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Abstract

Peripheral measures of autonomic nervous systenSjAldtivity at rest have been extensively
employed as putative biomarkers of autonomic cardientrol. However, a comprehensive
characterization of the brain-based central autonaratwork (CAN) sustaining cardiovascular
oscillations at rest is missing, limiting the irgestability of these ANS measures as biomarkers
of cardiac control.

We evaluated combined cardiac and fMRI data frorh&dthy subjects from the Human
Connectome Project to detect brain areas funciypiiaked to cardiovagal modulation at rest.
Specifically, we combined voxel-wise fMRI analysith instantaneous heartbeat and spectral
estimates obtained from inhomogeneous linear gmintess models.

We found exclusively negative associations betwediac parasympathetic activity at
rest and a widespread network including bilaterdae@or insulae, right dorsal middle and left
posterior insula, right parietal operculum, bilatemedial dorsal and ventrolateral posterior
thalamic nuclei, anterior and posterior mid-cingellacortex, medial frontal gyrus/pre-
supplementary motor area. Conversely, we found opbsitive associations between
instantaneous heart rate and brain activity in saigaluding frontopolar cortex, dorsomedial
prefrontal cortex, anterior, middle and posteriorgalate cortices, superior frontal gyrus, and
precuneus.

Taken together, our data suggests a much widehew@nt of diverse brain areas in the
CAN at rest than previously thought, which couldleet a differential (both spatially and
directionally) CAN activation according to the unigang task. Our insight into CAN activity at
rest also allows the investigation of its impairmenclinical populations in which task-based
fMRI is difficult to obtain (e.g., comatose patisrdr infants).



Introduction

The central nervous system and autonomic nervaisrsg (CNS, ANS, respectively) are tightly
and dynamically interconnected throughout anatomiftanctional, and hormonal pathways
(Allen et al., 2015; Beissner et al., 2013; Benatntd993; Cechetto and Saper, 1990; Sclocco et
al., 2016a; Sclocco et al., 2016b; Thayer et @12). The parasympathetic effector system
originates in the brainstem and sacral region efsghinal cord, whereas the sympathetic effector
system arises in its thoracic and lumbar regionsthe context of controlling heart function,
these two autonomic branches also interact atebel bf the atrial sinus node to concurrently
regulate heart rate (HR) and, consequently, bloedsure and respiration dynamics (Benarroch,
1993; Cechetto and Saper, 1990).

While spectral analysis of heartbeat interval sefiee., the beat-to-beat HR variations)
can provide reliable markers of parasympathetiorauhic outflow through integration in the
high frequency band, estimates of purely sympathattivity cannot be easily derived from
heart rate variability (HRV) analysis because @& tverlapping activity of the two autonomic
branches in the low frequency (LF) band (ReyesR#so et al., 2013). Furthermore, although
HF-HRV quantification provides a well characterizestimate of parasympathetic outflow and
has been widely used to assess autonomic functiogsand during cognitive/emotional tasks
(Kamath and Fallen, 1993; Lombardi et al., 1996|iet al., 1996; Thayer et al., 2012; Thayer
and Lane, 2007), the brain correlates of HF-HRVatgits have not been fully elucidated. Only
a few studies have explored the relationship betwddF-HRV fluctuations and
cortical/subcortical fMRI signal dynamics (Napadetval., 2008; Chang et al., 2013; Nikolaou
et al., 2016; Sclocco et al., 2016a; Sclocco et 2016b). This significantly limits the
interpretation of such estimates in terms of untdeding the neurobiology of the autonomic
systems and its related disorders.

The set of brain regions involved in autonomic matdon and control have thus far been
referred to as the central autonomic network (CABgnarroch, 1993; Cechetto and Saper,
1990; Saper, 2002; Verberne and Owens, 1998). ditiad to the primary role played by the
brainstem nuclei (such as the nucleus tractusasol{NTS) in the medulla or the parabrachial
nucleus (PBN) in the pons), a number of forebr&gions have also been proposed as key
components of the CAN, including the cingulate ewrtinsula, medial prefrontal cortex,
thalamus, amygdala, and hypothalamus (see (Bemar2@12) for details). Thus far, many
studies employing HRV-neuroimaging measures toaepihe functional neuroanatomy of the
CAN have been based on manipulating the subjertissal via somatosensory/motor, cognitive,
or affective tasks, while cardiac activity was lgeirecorded through electrocardiogram or
photoplethysmography (Matsunaga et al.,, 2009; Goswa al., 2011; Nugent et al., 2011).
Several studies have also explored heart-brairasagsociations at rest, mainly focusing on the
fluctuations of dynamic functional connectivity imeen various regions of interest and HF-HRV



power (Chang et al., 2013) or heart rate (Nikolabal., 2016). Still, Over and above the well-
known limitations of using task-based functionabgmg (i.e., its scarce utility in patients with
severe cognitive problems or who are minimally comss), past studies have also suffered from
some methodological issues, especially in the whyamputing heartbeat-related spectral
estimates with the high temporal resolution (appnately 2 second) (Acharya et al., 2007)
needed to match the timescales of functional MRIRF) acquisitions. More specifically,
previous analytical pipelines have relied on avexg@gpectral indices within the duration of the
task conditions. However, aside from the loss wietrelated effects, by design this approach
incorporates task-related polarizations in theuigerent of the CAN, which can possibly result
in selective over- or under-representations ofuthaerlying brain regions.

For example, Matsunaga et al. (Matsunaga et aD9R@und a positive association
between the insular cortex response to positivetiem® and HF-HRV. A combination of
sensory stimulations and motor tasks was also usecexplore the representation of
somatosensory afferent input within the CAN, sugggsa role of the ventromedial prefrontal
cortex and subgenual cingulate cortex in parasyingpat regulation (Goswami et al., 2011).
Moreover, Nugent and co-authors found differentialrelation patterns between HRV indices
and the orbitofrontal cortex metabolism in patiewith major depression relative to controls
(Nugent et al., 2011). Other studies employed tiraguency decomposition techniques (e.g.,
wavelets) to estimate continuous HRV frequency camepts which can then be used as
regressors of interest in voxel-wise analyses drFMata (Rubio et al., 2015). However, such
data-driven approaches do not intrinsically accodmt the generative mechanisms of
cardiovascular dynamics.

The main aim of this study is therefore a deepearadterization of the cortical and
subcortical constituents of the CAN in the abseot@ossible task-related confounds and/or
polarizations. Investigating the CAN in task-freenditions is also attractive from a clinical
perspective as it may inform and be further implet@é in clinical studies in which patient
compliance can be problematic (minimally conscipagents, patients with dementia, infants).

We explore the neuronal correlates of cardiovagaitrol in a task-free experimental
setting by exploiting the high data volume per sabpnd high spatio-temporal resolution of the
imaging data provided by the Human Connectome Brd¢jdCP) (McNab et al., 2013). We
relate task-free CAN activity to quantitative merasuof cardiovagal control via inhomogeneous
point-process models of heartbeat dynamics (Barbteal., 2005), which allow instantaneous
estimation of spectral HRV indices at rest. Thditgbto obtain HRV measures at any time
resolution is critical to match their temporal dgmes to those of the fMRI data. Of note, our
analytical framework does not require any pre-pseirey stages (e.g., interpolation) (Barbieri et
al., 2005; Napadow et al., 2008), and has beeressfidly applied to specific tasks that evaluate



the modulation of CAN activity during hand grip (&dow et al., 2008), visually-evoked
motion sickness (Sclocco et al., 2016b), continymis (Sclocco et al., 2016a).

Combined with the HRV estimation method that weehescently developed, the HCP
dataset represents the ideal candidate for studigggeural correlates of the autonomic outflow
in a task-free condition. Although this was an exalory study, on the basis of our preliminary
results (Valenza et al., 2017), as well as of mesiliterature (as reviewed by Beissner et al.,
2013), we also hypothesized that the functionalroematomy of the CAN would be more
widespread and diffuse than originally describedbyparroch (1993).

Methods

Dataset

The individual datasets used in this study arectsdeamong those included in the “100-

unrelated subjects” data release from the Humamé&zome Project (HCP U100, 1200 data

release). The dataset consists of young, healthitsa(hge range: 22-36 years) and exclusion
criteria include any medical or neuro-psychiatrisodder, such as hypertension, alcohol abuse,
anxiety or depressive disorders. Demographics dsgashown inTable I, and details about

subject selection are presentedsapplementary Materials.

Age (years)

Education (years)

Height (inches)

Weight (pounds)

Body mass index

Systolic blood pressure (mmHg)
Diastolic blood pressure (mmHg)
Cigarettes per week (Number)
Drinks per week (Number)
Right-Handedness (%)
Ethnicity (%)

Race (%)

Female (%)

28.82 +3.37
15.03+1.73
66.97 + 3.22
172.03 £ 39.92
26.76 +4.61
127.38 + 13.86
79.35+9.14
7.21 £21.20
4.47 £5.00
62.35 +54.73

85.29% white;

5.88% Unknown or Not Reported;
5.88% Black or African American;
2.94% More than one

79.41% Not Hispanic/Latino;
20.59% Hispanic/Latino

52.94%

Table | —Demographics for the sample population included in the study.



MRI and physiological data acquisition

Detailed scanning and analysis procedures are adlailon the HCP release manual
(www.humanconnectome.org), and an overview of thekflow of the present study is shown in
Figure 1. Briefly, participants were scanned on a custothi@emens 3T “Connectome Skyra”
scanner at Washington University in St. Louis. €ach participant, resting state fMRI (rs-fMRI)
data were acquired in separate sessions on twergliff days, with two runs per day. Subjects
were instructed to keep their eyes open and fixedadoright cross-hair projected on a dark
background, presented in a darkened room. Withh esession, oblique axial acquisitions
alternated between phase encoding in a right-todRif) direction in one run and in a left-to-
right (LR) direction in the other run. Gradient-echcho-planar images (EPI) were collected
with the following parameters: TR = 720 ms, TE =1381s, flip angle = 52 deg, FOV = 208 x
180 mm, matrix = 104 x 90, 72 slices, 2.0 mm isutrovoxel size, multiband factor = 8, echo
spacing = 0.58 ms, BW = 2290 Hz/Px. For each r@00lvolumes were collected, for a total
duration of approximately 15 minutes. During thestfiMRI session, a T1-weighted structural
volume (3D MPRAGE, TR = 2400 ms, TE = 2.14 ms, T1G90 ms, flip angle = 8 deg, FOV =
224 x 224 mm, 0.7 mm isotropic voxel size, BW = HAPx, multiband factor = 2), as well as
spin echo field maps using both RL and LR phaseding, were collected to aid preprocessing
and registration of the functional data.

Concurrently with fMRI images, cardiac and resmirgtsignals were collected using a standard
Siemens pulse oximeter placed on a digit and aregepy belt placed on the abdomen, with a
sampling rate of 400 Hz. Since a good quality (awnalability) of the finger pulse recordings is
instrumental for the correct estimation of HRV iteB, cardiac data from each subject were
manually and carefully evaluated by an expert olesefRB) in terms of signal-to-noise ratio
(SNR), presence of ectopic beats, missing datathar noticeable artifacts that would affect the
HRV analysis. Given the paucity (see below) of eabjn which all 4 sessions had acceptable
signal quality, and in order to avoid inter-sessimas, we chose to include only subjects in
which both datasets from the same session werdeysad therefore included exactly one
session (i.e. two acquisitions of 1200 volumes gaein subject. This resulted in a final dataset
including 34 complete subjects with exactly two hisaruns performed on the same day.
Individual quality assessments of cardiac recomdiras well as the final list of subjects, are
detailed in the&Supplementary Materials.




Pre-processing

HCP Minimal Pre-processing Pipeline
@ rsfMRI (Version 3.1)
&
Lo\ AN HF-HRV and HR
O % QQQQCCtomC as regressors in

GLM analyses

Pre-processing

Artifact Removal
Cardiac and Filtering Point-process Instantaneous
pulse HRYV analysis HRYV Indices
R-peak Detection

Figure 1 —Overview of the HRV / fMRI analysis wor kfl ow.

fMRI data preprocessing

rs-fMRI runs were preprocessed by the HCP consurticcording to Version 3.1 of the HCP
minimal preprocessing pipeline (detailed in (Glassteal., 2013)) using the Oxford Centre for
Functional MRI of the Brain (FMRIB) Software Libsar (FSL), see
https://www.humanconnectome.org/storage/app/mentaftientation/s1200/HCP_S1200_Relea
se_Reference Manual.pdf for details. Specificailyincluded gradient distortion correction,
motion correction (FSL FLIRT) using a referencewné (SBRef) as target, and susceptibility-
induced distortion correction (FSL TOPUP). The sfam€mation of the functional data to a
standard MNI space involved several steps: fitst, ieference volume SBRef was distortion-
corrected and registered to the structural T1 imagjeg a customized 2-step Boundary-Based
Registration procedure (BBR). The T1l-weighted vadumas then nonlinearly transformed to
MNI space. Finally, all the transformations werelégrl to the individual EPI volumes, that
were also intensity-normalized, corrected for Hiatd, and brain masked. rs-fMRI data were
then denoised using a combination of Independemhpfoment Analysis (FSL MELODIC)
followed by an automated component classifier (FBIRIICA-based X-noisifier, FIX) that
removes movement artifacts as well as other nasece such as physiological noise (Griffanti
et al., 2014; Salimi-Khorshidi et al., 2014; Smgh al., 2013). Minimal spatial smoothing
(FWHM = 4 mm) was applied. Note that the choiceacsmoothing kernel with FWHM that
approximates the characteristic dimension of a vaas made in order to (possibly) discern
autonomic nuclei in the brainstem.




Point-process modeling of heartbeat dynamics

A series of beat-to-beat wave peak intervals (RR¥ wxtracted from the finger pulse signal
using in-house beat detection and correction dlyori The RR series was then modeled using
an inverse Gaussian probability function which elterizes the waiting time for the next

heartbeat event:

_ [&o _3fo(t)[t—uj—uRR(t.m.f(t»]Z}
f (tlﬂt’f(t))_\/Zn(t—u,-PeXp{ 2 HRR(CHEE ()2 (t—11)) (1)

wheret € (0,T] is the observation interva), < u; < - < Uy < Upyq < - < ug < T the times

of the eventRR; = uju;_; >0 thej™" RR interval{u]-}j=1 the R-wave events, afid= N(t) the
index of the previous R-wave event before tié(t) = max{k: u;, < t} the sample path of the
counting process of the RR interval serifi§t) = N(t7) = lim,_, .~ N(t) = max{k: u; < t},

H; = (uj, RR;,RR;_4,...,RRj_p41); &(t) the vector of the model time-varying parameters,
andc,(t) > 0 the shape parameter of the inverse Gaussianbdistin. The first order moment
of this function, i.e., the mean of the probabilftynction ugr(t, H;, (t)), is parameterized
through a linear autoregressive model of order & danction of the previous RR intervals
(Barbieri et al. 2005). A preliminary goodness-ibfainalysis of the data considered in this study
confirmed the validity of the entire previously ohefd range for a time-varying local observation
interval of duration W between 60s and 90s (Valesizal. 2014), and pointed at a reasonable
trade-off value of 70s, with a 5ms time resoluti@iven local observations within a sliding
observation W, it is possible to estimate the umkmaime-varying parameter vector that
maximizes the local log-likelihood through the wellown Newton-Raphson procedure. The
model and all its parameters are recursively ugbateeach iteration. While the validation of
spectral analysis through point-process modelirgeigond the scope of the study, it is important
to note that the point-process approach for armbyfSheartbeat dynamics has been evaluated and
validated in multiple biosignal processing studiesjuding also (but not only) brain correlates
of autonomic activity using fMRI (Barbieri et al0@5; Duggento et al 2016; Napadow et al.
2008; Sclocco et al. 2016a, 2016b; Valenza etd322017, 2018).

HRV/fMRI analysis

Possible differences across sessions in mediarnt hat@ or median HF-HRV power were
investigated using the Wilcoxon non-parametric festpaired data. Exemplary instantaneous
estimates of the high-frequency components of HR¥#-HRV), as well as instantaneous heart
rate (HR) are shown iRigure 2. All series were resampled at the fMRI TR, thrddéd at the



98% percentile in order to retain the full dynamaéshe HRV signals and increase robustness to
outliers, and convolved with a double gamma hemadyo response function (HRF), in order
to be used as regressors of interest in succegssntéHRV-fMRI analyses. Statistical parametric
mapping was carried out using the FMRI Expert Asalyl ool (FEAT v. 5.90, FSL). At the first
level, both positive and negative contrasts wenmeegeed for each regressor. A second level
fixed effects analysis was used to summarize thieinvsubject effects (across the two same-day
sessions), and the resulting individual parametéimates, together with their variances, were
passed up to a third (group) level, mixed effectalgsis (FLAME, FEAT, FSL). The resulting
statistical maps were generated using a clusteni#fgy threshold of Z > 2.3 and a corrected
cluster-wise significance threshold of p < 0.05.

HF-HRV / fMRI HR/fMRI

1.5

o

=)
o

. s 1ALl L W l:
Ml,.h' \“U" ‘“""'\

! — BOLD signal
— HR regressor

HR, BOLD signal (a.u.)

HF power, BOLD signal (a.u.)

— BOLD signal
— HF-HRV regressor
- - ! -1.5

15 . L . . L . . . .
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
Time (s) Time (s)

Figure 2 — Example of instantaneous HF-HRV (left) and HR (right) regressors synchronized
with corresponding BOLD signals. Measuresin the Y-axis are expressed as arbitrary units (a.u.)

Results

No statistically significant differences acrossssass were found in median heart rate (p=0.13,
Wilcoxon non-parametric test for paired data) ordiae HF-HRV power (p=0.95, Wilcoxon
non-parametric test for paired data). Results fjoimt HF-HRV fMRI, and HR fMRI analyses
are shown irFigure 3, and statistically significant clusters (p < 0.@hyster-wise corrected for
multiple comparisons) at group level are listednhglavith their coordinates and localization in
Tables Il andlll . In the HF-HRV fMRI analysis, all statisticallygsiificant clusters revealed a
negative relationship between estimated parasyrapatioutflow and the BOLD signal. No
statistically significant results were found in tbpposite contrast. A widespread network of
cortical and subcortical regions was involved, udohg bilateral anterior insulae (alns), right
dorsal middle (dmins) and left posterior insulan§)l right parietal operculum (POp), bilateral
medial dorsal (MDTh) and ventrolateral posterioalimic nuclei (VLPTh), anterior mid-
cingulate cortex (aMCC), and posterior MCC/mediahfal gyrus/pre-supplementary motor area



(PMCC/mFG/pSMA). Other regions showing the saméepas were the primary motor cortex
(M1), superior temporal gyrus (STG), right paracalnipbbule (PCL), primary visual cortex (V1),
fusiform gyrus (FuG), lateral occipital gyrus (IOgGas well as cerebellar lobule VIIA
(Cereb(VIIIA)).

Conversely, only positive, statistically signifitaassociations were found in the HR-fMRI
analysis, with no statistically significant negatiassociation results. For positive associations,
significant clusters included left frontopolar @xt(FPC) and left dorsomedial prefrontal cortex
(dmPFC), right anterior, posterior, and left postémiddle cingulate cortices (ACC, MCC,
P/MCC), right superior frontal gyrus (SFG), andhtigorecuneus (PCun). Additional clusters
encompassed the right angular gyrus (AnG), lefegop parietal lobule (SPL), right primary
visual cortex (V1), and the left cerebellar lobie(Cereb(V)) and right cerebellar crus |
(Cereb(Crl)).
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Figure 3 —Group maps showing the results of the joint HF-HRV/fMRI analysis (top, shades of
blue color map) and of the joint HR/fMRI analysis (bottom, red-yellow color map).
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36 -62 48 3.73 L - -

6 72 42 5.10 L Superior Parietal Lobule SPL
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Table 1l — Localization of significant clusters (p<0.05ufa in joint HR/fMRI analysis

Discussion

In this study, the instantaneous estimation of theat dynamics by our point-process approach
was paired with brain resting-state fMRI data toarclcterize the neural correlates of
parasympathetic outflow and heart rate in a cobb®4 young healthy individuals in a task-free
experimental setting. Subjects were scanned twicéghe same day (total: 2400 volumes per
subject) and data were publicly released as pateoHCP dataset. We posit that combining our
instantaneous estimation of heartbeat dynamics thiéhhigh spatio-temporal resolution and
signal-to-noise ratio (SNR) afforded by the HCPadat allows a robust characterization of the
functional neuroanatomy of the CAN at rest.

Group maps from the two analyses revealed widedpaad only minimally overlapping
networks, showing negative associations between B@ignals and HF-HRV and positive
associations between BOLD signals and instantanétiis These results are not directly
interpretable in terms of activation/deactivatidnbeoain regions (only a pioneering study in a
small cohort exists for such estimates (Duggental.e2016)) but can only be conceptualized a
temporally synchronous relationship between timaese Nevertheless, our results strongly
corroborate previous findings showing that instaatais HF-HRV is negatively associated to
brain responses during nausea (Sclocco et al.,@pbinstem function at rest (Sclocco et al.,
2016a), or regional perfusion (Allen et al., 2015).

Taken together, our finding&igure 3) confirm and support the key role of the insula,
cingulate, frontal/prefrontal cortices, as welltaglamus in the regulation of autonomic outflow
demonstrated in previous studies (Beissner eR@l3; Benarroch, 1993; Cechetto and Saper,
1990; Thayer et al., 2012furthermore, our study identified additional regidhat were not
included in earlier descriptions of the CAN (i.as originally described by Benarroch (1993)),
but may constitute an important part of its funetid@hese regions include the precuneus, angular
gyrus, and cerebellum, which interestingly had besported in a previous meta-analysis of
neuroimaging studies investigating the CAN (Beissgteal., 2013)). However, in addition to
these regions, other structures less likely torwelved in autonomic control (such as primary
visual cortex and primary motor cortex) have beeidenced by our results. This unexpected



finding may be related to the data-driven, explomainature of our study, where no regions or
networks of interest were defined a priori. Nevel#lss, previous studies combining fMRI and
autonomic indices studies reported similar assotiat which were particularly consistent in the
visual areas (Chang et al., 2013; Nikolaou et 2016; Sclocco et al., 2016b). For example,
Nikolaou and co-authors found significant correlati between HR and dynamic connectivity
values within the visual and somatosensory resttate networks (Nikolaou et al., 2016).

Unexpectedly, we found no significant associaticgtween the two cardiovascular
measures and resting-state activity in the amygeldiach is often reported as a core sub-cortical
region for emotional processing - especially inpmese to aversive stimuli (Critchley et al.,
2011; LeDoux, 1992)(LeDoux, 2007). Although sevepaksibilities might explain this null
finding, we believe that the absence of an effedhe amygdala in this study can be a result of
the experimental setting employed, i.e. the faett $ubjects were scanned in a resting state
condition. In fact, most previous findings repogtiassociations between amygdala activity and
measures of HR variability, have been derived ftask-based experiments, during which the
autonomic response can be modulated by cognitifextave, and somatosensory-motor stimuli.
In other words, it may be difficult to detect thevolvement of the amygdala in autonomic
regulation during stress-free, resting conditions.

As expected from previous studies, we also fourat the BOLD signal in bilateral
anterior, right middle, and left posterior insutartices was significantly related to instantaneous
HF-HRV power Figure 3, Table Il). The negative association between the insula fsighal
at rest and HF-HRV identified here is in keepinghmaur previous findings showing that greater
autonomic response is related to reduced insulpons® during visually-induced motion
sickness (Sclocco et al. 2016b). Likewise, ano#tedy assessing the regional cerebral blood
flow at rest via arterial spin labelling reportegimilar negative correlation between resting HF-
HRV and perfusion in frontal operculum (Allen et a015). Together, these results suggest an
inhibitory role of the insula over premotor braters nuclei that control cardiovagal autonomic
outflow (Sclocco et al., 2016a). The insula playgrimary role in aggregating nociceptive and
viscero-sensory inputs and play a key role in alimig both sympathetic and parasympathetic
activity through descending influence mediated tigothalamic and brainstem pathways
(Benarroch, 2012; Critchley, 2005; Oppenheimer dbechetto, 2016). The insula is a
cytoarchitecturally heterogeneous and complex stracwith the anterior, middle and posterior
portions showing differential structural (Mesulaimda Mufson, 1982) and functional
connectivity properties and patterns (Kurth et 2010; Sporns, 2014). The role of the insula in
controlling HRV has been supported by studies trepts with different types of stroke or brain
tumors (Colivicchi et al., 2004; de Morree et @016) as well as by functional neuroimaging
research that has specifically linked insula agtiwith parasympathetic outflow (Allen et al.,
2015; Gianaros et al., 2004). Together with othrairbregions, insular grey-matter volume also
negatively correlated with HF-HRV in n=185 of hégitindividuals, regardless of potentially
confounding age and sex differences (Wei et alLl320



We also found widespread effects in the cingulabetex (CC), although with a
differential spatial distribution. Specifically, W its middle portion (MCC) was found to be
related to cardiovagal fluctuations, the heart ratgations were associated with the cingulate
BOLD signal mainly in two broad clusters, one |la@thin the posterior cingulate cortex (PCC)
and the other one mainly centered in the pregeAG& (pgACC). Like the insular cortex, the
CC is anatomically heterogeneous, both in termgsdiunction and of its connectivity patterns
(Vogt et al., 1992). An extensive body of work, exfy reviewed in landmark papers (Bush et
al., 2000; Devinsky et al., 1995), supports theww functional specialization of the rostral
cingulate in the CAN. More recent studies, howewae suggested that the MCC, previously
implicated in cognition, is also important to reggl autonomic activity (Luu and Posner, 2003;
Medford and Critchley, 2010), as well as emotiopedduction and perception (Etkin et al.,
2011; Kober et al., 2008). Alongside cognitive coh{Nee et al., 2007), the anterior portion of
the MCC, aMCC, has also been consistently assalciateegative affect (Mechias et al., 2010),
and pain (Farrell et al., 2005), which suggestseq ktegrative role of this regions across
different psychological domains (Shackman et @113. Finally, ACC/MCC activity has been
found to covary with the low-frequency componentHRV during isometric exercise and
mental arithmetic (Critchley et al., 2003), or t@gict the heart rate response during processing
of facial expressions (Critchley, 2005).

Another useful perspective for the interpretatiéroar results comes from the literature
regarding large-scale brain networks. For exampfie, well-known default mode network
(DMN) includes brain regions consistently found®deactivated during effortful cognitive task
execution (Buckner et al., 2008; Fox et al., 20Raichle et al., 2001). Interestingly, some of the
classic DMN nodes, such as PCC, PCun, ACC, andah®diC, were also found in our HR-
fMRI analysis. This finding is in keeping with amber of studies linking activity in the DMN
network to autonomic regulation. For instance, @ag al., 2004) found a negative correlation
between neural activity in vmPFC and OFC and teh&nges in skin conductance level (SCL),
which were used to assess basal sympathetic tooedVer, increases in HR evoked during a
handgrip task correlated with vmPFC deactivatiorh@althy individuals (Wong et al., 2007).
Finally, a study investigating the relationshipvietn cortical BOLD signal and beat-to-beat
interval fluctuations at rest found a positive etation between RR interval length, estimated by
interpolating the RR time series, and vmPFC agti(@iegler et al., 2009), which is consistent
with our findings. Indeed, the CAN is likely notstatic network operating independently from
other canonical networks, but rather a collectiérbm@in regions and structures that mediate
autonomic outflow while also simultaneously playiotiper roles in the processing of specific
tasks/stimuli/conditions. Therefore, distinct CANngponents will be differentially engaged by
various experimental manipulations and conditians|uding the resting state. Interestingly,
grey matter brainstem nuclei known to be involveddlaying brain signals to the ANS did not
show statistically significant effects. This is patbly due to technical limitations in imaging very



small structures in a problematic area to imagedhasbrainstem, which could be partially
overcome by further investigations at ultra-higldi(7T) (Chang et al., 2016).

There are some limitations of the present study shauld be discussed. We estimated
peripheral autonomic outflow from pulse signals farjoint HRV-fMRI analysis. Other
autonomic series rather than heartbeat dynamiacdudimg respiratory dynamics, could be
investigated to more comprehensively uncover necwalelates of sympatho-vagal dynamics.
Still, while the question of how to interpret, ieurobiological terms, the associations between
fMRI measures and autonomic measures (here, HRMpires open in any study using the
BOLD signal as proxy measure of neuronal functignthe HF measure is a marker of cardiac
parasympathetic activity while HR is the resultafonlinear, complex interaction between
parasympathetic and ortosympathetic regulation edrthrate (Acharya et al., 2007). We
therefore believe that the HF-HRYV index representsore specific source of autonomic control
than the HR measure

However, variations in beat-to-beat time intervaas still be used as a general measure
for heart-brain interactions (Ziegler et al., 2008nd are potentially useful in evaluating the
central mechanisms of autonomic dysfunction in @atrgroup of pathological conditions. We
chose to employ the preprocessed data made awaitebthe HCP consortium which, amongst
other state-of-the art procedures, has been deheigd the ICA-FIX strategy which was
especially optimized for HCP data (Salimi-Khorshati al., 2014) to remove noise sources
including physiological noise. Since it is not kmowow much physiological variance in the
BOLD signal is removed by this method, it is poksithat some residual physiological noise
contamination is present in our results. Howeveremg that we are investigating the effect of
regressors of interest obtained from the plethysapy signal, we felt that it was best to not
represent physiological noise by deriving regressdmo interest (e.g. RETROICOR, RVCOR
(Chang and Glover, 2009)) from the same signal.théeefore opted for an unbiased and data-
driven strategy. Our data-driven approach to dagdyais, which was not prompted by a strong a
priori hypotheses or a priori defined regions dérast, may result in a possible limitation with
regards to specificity, i.e. to elucidating thegise roles that the brain structures we identified
play in relation to the CAN. Future (e.g.) seeddohand hypothesis-driven studies are need to
address these aspects in a targeted manner. Fimalyemployed a canonical hemodynamic
response function as a convolution kernel for bbfR-HRV and HR. Although this is a
reasonable assumption, future work should focutherestimation of regionally specific transfer
functions between HRV indices and BOLD signal.

In conclusion, we found that the CAN activity ast (and in particular its cardiovagal
modulation) includes a much wider network of bre#gions than previously thought. This is
possibly dependent on differences in CAN functiamirty resting relative to task-related
experimental conditions. Our results about CAN\watgtican serve as a stepping stone for future
studies of the functional neuroanatomical corrslatiethe CAN in clinical populations in which
task-based fMRI is unpractical or difficult to olsta
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