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Two distinct conformational states define
the interaction of human RAD51-ATP with
single-stranded DNA
Ineke Brouwer1,†,‡, Tommaso Moschetti2,‡, Andrea Candelli1, Edwige B Garcin3, Mauro Modesti3,

Luca Pellegrini2,* , Gijs JL Wuite1,** & Erwin JG Peterman1,***

Abstract

An essential mechanism for repairing DNA double-strand breaks is
homologous recombination (HR). One of its core catalysts is human
RAD51 (hRAD51), which assembles as a helical nucleoprotein fila-
ment on single-stranded DNA, promoting DNA-strand exchange.
Here, we study the interaction of hRAD51 with single-stranded
DNA using a single-molecule approach. We show that ATP-bound
hRAD51 filaments can exist in two different states with different
contour lengths and with a free-energy difference of ~4 kBT per
hRAD51 monomer. Upon ATP hydrolysis, the filaments convert into
a disassembly-competent ADP-bound configuration. In agreement
with the single-molecule analysis, we demonstrate the presence of
two distinct protomer interfaces in the crystal structure of a
hRAD51-ATP filament, providing a structural basis for the two
conformational states of the filament. Together, our findings
provide evidence that hRAD51-ATP filaments can exist in two inter-
convertible conformational states, which might be functionally
relevant for DNA homology recognition and strand exchange.
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Introduction

The efficient repair of DNA damage is crucial for chromosome integ-

rity, since it prevents mutations, chromosomal aberrations and

errors in essential processes such as transcription, replication and

chromosome segregation (Hoeijmakers, 2001). One of the key mech-

anisms for repairing DNA double-strand breaks (DSBs) is homolo-

gous recombination (HR). This is a multistep process, where after

occurrence and detection of a DSB, the broken DNA ends are

processed by the end-resection machinery to produce 30 single-

stranded DNA (ssDNA) overhangs (San Filippo et al, 2008;

Holthausen et al, 2010). Subsequently, RAD51 is recruited to the

DNA overhang to form a right-handed helical nucleoprotein filament

(NPF) in an ATP-dependent manner (Bianco et al, 1998). The NPF

is responsible for DNA sequence homology recognition in a duplex

DNA, usually the sister chromatid, and formation of a joint interme-

diate that will serve as a priming site for DNA synthesis needed to

copy the missing information (Benson et al, 1994). In the cell, HR is

tightly regulated, for example by the tumour-suppressor protein

BRCA2 (Sung & Klein, 2006), which is known to mediate the loading

of hRAD51 onto RPA-coated ssDNA, making use of its ability to bind

hRAD51 with its BRC-repeat domain (Wong et al, 1997; Chen et al,

1998; Carreira et al, 2009).

Our previous single-molecule work on the interaction of hRAD51

with ssDNA focused mainly on the assembly of the NPF (Candelli

et al, 2014) and on the disassembly of hRAD51 from double-

stranded DNA (dsDNA; van Mameren et al, 2009b). The latter

study showed that hRAD51 disassembles through a pause–burst

mechanism from NPF ends, dominated by ATP hydrolysis of the

RAD51 monomers at filament ends. This process is highly depen-

dent on the tension in the dsDNA template: disassembly stalls

completely at forces above 50 pN. In addition, although the NPF

can readily form in the presence of both ATP (van Mameren et al,

2009b) and ADP (Hilario et al, 2009), hRAD51 disassembly from

dsDNA is critically dependent on ATP hydrolysis (van Mameren

et al, 2009b). X-ray crystallography has identified the location of

the ATP-binding pocket between adjacent monomers in the NPF

(Conway et al, 2004). Therefore, it is likely that ATP binding and

hydrolysis play a significant role in the conformation and stability

1 Department of Physics and Astronomy and LaserLaB, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
2 Department of Biochemistry, University of Cambridge, Cambridge, UK
3 Cancer Research Center of Marseille, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille, France

*Corresponding author. Tel: +44 1223 760469; E-mail: lp212@cam.ac.uk
**Corresponding author. Tel: +31 205987987; E-mail: g.j.l.wuite@vu.nl
***Corresponding author. Tel: +31 205987576; E-mail: e.j.g.peterman@vu.nl
‡These authors contributed equally to this work
†Present address: Department of Gene Regulation, The Netherlands Cancer Institute, Amsterdam, The Netherlands

ª 2018 The Authors. Published under the terms of the CC BY 4.0 license The EMBO Journal 37: e98162 | 2018 1 of 13

http://orcid.org/0000-0002-9300-497X
http://orcid.org/0000-0002-9300-497X
http://orcid.org/0000-0002-9300-497X
http://orcid.org/0000-0002-5706-043X
http://orcid.org/0000-0002-5706-043X
http://orcid.org/0000-0002-5706-043X
http://orcid.org/0000-0003-1058-249X
http://orcid.org/0000-0003-1058-249X
http://orcid.org/0000-0003-1058-249X


of hRAD51 NPFs. Understanding the disassembly of hRAD51 from

ssDNA is important as the intrinsic stability of hRAD51-ssDNA

NPFs is likely to affect the reaction of strand exchange during

homologous recombination (Taylor et al, 2015, 2016) and the

ability of hRAD51 to protect ssDNA gaps present at stalled

replication forks (Kolinjivadi et al, 2017). Yet, the mechanism of

hRAD51 disassembly from ssDNA and how it is affected by factors

such as ssDNA template tension and ATP hydrolysis remain

unknown.

One well-established feature of the NPF structure is its remark-

able conservation across the kingdoms of life, which is accompa-

nied by considerable conformational polymorphism, resulting

from variations in helical rise and twist (Ogawa et al, 1993;

Yu et al, 2001; Liu et al, 2004). Such heterogeneity, captured by

structural analysis, is likely to reflect the NPF ability to undergo

conformational transitions that alter its pitch, giving rise to

extended or compact filament states. These conformational states

are thought to represent important yet poorly understood stages in

the filament dynamics that underlie the mechanism of DNA-strand

exchange.

Electron microscopy data have shown that the nature of the

nucleotide bound to RAD51 has a marked effect on filament confor-

mation: NPFs containing the structural analogue of the ATP transi-

tion state ADP�AlF4� adopt an extended conformation with a pitch

of 9.9 nm, while ATPcS-bound NPFs adopt a more compact confor-

mation with a pitch of ~7.6 nm (Yu et al, 2001). More recently,

high-resolution cryo-electron microscopy (cryoEM) studies of the

presynaptic NPF in the presence of the ATP analogue AMP-PNP

have measured an average filament pitch of 10.3 nm with 6.4 proto-

mers per turn (Short et al, 2016) and confirmed its structural poly-

morphism, with 80% of the filaments having pitch values in the

range of 9.5–11.0 nm; a similar cryoEM analysis of the active form

of the NPF reported a filament pitch of 10.0 nm with 6.3 protomers

per turn (Xu et al, 2017).

These nucleotide-dependent variations in the NPF structure

reflect critical differences in biochemical function: the ATP-bound

extended hRAD51 filament is competent to perform strand

exchange, while the ADP-bound compact hRAD51 filament is inac-

tive and might represent an intermediate state before disassembly

(Bugreev & Mazin, 2004). Thus, ATP hydrolysis affects the beha-

viour of the hRAD51 NPF, as a dynamic entity that is able to switch

between multiple conformations (Yu et al, 2001). Although large-

scale differences in NPF structure, such as variations in pitch, have

been widely reported, local changes in filament structure at the

single protomer level have not been described yet. The only excep-

tion comes from a crystallographic model of yeast Rad51 in filament

form, which showed the presence of different protomer interfaces

that were proposed to be functionally relevant (Conway et al,

2004).

Similar conformational transitions have also been observed for

hRAD51 filaments on dsDNA. Experiments using magnetic tweezers

(Ristic et al, 2005; Atwell et al, 2012) have shown that hRAD51

binds dsDNA in two distinct modes with different pitch and that,

upon ATP hydrolysis, the NPFs can switch to a compact state before

NPF disassembly. Changes in DNA twist can also trigger transitions

between the two modes. Furthermore, transitions between extended

and compact filament conformations have been observed using

single-molecule FRET measurements of the bacterial hRAD51

orthologue RecA (Kim et al, 2014), and ATP hydrolysis and cooper-

ative structural changes between adjacent RecA molecules were

invoked to explain the observed NPF dynamics.

Much remains to be learned about the structure and dynamic

behaviour of the different conformational states of the hRAD51-

ssDNA NPF and how this variety of structural modes relates to func-

tion. In this study, we used a combination of dual-trap optical

tweezers, single-molecule fluorescence microscopy and micro-

fluidics to study the dynamic behaviour of hRAD51-ssDNA NPFs.

We find that the ATP-bound NPF can exist in two interconvertible

states that differ in contour length and free energy. Furthermore, we

demonstrate the existence of two different protomer interfaces in

the crystal structure of hRAD51-ATP filaments, in agreement with

the single-molecule data. Together, our findings provide experimen-

tal evidence for the postulated existence of defined conformational

states of the presynaptic hRAD51 NPF, which might be relevant to

the processes of homology recognition and DNA-strand exchange

during homologous recombination.

Results

hRAD51-ssDNA NPF disassembly

The first property of hRAD51-ssDNA NPFs that we investigated is

the disassembly kinetics of hRAD51 from ssDNA. For this, we made

use of our experimental set-up that has been described in detail

before (van Mameren et al, 2008, 2009b; Gross et al, 2010; Candelli

et al, 2011; Heller et al, 2014; Brouwer et al, 2016). In brief, dual-

trap optical tweezers are used to capture micron-sized streptavidin-

coated beads (Fig 1A); using a computer-controlled microscope

stage and a microfluidics system (u-Flux, LUMICKS B.V.; Fig 1B),

fast buffer exchange can be achieved such that an individual mole-

cule of end-biotinylated dsDNA is tethered between the beads. In

these experiments, we used 48.5-kb k-phage dsDNA. By applying

tensions above 80 pN, the dsDNA is converted into ssDNA by force-

induced melting (van Mameren et al, 2009a; Gross et al, 2011).

Subsequently, this ssDNA molecule was exposed to a buffer contain-

ing a fluorescent variant of hRAD51 (hRAD51-K313-C319S-Alexa

Fluor 555, referred to as hRAD51 in this study, Appendix Fig S1A–

C). Because hRAD51 disassembly is triggered by ATP hydrolysis

(van Mameren et al, 2009b), we measured the disassembly rate of

hRAD51 in the presence of Mg2+. After incubating (for 10 s to

5 min) an ssDNA molecule in the protein channel (containing

0.18 lM hRAD51), the construct was brought back to the protein-

free buffer channel where the fluorescence signal was used to con-

firm a high coverage of the ssDNA with hRAD51 (Fig 1C, top panel).

To limit the effect of photobleaching (Appendix Fig S2A and B), flu-

orescence images were acquired intermittently every 30 s (Fig 1C).

The corresponding kymograph is shown in Fig 1D, where a step-

wise reduction in fluorescence signal of the individual filaments is

shown, suggesting that disassembly of hRAD51 filaments from

ssDNA, as from dsDNA (van Mameren et al, 2009b), occurs in

bursts following ATP hydrolysis at the terminal RAD51 monomer.

RAD51 disassembly from ssDNA does not appear to be sequence

dependent (Appendix Fig S3A and B). The decrease in total fluores-

cence intensity of the RAD51-ssDNA construct as a function of time

is shown in Fig 1E.
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It is known that hRAD51 disassembly from dsDNA slows down

at increased tension on the dsDNA template, resulting in complete

stalling of disassembly at forces exceeding 50 pN (van Mameren

et al, 2009b). We therefore tested whether similar force dependence

occurs in hRAD51 disassembly from ssDNA by measuring the aver-

age disassembly times at three different forces (Fig 2A–C). The

observed disassembly rates of (14 � 2) 10�4 s�1 (at 5 pN; N = 8;

dissociation rates are obtained from exponential fits to the fluores-

cence intensity traces, errors are fitting errors), (15 � 1) 10�4 s�1

(at 20 pN; N = 16) and (12 � 1) 10�4 s�1 (at 50 pN; N = 4) show

that hRAD51 dissociation from ssDNA is not influenced by tension

within the range of values tested. Interestingly, a similar effect was

reported previously (Candelli et al, 2014) for the assembly process:

both nucleation and growth of hRAD51 NPFs are highly tension-

dependent for dsDNA, but independent of tension for ssDNA. This

finding can be attributed to the fact that dsDNA is more rigid and

resistant to length change (King et al, 2013). The persistence length

of ssDNA is more than two orders of magnitude smaller than the

one of dsDNA and is much more compliant to protein-induced struc-

tural changes, independent of the tension in the DNA.

In addition, we analysed the relative effect of ATP and ADP on

NPF disassembly rates (Fig EV1A–D) and found a slightly lower rate

for ADP-bound than ATP-bound NPFs. Assuming that, as for dsDNA

(van Mameren et al, 2009b), disassembly occurs strictly from fila-

ment ends, the observed rates depend on the number of NPFs

bound. Correcting for differences in initial DNA coverage yields

comparable disassembly rates of (9 � 2) 10�4 s�1 for ADP-bound

filaments and (11 � 2) 10�4 s�1 for ATP-bound filaments

(Fig EV1A–D). Finally, we show that the disassembly rate is inde-

pendent of ionic strength within the tested range (0–100 mM KCl
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Figure 1. Detecting fluorescent hRAD51 bound to an individual ssDNA molecule.

A Schematic of an ssDNA molecule (purple) tethered between two optically trapped micrometer-sized polystyrene beads (grey) with hRAD51 complexes (green) bound
to the ssDNA molecule. By controlling the position of the beads, the extension of the DNA molecule can be controlled while the tension in the molecule is monitored.
At the same time, the proteins can be directly visualized with single-fluorophore resolution using wide-field fluorescence microscopy.

B The experiments are generally performed using a microfluidic flow system with four laminar channels. A typical experiment is comprised of the following steps: (1)
capture of two beads; (2) tethering of a single dsDNA molecule between these beads; (3) probing the mechanical properties of the tethered dsDNA molecule, to ensure
that it is a single molecule with the expected mechanical properties; (4) the tension on the dsDNA molecule is increased to generate an ssDNA molecule by force-
induced melting; (5) the ssDNA is incubated in the protein channel; and (6) the hRAD51-ssDNA complex is brought into the buffer for imaging.

C Typical fluorescence intensity snapshots of hRAD51-ssDNA complexes (buffer composition: 20 mM Tris pH 7.5, 100 mM KCl, 1 mM MgCl2, 1 mM ATP, 10 mM DTT) at
indicated time intervals. Scale bars: 2 lm.

D Fluorescence kymograph of the same hRAD51-ssDNA complex as in (C). Scale bars: 2 lm (horizontal) and 5 min (vertical).
E Integrated fluorescence intensity along the DNA of the same hRAD51-ssDNA complex as in (C and D) over time (red dataset), showing an exponential decay at a rate

of (33 � 1) 10�4 s�1, obtained from an exponential fit to the data (blue curve). After correcting for photobleaching, this gives, for this particular example, a hRAD51
disassembly rate of (17 � 1) 10�4 s�1.

Source data are available online for this figure.
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and 1–10 mM MgCl2; Fig EV2A–C). The combined results of these

experiments indicate that disassembly from ssDNA is insensitive to

tension, ionic strength and the type of nucleotide present in the

buffer.

Conformational transitions within hRAD51-ssDNA NPFs

Next, we set out to investigate the mechanical response of hRAD51-

ssDNA NPFs to tension (Fig 3A–I). To this end, we incubated

ssDNA molecules in a channel containing fluorescent hRAD51 until

a high coverage of the DNA was achieved (2–4 min). After reposi-

tioning the hRAD51-ssDNA complex in protein-free buffer, we veri-

fied that the ssDNA was densely coated with hRAD51 using

fluorescence imaging. Subsequently, we performed successive

cycles of stretching and relaxation (at a rate of 0.66 � 0.01 lm/s),

while continuously monitoring the tension in the hRAD51-ssDNA

complex and fluorescence intensity.

A first set of experiments was performed in a buffer containing

2 mM Ca2+ and 2 mM ATP. As ATP hydrolysis takes place on a

timescale of 10–100 min (Bugreev & Mazin, 2004) under these

conditions, the amount of hRAD51 bound to the ssDNA can be

considered to remain constant. The observed force-extension and

force-relaxation curves of hRAD51-ssDNA differed drastically from

those of bare ssDNA (Fig 3A). In addition, we observed that the

extension and relaxation curves of these complexes did not overlap:

rather, the curves show significant hysteresis. Under these condi-

tions, hRAD51 can neither bind from solution nor disassemble from

the DNA, which is confirmed by the integrated fluorescence inten-

sity and the hysteresis area, both remaining constant during the

timescale of the experiments (Fig 3B and C). In addition, the mini-

mum distance between the ssDNA ends was kept at 5 lm, to main-

tain the DNA in an extended conformation and to avoid interactions

between filaments. Therefore, we propose that this hysteretic beha-

viour is caused by a force-induced transition between ATP states of

the hRAD51 NPFs, which results in reversible changes in length of

the filament. The total hysteresis area is a measure of the mechani-

cal work required to convert all bound hRAD51 NPFs between the

two ATP-bound states. Using the DNA-binding footprint of a

hRAD51 monomer [3 nt (Ristic et al, 2005)] and the estimated

protein coverage (80 � 20)%, we can estimate that the free-energy

difference between the two states is 4 � 1 kBT per hRAD51

protomer (see Appendix for a full derivation). To analyse this

hysteretic behaviour under more biologically relevant conditions,

experiments were repeated under buffer conditions that allow for

ATP hydrolysis within the hRAD51 filaments (Carreira et al, 2009;

Figs EV3 and EV4A–C); we observed a similar hysteretic behaviour,

which decreased exponentially at the same rate as the rate of

hRAD51 dissociation from the ssDNA (Fig EV4B and C). This indi-

cates that the size of the hysteresis area depends on the amount of

hRAD51 bound to the ssDNA substrate. We thus conclude that ATP-

bound hRAD51-ssDNA filaments can switch between two states that

represent a more compact and a more extended conformation.

From analysis of the hysteresis curves, it is apparent that forces

of at least 10 pN are needed to induce the conformation switch in

the ATP-bound filament (Fig 3D). Above ~60 pN, the extension and

relaxation curves overlap, suggesting that all ATP-bound NPFs have

completely switched to the extended conformation and transitions

no longer occur. When hRAD51-ssDNA was relaxed and subse-

quently extended again, while keeping the force above 10 pN, the

relaxation and extension curves overlapped, showing no hysteresis

(Fig 3E), implying that no transitions back to the compact state had

occurred. Only at lower forces (~5 pN), the hysteresis disappeared

and the filament switched back to the compact state. The observa-

tion that the hysteretic behaviour occurs only in a specific range of

force values demonstrates that the extended state is unstable and

readily switches back to the more compact state when the DNA is

relaxed.

From the stretching curves, we can estimate the contour lengths

of a hRAD51 protomer in the ATP-compact and ATP-extended fila-

ment state (Fig 3F). We assume that initially, all NPFs are in
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Figure 2. Disassembly of hRAD51 from ssDNA is independent of DNA tension.

A Fluorescence images and kymographs of hRAD51 disassembling from ssDNA at indicated ssDNA tensions (buffer composition: 20 mM Tris pH 7.5, 100 mM KCl, 1 mM
MgCl2, 1 mM ATP, 10 mM DTT). Images are typical examples of 16 (at 5 pN), 9 (at 20 pN) and 4 (at 50 pN) identical experiments. Scale bars: 2 lm (horizontal) and
5 min (vertical).

B Integrated fluorescence intensity along the DNA of the same complexes as in (A) over time and corresponding an exponential fit. Fits are normalized using the
amplitude and offset of the exponential fit. Coloured edges in (A) show colour of corresponding force curve.

C Average disassembly rate as a function of tension. Error bars originate from the exponential fits on the individual datasets (number of datasets as in A).

Source data are available online for this figure.
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ATP-compact conformation; during stretching, these compact fila-

ments undergo conformational changes to the ATP-extended confor-

mation, as can be seen from the saw-tooth-like extension curves. As

the relaxation curves are completely smooth, we assume that all

NPFs remain in ATP-extended conformation during relaxation and

switch back to the ATP-compact state only at very low forces. Thus,
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Figure 3. Structural transitions within hRAD51-ssDNA NPFs.

A Force-extension/force-relaxation cycles of a hRAD51-coated ssDNA molecule in ATP and Ca2+ (buffer: 20 mM Tris pH 7.5, 2 mM CaCl2, 2 mM ATP, 1 mM DTT). Time
difference between cycles as indicated. Note that extension and relaxation curves of ssDNA (grey dataset) completely overlap. Arrows: direction in which the curves
were recorded. Grey: ssDNA. Inset: fluorescence images with edges coloured as force curves. Representative example of two identical experiments. Scale bars: 2 lm.

B Normalized integrated fluorescence intensity of the same construct over time. The amount of DNA-bound hRAD51 remains constant; that is, photobleaching is
negligible during these experiments. Representative example of two identical experiments.

C The hysteresis area, defined as the area between extension and relaxation curve, remains roughly constant over time under these conditions. Representative
example of two identical experiments.

D Successive extension–relaxation cycles measured in the presence of Ca2+, Mg2+ and ATP, showing reversible curves up to around 10 pN (first blue region), as all ATP-
bound NPFs are in ATP-compact state. At higher forces, ATP-bound NPFs transition to the ATP-extended state and the curves show hysteresis (red region). Above 50
pN, all NPFs are in the ATP-extended conformation (second blue region). Representative example of two identical experiments.

E The relaxation curve is reversible. After converting all ATP-bound NPFs into the ATP-extended conformation and relaxing the molecule to 24 lm (black), the DNA is
extended (red) before complete relaxation (blue). Red and blue curves overlap, showing reversibility of the relaxation curve. Representative example of two identical
experiments.

F Example of an eWLC fit (green) to a relaxation and extension curve (black) and corresponding contour length–extension curve (red) measured in the presence of
ATP and Ca2+. Representative examples out of 38 experiments. eWLC fit parameters: persistence length 2.501 � 0.009 nm, stretch modulus 1,599 � 8 pN and
contour length 29.01 � 0.01 lm (error bars originate from individual eWLC fits). Contour length–extension curves were calculated under the assumption that upon
conversion from ATP-compact to ATP-extended conformation, persistence length and stretch modulus remain constant.

G–I Same as (A–C) but in presence of ADP, Ca2+ and Mg2+ (buffer: 20 mM Tris pH 7.5, 10 mM Mg(OAc)2, 2 mM CaCl2, 2 mM ADP, 1 mM DTT). Here, there is no ATP
hydrolysis but hRAD51 can disassemble from the ssDNA. We see no hysteresis (G) and (I), while the integrated fluorescence intensity decreases (H) exponentially,
yielding a disassembly rate of (4.2 � 0.3) 10�4 s�1. Representative example of two identical experiments. Scale bars: 2 lm.

Source data are available online for this figure.
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the length of the ATP-extended conformation can be determined

from the relaxation curve, by fitting the curves to the extensible

worm-like-chain (eWLC) model (Broekmans et al, 2016; Fig 3F),

which results in an average contour length of the extended ssDNA-

hRAD51 filament of 29.01 � 0.01 lm. Using 3 nt as the DNA-

binding footprint of a hRAD51 protomer (Ristic et al, 2005) and the

estimated protein coverage as (80 � 20)%, we find that the contri-

bution to the contour length of each hRAD51 protomer in ATP-

extended conformation is of 2.2 � 0.6 nm.

In contrast, the contour length of each hRAD51 protomer in the

ATP-compact conformation cannot be obtained directly from an

extensible worm-like chain (eWLC) fit, since this requires a dataset

with all hRAD51 protomers in the ATP-compact conformation. Such

a dataset is, however, not available, since the ratio of extended to

compact filaments changes along the extension curve and, during

relaxation, all filaments are expected to be in ATP-extended confor-

mation. Therefore, a different approach was employed to determine

the contour length of the ATP-compact conformation: we assumed

that, upon switching from the ATP-compact to the ATP-extended

conformation, the persistence length and stretch modulus of the fila-

ment remain unchanged and only the contour length changes. In

our experimental set-up, the coverage of the ssDNA is only

(80 � 20)%, and hRAD51 filaments are relatively short. In addition,

RAD51 filaments on ssDNA are expected to be very stiff, as is the

case for RAD51 filaments on dsDNA (van Mameren et al, 2006).

Consequently, we expect that the flexibility of the RAD51-ATP-

covered ssDNA in these experiments comes mostly from the naked

stretches of ssDNA between the small filaments, justifying the

assumption that the persistence length and stretch modulus of the

complexes do not change upon switching between ATP-compact

and ATP-extended conformation. Therefore, the extension curves

can be plotted as contour length vs. DNA extension using the persis-

tence length and stretch modulus obtained from the eWLC fits

(Fig 3F). This plot shows that the contour length changes in discrete

steps (with an average step size of 200 � 5 nm, Appendix Fig S4A

and B), corresponding to the conversion of one or multiple NPFs

from the ATP-compact to the ATP-extended conformation. Assum-

ing that, at 0 pN, all NPFs are in the ATP-compact conformation,

the average contour length of this conformation can be determined

from the average contour length before the first step

(17.56 � 0.09 lm). From this, we find that the contribution to the

contour length of each hRAD51 protomer in the ATP-compact

conformation is 1.4 � 0.3 nm.

Under hydrolysing conditions, ATP is turned into ADP through-

out the filament but because hydrolysis is not rate-limiting, fila-

ments normally contain a mixture of ATP and ADP while

disassembly is taking place. In order to determine whether the

nucleotide cofactor, ATP or ADP, affects the hysteretic behaviour,

experiments were repeated in the presence of ADP instead of ATP.

Under these conditions, the DNA was densely coated with hRAD51

(Fig 3G, inset) and NPF disassembly occurred at a rate of

(4.2 � 0.3) 10�4 s�1 (Fig 3H), but subsequent extension and relax-

ation curves overlapped and did not show hysteresis (Fig 3G and I),

which suggests that the ADP-bound NPFs adopt a single conforma-

tion. However, determining the exact length of filaments in this

state was experimentally not possible, since, under these conditions,

filament disassembles during the experiment. To estimate the length

of the ADP-bound filament, the relaxation curves obtained in the

presence of ATP and ADP were compared (Fig EV5A and B). The

curves were very similar, and the small differences observed may

be caused by a difference in protein coverage. Therefore, the length

of the ADP-bound state is similar to that of the ATP states. Based on

this observation, we can also explain why the hysteresis is smaller

under conditions of ATP hydrolysis: the parts of the filaments where

ATP hydrolysis has already taken place no longer contribute to the

hysteresis, thus reducing the fraction of the filament able to switch

conformation.

Structural basis for conformational transitions of the
hRAD51-ATP filament

Although much information is now available for the structure of

the RecA/RAD51 nucleoprotein filaments (Chen et al, 2008; Lee

et al, 2015; Prentiss et al, 2015), our understanding of the mecha-

nistic basis for their unique ability to promote strand exchange

between homologous DNA sequences remains incomplete. To

provide further insight into hRAD51 function and investigate its

apparent ability to adopt different conformations in the polymeric

state, we obtained a crystal structure of the hRAD51-ATP filament

(Appendix Fig S5A–C and Table S1). Remarkably, the protein

crystallized in a monoclinic space group, with two complete turns

of helical filament in the asymmetric unit. Thus, unlike previous

crystal structures that contained a monomeric or dimeric RecA/

RadA/RAD51, related to proximal protomers by hexagonal or

trigonal symmetry, our crystal structure yielded information on

the conformation of 14 independent hRAD51 molecules, in a fila-

ment state and bound to ATP.

In the crystal, ATP-bound hRAD51 forms a continuous right-

handed filament with seven subunits per helical turn (Fig 4A and

B). As hRAD51 exists in a range of oligomeric species in solution

that depend on concentration for their relative abundance, it is

likely that crystal growth was seeded by heptameric hRAD51

present in the crystallization buffer. The arrangement of the

hRAD51 protomers within the filament and their mode of self-asso-

ciation is similar to what was observed for the filament structure of

yeast Rad51 (Conway et al, 2004). The heptameric repeat of the

helical hRAD51-ATP filament has a pitch of 128.0 Å and a protomer

rise of 18.3 Å. These values are within the distribution measured by

cryoEM for bona fide presynaptic hRAD51 filament structures (Short

et al, 2016).

Previous crystallographic analysis of the yeast RAD51 filament

had revealed the presence of two slightly different interfaces in

the asymmetric unit, implying that the functional unit of the fila-

ment might be a dimer (Conway et al, 2004). Inspection of the 12

independent dimer interfaces in the two heptameric turns of the

hRAD51-ATP filament structure showed the presence of two

distinct dimer conformations, alternating along the filament

(Fig 5A), in a qualitatively similar arrangement to what had been

observed for yeast Rad51 (Conway et al, 2004). Comparison of

the two dimer types by superposition shows that, relative to the

first hRAD51 protomer in the dimer, the second protomer under-

goes a rigid-body movement comprising of a slight tilt towards

the filament axis coupled to a small increase in twist (Fig 5B).

The structure of the individual RAD51 subunits remains

unchanged in the two dimer forms of the filament. The pivot

point for this composite rotation is centred at the dimer interface,
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Figure 4. Crystal structure of the human hRAD51-ATP filament.

A, B Side (A) and top (B) views of the asymmetric unit content of the crystal, which consists of 14 ATP-bound copies of hRAD51 arranged as two heptameric right-
handed filaments. The two heptameric oligomers form continuous helical filaments running through the crystal. The hRAD51 molecules are drawn as ribbons,
colour-coded in blue or green in the two heptamers, with cylinders marking the position of each alpha helix. The ATP molecule is drawn as spacefill model. The
positions of the N-terminal and ATPase domains of RAD51 are indicated in (A). The RAD51 chains in the two heptameric assemblies are labelled A to G and H to N
in (B).
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Figure 5. Two dimer interfaces exist in the crystal structure of the hRAD51-ATP filament.

A Structural superposition of the 12 dimers present in the asymmetric unit of the hRAD51-ATP filament. Each hRAD51 dimer is coloured in light blue or yellow,
according to the interface type between its two protomers. The protein chains of the dimers are drawn as a Ca backbone, with one ATP moiety shown as stick model.
The illustration underneath the superposition reports the distribution of interface types between protomers in the two hRAD51-ATP heptamers, with RAD51 chains
labelled A to G and H to N, as in Fig 4B. Each interface is marked by a coloured bar, colour-coded blue or yellow as in the structural superimposition.

B The relative displacement in the position of hRAD51 residues between the two dimer types is illustrated by drawing the hRAD51 Ca backbone as tube of varying
radius, in direct proportion to the rmsd value for each amino acid (a larger radius corresponds to a higher rmsd). The structure of the reference hRAD51 structure
used in the superposition is drawn as a spacefill model.

C Two filament structures of different pitch and rise are obtained by modelling a filament based exclusively on one or the other dimer type found in the crystal
structure of the hRAD51-ATP filament (see also Movies EV1 and EV2). Seven hRAD51 protomers corresponding approximately to one helical turn are shown in both
cases, drawn as molecular surfaces in light blue.
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with residues surrounding the ATP-binding site displaying the

least movement.

The occurrence of two distinct dimer conformations across 12

independent filament interfaces, rather than a single interface type

or a range of different interfaces, is striking and suggests that they

might be functionally relevant. Modelling of hRAD51-ATP filaments

constituted entirely of one or the other dimer type yields filaments

with different pitch and rise (134 and 18.4 Å vs. 112 and 16.9 Å),

reflecting a looser (7.3 hRAD51 chains/turn) or tighter (6.6 hRAD51

chains/turn) winding of the helical hRAD51 assembly around the fil-

ament axis (Fig 5C). The values for the rise of the two filament

models, at 1.84 and 1.69 nm, fit within the contour lengths

measured for the two states of the hRAD51-ATP filament in the opti-

cal tweezers (2.2 � 0.6 and 1.4 � 0.3 nm). The narrower difference

in rise for the two RAD51 dimer types in the crystal of the ATP-

bound filament, relative to the rises measured in solution, might be

due to the constraint of the crystal lattice, as well as to the absence

of ssDNA. Interestingly, morphing between the two filament models

mimics a structural transition reminiscent of a peristaltic movement,

whereby the filament cycles between a more compact, overwound

state and a more loosely wound, extended state (Movies EV1 and

EV2).

Discussion

The knowledge that the hRAD51 NPF possesses remarkable

conformational plasticity has been available for a long time, but

the correct mechanistic interpretation of this filament property still

eludes us. In this study, converging evidence from single-molecule

and structural experiments shows that ATP-bound hRAD51 NPF

exists in two distinct forms that differ in pitch and protomer

interface. Moreover, the data indicate that the simultaneous

presence of two NPF conformations requires ATP and cannot be

realized with ADP.

Our single-molecule analysis shows that hRAD51-ssDNA fila-

ments can exist in different nucleotide-dependent states (Fig 6):

(i) an ATP-extended state, (ii) an ATP-compact state, and (iii) an

ADP-bound state that precedes disassembly. What is the mecha-

nism for the conversion between different filament states?

ADP state

ATP hydrolysis

Disassembly

compact ATP state

extended ATP state
ΔG =(4±1) k TF=0 B

ΔG <25 k TATP B

Fr
ee

 e
ne

rg
y 

(G
)

Reaction coordinate

Figure 6. Cartoon model of different states of hRAD51 on ssDNA.

Based on the experiments involving stretching cycles such as shown in Figs 3A–I, EV3, and 5G and H, we propose a cartoon model with the following conformational states
and possible transitions. Because of the large hysteresis in the data shown in Fig 3A–C, we propose that there are two ATP-bound states: an ATP-compact and an ATP-
extended state with a free-energy difference of (4 � 1) kBT. Because there is no significant hysteresis in the experiments shown in Fig 3G–I, we propose that there is only one
ADP-bound state, from which the hRAD51 NPF can disassemble: the ADP state. For switching between ATP-bound and ADP-bound states, additional energy is required. This
is generated by the hydrolysis of one ATP molecule (providing ~25 kBT). Black: ssDNA, blue: ATP-compact hRAD51 monomer, green: ATP-extended hRAD51 monomer, purple:
hRAD51 monomer in ADP state, red: ATP, yellow: ADP.
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Switching between the ATP-compact state (with a contour length

of 1.4 � 0.3 nm per hRAD51 monomer) and the ATP-extended

state (with a contour length of 2.2 � 0.6 nm per hRAD51

monomer) can be triggered by force but given the small energy

difference between the two (4 � 1 kBT per hRAD51 monomer),

the extended state should be accessible simply by thermal excita-

tion. Conversely, under experimental conditions where ATP

hydrolysis can occur, the filaments can switch to a single disas-

sembly-competent ADP state from both the ATP-compact and the

ATP-extended state, since the total disassembly rate does not

depend on ssDNA template tension. Disassembly can only occur

from the ADP-bound state, and not from either of the ATP-bound

states, because, just as was shown previously for dsDNA (van

Mameren et al, 2009b), disassembly of RAD51 from ssDNA does

not happen in conditions that do not allow ATP hydrolysis (i.e.

in a buffer containing no Mg2+). ATP hydrolysis must thus

precede disassembly, but, as the total disassembly rate does not

depend on the nucleotide cofactor initially bound within the

filament, it is not rate-limiting. The RAD51 disassembly rates

measured under different experimental conditions are given in

Appendix Table S2. The free-energy difference between a hRAD51

monomer in either of the ATP states and a hRAD51 monomer in

the ADP state is at most 25 kBT, as this is the energy provided

by ATP hydrolysis per ATP hydrolysed (Lodish et al, 2004). This

conversion might, as was previously suggested for RecA-ssDNA

NPFs (Kim et al, 2014), involve a cooperative transition between

neighbouring monomers.

On the basis of electron microscopy experiments, it has been

proposed that hRAD51-ssDNA NPFs are characterized by a high

degree of conformational freedom (Yu et al, 2001). This is in line

with our results from both single-molecule and crystallography anal-

yses, showing the occurrence of different hRAD51-ssDNA filament

states. Other previous work on hRAD51-dsDNA (Atwell et al, 2012)

and RecA-ssDNA (Kim et al, 2014) has also shown similar transi-

tions within NPFs. Those studies, however, suggested the existence

of only two states: an ATP-bound extended state and an ADP-bound

compressed state. Our data clearly indicate that, next to the ADP-

bound state, the NPF can exist in two ATP-bound states that differ

in contour length. Remarkably, the reported hRAD51-dsDNA fila-

ment length of 1.5 nm per hRAD51 monomer (Ristic et al, 2005)

matches that of the ATP-compact state for hRAD51-ssDNA

(1.4 � 0.3 nm); this correspondence might be significant for homol-

ogy search and strand exchange processes during homologous

recombination. Interestingly, the work on RecA-ssDNA (Kim et al,

2014) reported significant reloading of ATP within the filament.

However, when we tested whether reloading of ATP contributes to

the hysteretic behaviour that we observe, by allowing ATP to be

present during NPF formation but not during the extension–relax-

ation cycles (Fig EV4D–F), we found no significant effect of ATP

reloading.

In this study, we have provided important new insights into

the dynamics of hRAD51-ssDNA filaments, with particular empha-

sis on the role played by the nucleotide cofactor ATP. Our

combined evidence from single-molecule and structural experi-

ments reveals that the ATP-bound hRAD51 NPF is a highly flex-

ible entity. Building on existing evidence for variations in filament

pitch, we now demonstrate that the RAD51-ATP-ssDNA filament

can exist in two specific, interconvertible conformational states.

The ensuing structural plasticity provides an appealing molecular

basis for the reactions of homology recognition and strand

exchange that underlie homologous recombination. Thus, we

propose that the concerted conversion between the two filament

states described here, when propagating through a synaptic fila-

ment, might represent a critical aspect of the search for homolo-

gous DNA sequence. The small amount of energy needed for

interconversion between ATP-bound states, relative to that

required to reach the ADP-bound state (4 kBT vs. 25 kBT), would

facilitate disengagement during incorrect pairing events, as the fil-

ament cycles between the ATP-bound states in the search for

homology. Finally, we note that specific conformational transi-

tions, such as the ones we describe, might be promoted by

recombination modulators inside the cell. Indeed, recent work on

RAD-51, the worm orthologue of human RAD51, has indicated

that the RFS-1/RIP-1 complex acts by remodelling the RAD-51

presynaptic filament into a more open, flexible conformation that

stimulates strand exchange (Taylor et al, 2015, 2016).

Materials and Methods

DNA constructs for trapping experiments

The preparation of the construct which can be used for ssDNA

experiments upon force-induced melting was described previously

(Candelli et al, 2013). In brief, biotinylation of both the 30 and 50

end of the same DNA strand is achieved by sequential annealing

and ligation of oligonucleotides (50-ggg cgg cga cct gga caa-30 and 50-
agg tcg ccg ccc ttt ttt tTt TtT-30) to first biotinylate the 50 end and

subsequently the annealing and ligation of an oligonucleotide (50-
TtT tTt ttt ttt aga gta ctg tac gat cta gca tca atc ttg tcc-30) to the 30

end of a linearized Lambda DNA (48,517 nt) molecule (T = biotiny-

lated).

Experimental conditions

Catching of the beads (4.5-lm streptavidin-coated polystyrene

microspheres) and the DNA were performed in PBS buffer, consist-

ing of 10 mM phosphate and 150 mM sodium chloride at pH 7.3–

7.5. DNA melting for generation of ssDNA templates was performed

in 20 mM Tris, pH 7.6. Buffer conditions in the protein incubation

and imaging channels were indicated in the text.

Set-up combining optical trapping, fluorescence microscopy
and microfluidics

The custom-built experimental set-up was described in detail else-

where (Gross et al, 2010). Briefly, it is built around a Nikon inverted

microscope equipped with a 1,064-nm trapping laser, where the two

traps that can be manipulated independently using steerable mirrors

are generated by splitting the laser into perpendicularly polarized

beams using a half-wave plate and polarizing beam splitter. Using a

second polarizing beam splitter, the two trapping beams are recom-

bined and coupled into a water-immersion objective on the micro-

scope. By collecting the transmitted light using an oil-immersion

condenser and rejection of the unwanted light by a third polarizing

beam splitter, the force can be detected on a position-sensitive
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diode. The bead-to-bead distance was measured using real-time

template matching of bright-field images obtained by blue LED illu-

mination. For fluorescence imaging of hRAD51-Alexa 555, a 532-nm

excitation laser was simultaneously coupled into the microscope

and imaged on an EMCCD camera. To enable fast buffer exchange

between beads, DNA, buffer and protein channels, a custom-made

(u-Flux, LUMICKS B.V.) multichannel laminar flow cell was

mounted on the microscope stage.

Derivation of free-energy difference from force-extension curves

The free-energy difference per hRAD51 monomer between the

compact and extended ATP states is calculated from the fluores-

cence intensity. As a starting point, the free energy per hRAD51

monomer is written as follows:

DG ¼ A

k
:

Here, DG is the free-energy difference between the two states, A

is the measured hysteresis area, and k is the number of bound

hRAD51 monomers. The value of k is calculated from the fractional

coverage of the DNA template (m) and the number of available bind-

ing sites (n) as follows:

k ¼ mn:

Furthermore, n can be determined from the binding site size or

footprint of hRAD51 on ssDNA (m) and the number of bases in the

DNA template used (N), as follows:

n ¼ N

m
:

Combining these three formulas yields:

DG ¼ Am

mN
:

To calculate the free-energy difference between the ATP-

extended and compact states, the following values are used:

(1) The hysteresis area A is determined from Fig 3C as 205 � 2

pN lM.

(2) The binding site size m is three bases (Ristic et al, 2005).

(3) The fractional coverage m in our experiments is estimated to be

(80 � 20)%.

(4) The number of bases in the DNA template (N) is 48,517.

These numbers yield an estimated free-energy difference of

(4 � 1) kBT per hRAD51 monomer.

Methods for protein purification and labelling

Human full-length hRAD51 was expressed in Escherichia coli and

purified using a new protocol that exploits the affinity of hRAD51

for BRCA2 BRC-repeat 4 (https://www.addgene.org/105045/). Briefly,

full-length, human RAD51 was co-expressed with a BRCA2 BRC4

sequence fused to an N-terminal dual His-MBP tag in the BL21(DE3)

Rosetta2 E. coli strain. After initial purification of the His-MBP-

BRC4–RAD51 complex by Ni2+-NTA chromatography, RAD51 is

separated by the His-MBP-BRC4 fusion protein using heparin–

Sepharose chromatography, as RAD51 binds to the column in low-

salt conditions, whereas the His-MBP-BRC4 protein remains in the

flow through. RAD51 is further purified by gel-filtration chromatog-

raphy, concentrated and stored in aliquots at �80°C. This method

allows for the rapid and efficient recovery of milligram amounts of

purified RAD51 from 1 l of BL21(DE3)Rosetta2 cells.

hRAD51 (isoform K313, variant C319S) fluorescent labelling with

Alexa Fluor 555 was performed as was described previously

(Modesti et al, 2007). The degree of labelling was estimated to be

around 80%. Biochemical characterization showed that hRAD51

(C319S) is proficient in ATP hydrolysis, strand exchange and DNA

binding (Appendix Fig S1A–C).

Crystallization and X-ray crystal structure determination

hRAD51 was crystallized using the hanging-drop diffusion method.

2 mM MgATP was added to the protein samples shortly before

crystallization. Drops were set up in a 1:1 ratio of protein

(7.4 mg/ml) and mother liquor, which contained 0.1 MES pH 5.2

and 22% v/v MPD, at 293 K. Initial crystals were small and were

therefore improved with streak seeding, where 9% v/v sucrose

was added to the mother liquor. X-ray diffraction data were

collected at the PROXIMA1 beamline of the SOLEIL synchrotron,

Gif-sur-Yvette, France. The data were processed in XDS and

Aimless, and the structure was solved by molecular replacement

(MR) in Phaser, using the coordinates from PDB entry 1N0W as

search model. hRAD51-ATP crystallized as a helical filament in

space group P21, with unit cell: 117.7 Å, 128.0 Å, 230.1 Å, 90,

90.3, 90 and two heptameric assemblies in the asymmetric unit.

For structure determination by MR, analysis of crystal cell content

showed the presence of several RAD51 molecules in the asymmet-

ric unit, so initial searches in Phaser were performed looking for

multiple copies of the RAD51 ATPase domain (PDB id 1N0W). MR

solutions were scored as successful when two RAD51 ATPase

domains were juxtaposed in a manner that was in agreement with

the known association mode of RAD51 protomers in the structure

of the yeast RAD51 filament (PDB id 1SZP). The successful solu-

tions were retained as fixed solutions in successive rounds of MR

in Phaser. By iteration of the process, we were able to obtain the

position of all 14 chains in the asymmetric unit. A full-length

model for human RAD51 was built, using PDB entry 1SZP for the

RAD51 N-terminal domain and 1N0W for modelling hRAD51’s

interdomain linker sequence. The structure was refined in Phenix

(Adams et al, 2002) to a resolution of 3.9 Å, using Coot (Emsley

et al, 2010) for model building and applying NCS restraints to the

ATPase and N-terminal domains of the 14 hRAD51 molecules in

the asymmetric unit.

Data availability

The structural coordinates of the refined model and the structure

factors have been deposited in the RCSB Protein Data Bank (http://

www.rcsb.org/) and assigned the identifier 5NWL.

Expanded View for this article is available online.
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