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Abstract

Transposable elements (TEs) are major components
of eukaryotic genomes. However, the extent of their
impact on genome evolution, function, and disease
remain a matter of intense interrogation. The rise of
genomics and large-scale functional assays has shed
new light on the multi-faceted activities of TEs and
implies that they should no longer be marginalized.
Here, we introduce the fundamental properties of TEs
and their complex interactions with their cellular
environment, which are crucial to understanding
their impact and manifold consequences for organismal
biology. While we draw examples primarily from
mammalian systems, the core concepts outlined
here are relevant to a broad range of organisms.
organization and a monophyletic origin. For example,
Transposable elements come in many different
forms and shapes
Transposable elements (TEs) are DNA sequences that
have the ability to change their position within a genome.
As a result of their deep evolutionary origins and continu-
ous diversification, TEs come in a bewildering variety of
forms and shapes (Fig. 1). TEs can be divided into two
major classes based on their mechanism of transposition,
and each class can be subdivided into subclasses based on
the mechanism of chromosomal integration. Class 1 ele-
ments, also known as retrotransposons, mobilize through
a ‘copy-and-paste’ mechanism whereby a RNA intermedi-
ate is reverse-transcribed into a cDNA copy that is inte-
grated elsewhere in the genome [1]. For long terminal
repeat (LTR) retrotransposons, integration occurs by
means of a cleavage and strand-transfer reaction catalyzed
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by an integrase much like retroviruses [2]. For non-LTR
retrotransposons, which include both long and short in-
terspersed nuclear elements (LINEs and SINEs), chromo-
somal integration is coupled to the reverse transcription
through a process referred to as target-primed reverse
transcription [3]. Class 2 elements, also known as DNA
transposons, are mobilized via a DNA intermediate, either
directly through a ‘cut-and-paste’ mechanism [4, 5] or, in
the case of Helitrons, a ‘peel-and-paste’ replicative mech-
anism involving a circular DNA intermediate [6]. For de-
tailed reviews on individual TE types and transposition
mechanisms, we refer the reader to the monograph edited
by Craig et al. [7].
Each TE subclass is further divided into subgroups (or

superfamilies) that are typically found across a wide
range of organisms, but share a common genetic

Ty3/gypsy and Ty1/copia elements are two major super-
families of LTR retrotransposons that occur in virtually
all major groups of eukaryotes [8]. Similarly, Tc1/mari-
ner, hAT (hobo-Ac-Tam3), and MULEs (Mutator-like el-
ements) are three superfamilies of DNA transposons
that are widespread across the eukaryotic tree [9]. At the
most detailed level of TE classification, elements are
grouped into families or subfamilies, which can be de-
fined as a closely related group of elements that can be
traced as descendants of a single ancestral unit [10]. This
ancestral copy can be inferred as a consensus sequence,
which is representative of the entire (sub)family [11, 12].
Thus, in principle, every TE sequence in a genome can
be affiliated to a (sub)family, superfamily, subclass, and
class (Fig. 1). However, much like the taxonomy of spe-
cies, the classification of TEs is in constant flux, per-
petually subject to revision due to the discovery of
completely novel TE types, the introduction of new
levels of granularity in the classification, and ongoing de-
velopment of methods and criteria to detect and classify
TEs [13, 14].
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Fig. 1 Classification of eukaryotic transposable elements. Schematic and examples showing the key features and relationships between TE classes,
subclasses, superfamilies, and families. Blue circles represent TE-encoded enzymes. circDNA circular DNA intermediate, DIRS Dictyostelium repetitive
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TEs are not randomly distributed in the genome
The genome may be viewed as an ecosystem inhabited
by diverse communities of TEs, which seek to propagate
and multiply through sophisticated interactions with
each other and with other components of the cell [15].
These interactions encompass processes familiar to ecol-
ogists, such as parasitism, cooperation, and competition
[16]. Thus, it is perhaps not surprising that TEs are
rarely, if ever, randomly distributed in the genome. TEs
exhibit various levels of preference for insertion within
certain features or compartments of the genome (Fig. 2).
These are often guided by opposite selective forces, a
balancing act of facilitating future propagation while
mitigating deleterious effects on host cell function. At
the most extreme end of the site-selection spectrum,
many elements have evolved mechanisms to target spe-
cific loci where their insertions are less detrimental to
the host but favorable for their propagation [17]. For in-
stance, several retrotransposons in species as diverse as
slime mold and budding and fission yeast have evolved
independently, but convergently, the capacity to target
the upstream regions of genes transcribed by RNA poly-
merase III, where they do not appear to affect host gene
expression but retain the ability to be transcribed them-
selves [17–20].
Natural selection and genetic drift are also powerful

forces shaping the distribution and accumulation of
TEs [21]. Insertions that are strongly deleterious are
rapidly removed from the population. Insertions that
have little or no effects on genome function and host
fitness may reach fixation according to the efficiency of
selection and drift at purging these insertions from the
population, which vary greatly among species [21]. Se-
lective forces can explain why some elements are more
likely to be retained in certain genomic locations than
others [22, 23]. For instance, de novo insertions of the
human LINE 1 (L1) retrotransposon readily occur
within (and disrupt) gene exons [24], but very few if
any L1 elements have been fixed within the coding re-
gion of human genes [25]. Similarly, no LTR retrotrans-
poson is known to exhibit insertion preference with
regard to which DNA strand is transcribed, and yet
these elements are strongly depleted in the sense orien-
tation within human introns—most likely due to their
propensity to interfere with gene splicing and polyade-
nylation when inserted in sense orientation [11, 26].
Perhaps because of some of these shared properties, the
evolutionary trajectories of TE accumulation in mam-
mals were found to be conserved across species in spite
of clade specific differences in TE content. [27]. Thus,
the success and diversity of TEs in a genome are shaped
both by properties intrinsic to the elements as well as
evolutionary forces acting at the level of the host spe-
cies. A solid comprehension of how these forces act to-
gether is paramount to understanding the impact of
TEs on organismal biology.
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TEs are an extensive source of mutations and
genetic polymorphisms
TEs occupy a substantial portion of the genome of a
species, including a large fraction of the DNA unique to
that species. In maize, where Barbara McClintock did
her seminal work [28], an astonishing 60 to 70% of the
genome is comprised of LTR retrotransposons, many of
which are unique to this species or its close wild rela-
tives, but the less prevalent DNA transposons are cur-
rently the most active and mutagenic [29–32] (Fig. 2).
Similarly, the vast majority of TE insertions in Drosoph-
ila melanogaster are absent at the orthologous site in its
closest relative D. simulans (and vice versa), and most
are not fixed in the population [33, 34]. Many TE fam-
ilies are still actively transposing and the process is
highly mutagenic; more than half of all known pheno-
typic mutants of D. melanogaster isolated in the labora-
tory are caused by spontaneous insertions of a wide
variety of TEs [35]. Transposition events are also com-
mon and mutagenic in laboratory mice, where ongoing
activity of several families of LTR elements are respon-
sible for 10–15% of all inherited mutant phenotypes
[36]. This contribution of TEs to genetic diversity may
be underestimated, as TEs can be more active when or-
ganisms are under stress, such as in their natural envir-
onment [37, 38].
Because TE insertions rarely provide an immediate fit-
ness advantage to their host, those reaching fixation in
the population do so largely by genetic drift and are sub-
sequently eroded by point mutations that accumulate
neutrally [21]. Over time, these mutations result in TEs
that can no longer encode transposition enzymes and
produce new integration events. For instance, our (hap-
loid) genome contains ~ 500,000 L1 copies, but more
than 99.9% of these L1 copies are fixed and no longer
mobile due to various forms of mutations and trunca-
tions [39, 40]. It is estimated that each person carries a
set of ~ 100 active L1 elements, and most of these are
young insertions still segregating within the human
population [41–43]. Thus, as for any other organism, the
‘reference’ human genome sequence does not represent
a comprehensive inventory of TEs in humans. Thou-
sands of ‘non-reference’, unfixed TE insertions have been
catalogued through whole genome sequencing and other
targeted approaches [44]. On average, any two human
haploid genomes differ by approximately a thousand TE
insertions, primarily from the L1 or Alu families. The
number of TE insertion polymorphisms in a species with
much higher TE activity such as maize [32] dwarfs the
number in humans.
If TEs bring no immediate benefit to their host and

are largely decaying neutrally once inserted, how do they
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persist in evolution? One key to this conundrum is the
ability of TEs not only to propagate vertically but also
horizontally between individuals and species. There is
now a large body of evidence supporting the idea that
horizontal transposon transfer is a common phenomenon
that affects virtually every major type of TE and all
branches of the tree of life [45, 46]. While the cellular
mechanisms underlying horizontal transposon transfer re-
main murky, it is increasingly apparent that the intrinsic
mobility of TEs and ecological interactions between their
host species, including those with pathogens and parasites,
facilitate the transmission of elements between widely di-
verged taxa [47–49].

TEs are associated with genome rearrangements
and unique chromosome features
Transposition represents a potent mechanism of genome
expansion that over time is counteracted by the removal
of DNA via deletion. The balance between the two pro-
cesses is a major driver in the evolution of genome size
in eukaryotes [21, 50, 51]. Several studies have demon-
strated the impact and range of this shuffling and cycling
of genomic content on the evolution of plant and animal
genomes [52–55]. Because the insertion and removal of
TEs is often imprecise, these processes can indirectly
affect surrounding host sequences. Some of these events
occur at high enough frequency to result in vast
amounts of duplication and reshuffling of host se-
quences, including genes and regulatory sequences. For
example, a single group of DNA transposons (MULEs)
has been responsible for the capture and reshuffling of
~ 1,000 gene fragments in the rice genome [56]. Such
studies have led to the conclusion that the rate at which
TEs transpose, which is in part under host control, is an
important driver of genome evolution [57–59].
In addition to rearrangements induced as a byproduct of

transposition, TEs can promote genomic structural vari-
ation long after they have lost the capacity to mobilize [60].
In particular, recombination events can occur between the
highly homologous regions dispersed by related TEs at dis-
tant genomic positions and result in large-scale deletions,
duplications, and inversions [59, 61–63] (Fig. 2). TEs also
provide regions of microhomology that predispose to tem-
plate switching during repair of replication errors leading
to another source of structural variants [64]. These
non-transposition-based mechanisms for TE-induced or
TE-enabled structural variation have contributed substan-
tially to genome evolution. These processes can also make
the identification of actively transposing elements more
difficult in population studies that infer the existence of ac-
tive elements through the detection of non-reference
insertions.
TEs also contribute to specialized chromosome fea-

tures. An intriguing example is in Drosophila, where
LINE-like retrotransposons form and maintain the telo-
meres in replacement of the telomerase enzyme which
has been lost during dipteran evolution [65]. This domes-
tication event could be viewed as a replay of what might
have happened much earlier in eukaryotic evolution to
solve the ‘end problem’ created by the linearization of
chromosomes. Indeed, the reverse transcriptase compo-
nent of telomerase is thought to have originated from an
ancient lineage of retroelements [66, 67]. TE sequences
and domesticated transposase genes also play structural
roles at centromeres [68–70].

There is an intrinsic balance between TE
expression and repression
To persist in evolution, TEs must strike a delicate bal-
ance between expression and repression (Fig. 2). Expres-
sion should be sufficient to promote amplification, but
not so vigorous as to lead to a fitness disadvantage for
the host that would offset the benefit to the TE of in-
creased copy numbers. This balancing act may explain
why TE-encoded enzymes are naturally suboptimal for
transposition [71, 72] and why some TEs have evolved
self-regulatory mechanisms controlling their own copy
numbers [73, 74]. A variety of host factors are also
employed to control TE expression, which includes a
variety of small RNA, chromatin, and DNA modification
pathways [75–78], as well as sequence-specific repres-
sors such as the recently profiled KRAB zinc-finger
proteins [79–82]. However, many of these silencing
mechanisms must be at least partially released to permit
developmental regulation of host gene expression pro-
grams, particularly during early embryonic development.
For example, genome-wide loss of DNA methylation is
necessary to reset imprinted genes in primordial germ
cells [83]. This affords TEs an opportunity, as reduced
DNA methylation often promotes TE expression. Robust
expression of a TE in the germ lineage (but not neces-
sarily in the gametes themselves) is often its own down-
fall. In one example of a clever trick employed by the
host, TE repression is relieved in a companion cell de-
rived from the same meiotic product as flowering plant
sperm [84]. However, this companion cell does not con-
tribute genetic material to the next generation. Thus, al-
though TEs transpose in a meiotic product, the events
are not inherited. Instead, TE activity in the companion
cell may further dampen TE activity in sperm via the im-
port of TE-derived small RNAs [85].
Another important consequence of the intrinsic ex-

pression/repression balance is that the effects of TEs on
a host can vary considerably among tissue types and
stages of an organism’s life cycle. From the TE’s perspec-
tive, an ideal scenario is to be expressed and active in
the germline, but not in the soma, where expression
would gain the TE no advantage, only disadvantage [86].
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This is indeed observed among many species, with cili-
ates representing an extreme example of this division—
TEs are actively deleted from the somatic macronucleus
but retained in the micronucleus, or germline [87]. An-
other example is the P-elements in Drosophila, which
are differentially spliced in the germline versus soma
[88]. Many organisms, including plants, do not differen-
tiate germ lineage cells early in development; rather, they
are specified from somatic cells shortly before meiosis
commences. Thus, TEs that transpose in somatic cells in
plants have the potential to be inherited, which suggests
that the interest of TEs and host are in conflict across
many more cells and tissues than in animals with a seg-
regated germline.

TEs are insertional mutagens in both germline
and soma
Like other species, humans contend with a contingent of
currently active TEs where the intrinsic balance between
expression and repression is still at play [89]. For us, this
includes L1 and other mobile elements that depend on
L1-encoded proteins for retrotransposition [90, 91].
These elements are responsible for new germline inser-
tions that can cause genetic disease. More than 120 in-
dependent TE insertions have been associated with
human disease [24]. The rate of de novo germline trans-
position in humans is approximately one in 21 births for
Alu [92] and one in 95 births for L1 [93].
Historically, little attention has been given to transpos-

ition in somatic cells and its consequences, because som-
atic transposition may be viewed as an evolutionary
dead-end for the TE with no long-term consequences for
the host species. Yet, there is abundant evidence that TEs
are active in somatic cells in many organisms [94] (Fig. 2).
In humans, L1 expression and transposition have been de-
tected in a variety of somatic contexts, including early em-
bryos and certain stem cells [95, 96]. There is also a great
deal of interest in mobile element expression and activity
in the mammalian brain, where L1 transposition has been
proposed to diversify neuronal cell populations [97–99].
One challenge for assessing somatic activity has rested
with the development of reliable single cell insertion site
mapping strategies [100–103].
Somatic activity has also been observed in human can-

cers, where tumors can acquire hundreds of new L1 in-
sertions [104–109]. Just like for human polymorphisms,
somatic activity in human cancers is caused by small
numbers of so-called ‘hot’ L1 loci [41, 107]. The activ-
ities of these master copies varies depending on the indi-
vidual [105], tumor type [105], and timeframe in the
clonal evolution of the tumor [106, 110]. Some of these
de novo L1 insertions disrupt critical tumor suppressors
and oncogenes and thus drive cancer formation [107],
although the vast majority appear to be ‘passenger’
mutations [111]. Host cells have evolved several mecha-
nisms to keep TEs in check. However, as the force of
natural selection begins to diminish with age and com-
pletely drops in post-reproductive life, TEs may become
more active [112].

TEs can be damaging in ways that do not involve
transposition
TEs are best known for their mobility, in other words their
ability to transpose to new locations. While the breakage
and insertion of DNA associated with transposition repre-
sents an obvious source of cell damage, this is not the only
or perhaps even the most common mechanism by which
TEs can be harmful to their host. Reactivated transposons
harm the host in multiple ways. First, de-repression of
transposon loci, including their own transcription, may
interfere with transcription or processing of host mRNAs
through a myriad of mechanisms [113–115]. Genome-wide
transcriptional de-repression of TEs has been documented
during replicative senescence of human cells [116] and sev-
eral mouse tissues, including liver, muscle, and brain [117,
118]. De-repression of LTR and L1 promoters can also
cause oncogene activation in cancer [119]. Second, TE-
encoded proteins such as the endonuclease activity of L1
ORF2p can induce DNA breaks and genomic instability
[120]. Third, accumulation of RNA transcripts and extra-
chromosomal DNA copies derived from TEs may trigger
an innate immune response leading to autoimmune dis-
eases and sterile inflammation (Fig. 2). Activation of inter-
feron response is now a well-documented property of
transcripts derived from endogenous retroviruses and may
give immunotherapies a boost in identifying and attacking
cancer cells [121–123]. The relative contribution of all the
above mechanisms in organismal pathologies remains to be
determined.
Following transcription (and sometimes splicing) of

TEs, the next step in the process involves translation of
the encoded proteins and, for retroelements, reverse
transcription of the TEs into cDNA substrates suitable
for transposition. Once engaged by a TE-encoded re-
verse transcriptase protein, the resulting cytosolic DNAs
and RNA:DNA hybrids can alert inflammatory pathways.
An example of this is seen in patients with Aicardi–
Goutières syndrome, where accumulation of TE-derived
cytosolic DNA is due to mutations in pathways that nor-
mally block TE processing or degrade TE-derived DNA
[124, 125]. Although not all TEs encode functional pro-
teins, some do, including a few endogenous retroviruses
capable of producing Gag, Pol, or envelope (Env) pro-
teins [126]. Overexpression of these Env proteins can be
cytotoxic, and has been linked to at least two neurode-
generative diseases, multiple sclerosis [127] and amy-
trophic lateral sclerosis [128]. Small accessory proteins
produced by the youngest human endogenous retrovirus
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(HERV) group, HERV-K (HML-2), may play a role in
some cancers but the evidence remains circumstantial
[129, 130].

A number of key coding and non-coding RNAs are
derived from TEs
Although usually detrimental, there is growing evidence
that TE insertions can provide raw material for the
emergence of protein-coding genes and non-coding
RNAs, which can take on important and, in some cases
essential, cellular function [131–133] (Fig. 2). The
process of TE gene ‘domestication’ or exaptation over
evolutionary time contributes to both deeply conserved
functions and more recent, species-specific traits. Most
often, the ancestral or a somewhat modified role of a
TE-encoded gene is harnessed by the host and con-
served, while the rest of the TE sequence, and hence its
ability to autonomously transpose, has been lost. Spec-
tacular examples of deeply conserved TE-derived genes
are Rag1 and Rag2, that catalyze V(D)J somatic recom-
bination in the vertebrate immune system. Both genes,
and probably the DNA signals they recognize, were de-
rived from an ancestral DNA transposon around 500
million years ago [134, 135]. Indeed, DNA transposases
have been co-opted multiple times to form new cellular
genes [70, 113].
The gag and env genes of LTR retrotransposons or en-

dogenous retroviruses (ERVs) have also been domesti-
cated numerous times to perform functions in placental
development, contribute to host defense against exogen-
ous retroviruses, act in brain development, and play
other diverse roles [132, 136]. One of the most intri-
guing examples of TE domestication is the repeated, in-
dependent capture of ERV env genes, termed syncytins,
which appear to function in placentation by facilitating
cell–cell fusion and syncytiotrophoblast formation [137–
139]. Notably, one or more such syncytin genes have
been found in virtually every placental mammalian
lineage where they have been sought, strongly suggesting
that ERVs have played essential roles in the evolution
and extreme phenotypic variability of the mammalian
placenta. Another example of a viral-like activity
re-purposed for host cell function is provided by the
neuronal Arc gene, which arose from the gag gene from
a LTR retrotransposon domesticated in the common an-
cestor of tetrapod vertebrates [140]. Genetic and bio-
chemical studies of murine Arc show that it is involved
in memory and synaptic plasticity and has preserved
most of the ancestral activities of Gag, including the
packaging and intercellular trafficking of its own RNA
[140]. Remarkably, flies appear to have independently
evolved a similar system of trans-synaptic RNA delivery
involving a gag-like protein derived from a similar yet
distinct lineage of LTR retrotransposons [141]. Thus, the
biochemical activities of TE-derived proteins have been
repeatedly co-opted during evolution to foster the emer-
gence of convergent cellular innovations in different
organisms.
TEs can donate their own genes to the host, but they

can also add exons and rearrange and duplicate existing
host genes. In humans, intronic Alu elements are par-
ticularly prone to be captured as alternative exons
through cryptic splice sites residing within their se-
quences [142, 143]. L1 and SVA (SINE/VNTR/Alu) ele-
ments also contribute to exon shuffling through
transduction events of adjacent host sequences during
their mobilization [144, 145]. The reverse transcriptase
activity of retroelements is also responsible for the
trans-duplication of cellular mRNAs to create ‘proc-
essed’ retrogenes in a wide range of organisms [146,
147]. The L1 enzymatic machinery is thought to be in-
volved in the generation of tens of thousands of retro-
gene copies in mammalian genomes, many of which
remain transcribed and some of which have acquired
new cellular functions [147, 148]. This is a process still
actively shaping our genomes; it has been estimated that
1 in every 6000 humans carries a novel retrogene inser-
tion [93].
TEs also make substantial contributions to non-protein

coding functions of the cell. They are major components
of thousands of long non-coding RNAs in human and
mouse genomes, often transcriptionally driven by retro-
viral LTRs [149]. Some of these TE-driven lncRNAs ap-
pear to play important roles in the maintenance of stem
cell pluripotency and other developmental processes
[150–154]. Many studies have demonstrated that TE se-
quences embedded within lncRNAs and mRNAs can dir-
ectly modulate RNA stability, processing, or localization
with important regulatory consequences [114, 155–158].
Furthermore, TE-derived microRNAs [159] and other
small RNAs processed from TEs [160] can also adopt
regulatory roles serving host cell functions. The myriad of
mechanisms by which TEs contribute to coding and
non-coding RNAs illustrate the multi-faceted interactions
between these elements and their host.

TEs contribute cis-regulatory DNA elements and
modify transcriptional networks
Cis-regulatory networks coordinate the transcription of
multiple genes that function in concert to orchestrate
entire pathways and complex biological processes. In
line with Barbara McClintock’s insightful predictions
[28], there is now mounting evidence that TEs have been
a rich source of material for the modulation of
eukaryotic gene expression (Fig. 2). Indeed, TEs can
disperse vast amounts of promoters and enhancers
[161–166], transcription factor binding sites [167–172],
insulator sequences [173–175], and repressive elements
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[176, 177] (reviewed in [178]). The varying coat colors of
agouti mice provides a striking example of a host gene
controlling coat color whose expression can be altered
by the methylation levels of a TE upstream of its pro-
moter [179, 180]. In the oil palm, the methylation level
of a TE that sits within a gene important for flowering
ultimately controls whether or not the plants bear
oil-rich fruit [181].
As TE families typically populate a genome as a multi-

tude of related copies, it has long been postulated that
they have the potential to donate the same cis-regulatory
module to ‘wire’ batteries of genes dispersed throughout
the genome [182]. An increasing number of studies sup-
port this model and suggest that TEs have provided the
building blocks for the assembly and remodeling of
cis-regulatory networks during evolution, including
pathways underlying processes as diverse as pregnancy
[183, 184], stem cell pluripotency [150, 151, 171], neo-
cortex development [185], innate immunity in mammals
[163], or the response to abiotic stress in maize [186].
Indeed, TE sequences harbor all the necessary features
of a ‘classical’ gene regulatory network [113, 114]. They
are bound by diverse sets of transcription factors [172]
integrate multiple inputs (activation/repression), respond
to signals in both cis and trans, and are capable of
co-ordinately regulating gene expression. In this context,
TEs are highly suitable agents to modify biological pro-
cesses by creating novel cis-regulatory circuits and
fine-tuning pre-existing networks.

Analyzing TEs requires specialized tools
TEs have been historically neglected and remain fre-
quently ignored in genomic studies in part because of
their repetitive nature, which poses a number of analyt-
ical challenges and often requires the use of specialized
tools [187]. As genomes can harbor thousands of copies
of very similar TE sequences, uniqueness or, alterna-
tively, repetitiveness of substrings within these regions
need to be taken into consideration during both experi-
mental design and analysis. As an example, short DNA
oligos targeting a specific TE instance in the genome for
PCR, short hairpin RNA, or CRISPR-Cas9 have to be
carefully designed and validated to ensure that they are
truly specific and target unique regions of the genome.
In some scenarios, it can be acceptable or even desirable
to target many elements simultaneously [150] or an en-
tire TE family [153, 188–191].
Similarly, uniqueness and repetitiveness are important

concepts to consider when aligning reads from next gen-
eration sequencing and analyzing TEs (Fig. 2). Various
strategies exist to assign reads that could originate from
multiple genomic locations: 1) mapping reads to consen-
sus sequences of TE subfamilies [172]; 2) mapping to
the genome and keeping only uniquely-mapping reads
[163, 168]; 3) assigning multiple mapping reads at ran-
dom between possible candidates [192]; or 4) redistribut-
ing them according to various algorithms, such as
maximum likelihood [193, 194]. The choice is ultimately
guided by the technique (such as ChIP-seq and
RNA-seq) and the purpose of the analysis—is informa-
tion about individual TE instances needed, or is a
high-level tally of results for each subfamily sufficient?
Notably, these issues of uniqueness will differ substan-
tially depending on the species studied and the presence
or absence of recently, or currently, active TE families.
For example, mapping reads to TEs in the human gen-
ome will be less challenging than in the mouse genome
given the more recent and mobile TE landscape of
the latter species [36]. Finally, as sequencing technol-
ogy and bioinformatics pipelines improve, notably
with the increasing length of sequencing reads, many
of the hurdles faced by earlier studies will be progres-
sively removed [187].

Outlook
As potent insertional mutagens, TEs can have both posi-
tive and negative effects on host fitness, but it is likely
that the majority of TE copies in any given species—and
especially those such as humans with small effective
population size—have reached fixation through genetic
drift alone and are now largely neutral to their host.
When can we say that TEs have been co-opted for cellu-
lar function? The publication of the initial ENCODE
paper [195], which asserted ‘function for 80% of the gen-
ome’, was the subject of much debate and controversy.
Technically speaking, ENCODE assigned only ‘biochem-
ical’ activity to this large fraction of the genome. Yet
critics objected to the grand proclamations in the popu-
lar press (The Washington Post Headline: “Junk DNA
concept debunked by new analysis of the human gen-
ome”) and to the ENCODE consortium’s failure to pre-
vent this misinterpretation [196–198]. To these critics,
ignoring evolutionary definitions of function was a major
misstep.
This debate can be easily extended to include TEs. TEs

make up the vast majority of what is often referred to as
‘junk DNA’. Today, the term is mostly used (and abused)
by the media, but it has in fact deep roots in evolution-
ary biology [199]. Regardless of the semantics, what evi-
dence is needed to assign a TE with a function? Many
TEs encode a wide range of biochemical activities that
normally benefit their own propagation. For example,
TEs often contain promoter or enhancer elements that
highjack cellular RNA polymerases for transcription and
autonomous elements encode proteins with various bio-
chemical and enzymatic activities, all of which are neces-
sary for the transposon to replicate. Do these activities
make them functional?



Bourque et al. Genome Biology          (2018) 19:199 Page 8 of 12
The vast differences in TEs between species make
standard approaches to establish their regulatory roles
particularly challenging [200]. For example, intriguing
studies on the impact of HERVs, in particular HERV-H,
in stem cells and pluripotency [150–152] must be inter-
preted using novel paradigms that do not invoke deep
evolutionary conservation to imply function, as these
particular ERVs are absent outside of great apes. Evolu-
tionary constraint can be measured at shorter time
scales, including the population level, but this remains a
statistically challenging task especially for non-coding se-
quences. Natural loss-of-function alleles may exist in the
human population and their effect on fitness can be
studied if their impact is apparent, but these are quite
rare and do not allow systematic studies. It is possible to
engineer genetic knockouts of a particular human TE
locus to test its regulatory role but those are restricted
to in-vitro systems, especially when the orthologous TE
does not exist in the model species. In this context,
studying the impact of TEs in model species with power-
ful genome engineering tools and vast collections of mu-
tants and other genetic resources, such as plants, fungi,
and insects, will also continue to be extremely valuable.
Finally, a growing consensus is urging more rigor

when assigning cellular function to TEs, particularly for
the fitness benefit of the host [178]. Indeed, a TE dis-
playing biochemical activity (such as those bound by
transcription factors or lying within open chromatin re-
gions) cannot be equated to a TE that shows evidence of
purifying selection at the sequence level or, when genet-
ically altered, result in a deleterious or dysfunctional
phenotype. Recent advances in editing and manipulating
the genome and the epigenome en masse yet with preci-
sion, including repetitive elements [153, 154, 189–191],
offer the promise for a systematic assessment of the
functional significance of TEs.
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