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Abstract 

Peripheral measures of autonomic nervous system (ANS) activity at rest have been extensively 

employed as putative biomarkers of autonomic cardiac control. However, a comprehensive 

characterization of the brain-based central autonomic network (CAN) sustaining cardiovascular 

oscillations at rest is missing, limiting the interpretability of these ANS measures as biomarkers 

of cardiac control.  

We evaluated combined cardiac and fMRI data from 34 healthy subjects from the Human 

Connectome Project to detect brain areas functionally linked to cardiovagal modulation at rest. 

Specifically, we combined voxel-wise fMRI analysis with instantaneous heartbeat and spectral 

estimates obtained from inhomogeneous linear point-process models.  

We found exclusively negative associations between cardiac parasympathetic activity at 

rest and a widespread network including bilateral anterior insulae, right dorsal middle and left 

posterior insula, right parietal operculum, bilateral medial dorsal and ventrolateral posterior 

thalamic nuclei, anterior and posterior mid-cingulate cortex, medial frontal gyrus/pre-

supplementary motor area. Conversely, we found only positive associations between 

instantaneous heart rate and brain activity in areas including frontopolar cortex, dorsomedial 

prefrontal cortex, anterior, middle and posterior cingulate cortices, superior frontal gyrus, and 

precuneus.  

Taken together, our data suggests a much wider involvement of diverse brain areas in the 

CAN at rest than previously thought, which could reflect a differential (both spatially and 

directionally) CAN activation according to the underlying task. Our insight into CAN activity at 

rest also allows the investigation of its impairment in clinical populations in which task-based 

fMRI is difficult to obtain (e.g., comatose patients or infants). 
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Introduction 

The central nervous system and autonomic nervous systems (CNS, ANS, respectively) are tightly 

and dynamically interconnected throughout anatomical, functional, and hormonal pathways 

(Allen et al., 2015; Beissner et al., 2013; Benarroch, 1993; Cechetto and Saper, 1990; Sclocco et 

al., 2016a; Sclocco et al., 2016b; Thayer et al., 2012). The parasympathetic effector system 

originates in the brainstem and sacral region of the spinal cord, whereas the sympathetic effector 

system arises in its thoracic and lumbar regions. In the context of controlling heart function, 

these two autonomic branches also interact at the level of the atrial sinus node to concurrently 

regulate heart rate (HR) and, consequently, blood pressure and respiration dynamics (Benarroch, 

1993; Cechetto and Saper, 1990).  

While spectral analysis of heartbeat interval series (i.e., the beat-to-beat HR variations) 

can provide reliable markers of parasympathetic autonomic outflow through integration in the 

high frequency band, estimates of purely sympathetic activity cannot be easily derived from 

heart rate variability (HRV) analysis because of the overlapping activity of the two autonomic 

branches in the low frequency (LF) band (Reyes del Paso et al., 2013). Furthermore, although 

HF-HRV quantification provides a well characterized estimate of parasympathetic outflow and 

has been widely used to assess autonomic function at rest and during cognitive/emotional tasks 

(Kamath and Fallen, 1993; Lombardi et al., 1996; Malik et al., 1996; Thayer et al., 2012; Thayer 

and Lane, 2007), the brain correlates of HF-HRV dynamics have not been fully elucidated. Only 

a few studies have explored the relationship between HF-HRV fluctuations and 

cortical/subcortical fMRI signal dynamics (Napadow et al., 2008; Chang et al., 2013; Nikolaou 

et al., 2016; Sclocco et al., 2016a; Sclocco et al., 2016b). This significantly limits the 

interpretation of such estimates in terms of understanding the neurobiology of the autonomic 

systems and its related disorders. 

The set of brain regions involved in autonomic modulation and control have thus far been 

referred to as the central autonomic network (CAN) (Benarroch, 1993; Cechetto and Saper, 

1990; Saper, 2002; Verberne and Owens, 1998). In addition to the primary role played by the 

brainstem nuclei (such as the nucleus tractus solitarii (NTS) in the medulla or the parabrachial 

nucleus (PBN) in the pons), a number of forebrain regions have also been proposed as key 

components of the CAN, including the cingulate cortex, insula, medial prefrontal cortex, 

thalamus, amygdala, and hypothalamus (see (Benarroch, 2012) for details). Thus far, many 

studies employing HRV-neuroimaging measures to explore the functional neuroanatomy of the 

CAN have been based on manipulating the subject’s arousal via somatosensory/motor, cognitive, 

or affective tasks, while cardiac activity was being recorded through electrocardiogram or 

photoplethysmography (Matsunaga et al., 2009; Goswami et al., 2011; Nugent et al., 2011). 

Several studies have also explored heart-brain signal associations at rest, mainly focusing on the 

fluctuations of dynamic functional connectivity between various regions of interest and HF-HRV 
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power (Chang et al., 2013) or heart rate (Nikolaou et al., 2016). Still, Over and above the well-

known limitations of using task-based functional imaging (i.e., its scarce utility in patients with 

severe cognitive problems or who are minimally conscious), past studies have also suffered from 

some methodological issues, especially in the way of computing heartbeat-related spectral 

estimates with the high temporal resolution (approximately 2 second) (Acharya et al., 2007) 

needed to match the timescales of functional MRI (fMRI) acquisitions. More specifically, 

previous analytical pipelines have relied on averaging spectral indices within the duration of the 

task conditions. However, aside from the loss of time-related effects, by design this approach 

incorporates task-related polarizations in the recruitment of the CAN, which can possibly result 

in selective over- or under-representations of the underlying brain regions.  

For example, Matsunaga et al. (Matsunaga et al., 2009) found a positive association 

between the insular cortex response to positive emotions and HF-HRV. A combination of 

sensory stimulations and motor tasks was also used to explore the representation of 

somatosensory afferent input within the CAN, suggesting a role of the ventromedial prefrontal 

cortex and subgenual cingulate cortex in parasympathetic regulation (Goswami et al., 2011). 

Moreover, Nugent and co-authors found differential correlation patterns between HRV indices 

and the orbitofrontal cortex metabolism in patients with major depression relative to controls 

(Nugent et al., 2011). Other studies employed time-frequency decomposition techniques (e.g., 

wavelets) to estimate continuous HRV frequency components which can then be used as 

regressors of interest in voxel-wise analyses of fMRI data (Rubio et al., 2015). However, such 

data-driven approaches do not intrinsically account for the generative mechanisms of 

cardiovascular dynamics. 

The main aim of this study is therefore a deeper characterization of the cortical and 

subcortical constituents of the CAN in the absence of possible task-related confounds and/or 

polarizations. Investigating the CAN in task-free conditions is also attractive from a clinical 

perspective as it may inform and be further implemented in clinical studies in which patient 

compliance can be problematic (minimally conscious patients, patients with dementia, infants).  

We explore the neuronal correlates of cardiovagal control in a task-free experimental 

setting by exploiting the high data volume per subject and high spatio-temporal resolution of the 

imaging data provided by the Human Connectome Project (HCP) (McNab et al., 2013). We 

relate task-free CAN activity to quantitative measures of cardiovagal control via inhomogeneous 

point-process models of heartbeat dynamics (Barbieri et al., 2005), which allow instantaneous 

estimation of spectral HRV indices at rest. The ability to obtain HRV measures at any time 

resolution is critical to match their temporal dynamics to those of the fMRI data. Of note, our 

analytical framework does not require any pre-processing stages (e.g., interpolation) (Barbieri et 

al., 2005; Napadow et al., 2008), and has been successfully applied to specific tasks that evaluate 
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the modulation of CAN activity during hand grip (Napadow et al., 2008), visually-evoked 

motion sickness (Sclocco et al., 2016b), continuous pain (Sclocco et al., 2016a). 

Combined with the HRV estimation method that we have recently developed, the HCP 

dataset represents the ideal candidate for studying the neural correlates of the autonomic outflow 

in a task-free condition. Although this was an exploratory study, on the basis of our preliminary 

results (Valenza et al., 2017), as well as of previous literature (as reviewed by Beissner et al., 

2013), we also hypothesized that the functional neuroanatomy of the CAN would be more 

widespread and diffuse than originally described by Benarroch (1993). 

 

 

Methods 

Dataset 

The individual datasets used in this study are selected among those included in the “100-

unrelated subjects” data release from the Human Connectome Project (HCP U100, 1200 data 

release). The dataset consists of young, healthy adults (age range: 22-36 years) and exclusion 

criteria include any medical or neuro-psychiatric disorder, such as hypertension, alcohol abuse, 

anxiety or depressive disorders. Demographics data are shown in Table I, and details about 

subject selection are presented as Supplementary Materials. 
 

Age (years) 28.82 ± 3.37 

Education (years) 15.03 ± 1.73 

Height (inches) 66.97 ± 3.22 

Weight (pounds) 172.03 ± 39.92 

Body mass index 26.76 ± 4.61 

Systolic blood pressure (mmHg) 127.38 ± 13.86 

Diastolic blood pressure (mmHg) 79.35 ± 9.14 

Cigarettes per week (Number) 7.21 ± 21.20 

Drinks per week (Number) 4.47 ± 5.00 

Right-Handedness (%) 62.35 ± 54.73 

Ethnicity (%) 85.29% white; 
5.88% Unknown or Not Reported;  
5.88% Black or African American; 
2.94% More than one 

Race (%) 79.41% Not Hispanic/Latino; 
20.59% Hispanic/Latino 

Female (%) 52.94% 

Table I – Demographics for the sample population included in the study. 
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MRI and physiological data acquisition 

Detailed scanning and analysis procedures are available on the HCP release manual 

(www.humanconnectome.org), and an overview of the workflow of the present study is shown in 

Figure 1. Briefly, participants were scanned on a customized Siemens 3T “Connectome Skyra” 

scanner at Washington University in St. Louis. For each participant, resting state fMRI (rs-fMRI) 

data were acquired in separate sessions on two different days, with two runs per day. Subjects 

were instructed to keep their eyes open and fixed on a bright cross-hair projected on a dark 

background, presented in a darkened room. Within each session, oblique axial acquisitions 

alternated between phase encoding in a right-to-left (RL) direction in one run and in a left-to-

right (LR) direction in the other run. Gradient-echo echo-planar images (EPI) were collected 

with the following parameters: TR = 720 ms, TE = 33.1 ms, flip angle = 52 deg, FOV = 208 x 

180 mm, matrix = 104 x 90, 72 slices, 2.0 mm isotropic voxel size, multiband factor = 8, echo 

spacing = 0.58 ms, BW = 2290 Hz/Px. For each run, 1200 volumes were collected, for a total 

duration of approximately 15 minutes. During the first MRI session, a T1-weighted structural 

volume (3D MPRAGE, TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip angle = 8 deg, FOV = 

224 x 224 mm, 0.7 mm isotropic voxel size, BW = 210 Hz/Px, multiband factor = 2), as well as 

spin echo field maps using both RL and LR phase encoding, were collected to aid preprocessing 

and registration of the functional data. 

Concurrently with fMRI images, cardiac and respiratory signals were collected using a standard 

Siemens pulse oximeter placed on a digit and a respiratory belt placed on the abdomen, with a 

sampling rate of 400 Hz. Since a good quality (and availability) of the finger pulse recordings is 

instrumental for the correct estimation of HRV indices, cardiac data from each subject were 

manually and carefully evaluated by an expert observer (RB) in terms of signal-to-noise ratio 

(SNR), presence of ectopic beats, missing data, or other noticeable artifacts that would affect the 

HRV analysis. Given the paucity (see below) of subject in which all 4 sessions had acceptable 

signal quality, and in order to avoid inter-session bias, we chose to include only subjects in 

which both datasets from the same session were usable, and therefore included exactly one 

session (i.e. two acquisitions of 1200 volumes each) per subject. This resulted in a final dataset 

including 34 complete subjects with exactly two usable runs performed on the same day. 

Individual quality assessments of cardiac recordings, as well as the final list of subjects, are 

detailed in the Supplementary Materials. 
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Figure 1 – Overview of the HRV / fMRI analysis workflow. 

 

fMRI data preprocessing 

rs-fMRI runs were preprocessed by the HCP consortium according to Version 3.1 of the HCP 

minimal preprocessing pipeline (detailed in (Glasser et al., 2013)) using the Oxford Centre for 

Functional MRI of the Brain (FMRIB) Software Library (FSL), see 

https://www.humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Relea

se_Reference_Manual.pdf for details. Specifically, it included gradient distortion correction, 

motion correction (FSL FLIRT) using a reference volume (SBRef) as target, and susceptibility-

induced distortion correction (FSL TOPUP). The transformation of the functional data to a 

standard MNI space involved several steps: first, the reference volume SBRef was distortion-

corrected and registered to the structural T1 image using a customized 2-step Boundary-Based 

Registration procedure (BBR). The T1-weighted volume was then nonlinearly transformed to 

MNI space. Finally, all the transformations were applied to the individual EPI volumes, that 

were also intensity-normalized, corrected for bias field, and brain masked. rs-fMRI data were 

then denoised using a combination of Independent Component Analysis (FSL MELODIC) 

followed by an automated component classifier (FMRIB’s ICA-based X-noisifier, FIX) that 

removes movement artifacts as well as other noise source such as physiological noise (Griffanti 

et al., 2014; Salimi-Khorshidi et al., 2014; Smith et al., 2013). Minimal spatial smoothing 

(FWHM = 4 mm) was applied. Note that the choice of a smoothing kernel with FWHM that 

approximates the characteristic dimension of a voxel was made in order to (possibly) discern 

autonomic nuclei in the brainstem. 
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Point-process modeling of heartbeat dynamics 

 

A series of beat-to-beat wave peak intervals (RR) was extracted from the finger pulse signal 

using in-house beat detection and correction algorithm. The RR series was then modeled using 

an inverse Gaussian probability function which characterizes the waiting time for the next 

heartbeat event: 

�(�|ℋ� , �(�)) = � �
(�)
��(����)� exp �− �

�
�
(�)[��������(�,ℋ�,�(�))]�

���(�,ℋ�,�(�))�(����)    (1) 

 

where � ∈ (0, #] is the observation interval, 0 ≤ %� < ⋯ < %( < %()� < ⋯ < %* ≤ # the times 

of the events,RR, = %,%,�� > 0 the .�/ RR interval,{%,},2�
3  the R-wave events, and . = 45(�) the 

index of the previous R-wave event before time �,4(�) = max{8: %( ≤ �} the sample path of the 

counting process of the RR interval series, 45(�) = 4(��) = lim<→	�?4(@) = max{8: %( < �}, 
ℋ� = (%,, RR, , RR,��, . . . , RR,�B)�); �(�) the vector of the model time-varying parameters, 

and�C(�) > 0 the shape parameter of the inverse Gaussian distribution. The first order moment 

of this function, i.e., the mean of the probability function DEE(�,ℋ�, �(�)), is parameterized 

through a linear autoregressive model of order 8 as a function of the previous RR intervals 

(Barbieri et al. 2005). A preliminary goodness-of-fit analysis of the data considered in this study 

confirmed the validity of the entire previously defined range for a time-varying local observation 

interval of duration W between 60s and 90s (Valenza et al. 2014), and pointed at a reasonable 

trade-off value of 70s, with a 5ms time resolution. Given local observations within a sliding 

observation W, it is possible to estimate the unknown time-varying parameter vector that 

maximizes the local log-likelihood through the well-known Newton-Raphson procedure. The 

model and all its parameters are recursively updated at each iteration. While the validation of 

spectral analysis through point-process modeling is beyond the scope of the study, it is important 

to note that the point-process approach for analysis of heartbeat dynamics has been evaluated and 

validated in multiple biosignal processing studies, including also (but not only) brain correlates 

of autonomic activity using fMRI (Barbieri et al. 2005; Duggento et al 2016; Napadow et al. 

2008; Sclocco et al. 2016a, 2016b; Valenza et al. 2013, 2017, 2018). 

 

HRV/fMRI analysis 

Possible differences across sessions in median heart rate or median HF-HRV power were 

investigated using the Wilcoxon non-parametric test for paired data. Exemplary instantaneous 

estimates of the high-frequency components of HRV (HF-HRV), as well as instantaneous heart 

rate (HR) are shown in Figure 2. All series were resampled at the fMRI TR, thresholded at the 
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98% percentile in order to retain the full dynamics of the HRV signals and increase robustness to 

outliers, and convolved with a double gamma hemodynamic response function (HRF), in order 

to be used as regressors of interest in successive joint HRV-fMRI analyses. Statistical parametric 

mapping was carried out using the FMRI Expert Analysis Tool (FEAT v. 5.90, FSL). At the first 

level, both positive and negative contrasts were generated for each regressor. A second level 

fixed effects analysis was used to summarize the within-subject effects (across the two same-day 

sessions), and the resulting individual parameter estimates, together with their variances, were 

passed up to a third (group) level, mixed effects analysis (FLAME, FEAT, FSL). The resulting 

statistical maps were generated using a cluster-forming threshold of Z > 2.3 and a corrected 

cluster-wise significance threshold of p < 0.05. 

 

 

Figure 2 – Example of instantaneous HF-HRV (left) and HR (right) regressors synchronized 
with corresponding BOLD signals. Measures in the Y-axis are expressed as arbitrary units (a.u.) 

 

Results 

No statistically significant differences across sessions were found in median heart rate (p=0.13, 

Wilcoxon non-parametric test for paired data) or median HF-HRV power (p=0.95, Wilcoxon 

non-parametric test for paired data). Results from joint HF-HRV fMRI, and HR fMRI analyses 

are shown in Figure 3, and statistically significant clusters (p < 0.05, cluster-wise corrected for 

multiple comparisons) at group level are listed along with their coordinates and localization in 

Tables II and III . In the HF-HRV fMRI analysis, all statistically significant clusters revealed a 

negative relationship between estimated parasympathetic outflow and the BOLD signal. No 

statistically significant results were found in the opposite contrast. A widespread network of 

cortical and subcortical regions was involved, including bilateral anterior insulae (aIns), right 

dorsal middle (dmIns) and left posterior insula (pIns), right parietal operculum (POp), bilateral 

medial dorsal (MDTh) and ventrolateral posterior thalamic nuclei (VLPTh), anterior mid-

cingulate cortex (aMCC), and posterior MCC/medial frontal gyrus/pre-supplementary motor area 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  

(pMCC/mFG/pSMA). Other regions showing the same patterns were the primary motor cortex 

(M1), superior temporal gyrus (STG), right paracentral lobule (PCL), primary visual cortex (V1), 

fusiform gyrus (FuG), lateral occipital gyrus (lOcG), as well as cerebellar lobule VIIIA 

(Cereb(VIIIA)). 

Conversely, only positive, statistically significant associations were found in the HR-fMRI 
analysis, with no statistically significant negative association results. For positive associations, 
significant clusters included left frontopolar cortex (FPC) and left dorsomedial prefrontal cortex 
(dmPFC), right anterior, posterior, and left posterior/middle cingulate cortices (ACC, MCC, 
P/MCC), right superior frontal gyrus (SFG), and right precuneus (PCun). Additional clusters 
encompassed the right angular gyrus (AnG), left superior parietal lobule (SPL), right primary 
visual cortex (V1), and the left cerebellar lobule V (Cereb(V)) and right cerebellar crus I 
(Cereb(CrI)). 
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Figure 3 – Group maps showing the results of the joint HF-HRV/fMRI analysis (top, shades of 
blue color map) and of the joint HR/fMRI analysis (bottom, red-yellow color map).  

 

MNI 
coordinates 

(mm) 

Max z-
score 

Hemisphere Region Label 

x y z     
-32 26 2 -4.42 L Anterior Insula aIns 
38 22 6 -4.02 R - - 
38 -10 20 -4.47 R Dorsal Middle Insula dmIns 
-34 -24 12 -4.09 L Posterior Insula pIns 
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2 24 20 -3.48 R Anterior Middle Cingulate 
Cortex 

aMCC 

6 -4 44 -3.91 R Posterior Middle Cingulate 
Cortex 

pMCC 

-8 22 34 -3.49 L - - 
60 -6 10 -4.49 R Parietal Operculum POp 
-12 -18 2 -3.54 L Ventrolateral Posterior 

Thalamic Nucleus 
VLPTh 

12 -20 0 -3.34 R Ventroposterior Lateral 
Thalamic Nucleus 

VPLTh 

6 -24 6 -3.07 R Medial Dorsal Thalamic 
Nucleus 

MDTh 

-6 -22 6 -3.09 L - - 
40 -78 -14 -3.65 R Lateral Occipital Gyrus lOcG 
-36 -80 -12 -3.48 L - - 
24 -70 -12 -3.48 R Fusiform Gyrus FuG 
-22 -70 -8 -3.9 L - - 
54 -24 -2 -4.23 R Superior Temporal Gyrus STG 
6 -38 56 -4.12 R Paracentral Lobule PCL 
-6 4 62 -4.28 L Superior Frontal Gyrus SFG 
38 -14 44 -4.84 R Primary Motor Cortex M1 
-40 -20 48 -4.06 L - - 
18 -56 6 -3.75 R Primary Visual Cortex V1 
-22 -58 4 -3.22 L - - 
-20 -64 -46 -3.95 L Cerebellum Lobule VIIIA Cereb(VIIIA) 

 
 

 

Table II – Localization of significant clusters (p<0.05) found in joint HF-HRV/fMRI analysis 

 

MNI 
coordinates 

(mm) 

Max z-
score 

Hemisphere Region Label 

x y z     
2 42 6 4.63 R Anterior Cingulate Cortex ACC 
0 36 26 5.25 - Posterior ACC pACC 
-2 -36 38 5.45 L Posterior/Middle CC P/MCC 
4 -44 12 5.34 R Posterior Cingulate Cortex PCC 

-28 58 12 4.38 L Dorso-Medial Prefrontal 
Cortex 

dmPFC 

-10 58 6 4.55 L Fronto-Polar Cortex FPC 
2 22 42 4.99 R Superior Frontal Gyrus SFG 
10 -64 34 5.16 R PreCuneus PCun 
48 -62 42 4.29 R Angular Gyrus AnG 
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-36 -62 48 3.73 L - - 
-6 -72 42 5.10 L Superior Parietal Lobule SPL 
30 -92 -10 4.12 R Primary Visual Cortex V1 
-20 -96 -8 4.12 L - - 
-2 -62 -20 4.5 L Cerebellum Lobule V Cereb(V) 
46 -64 -42 4.81 R Cerebellum Crus I Cereb(CrI) 
-48 -64 -42 4.71 L - - 

 
Table III  – Localization of significant clusters (p<0.05) found in joint HR/fMRI analysis 

 

Discussion 

In this study, the instantaneous estimation of heartbeat dynamics by our point-process approach 
was paired with brain resting-state fMRI data to characterize the neural correlates of 
parasympathetic outflow and heart rate in a cohort of 34 young healthy individuals in a task-free 
experimental setting. Subjects were scanned twice on the same day (total: 2400 volumes per 
subject) and data were publicly released as part of the HCP dataset. We posit that combining our 
instantaneous estimation of heartbeat dynamics with the high spatio-temporal resolution and 
signal-to-noise ratio (SNR) afforded by the HCP dataset allows a robust characterization of the 
functional neuroanatomy of the CAN at rest.  

Group maps from the two analyses revealed widespread and only minimally overlapping 
networks, showing negative associations between BOLD signals and HF-HRV and positive 
associations between BOLD signals and instantaneous HR. These results are not directly 
interpretable in terms of activation/deactivation of brain regions (only a pioneering study in a 
small cohort exists for such estimates (Duggento et al., 2016)) but can only be conceptualized a 
temporally synchronous relationship between time series. Nevertheless, our results strongly 
corroborate previous findings showing that instantaneous HF-HRV is negatively associated to 
brain responses during nausea (Sclocco et al., 2016b), brainstem function at rest (Sclocco et al., 
2016a), or regional perfusion (Allen et al., 2015). 

Taken together, our findings (Figure 3) confirm and support the key role of the insula, 
cingulate, frontal/prefrontal cortices, as well as thalamus in the regulation of autonomic outflow 
demonstrated in previous studies (Beissner et al., 2013; Benarroch, 1993; Cechetto and Saper, 
1990; Thayer et al., 2012). Furthermore, our study identified additional regions that were not 
included in earlier descriptions of the CAN (i.e., as originally described by Benarroch (1993)), 
but may constitute an important part of its function. These regions include the precuneus, angular 
gyrus, and cerebellum, which interestingly had been reported in a previous meta-analysis of 
neuroimaging studies investigating the CAN (Beissner et al., 2013)). However, in addition to 
these regions, other structures less likely to be involved in autonomic control (such as primary 
visual cortex and primary motor cortex) have been evidenced by our results. This unexpected 
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finding may be related to the data-driven, exploratory nature of our study, where no regions or 
networks of interest were defined a priori. Nevertheless, previous studies combining fMRI and 
autonomic indices studies reported similar associations, which were particularly consistent in the 
visual areas (Chang et al., 2013; Nikolaou et al., 2016; Sclocco et al., 2016b). For example, 
Nikolaou and co-authors found significant correlations between HR and dynamic connectivity 
values within the visual and somatosensory resting-state networks (Nikolaou et al., 2016). 

Unexpectedly, we found no significant association between the two cardiovascular 
measures and resting-state activity in the amygdala, which is often reported as a core sub-cortical 
region for emotional processing - especially in response to aversive stimuli (Critchley et al., 
2011; LeDoux, 1992)(LeDoux, 2007). Although several possibilities might explain this null 
finding, we believe that the absence of an effect in the amygdala in this study can be a result of 
the experimental setting employed, i.e. the fact that subjects were scanned in a resting state 
condition. In fact, most previous findings reporting associations between amygdala activity and 
measures of HR variability, have been derived from task-based experiments, during which the 
autonomic response can be modulated by cognitive, affective, and somatosensory-motor stimuli. 
In other words, it may be difficult to detect the involvement of the amygdala in autonomic 
regulation during stress-free, resting conditions. 

As expected from previous studies, we also found that the BOLD signal in bilateral 
anterior, right middle, and left posterior insular cortices was significantly related to instantaneous 
HF-HRV power (Figure 3, Table II). The negative association between the insula fMRI signal 
at rest and HF-HRV identified here is in keeping with our previous findings showing that greater 
autonomic response is related to reduced insula response during visually-induced motion 
sickness (Sclocco et al. 2016b). Likewise, another study assessing the regional cerebral blood 
flow at rest via arterial spin labelling reported a similar negative correlation between resting HF-
HRV and perfusion in frontal operculum (Allen et al. 2015). Together, these results suggest an 
inhibitory role of the insula over premotor brain stem nuclei that control cardiovagal autonomic 
outflow (Sclocco et al., 2016a). The insula plays a primary role in aggregating nociceptive and 
viscero-sensory inputs and play a key role in controlling both sympathetic and parasympathetic 
activity through descending influence mediated via hypothalamic and brainstem pathways 
(Benarroch, 2012; Critchley, 2005; Oppenheimer and Cechetto, 2016). The insula is a 
cytoarchitecturally heterogeneous and complex structure, with the anterior, middle and posterior 
portions showing differential structural (Mesulam and Mufson, 1982) and functional 
connectivity properties and patterns (Kurth et al., 2010; Sporns, 2014). The role of the insula in 
controlling HRV has been supported by studies in patients with different types of stroke or brain 
tumors (Colivicchi et al., 2004; de Morree et al., 2016) as well as by functional neuroimaging 
research that has specifically linked insula activity with parasympathetic outflow (Allen et al., 
2015; Gianaros et al., 2004). Together with other brain regions, insular grey-matter volume also 
negatively correlated with HF-HRV in n=185 of healthy individuals, regardless of potentially 
confounding age and sex differences (Wei et al., 2018). 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

  

We also found widespread effects in the cingulate cortex (CC), although with a 
differential spatial distribution. Specifically, while its middle portion (MCC) was found to be 
related to cardiovagal fluctuations, the heart rate variations were associated with the cingulate 
BOLD signal mainly in two broad clusters, one located in the posterior cingulate cortex (PCC) 
and the other one mainly centered in the pregenual ACC (pgACC). Like the insular cortex, the 
CC is anatomically heterogeneous, both in terms of its function and of its connectivity patterns 
(Vogt et al., 1992). An extensive body of work, expertly reviewed in landmark papers (Bush et 
al., 2000; Devinsky et al., 1995), supports the view of functional specialization of the rostral 
cingulate in the CAN. More recent studies, however, have suggested that the MCC, previously 
implicated in cognition, is also important to regulate autonomic activity (Luu and Posner, 2003; 
Medford and Critchley, 2010), as well as emotional production and perception (Etkin et al., 
2011; Kober et al., 2008). Alongside cognitive control (Nee et al., 2007), the anterior portion of 
the MCC, aMCC, has also been consistently associated to negative affect (Mechias et al., 2010), 
and pain (Farrell et al., 2005), which suggests a key integrative role of this regions across 
different psychological domains (Shackman et al., 2011). Finally, ACC/MCC activity has been 
found to covary with the low-frequency component of HRV during isometric exercise and 
mental arithmetic (Critchley et al., 2003), or to predict the heart rate response during processing 
of facial expressions (Critchley, 2005). 

Another useful perspective for the interpretation of our results comes from the literature 
regarding large-scale brain networks. For example, the well-known default mode network 
(DMN) includes brain regions consistently found to be deactivated during effortful cognitive task 
execution (Buckner et al., 2008; Fox et al., 2005; Raichle et al., 2001). Interestingly, some of the 
classic DMN nodes, such as PCC, PCun, ACC, and medial PFC, were also found in our HR-
fMRI analysis. This finding is in keeping with a number of studies linking activity in the DMN 
network to autonomic regulation. For instance, (Nagai et al., 2004) found a negative correlation 
between neural activity in vmPFC and OFC and tonic changes in skin conductance level (SCL), 
which were used to assess basal sympathetic tone. Moreover, increases in HR evoked during a 
handgrip task correlated with vmPFC deactivation in healthy individuals (Wong et al., 2007). 
Finally, a study investigating the relationship between cortical BOLD signal and beat-to-beat 
interval fluctuations at rest found a positive correlation between RR interval length, estimated by 
interpolating the RR time series, and vmPFC activity (Ziegler et al., 2009), which is consistent 
with our findings. Indeed, the CAN is likely not a static network operating independently from 
other canonical networks, but rather a collection of brain regions and structures that mediate 
autonomic outflow while also simultaneously playing other roles in the processing of specific 
tasks/stimuli/conditions. Therefore, distinct CAN components will be differentially engaged by 
various experimental manipulations and conditions, including the resting state. Interestingly, 
grey matter brainstem nuclei known to be involved in relaying brain signals to the ANS did not 
show statistically significant effects. This is probably due to technical limitations in imaging very 
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small structures in a problematic area to image as the brainstem, which could be partially 
overcome by further investigations at ultra-high-field (7T) (Chang et al., 2016). 

There are some limitations of the present study that should be discussed. We estimated 
peripheral autonomic outflow from pulse signals for a joint HRV-fMRI analysis. Other 
autonomic series rather than heartbeat dynamics, including respiratory dynamics, could be 
investigated to more comprehensively uncover neural correlates of sympatho-vagal dynamics. 
Still, while the question of how to interpret, in neurobiological terms, the associations between 
fMRI measures and autonomic measures (here, HRV) remains open in any study using the 
BOLD signal as proxy measure of neuronal functioning, the HF measure is a marker of cardiac 
parasympathetic activity while HR is the result of a nonlinear, complex interaction between 
parasympathetic and ortosympathetic regulation of heart rate (Acharya et al., 2007). We 
therefore believe that the HF-HRV index represents a more specific source of autonomic control 
than the HR measure 

However, variations in beat-to-beat time intervals can still be used as a general measure 
for heart-brain interactions (Ziegler et al., 2009), and are potentially useful in evaluating the 
central mechanisms of autonomic dysfunction in a broad group of pathological conditions. We 
chose to employ the preprocessed data made available via the HCP consortium which, amongst 
other state-of-the art procedures, has been denoised with the ICA-FIX strategy which was 
especially optimized for HCP data (Salimi-Khorshidi et al., 2014) to remove noise sources 
including physiological noise. Since it is not known how much physiological variance in the 
BOLD signal is removed by this method, it is possible that some residual physiological noise 
contamination is present in our results. However, given that we are investigating the effect of 
regressors of interest obtained from the plethysmography signal, we felt that it was best to not 
represent physiological noise by deriving regressors of no interest (e.g. RETROICOR, RVCOR 
(Chang and Glover, 2009)) from the same signal. We therefore opted for an unbiased and data-
driven strategy. Our data-driven approach to data analysis, which was not prompted by a strong a 
priori hypotheses or a priori defined regions of interest, may result in a possible limitation with 
regards to specificity, i.e. to elucidating the precise roles that the brain structures we identified 
play in relation to the CAN. Future (e.g.) seed-based and hypothesis-driven studies are need to 
address these aspects in a targeted manner. Finally, we employed a canonical hemodynamic 
response function as a convolution kernel for both HF-HRV and HR. Although this is a 
reasonable assumption, future work should focus on the estimation of regionally specific transfer 
functions between HRV indices and BOLD signal. 
 In conclusion, we found that the CAN activity at rest (and in particular its cardiovagal 

modulation) includes a much wider network of brain regions than previously thought. This is 

possibly dependent on differences in CAN function during resting relative to task-related 

experimental conditions. Our results about CAN activity can serve as a stepping stone for future 

studies of the functional neuroanatomical correlates of the CAN in clinical populations in which 

task-based fMRI is unpractical or difficult to obtain. 
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