

2In actual fact one might argue that a local version of (2.1.2) would have Af equal to
‖f1B(Γ,δ)‖A(G)‖f‖−1

L∞(βΓ,δ)
, however it is most useful for our work to work with the version

of Af which we have chosen.
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Proposition 2.3.3 (Localized Chang’s Theorem). Suppose that B(Γ, δ) is

a regular Bohr set. Suppose that f ∈ L2(βΓ,δ) and ε, η ∈ (0, 1]. Write Lf for

the quantity ‖f‖L2(βΓ,δ)‖f‖
−1
L1(βΓ,δ)

. Then there is a set of characters Λ and a

δ′ ∈ (0, 1] with

|Λ| � ε−2(1 + logLf ) and δ′ � δηε2/d2(1 + logLf ),

such that

{γ ∈ Ĝ : |f̂dβΓ,δ(γ)| > ε‖f‖L1(βΓ,δ)}

is contained in

{γ ∈ Ĝ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′)}.

Proposition 2.3.4 (Localized Theorem 2.1.2). Suppose that B(Γ, δ) a reg-

ular Bohr set. Suppose that f ∈ A(G) and ε, η ∈ (0, 1]. Write Af for

the quantity ‖f‖A(G)‖f‖−1
L∞(βΓ,δ)

. Then there is a set of characters Λ and a

δ′ ∈ (0, 1] with

|Λ| � ε−1(1 + logAf ) and δ′ � ε2ηδ/d2(1 + logAf ),

such that

{γ ∈ Ĝ : |f̂dβΓ,δ(γ)| > ε‖f‖L∞(βΓ,δ)}

is contained in

{γ ∈ Ĝ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′)}.

A key tool in the proof of Chang’s Theorem and Theorem 2.1.2 is that of

dissociativity; in the local setting we use the following variant. If S is a non-

empty symmetric neighborhood of 0Ĝ then we say that Λ is S-dissociated

if

m ∈ {−1, 0, 1}Λ and m.Λ ∈ S implies that m ≡ 0.

Vanilla dissociativity corresponds to taking S = {0Ĝ}, and typically in the

local setting S will be a set of characters at which β̂Γ,δ is large for some Bohr
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set B(Γ, δ).

We require the following local version of Lemma 2.1.3.

Lemma 2.3.5. Suppose that B(Γ, δ) is a regular Bohr set. Suppose that

η′, η ∈ (0, 1] and ∆ is a set of characters on G. If Λ is a maximal {γ :

|β̂Γ,δ(γ)| > η′}-dissociated subset of ∆ then there is a δ′ � min{η/|Λ|, η′ηδ/d}
such that

∆ ⊂ {γ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′)}.

Then Proposition 2.3.3 and Proposition 2.3.4 follow from this lemma and

the next two lemmas respectively.

Lemma 2.3.6. Suppose that B(Γ, δ) is a regular Bohr set. Suppose that

f ∈ L2(βΓ,δ) and ε, η ∈ (0, 1]. Write Lf for the quantity ‖f‖L2(βΓ,δ)‖f‖
−1
L1(βΓ,δ)

.

Then there is a δ′ � ε2δ/d(1 + logLf ) regular for Γ such that if Λ is a {γ :

|β̂Γ,δ′(γ)| > 1/3}-dissociated subset of {γ ∈ Ĝ : |f̂dβΓ,δ(γ)| > ε‖f‖L1(βΓ,δ)}
then

|Λ| � ε−2(1 + logLf ).

Lemma 2.3.7. Suppose that B(Γ, δ) is a regular Bohr set. Suppose that

f ∈ A(G) and ε, η ∈ (0, 1]. Write Af for the quantity ‖f‖A(G)‖f‖−1
L∞(βΓ,δ)

.

Then there is a δ′ � ε2δ/d(1 + logAf ) regular for Γ such that if Λ is a {γ :

|β̂Γ,δ′(γ)| > 1/3}-dissociated subset of {γ ∈ Ĝ : |f̂dβΓ,δ(γ)| > ε‖f‖L∞(βΓ,δ)}
then

|Λ| � ε−1(1 + logAf ).

2.3.1 The proof of Lemma 2.3.5

Lemma 2.1.3 corresponds to the case S = {0Ĝ} of the following.

Lemma 2.3.8. Suppose that S is a non-empty symmetric neighborhood of

0Ĝ. Suppose that ∆ is a set of characters on G and Λ is a maximal S-

dissociated subset of ∆. Then ∆ ⊂ 〈Λ〉+ S.

Proof. If λ0 ∈ ∆ \ (〈Λ〉 + S) then we put Λ′ := Λ ∪ {λ0}, which is a strict

superset of Λ, and a subset of ∆. It turns out that Λ′ is also S-dissociated
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which contradicts the maximality of Λ. Suppose that m : Λ′ → {−1, 0, 1}
and m.Λ′ ∈ S. Then we have three possibilities for the value of mλ0 :

(i). m.Λ′ = λ0 + m|Λ.Λ, in which case λ0 ∈ −m|Λ.Λ + S ⊂ 〈Λ〉 + S - a

contradiction;

(ii). m.Λ′ = −λ0 + m|Λ.Λ, in which case λ0 ∈ m|Λ.Λ − S ⊂ 〈Λ〉 + S - a

contradiction;

(iii). m.Λ′ = m|Λ.Λ, in which case m|Λ ≡ 0 since Λ is S-dissociated and

hence m ≡ 0.

It follows that m.Λ′ ∈ S ⇒ m ≡ 0 i.e. Λ′ is S-dissociated as claimed.

Lemma 2.3.5 then follows from the above and the next lemma.

Lemma 2.3.9. Suppose that B(Γ, δ) is a regular Bohr set. Suppose that

η′, η ∈ (0, 1] and Λ is a set of characters on G. Then there is a δ′ �
min{η/|Λ|, η′ηδ/d} such that

〈Λ〉+ {γ : |β̂Γ,δ(γ)| > η′} ⊂ {γ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′)}.

Proof. The lemma has two parts.

(i). If λ ∈ 〈Λ〉 then

|1− λ(x)| 6
∑
λ′∈Λ

|1− λ′(x)|,

so there is a δ′′ � η/|Λ| such that

〈Λ〉 ⊂ {γ : |1− γ(x)| 6 η/2 for all x ∈ B(Λ, δ′′)}.

(ii). By Lemma 2.2.6 there is a δ′′′ � ηη′δ/d such that

{γ : |β̂(γ)| > η′} ⊂ {γ : |1− γ(x)| 6 η/2 for all x ∈ B(Γ, δ′′′)}.

Taking δ′ = min{δ′′, δ′′′} we have the result by the triangle inequality.
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2.3.2 The proof of Lemma 2.3.7

In both the proof of Lemma 2.3.7 and Lemma 2.3.6 we introduce some

smoothed measures. They are slightly different in each case so for this section

only we make the following definition.

Suppose that B(Γ, δ) is a regular Bohr set. For L ∈ N and κ ∈ (0, 1] we

write

β̃L,κΓ,δ := βΓ,(1−κ)δ ∗ βLΓ,κδ/L,

where βLΓ,κδ/L denotes the convolution of βΓ,κδ/L with itself L times. β̃L,κΓ,δ is

a good approximation to βΓ,δ in M(G):

‖β̃L,κΓ,δ − βΓ,δ‖ 6 ‖βΓ,δ(1−κ) ∗ µ− βΓ,δ(1−κ)‖+ ‖βΓ,δ(1−κ) − βΓ,δ‖

where µ = βLΓ,κδ/L, the convolution of βΓ,κδ/L with itself L times. We deal

with the first term using Corollary 2.2.4 which yields

‖βΓ,δ(1−κ) ∗ µ− βΓ,δ(1−κ)‖ � κd,

since suppµ ⊂ B(Γ, κδ). For the second term we have

‖βΓ,δ(1−κ) − βΓ,δ‖ 6 ‖βΓ,δ(1−κ) − βΓ,δ|B(Γ,δ(1−κ))‖+ ‖βΓ,δ|B(Γ,δ)\B(Γ,δ(1−κ))‖

=

(
1− µG(B(Γ, δ(1− κ)))

µG(B(Γ, δ))

)
+ ‖βΓ,δ|B(Γ,δ)\B(Γ,δ(1−κ))‖

= O(κd) + ‖βΓ,δ|B(Γ,δ)\B(Γ,δ(1−κ))‖ by regularity,

= O(κd) +

(
µG(B(Γ, δ))− µG(B(Γ, δ(1− κ)))

µG(B(Γ, δ))

)
= O(κd) by regularity.

It follows that ‖β̃L,κΓ,δ − βΓ,δ‖ = O(κd) and hence if f ∈ L∞(βΓ,δ) we have

|f̂dβ̃L,κΓ,δ (γ)− f̂dβΓ,δ(γ)| � ‖f‖L∞(βΓ,δ)κd. (2.3.1)

The proof now follows the proof of Proposition 2.1.4 with this additional

ingredient.
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Proof of Lemma 2.3.7. We begin by fixing κ and L in the smoothed measure

β̃L,κΓ,δ so that we may dispense with the superscripts and subscripts and simply

write β̃. Take L = 2R, where R will be chosen later and κ� ε/d so that

|f̂dβ̃L,κΓ,δ (γ)− f̂dβΓ,δ(γ)| 6 2−1ε‖f‖L∞(βΓ,δ),

which we may certainly do by (2.3.1), and also so that δ′ := κδ/L is regular

for Γ. As usual this last requirement is possible by Proposition 2.2.2. It

follows that

|f̂dβΓ,δ(γ)| > ε‖f‖L∞(βΓ,δ) ⇒ |f̂dβ̃(γ)| > 2−1ε‖f‖L∞(βΓ,δ).

Henceforth write β for βΓ,δ and β′ for βΓ,δ′ .

Suppose that Λ is a {γ : |β̂′(γ)| > 1/3}-dissociated subset of {γ ∈ Ĝ :

|f̂dβγ)| > ε‖f‖L∞(β)} and that Λ′ ⊂ Λ has size at most R. Λ′ is certainly

still {γ : |β̂′(γ)| > 1/3}-dissociated. We define

ω(λ) :=
f̂dβ̃(λ)

|f̂dβ̃(λ)|
for all λ ∈ Λ′.

ω ∈ `∞(Λ′), ‖ω‖`∞(Λ′) 6 1 and Λ′ is dissociated (since it is {γ : |β̂′(γ)| > 1/3}-
dissociated) so we may apply Proposition 2.1.5 to get the auxiliary measure

µη. To leverage the stronger dissociativity condition we introduce a Riesz

product:

q :=
∏
λ∈Λ′

(
1 +

λ+ λ

2

)
.

Recall (from §2.1.3 if necessary) that q is non-negative and since Λ′ is cer-

tainly dissociated, ‖q‖ = 1.

Plancherel’s Theorem gives

〈fdβ̃, µη ∗ q〉 =
∑
γ∈Ĝ

f̂dβ̃(γ)q̂(γ)µ̂η(γ).

We begin by bounding the right hand side from below using the bound on
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|µ̂η(λ)| for λ 6∈ Ĝ.

|
∑
γ∈Ĝ

f̂dβ̃(γ)q̂(γ)µ̂η(γ)| = |
∑
λ∈Λ′

f̂dβ̃(λ)q̂(λ)µ̂η(λ) +
∑
λ 6∈Λ′

f̂dβ̃(λ)q̂(λ)µ̂η(λ)|

> |
∑
λ∈Λ′

f̂dβ̃(λ)q̂(λ)µ̂η(λ)| − |
∑
λ 6∈Λ′

f̂dβ̃(λ)q̂(λ)µ̂η(λ)|

> |
∑
λ∈Λ′

f̂dβ̃(λ)q̂(λ)ω(λ)| − η
∑
λ∈Ĝ

|q̂(λ)||f̂dβ̃(λ)|.

Now q̂(λ) > 1/2 if λ ∈ Λ′, so

|
∑
γ∈Ĝ

f̂dβ̃(γ)q̂(γ)µ̂η(γ)| > 2−1
∑
λ∈Λ′

|f̂dβ̃(λ)|

−η
∑
λ∈Ĝ

∑
γ∈Ĝ

|q̂(λ)||f̂(γ)̂̃β(λ− γ)|

> 2−1
∑
λ∈Λ′

|f̂dβ̃(λ)|

−η‖f‖A(G) sup
γ∈Ĝ

∑
λ∈Ĝ

|q̂(λ)||̂̃β(λ− γ)|.

For any γ ∈ Ĝ we can estimate the last sum in a manner independent of

γ by using a positivity argument:∑
λ∈Ĝ

|q̂(λ)||̂̃β(λ− γ)| =
∑
λ∈Ĝ

|q̂(γ − λ)||̂̃β(λ)| by symmetry of ̂̃β,

=
∑
λ∈Ĝ

|q̂(γ − λ)||β̂(λ)β̂′(λ)L| by definition of ̂̃β,

6
∑
λ∈Ĝ

|q̂(γ − λ)||β̂′(λ)|L since |β̂(λ)| 6 ‖β‖ = 1,

= q̂dβ′L(γ) since L is even and q̂ > 0,

6 ‖qdβ′L‖

= q̂dβ′L(0Ĝ) by non-negativity of qdβ′L,

=
∑
λ∈Ĝ

q̂(λ)|β̂′(λ)|L by symmetry of q̂.
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We estimate this by splitting the range of summation into two parts:∑
λ∈Ĝ

q̂(λ)|β̂′(λ)|L 6
∑

λ:|β̂′(λ)|>1/3

q̂(λ)|β̂′(λ)|L +
∑

λ:|β̂′(λ)|61/3

q̂(λ)|β̂′(λ)|L. (2.3.2)

(i). For the first sum: |q̂(λ)| 6 ‖q‖1 = 1 and |β̂′(λ)L| 6 ‖β′L‖ = 1 so that

each summand is at most 1, furthermore supp q̂ ⊂ 〈Λ′〉 so∑
λ:|β̂′(λ)|>1/3

q̂(λ)|β̂′(λ)|L 6
∑

λ∈〈Λ′〉:|β̂′(λ)|>1/3

1.

This range of summation contains at most 1 element by {γ : |β̂′(γ)| >
1/3}-dissociativity of Λ′, and hence the sum is bounded above by 1.

(ii). For the second sum: |q̂(λ)| 6 ‖q‖1 = 1 and |β̂′(λ)L| 6 3−L for λ in the

range of summation so that each summand is at most 9−|Λ
′|, however

supp q̂ ⊂ 〈Λ′〉 and |〈Λ′〉| 6 3|Λ
′| so∑

λ:|β̂′(λ)|61/3

q̂(λ)|β̂′(λ)|L 6
∑
λ∈〈Λ′〉

9−|Λ
′| 6 1.

It follows that the right hand side of (2.3.2) is bounded above by 2, and

working backwards these estimates combine to show that∑
λ∈Ĝ

|q̂(λ)||̂̃β(λ− γ)| 6 2 for all γ ∈ Ĝ,

and hence that

|〈fdβ̃, µη ∗ q〉| > 2−1
∑
λ∈Λ′

|f̂dβ̃(λ)| − 2η‖f‖A(G). (2.3.3)

To estimate the inner product from above we have:

|〈fdβ̃, µη ∗ q〉| 6 ‖f‖L∞(β)‖β̃‖‖µη‖‖q‖1 � ‖f‖L∞(β)(1 + log η−1)

by the estimate for ‖µη‖ given in Proposition 2.1.5. Combining this with our
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lower bound for the inner product in (2.3.3) and the fact that if λ ∈ Λ′ then

|f̂dβ̃(λ)| > 2−1ε‖f‖L∞(β) gives

‖f‖L∞(β)(1 + log η−1) + η‖f‖A(G) � |Λ′|ε‖f‖L∞(β).

Choosing η−1 = ‖f‖A(G)‖f‖−1
L∞(β) yields that

|Λ′| � ε−1(1 + logAf ).

Let C be the absolute constant implicit in the notation on the right so that

|Λ′| 6 Cε−1(1 + logAf ) is always true, and set R := dCε−1(1 + logAf )e+ 1.

If |Λ| is a {γ : |β̂′(γ)| > 1/3}-dissociated set of size greater than R, then let

Λ′ be a subset of Λ of size R, which is automatically {γ : |β̂′(γ)| > 1/3}-
dissociated because Λ is {γ : |β̂′(γ)| > 1/3}-dissociated. By the above

Cε−1(1 + logAf ) < dCε−1(1 + logAf )e+ 1 = R = |Λ′| 6 Cε−1(1 + logAf ),

which is a contradiction and hence if Λ is {γ : |β̂′(γ)| > 1/3}-dissociated

then |Λ| < R� ε−1(1 + logAf ) as required.

2.3.3 Proof of Lemma 2.3.6

The proof has three main ingredients. The first is Rudin’s inequality, which

is the analogue of Proposition 2.1.5 for Chang’s Theorem.

Proposition 2.3.10 (Rudin’s Inequality). Suppose that Λ is a dissociated

set of characters on G. Then

‖f̂‖`2(Λ) �
√
p‖f‖Lp′ (µG) for all f ∈ Lp′(µG)

and all conjugate exponents p and p′ with p′ ∈ (1, 2].

For a proof of this see, for example, Chapter 5 of Rudin [Rud90].

The second ingredient in an almost-orthogonality lemma introduced by

Green and Tao to prove Proposition 2.3.1.
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Lemma 2.3.11 (Cotlar’s almost-orthogonality lemma). Suppose that v and

(wj) are elements of a complex inner product space. Then∑
j

|〈v, wj〉|2 6 〈v, v〉max
j

∑
i

|〈wi, wj〉|.

For a proof of this see, for example, Chapter VII of Stein [Ste93].

Finally we require some smoothed measures. This time they are a little

simpler.

Suppose that B(Γ, δ) is a regular Bohr set. We produce a range of

smoothed alternatives to the measure βΓ,δ; specifically suppose that L ∈ N
and κ ∈ (0, 1]. Then we may define

β̃L,κΓ,δ := βΓ,(1+κ)δ ∗ βLΓ,κδ/L,

where βLΓ,κδ/L denotes the convolution of βΓ,κδ/L with itself L times. This

measure has the property that it is supported on B(Γ, (1+2κ)δ) and uniform

on B(Γ, δ), indeed

β̃L,κΓ,δ |B(Γ,δ) =
µG|B(Γ,δ)

µG(B(Γ, (1 + κ)δ))
=

µG(B(Γ, δ))

µG(B(Γ, (1 + κ)δ))
.βΓ,δ. (2.3.4)

It follows that every f ∈ L1(βΓ,δ) has f̂dβΓ,δ well approximated by f̂dβ̃L,κΓ,δ .

Specifically

f̂dβ̃L,κΓ,δ (γ) = (1 +O(κd))f̂dβΓ,δ(γ) (2.3.5)

by regularity of B(Γ, δ).

We use almost-orthogonality and the smoothed measures to show the

following localization of Rudin’s Inequality. The proof of the lemma to which

this section is devoted then follows the usual proof of Chang’s Theorem.

Lemma 2.3.12. Suppose that B(Γ, δ) is a regular Bohr set and R is a natural

number. Then there is a δ′ � δ/dR regular for Γ such that if Λ is a {γ :

|β̂Γ,δ′(γ)| > 1/3}-dissociated set of size at most R then

‖f̂dβΓ,δ‖`2(Λ) �
√
p‖f‖Lp′ (βΓ,δ)

for all f ∈ Lp′(βΓ,δ)
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and all conjugate exponents p and p′ with p′ ∈ (1, 2].

Proof. Begin by fixing the level of smoothing (i.e. the parameters κ and L

of β̃L,κΓ,δ ) that we require and write β̃ for β̃L,κΓ,δ . Set L := 2R and recall (2.3.5):

ĝdβ̃(γ) = (1 +O(κd))ĝdβΓ,δ(γ) for all g ∈ L1(βΓ,δ);

so we can pick κ′ � d−1 such that for all κ 6 κ′

1

2
|ĝdβΓ,δ(γ)| 6 |ĝdβ̃(γ)| 6 3

2
|ĝdβΓ,δ(γ)| for all g ∈ L1(βΓ,δ).

By Proposition 2.2.2, we can take κ with κ′ > κ� d−1 such that δ′ := κδ/L

is regular. Henceforth write β for βΓ,δ and β′ for βΓ,δ′ .

Define the Riesz product

q(x) :=
∏
λ∈Λ

(
1 +

λ(x) + λ(x)

2

)
.

Recall (from §2.1.3 if necessary) that q is non-negative and that we can

compute the Fourier transform of q:

q̂(γ) =
∑

m:m.Λ=γ

2−|m|. (2.3.6)

Since Λ is {γ : |β̂′(γ)| > 1/3}-dissociated, it is certainly dissociated and

hence q̂(0Ĝ) = 1 and so, by non-negativity of q, ‖q‖ = 1.

Use q to define the map

T : L1(β)→ L1(G); g 7→ (gdβ) ∗ q,

and note that

‖Tg‖L1(µG) = ‖(gdβ) ∗ q‖L1(µG) 6 ‖g‖L1(β)‖q‖ = ‖g‖L1(β)

by the triangle inequality. The following claim, which we defer proof of, is a

corresponding result for ‖Tg‖L2(µG).
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Claim. If g ∈ L2(β) then ‖Tg‖L2(µG) � ‖g‖L2(β).

Assuming this claim, by the Riesz-Thorin interpolation theorem we have

‖Tg‖Lp′ (µG) � ‖g‖Lp′ (β) for any p′ ∈ [1, 2]. (2.3.7)

Hence, if f ∈ Lp′(β) then

1

2
‖f̂dβ‖`2(Λ) 6 ‖f̂dβq̂‖`2(Λ) since q̂(λ) > 1/2 for all λ ∈ Λ,

= ‖T̂ f‖`2(Λ) by the definition of T,

� √
p‖Tf‖Lp′ (µG) by Rudin’s Inequality,

� √
p‖f‖Lp′ (β) by (2.3.7).

The lemma follows. It remains to prove the claim.

Proof of Claim. Begin by noting the following consequence of (2.3.4).

‖Tg‖2
L2(µG) =

(
µG(B(Γ, δ(1 + κ)))

µG(B(Γ, δ))

)2

‖(gdβ̃) ∗ q‖2
L2(µG). (2.3.8)

By Plancherel’s Theorem

‖(gdβ̃) ∗ q‖2
L2(µG) =

∑
γ∈Ĝ

|(̂gdβ̃)(γ)q̂(γ)|2 =
∑
γ∈Ĝ

|〈g, q̂(γ)γ〉L2(β̃)|
2.

Cotlar’s almost-orthogonality lemma applied to the second sum gives

‖(gdβ̃) ∗ q‖2
L2(µG) 6 〈g, g〉L2(dβ̃) max

γ

∑
γ′

|〈q̂(γ)γ, q̂(γ′)γ′〉L2(β̃)|

6 ‖g‖2
L2(dβ̃)

max
γ

∑
γ′

q̂(γ′)|̂̃β(γ − γ′)|.

For any γ ∈ Ĝ we can estimate the last sum in a manner independent of γ
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by using a positivity argument:∑
γ′∈Ĝ

q̂(γ′)|̂̃β(γ − γ′)| =
∑
γ′∈Ĝ

q̂(γ − γ′)|β̂(γ′)β̂′(γ′)L| by definition of β̃,

6
∑
γ′∈Ĝ

q̂(γ − γ′)|β̂′(γ′)|L

since |β̂(γ′)| 6 ‖β‖ = 1 and q̂ > 0,

= q̂dβ′L(γ) since L is even and q̂ > 0,

6 ‖q‖L1(β′L)

= q̂dβ′L(0Ĝ) by non-negativity of qdβ′L,

=
∑
γ′∈Ĝ

q̂(γ′)|β̂′(γ′)|L by symmetry of q̂.

We estimate this in turn by splitting the range of summation into two parts:∑
γ′∈Ĝ

q̂(γ′)|β̂′(γ′)|L 6
∑

γ′:|β̂′(γ′)|>1/3

q̂(γ′)|β̂′(γ′)|L +
∑

γ′:|β̂′(λ)|61/3

q̂(γ′)|β̂′(γ′)|L.

(2.3.9)

(i). For the first sum: |q̂(γ′)| 6 ‖q‖1 = 1 and |β̂′(γ′)L| 6 ‖β′L‖ = 1 so that

each summand is at most 1, furthermore supp q̂ ⊂ 〈Λ〉 so∑
γ′:|β̂′(γ′)|>1/3

q̂(γ′)|β̂′(γ′)|L 6
∑

γ′∈〈Λ〉:|β̂′(γ′)|>1/3

1.

This range of summation contains at most 1 element by {γ : |β̂′(γ)| >
1/3}-dissociativity of Λ, and hence the sum is bounded above by 1.

(ii). For the second sum: |q̂(γ′)| 6 ‖q‖1 = 1 and |β̂′(γ′)L| 6 3−L for γ′ in the

range of summation so that each summand is at most 9−|Λ|, however

supp q̂ ⊂ 〈Λ〉 and |〈Λ〉| 6 3|Λ| so∑
γ′:|β̂′(γ′)|61/3

q̂(γ′)|β̂′(γ′)|L 6
∑
γ′∈〈Λ〉

9−|Λ| 6 1.

It follows that the right hand side of (2.3.9) is bounded above by 2 and hence
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that

‖(gdβ̃) ∗ q‖2
L2(µG) 6 2‖g‖2

L2(β̃)
.

This, (2.3.8) and (2.3.4) yield

‖Tg‖2
L2(µG) 6 2

µG(B(Γ, δ(1 + κ)))

µG(B(Γ, δ))
‖g‖2

L2(β),

from which the claim follows by regularity.

Proof of Lemma 2.3.6. Fix R to be optimized later and suppose that Λ′ ⊂ Λ

has |Λ′| 6 R. By Lemma 2.3.12, for any p′ ∈ (1, 2] we have

|Λ′|.ε2‖f‖2
L1(βΓ,δ)

6
∑
λ∈Λ′

|f̂dβΓ,δ(λ)|2 = ‖f̂dβΓ,δ‖2
`2(Λ′) � p‖f‖2

Lp′ (βΓ,δ)
,

where p is the conjugate exponent of p′. The log-convexity of ‖.‖Lp′ (βΓ,δ)
gives

|Λ′| � ε−2p

(‖f‖L2(βΓ,δ)

‖f‖L1(βΓ,δ)

) 4
p

.

Setting p = 1 + logLf yields |Λ′| � ε−2(1 + logLf ). Let C > 0 be the

absolute constant implicit in this expression, so |Λ′| 6 Cε−2(1 + logLf ). Set

R = dCε−2(1 + logLf )e + 1. If |Λ| > R then let Λ′ be a subset of Λ of size

R. We then conclude that

R 6 Cε−2(1 + logLf ) 6 R− 1.

This contradiction ensures that |Λ| 6 R and the lemma is proved.

2.3.4 Remarks on the Proofs

The proofs Lemmas 2.3.7 and 2.3.6 are rather similar and one might expect to

be able to use the same smoothed measures for both. As it happens one can

use the simpler measures of Lemma 2.3.6 for Lemma 2.3.7. However, there is

some loss. One has to be willing to accept a version of Proposition 2.3.4 with
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‖f1B(Γ,δ)‖A(G) rather than ‖f‖A(G) in the expression for Af . Unfortunately in

applications we only have control over ‖f‖A(G), and ‖f1B(Γ,δ)‖A(G) may still

be large while this is small (consider, for example, G = Z/pZ for p a large

prime, f = 1G and B(Γ, δ) a centred interval around the origin of length

(p− 1)/2).

Rather than convolving with the Riesz product q, as we did in the proof

of Lemma 2.3.7 (and the proof of Lemma 2.3.6), one can construct a local

version of the auxiliary measure (respectively, Rudin’s Inequality) directly.

However, doing so seems only to serve to obfuscate the underlying construc-

tions with technical details.

2.4 Fourier analysis on Bourgain systems

In an exposition of Bourgain’s paper [Bou99], Tao (in work now summarized

in [TV06]) showed how to further relax the properties Bourgain required of

Bohr sets for their use as ‘approximate groups’. In view of this an abstract

formulation of ‘approximate groups’ is now possible. Indeed it is possible to

carry out a number (although not all) of the main results of this paper with

Bourgain systems in place of Bohr sets. This leads to technically slightly

weaker statements (Bohr sets have more structure than Bourgain systems)

although for most practical purposes they seem equivalent. The work of this

section is from the joint paper [GS08b] of Green and the author where these

structures were first formalized.

Before making a formal definition we shall try to understand the notion of

‘approximate group’ or, more properly, ‘approximate subgroup’ a little more

clearly. A subgroup of an abelian group G is a symmetric neighborhood of 0G

which is closed under addition. Bourgain noticed that in a number of cases

there are symmetric neighborhoods of 0G which are in some sense nearly

closed under addition and, furthermore, for many problems these structures

can replace subgroups. Suppose that B is a subset of Zd. Generically B+B

will need |B| translates of B to cover it; however, if B is the `∞(Zd) unit cube,

for example, then B+B is covered by 2d translates of B so is ‘approximately

closed’. Bourgain effectively restricted his attention to the balls we have just
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described. However, Frĕıman’s Theorem (which we will discuss in Chapter

3) has, as a consequence, that any symmetric neighborhood B of 0Gwith

B+B ⊂ T +B for some set T with |T | small enough looks a lot like the unit

cube of a suitable lattice. In view of this we make the following definition.

Definition (Bourgain systems). A Bourgain system B of dimension d is

a collection (Bρ)ρ∈(0,4] of subsets of G such that the following axioms are

satisfied:

bs1 (Nesting) If ρ′ 6 ρ we have Bρ′ ⊆ Bρ;

bs2 (Zero) 0G ∈ B0;

bs3 (Symmetry) If x ∈ Bρ then −x ∈ Bρ;

bs4 (Addition) For all ρ, ρ′ such that ρ+ ρ′ 6 4 we have Bρ +Bρ′ ⊆ Bρ+ρ′ ;

bs5 (Doubling) If ρ 6 1 then there is a set T of size at most 2d such that

B2ρ ⊂
⋃
t∈T t+Bρ.

We refer to µG(B1) as the density of the system B, and write µG(B) for this

quantity.

Note that if B is a Bourgain system of dimension d then it is also a

Bourgain system of dimension d′ for any d′ > d. This apparent ambiguity

will not be a problem in practice.

We define the analogue of normalized Bohr cutoffs for Bourgain systems:

Write βρ for the probability measure induced on Bρ by µG.

If B = (Bρ)ρ is a Bourgain system, then, for any λ ∈ (0, 1], so is the

dilated Bourgain system λB := (Bλρ)ρ.

The following easy averaging argument (c.f. the proof of Lemma 2.2.1)

concerning dilated Bourgain systems will be useful in the sequel.

Lemma 2.4.1. Suppose that B is a Bourgain system of dimension d, and

suppose that λ ∈ (0, 1]. Then λB is a Bourgain system of dimension d and

µG(λB) > (λ/2)dµG(B).
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The first important example of a Bourgain system is a system of Bohr

sets.

Lemma 2.4.2. Suppose that Γ is a set of characters and δ ∈ (0, 1]. Then

(B(Γ, δ))δ is a Bourgain system of dimension at most 2|Γ| and density at

least δ|Γ|.

Proof. All the properties are immediate except bs5. As with Lemma 2.2.1,

for each θ ∈ TΓ define the set

Bθ := {x ∈ G : ‖γ(x)− exp(2πiθγ)‖ 6 δ/2 for all γ ∈ Γ} .

If x′ ∈ Bθ then the map x 7→ x− x′ is an injection from Bθ to B(Γ, δ).

Putting

Θ =
∏
γ∈Γ

{−3δ/2,−δ/2, δ/2, 3δ/2}

we have that {Bθ : θ ∈ Θ} is a cover of B(Γ, 2δ) from which bs5 follows.

We now proceed to develop the basic theory of Bourgain systems, which

for the most part parallels the theory of Bohr sets developed earlier.

Lemma 2.4.3. Suppose that ρ 6 1. The group G may be covered by at most

(4/ρ)dµG(B)−1 translates of Bρ.

Proof. Pick T ⊂ G maximal such that the sets t + Bρ/2 are all disjoint. It

follows that each x ∈ G has x+Bρ/2 ∩ T +Bρ/2 6= ∅, whence

G ⊂ T +Bρ/2 −Bρ/2 ⊂ T +Bρ.

Moreover

|T | 6 1

µG(Bρ/2)
6 (4/ρ)dµG(B)−1,

yielding the result.

The intersection of two Bohr sets is (essentially) another Bohr set; the

following lemma addresses this fact in general.
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Lemma 2.4.4 (Intersections of Bourgain systems). Suppose that B(1), . . .B(k)

are Bourgan systems with dimension d1, . . . , dk respectively. Then B(1)∩· · ·∩
B(k) is a Bourgain system of dimension 2(d1 + · · ·+ dk) with

µG(B(1) ∩ · · · ∩ B(k)) > 2−3(d1+···+dk)µG(B(1)) . . . µG(B(k)).

Proof. It is trivial to verify properties bs1–bs4. To show bs5 suppose that

ρ 6 1. For each i there is a set Ti with |Ti| 6 22di such that B
(i)
2ρ ⊂ Ti +B

(i)
ρ/2.

It follows that

B
(1)
2ρ ∩ · · · ∩B

(k)
2ρ ⊂ (T1 +Bρ/2(1)) ∩ · · · ∩ (Tk +B

(k)
ρ/2).

Suppose that x ∈ (t1 +B
(1)
ρ/2)∩ · · · ∩ (tk +B

(k)
ρ/2). Then the map x′ 7→ x′−x is

an injection from this set into B
(1)
ρ ∩ · · · ∩ B(k)

ρ . It follows that we have bs5

with a set of size at most |T1| . . . |Tk| and the claimed bound follows.

It remains to obtain a lower bound for the density of this system. To do

this we apply Lemma 2.4.3 to cover G by at most 8diµG(B(i))−1 translates of

B
(i)
1/2. It follows by averaging that there are elements t1, . . . , tk such that

µG((t1 +B
(1)
1/2) ∩ · · · ∩ (tk +B

(k)
1/2)) > 8−(d1+···+dk)µG(B(1)) . . . µG(B(k)).

To compete the estimate we note that for fixed x ∈ (t1+B
(1)
1/2)∩· · ·∩(tk+B

(k)
1/2)

the map x′ 7→ x′ − x is an injection into B
(1)
1 ∩ · · · ∩B

(k)
1 .

If B and B′ are Bourgain systems and Bρ ⊂ B′ρ for all ρ then we say that

B is a Bourgain subsystem of B′. Clearly B ∩ B′ is always a subsystem of B
and B′.

As with Bohr sets not all Bourgain systems behave as well as we might

like. However, the following analogue of Proposition 2.2.2 basically asserts

that typically they do.

Proposition 2.4.5. Suppose B is a Bourgain system. There is an absolute

constant cR > 0 and a λ ∈ [1/2, 1) such that

µG(Bλ(1+κ))

µG(Bλ)
= 1 +O(d|κ|)
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whenever d|κ| 6 cR.

Proof. Let f : [0, 1] → R be the function f(a) := 1
d

log2 µG(B2a). Observe

that f is non-decreasing in a and that f(1)− f(0) 6 1. We claim that there

is an a ∈ [1
6
, 5

6
] such that |f(a + x)− f(a)| 6 3|x| for all |x| 6 1

6
. If no such

a exists then for every a ∈ [1
6
, 5

6
] there is an interval I(a) of length at most

1
6

having one endpoint equal to a and with
∫
I(a)

df >
∫
I

3dx. These intervals

cover [1
6
, 5

6
], which has total length 2

3
. A simple covering lemma [GK09,

Lemma 3.4] then allows us to pass to a disjoint subcollection I1 ∪ ... ∪ In of

these intervals with total length at least 1
3
. However we now have

1 >
∫ 1

0

df >
n∑
i=1

∫
Ii

df >
n∑
i=1

∫
Ii

3 dx >
1

3
.3,

a contradiction. It follows that there is indeed an a such that |f(a + x) −
f(a)| 6 3|x| for all |x| 6 1

6
. Setting λ := 2a, it is easy to see that

exp(−5dκ) 6
µG(B(1+κ)λ)

µG(Bλ)
6 exp(5dκ)

whenever d|κ| 6 1/10. Since 1− 2|x| 6 exp(x) 6 1 + 2|x| when |x| 6 1. The

result follows with cR = 1/10.

We say that B is regular if

µG(B1+κ)

µG(B1)
= 1 +O(d|κ|)

whenever d|κ| 6 cR.

As with Bohr sets it is regular Bourgain systems to which we localize

Fourier analysis.

Lemma 2.4.6. Suppose that B is a regular Bourgain system of dimension

d. If y ∈ Bκ then ‖(y + β1)− β1‖ � dκ, where we recall that y + β1 denotes

the measure β1 composed with translation by y.

Proof. Same as Lemma 2.2.3.
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In applications the following simple corollary will be useful but it should

be ignored until it is used.

Corollary 2.4.7. Suppose that B is a regular Bourgain system. If f ∈
L∞(µG) then

sup
x∈G
‖f ∗ β1 − f ∗ β1(x)‖L∞(x+βκ) � ‖f‖L∞(µG)dκ.

Proof. Same as Corollary 2.2.5.

Finally the following lemma ensures that the various candidates for the

dual of a Bourgain system are essentially equivalent.

Lemma 2.4.8. Suppose that B is a regular Bourgain system of dimension d

and that η1, η2 > 0. Then there is a κ� η1η2/d such that

{γ : |β̂1(γ)| > η1} ⊂ {γ : |1− γ(x)| 6 η2 for all x ∈ Bκ}.

Proof. Same as Lemma 2.2.6.
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Chapter 3

Additive structure and

Frĕıman’s Theorem

Sumsets are a fundamental object of interest in additive combinatorics and

one of the first questions which arises is a question of Frĕıman’s regarding

their structure. We say that a set A has doubling K if |A + A| 6 K|A|;
Frĕıman asked which sets have small doubling. In [Fre73] (see [Bil99] for an

exposition) he famously described the structure of the finite sets of integers

with small doubling. To state his result we require the following definition.

P is a multidimensional progression of dimension d if

P = {x0 + l1.x1 + ...+ ld.xd : 0 6 li 6 Li}

for some integers x0, ..., xd and natural numbers L1, ..., Ld.

Theorem 3.1 (Frĕıman’s Theorem). Suppose that A ⊂ Z is finite with |A+

A| 6 K|A|. Then A is contained in a d(K)-dimensional progression of size

at most f(K)|A|.

Here, of course, d and f are dependent only on K. Qualitatively this is

a complete description of such sets, insofar as if A is contained in a multidi-

mensional progression P of dimension d and size f |A|. Then

|A+ A| 6 |P + P | 6 2d|P | 6 f2d|A|.
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Quantitatively, however, Frĕıman’s Theorem gives little information. In the

90s Ruzsa ([Ruz94]) provided a strong new proof of Frĕıman’s Theorem which

was then refined by Chang in [Cha02].

Theorem 3.2 (Chang’s quantitative version of the Frĕıman-Ruzsa Theo-

rem). Suppose that A ⊂ Z is finite with |A + A| 6 K|A|. Then A is

contained in a O(K2 log2(1 + K))-dimensional progression of size at most

exp(O(K2 log2(1 +K)))|A|.

In fact Chang also showed how to improve the dimension to essentially

the optimal one for very little cost in the size but this is not important to us.

In the paper [Ruz99] Ruzsa considers Frĕıman’s Theorem for torsion

groups. These groups are at the other end of the spectrum from Z which has

no torsion. In this case, although multidimensional progressions make sense,

bounding their dimension is not possible as the case A = G = Fn2 clearly

demonstrates. Here A has doubling 1, however it is not contained in a mul-

tidimensional progression of dimension less than n. However, A is contained

in a coset of a subgroup (namely G itself) and replacing multidimensional

progressions with cosets turns out to be the appropriate idea. Ruzsa proved

the following result.

Theorem 3.3 (Frĕıman’s Theorem for torsion groups). Suppose that G is

an abelian group in which every element has order at most r. Suppose that

A ⊂ G is finite with |A + A| 6 K|A|. Then A is contained in a coset of a

subgroup of size at most K2rK
4|A|.

Finally in [GR07] Green and Ruzsa combine this work with Chang’s quan-

titative version of Frĕıman’s Theorem to prove Frĕıman’s Theorem in arbi-

trary abelian groups. To do this a slightly more general notion of progression

is required combining cosets with multidimensional progressions: P is a mul-

tidimensional coset progression of dimension d if

P = H + {x0 + l1.x1 + ...+ ld.xd : 0 6 li 6 Li}

for some elements x0, ..., xd ∈ G, natural numbers L1, ..., Ld and a subgroup

H.
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Theorem 3.4 (Frĕıman’s Theorem in arbitrary abelian groups). Suppose

that G is an abelian group and A ⊂ G is finite with |A + A| 6 K|A|. Then

A is contained in a O(K4 log(1 + K))-dimensional coset progression of size

at most exp(O(K4 log2(1 +K)))|A|.

The first section of this chapter is a refinement of Frĕıman’s theorem

for vector spaces over F2. It is principally of interest as a method and was

recently used by Bourgain [Bou08] (see [San08b] to improve the bounds in

Frĕıman’s Theorem for Z, specifically the bounds on the dimension and size

of the progression in Theorem 3.2 are improved to O(K7/4 log3(1 +K)) and

exp(O(K7/4 log3(1 +K)))|A| respectively.

Although of interest in its own right, Frĕıman’s Theorem has found a

number of applications (see, for example, [BC03, Bou03, GS08a, SSV05])

following the work of Gowers [Gow98] who introduced a fundamental proof

method which employs it. As a tool we can often find ourselves interested not

so much in containing A in a coset progression but rather simply something

which behaves like an ‘approximate group’.

In proving his theorem Frĕıman introduced the fundamental concept of

Frĕıman homomorphisms. If G and G′ are two abelian groups containing

the sets A and A′ respectively then we say that φ : A → A′ is a Frĕıman

s-homomorphism if whenever a1, ..., as, b1, ..., bs ∈ A satisfy

a1 + ...+ as = b1 + ...+ bs

we have

φ(a1) + ...+ φ(as) = φ(b1) + ...+ φ(bs).

If φ has an inverse which is also an s-homomorphism then we say that φ is

a Frĕıman s-isomorphism.

We naturally want the Frĕıman homomorphic image of an ‘approximate

group’ to be an approximate group and Bohr sets are insufficient for this

purpose. This precipitated the introduction of Bourgain systems in [GS08b]

whose structure is preserved under Frĕıman homomorphisms. In the second

section of this chapter, building on work of Green and Tao [GT09b], we prove
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what might be called a partially polynomial version of Frĕıman’s Theorem

local to Bourgain systems. A more detailed discussion may be found there.

3.1 Frĕıman’s Theorem in finite fields

In this section we shall improve the bounds in Theorem 3.3 in the special case

of r = 2. While finite field models are an important tool for understanding

problems in general abelian groups, this result has independent significance

in coding theory and has been pursued by a number of authors. We do not

attempt a comprehensive survey here, but mention a few papers which are

important from our standpoint.

The first improvements on this was in the paper [DHP04] of Deshouillers,

Hennecart and Plagne. There, the authors present a relatively simple argu-

ment which shows that one may take the coset in which A is contained to

be of size at most K2bK
3c−1|A|. The bulk of their paper concerns refined

estimates for the case when K is small; by contrast our interest lies in the

asymptotics.

In a recent paper, [GR07], Green and Ruzsa improve the bound from

[DHP04] when they show that one may take a size bound of K22b2K
2−2c|A|.

Our result, then, gives a size bound of 2O(K3/2 log(1+K))|A|. Specifically we

prove the following theorem.

Theorem 3.1.1 (Frĕıman’s Theorem in finite fields). Suppose that G is a

vector space over F2. Suppose that A ⊂ G is a finite set with |A+A| 6 K|A|.
Then A is contained in a coset of size at most 2O(K3/2 log(1+K))|A|.

For comparison we record the following well known example which shows

that one cannot have a size bound better than 22K+o(K)|A|. Let H be a finite

subgroup of G and g1 + H, ..., g2K−1 + H be 2K − 1 linearly independent

cosets of H in the quotient space G/H. Let A be the union of H and the

representatives g1, ..., g2K−1. Then |A| = |H|+ 2K − 1 ∼ |H| and

|A+ A| 6 K(|H|+K) ∼ K|H| . K|A|.
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However A contains a linearly independent set of size dimH+2K−1 and so

A is not contained in a coset of dimension less than dimH + 2K − 2 hence

if H ′ is a coset containing A then

|H ′| > 2dimH+2K−2 = 22K−2|H| & 22K−2|A|.

Very recently in [GT09a], Green and Tao have improved Theorem 3.1.1 fur-

ther and showed that the above example is essentially extremal; specifically

they have proved a size bound of 22K+o(K)|A|.

3.1.1 Proof of Theorem 3.1.1

Our proof is really a refinement of Green and Ruzsa’s proof of Frĕıman’s

Theorem for arbitrary abelian groups.

Their method becomes significantly simpler in the vector space setting,

and would immediately give us the following weak version of the main theo-

rem.

Theorem 3.1.2. Suppose that G is a vector space over F2. Suppose that

A ⊂ G is a finite set with |A + A| 6 K|A|. Then A is contained in a coset

of size at most 2O(K2 log(1+K))|A|.

The proof involves three main step.

• (Finding a good model) First we use the fact that |A + A| 6 K|A| to

show that A can be embedded as a dense subset of Fn2 in a way which

preserves much of its additive structure.

• (Bogolioùboff’s argument) Next we show that if A is a dense subset of

Fn2 and A has small doubling then 2A− 2A contains a large subspace.

• (Pullback and covering) Finally we use our embedding to pull back this

subspace to a coset in the original setting. A covering argument then

gives us the result.

Our refinement of this argument occurs at the second stage.
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Finding a good model

A simple but elegant argument establishes the existence of a small vector

space into which we can embed our set via a Frĕıman isomorphism.

Proposition 3.1.3. ([GR07, Proposition 6.1]) Suppose that A is a subset of

a vector space over F2. Suppose that |A+A| 6 K|A|. Then there is a vector

space G′ over F2 with |G′| 6 K2s|A| with a set A′ ⊂ G′, and a Frĕıman

s-isomorphism φ : A→ A′.

Bogolioùboff’s argument

Originally (in [Ruz96]) Ruzsa employed an argument of Bogolioùboff (see

[Bog39]) for this stage. In [Cha02] Chang refined this further when she

proved the following.1

Proposition 3.1.4. Suppose that G = Fn2 . Suppose that A ⊂ G has density α

and µG(A+A) 6 KµG(A). Then 2A−2A contains a subspace of codimension

O(K logα−1).

We prove the following refinement of this.

Proposition 3.1.5. Suppose that G = Fn2 . Suppose that A ⊂ G has density α

and µG(A+A) 6 KµG(A). Then 2A−2A contains a subspace of codimension

O(K1/2 logα−1).

To prove this we require the following pure density version of the propo-

sition.

Proposition 3.1.6. ([San08a, Theorem 2.4]) Suppose that G is a finite vec-

tor space over F2. Suppose that A ⊂ G has density α. Then 2A−2A contains

a subspace of codimension O(α−1/2).

The proof in [San08a] is for general finite abelian groups and becomes

significantly simpler in the vector space setting; the basic technique is itera-

tive.

1Although in [Cha02] it is stated for G = Z/NZ, the same proof applies to any finite
abelian group and in particular to Fn2 .
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Lemma 3.1.7 (Iteration lemma). Suppose that G is a finite vector space over

F2. Suppose that A ⊂ G has density α. Then at least one of the following is

true.

(i). 2A− 2A contains all of G.

(ii). There is a 1 dimensional subspace V of Ĝ, an element x ∈ G and a set

A′ ⊂ V ⊥ with the following properties.

• x+ A′ ⊂ A;

• µV ⊥(A′) > α(1 + 2−1α1/2).

Proof. As usual with problems of this type studying the sumset 2A− 2A is

difficult so we turn instead to g := 1A ∗ 1A ∗ 1−A ∗ 1−A which has support

equal to 2A − 2A. One can easily compute the Fourier transform of g in

terms of that of 1A:

ĝ(γ) = |1̂A(γ)|4 for all γ ∈ Ĝ,

from which it follows that g is very smooth. Specifically ĝ ∈ ` 1
2 (Ĝ) since∑

γ∈Ĝ

|ĝ(γ)|
1
2 =

∑
γ∈Ĝ

|1̂A(γ)|2 = α (3.1.1)

by Parseval’s Theorem. We may assume that µG(2A− 2A) < 1 since other-

wise we are in the first case of the lemma, so S := (2A − 2A)c has positive

density, say σ. Plancherel’s Theorem gives

0 = 〈1S, g〉 =
∑
γ∈Ĝ

1̂S(γ)ĝ(γ)⇒ |1̂S(0Ĝ)ĝ(0Ĝ)| 6
∑
γ 6=0

Ĝ

|1̂S(γ)ĝ(γ)|.

ĝ(0Ĝ) = α4, 1̂S(0Ĝ) = σ and |1̂S(γ)| 6 ‖1S‖L1(µG) = σ, so the above yields

σα4 6 σ
∑
γ 6=0

Ĝ

|ĝ(γ)| ⇒ α4 6
∑
γ 6=0

Ĝ

|ĝ(γ)| since σ > 0.

Finding a non-trivial character at which ĝ is large is now simple since ĝ ∈
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`
1
2 (Ĝ).

α4 6 sup
γ 6=0

Ĝ

|ĝ(γ)|
1
2

∑
γ∈Ĝ

|ĝ(γ)|
1
2

 6 sup
γ 6=0

Ĝ

|1̂A(γ)|2.α

by (3.1.1). Rearranging this we have

sup
γ 6=0

Ĝ

|1̂A(γ)| > α
3
2 .

We pick a character, γ, which attains this maximum and proceed with a

standard L∞-density-increment argument. Let V := {0Ĝ, γ} and f := 1A−α.

Then∫
f ∗ µV ⊥dµG = 0 and ‖f ∗ µV ⊥‖L1(µG) > ‖f̂ µ̂V ⊥‖`∞(Ĝ) = |1̂A(γ)|.

Adding these we conclude that

|1̂A(γ)| 6 2

∫
(f ∗ µV ⊥)+dµG

= 2

∫
(1A ∗ µV ⊥ − α)+dµG

6 2(‖1A ∗ µV ⊥‖L∞(µG) − α).

Here, of course, (f ∗ µV ⊥)+ denotes the function max{f ∗ µV ⊥(x), 0}.
Hence there is some x ∈ G with

1A ∗ µV ⊥(x) = ‖1A ∗ µV ⊥‖L∞(µG) > α(1 + 2−1α1/2).

The result follows on taking A′ = x+ A.

Proof of Proposition 3.1.6. We define a nested sequence of subspaces V0 6

V1 6 ... 6 Ĝ, elements xk ∈ V ⊥k and subsets Ak of V ⊥k with density αk, such

that xk + Ak ⊂ Ak−1. We begin the iteration with V0 := {0Ĝ}, A0 := A and

x0 = 0G.

Suppose that we are at stage k of the iteration. If µV ⊥k (2Ak − 2Ak) < 1

then we apply Lemma 3.1.7 to Ak considered as a subset of V ⊥k . We get a

vector space Vk+1 with dimVk+1 = 1 + dimVk, an element xk+1 ∈ G and a
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set Ak+1 such that

xk+1 + Ak+1 ⊂ Ak and αk+1 > αk(1 + 2−1α
1/2
k ).

It follows from the density increment that if mk = 2α
−1/2
k then αk+mk > 2αk.

Define the sequence (Nl)l recursively by N0 = 0 and Nl+1 = mNl + Nl. The

density αNl is easily estimated:

αNl > 2lα and Nl 6
l∑

s=0

2α
−1/2
Ns

6 2α−1/2

l∑
s=0

2−s/2 = O(α−1/2).

Since density cannot be greater than 1 there is some stage k with k =

O(α−1/2) when the iteration cannot proceed i.e. for which 2Ak − 2Ak con-

tains all of V ⊥k . By construction of the Aks there is a translate of Ak which is

contained in A0 = A and hence 2Ak−2Ak is contained in 2A−2A. It follows

that 2A− 2A contains a subspace of G of codimension k = O(α−1/2).

The key ingredient in the proof of Proposition 3.1.5 is the following iter-

ation lemma, which has a number of similarities with Lemma 3.1.8.

Lemma 3.1.8. Suppose that G = Fn2 . Suppose that A,B ⊂ G have µG(A +

B) 6 KµG(B). Write α for the density of A. Then at least one of the

following is true.

(i). B contains a subspace of codimension O(K1/2).

(ii). There is a 1 dimensional subspace V of Ĝ, elements x, y ∈ G and sets

A′, B′ ⊂ V ⊥ with the following properties.

• x+ A′ ⊂ A and y +B′ ⊂ B;

• µV ⊥(A′) > α(1 + 2−3/2K−1/2);

• µV ⊥(A′ +B′) 6 KµV ⊥(B′).

Proof. If µG(B) > (2K)−1 then we apply Proposition 3.1.6 to get that B

contains a subspace of codimension O(K1/2) and we are in the first case of

the lemma. Hence we assume that µG(B) 6 (2K)−1.

61



CHAPTER 3. ADDITIVE STRUCTURE

Write β for the density of B. We have

(αβ)2 =

(∫
1A ∗ 1BdµG

)2

6 µG(A+B)

∫
(1A ∗ 1B)2dµG by Cauchy-Schwarz,

6 Kβ

∫
(1A ∗ 1B)2dµG by hypothesis,

= Kβ
∑
γ∈Ĝ

|1̂A(γ)|2|1̂B(γ)|2 by Parseval’s Theorem. (3.1.2)

The main term in the sum on the right is the contribution from the trivial

character, in particular

|1̂A(0Ĝ)|2|1̂B(0Ĝ)|2 = α2β2,

while ∑
γ 6=0

Ĝ

|1̂A(γ)|2|1̂B(γ)|2 6 sup
γ 6=0

Ĝ

|1̂A(γ)|2
∑
γ∈Ĝ

|1̂B(γ)|2

= β sup
γ 6=0

Ĝ

|1̂A(γ)|2

by Parseval’s Theorem for 1B. Putting these last two observations in (3.1.2)

gives

α2β2 6 Kβ3α2 +Kβ2 sup
γ 6=0

Ĝ

|1̂A(γ)|2.

Since Kβ 6 2−1 we can rearrange this to conclude that

sup
γ 6=0

Ĝ

|1̂A(γ)| > (2K)−1/2α.

As before we may pick a character γ which attains this maximum and proceed

with a standard L∞-density-increment argument. Let V := {0Ĝ, γ} and

f := 1A − α. Then∫
f ∗ µV ⊥dµG = 0 and ‖f ∗ µV ⊥‖L1(µG) > ‖f̂ µ̂V ⊥‖`∞(Ĝ) = |1̂A(γ)|.
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Adding these we conclude that

|1̂A(γ)| 6 2

∫
(f ∗ µV ⊥)+dµG

= 2

∫
(1A ∗ µV ⊥ − α)+dµG

6 2(‖1A ∗ µV ⊥‖L∞(µG) − α).

It follows that there is some x for which

1A ∗ µV ⊥(x) > α(1 + 2−3/2K−1/2).

Let x′ + V ⊥ := G \ (x + V ⊥) be the other coset of V ⊥ in G. Write A1 =

A ∩ (x+ V ⊥), B1 = B ∩ (x+ V ⊥) and B2 = B ∩ (x′ + V ⊥). Now A1 ⊂ A so

(A1 +B1) ∪ (A1 +B2) ⊂ A+B1 ∪B2,

and A1 +B1 ⊂ V ⊥ while A1 +B2 ⊂ x+x′+V ⊥ so these two sets are disjoint

and we conclude that

µG(A1 +B1) + µG(A1 +B2) = µG((A1 +B1) ∪ (A1 +B2))

6 µG(A+B1 ∪B2)

6 KµG(B1 ∪B2) by hypothesis

6 K(µG(B1) + µG(B2)).

Hence, by averaging, there is some i such that

µG(A1 +Bi) 6 KµG(Bi).

We take A′ = x + A1 and, if i = 1, B′ = x + B1 and y = x, while if i = 2,

B′ = x′ +B2 and y = x′. The result follows.

Proof of Proposition 3.1.5. We define a nested sequence of subspaces V0 6

V1 6 ... 6 Ĝ, elements xk, yk ∈ V ⊥k , and subsets Ak and Bk of V ⊥k such that

Ak + xk ⊂ Ak−1 and Bk + yk ⊂ Bk−1 and µV ⊥k (Ak + Bk) 6 KµV ⊥k (Bk). We
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write αk for the density of Ak in V ⊥k . Begin the iteration with V0 := {0Ĝ},
B0 = A0 := A and x0 = y0 = 0G.

Suppose that we are at stage k of the iteration. We apply Lemma 3.1.8

to Ak and Bk inside V ⊥k (which we can do since µV ⊥k (Ak+Bk) 6 KµV ⊥k (Bk)).

It follows that either 2Bk−2Bk contains a subspace of codimension O(K1/2)

in V ⊥k or we get a subspace Vk+1 6 V̂k with dimVk+1 = 1 + dimVk, elements

xk+1, yk+1 ∈ V ⊥k and sets Ak+1 and Bk+1 with the following properties.

• xk+1 + Ak+1 ⊂ Ak and yk+1 +Bk+1 ⊂ Bk;

• µV ⊥(Ak+1) > αk(1 + 2−3/2K−1/2);

• µV ⊥(Ak+1 +Bk+1) 6 KµV ⊥(Bk+1).

It follows from the density increment that if m = 23/2K1/2 then αk+m > 2αk,

and hence the iteration must terminate (because density can be at most

1) at some stage k with k = O(K1/2 logα−1). The iteration terminates if

2Bk − 2Bk contains a subspace of codimension O(K1/2) in V ⊥k , from which

it follows that 2A − 2A ⊃ 2Bk − 2Bk contains a subspace of codimension

k +O(K1/2) = O(K1/2 logα−1).

Pullback and covering

We now complete the proof of the main theorem using a covering argument.

We are given A ⊂ G finite with |A + A| 6 K|A|. By Proposition 3.1.3

there is a finite vector space (over F2) G′ with |G′| 6 K16|A| and a subset A′

with A′ Frĕıman 8-isomorphic to A. It follows that

µG′(A
′) > K−16 and µG′(A

′ + A′) 6 KµG′(A
′).

We apply Proposition 3.1.5 to conclude that 2A′ − 2A′ contains a subspace

of codimension O(K1/2 log(1 + K)). However, A is 8-isomorphic to A′ so

2A − 2A is 2-isomorphic to 2A′ − 2A′ and it is easy to check that the 2-

isomorphic pullback of a subspace is a coset so 2A − 2A contains a coset of

size

2−O(K1/2 log(1+K))|G′| > 2−O(K1/2 log(1+K))|A|.
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The following covering result of Chang [Cha02] converts this large coset

contained in 2A − 2A into a small coset containing A. It is true in more

generality than we state; we only require the version below.

Proposition 3.1.9. Suppose that G is a vector space over F2. Suppose

that A ⊂ G is a finite set with |A + A| 6 K|A|. Suppose that 2A − 2A

contains a coset of size η|A|. Then A is contained in a coset of size at most

2O(K logKη−1)|A|.

Theorem 3.1.1 follows immediately from this proposition and the argu-

ment preceding it.

3.2 A weak Frĕıman theorem

The example at the start of the previous section can be adapted to show that

one cannot hope to improve the size bound on the progression in Theorem

3.2 to have sub-exponential dependence on the doubling. Often we would

like polynomial dependence, and sometimes it is sufficient to have a large

progression which intersects A in a polynomially large proportion of itself.

Such a result was originally proved by Green and Tao in [GT09b]; our proof

is from the joint paper [GS08b] of Green and the author and uses a method

similar to the previous section.

There is a second direction in which the main result of the section differs

from standard Frĕıman theorems: it is stated relative to Bourgain systems.

Here, the crucial property of Bourgain systems is that they are preserved by

Frĕıman homomorphisms:

Lemma 3.2.1. Suppose that B = (Bρ)ρ is a Bourgain system and that φ :

B4 → G′ is some Frĕıman 2-isomorphism such that φ(0) = 0. Then φ(B) :=

(φ(Bρ))ρ is a Bourgain system of the same dimension and size.

We are now in a position to state the key result.

Proposition 3.2.2. Suppose that G is a finite abelian group, and that A ⊂ G

is a finite set with |A+A| 6 K|A|. Then there is a regular Bourgain system
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B = (Bρ)ρ of dimension at most O(KO(1)) and with

µG(B) > exp(−O(KO(1)))µG(A) and ‖1A ∗ β1‖L∞(µG) � K−1.

We begin as in the previous section.

Finding a good model

Proposition 3.2.3. (Good Models, [GR07, Proposition 1.2]) Suppose that

G is an abelian group and A ⊂ G is finite with |A + A| 6 K|A|. Suppose

that s > 2 is an integer. Then there is an abelian group G′ with |G′| 6
(10sK)10K2|A| such that A is Frĕıman s-isomorphic to a subset of G′.

Bogolioùboff’s argument

This is very close to the variant of Bogolioùboff’s argument due to Chang

which we alluded to in the previous section (see Proposition 3.1.4).

Proposition 3.2.4. Suppose that G is a finite abelian group, and that A ⊂ G

has density α and |A+A| 6 K|A|. Then there is a regular Bourgain system

B of dimension d = O(K logα−1) and with

µG(B) > exp(−O(d log(1 + d))) and ‖1A ∗ β1‖L∞(µG) � K−1,

such that B4 ⊂ 2A− 2A.

Proof. Set

Γ := {γ ∈ Ĝ : |1̂A(γ)| > α

2
√
K
}

and apply Chang’s Theorem to get a set of characters Λ with |Λ| � K(1 +

logα−1) and Γ ⊂ 〈Λ〉. Now if γ ∈ Γ then γ = m.Λ for some m : Λ →
{−1, 0, 1}. Thus by the triangle inequality we have

|1− γ(x)| 6
∑
λ∈Λ

|1− λ(x)|.
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Now if x ∈ B(Λ, 1/10π|Λ|) and γ ∈ Γ then

|1− γ(x)| 6 |Λ| sup
λ∈Λ
|1− λ(x)|

= |Λ| sup
λ∈Λ

√
2(1− cos(4π‖λ(x)‖))

6 2/5. (3.2.1)

Now by the inversion formula we have

‖1̂A‖4
`4(Ĝ)

− 1A ∗ 1A ∗ 1−A ∗ 1−A(x) =
∑
γ∈Ĝ

|1̂A(γ)|4(1− γ(x))

6
∑
γ∈Γ

|1̂A(γ)|4|1− γ(x)|

+
∑
γ /∈Γ

|1̂A(γ)|4|1− γ(x)|

6
2

5
‖1̂A‖4

`4(Ĝ)
+
α2

2K
‖1A‖2

L2(µG)

=
2

5
‖1̂A‖4

`4(Ĝ)
+
α3

2K
.

However the fact that |A + A| 6 K|A| implies, using the Cauchy-Schwarz

inequality, that

‖1̂A‖4
`4(Ĝ)

= ‖1A ∗ 1A‖2
L2(µG) > α3/K. (3.2.2)

It follows that

‖1̂A‖4
`4(Ĝ)

− 1A ∗ 1A ∗ 1−A ∗ 1−A(x) 6

(
2

5
+

1

2

)
‖1̂A‖4

`4(Ĝ)
< ‖1̂A‖4

`4(Ĝ)
,

and hence 1A ∗ 1A ∗ 1−A ∗ 1−A(x) > 0, so x ∈ 2A − 2A. It follows that

B(Λ, 1/10π|Λ|) ⊂ 2A− 2A.

Take

B = (Bρ)ρ where Bρ = B(Γ, ρ/40π|Λ|).

The previous argument ensures that B4 ⊂ 2A − 2A. Moreover by Lemma

2.4.2 we conclude that B is a Bourgain system with dimension d = 2|Λ| =
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O(K logα−1) and density at least exp(−O(d log(1 + d))).

It remains to show that ‖1A ∗ β1‖L∞(µG) � K−1. By (3.2.1), if x ∈ B1

and γ ∈ Γ then |1− γ(x)| 6 2/5. It follows that |1− β̂1(γ)| 6 2/5 and hence

‖1̂A ∗ β1‖`4(Ĝ) > (3/5)4
∑
γ∈Γ

|1̂A(γ)|4 � ‖1̂A ∗ β1‖`4(Ĝ).

It follows from (3.2.2) that

α3/K � ‖1̂A ∗ β1‖`4(Ĝ) = ‖1A ∗ β1 ∗ 1A ∗ β1‖2
L2(µG)

6 ‖1A ∗ β1‖L∞(µG)α
3.

This yields the result.

Pullback

The different goal of this result means that we are no longer concerned with

the covering aspect of the ‘Pullback and covering’ part of the last section.

Moreover, Lemma 3.2.1 lets us pullback the Bourgain system to another

Bourgain system directly.

Proof of Proposition 3.2.2. By Proposition 3.2.3 there is an abelian group

G′, |G′| 6 exp(O(K2 log(1 + K)))|A|, and a subset A′ ⊂ G′ such that A′ is

14-isomorphic to A. We apply Proposition 3.2.4 to this set A′, the density of

which we denote by α. Noting that α� exp(−O(K2 log(1+K))), we obtain

a Bourgain system B′ = (B′ρ)ρ with dimension O(KO(1)),

|B′1| � exp(−O(KO(1)))|A′| and ‖1A ∗ β′1‖L∞(µG) � K−1,

and B′4 ⊆ 2A′ − 2A′. Write φ : A′ → A for the Frĕıman 14-isomorphism

between A′ and A. The map φ extends to a well-defined 1-1 map on kA′− lA′

for any k, l with k + l 6 14. By abuse of notation we write φ for any such

map. In particular φ(0) is well-defined and we may define a ‘centred’ Frĕıman

14-isomorphism φ0(x) := φ(x)− φ(0).

Define B := φ0(B′). Since B′4 ⊆ 2A′−2A′, φ0 is a Frĕıman 2-isomorphism
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on B′4 with φ0(0) = 0. Therefore B is indeed a Bourgain system, with the

same dimension as B′ and |B1| = |B′1|.
It remains to check that ‖1A ∗ β1‖L∞(µG) � K−1. The fact that ‖1A′ ∗

β′1‖L∞(µG) � K−1 means that there is x such that |1A′ ∗β′1(x)| � K−1. Since

supp β′1 ⊂ B′1 ⊂ B′4 ⊆ 2A′ − 2A′, we must have x ∈ 3A′ − 2A′. We claim

that 1A ∗ β1(φ(x)) = 1A′ ∗ β′1(x), which clearly suffices to prove the result.

Recalling the definition of β1, β
′
1, we see that this amounts to showing that

the number of solutions to

x = a′ − t′1 + t′2, with a′ ∈ A′, t′i ∈ B′1,

is the same as the number of solutions to

φ0(x) = φ0(a′)− φ0(t′1) + φ0(t′2), with a′ ∈ A′, t′i ∈ B′1.

All we need check is that if y ∈ 7A′ − 7A′ then φ0(y) = 0 only if y = 0. But

since 0 ∈ 7A′−7A′, this follows from the fact that φ0 is 1-1 on 7A′−7A′.
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Chapter 4

Littlewood’s conjecture and the

idempotent theorem

It is a long standing question of Littlewood’s (see [HL48]) to determine the

smallest possible value of ‖1A‖A(Z) when A is a set of size N . It may be useful

to recall that

‖1A‖A(Z) =

∫ 1

0

|
∑
a∈A

exp(2πaθ)|dθ.

The quantity ‖1A‖A(Z) is a sort of measure of the complexity of the set A: if

‖1A‖A(Z) is small then most of the Fourier mass is supported on a few modes

so it is a ‘low complexity’ object, conversely if it is large then the Fourier

mass is spread out and it is a ‘high complexity’ object. In view of this it

becomes interesting to ask how ‘simple’ a set can be; it is natural to consider

the case when A is an arithmetic progression. Here

‖1A‖A(Z) =
4

π2
logN +O(1),

a result which may be found in, for example, Zygmund [Zyg02, Section II.12],

although in any case it is not hard to convince oneself that ‖1A‖A(Z) � logN .

The problem then becomes one of trying to show that this is best possible.

A lot of work was done before this was proved, independently, in the early

1980s by Konyagin [Kon81] and McGehee, Pigno and Smith [MPS81].

Theorem 4.1 (Littlewood conjecture). Suppose that A is a finite set of N
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integers. Then ‖1A‖A(Z) � logN .

This, however, did not completely finish the problem and there is still the

question of the strong Littlewood conjecture.

Conjecture 4.2 (Strong Littlewood conjecture). Suppose that A is a finite

set of N integers. Then

‖1A‖A(Z) >
4

π2
logN +O(1).

In a different direction it is rather natural to consider the problem for

other abelian groups. Here, however, a difficulty arises. Suppose that G is a

finite abelian group. Cosets of subgroups of G have characteristic functions

with very small algebra norm. Suppose that V 6 Ĝ and A = x+ V ⊥. Then

a simple calculation gives

1̂A(γ) =

γ(x)|V |−1 if γ ∈ V

0 otherwise.

It follows that ‖1A‖A(G) = 1, and hence (since ‖.‖A(G) is an algebra norm)

that any small combination of unions and intersections of cosets will also

have small norm.

In the more general setting of a locally compact abelian group G we

define the coset ring to be the smallest family of subsets of G containing all

open subgroups of G and which is closed under complements, unions and

intersections. It is a remarkable result of Cohen [Coh60], that this includes

all the subsets of G with characteristic functions in A(G).

Theorem 4.3 (Idempotent theorem). Suppose that G is a locally compact

abelian group. Suppose that A ⊂ G has 1A ∈ A(G). Then A is in the coset

ring of G.

In words, what the theorem says is that if 1A ∈ A(G), i.e. its algebra

norm is finite, then it can be written as a finite ±-sum of indicator functions

of cosets. For example, suppose that K 6 H 6 G are open subgroups of G
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and A = H \K. Then 1A ∈ A(G) and, moreover,

1A = 1H − 1K .

The converse is trivially true: any finite ±-sum of indicator functions of

cosets is in A(G), so the theorem provides an exact characterization of those

sets whose indicator functions are in A(G).

In the finite setting Cohen’s result has no content, but there are two

obvious ways in which one might go about making it quantitative and so

effective in the finite setting. First note the following immediate consequence

of the idempotent theorem for which there is also an easy and direct proof.

If x is a real then we write {x} for the fractional part of x.

Proposition 4.4. Suppose that G is a compact abelian group. Suppose that

A ⊂ G has density α and for all finite V 6 Ĝ we have {α|V |}(1−{α|V |}) >
0. Then 1A 6∈ A(G).

We have written the hypothesis on α in a slightly peculiar fashion to

make clear the connection to the quantitative version of the result. All the

condition really says is that α 6= nµG(H) for any integer n and open subgroup

H; this sort of condition is fairly natural in the light of the idempotent

theorem. We shall prove a theorem of the following form to make Proposition

4.4 quantitative.

Theorem 4.5. Suppose that G is a finite abelian group. Suppose that A ⊂ G

has density α and for all V 6 Ĝ with |V | 6M we have {α|V |}(1−{α|V |})�
1. Then

‖1A‖A(G) � f(M)

for some function f for which f(M)→∞ as M →∞.

It turns out that different groups require very different methods, with

the dyadic groups at one end of the spectrum and the arithmetic groups at

the other. We begin with the dyadic groups and in §4.1 prove the following

theorem.
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Theorem 4.6. Suppose that G = Fn2 . Suppose that A ⊂ G has density α

and for all V 6 Ĝ with |V | 6M we have {α|V |}(1− {α|V |})� 1. Then

‖1A‖A(G) � log logM.

Possibly the most interesting case, and one which captures the essence

of the problem is when α is roughly 1/3. Specifically if |α − 1/3| 6 1/2M ,

then the hypotheses of the theorem are satisfied. This example is discussed

in more detail in §4.1, but the idea is that if A is a set with a density which

can’t be easily written as a ±-sum of powers of 2, then 1A cannot be written

as a ±-sum of a small number of cosets.

In that section we present a simple example to show that nothing better

than the following conjecture can be true.

Conjecture 4.7. Suppose that G = Fn2 . Suppose that A ⊂ G has density α

and for all V 6 Ĝ with |V | 6M we have {α|V |}(1− {α|V |})� 1. Then

‖1A‖A(G) � logM.

In §4.2 we consider the arithmetic groups and prove the following (al-

though it is stated in a slightly different manner).

Theorem 4.8. Suppose that G = Z/pZ for some prime p. Suppose that

A ⊂ G has density α and for all V 6 Ĝ with |V | 6 M we have {α|V |}(1 −
{α|V |})� 1. Then

‖1A‖A(G) �
(

logM

(log logM)3

)1/2

.

Note that in this result the density condition collapses to α being bounded

away from 0 and 1, and M may be taken as large as p− 1 (provided it is at

least 1!). Analogy with the Littlewood conjecture leads one to the following.

Conjecture 4.9. Suppose that G = Z/pZ for some prime p. Suppose that

A ⊂ G has density α and for all V 6 Ĝ with |V | 6 M we have {α|V |}(1 −
{α|V |})� 1. Then

‖1A‖A(G) � logM.
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Finally in §4.3 we combine the rather different methods of §4.1 and §4.2

to prove the following general result. The combination is a little more tricky

than one might hope which is why we get a rather weak bound.

Theorem 4.10. Suppose that G is a finite abelian group. Suppose that A ⊂
G has density α and for all V 6 Ĝ with |V | 6 M we have {α|V |}(1 −
{α|V |})� 1. Then

‖1A‖A(G) � log log logM.

One might make the following conjecture.

Conjecture 4.11. Suppose that G is a finite abelian group. Suppose that

A ⊂ G has density α and for all V 6 Ĝ with |V | 6 M we have {α|V |}(1 −
{α|V |})� 1. Then

‖1A‖A(G) � logM.

The alternative approach to the above is to try to make the idempotent

theorem quantitative directly viz. if A has ‖1A‖A(G) 6 M then A can be

made out of not too many cosets in G using not too many complements,

intersections and unions. ‘Too many’ here is of course a function of M .

Realizing this objective is the content of §4.4 where we prove the following

theorem.

Theorem 4.12. Suppose that G is a finite abelian group. Suppose that A ⊂
G has ‖1A‖A(G) 6 M . Then there is an integer L 6 exp(exp(O(M4))) such

that

1A =
L∑
j=1

σj1xj+Hj

where σj ∈ {−1, 1}, xj ∈ G and Hj 6 G for each j ∈ {1, ..., L}.

This result actually implies (weaker) bounds for all the stated theorems as

well as Littlewood’s original problem; we shall discuss this in the concluding

remarks in §4.4.6.

Finally it is worth remarking that fairly straightforward limiting argu-

ments allow us to extend a number of these results to slightly wider classes

of groups. In particular, Theorem 4.6 is extended to all compact vector
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spaces over F2 in [San07a], Theorem 4.10 is extended to all compact abelian

groups in [San06], and Theorem 4.12 to all locally compact abelian groups

in [GS08b]. In some sense this is attractive because it includes the motivat-

ing qualitative results, however the resulting analysis tends to obscure the

underlying ideas so we do not include these arguments here.

4.1 Dyadic groups

Before beginning the proof of Theorem 4.6 it is instructive to mention the

following special case which nevertheless captures the essence of the result.

Suppose that G is a compact vector space over F2. Since finite subgroups of

Ĝ all have size a power of 2, if A ⊂ G has density α = 1/3 then

{α|V |}(1− {α|V |}) > 1/9 for all finite V 6 Ĝ,

whence Proposition 4.4 specializes to the following.

Proposition 4.1.1. Suppose that G is a compact vector space over F2 and

A ⊂ G has density 1/3. Then 1A 6∈ A(G).

The next result is the corresponding consequence of Theorem 4.6.

Theorem 4.1.2. Suppose that G = Fn2 and A ⊂ G has density α with

|α− 1/3| 6 ε. Then

‖1A‖A(G) � log log ε−1.

The section now splits into five subsections. §4.1.1 provides some ex-

amples which complement our results and are worth bearing in mind when

following the proof. §4.1.2 is the central iterative argument; in this section

we prove a result with the conclusion of Theorem 4.6 but with a more cum-

bersome hypothesis on A. §4.1.3 then provides some physical space estimates

to show that sets of density close to 1/3 (or, indeed, satisfying the more gen-

eral hypothesis of Theorem 4.6) are included in the range of sets covered in

the previous section. Finally, §4.1.4 combines the preceding work to prove

a result which immediately implies Theorem 4.6. It then concludes with a

discussion of the limitations of our methods.

76



4.1. DYADIC GROUPS

For the remainder of this section G = Fn2 .

4.1.1 Sets with small A(G)-norm

We address the question of how to construct subsets of G of a prescribed

density whose characteristic function has small A(G)-norm.

Every coset in G has density 2−d for some integer d; to produce a set with

a density not of this form we take unions of cosets.

Suppose that we are given α ∈ [0, 1], a terminating binary number. Write

α =
k∑
i=1

2−di ,

where the di are strictly increasing. If we can find a sequence of disjoint

cosets A1, ..., Ak such that µG(Ai) = 2−di , then their union A :=
⋃k
i=1Ai has

‖1A‖A(G) = ‖
k∑
i=1

1Ai‖A(G) 6
k∑
i=1

‖1Ai‖A(G) = k (4.1.1)

by the triangle inequality, and density

µG(A) =
k∑
i=1

µG(Ai) =
k∑
i=1

2−di = α

since the elements of the union are disjoint. To produce such cosets we take

{0Ĝ} = Λ0 < Λ1 < ... < Λk 6 Ĝ, a nested sequence of subspaces with

dim Λi = di. Choose a sequence of vectors {γi : 1 6 i 6 k} such that

γi ∈ Λi \ Λi−1 for 1 6 i 6 k. It is easy to see that this sequence must be

linearly independent so we may take a sequence {xi : 1 6 i 6 k − 1} such

that

γj(xi) =

1 if j 6= i

−1 if j = i
(4.1.2)

for all 1 6 i 6 k − 1. Put

Ai = x1 + ...+ xi−1 + Λ⊥i .
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First we note that µG(Ai) = 2−di and second that the sets Ai are pairwise

disjoint: Suppose j > i and x ∈ Aj then x = x1 + ...+xj−1 +x′ where x′ ∈ Λ⊥j

so that

γi(x) = γi(x1)...γi(xj−1).γi(x
′).

Now j > i, so Λj > Λi from which it follows that γi(x
′) = 1. Consequently

γi(x) = γi(xi) = −1 by (4.1.2). However if x ∈ Ai then by a similar calcula-

tion γi(x) = 1.

It follows that A1, ..., Ak are disjoint cosets of the appropriate size and

hence their union, A :=
⋃k
i=1Ai, has density α and ‖1A‖A(G) 6 k.

We shall apply this construction to two different densities. The first is

α =
1

4
+

1

16
+ ...+

1

4k
;

the second will come in §4.1.4 to illustrate the limitations of our method.

The set A we produce has density α and the following two properties.

(i). A satisfies the hypotheses of Theorem 4.6 with M = 4k − 1: If V 6 Ĝ

and |V | 6M then |V | = 2d for some d < k and

2

3
>

k∑
i=bd/2c+1

2d.4−i = {α2d} > 2d

4bd/2c+1
>

1

4
,

and hence {α|V |}(1− {α|V |}) > 1/12.

(ii). ‖1A‖A(G) � k: ‖1A‖A(G) 6 k follows by construction; ‖1A‖A(G) � k is

slightly more involved:

1̂Ai(γ) =

4−iγ(x1)...γ(xi−1) if γ ∈ Λi

0 otherwise.

Hence we can bound |1̂A(γ)| from below using the linearity of the

Fourier transform.

|1̂A(γ)| > 4−i −
k∑

j=i+1

4−j >
2

3
.4−i if γ ∈ Λi \ Λi−1,
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and so

‖1A‖A(G) >
k∑
i=1

2

3
4−i.|Λi \ Λi−1| >

k∑
i=1

2

3
4−i.

3

4
4i =

k

2
.

Now, the conclusion of Theorem 4.6 implies that ‖1A‖A(G) � log k which

should be compared with the fact that actually ‖1A‖A(G) � k.

4.1.2 An iteration argument in Fourier space

Throughout this section A ⊂ G has density α.

A trivial lower bound

Suppose that α > 0. It is natural to try to bound ‖1A‖A(G) by a combination

of Hölder’s inequality and Plancherel’s Theorem:

‖1A‖A(G)‖1̂A‖`∞(Ĝ) > ‖1̂A‖
2
`2(Ĝ)

= ‖1A‖2
L2(µG); (4.1.3)

non-negativity of 1A means that 1̂A(0Ĝ) = ‖1A‖L1(µG) so

‖1A‖L1(µG) > ‖1̂A‖L∞(µG) > 1̂A(0Ĝ) = ‖1A‖L1(µG)

which implies that

‖1̂A‖L∞(µG) = ‖1A‖L1(µG). (4.1.4)

1A ≡ 12
A so ‖1A‖2

L2(µG) = ‖1A‖L1(µG) = α, which is positive, and hence (4.1.3)

tells us that

‖1A‖A(G) > 1. (4.1.5)

Taking A = G shows that in general we can do no better.

A weak iteration lemma

A weakness in the above deduction is that we have no good upper bound for

‖1̂A‖`∞(Ĝ). In fact, as we saw, ‖1̂A‖`∞(Ĝ) is necessarily large because 1̂A is
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large at the trivial character. However, we know nothing about how large 1̂A

is at any other character, a fact which we shall now exploit.

Write f for the balanced function of 1A i.e. f = 1A − α. Then

f̂(γ) =

0 if γ = 0Ĝ

1̂A(γ) otherwise.

Applying Hölder’s inequality and Plancherel’s Theorem in the same way as

before we have

‖1A‖A(G)‖f̂‖`∞(Ĝ) > 〈1̂A, f̂〉 = 〈1A, f〉 = α− α2. (4.1.6)

Now, fix ε > 0 to be optimized later. If α is bounded away from 0 and 1 by

an absolute constant then either ‖1A‖A(G) � ε−1 or ‖f̂‖`∞(Ĝ) � ε. In the

former case we are done (since ‖1A‖A(G) is large) and in the latter we have

a non-trivial character at which 1̂A is large; we should like to start building

up a collection of such characters.

Suppose that Γ ⊂ Ĝ is a collection of characters on which we know 1̂A

has large `1-mass. We want to produce a superset Γ′ of Γ by adding some

more characters which support a significant `1-mass of 1̂A. To find characters

outside Γ on which 1̂A has large `1-mass we might replace f with a function

fΓ (by analogy with the earlier replacement of 1A by f) defined by inversion:

f̂Γ(γ) =

0 if γ ∈ Γ

1̂A(γ) otherwise.
(4.1.7)

The problem with this is that for general Γ we can say very little about fΓ.

If V 6 Ĝ, however, then fV has a particularly simple form:

fV =
∑
γ∈Ĝ

1̂A(γ)(1− µ̂V ⊥(γ))γ = 1A ∗ (δ − µV ⊥) = 1A − 1A ∗ µV ⊥ .

Now suppose that Γ = V 6 Ĝ. We want to try to add characters to V

to get a superspace V ′ 6 Ĝ with
∑

γ∈V ′ |1̂A(γ)| ‘significantly larger’ than
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∑
γ∈V |1̂A(γ)|. We can use the idea in (4.1.6) to do this; replace f by fV in

that argument:

‖1A‖A(G)‖f̂V ‖`∞(Ĝ) > 〈1̂A, f̂V 〉 = 〈1A, fV 〉. (4.1.8)

Before, an easy calculation gave us 〈1A, f〉 = α(1− α). To compute 〈1A, fV 〉
we have a slightly more involved calculation.

Lemma 4.1.3.

‖fV ‖L1(µG) = 2〈1A, fV 〉. (4.1.9)

Proof. µV ⊥ is a probability measure so 0 6 1A ∗µV ⊥(x) 6 1. Hence, fV (x) 6

0 for all x 6∈ A and fV (x) > 0 for all x ∈ A; consequently

‖fV ‖L1(µG) =

∫
1AfV dµG +

∫
(1− 1A)(−fV )dµG = 2〈1A, fV 〉 −

∫
fV dµG.

But
∫
fV dµG = 0 since

∫
1AdµG =

∫
1A ∗ µV ⊥dµG, so we are done.

It follows that

‖1A‖A(G)‖f̂V ‖`∞(Ĝ) >
‖fV ‖L1(µG)

2
. (4.1.10)

So either ‖1A‖A(G) > ε−1 or there is a character γ such that |f̂V (γ)| >
ε‖fV ‖L1(µG)/2. By construction of fV we have f̂V (γ′) = 0 if γ′ ∈ V so that

γ 6∈ V – γ is a genuinely new character. Letting V ′ be the space generated

by γ and V , we have our first iteration lemma:

Lemma 4.1.4 (Weak iteration lemma). Suppose that V 6 Ĝ and A ⊂ G.

Suppose that ε ∈ (0, 1]. Then either ‖1A‖A(G) > ε−1 or there is a superspace

V ′ of V with dimV ′ = dimV + 1 for which

∑
γ∈V ′
|1̂A(γ)| >

ε‖fV ‖L1(µG)

2
+
∑
γ∈V

|1̂A(γ)|.

Iterating this lemma leads to the following proposition.
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Proposition 4.1.5. Suppose that A ⊂ G is such that for all V 6 Ĝ with

|V | 6M we have ‖fV ‖L1(µG) � 1, where fV = 1A − 1A ∗ µV ⊥. Then

‖1A‖A(G) �
√

logM.

We omit the proof (it is not difficult and all the ideas are contained in

the proof of Proposition 4.1.7) since the hypotheses the proposition assumes

on A are prohibitively strong; nevertheless we can make use of these ideas.

A stronger iteration lemma

The main weakness of the above approach is that each time we apply the weak

iteration lemma to find characters supporting more `1-mass of 1̂A (assuming

we are not in the case when ‖1A‖A(G) is automatically large) we do not find

very much `1-mass, in fact we find mass in proportion to ‖fV ‖L1(µG) which

consequently has to be assumed large. We can improve this by adding to V

not just one character at which f̂V is large but all such characters. This idea

would not work but for two essential facts.

(i). There are a lot of characters at which f̂V is large, in the sense that the

characters at which f̂V is large actually support a large amount of the

sum 〈1̂A, f̂V 〉.

(ii). Chang’s Theorem ensures that the characters at which f̂V is large are

contained in a subspace of relatively small dimension.

We are in a position to show:

Lemma 4.1.6. Suppose that V 6 Ĝ, A ⊂ G and ‖fV ‖L1(µG) > 0, where

fV = 1A− 1A ∗µV ⊥. Then there is a non-negative integer s and a superspace

V ′ of V such that

∑
γ∈V ′
|1̂A(γ)| −

∑
γ∈V

|1̂A(γ)| �
(

4

3

)s
and

dimV ′ − dimV � 4s(1 + log ‖fV ‖−1
L1(µG)).
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Proof. By Plancherel’s Theorem and Lemma 4.1.3 we have

∑
γ∈Ĝ

1̂A(γ)f̂V (γ) = 〈1A, fV 〉 =
1

2
‖fV ‖L1(µG).

To make use of this we apply the triangle inequality to the left hand side and

get the driving inequality of the lemma

1

2
‖fV ‖L1(µG) 6

∑
γ∈Ĝ

|1̂A(γ)||f̂V (γ)|. (4.1.11)

Write L for the set of characters at which f̂V is non-zero. Partition L by

a dyadic decomposition of the range of values of |f̂V |. Specifically, for each

non-negative integer s, let

Γs := {γ ∈ Ĝ : 2−s‖fV ‖L1(µG) > |f̂V (γ)| > 2−(s+1)‖fV ‖L1(µG)}.

For all characters γ we have |f̂V (γ)| 6 ‖fV ‖L1(µG) and if γ ∈ L then |f̂V (γ)| >
0 so certainly the Γss cover L; they are clearly disjoint and hence form a

partition of L. Write Ls for the `1-norm of 1̂A supported on Γs:

Ls :=
∑
γ∈Γs

|1̂A(γ)|.
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The right hand side of (4.1.11) can now be rewritten using these definitions:∑
γ∈Ĝ

|1̂A(γ)||f̂V (γ)| =
∑
γ∈L

|1̂A(γ)||f̂V (γ)| by the definition of L

=
∞∑
s=0

∑
γ∈Γs

|1̂A(γ)||f̂V (γ)|

since {Γs}s>0 is a partition of L,

6
∞∑
s=0

∑
γ∈Γs

|1̂A(γ)|.2−s‖fV ‖L1(µG)

by the definition of Γs,

=
∞∑
s=0

Ls2
−s‖fV ‖L1(µG) by the definition of Ls.

Combining this with (4.1.11) and dividing by ‖fV ‖L1(µG) (which is possible

since ‖fV ‖L1(µG) > 0) we get

1

2
6

∞∑
s=0

2−sLs. (4.1.12)

Now, if for every non-negative integer s we have

Ls <
1

6

(
4

3

)s
,

then
∞∑
s=0

2−sLs <
∞∑
s=0

2−s
1

6

(
4

3

)s
=

1

6

∞∑
s=0

(
2

3

)s
=

1

2
,

which contradicts (4.1.12). Hence there is a non-negative integer s such that

Ls >
1

6

(
4

3

)s
.

Chang’s Theorem gives a space W for which

Γs ⊂ {γ ∈ Ĝ : |f̂V (γ)| > 2−(s+1)‖fV ‖L1(µG)} ⊂ W
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and

dimW � 22s(1 + log(‖fV ‖L2(µG)‖fV ‖−1
L1(µG))).

To tidy this up we note that fV = 1A−1A ∗µV ⊥ and 1A(x), 1A ∗µV ⊥(x) ∈
[0, 1], so fV (x) ∈ [−1, 1] for x ∈ G and hence ‖fV ‖L2(µG) 6 1, from which it

follows that

dimW � 4s(1 + log ‖fV ‖−1
L1(µG)).

Let V ′ be the space generated by V and W . Then

dimV ′ − dimV � 4s(1 + log ‖fV ‖−1
L1(µG)).

Finally we note that Γs ∩ V = ∅ since f̂V (γ) = 0 if γ ∈ V (recall f̂V from

(4.1.7)) and |f̂V (γ)| > 2s+1‖fV ‖1 > 0 if γ ∈ Γs. Hence

∑
γ∈V ′
|1̂A(γ)| >

∑
γ∈Γs

|1̂A(γ)|+
∑
γ∈V

|1̂A(γ)| > 1

6

(
4

3

)s
+
∑
γ∈V

|1̂A(γ)|.

This gives the result.

By iterating this lemma we prove the following result.

Proposition 4.1.7. Suppose that A ⊂ G is such that for all V 6 Ĝ with

|V | 6M we have log ‖fV ‖−1
1 � log |V |. Then

‖1A‖A(G) � log logM.

Proof. Fix ε ∈ (0, 1] to be optimized later. We construct a sequence V0 6

V1 6 ... 6 Ĝ iteratively, writing di := dimVi and

Li =
∑
γ∈Vi

|1̂A(γ)|.

We start the construction by letting V0 := {0Ĝ}. Suppose that we are given

Vk. If |Vk| 6M then apply the iteration lemma to Vk and A to get an integer
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sk+1 and vector space Vk+1 with

dk+1 − dk � 4sk+1(1 + log ‖fVk‖−1
1 ) and Lk+1 − Lk �

(
4

3

)sk+1

. (4.1.13)

First we note that the iteration terminates since certainly Lk � k, but also

Lk 6 ‖1A‖A(G) <∞.

Since log ‖fVk‖−1
1 � log |Vk| � dk it follows from (4.1.13) that

dk+1 � 4sk+1dk, (4.1.14)

from which, in turn, we get

Lk �
k∑
l=0

(
4

3

)sl
�

k∑
l=0

sl � log dk. (4.1.15)

Let K be the stage of the iteration at which it terminates i.e. |VK | > M .

We have two possibilities.

(i). dK−1 ≡ log2 |VK−1| 6
√

logM : in which case dK >
√

logM.dK−1.

(4.1.14) then tells us that 4sK �
√

logM . However the first inequality

in (4.1.15) tells us that ‖1A‖A(G) > LK � (4/3)SK and so certainly

‖1A‖A(G) � log logM .

(ii). Alternatively dK−1 ≡ log2 |VK−1| >
√

logM : in which case by (4.1.15)

we have LK−1 � log dK−1 � log logM and so certainly ‖1A‖A(G) �
log logM .

In either case the proof is complete.

4.1.3 Physical space estimates

To realize the hypothesis of Proposition 4.1.7 regarding fV as a density con-

dition we have the following lemma:

Lemma 4.1.8. Suppose that V 6 Ĝ and A ⊂ G has density α. Then

‖fV ‖L1(µG) = ‖1A − 1A ∗ µV ⊥‖L1(µG) > 2|V |−1{α|V |}(1− {α|V |}).
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We need the following technical lemma:

Lemma 4.1.9. Let δ1, ..., δm ∈ [0, 1] and put γ = {
∑m

i=1 δi}. Then

m∑
i=1

(δi − δ2
i ) > γ(1− γ). (4.1.16)

Proof. We may assume that 0 < γ < 1. Suppose that we have i 6= j such

that 0 < δi, δj < 1. Put δ = δi + δj 6 2 and we have two cases:

(i). δ 6 1: In this case we may replace δi and δj by δ and 0. This preserves

γ and since

δi − δ2
i + δj − δ2

j > (δi + δj)− (δi + δj)
2 + 0− 02,

it does not increase the sum in (4.1.16).

(ii). 2 > δ > 1: In this case we may replace δi and δj by 1 and δ − 1. This

preserves γ and since

(δi − 1)(δj − 1) > 0

⇒ 0 > −2δiδj + 2(δi + δj)− 2

⇒ δi − δ2
i + δj − δ2

j > δi − δ2
i + δj − δ2

j − 2δiδj + 2(δi + δj)− 2

⇒ δi − δ2
i + δj − δ2

j > (δi + δj − 1)− (δi + δj − 1)2 + 1− 12,

it does not increase the sum in (4.1.16).

In both cases we can reduce the number of is for which 0 < δi < 1 without

increasing the sum in (4.1.16), so we may assume that there is only one j

such that 0 < δj < 1. Then

δj +
∑
i 6=j

δi = γ + b
m∑
i=1

δic ⇒ δj − γ = b
m∑
i=1

δic −
∑
i 6=j

δi,

but the right hand side is an integer and −1 < δj − γ < 1 so δj = γ and

(4.1.16) follows.
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Proof of Lemma 4.1.8. Lemma 4.1.3 states that ‖fV ‖L1(µG) = 2〈1A, fV 〉 so

‖fV ‖L1(µG) = 2

∫
1A(1A − 1A ∗ µV ⊥)dµG

= 2

∫
x∈G

∫
1A(1A − 1A ∗ µV ⊥)dµx+V ⊥dµG(x),

(this is just conditional expectation). 1A ∗ µV ⊥ is constant on cosets of V ⊥

and 12
A ≡ 1A so that

‖fV ‖1 = 2

∫
x∈G

∫
1Adµx+V ⊥(1− 1A ∗ µV ⊥(x))dµG(x)

= 2

∫
x∈G

1A ∗ µV ⊥(x)(1− 1A ∗ µV ⊥(x))dµG(x).

There are |V | cosets of V ⊥ in G, and 1A ∗ µV ⊥ is constant on cosets of V ⊥

so this integral is really a finite sum with |V | terms in it. Let C be a set of

coset representatives for V ⊥ in G then |C| = |V | and

‖fV ‖1 =
2

|C|
∑
x′∈C

1A ∗ µV ⊥(x′)(1− 1A ∗ µV ⊥(x′)).

We can now apply Lemma 4.1.9 to the quantities 1A ∗µV ⊥(x′) with m = |C|.
This gives

‖fV ‖L1(µG) >
2

|C|
β(1− β) =

2

|V |
β(1− β)

where

β =

{∑
x′∈C

1A ∗ µV ⊥(x′)

}
=

{
|C|
∫
x∈G

1A ∗ µV ⊥(x)dµG(x)

}
= {|V |α} .

Nothing better than Lemma 4.1.8 can be true: Let A be the union of

bα|V |c cosets of V ⊥ and a subset of a coset of V ⊥ of relative density {α|V |}.
Equality is attained in Lemma 4.1.8 for this set.
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4.1.4 The result, remarks and examples

As an easy corollary of Proposition 4.1.7 and Lemma 4.1.8 we have:

Theorem 4.1.10. Suppose that G = Fn2 . Suppose that A ⊂ G has density

α and for all V 6 Ĝ with |V | 6 M we have {α|V |}(1 − {α|V |}) � |V |−1.

Then

‖1A‖A(G) � log logM.

Theorem 4.6 is simply a weaker version of this result.

There are strong similarities between this work and the work of Bourgain

in [Bou02]. In particular a slight variation on the calculation in Lemma 4.1.3

is in his work and he proves a result using Beckner’s Inequality (which is

essentially equivalent to Chang’s Theorem) which shows that if A ⊂ Fn2 has

density α with α(1−α)� 1 then either 1̂A is large at a non-trivial character

or there is significant `2-mass in the tail of the Fourier transform.

Theorem 4.1.10 is sharp up to the constant and hence demonstrates a

limitation of our method as regards improving Theorem 4.6. Let

α =
1

220 +
1

221 + ...+
1

22k−1 .

We showed in §4.1.1 that there is a set A of density α with ‖1A‖A(G) 6 k.

However A also satisfies the hypotheses of Theorem 4.1.10 withM = 22k−1−1:

If V 6 Ĝ has |V | 6M then |V | = 2d for some d < 2k−1,

{α|V |} =
∑

min{0,log2 d}<m6k−1

2d.2−2m 6
∑

min{0,log2 d}<m6k−1

2−2m−1

6
∞∑
m=0

2−2m 6
7

8
,

and

{α|V |} =
∑

min{0,log2 d}<m6k−1

2d.2−2m > 2d.2−2blog2 dc+1

> 2−d = |V |−1.
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Hence

{α|V |}(1− {α|V |})� |V |−1.

Theorem 4.1.10 applied to A tells us that ‖1A‖A(G) � k.

4.2 Arithmetic groups

In this section we consider groups at the arithmetic, rather than algebraic,

end of the spectrum, namely G = Z/pZ for p a prime. Again there is an

attractive qualitative analogue that can be concluded from Cohen’s theorem.

We shall discuss a direct proof shortly.

Proposition 4.2.1. Suppose that A ⊂ T has density α with 0 < α < 1.

Then 1A 6∈ A(T).

A quantitative version of this was first proved by Green and Konyagin in

[GK09]. They proved the following result.

Theorem 4.2.2. Suppose that p is a prime number and A ⊂ Z/pZ has

density bounded away from 0 and 1 by an absolute constant. Then

‖1A‖A(Z/pZ) �
(

log p

log log p

)1/3

.

By analogy with the original problem of Littlewood they observe that

more is probably true, indeed one might make the following conjecture.

Conjecture 4.2.3 (Green-Konyagin-Littlewood conjecture). Suppose that p

is a prime number and A ⊂ Z/pZ has density bounded away from 0 and 1

by an absolute constant. Then

‖1A‖A(Z/pZ) � log p.

Certainly no more than this is true as any arithmetic progression of den-

sity bounded away from 0 and 1 shows. Consider, for example a symmetric

interval I. It is well known that its Fourier transform is just the Dirichlet

90



4.2. ARITHMETIC GROUPS

kernel:

1̂I(r) =
sin(πr|I|/p)
p sin(πr/p)

.

Thus, since | sinx| 6 |x|, we have

‖1I‖A(G) >
p−1∑
r=1

| sin(πr|I|/p)|
πr

.

Now suppose, for example, that |I|/p ≈ 1/2. Then | sin(πr|I|/p)| � 1

whenever r is odd so that

‖1I‖A(G) �
(p−1)/2∑
r′=1

1

r′
� log p.

A similar argument works for any |I| with 1� (|I|/p)(1− (|I|/p)).
In this section we improve Theorem 4.2.2, increasing the exponent of log p

from 1/3− ε to 1/2− ε. Specifically we show the following.

Theorem 4.2.4. Suppose that p is a prime number and A ⊂ Z/pZ has

density bounded away from 0 and 1 by an absolute constant. Then

‖1A‖A(Z/pZ) �
(

log p

(log log p)3

)1/2

.

It is easy to see that this is equivalent to Theorem 4.8.

4.2.1 A qualitative argument

It is instructive to begin considering the problem by looking at a proof of

Proposition 4.2.1. The proof proceeds in three stages, the first two of which

are naturally set in an arbitrary compact abelian group G.

(i). (Fourier inversion) First, if f ∈ A(G) then we may define the function

f̃(x) :=
∑
γ∈Ĝ

f̂(γ)γ(x),
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which is continuous since it is the uniform limit of continuous functions.

The Fourier inversion theorem tells us that ‖f̃ − f‖L∞(µG) = 0.

(ii). (Averaging) Secondly, by averaging there are elements x0, x1 ∈ G such

that

f̃(x0) 6
∫
fdµG 6 f̃(x1),

since
∫
fdµG =

∫
f̃dµG.

(iii). (Intermediate value theorem) Finally we suppose (for a contradiction)

that 1A ∈ A(T) so that by the intermediate value theorem there is some

x ∈ T such that 1̃A(x) = α. Continuity ensures that there is an open

ball x+B on which 1̃A is very close to α, and in particular, since α ∈
(0, 1), on which 1̃A only takes values in (0, 1). Since ‖1A− 1̃A‖L∞(G) = 0

and µ(x+B) > 0 it follows that 1A equals 1̃A for some point in x+B,

but this contradicts the fact that 1A can only take the values 0 or 1.

If we try to transfer this argument to G = Z/pZ it breaks down at the third

stage when we apply the intermediate value theorem. It is easy enough to

remedy this and prove a sensible discrete analogue of the intermediate value

theorem; the following, for example, is in [GK09]. It is also a corollary of the

more general Lemma 4.3.3 which is proved later.

Proposition 4.2.5 (Discrete intermediate value theorem). Suppose that p is

prime number. Suppose that f : Z/pZ→ R and that there is some non-zero

y ∈ Z/pZ such that

|f(x+ y)− f(x)| 6 ε‖f‖L∞(µG) for all x ∈ Z/pZ.

Then there is some x ∈ Z/pZ such that

|f(x)−
∫
fdµZ/pZ| 6 2−1ε‖f‖L∞(µG).

Of course this has only moved the difficulty: to use this result we need

to replace the continuity in the first stage of our argument with the sort of

quantitative continuity used in this proposition.
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It turns out that we already have a ready supply of functions which are

continuous in this new sense: Suppose that f ∈ L∞(µG) and B(Γ, δ) is a

regular Bohr set. Then, by Lemma 2.2.5, we may pick δ′ � εδ/d such that

‖f ∗ βΓ,δ − f ∗ βΓ,δ(x)‖L∞(x+βΓ,δ) 6 ε‖f‖L∞(µG).

Now if µG(B(Γ, δ′)) > p−1 then B(Γ, δ′) has a non-identity element and hence

the discrete intermediate value theorem applies.

Essentially the same argument which shows that if f ∈ A(G) then ‖f −
f̃‖L∞(µG) = 0 for some continuous function f̃ , can be made quantitative to

show that there is a regular Bohr set B(Γ, δ) such that ‖f −f ∗βΓ,δ‖L∞(µG) is

small and, by our previous observations, f ∗βΓ,δ is quantitatively continuous.

To be concrete suppose that G is a compact abelian group, f ∈ A(G)

and write Af := ‖f‖A(G)‖f‖−1
L∞(µG). Then there is a finite set of characters Γ

such that ∑
γ 6∈Γ

|f̂(γ)| 6 εA−1
f ‖f‖A(G).

Pick δ � εA−1
f such that

B(Γ, δ) ⊂ {x ∈ G : |1− γ(x)| 6 εA−1
f for all γ ∈ Γ},

and such that δ is regular for Γ by Proposition 2.2.2. It is easy to see that

|1− β̂Γ,δ(γ)| 6 εA−1
f if γ ∈ Γ,

and it follows that

‖f − f ∗ βΓ,δ‖L∞(µG) 6
∑
γ∈Ĝ

|1− β̂Γ,δ(γ)||f̂(γ)|

6
∑
γ∈Γ

|1− β̂Γ,δ(γ)||f̂(γ)|+
∑
γ 6∈Γ

|1− β̂Γ,δ(γ)||f̂(γ)|

6 εA−1
f

∑
γ∈Ĝ

|f̂(γ)|+ 2
∑
γ 6∈Γ

|f̂(γ)|

6 3εA−1
f ‖f‖A(G) 6 3ε‖f‖L∞(µG).
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In slightly formal language this has proved the following qualitative result.

Theorem 4.2.6. Suppose that G is a compact abelian group, f ∈ A(G) and

ε ∈ (0, 1]. Write Af := ‖f‖A(G)‖f‖−1
L∞(µG). Then there is a Bohr set B(Γ, δ)

with

d <∞ and δ−1 � ε−1Af ,

and a narrower Bohr set B(Γ, δ′) with δ′ � εδ/d such that

sup
x∈G
‖f ∗ βΓ,δ − f ∗ βΓ,δ(x)‖L∞(x+βΓ,δ′ )

6 ε‖f‖L∞(µG)

and

sup
x∈G
‖f − f ∗ βΓ,δ‖L∞(x+βΓ,δ′ )

6 ε‖f‖L∞(µG).

Of course, as we observed before, this is only useful to us if B(Γ, δ′)

contains a non-zero element. We can use Lemma 2.2.1 to estimate its size:

If G = Z/pZ, then B(Γ, δ′) contains a non-zero element if

(cε2A−1
f /d)d > p−1 for some absolute c > 0.

Unfortunately, because we have no control over d, we have no way of ensuring

this inequality. The content of this section can be seen as an effort to make

this method work by getting control of d; the main result is the following

quantitative version of Theorem 4.2.6.

Theorem 4.2.7. Suppose that G is a finite abelian group, f ∈ A(G) and

ε ∈ (0, 1]. Write Af := ‖f‖A(G)‖f‖−1
L∞(µG). Then there is a Bohr set B(Γ, δ)

with

d� ε−2Af logAf log ε−1Af and log δ−1 � ε−2Af (log ε−1Af )
2,

and a narrower Bohr set B(Γ, δ′) with δ′ � εδ/d such that

sup
x∈G
‖f ∗ βΓ,δ − f ∗ βΓ,δ(x)‖L∞(x+βΓ,δ′ )

6 ε‖f‖L∞(µG)
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and

sup
x∈G
‖f − f ∗ βΓ,δ‖L2(x+βΓ,δ′ )

6 ε‖f‖L∞(µG).

Note that to gain control of d we have had to sacrifice some control of δ

and of the error in approximating f by f ∗ βΓ,δ.

There are now three remaining subsections to the section.

• §4.2.2 details our arguments in the model setting of G = Fn2 .

• §4.2.3 proves Theorem 4.2.7 following the outline of §4.2.2.

• Finally §4.2.4 completes the proof of Theorem 4.2.4 and concludes with

some remarks and a conjecture.

4.2.2 The argument in a model setting

We shall prove the following model version of Theorem 4.2.7.

Theorem 4.2.8. Suppose that G = Fn2 . Suppose that f ∈ A(G) and ε ∈
(0, 1]. Write Af := ‖f‖A(G)‖f‖−1

L∞(µG). Then there is a subspace V of G with

codimV � ε−2Af (1 + logAf )(1 + log ε−1Af ),

and

sup
x∈G
‖f − f ∗ µV ‖L2(x+µV ) < ε‖f‖L∞(µG).

The first part of the conclusion of Theorem 4.2.7 is unnecessary since

f ∗ µV is constant on cosets of V and hence

sup
x∈G
‖f ∗ µV − f ∗ µV (x)‖L∞(x+µV ) = 0.

The basic quantitative argument

We begin with an argument which proves the following weak version of The-

orem 4.2.8; the argument will form the basis of our proof of that theorem.
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Theorem 4.2.9. Suppose that G = Fn2 . Suppose that f ∈ A(G) and ε ∈
(0, 1]. Write Af := ‖f‖A(G)‖f‖−1

L∞(µG). Then there is a subspace V of G with

codimV 6 23ε−4A3
f ,

and

sup
x∈G
‖f − f ∗ µV ‖L2(x+µV ) < ε‖f‖L∞(µG).

The technique is iterative, with the driving component being the following

lemma.

Lemma 4.2.10 (Iteration lemma 1). Suppose that G = Fn2 and Γ⊥ is an

annihilator in G. Suppose that f ∈ A(G) and ε ∈ (0, 1]. Write Af :=

‖f‖A(G)‖f‖−1
L∞(µG). Then at least one of the following is true.

(i). (f is close to a continuous function)

sup
x∈G
‖f − f ∗ µΓ⊥‖L2(x+µ

Γ⊥ ) < ε‖f‖L∞(µG).

(ii). There is a set of characters Λ with |Λ| 6 2ε−2A2
f such that∑

γ∈(Γ∪Λ)⊥⊥

|f̂(γ)| −
∑
γ∈Γ⊥⊥

|f̂(γ)| > 2−2ε2‖f‖L∞(µG).

Essentially this says that if f does not satisfy the conclusion of Theorem

4.2.9 for some annihilator Γ⊥ then there is a smaller (but not too much

smaller) annihilator Γ′⊥ which supports more A(G)-norm of f .

To control the size of Γ′⊥ we we use Proposition 2.3.2; in Fn2 its statement

is particularly simple:

Proposition 4.2.11. (Model analogue of Proposition 2.3.2) Suppose that

G = Fn2 and Γ⊥ is an annihilator in G. Suppose that f ∈ A(G) and ε ∈ (0, 1].

Then there is a set Λ of characters with

|Λ| 6 ε−1‖f‖A(G)‖f‖−1
L∞(µ⊥Γ )
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such that

{γ ∈ Ĝ : |f̂dµΓ⊥(γ)| > ε‖f‖L∞(µ
Γ⊥ )} ⊂ (Γ ∪ Λ)⊥⊥.

Proof of Lemma 4.2.10. Suppose that

sup
x∈G
‖f − f ∗ µΓ⊥‖L2(x+µ

Γ⊥ ) > ε‖f‖L∞(µG).

Since G is finite there is some x′ ∈ G which, without loss of generality, is

equal to 0G such that

‖f − f ∗ µΓ⊥‖L2(x′+µ
Γ⊥ ) > ε‖f‖L∞(µG). (4.2.1)

For ease of notation write g = f − f ∗ µΓ⊥ , and observe that g satisfies the

inequalities

‖g‖A(G) 6 ‖f‖A(G) and ‖g‖L∞(µ
Γ⊥ ) 6 2‖f‖L∞(µG). (4.2.2)

To see the first of these note that

‖g‖A(G) =
∑
γ∈Ĝ

|1− µ̂Γ⊥(γ)||f̂(γ)| 6 sup
γ∈Ĝ
|1− µ̂Γ⊥(γ)|‖f‖A(G) 6 ‖f‖A(G),

and for the second

‖g‖L∞(µ
Γ⊥ ) 6 ‖g‖L∞(µG) 6 ‖f‖L∞(µG) + ‖f ∗ µΓ⊥‖L∞(µG) 6 2‖f‖L∞(µG).

Returning to (4.2.1) we may apply Plancherel’s Theorem and then the

triangle inequality to give us a Fourier statement:∑
γ∈Ĝ

|ĝdµΓ⊥(γ)||ĝ(γ)| > ε2‖f‖2
L∞(µG). (4.2.3)

The characters supporting large values of ĝdµΓ⊥ make the principal contri-
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bution to this sum. Specifically put

C := {γ ∈ Ĝ : |ĝdµΓ⊥(γ)| > ε′‖g‖L∞(µ
Γ⊥ )},

where

ε′ := 2−1ε2A−1
f ‖f‖L∞(G)‖g‖−1

L∞(µ
Γ⊥ ).

Then∑
γ 6∈C

|ĝdµΓ⊥(γ)||ĝ(γ)| 6 2−1ε2A−1
f ‖f‖L∞(µG)

∑
γ 6∈C

|ĝ(γ)|

6 2−1ε2A−1
f ‖f‖L∞(µG)‖g‖A(G)

6 2−1ε2‖f‖2
L∞(µG) since ‖g‖A(G) 6 ‖f‖A(G).

Substituting this into (4.2.3) we conclude that∑
γ∈C

|ĝdµΓ⊥(γ)||ĝ(γ)| > 2−1ε2‖f‖2
L∞(µG). (4.2.4)

Now certainly |ĝdµΓ⊥(γ)| 6 2‖f‖L∞(µG) so that

2−2ε2‖f‖L∞(µG) 6
∑
γ∈C

|ĝ(γ)|.

We now apply Proposition 4.2.11 to C to get a set of characters Λ with

|Λ| < (ε′)−1‖g‖A(G)‖g‖−1
L∞(µ

Γ⊥ )

6 2ε−2A2
f ,

such that C ⊂ (Γ ∪ Λ)⊥⊥. The lemma follows.

We are now in a position to iterate this and prove Theorem 4.2.9.

Proof of Theorem 4.2.9. We construct a sequence of annihilators Γ⊥k itera-

tively. Write

Lk :=
∑
γ∈Γ⊥⊥k

|f̂(γ)|,
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and initiate the iteration with Γ0 := {0Ĝ}.
Suppose that we are at stage k of the iteration. Apply the iteration lemma

(Lemma 4.2.10). If we are in the first case of the lemma then put V = Γ⊥k
and terminate; if not then we get a set of characters Λ and put Γk+1 = Γk∪Λ.

It follows from the properties of Λ that

|Γk+1| 6 |Γk|+ 2ε−2A2
f and Lk+1 − Lk > 2−2ε2‖f‖L∞(µG).

By induction we have that after k iterations

|Γk| 6 k.2ε−2A2
f and Lk > k.2−2ε2‖f‖L∞(µG).

Since Lk 6 ‖f‖A(G) we conclude that the iteration terminates and

|Γk| 6 23ε−4A3
f .

The theorem follows.

Refining the basic argument: the proof of Theorem 4.2.8

To achieve the result in Theorem 4.2.8 we make two important improvements

to the iteration lemma (Lemma 4.2.10) of the previous argument.

• (Dyadic decomposition) Our first improvement is the observation that

having derived∑
γ∈C

|ĝdµΓ⊥(γ)||ĝ(γ)| > 2−1ε2‖f‖2
L∞(µG) (4.2.4),

we can do something better than simply adding all the characters in

C to Γ. Partition the characters in C by dyadically decomposing the

range of values of |ĝdµΓ⊥ | and pick the characters in a dyadic class

contributing maximal mass to (4.2.4). The A(G)-norm of f supported

on this class is more closely related to the size of C which yields an

improvement.

• (Structure theorem for the Fourier spectrum) The second improvement
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replaces the application of Proposition 4.2.11 with the stronger Propo-

sition 2.3.4, which in the model setting has the following simpler state-

ment.

Proposition 4.2.12. (Model analogue of Proposition 2.3.4) Suppose

that G = Fn2 and Γ⊥ is an annihilator in G. Suppose that f ∈ A(G)

and ε ∈ (0, 1]. Write Af := ‖f‖A(G)‖f‖−1
L∞(µ

Γ⊥ ). Then there is a set Λ

of characters with |Λ| � ε−1 logAf such that

{γ ∈ Ĝ : |f̂dµΓ⊥(γ)| > ε‖f‖L∞(µ
Γ⊥ )} ⊂ (Γ ∪ Λ)⊥⊥.

By implementing these two refinements we prove the following iteration

lemma.

Lemma 4.2.13 (Iteration lemma 2). Suppose that G = Fn2 and Γ⊥ is an

annihilator in G. Suppose that f ∈ A(G) and ε ∈ (0, 1]. Write Af :=

‖f‖A(G)‖f‖−1
L∞(G). Then at least one of the following is true.

(i). (f is close to a continuous function)

sup
x∈G
‖f − f ∗ µΓ⊥‖L2(x+µ

Γ⊥ ) < ε‖f‖L∞(µG).

(ii). There is a set of characters Λ and a non-negative integer s with |Λ| �
2s(1 + logAf ) such that

∑
γ∈(Γ∪Λ)⊥⊥

|f̂(γ)| −
∑
γ∈Γ⊥⊥

|f̂(γ)| �
2sε2‖f‖L∞(µG)

1 + log ε−1Af
.

Proof. We proceed as in the proof of Lemma 4.2.10 up to the point where

we conclude that∑
γ∈C

|ĝdµΓ⊥(γ)||ĝ(γ)| > 2−1ε2‖f‖2
L∞(µG) (4.2.4).
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Write Is := (2−s‖f‖L∞(µG), 2
−(s−1)‖f‖L∞(µG)] and partition C into the sets

Cs := {γ ∈ C : |ĝdµΓ⊥(γ)| ∈ Is} for 0 6 s 6 1 + log2 ε
−2Af .

Note that {Cs : 0 6 s 6 1 + log2 ε
−2Af} covers C since

sup
γ∈C
|ĝdµΓ⊥(γ)| 6 sup

γ∈Ĝ
|ĝdµΓ⊥(γ)| 6 ‖g‖L∞(µ

Γ⊥ ) 6 2‖f‖L∞(µG)

and

inf
γ∈C
|ĝdµΓ⊥(γ)| > 2−1ε2A−1

f ‖f‖L∞(µG),

so that (4.2.4) may be rewritten to yield

1+log2 ε
−2Af∑

s=0

∑
γ∈Cs

|ĝdµΓ⊥(γ)||ĝ(γ)| > 2−1ε2‖f‖2
L∞(µG).

It follows by the pigeonhole principle that there is some s for which

∑
γ∈Cs

|ĝdµΓ⊥(γ)||ĝ(γ)| �
ε2‖f‖2

L∞(µG)

1 + log ε−1Af
,

and since |ĝdµΓ⊥(γ)| 6 2−(s−1)‖f‖L∞(µG) if γ ∈ Cs we get

∑
γ∈Cs

|ĝ(γ)| �
2sε2‖f‖L∞(µG)

1 + log ε−1Af
.

Now

Cs ⊂ {γ : |ĝdµΓ⊥(γ)| > (2−s‖f‖L∞(µG)‖g‖−1
L∞(µ

Γ⊥ ))‖g‖L∞(µ
Γ⊥ )},

and since ‖g‖A(G) 6 ‖f‖A(G) we may apply Proposition 4.2.12 to get a set of
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characters Λ such that Cs ⊂ (Γ ∪ Λ)⊥⊥. Moreover |Λ| satisfies

|Λ| � 2s‖f‖−1
L∞(µG)‖g‖L∞(µ

Γ⊥ )(1 + log ‖g‖A(G)‖g‖−1
L∞(µ

Γ⊥ ))

� 2s(1 + log ‖g‖A(G)‖f‖−1
L∞(µG)) since ‖g‖L∞(µ

Γ⊥ ) 6 2‖f‖L∞(µG)

� 2s(1 + logAf ) since ‖g‖A(G) 6 ‖f‖A(G).

The lemma follows.

Iterating this in the same way as before yields Theorem 4.2.8.

4.2.3 The proof of Theorem 4.2.7

We begin by extending the second iteration lemma (Lemma 4.2.13) from the

model setting to that of general finite abelian groups.

Lemma 4.2.14. Suppose that G is a finite abelian group and B(Γ, δ) a reg-

ular Bohr set. Suppose that f ∈ A(G) and ε ∈ (0, 1]. Write Af for the

quantity ‖f‖A(G)‖f‖−1
L∞(µG). Then at least one of the following is true.

(i). (f is close to a continuous function) There is a Bohr set B(Γ, δ′) with

δ′ � εδ/d such that

sup
x∈G
‖f ∗ β − f ∗ β(x)‖L∞(x+βΓ,δ′ )

6 ε‖f‖L∞(µG)

and

sup
x∈G
‖f − f ∗ βΓ,δ‖L2(x+βΓ,δ′ )

6 ε‖f‖L∞(µG).

(ii). For all η ∈ (0, 1] there is a set of characters Λ, a δ′′ ∈ (0, 1] and a

non-negative integer s with

|Λ| � 2s(1 + logAf ) and δ′′ � ε5A−4
f ηδ/d3,

such that

∑
γ∈L

|1− β̂Γ,δ(γ)||f̂(γ)| �
2sε2‖f‖L∞(µG)

min{2s, 1 + log ε−1Af}
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where

L := {γ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′′)}.

Proof. Choosing δ′ is easy: By Corollary 2.2.5 and Proposition 2.2.2 there is

a δ′ � δε/d regular for Γ such that

sup
x∈G
‖f ∗ βΓ,δ − f ∗ βΓ,δ(x)‖L∞(x+βΓ,δ′ )

6 ε‖f‖L∞(µG).

Now, suppose that

sup
x∈G
‖f − f ∗ βΓ,δ‖L2(x+βΓ,δ′ )

> ε‖f‖L∞(µG).

It follows that there is some x′ ∈ G which, without loss of generality, is equal

to 0G such that

‖f − f ∗ βΓ,δ‖L2(x′+βΓ,δ′ )
> ε‖f‖L∞(µG). (4.2.5)

For ease of notation write g = f − f ∗ βΓ,δ, and observe that g satisfies the

inequalities

‖g‖A(G) 6 2‖f‖A(G) and ‖g‖L∞(βΓ,δ′ )
6 2‖f‖L∞(µG).

To see the first of these note that

‖g‖A(G) =
∑
γ∈Ĝ

|1− β̂Γ,δ(γ)||f̂(γ)| 6 sup
γ∈Ĝ
|1− β̂Γ,δ(γ)|‖f‖A(G) 6 2‖f‖A(G),

and for the second

‖g‖L∞(βΓ,δ′ )
6 ‖g‖L∞(µG) 6 ‖f‖L∞(µG) + ‖f ∗ βΓ,δ‖L∞(µG) 6 2‖f‖L∞(µG).

Returning to (4.2.5) we may apply Plancherel’s Theorem and then the
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triangle inequality to give us a Fourier statement:∑
γ∈Ĝ

|ĝdβΓ,δ′(γ)||ĝ(γ)| > ε2‖f‖2
L∞(µG). (4.2.6)

The characters supporting large values of ĝdβΓ,δ′ make the principal contri-

bution to this sum. Specifically put

C := {γ ∈ Ĝ : |ĝdβΓ,δ′(γ)| > ε′‖g‖L∞(βΓ,δ′ )
},

where

ε′ := 2−2ε2A−1
f ‖f‖L∞(µG)‖g‖−1

L∞(βΓ,δ′ )
.

Then∑
γ 6∈C

|ĝdβΓ,δ′(γ)||ĝ(γ)| 6 2−2ε2A−1
f ‖f‖L∞(µG)

∑
γ 6∈C

|ĝ(γ)|

6 2−2ε2A−1
f ‖f‖L∞(µG)‖g‖A(G)

6 2−1ε2‖f‖2
L∞(µG) since ‖g‖A(G) 6 2‖f‖A(G).

Substituting this into (4.2.6) we conclude that∑
γ∈C

|ĝdβΓ,δ′(γ)||ĝ(γ)| > 2−1ε2‖f‖2
L∞(µG). (4.2.7)

Write Is := (2−s‖f‖L∞(µG), 2
−(s−1)‖f‖L∞(µG)] and partition C into the sets

Cs := {γ ∈ C : |ĝdβΓ,δ′(γ)| ∈ Is} for 0 6 s 6 3 + log2 ε
−2Af .

Notice that {Cs : 0 6 s 6 3 + log2 ε
−2Af} covers C since

sup
γ∈C
|ĝdβΓ,δ′(γ)| 6 sup

γ∈Ĝ
|ĝdβΓ,δ′(γ)| 6 ‖g‖L∞(βΓ,δ′ )

6 2‖f‖L∞(µG)

and

inf
γ∈C
|ĝdβΓ,δ′(γ)| > 2−2ε2A−1

f ‖f‖L∞(µG),
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so that (4.2.7) may be rewritten to yield

3+log2 ε
−2Af∑

s=0

∑
γ∈Cs

|ĝdβΓ,δ′(γ)||ĝ(γ)| > 2−1ε2‖f‖2
L∞(µG).

Writing S ′ := {s ∈ N0 : 2s 6 3 + log2 ε
−2Af} and S ′′ := {s ∈ N0 : 2s >

3 + log2 ε
−2Af} it follows that either∑

s∈S′
2−s.2s

∑
γ∈Cs

|ĝdβΓ,δ′(γ)||ĝ(γ)| > 2−2ε2‖f‖2
L∞(µG)

or ∑
s∈S′′

∑
γ∈Cs

|ĝdβΓ,δ′(γ)||ĝ(γ)| > 2−2ε2‖f‖2
L∞(µG).

By the pigeonhole principle there is some s for which

∑
γ∈Cs

|ĝdβΓ,δ′(γ)||ĝ(γ)| �
ε2‖f‖2

L∞(µG)

1 + log ε−1Af
if 2s > 3 + log2 ε

−2Af

and ∑
γ∈Cs

|ĝdβΓ,δ′(γ)||ĝ(γ)| �
ε2‖f‖2

L∞(µG)

2s
if 2s 6 3 + log2 ε

−2Af .

i.e. there is some s such that

∑
γ∈Cs

|ĝdβΓ,δ′(γ)||ĝ(γ)| �
ε2‖f‖2

L∞(µG)

min{2s, 1 + log ε−1Af}
.

Since |ĝdβΓ,δ′(γ)| 6 2−(s−1)‖f‖L∞(µG) if γ ∈ Cs we get

∑
γ∈Cs

|ĝ(γ)| �
2sε2‖f‖L∞(µG)

min{2s, 1 + log ε−1Af}
.

Now

Cs ⊂ {γ : |ĝdβΓ,δ′(γ)| > (2−s‖f‖L∞(µG)‖g‖−1
L∞(βΓ,δ′ )

)‖g‖L∞(βΓ,δ′ )
},
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and g ∈ A(G) so we may apply Proposition 2.3.4 to get a set of characters

Λ and a δ′′ regular for Γ ∪ Λ such that

Cs ⊂ {γ : |1− γ(x)| 6 η for all x ∈ B(Γ ∪ Λ, δ′′)}.

Moreover |Λ| satisfies

|Λ| � 2s‖f‖−1
L∞(µG)‖g‖L∞(βΓ,δ′ )

(1 + log ‖g‖A(G)‖g‖−1
L∞(βΓ,δ′ )

)

� 2s‖f‖−1
L∞(µG)‖g‖L∞(βΓ,δ′ )

(1 + log 2‖f‖A(G)‖g‖−1
L∞(βΓ,δ′ )

)

since ‖g‖A(G) 6 2‖f‖A(G), so

|Λ| � 2s‖f‖−1
L∞(µG)‖g‖L∞(βΓ,δ′ )

(1 + log 2Af‖f‖L∞(µG)‖g‖−1
L∞(βΓ,δ′ )

).

So, writing X for ‖f‖−1
L∞(µG)‖g‖L∞(βΓ,δ′ )

we have

|Λ| � 2sX(1 + log 2AfX
−1),

but ‖g‖L∞(βΓ,δ′ )
6 2‖f‖L∞(µG) so X 6 2 and therefore

|Λ| � 2s sup
X′∈(0,2]

X ′(1 + log 2AfX
′−1)� 2s(1 + logAf ).

Furthermore δ′′ satisfies

δ′′ � 2−2s‖f‖2
L∞(µG)‖g‖−2

L∞(βΓ,δ′ )
ηδ′/d2(1 + log ‖g‖A(G)‖g‖−1

L∞(βΓ,δ′ )
)

� 2−2s‖f‖2
L∞(µG)ηδ

′/d2‖g‖2
A(G)

� ε4A−2
f ‖f‖

2
L∞(µG)ηδ

′/d2‖g‖2
A(G) since 22s 6 24ε−4A2

f

� ε4A−4
f ηδ′/d2 since ‖g‖A(G) 6 2‖f‖A(G).

The lemma follows.

We are now in a position to iterate this lemma.

Proof of Theorem 4.2.7. Fix η to be optimized at the end of the argument.

We construct a sequence of regular Bohr sets B(Γk, δk) iteratively using
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Lemma 4.2.14. Put

Lk := {γ : |1− γ(x)| 6 η for all x ∈ B(Γk, δk)}

and

dk := |Γk| and Lk :=
∑
γ∈Lk

|f̂(γ)|.

We initialize the iteration with Γ0 := {0Ĝ} and δ0 � 1 regular for Γ0, chosen

so by Proposition 2.2.2.

Suppose that we are at stage k. Apply the iteration lemma (Lemma

4.2.14) to f and the regular Bohr set B(Γk, δk). If we are in the first case

terminate with the desired conclusion; if not then we get a set of characters

Λ, a δ′′ ∈ (0, 1] and an integer s. Let Γk+1 = Γk ∪ Λ, pick δk+1 ∈ (δ′′/2, δ′′]

regular for Γk+1 by Proposition 2.2.2, and let sk+1 = s. We are given that

dk+1 − dk � 2sk+1(1 + logAf ) and δk+1 � ε5A−4
f ηδk/d

3
k,

and furthermore

2(Lk+1 − Lk) + ηLk �
2sk+1ε2‖f‖L∞(µG)

min{2sk+1 , 1 + log ε−1Af}
.

Since Lk 6 ‖f‖A(G) and sk > 0 it follows that we can pick η � ε3A−2
f

(independently of k) such that

Lk+1 − Lk �
2sk+1ε2‖f‖L∞(µG)

min{2sk+1 , 1 + log ε−1Af}
.

Hence by induction we have

Lk � ε2‖f‖L∞(µG)

k∑
l=1

2sl

min{2sl , 1 + log ε−1Af}
and dk �

k∑
l=1

2sl(1 + logAf ).
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Again since sk > 0 it follows that the iteration terminates. Hence we have

k∑
l=1

2sl � Lkε
−2‖f‖−1

L∞(µG)(1 + log ε−1Af )� ε−2Af (1 + log ε−1Af ),

since ‖f‖A(G) > Lk. It follows that

dk � ε−2Af (1 + logAf )(1 + log ε−1Af ).

The bound on η and dk gives us

δk+1 � ε17A−15
f δk,

and hence

log δ−1
k � k(1 + log ε−1Af )

�
k∑
l=1

2sk

min{2sk , 1 + log ε−1Af}
(1 + log ε−1Af )

� ε−2Af (1 + log ε−1Af ).

The result follows.

4.2.4 The proof of Theorem 3.1.1 and concluding re-

marks

Having proved Theorem 4.2.7 it is essentially a formality to carry out the

rest of the argument detailed in §4.2.1.

Proof of Theorem 3.1.1. Write G for Z/pZ and α := µG(A) = |A|/p. We

apply Theorem 4.2.7 to f = 1A with ε = 2−2α(1− α). This gives a Bohr set

B(Γ, δ) with

d�α ‖1A‖A(G)(1 + log ‖1A‖A(G))
2

and

log δ−1 �α ‖1A‖A(G)(1 + log ‖1A‖A(G)),
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and a narrower Bohr set B(Γ, δ′) with δ′ �α δ/d such that

sup
x∈G
‖1A ∗ βΓ,δ − 1A ∗ βΓ,δ(x)‖L∞(x+βΓ,δ′ )

6 2−2α(1− α)

and

sup
x∈G
‖1A − 1A ∗ βΓ,δ‖L2(x+βΓ,δ′ )

6 2−2α(1− α). (4.2.8)

Suppose that µG(βΓ,δ′) > p−1. Then there is a non-zero y ∈ B(Γ, δ′), and

such a y has the property that |1A ∗ βΓ,δ(x+ y)− 1A ∗ βΓ,δ(x)| 6 2−2α(1−α)

for all x ∈ G. It follows that we may apply the discrete intermediate value

theorem (Proposition 4.2.5) to 1A∗βΓ,δ and conclude that there is some x ∈ G
such that

|1A ∗ βΓ,δ(x)− α| 6 2−3α(1− α).

Furthermore (4.2.8) ensures that there is some x′ ∈ x+B(Γ, δ′) such that

|1A(x′)− 1A ∗ βΓ,δ(x
′)| 6 2−2α(1− α).

Since |1A(x′)− α| is at most

|1A(x′)− 1A ∗ βΓ,δ(x
′)|+ |1A ∗ βΓ,δ(x

′)− 1A ∗ βΓ,δ(x)|+ |1A ∗ βΓ,δ(x)− α|

by the triangle inequality, we conclude that it is at most α(1 − α). This

contradicts the fact that 1A(x′) ∈ {0, 1}, and hence µG(B(Γ, δ′)) 6 p−1.

Lemma 2.2.1 then lets us infer that d(1 + log δ′−1) � log p from which, on

inserting the bounds on d and δ′, the result follows.

In [GK09] Green and Konyagin essentially prove a version of Theorem

4.2.7 with different bounds:

Theorem 4.2.15. Suppose that G is a finite abelian group, f ∈ A(G) and

ε ∈ (0, 1]. Write Af for the quantity ‖f‖A(G)‖f‖−1
L∞(µG). Then there is a Bohr

set B(Γ, δ) with

|Γ| � ε−2A2
f and log δ−1 � ε−1Af (1 + log ε−1Af ),
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and a narrower Bohr set B(Γ, δ′) with δ′ � εδ/d such that

sup
x∈G
‖f ∗ βΓ,δ − f ∗ βΓ,δ(x)‖L∞(x+βΓ,δ′ )

6 ε‖f‖L∞(µG)

and

sup
x∈G
‖f − f ∗ βΓ,δ‖L2(x+βΓ,δ′ )

6 ε‖f‖L∞(µG).

The crucial difference between our proof of Theorem 4.2.7 and their proof

of Theorem 4.2.15 is that in their iteration lemma they find only a few char-

acters at which f̂ is large, whereas we find all characters at which f̂ is large.

Their approach leads to superior bounds in the basic version of their argu-

ment, however it prevents them from using a tool such as Proposition 2.3.4,

which is where our argument gains its edge.

In both our argument and the argument of Green and Konyagin the width

of the Bohr set which one eventually finds narrows exponentially with the

number of times one has to use the (appropriate) iteration lemma. Green

and Konyagin employ a neat trick to reduce this – the natural version of their

argument has log δ−1 � ε−2A2
f (1 + log ε−1Af ) – which leads to the superior

ε-dependence for log δ−1 in Theorem 4.2.15. It is possible to add their trick

to our argument and hence improve the ε-dependence of log δ−1 in Theorem

4.2.7 too, however this would have no effect on our application.

Finally it would be interesting to know what the true bounds in Theorem

4.2.7 should be. As far as the model analogue, Theorem 4.2.8, is concerned

it would probably be surprising if one could beat the following.

Conjecture 4.2.16. Suppose that G = Fn2 , f ∈ A(G) and ε ∈ (0, 1]. Write

Af for the quantity ‖f‖A(G)‖f‖−1
L∞(µG). Then there is a subspace V of G with

codimV � ε−2Af ,

and

sup
x′∈G
‖f − f(x′)‖L2(x′+µV ) 6 ε‖f‖L∞(µG).

It is, however, not clear what an argument giving this might provide in

the general setting. If the argument is iterative in the style of this paper
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then to provide an improvement in the exponent of log p in Theorem 3.1.1

one would require some way of cutting down the number of times we iterate.

4.3 Finite abelian groups

In this section we prove Theorem 4.10 which we recall now for convenience.

Theorem (Theorem 4.10). Suppose that G is a finite abelian group. Sup-

pose that A ⊂ G has density α and for all V 6 Ĝ with |V | 6 M we have

{α|V |}(1− {α|V |})� 1. Then

‖1A‖A(G) � log log logM.

The proof is a combination of the work of the previous two sections with

an extra ingredient. In §4.3.1 we prove the main Fourier argument and then

in §4.3.2 establish some appropriate physical space estimates. These are

analogues of the discrete intermediate value theorem (Proposition 4.2.5) and

Lemma 4.1.8 for arbitrary finite abelian groups. However, some extra work

needs to be done to ensure the stronger conditions we require in §4.3.1. This

work involves a pigeonhole argument and some structural information from

the geometry of numbers. In §4.3.3 we complete the proof of Theorem 4.10.

4.3.1 An iteration argument in Fourier space

The main result of this section takes physical space information about a set

A ⊂ G and converts it into Fourier information. The lemma is a sort of

‘local’ version of Lemma 4.1.6 with two main modifications:

• We have to assume the comparability of the local L2-norm squared and

local L1-norm; ensuring this hypothesis is the principal extra compli-

cation of §4.3.2.

• We are less careful in our analysis because the physical space estimates

available to us in the general setting are sufficiently weak as to render

any more care irrelevant.
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Lemma 4.3.1 (Iteration lemma). Suppose that G is a finite abelian group,

B(Γ, δ) is a Bohr set and B(Γ, δ′) is a regular Bohr set. Suppose that A ⊂ G

and write f := 1A − 1A ∗ βΓ,δ. Suppose, additionally, that

‖f‖2
L2(βΓ,δ′ )

� ‖f‖L1(βΓ,δ′ )
and ‖f‖2

L2(βΓ,δ′ )
> 0.

Suppose that ε ∈ (0, 1] is a parameter. Then either ‖1A‖A(G) � ε−1 or there

is a set of characters Λ and a regular Bohr set B(Γ ∪ Λ, δ′′) such that

|Λ| � ε−2(1 + log ‖f‖L2(βΓ,δ′ )
)−1 and δ′′ � δ′ε3/d2(1 + log ‖f‖−1

L2(βΓ,δ′ )
),

where, as usual, d := |Γ|, and∑
γ∈N\O

|1̂A(γ)| � 1,

where O := {γ : |1−γ(x)| 6 ε for all x ∈ B(Γ, δ)} and N := {γ : |1−γ(x)| 6
ε for all x ∈ B(Γ ∪ Λ, δ′′)}.

Proof. By Plancherel’s Theorem we have∑
γ∈Ĝ

f̂(γ)f̂dβΓ,δ′(γ) = ‖f‖2
L2(βΓ,δ′ )

. (4.3.1)

Write

L := {γ : |f̂dβΓ,δ′(γ)| > ε‖f‖L1(βΓ,δ′ )
},

and suppose that ∑
γ 6∈L

f̂(γ)f̂dβΓ,δ′(γ) > ‖f‖2
L2(βΓ,δ′ )

/2. (4.3.2)

Note that

‖f‖A(G) = ‖1A − 1A ∗ βΓ,δ‖A(G) 6 ‖1A‖A(G) + ‖1A ∗ βΓ,δ‖A(G) 6 2‖1A‖A(G),
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whence ∑
γ 6∈L

|f̂(γ)||f̂dβΓ,δ′(γ)| 6 ε‖f‖L1(βΓ,δ′ )
‖f‖A(G)

6 2ε‖1A‖A(G)‖f‖L1(βΓ,δ′ )

� ε‖1A‖A(G)‖f‖2
L2(βΓ,δ′ )

.

If (4.3.2) holds then the left hand side of this is at least ‖f‖2
L2(βΓ,δ′ )

/2 and so

(dividing by ‖f‖2
L2(βΓ,δ′ )

) we conclude that ‖1A‖A(G) � ε−1.

Thus we may suppose that (4.3.2) is not true and therefore, by (4.3.1),

that ∑
γ∈L

f̂(γ)f̂dβΓ,δ′(γ) > ‖f‖2
L2(βΓ,δ′ )

/2.

By Proposition 2.3.3 there is a set of characters Λ and a δ′′ (regular for Γ∪Λ

by Proposition 2.2.2), with

|Λ| � ε−2(1 + log ‖f‖−2
L1(βΓ,δ′ )

‖f‖2
L2(βΓ,δ′ )

)� ε−2(1 + log ‖f‖−1
L2(βΓ,δ′ )

)

and

δ′′ � δ′ε3/d2(1 + log ‖f‖−2
L1(βΓ,δ′ )

‖f‖2
L2(βΓ,δ′ )

)� δ′ε3/d2(1 + log ‖f‖−1
L2(βΓ,δ′ )

),

such that

L ⊂ {γ : |1− γ(x)| 6 ε for all x ∈ B(Γ ∪ Λ, δ′′)} = N .

Since L ⊂ N we have∑
γ∈N

|f̂(γ)f̂dβΓ,δ′(γ)| > ‖f‖2
L2(βΓ,δ′ )

/2.

Now

|f̂dβΓ,δ′(γ)| 6 ‖f‖L1(βΓ,δ′ )
� ‖f‖2

L2(βΓ,δ′ )
,
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hence ∑
γ∈N

|f̂(γ)| � 1. (4.3.3)

Finally suppose that ∑
γ∈O

|f̂(γ)| > 1

2

∑
γ∈N

|f̂(γ)|. (4.3.4)

By the definition of O we have∑
γ∈O

|f̂(γ)| =
∑
γ∈O

|1̂A(γ)|.|1− β̂Γ,δ(γ)|

6 ‖1A‖A(G) sup
γ∈O
|1− β̂Γ,δ(γ)| 6 ε‖1A‖A(G).

It follows that if (4.3.4) holds then, in view of (4.3.3), ‖1A‖A(G) � ε−1. Thus

we may assume it does not and hence that∑
γ∈N\O

|f̂(γ)| � 1.

Noting that |f̂(γ)| 6 2|1̂A(γ)| completes the proof.

4.3.2 Physical space estimates

The objective of this section is to prove the following result.

Proposition 4.3.2. Suppose that G is a finite abelian group and B(Γ, δ) is

a regular Bohr set in G. Suppose that A ⊂ G has density α and for all finite

V 6 Ĝ with |V | 6M we have {α|V |}(1− {α|V |})� 1. Then either

logM � d(log δ−1 + d log d)

or there is an x′′ ∈ G and reals δ′ and δ′′, both regular for Γ, with δ′ 6 δ,

log δδ′−1 � d log d and log δ′′−1 � d(log δ−1 + d log d)
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such that

‖1A − 1A ∗ βΓ,δ′‖2
L2(x′′+βΓ,δ′′ )

� ‖1A − 1A ∗ βΓ,δ′‖L1(x′′+βΓ,δ′′ )
(4.3.5)

and

log ‖1A − 1A ∗ βΓ,δ′‖−2
L2(x′′+βΓ,δ′′ )

� d(log δ−1 + d log d). (4.3.6)

Of the two parts (4.3.5) and (4.3.6) the second is the easiest to derive and

comes essentially from a straightforward generalization of the physical space

estimates of §4.1 and the discrete intermediate value theorem (Proposition

4.2.5). First we record an appropriate version of the intermediate value

theorem.

Lemma 4.3.3 (Discrete intermediate value theorem). Suppose that G is a

finite abelian group and that B is a subset of G. Suppose that g : G→ R has

sup
x−y∈B

|g(x)− g(y)| 6 η. (4.3.7)

Suppose that x0, x1 ∈ G have x0−x1 ∈ B⊥⊥. Then for any c ∈ [g(x0), g(x1)],

there is an x2 ∈ G such that

|g(x2)− c| 6 η

2
.

Proof. We write H for the group, B⊥⊥, generated by B and define

S− := {x ∈ x0 +H : g(x) < c− η

2
}

and

S+ := {x ∈ x0 +H : g(x) > c+
η

2
}.

If the conclusion of the lemma is false then S := {S−, S+} is a partition of

x0 +H.

By the continuity hypothesis (4.3.7) we have that if x ∈ S− and y ∈ B
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then

|g(x+ y)− g(x)| 6 η ⇒ g(x+ y) < c+
η

2
.

It follows that x + y 6∈ S+ and since S is a partition of x0 + H we conclude

that x+ y ∈ S−. We have shown that S− = S− +H.

Now g(x0) 6 c 6 g(x1) and S is a partition of x0 + H, whence x0 ∈ S−

and x1 ∈ S+. However S− = S− +H, whence S− = x0 +H and so x1 ∈ S−.

This contradicts the fact that S− and S+ are disjoint and so proves the

lemma.

The following is a slightly simpler proof of Lemma 4.1.8 in the general

setting which gives worse (although functionally equivalent) bounds.

Lemma 4.3.4. Suppose that G is a finite abelian group. Suppose that f ∈
L1(µG) maps G into [0, 1] and that V 6 Ĝ has

{‖f‖L1(µG)|V |}(1− {‖f‖L1(µG)|V |})� 1.

Then there is a coset x′ + V ⊥ with

f ∗ µV ⊥(x′)� µG(V ⊥) and (1− f) ∗ µV ⊥(x′)� µG(V ⊥).

Proof. f ∗ µV ⊥ is constant on cosets of V ⊥ so we define

g(x) :=

1 if f ∗ µV ⊥(x) > 1/2

0 otherwise.

Since g is integral on cosets of V ⊥ there is some integer n such that∫
gdµG = nµG(V ⊥).
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However

|nµG(V ⊥)− ‖f‖L1(µG)| = |
∫
gdµG −

∫
fdµG|

= |
∫
gdµG −

∫
f ∗ µV ⊥dµG|

6
∫
|g − f ∗ µV ⊥ |dµG

6 sup
x∈G

min{f ∗ µV ⊥(x), 1− f ∗ µV ⊥(x)}

= sup
x∈G

min{f ∗ µV ⊥(x), (1− f) ∗ µV ⊥(x)}.

Now

|nµG(V ⊥)− ‖f‖L1(µG)| = µG(V ⊥)|n− |V |‖f‖L1(µG)|

> µG(V ⊥){‖f‖L1(µG)|V |}(1− {‖f‖L1(µG)|V |})

� µG(V ⊥),

and the conclusion of the lemma follows.

The next lemma is the extra ingredient necessary for dealing with the

general case.

Lemma 4.3.5. Suppose that G is a finite abelian group and B(Γ, δ) is a

Bohr set in G. Then there are reals δ′ and δ′′ both regular for Γ with δ′ 6 δ,

log δδ′−1 � d log d and δ′′ � δ′/d

such that

B(Γ, δ′)⊥ = B(Γ, δ′′)⊥

and

‖f ∗ βΓ,δ′ − f ∗ βΓ,δ′(x)‖L∞(x+βΓ,δ′′ )
6 ‖f‖∞/4

for all x ∈ G and f ∈ L∞(µG).

Proof. We define a sequence (δi)i iteratively and write

βi := βΓ,δi and Hi := B(Γ, δi)
⊥⊥.
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To begin with we apply Proposition 2.2.2 to get some δ0 regular for Γ with

δ > δ0 � δ. Now, if we have constructed δi for some i > 0, we apply Corollary

2.2.5 (and Proposition 2.2.2) to get a δi+1 regular for Γ with δi > δi+1 � δi/d

and

‖f ∗ βi − f ∗ βi(x)‖L∞(x+βΓ,δi+1
) 6 ‖f‖L∞(µG)/4

for all x ∈ G and f ∈ L∞(µG). We are done if we can show that there is

some i 6 d such that Hi = Hi+1. This follows by the pigeon-hole principle

from the following claim.

Claim. Suppose that κ0 ∈ (0, 1]. Then there is a sequence of elements

x1, ..., xd ∈ G such that for each κ ∈ (κ0, 1] there is some 0 6 i 6 d such that

B(Γ, κ)⊥⊥ = {x1, ..., xi}⊥⊥ +
⋂
γ∈Γ

ker γ.

Proof. The proof of the claim is based on ideas from the geometry of num-

bers introduced to the area by Ruzsa in [Ruz96]; [GR07] contains a neat

exposition. By quotienting we may assume that
⋂
γ∈Γ ker γ = {0G}.

Let φ : G→ Td;x 7→ (γ(x))γ∈Γ and define the lattice L :=
⋃
φ(G) 6 Rd.

Since
⋂
γ∈Γ ker γ = {0G} there is a natural homomorphism ψ : L → G which

takes b ∈ L to the unique x ∈ G such that φ(x) = b+ Zd, with kernel Zd.
We write Q for the unit cube centered at the origin in Rd and note that

ψ(κQ) = B(Γ, κ). We choose linearly independent vectors b1, ..., bd ∈ L
inductively so that

‖bi‖∞ 6 inf{λ : λQ ∩ L contains i linearly independent vectors}.

Let xi = ψ(bi). Since ψ is a homomorphism we have B(Γ, κ)⊥⊥ = ψ((κQ)⊥⊥),

but to each κ ∈ (0, 1] there corresponds an 1 6 i 6 d such that κQ contains

at most i linearly independent vectors and κQ contains b1, ..., bi. Hence

(κQ)⊥⊥ = {b1, ..., bi}⊥⊥. Again, the fact that ψ is a homomorphism gives the

result.
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Proof of Proposition 4.3.2. Applying Lemma 4.3.5 we get reals δ′ 6 δ and

δ′′′ both regular for Γ with

log δδ′−1 � d log d and δ′′′ � δ′/d

such that

B(Γ, δ′)⊥ = B(Γ, δ′′′)⊥ =: V,

and

‖1A ∗ βΓ,δ′ − 1A ∗ βΓ,δ′(x)‖L∞(x+βΓ,δ′′′ )
6 1/4 for all x ∈ G. (4.3.8)

Now

|V |−1 = µG(V ⊥) > µG(B(Γ, δ′)) > (δ′)d; (4.3.9)

the last inequality by Lemma 2.2.1. If M 6 |V | then we are in the first case

of the lemma. Otherwise by hypothesis {α|V |}(1− {α|V |}) � 1. If we put

f = 1A∗βΓ,δ′ then ‖f‖L1(µG) = α and f maps G into [0, 1] whence, by Lemma

4.3.4, there is some x′′′ ∈ G such that

1A ∗ βΓ,δ′ ∗ µV ⊥(x′′′)� µG(V ⊥) and (1− 1A ∗ βΓ,δ′) ∗ µV ⊥(x′′′)� µG(V ⊥).

(4.3.10)

The argument now splits into three cases.

(i). There are elements x0, x1 ∈ x′′′ + V ⊥ such that 1A ∗ βΓ,δ′(x0) > 1/2

and 1A ∗ βΓ,δ′(x1) 6 1/2. Here x0 − x1 ∈ V ⊥ = B(Γ, δ′′′)⊥⊥, so by

the discrete intermediate value theorem (Lemma 4.3.3) and (4.3.8) we

conclude that there is some x2 ∈ x′′′ + V ⊥ such that

3

8
6 1A ∗ βΓ,δ′(x2) 6

5

8
.

Further by (4.3.8) we conclude that

1

8
6 1A ∗ βΓ,δ′(x) 6

7

8
for all x ∈ x2 +B(Γ, δ′′′).

Since 1A only takes values in {0, 1} it follows that |1A − 1A ∗ βΓ,δ′ | � 1
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on x2 +B(Γ, δ′′′). Thus

‖1A − 1A ∗ βΓ,δ′‖2
L2(x2+βΓ,δ′′′ )

� µG(B(Γ, δ′′′)),

and

‖1A − 1A ∗ βΓ,δ′‖L1(x2+βΓ,δ′′′ )
� µG(B(Γ, δ′′′)).

The result follows on putting δ′′ = δ′′′; Lemma 2.2.1 then gives (4.3.6).

(ii). 1A ∗ βΓ,δ′(x) 6 1/2 for all x ∈ x′′′ + V ⊥. Suppose that δ′′ 6 δ′. Then

B(Γ, δ′′) ⊂ B(Γ, δ′) so we have B(Γ, δ′′)⊥⊥ ⊂ B(Γ, δ′)⊥⊥, whence β′Γ,δ′ ∗
µV ⊥ = µV ⊥ = βΓ,δ′ ∗ µV ⊥ . Thus we define

α′ := 1A ∗ βΓ,δ′ ∗ µV ⊥(x′′′) = 1A ∗ β′Γ,δ′ ∗ µV ⊥(x′′′),

which has

α′ � µG(V ⊥) > (δ′)d)d > 0

by (4.3.10) and (4.3.9). By Corollary 2.2.5 we can pick a δ′′ (regular

for Γ by Proposition 2.2.2) with δ′ > δ′′ � δ′α′/d such that

‖1A − 1A ∗ βΓ,δ′(x)‖L∞(x+βΓ,δ′′ )
6 α′ for all x ∈ G. (4.3.11)

We write

L := {x ∈ x′′′ + V ⊥ : 1A ∗ β′Γ,δ′(x) > α′/2}

and note that∫
x 6∈L

1A ∗ β′Γ,δ′(x)dµV ⊥(x′′′ − x) 6 sup
x 6∈L

1A ∗ β′Γ,δ′(x) 6 α′/2,

so ∫
x∈L

1A ∗ β′Γ,δ′(x)dµV ⊥(x′′′ − x) > α′/2.
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If 1A ∗ β′Γ,δ′(x) 6= 0 then 1A ∗ βΓ,δ′(x) 6= 0, whence

α′/2 6
∫
x∈L

1A ∗ βΓ,δ′(x)
1A ∗ β′Γ,δ′(x)

1A ∗ βΓ,δ′(x)
dµV ⊥(x′′′ − x)

6 α′ sup
x∈L

1A ∗ β′Γ,δ′(x)

1A ∗ βΓ,δ′(x)
,

Dividing by α′ (which we have previously observed is positive) we con-

clude that there is some x′′ ∈ L such that

1A ∗ β′Γ,δ′(x′′) > 1A ∗ βΓ,δ′(x
′′)/4.

If x ∈ A ∩ (x′′ + B(Γ, δ′′)) then |1A(x) − 1A ∗ βΓ,δ′(x)| � 1 since 1A ∗
βΓ,δ′(x) 6 1/2 by the hypothesis of this case. If x ∈ Ac∩(x′′+B(Γ, δ′′))

then

|1A(x)− 1A ∗βΓ,δ′(x)| 6 |1A ∗βΓ,δ′(x)| 6 1A ∗βΓ,δ′(x
′′) +O(α′) = O(α′),

where the second inequality is a result of (4.3.11). It follows that

‖1A − 1A ∗ βΓ,δ′‖L1(x′′+βΓ,δ′′ )
� 1A ∗ βΓ,δ′′(x

′′),

and

‖1A − 1A ∗ βΓ,δ′‖L1(x′′+βΓ,δ′′ )
6 O(1A ∗ βΓ,δ′′(x

′′)) +O(α′)

= O(1A ∗ βΓ,δ′′(x
′′))

since 1A ∗ βΓ,δ′′(x
′′)� α′ since x′′ ∈ L. Similarly we have

‖1A − 1A ∗ βΓ,δ′‖2
L2(x′′+βΓ,δ′′ )

� 1A ∗ βΓ,δ′′(x
′′),

and

‖1A − 1A ∗ βΓ,δ′‖2
L2(x′′+βΓ,δ′′ )

6 O(1A ∗ βΓ,δ′′(x
′′)) +O(α′)

= O(1A ∗ βΓ,δ′′(x
′′)).
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It follows that

‖1A − 1A ∗ βΓ,δ′‖L1(x′′+βΓ,δ′′ )
� ‖1A − 1A ∗ βΓ,δ′‖2

L2(x′′+βΓ,δ′′ )
,

and

‖1A − 1A ∗ βΓ,δ′‖2
L2(x′′+βΓ,δ′′ )

� α′.

(iii). 1A ∗ βΓ,δ′(x) > 1/2 for all x ∈ x′′′ + V ⊥. This follows by replacing A

by Ac in the previous case.

The proof is complete.

4.3.3 Proof of Theorem 4.10

Proof of Theorem 4.10. In what follows it is convenient to let C > 0 denote

an absolute constant which may vary from instance to instance.

Fix ε ∈ (0, 1] to be optimized later. We define three sequences (δk)k, (δ′k)k

and (δ′′k)k of reals, one sequence (xk)k of elements ofG, and one sequence (Γk)k

of sets of characters inductively. We write

βk := βΓk,δk , β
′
k := βΓk,δ

′
k

and β′′k := βΓk,δ
′′
k
,

as well as dk := |Γk| and

Lk := {γ : |1− γ(x)| 6 ε for all x ∈ B(Γk, δk)}.

We shall ensure the following properties.

(i). B(Γk, δk), B(Γk, δ
′
k) and B(Γk, δ

′′
k) are regular;

(ii).

‖1A − 1A ∗ βk‖2
L2(xk+βΓk,δ

′
k

) � ‖1A − 1A ∗ β′k‖L1(xk+βΓk,δ
′′
k

);

(iii).

‖1A − 1A ∗ β′k‖2
L2(xk+βΓk,δ

′′
k

) � δdkk /(Cdk)
d2
k ;
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(iv).

δk > δ′k � δk/(Cdk)
dk and δk > δ′′k � δdk+1

k /(Cdk)
d2
k+dk+1;

(v).

dk+1 � ε−2dk(log δ−1
k + dk log dk);

(vi).

δk > δk+1 � δdk+1
k ε4/(Cdk)

d2
k+dk+6 log δ−1

k ;

(vii). ∑
γ∈Lk+1\Lk

|1̂A(γ)| � 1.

We initialize the iteration with Γ0 = {0Ĝ}. Pick δ0 � 1 regular for

Γ0 by Proposition 2.2.2. Apply Proposition 4.3.2 (assuming that we have

δd0
0 (Cd0)d

2
0 < M) to get x0 δ

′
0 and δ′′0 satisfying properties (i),(ii),(iii) and

(iv). By translating A by −x0, if necessary, we can apply Lemma 4.3.1

(assuming that we do not have ‖1A‖A(G) � ε−1) to get Γ1 and δ1 such that

properties (v), (vi) and (vii) are satisfied.

Given Γk and δk we can proceed as we just have (assuming that we have

δdkk (Cdk)
d2
k < M) to generate xk, δ

′
k, δ

′′
k , δk+1 and Γk+1.

By property (vii) (and the leftmost inequality in (vi)) we have ‖1A‖A(G) �
k, so either ‖1A‖A(G) � ε−1, or the iteration terminates with k � ε−1.

(v) and (vi) imply

dk+1 � ε−2dk log δ−1
k and log δ−1

k+1 � dk log δ−1
k + log ε−1,

whence

dk+1 � ε−2dk log δ−1
k and ε−2 log δ−1

k+1 � ε−2dk log δ−1
k .

It follows that dk+1 � d2
k and so dk 6 22Ck and δk > 222Ck

. For the iteration

to terminate we must have M 6 δdkk (Cdk)
d2
k ; for this to happen for some

k � ε−1 we need exp(exp(exp(Cε−1))) >M . The result follows.
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4.4 A quantitative version of the idempotent

theorem

In this section we shall prove Theorem 4.12 which we recall now for conve-

nience. This work is from the joint paper [GS08b] of Green and the author.

Theorem (Theorem 4.12). Suppose that A ⊂ G. Then there is an integer

L 6 exp(exp(O(1 + ‖1A‖A(G))
4)) such that

1A =
L∑
j=1

σj1xj+Hj

where σj ∈ {−1, 1}, xj ∈ G and Hj 6 G for each j ∈ {1, ..., L}.

In our arguments we are, in fact, forced to work with a wider class of

functions than simply boolean functions; we consider all functions which

only take values close to integers. Suppose that f : G→ R. We write fZ for

the function G→ Z defined by

fZ(x) :=

df(x)e if df(x)e − f(x) 6 1/2

bf(x)c otherwise.

We say that f is ε-almost integer valued if ‖f − fZ‖L∞(µG) 6 ε. In words this

just means that f(x) is always within ε of an integer.

It turns out that what is important in Theorem 4.12 is that we can par-

tition the codomain of 1A into well separated sets. In general if we have a

function f ∈ A(G) which is ε-almost integer valued for sufficiently small ε,

then we can describe the structure of the sets

Lz := {x ∈ G : |f(x)− z| 6 ε} = {x ∈ G : fZ(x) = z}

for any z ∈ Z. By and large they will be empty, but they will always be

elements of the coset ring. The following theorem is a precise statement of

this and yields Theorem 4.12 immediately.
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Theorem 4.4.1. There is an absolute constant C > 0 such that if f ∈ A(G)

has real range and is ε-almost integer valued for some ε 6 exp(−C(1 +

‖f‖A(G))
4), then there is an integer L 6 exp(exp(O(1+‖f‖A(G))

4)) such that

fZ =
L∑
j=1

σj1xj+Hj ,

where σj ∈ {−1, 1}, xj ∈ G and Hj 6 G for each j ∈ {1, ..., L}.

The proof involves a number of the techniques which we have developed

already. First, in §4.4.1, we introduce the notion of arithmetic connected-

ness and combine it with some of the work of §3.2 to show how arithmetic

connectedness implies large inner product with a Bourgain system. In §4.4.2

we show how we can pass from information about the algebra norm to the

arithmetic connectedness condition, before proving a quantitative continuity

result in §4.4.3. We conclude by showing that combining these sections leads

to concentration on a coset and hence prove the theorem inductively. §4.4.5

includes this proof and some concluding remarks are presented in §4.4.6.

4.4.1 Arithmetic connectedness

In his, by now, well-known work on Szemerédi’s theorem Gowers ([Gow98])

introduced the following strong quantitative version of the Balog-Szemerédi

theorem.

Proposition 4.4.2. (Balog-Szemerédi-Gowers Theorem [Gow98, Proposi-

tion 12]). Suppose that A is a subset of G with at least δ|A|3 quadruples

(a1, a2, a3, a4) ∈ A4 such that a1 + a2 = a3 + a4. Then there is a set A′ ⊂ A

with |A′| > δO(1)|A| such that |A′ + A′| 6 δO(1)|A′|.

Combining this with Proposition 3.2.2 immediately yields the following

result.

Proposition 4.4.3. Suppose that A is a subset of G with at least δ|A|3

quadruples (a1, a2, a3, a4) ∈ A4 such that a1 + a2 = a3 + a4. Then there is a
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regular Bourgain system B of dimension O(δ−O(1)) with

|B1| > exp(−O(δ−O(1)))|A| and ‖1A ∗ β1‖L∞(µG) � δO(1).

Recall that we call a quadruple (x1, x2, x3, x4) ∈ G4 an additive quadruple

if x1 + x2 = x3 + x4.

To leverage this result we have to convert control of the algebra norm

into bounds on the number of additive quadruples; doing this involves the

introduction of the concept of ‘arithmetic connectedness’.

Definition (Arithmetic connectedness). Suppose A is a subset of G with

0 /∈ A and m is a natural number. We say that A is m-arithmetically

connected if, for any set A′ ⊂ A with |A′| = m we have either

(i). A′ is not dissociated or

(ii). A′ is dissociated but there is some x ∈ A \ A′ with x ∈ 〈A′〉.

A typical example of an arithmetically connected set is a union of a

few cosets. Indeed, the next proposition shows that if A is arithmetically

connected then it intersects a large Bourgain system.

The reason for the definition, however, only becomes apparent in the

proof of Proposition 4.4.6. Suppose that A ⊂ G and ‖1A‖A(G) 6 M . Then

it is easy to deduce from Hölder’s Inequality and Parseval’s Theorem that A

contains at least |A|3/M2 additive quadruples. Hence by Proposition 4.4.3

A intersects a large Bourgain system. However, as we have already noted we

can’t simply deal with sets, we have to deal with the more general almost in-

teger valued functions. Doing so naturally leads to the concept of arithmetic

connectedness in the proof of Proposition 4.4.6.

Proposition 4.4.4. Suppose A is an m-arithmetically connected subset of

G and m is a natural number. Then there is a regular Bourgain system B of

dimension exp(O(m)) and with

µG(B) > exp(− exp(O(m)))µG(A) and ‖1A ∗ β1‖L∞(µG) > exp(−O(m)).
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Proof. By Proposition 4.4.3, it suffices to prove that an m-arithmetically

connected set A has at least exp(−O(m))|A|3 additive quadruples. If |A| <
m2 this result is trivial, so we may assume that |A| > m2. Pick any m-tuple

(a1, ..., am) of distinct elements of A. With the stipulated lower bound on |A|,
there are at least |A|m/2 such m-tuples. We know that either the elements

a1, ..., am are not dissociated, or else there is a further a′ ∈ A such that a′

lies in the span of the ais. In either situation there is some non-trivial linear

relation

λ1a1 + · · ·+ λmam + λ′a′ = 0

where ~λ := (λ1, . . . , λm, λ
′) has elements in {−1, 0, 1} and, since 0 /∈ A

and the ais (and a′) are distinct, at least three of the components of ~λ are

nonzero. By the pigeonhole principle, it follows that there is some ~λ such

that the linear equation

λ1x1 + ...+ λmxm + λ′x′ = 0

has at least 2−13−(m+1)|A|m solutions with x1, ..., xm, x
′ ∈ A. Removing the

zero coefficients, we may thus assert that there are some non-negative integers

r1, r2, 3 6 r1 + r2 6 m+ 1, such that the equation

x1 + ...+ xr1 − y1 − ...− yr2 = 0

has at least (6m2)−13−m|A|r1+r2−1 > exp(−O(m))|A|r1+r2−1 solutions with

x1, ..., xr1 , y1, ..., yr2 ∈ A.

We may deduce directly from this the claim that there are at least

exp(−O(m))|A|3 additive quadruples in A. To do this observe that what

we have shown may be recast in the form

1A ∗ ... ∗ 1A ∗ 1−A ∗ ... ∗ 1−A(0) > exp(−O(m))‖1A‖r1+r2−1
L1(µG) ,

where there are r1 copies of 1A and r2 copies of 1−A.
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Applying the inversion formula gives

‖1̂A‖r1+r2
`r1+r2 (Ĝ)

>
∑
γ∈Ĝ

1̂A(γ)r1 1̂A(γ)r2 > exp(−O(m))‖1A‖r1+r2−1
L1(µG) .

By Hölder’s inequality this implies that

‖1̂A‖2
`4(Ĝ)
‖1̂A‖r1+r2−2

`2r1+2r2−4(Ĝ)
> exp(−O(m))‖1A‖r1+r2−1

L1(µG) . (4.4.1)

However if k is an integer then ‖1̂A‖2k
`2k(Ĝ)

is |G|1−2k times the number of

solutions to a1 + ... + ak = a′1 + ... + a′k with ai, a
′
i ∈ A, and this latter

quantity is clearly at most |A|2k−1. Thus

‖1̂A‖`2k(Ĝ) 6 ‖1A‖
1−1/2k

L1(µG).

Setting k = r1 + r2 − 2 and substituting into (4.4.1), we immediately obtain

‖1̂A‖4
`4(Ĝ)

> exp(−O(m))‖1A‖3
L1(µG),

which is equivalent to the result we claimed about the number of additive

quadruples in A.

4.4.2 Concentration on a Bourgain system

We now combine the previous two sections to produce a concentration of

mass on a Bourgain system.

Proposition 4.4.5. Suppose that f ∈ A(G) is exp(−25(1+‖f‖A(G))
4)-almost

integer valued and has real range. Then there is a regular Bourgain system

B of dimension exp(O(1 + ‖f‖A(G))
4) with

µG(B) > exp(− exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG)

such that

‖f ∗ β1‖L∞(µG) > exp(−O(1 + ‖f‖A(G))
4).
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The proof of this splits into two parts. It is easier to prove the result

with the additional assumption that f is non-negative, so to begin with we

prove the following proposition. A technical lemma will then complete the

argument.

Proposition 4.4.6. Suppose that f ∈ A(G) has f > 0 and ‖f−fZ‖L∞(µG) 6

exp(−24(1 + ‖f‖A(G))
2). Then there is a regular Bourgain system B of di-

mension exp(O(1 + ‖f‖A(G))
2) with

µG(B) > exp(− exp(O(1 + ‖f‖A(G))
2))‖fZ‖L1(µG)

and

‖f ∗ β1‖L∞(µG) > exp(−O(1 + ‖f‖A(G))
2).

Proof. Write A := supp(fZ), and m := d13(1 +‖f‖A(G))
2e. If A = G we take

B to be the regular Bourgain system with all balls equal to G and the result

is trivial since

f(x) > 1− exp(−24) > 1/2 for all x ∈ G.

Otherwise, by subjecting f to a suitable translation, we may assume that

0 6∈ A. We claim that A is m-arithmetically connected. If this is not the

case then there are dissociated elements a1, ..., am ∈ A such that there is

no further x ∈ A lying in the span 〈a1, ..., am〉. Consider the function p(x)

defined in terms of its Fourier transform by

p̂(γ) :=
m∏
i=1

(1 +
1

2
(γ(ai) + γ(ai))).

Note that p̂ is a Riesz product and, recalling §2.1.3 if necessary, we see that

‖p‖A(G) = 1 and supp p ⊂ 〈a1, ..., am〉. Thus we have

‖fp‖A(G) 6 ‖f‖A(G)‖p‖A(G) = ‖f‖A(G)
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and

‖(f − fZ)p‖A(G) 6
∑

x∈〈a1,...,am〉

‖(f − fZ)p1{x}‖A(G)

6 3m‖f − fZ‖L∞(µG) 6 1.

It follows, by the triangle inequality, that ‖fZp‖A(G) 6 1 + ‖f‖A(G). Now

since A ∩ 〈a1, ..., am〉 = 〈a1, ..., am〉 we have

(fZp)(x) =
m∑
i=1

fZ(ai)p(ai)1ai(x).

Again recalling from §2.1.3 if necessary we have

p(ai) =
∑

m′:m′.{a1,...,am}=ai

2−|m
′| >

1

2
,

so

‖f̂Zp‖2
`2(Ĝ)

= ‖fZp‖2
L2(µG) >

1

4|G|

m∑
i=1

|fZ(ai)|2 >
m

4|G|

and

‖f̂Zp‖4
`4(Ĝ)

=
1

|G|3
∑

i1,i2,i3,i4
ai1+ai2=ai3+ai4

4∏
j=1

fZ(aij)p(aij)

6
3

|G|3
( m∑
i=1

|fZ(ai)p(ai)|2
)2

6
3

|G|
‖f̂Zp‖4

`2(Ĝ)
,

the middle inequality following from the fact that ai1 + ai2 = ai3 + ai4 only if

i1 = i3, i2 = i4 or i1 = i4, i2 = i3 or i1 = i2, i3 = i4. From Hölder’s inequality

we thus obtain

‖fZp‖A(G) >
‖f̂Zp‖3

`2(Ĝ)

‖f̂Zp‖2
`4(Ĝ)

>

√
|G|
3
‖f̂Zp‖`2(Ĝ) >

√
m

12
.

Recalling our choice of m, we see that this contradicts the upper bound
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‖fZp‖A(G) 6 1 + ‖f‖A(G) we obtained earlier.

This proves our claim that A is d13(1 + ‖f‖A(G))
2e -arithmetically con-

nected. It follows from Proposition 4.4.4 that there is a regular Bourgain

system B of dimension exp(O(1 + ‖f‖A(G))
2) with

µG(B) > exp(− exp(O(1 + ‖f‖A(G))
2))µG(A)

and

‖1A ∗ β1‖L∞(µG) > exp(−O(1 + ‖f‖A(G))
2).

Since ‖f‖L∞(µG) 6 ‖f‖A(G) and A = supp(f)Z we get

µG(B) > exp(− exp(O(1 + ‖f‖A(G))
2))‖fZ‖L1(µG),

and non-negativity of f yields

‖f ∗ β1‖L∞(µG) > exp(−O(1 + ‖f‖A(G))
2).

The following technical lemma is essentially a standard L∞-density incre-

ment argument in disguise.

Lemma 4.4.7. Suppose that B is a regular Bourgain system of dimension d

and f ∈ A(G) has ‖f‖L2(β1) > η. Then there is a regular Bourgain system

B′ of dimension d′ 6 2d+ 4 with

µG(B′) >
(

η2

2(1 + ‖f‖A(G))

)O(d)

µG(B)

and

‖f ∗ β′1‖L∞(µG) � η2/‖f‖A(G).

Proof. We can apply Plancherel’s Theorem to get∑
γ∈Ĝ

f̂(γ)f̂dβ1(γ) = ‖f‖2
L2(β1) = η2.
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The triangle inequality then tells us that

sup
γ∈Ĝ
|
∫
f(y)γ(y)dβ1(y)| = sup

γ∈Ĝ
|f̂dβ1(γ)| > η2/‖f‖A(G).

Let γ′′ ∈ Ĝ be a character for which the leftmost maximum is attained. Now

|1− γ′′(x)| 6
√

2(1− cos(4πγ′′(x))) 6 4π‖γ′′(x)‖.

Thus if ρ0 = η2/12π(1 + ‖f‖A(G))
2, then

|1− γ′′(x)| 6 η2/3(1 + ‖f‖A(G))
2 for all x ∈ B({γ′′}, ρ0).

Pick ρ1 with

ρ1 � η2/d(1 + ‖f‖A(G))
2,

so that

‖(x+ β1)− β1‖ 6 η2/3(1 + ‖f‖A(G))
2 for all x ∈ Bρ1 ,

by Lemma 2.4.6. Pick λ ∈ [1/2, 1) such that B′ = λ(ρ1B ∩ (B({γ′′}, ρ0δ))δ)

is regular by Proposition 2.4.5. Now

|1− γ′′(x)| 6 η2/3(1 + ‖f‖A(G))
2 for all x ∈ B′1,

and

‖β1 ∗ β′1 − β1‖ 6 η2/3(1 + ‖f‖A(G))
2,

by Lemma 2.4.6. In view of this last bound and the fact ‖f‖L∞(µG) 6 ‖f‖A(G)

we have

|
∫
f(u+ x)γ′′(u)dβ′1(u)γ′′(x)dβ1(x)| = |

∫
f(y)γ′′(y)dβ1 ∗ β′1(y)|

> 2η2/3‖f‖A(G),
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by the triangle inequality. The first (again with ‖f‖L∞(µG) 6 ‖f‖A(G)) yields

|
∫
f(u+ x)dβ′1(u)γ′′(x)dβ1(x)| > η2/3‖f‖A(G).

This leads to the conclusion of the lemma; Lemma 2.4.4 yields the appropriate

bounds.

Proof of Proposition 4.4.5. Note that ‖f 2‖A(G) 6 ‖f‖2
A(G), and

‖f 2 − f 2
Z‖L∞(µG) 6 (2‖f‖A(G) + 1)‖f − fZ‖L∞(µG) 6 exp(−24(1 + ‖f 2‖A(G))).

It follows that we may apply Proposition 4.4.6 to get a regular Bourgain

system B′ of dimension exp(O(1 + ‖f‖A(G))
4) such that

µG(B′) > exp(− exp(O(1 + ‖f‖A(G))
4))‖f 2

Z‖L1(µG)

and

‖f 2 ∗ β′1‖L∞(µG) > exp(−O(1 + ‖f‖A(G))
4).

Now by translation we way assume that the maximum on the left is attained

at x = 0G, and hence apply Lemma 4.4.7 to conclude that there is a regular

Bourgain system with the required properties.

4.4.3 Continuity relative to a Bourgain system

The main result of this section states that if we are given a Bourgain system

B and a function f then we can refine it to a system B′ on which f is

‘quantitatively continuous’ in the sense of §4.2. The specific dependencies of

the result are rather unimportant and could be improved by including the

techniques of §4.2.

Proposition 4.4.8. Suppose that B is a regular Bourgain system of dimen-

sion d. Suppose that f ∈ A(G) and ε ∈ (0, 1] is a parameter. Then there is a

regular Bourgain system B′ of dimension d′ 6 d+O(ε−1(1 + ‖f‖A(G)))
2 with

µG(B′) > exp(−O(ε−5(1 + ‖f‖A(G))
5d log(1 + d)))µG(B)
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and a ρ� ε/d(1 + ‖f‖A(G)) such that

sup
x∈G
‖f ∗ β1 − f ∗ β1(x)‖L∞(x+βρ) 6 ε

and

sup
x∈G
‖f − f ∗ β1‖L2(x+βρ) 6 ε.

The proof is an iteration of the following lemma.

Lemma 4.4.9 (Iteration lemma). Suppose that G is a finite abelian group

and B is a Bourgain system of dimension d. Suppose that f ∈ A(G) and

ε ∈ (0, 1] is a parameter. Then at least one of the following is true.

(i). (f is close to a continuous function) There is a ρ � ε/d(1 + ‖f‖A(G))

such that

sup
x∈G
‖f ∗ β1 − f ∗ β1(x)‖L∞(x+βρ) 6 ε

and

sup
x∈G
‖f − f ∗ β1‖L2(x+βρ) 6 ε.

(ii). There is a ρ′ � ε5/d2(1 + ‖f‖A(G))
5 and a Bourgain system B′ of di-

mension 2 with B′ ∩ (ρ′B) regular and

µG(B′)� ε2/(1 + ‖f‖A(G))
2,

such that ∑
γ∈L

|1− β̂1(γ)||f̂(γ)| > ε2/4‖f‖A(G)

where

L := {γ : |1− γ(x)| 6 ε2/8(1 + ‖f‖A(G))
2 for all x ∈ B′1 ∩Bρ′}.

Proof. Apply Corollary 2.4.7 and Proposition 2.4.5 to pick ρ � ε/d(1 +

‖f‖A(G)) so that ρB is regular and

sup
x∈G
‖f ∗ β1 − f ∗ β1(x)‖L∞(x+βρ) 6 ε.
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Either we are in the first case of the lemma or we may assume that there is

some x ∈ G (without loss of generality equal to 0G) such that

‖f − f ∗ β1‖L2(x+βρ) > ε.

Squaring both sides and applying Plancherel’s Theorem we get

ε2 < ‖f − f ∗ β1‖2
L2(x+βρ)

=
∑
γ∈Ĝ

(f − f ∗ β1)∧(γ)((f − f ∗ β1)dβρ)∧(γ)

6 2‖f‖A(G) sup
γ∈Ĝ
|((f − f ∗ β1)dβρ)

∧(γ)|,

by the triangle inequality and the fact that

‖f − f ∗ β1‖A(G) 6 ‖f‖A(G) + ‖f ∗ β1‖A(G) 6 2‖f‖A(G).

Rearranging we get

sup
γ∈Ĝ
|((f − f ∗ β1)dβρ)

∧(γ)| > ε2/2‖f‖A(G);

fix a γ′′ for which this maximum is attained and we get∑
γ′∈Ĝ

|(f − f ∗ β1)∧(γ′)||β̂ρ(γ′′ − γ′)| > ε2/2‖f‖A(G).

Write L′ := {γ ∈ Ĝ : |β̂ρ(γ)| > ε2/8‖f‖2
A(G)}, and note by the triangle

inequality that∑
γ′ 6∈γ′′+L′

|(f − f ∗ β1)∧(γ′)||β̂ρ(γ′′ − γ′)| 6 ε2/4‖f‖A(G).

It follows that ∑
γ′∈γ′′+L′

|(f − f ∗ β1)∧(γ′)| > ε2/4‖f‖A(G).
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Set η = ε2/8(1 + ‖f‖A(G))
2. Since

|1− γ(x)| =
√

2(1− cos(4π‖γ(x)‖)) 6 4π‖γ(x)‖

we have

{γ′′} ⊂ {γ ∈ Ĝ : |1− γ(x)| 6 η/2 for all x ∈ B({γ′′}, η/8π)}.

Furthermore by Lemma 2.4.8 there is a κ� ε2/d(1 + ‖f‖A(G))
2 such that

L′ ⊂ {γ ∈ Ĝ : |1− γ(x)| 6 η/2 for all x ∈ Bρκη}.

Pick λ ∈ [1/2, 1) such that B′′ := λ(ρκηB ∩ (B({γ′′}, δη/8π))δ) is regular.

Now set ρ′ := λρκη and B′ := (B({γ′′}, λδη/8π))δ. The result follows since

µG((B({γ}, λδη/8π))δ)� η by Lemma 2.2.1.

Proof of Proposition 4.4.8. We construct a sequence of regular Bourgain sys-

tems B(k) iteratively. Write

Lk := {γ ∈ Ĝ : |1− γ(x)| 6 ε2/8(1 + ‖f‖A(G))
2 for all x ∈ B(k)

1 },

and

Lk :=
∑
γ∈Lk

|f̂(γ)|.

Initially set B(0) = B. At stage k we apply the above iteration lemma, and

either we are in the first case, in which case we are done, or we are in the

second and get a regular Bourgain system B(k+1) := B′(k)∩ (ρ′B(k)) such that

∑
γ∈Lk+1

|1− β̂(k)
1 (γ)||f̂(γ)| > ε2/4‖f‖A(G).

It follows by the triangle inequality that

2(Lk+1 − Lk) + ε2/8(1 + ‖f‖A(G)) > ε2/4‖f‖A(G),
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and so

Lk > ε2k/24‖A(G)

by induction. Since Lk 6 ‖f‖A(G), the iteration must terminate in stage

(i) after at most 24‖f‖2
A(G)ε

−2 steps. If the iteration terminates at stage k

then we set B′ := B(k) and note that it satisfies the required dimension and

density hypotheses by Lemma 2.4.4 as it is the intersection of k+1 Bourgain

systems.

4.4.4 Concentration on a subspace

In this section we prove the following proposition which combines all our

previous work.

Proposition 4.4.10. There is an absolute constant C > 0 such that the

following holds. Suppose that f ∈ A(G) has real range and is ε-almost integer

valued for some ε 6 exp(−C(1 + ‖f‖A(G))
4). Then there is a subgroup K of

G with

µG(K) > exp(−ε−5 exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG)

and

‖f ∗ µK‖L∞(µG) > 1/2,

such that f ∗ µK is 4ε-almost integer valued.

Proof. Let C ′ > 0 be the absolute constant implicit in the last estimate of

Proposition 4.4.5. If

ε 6 exp(−(C ′ + 25)(1 + ‖f‖A(G))
4)

then we may apply Proposition 4.4.5 to get a regular Bourgain system B of

dimension exp(O(1 + ‖f‖A(G))
4) with

µG(B) > exp(− exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG)

and

‖f ∗ β1‖L∞(µG) > exp(−C ′(1 + ‖f‖A(G))
4).
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Apply Corollary 2.4.6 and Proposition 2.4.5 to pick a regular Bourgain sub-

system B′ of B with

µG(B′) > exp(−ε−1 exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG)

such that

‖(y + β1)− β1‖ 6 ε for all y ∈ B′1.

Apply Proposition 4.4.8 to f and the Bourgain system B′ with parameter ε

to get a regular Bourgain subsystem B′′ of dimension d′′ 6 ε−2 exp(O(1 +

‖f‖A(G))
4) with

µG(B′′) > exp(−ε−5 exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG)

and a ρ� ε exp(−O(1 + ‖f‖A(G))
4) such that

sup
x∈G
‖f ∗ β′′1 − f ∗ β′′1 (x)‖L∞(x+β′′ρ ) 6 ε

and

sup
x∈G
‖f − f ∗ β′′1‖L2(x+β′′ρ ) 6 ε.

Let K := (B′′ρ)⊥⊥. Then

µG(K) > ρdµG(B′′) > exp(−ε−5 exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG).

Now write f ′′ := f ∗ β′′1 and note that

|f ′′Z(x)− f ′′(x)| = inf
z∈Z
|z − f ′′(x)| 6 ‖fZ − f ′′(x)‖L2(x+β′′ρ )

But this last expression is at most

‖fZ − f‖L∞(x+β′′ρ ) + ‖f − f ∗ β′′1‖L2(x+β′′ρ ) + ‖f ∗ β′′1 − f ∗ β′′1 (x)‖L∞(x+β′′ρ ),

which, in turn, is at most 3ε.

Claim. f ′′Z is constant on cosets of K.
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Proof. Suppose that there are x0 and x1 with x0 − x1 ∈ K and f ′′Z(x0) <

f ′′Z(x1). Since ε < 1/6 there is a number z + 1/2 with z an integer and

f ∗ β′′1 (x0) 6 f ′′Z(x0) + 3ε < z + 1/2 < f ′′Z(x1)− 3ε 6 f ∗ β′′1 (x1).

It follows from Lemma 4.3.3 that there is an x ∈ x0 +K such that

|f ∗ β′′1 (x)− (z + 1/2)| 6 ε/2.

But f ∗β′′1 (x) is within 3ε of an integer which is a contradiction since ε < 1/7.

The claim follows.

Now

|f ∗ µK(x)− f ′′Z ∗ µK(x)| 6 |f − f ′′Z | ∗ µK(x)

= |f − f ′′Z | ∗ β′′ρ ∗ µK(x)

6
(
|f − f ′′Z |2 ∗ β′′ρ

) 1
2 ∗ µK(x)

by the Cauchy-Schwarz inequality. Hence

|f ∗ µK(x)− f ′′Z ∗ µK(x)| 6
(
|f − f ∗ β′′1 |2 ∗ β′′ρ

) 1
2 ∗ µK(x)

+
(
|f ∗ β′′1 − f ′′Z |2 ∗ β′′ρ

) 1
2 ∗ µK(x)

6 4ε.

Since f ′′Z is constant on coset of K we conclude that f ′′Z ∗ µK(x) = f ′′Z(x) and

hence that f ∗ µK is 4ε-almost integer valued.

Finally since B′′ is a subsystem of B′ we have

‖β1 − β1 ∗ β′′1‖ 6 ε,
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hence

‖(f ∗ µK)Z‖L∞(µG) = ‖f ′′Z‖L∞(µG)

> ‖f ∗ β′′1‖L∞(µG) − 3ε

> ‖f ∗ β1‖L∞(µG) − 4ε.

Since 4ε < exp(−C ′(1 + ‖f‖A(G))
4) we conclude that ‖(f ∗ µK)Z‖L∞(µG) > 0

and hence, since it is an integer, ‖(f ∗ µK)Z‖L∞(µG) > 1. The result follows

since f ∗ µK is 4ε-almost integer valued and ε < 1/8.

4.4.5 Proof of Theorem 4.12

We shall prove the result inductively using the following lemma.

Lemma 4.4.11 (Inductive Step). There is an absolute constant C such that

if f ∈ A(G) has real range and is ε-almost integer valued for some ε 6

exp(−C(1 + ‖f‖A(G))
4), then we may write f = f1 + f2, where

(i). either ‖f1‖A(G) 6 ‖f‖A(G) − 1/2 or else

(f1)Z =
L∑
j=1

±1xj+K

where K 6 G and L 6 exp(exp(O(1 + ‖f‖A(G))
4));

(ii). ‖f2‖A(G) 6 ‖f‖A(G) − 1/2 and

(iii). f1 and f2 are 5ε-almost integer valued.

Proof. Applying Proposition 4.4.10 to f , we obtain a subgroup K with

µG(K) > exp(−ε−5 exp(O(1 + ‖f‖A(G))
4))‖fZ‖L1(µG)

and

‖f ∗ µK‖L∞(µG) > 1/2.
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We define f1 := f ∗ µK and f2 := f − f1, noting immediately that they are

both 5ε-almost integer valued. It follows that ‖f1‖A(G) > ‖f1‖L∞(µG) > 1/2,

whence ‖f2‖A(G) 6 ‖f‖A(G) − 1/2, since

‖f‖A(G) = ‖f ∗ µK‖A(G) + ‖f − f ∗ µK‖A(G) = ‖f1‖A(G) + ‖f2‖A(G).

It remains to deal with the possibility that ‖f1‖A(G) > ‖f‖A(G) − 1/2. If

this is so then ‖f2‖A(G) < 1/2, and thus ‖f2‖L∞(µG) < 1/2. It follows that

(f2)Z = 0, and hence fZ = (f1)Z, so we may write

fZ =
L∑
j=1

±1xj+K

for some j = 1, ..., L, where we may take L 6 ‖fZ‖L1(µG)/‖1K‖L1(µG). The

result follows.

Proof of Theorem 4.4.1. Let C ′ be the absolute constant in Lemma 4.4.11.

For each k > 0 let εk := 5kε. If g : G→ C then we say that g has property

• P0(g, k) if g is εk-almost integer valued;

• P1(g) if there is a subgroup Hg 6 G, an integer

Lg 6 exp(ε−5 exp(O(1 + ‖f‖A(G))
4))

and for each j with 1 6 j 6 Lg a sign σ
(g)
j ∈ {−1, 1} and an element

x
(g)
j ∈ G such that

(g)Z =

Lg∑
j=1

σ
(g)
j 1

x
(g)
j +Hg

;

• P2(g, k) if ‖g‖A(G) 6 ‖f‖A(G) − k/2.

We construct a sequence of collections of functions (Fk)k>0 iteratively such

that the following properties hold.

• P0(k): f =
∑

g∈Fk g.
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• P1(k): |Fk| 6 2k.

• P2(k): If g ∈ Fk then P0(g, k) holds.

• P3(k): If g ∈ Fk then either P1(g) or P2(g, k) holds.

We initiate the iteration with F0 = {f}. In this case it is trivial to verify

that P0(0), P1(0), P2(0) and P3(0) hold.

Suppose that for some 0 6 k 6 d2‖f‖A(G)e + 2 we have constructed Fk
such that P0(k), P1(k), P2(k) and P3(k) hold. Suppose that g ∈ Fk. We have

two cases.

(i). P1(g) holds: Since P0(g, k) holds and εk 6 εk+1 we conclude that

P0(g, k + 1) holds. We add g into Fk+1.

(ii). P2(g, k) holds: Since k 6 d2‖f‖A(G)e+ 2 we conclude that

εk 6 23.(2‖f‖A(G)+3).ε 6 exp(−C ′(1 + ‖f‖A(G))
4),

so we may apply Lemma 4.4.11 to get g = g1 + g2, where for each

i ∈ {1, 2} gi is 23εk = εk+1-almost integer valued and either P1(gi)

holds or ‖gi‖A(G) 6 ‖g‖A(G) − 1/2; in the second case we combine this

with the fact P2(g, k) holds to get that P2(gi, k + 1) holds. We add g1

and g2 into Fk+1.

This construction ensures that P2(k + 1) and P3(k + 1) hold. Since P0(k)

holds and for each g ∈ Fk we either added g or two functions summing to g

into Fk+1 we conclude that P0(k+ 1) holds. Finally since for each g ∈ Fk we

added at most two functions to Fk we conclude that |Fk+1| 6 2|Fk|. It then

follows that since P1(k) holds, P1(k + 1) holds.

If K = d2‖f‖A(G)e + 1 then P2(g,K) can never hold. It follows that for

each g ∈ FK , P1(g) holds. Now

‖(f)Z −
∑
g∈FK

(g)Z‖L∞(µG) 6 ‖f − (f)Z‖L∞(µG)

+|FK | sup
g∈FK

‖g − (g)Z‖L∞(µG)

6 ε0 + 2KεK 6 24K+1ε.
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The left hand side is integer valued and 24K+1ε 6 2−1 so we can conclude

that

(f)Z =
∑
g∈FK

(g)Z.

It remains to note that

∑
g∈FK

(g)Z =
∑
g∈FK

Lg∑
j=1

σ
(g)
j 1

x
(g)
j +Hg

.

Now we may in fact assume that ε = exp(−O(1 + ‖f‖A(G))
4) whereupon the

result follows.

4.4.6 Concluding remarks

As it stands, our argument ‘loses an exponential’ in two places. First of all

the almost integer parameter must not be allowed to get too large during

the iteration leading to the proof of Theorem 4.4.1. This requires it to be

exponentially small in 1 + ‖f‖A(G) at the beginning of the argument. This

parameter then gets exponentiated again in any application of Proposition

4.4.8. Méla’s work, [Mél82], in fact shows that one cannot hope for a result

which only asks for ‖f − fZ‖L∞(µG) 6 exp(−o(1 + ‖f‖A(G))), essentially by

considering the example of the auxiliary measures we constructed in §2.1.3,

so our result is at most ‘one exponential out’.

Write L(M) for the smallest integer L such that for every finite abelian

group G and subset A with ‖1A‖A(G) 6 M one can write 1A as a ±-sum of

at most L indicator functions of cosets in G. Theorem 4.12 asserts that

L(M) = exp(exp(O(1 +M)4)).

Limitations on how small L(M) can be seem to be dependent on the un-

derlying group. Consider the arithmetic group Z/pZ where p is a prime. If

A ⊂ Z/pZ has density bounded away from 0 and 1 then 1A cannot be written
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as a ±-sum of o(p) indicator functions of cosets in Z/pZ. It follows that

p� L(‖1A‖A(Z/pZ)) = exp(exp(O(1 + ‖1A‖A(Z/pZ))
4)).

Rearranging this implies that

‖1A‖A(Z/pZ) � (log log p)1/4.

Note that this is a very weak version of the result of §4.2. A straightforward

calculation shows that if A is an arithmetic progression then ‖1A‖A(Z/pZ) �
log p whence logL(M) � M and Theorem 4.12 is out by at most one ex-

ponential. Similarly, when Theorem 4.12 is extended to all locally compact

abelian groups one can conclude a weak version of Littlewood’s conjecture

viz.

‖1A‖A(Z) � (log log |A|)1/4.

Of course the example of an arithmetic progression does not exist in the

model setting of Fn2 , where it may be that L(M) (restricted to cover only these

model groups) can be taken to be polynomial in M . Note that a random

set can be used to see that this polynomial must be at least quadratic. This

case was treated first by Green and the author in [GS08a]; the arguments

there are slightly different from those here but ultimately yield a bound of

the same shape.

Because of the abundance of subgroups in the model setting the bound

Theorem 4.12 implies for the results of the dyadic setting, §4.1, are far weaker

than for the arithmetic setting. Suppose A ⊂ Fn2 is a set with density α such

that |α− 1/3| 6 ε. Then a straightforward pigeon-hole argument shows that

there is no decomposition of 1A as the ±-sum of o(log ε−1) indicator functions

of cosets. Thus, our quantitative idempotent theorem implies that

log ε−1 � L(‖1A‖A(Fn2 )) 6 exp(exp(O(1 + ‖1A‖A(Fn2 ))
4)),
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which gives the rather poor bound

‖1A‖A(Fn2 ) � (log log log ε−1)1/4.

The same argument gives the same bound for the case of G any finite abelian

group.

Finally, recall that ‖1A‖A(G) > 1 for all nonempty subsets A of G. It

seems natural, by analogy with Frĕıman’s Theorem, to consider in more

detail what the structure of A ⊂ G might be when ‖1A‖A(G) is close to 1;

say less than 3/2. Some work on this problem has been done by Saeki see

[Sae68a, Sae68b].
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abelian group, J. Lond. Math. Soc. (2) 75 (2007), no. 1, 163–175.

MR MR2302736 (2007m:20087)

[Gre04] B. J. Green, Spectral structure of sets of integers, Fourier analysis

and convexity, Appl. Numer. Harmon. Anal., Birkhäuser Boston,
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