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Abstract—The last 5 years have seen a dramatic shift in media
distribution. For decades, TV and radio were solely provisioned
using push-based broadcast technologies, forcing people to adhere
to fixed schedules. The introduction of catch-up services, however,
has now augmented such delivery with online pull-based alter-
natives. Typically, these allow users to fetch content for a limited
period after initial broadcast, allowing users flexibility in accessing
content. Whereas previous work has investigated both of these
technologies, this paper explores and contrasts them, focusing on
the network consequences of moving towards this multifaceted
delivery model. Using traces from nearly 6 million users of BBC
iPlayer, one of the largest catch-up TV services, we study this shift
from push- to pull-based access. We propose a novel technique
for unifying both push- and pull-based delivery: the Speculative
Content Offloading and Recording Engine (SCORE). SCORE op-
erates as a set-top box, which interacts with both broadcast push
and online pull services. Whenever users wish to access media, it
automatically switches between these distribution mechanisms in
an attempt to optimize energy efficiency and network resource
utilization. SCORE also can predict user viewing patterns, auto-
matically recording certain shows from the broadcast interface.
Evaluations using our BBC iPlayer traces show that, based on
parameter settings, an oracle with complete knowledge of user
consumption can save nearly 77% of the energy, and over 90% of
the peak bandwidth, of pure IP streaming. Optimizing for energy
consumption, SCORE can recover nearly half of both traffic and
energy savings.

Index Terms—Content distribution networks, digital TV, dig-
ital video broadcasting, energy conservation, energy efficiency,
environmental factors, machine intelligence, recommender sys-
tems, TV broadcasting, TV receivers.
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I. INTRODUCTION

T HE LAST 5 years have seen a dramatic shift in the way
people interact with media services. Traditionally, those

wishing to enjoy TV and radio shows were forced to watch them
at prespecified broadcast times. Recently, however, broadcasters
have begun to also make their content available online using
on-demand services. This type of service is termed a “catch-up”
system, allowing viewers to watch recently broadcast media for
a specific period after its initial broadcast. This highlights a key
shift in the way users consume TV content, moving from the
traditional push model to a far more user-centric pull model.
Perhaps the most prominent example of this is the BBC iPlayer,
which allows users in the United Kingdom (UK) to pull nearly
all of BBC's TV and radio shows from the Internet for (typically)
7 days after their initial broadcast. Launched at the end of 2007,
the service has since exploded in popularity with an estimated
40% of UK households using it [30]. Although broadcast figures
remain orders of magnitude more than corresponding iPlayer
audiences, it is undeniable that catch-up has radically altered
the way in which users access the BBC's content.
As more and more users start to rely on the flexibility of

catch-up TV and move away from traditional TV broadcasts, it
raises important questions about how to provision infrastructure
for future TV audiences. For instance, by 2011, BBC iPlayer
had become one of the largest applications by traffic volume on
the UK Internet, second only to YouTube [31]. This has impli-
cations for network capacity provisioning: Traditional TV has
managed to scale up to large audiences because of its reliance
on broadcast infrastructure, but the costs of catch-up viewing in-
creases with each stream. Additionally, this move towards indi-
vidual, personalized online streaming is significantly increasing
the collective energy consumption of TV content distribution:
The BBC estimates that for all of its channels except one,1 Dig-
ital Terrestrial Television (i.e., broadcast TV) has a smaller per-
viewer carbon footprint than catch-up streaming. This is be-
cause broadcast has fixed carbon costs that can be amortized
over large audience sizes, whereas the carbon costs of streaming
grows with each additional user [12]. Motivated by these obser-
vations, we ask whether the flexibility of on-demand viewing
can be supported while still relying as much as possible on
low-energy broadcast.
With this in mind, we first explore how “catch-up” has

changed TV viewing, using BBC iPlayer, the UK's largest TV
and radio catch-up service, as a case-study. Using historical

1The BBC Parliament channel, which has fewer viewers compared to other
channels, is the sole exception.
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data of approximately 6 million users accessing radio and TV
content on iPlayer, we seek to explore the key consequences of
supplementing push-based broadcast delivery with a pull-based
online equivalent. We find that many users choose to exploit
the flexibility of online-pull, forming their own personalized
bundles of preferred content and watching it in patterns specific
to pull-based architectures (e.g., viewing multiple episodes of
a TV series in a short timespan). That said, we also continue
to observe push-like behavior such as viewing as soon as
content is available and a general preference for newly released
content. We also see evidence of high engagement, with high
video completion ratios, and users consistently watching many
episodes of favorite TV serials.
Through the above exploration, we highlight the unique

benefits and potential of both traditional broadcast and online
pull models. Using the access patterns we find, we design
the Speculative Content Offloading and Recording Engine
(SCORE) to combine the benefits of broadcast-based and
pull-based access and reduce the cost of content delivery (both
in terms of energy and network costs). Since our trace-driven
study shows that users on catch-up are constructing highly per-
sonalized schedules of content to watch at their convenience,
SCORE attempts to emulate this by predicting which shows a
user is likely to watch, and then constructing personalized lists
of favorite shows for each user. Episodes of favorite shows
are then speculatively recorded on user-local storage such as
digital video recorders (DVRs, also known as personal video
recorders or PVRs), enabling later offline on-demand access.
This process can remove significant amounts of energy-inten-
sive IP traffic. Entire shows are recorded since the traces show
relatively low rates of abandonment.
Thus, SCORE effectively embeds a personalized local

catch-up service within DVRs and thereby offloads content
from the Internet and from the over-the-top (OTT) catch-up TV
service. When a show that has not been recorded is requested,
it falls back to the current online pull-based model and streams
the content item on-demand. Through this predictive offloading
of iPlayer load, SCORE can mitigate the network footprint of
catch-up services. Interestingly, recording on DVRs complying
with EU regulations on power consumption of set-top boxes [1]
can also decrease the nationwide energy footprint, compared to
streaming.
The basic SCORE concept is pluggable and can be configured

for optimizing either energy or traffic savings, given the amount
of locally available storage as a constraint. We focus on en-
ergy savings for two reasons. First, sustainability is a major con-
cern for public service broadcasters like the BBC [8]. Second,
whereas it is clear that speculative recording of DTT broad-
casts results in a nonnegative decrease in network traffic (with
savings strictly positive when the user accesses the recorded
item from local storage rather than via OTT catch-up), it is
not a priori clear that energy can be saved because speculative
recording incurs an upfront energy expense that only pays off if
the recorded item is accessed by the user. To demonstrate this
potential, we explicitly develop the optimization problem for
saving energy by adding a penalty for the energy expense of
recording, and evaluate the benefits. Note that the two benefits
are not mutually exclusive—saving energy saves traffic, and the
reverse could hold as well.

Our evaluations show that given access to just 32 GB of
storage, an oracle with complete knowledge of users' future ac-
cesses and optimizing for net energy savings could, depending
on parameter values of the energy model we use, the bit rate
used for streaming, etc., save up to 97% of peak traffic, and up to
74% of the energy. For similar parameter values, the energy-op-
timizing version of SCORE is able to recover more than 60%
of the energy and traffic savings obtained by the oracle. Depen-
dency on parameter values is resolved using sensitivity analysis.
Optimizing for traffic reductions rather than energy consump-
tion, an additional 5%–15% traffic savings can be achieved (at
the cost of energy).
SCORE can be incorporated as a software update into modern

DVR architectures such as YouView. Considering that DVRs
have over 50% penetration in major markets such as the US and
UK [15], [29], and that common DVR standards including You-
View allow over-the-air software updates [2], [36], we believe
that deployment is highly feasible.

II. WHAT IS A CATCH-UP SERVICE?
Catch-up services offer temporary on-demand access to

media that has been previously broadcast via traditional means
(TV or radio). Its purpose, as the name suggests, is to allow
users to “catch up” with shows that they have missed on broad-
cast. Within this paper, we focus on one prominent catch-up
service, BBC iPlayer,2 which we now detail.

A. BBC iPlayer
The BBC has a number of local and national TV and radio

channels, which broadcast content over the air in the UK.
The BBC makes this broadcast content freely available to UK
viewers on the iPlayer Web site and apps for a fixed period
of days after the broadcast, depending on content licensing
terms and other policies. Thus, the iPlayer provides an alternate
“over-the-top” access mechanism for content that is typically
broadcast over the air. BBC iPlayer is widely used within the
UK, by an estimated 40% of households [30]. This creates a
significant infrastructural footprint, both in terms of energy and
bandwidth consumption. BBC iPlayer streams are entirely free
of advertisements since the content programming is supported
by TV licensing fees. It is worth highlighting that, in contrast
to traditional on-demand services, the content items on BBC
iPlayer change constantly; new items are added (typically im-
mediately after broadcast) and removed after a short timespan.

B. BBC iPlayer Dataset
This paper studies a dataset derived from 8 weeks of access

logs to the BBC iPlayer catch-up service, from September 4 to
October 31, 2010. One in every four accesses to iPlayer during
this period is recorded in the access log, giving a 25% sample
of all accesses. Each log entry contains a timestamp for the start
and end of the stream for one content item to one user. Alto-
gether, the trace consists of 32 691 343 streams from 5 985 458
users, accessing 37 728 unique content items (episodes) from
3518 programs broadcast over 73 channels.
In addition, the BBC maintains Web pages about each pro-

gram and episode that has been broadcast. We have harvested
this data to augment the historical access logs with additional

2Sometimes shortened to iPlayer in the text.
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information such as the genres of the content item, the time
and channel of broadcast, and the theoretical duration of the
content item.3 We also identify each content item as belonging
to one (or more) of 11 genre categories: kids, drama, learning,
factual, music, news, religion and ethics (r&e), sport, weather,
comedy, and entertainment (entert.). Each category has finer-
grained subdivisions into genres.

III. CHARACTERISTICS OF ON-DEMAND ACCESS

The introduction of catch-up services such as iPlayer has in-
troduced a whole new pull-based mechanism for on-demand
consumption of TV and radio content traditionally pushed to
users via broadcast. This section explores the benefits from the
pull mechanism, and the extent to which users still follow push-
like access patterns. We divide this study into two parts, first
characterizing the content access preferences, and then the tem-
poral access patterns.
A. Content Access Patterns
This section asks what items users watch when allowed

flexibility to pull items on-demand. We consider three axes of
choice: duration of content, the type or genre of content, and
whether the item is serialized, i.e., whether it belongs to a TV
series comprising several episodes in sequence.
In each case, we use the same method to determine user

preferences. We first consider the distribution of the parameter
(e.g., content duration, genre or serial/nonserial) in the content
corpus. Next, we consider a weighted distribution of the same
parameter, weighted by the number of accesses. Their relative
proportions indicate user preferences: If a particular value
of a parameter is overweighted in the weighted distribution
compared to the content corpus, then users prefer that value. If
underweighted, users dislike that value.
1) Users Prefer Serialized Content: We first inspect the

preference users have for serialized content. We find that serial
content constitutes roughly 53.3% of the content corpus. Yet,
in the list of items watched, serial content constitutes nearly
79.5%. Thus, it is evident that serialized content is dispro-
portionately popular. This is a curious attribute of catch-up
TV, which, in contrast to other platforms that consist more
prominently of “one-off” shows such as movies on Netflix, or
the shorter clips often seen in user generated repositories such
as YouTube, is often driven more prominently by well-known
serials (e.g., soap operas, comedy serials). That said, it is
interesting to note that nearly half of all the content corpus
is nonserial, suggesting that the BBC does invest significant
amounts of airtime to broadcasting such content. On closer
inspection, we find that traditional nonserial content (e.g.,
documentaries) does constitute a large fraction of the corpus,
but simply does not gain the popularity of other serial-oriented
genres (e.g., comedy, drama). This is likely a combination
of many factors, not least the long history the BBC has in
producing widely appreciated serial shows. Communication
theorists also believe that strict, predictable schedules of serial-
ized shows establishes viewing habits that become automatic
[17, p. 19].
2) Users Prefer Short Duration Content: Fig. 1 considers

three distributions of content durations, corpus, theoretical, and
actual. Corpus is the distribution of content durations for each

3Access log duration may differ from theoretical duration if users stop
viewing before completion, e.g., due to network issues or of their own volition.

Fig. 1. Content length distributions:Corpus shows the distribution of durations
for all items in the content corpus. Theoretical is the distribution of content
lengths weighted by number of views. Actual shows the observed distribution of
stream lengths. The content corpus has the most uniform distribution of content
lengths. The theoretical distribution has nearly 90% of its mass under 60 min,
showing that users prefer content shorter than an hour. Theoretical and actual
distributions are close reconfirming low abandonment rates.

item in the catch-up content corpus. Theoretical is the distribu-
tion of durations obtained by weighting each item by the number
of times it is accessed. Corpus is much more uniformly dis-
tributed than theoretical, which has most of its mass under 1 h.
Furthermore, the relative mass of theoretical increases dramat-
ically at two points: 30 and 60 min, which corresponds to stan-
dard durations of serialized TV shows. This indicates the rela-
tive popularity of these two kinds of content. The third distri-
bution, actual, gives the actual durations of streams observed.
The difference between theoretical and actual is an indication of
how much of the content is actually watched. We note that only
25% of the requests are abandoned in the first 5 min, indi-

cating that three quarters of users are engaged and watch a large
proportion of the show. This is best highlighted by the close
alignment between the theoretical and actual curves in Fig. 1.
3) Users Prefer Specific Genre Categories: Next, in Fig. 2,

we consider the relative proportions of different genre cat-
egories in the content corpus compared to their proportions
when weighted by the number of accesses. Categories where
the watched bar is taller than the corpus are overweighted, and
hence preferred by users. This clearly indicates a strong pref-
erence for certain categories such as drama, comedy, and kids'
shows. In contrast, genre categories such as factual programs,
music, and news constitute a large proportion of the content
corpus but are not watched as much. Thus, although a public
service broadcaster might provide a balanced content catalog,
users tend to prefer common kinds of entertainment.
Given such strong preferences, we ask whether genres are

a better way to create pull-based “channels” for users than
the current broadcast channels. To answer this, we quantify
how well a given partition of content items—into channels or
genres—captures the content consumption history of individual
users. Specifically, we compare the self-information [14] of
describing users by the channels of their content items to
that of describing users by genres of the items they consume.
The higher the self-information is, the more information it
captures of a user. Recall that the entropy of a random variable
is obtained by taking the expectation of its self-information.
The higher the entropy of a partitioning method, the better its
representation of users is, on average, for the entire population.
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Fig. 2. Distribution of genre categories showing that drama, comedy, and kids'
programs are overweighted w.r.t. corpus.

Fig. 3. Self-information of various content bundling strategies.

Formally, let be a set of content items available in the
system and be a bundling of content defined as a partition
of into subsets (i.e., bundles). Examples of bundling
include partitioning the set of programs based on the channels
they are broadcast on, or partitioning based on genres, with each
channel or genre forming a bundle, respectively. For a given
bundling , we denote the watching history of a user with tuple

, where is the number of times a con-
tent item from a bundle was watched by the user. Given
a bundling method, we are interested in the self-information of
the random variable , . Note
that is given by the multinomial distribution

(1)

where is the probability of randomly choosing an item from
bundle , and is the number of user's sessions, i.e., .
Fig. 3 plots this value for several bundling strategies:

bundling programs into the current set of channels; bundling
into one of the 11 coarse-grained genre categories; bundling
into fine-grained genres; and, finally, bundling into individual
programs, as an example of extremely fine-grained bundling.
As expected, program-based bundling has the highest self-in-
formation. Interestingly, despite the population as a whole
favoring certain genres over others, channels defined for
push-based broadcast capture users' consumption patterns
better than genre categories. However, when genre categories
are split into finer-grained genres, user interests are captured
with similar amount of self-information as broadcast channels.

B. Temporal Characteristics

A key feature of the pull model is that it creates temporal flex-
ibility—users can choose when they consume content, rather
than adhering to a push schedule. This leads to two benefits:
At the infrastructure level, we see a flatter demand pattern as
users are not restricted to the evening prime-time hours if they
watch popular content. At the same time, users are able to con-
sume content in a bursty fashion, for instance, watching mul-
tiple episodes in short time periods. Despite these trends, we
also see access patterns that resemble push-like consumption,
with a preference for fresh content, and spikes in access as soon
as content is made available on the platform.
1) Pull Flattens Demand: To explore how viewers make use

of the temporal flexibility of pull, Fig. 4 depicts the average
number of requests received per hour across the whole trace.
We plot two curves: The first (marked broadcasting time) plots
access frequency by the original broadcast time of the content
being requested; the second (marked request time) plots access
frequency by the request timestamps in our traces. For example,
suppose a primetime TV show was broadcast at 9 PM in the
night but was requested at 10 AM the following morning. This
request would be placed in the 10 AM bucket for the request
time and 9 PM for the broadcasting time.
It can be seen that the access patterns of users in the pull

model change significantly compared to broadcast. By allowing
users to select when they consume content, requests are flat-
tened far more over the day: When inspecting the broadcasting
time, huge demand peaks occur for content broadcast between
18:00–20:00 for radio, and 19:00–23:00 for TV (corresponding
to traditional “prime time”). In contrast, these peaks are flat-
tened greatly in the request times of on-demand access. That
said, it is evident that content that is broadcast during the peak
time also dominates in catch-up service with greater volumes of
access, indicating that broadcasters do an effective job of sched-
uling popular shows. The same (popular) items are watched in
both pull and push models; albeit at different times.
Furthermore, the demand patterns are different between

TV and radio content. Whereas TV has pronounced diurnal
patterns with large numbers of requests during evening peak or
prime time hours, radio has a flatter demand pattern, with its
peak hours actually occurring during the afternoon. From an
infrastructure perspective, these differences in peak times could
be exploited by hosting both TV and radio content on the same
delivery infrastructure, which can be used more efficiently
throughout the day.
2) Pull Allows Bursty Access: Anecdotal evidence suggests

that it is increasingly popular for people to spend evenings
watching several episodes of particular shows. More generally,
users can “catch up” on multiple episodes over time spans
shorter than a week, the typical duration between consecutive
episodes for serialized broadcast content. This is a key flex-
ibility of the pull-based model in contrast with push-based
delivery, where shows must be broadcast following predeter-
mined schedules.
To quantify such bursty behavior, Fig. 5 presents a cumula-

tive distribution function (CDF) of the number of episodes from
the same TV show requested over various time periods by indi-
vidual users. It can be seen that a small, but noticeable, number
of users do exhibit burstiness when consuming media for both
radio and TV, with slightly more multiple accesses in radio. For
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Fig. 4. Normalized distributions of catch-up request times by hour of day, and the broadcast times of requested items. The normalization is with respect to the
daily number of requests (i.e., each data point is presented as a fraction of total daily viewing figures). Items broadcast during 7–11 PM “prime time” are very
popular on catch-up, but request distribution is flatter. (a) Radio. (b) TV.

Fig. 5. Burstiness of accesses for serial content: CDF of the number of accesses from the same user for different episodes of the same serialized program within a
time window (windows size: 6 h, 24 h, and 1 week) by considering users that have at least 10 logs in the whole dataset and programs that have at least four different
episodes. Note that the full range of the -axes for both figures is 0–1, but the figures are cut off at to show the variation clearly. (a) Radio. (b) TV.

example, we find that 10% of the time, users watch multiple
( ) TV episodes from the same program within a 6-h period,
and nearly 30% do so within a week.
Two sets of factors of the current system might actually limit

the extent of such bursty accesses. The first is the nature of the
content. Some kinds of shows (e.g., news, weather) are out-
dated soon after release, or when a new episode is uploaded.
Many programs in the UK tend to have fewer episodes than else-
where (e.g., 6 episodes is common for a TV series in contrast
to 13 or 26 episodes typical in other nations). This limits the
maximum size of bursts. Additionally, iPlayer carries so called
“long-form” content (e.g., TV episodes tend to be 60 or 30 min
long), which limits the number of episodes that can be consumed
over very short time periods.
The second set of limiting factors arise as a product of the

way content is managed on iPlayer. Content is only available for
catch-up if it has been broadcast previously. Similarly, content is
periodically removed according to predetermined rules (driven
by licensing and other policies), typically after the last episode
of a show. Thus, during the early weeks of a serialized show, the
size of bursts is limited by the number of episodes broadcast,
whereas later on, typically after the final episode is broadcast,
some early episodes may have expired.
Regardless of these system limitations, some unique to the

platform, some to the content corpus, there appears to be a non-
trivial appetite for bursty consumption of multiple episodes of
content over short periods of time, which is catered to by the pull
model. Future system designs for on-demand access can better
support such needs, for example, by creating content bundles
comprising all episodes of a particular show.

3) Push-Like Access Patterns—Preference for Fresh Con-
tent: Although iPlayer allows for on-demand access, the lim-
ited availability of content on the platform, as well as the out-
dating of certain kinds of content such as news and weather,
place limits on delayed viewing, as discussed in Section II.
To quantify this, Fig. 6(a) plots a CDF of the freshness of

content, according to two metrics: Lifetime shows the length of
time between the first and last view for each content item, and
captures the rate at which content gets outdated. Episode Age
shows the age of content items at each distinct view. It can be
seen that there is a skew towards watching content soon after
release. Almost 50% of views occur on the first day, even though
much of the content does not get outdated until later on (average
lifetime is 7 days). Over 90% of views happen within a week.
Notable differences also seem to appear between on-demand

access for radio and TV. Fig. 6(a) shows that more radio con-
tent gets outdated early on: Whereas similar proportions of TV
and radio content tend to get watched in the early stages of their
release (e.g., under 4 days), TV viewers more slowly tail off as
the content ages (after fourth day), as compared to radio, where
over 95% of users listen to radio within the first 7 days of its
release. This may be a product of radio's greater temporal de-
pendency, where shows tend to relate to real-world events (e.g.,
topical discussions or talk shows).
Thus, it appears that users are broadly using catch-up for re-

cent broadcasts, creating a strong preference for fresh content,
akin to push-based consumption. We note that this preference
for fresh content has been observed in other systems with pro-
gressive content releases [3]. However, our dataset also shows
an interestingly strict adherence to broadcast schedule on the
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Fig. 6. Push-like access patterns: (a) Preference for fresh content. Age of episodes at time of access versus lifetime of episode (time between last and first access),
showing that most accesses happen early on, when content is still fresh. The inset graph zooms into the first week of accesses. (b) Adherence to schedule. Nor-
malized number of first views in each time interval of 1 min between 7 PM–12 AM of every day, showing an adherence to broadcast schedule for eagerly awaited
content (c) Serializibility of accesses. CDF of the number of contents simultaneously broadcast and watched by a user. Both the maximum (per user), and average
values are shown. Over 96% have a maximum value of 1, and over 99.99% have an average of 1.1. Note that the -axis range has been set to 0.95–1.

part of several users. Fig. 6(b) plots the number of first views
that occur to each content on a minutely basis. For clarity, we
focus on the evening peak hours, when the majority of requests
are made (see Fig. 4) and also the maximum number of channels
are broadcasting. It can be seen that especially with TV content,
the first views spike strongly on the hour and half-hour marks,
immediately after the content is put up on the platform, sug-
gesting a strong push-like demand for accessing eagerly awaited
content as soon as it is made available. Similar access patterns
are seen outside the evening peak hours; although the spikes are
strongest in the evening.
4) Push-Friendly Serializable Access Pattern: In the pull

paradigm, if a user is interested in content being broadcast over
two channels simultaneously, they can simply fetch it on-de-
mand one after another, in a serialized fashion. Fig. 6(c) shows
that despite this flexibility, users tend not to be interested in si-
multaneously broadcast content: Over 96% of users never need
to watch content items that are broadcast simultaneously. On
average, for over 99% of users, the average number of simul-
taneously broadcast shows that they are interested in is 1.1 or
fewer. We conjecture that this is the result of careful planning
of TV channel schedules to ensure that audiences interested in
the same content items can watch them at broadcast time. Such
planning is known to take into account not only the different
channels of a single broadcaster such as BBC, but also the pop-
ular shows of competing broadcasters, to ensure maximum au-
dience sizes. One implication of this is that if each user had per-
sonal “virtual channels” constructed by merging the different
public broadcast channels, then one (or at most two) channels
would suffice for nearly all users.

IV. SCORE: OFFLOADING ON-DEMAND ACCESS

Section III has explored the characteristics of on-demand
catch-up, showing that while it benefits from the pull model
of on-demand access, it still needs to support push-like access
patterns. With this in mind, we now propose a new system
capable of exploiting these observations: the Speculative
Content Offloading and Recording Engine. SCORE connects
to both broadcast services and the Internet, unifying access
to these mediums from the viewer's perspective via a set-top
box. Whenever a user wishes to consume content, SCORE
transparently decides how best to access it: via broadcast (if
at the appropriate time) or via online pull (if it is later on).
Importantly, SCORE also integrates the principles of these

two models by intelligently recording popular content from
the broadcast interface, creating local personalized bundles for
individual users, by predicting their viewing patterns. This has
clear benefits for users by providing an extremely high-per-
formance local catch-up service that is not limited by network
capacity and performance. However, the benefits extend be-
yond this. Specifically, we identify the potential to significantly
decrease the energy footprint of content delivery by offloading
traffic from the costly IP network onto the broadcast network
instead (via automated recording).4

A. Designing SCORE
We start by considering the implications of the trace-driven

measurements of Section III for the design of SCORE and de-
rive the following design choices and simplifications.
1) Speculative Recording for On-Demand Access: The sup-

port for time-shifted viewing is used extensively: Fig. 4 shows
that although content broadcast during TV prime time is also
popular on catch-up and has the largest audiences, audience ac-
cesses for catch-up TV are more distributed in time. On the
one hand, this decreases the overall load of simultaneous uni-
cast streams to the server, leading to better network utilization.
On the other hand, on-demand access also renders it difficult
to share resources using multiuser reception mechanisms such
as multicast, which would be ideal for amortizing costs across
large audiences. In designing SCORE, these considerations lead
us to derive amortized cost savings by exploiting an alternate
broadcast channel available to BBC programs: Digital Terres-
trial Transmission (DTT). We offer on-demand access by spec-
ulatively recording broadcasts of content items predicted to be
watched later.
2) Whole Item Recording: Users show a high engagement:

In contrast with the previously reported high levels of short-in-
tervalled viewing due to channel surfing5 in traditional (live)
TV [11], [37], the proportion of short-intervalled catch-up
streams (i.e., streams abandoned or stopped after a short period
of viewing) is relatively small (Fig. 1). This stronger com-
mitment suggests a simplified speculative recording scheme
that stores entire items rather than hedging bets by storing a

4The rest of this section discusses the use of SCOREwith energy efficiency as
the objective. However, this choice is pluggable; an alternative that optimizes
for network traffic is explored in Section VI-B. We also focus on the use of
SCORE for TV, but the principle is equally applicable to radio.

5Also called channel “zapping” or “scanning.”
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“sampler” such as the first few minutes of a content item. Our
decision to store entire content items is also influenced by the
relative energy costs of recording broadcasts and on-demand
network streaming: As described later, DVR recording is gen-
erally greener than streaming; thus recording entire shows can
deliver more savings than recording samples.
3) Program History-Based Prediction: Users exhibit strong

personalized preferences (Sections III-A-1–III-A-3); thus spec-
ulative recording needs to be based on personalized predictions.
In particular, users' affinity to watch many episodes of the same
program has the highest self-information (Fig. 3), leading us to
design simple personalized predictors based on program history.
As expected, this leads to the best performance, but we also re-
port the performance of alternative prediction mechanisms in
Section VI.
4) Expiration-Based Content Replacement and Weekly

Cache Refills: Fig. 6(a) shows a strong push-like preference
for fresh content with nearly 90% of accesses being for content
broadcast less than a week before. It also shows that over
80% of items expire within 7 days of broadcast and cannot
be watched later even if the user so wishes. In addition, it is
common for TV shows to follow a weekly cycle, with new
episodes broadcast around the same time each week.
Driven by these observations, we adopt an extremely simple

cache management policy for SCORE: SCORE is run on a
weekly basis, and a schedule of new recordings for the rest
of the week is decided based on previous watching history.
We assume that amount of storage available for each week is
constrained by a fixed amount . This limit can be set by the
user, or reasonable defaults can be set automatically depending
on a variety of factors, such as the total storage available on the
DVR, or the bit rate encoding used. Given a specific storage
constraint and an objective such as minimizing energy
or traffic footprint, SCORE speculatively decides the best
schedule of items to store based on the predicted probability
of access. However, once an item has been recorded, we do
not actively evict it from the cache, but allow it to be removed
naturally when the content expires or once it has been watched
by the user. Thus, content items can remain for longer than a
week, but we expect the number of such items to be small given
the nature of the content corpus.
B. Overview of Operation
Fig. 7 shows a schematic of the SCOREDVR. Content can be

acquired either from the DTT interface during broadcast time,
or pulled from the IP network interface. For each content item
requested by a user, a coordinator decides whether to show the
content from: 1) the DTT interface if the content is being broad-
cast live when the user requests to view; 2) the DVR if the
content is locally stored; or 3) IP streaming from the catch-up
servers, if not stored locally. This unified approach hides com-
plexity from the user, automatically obtaining the content from
the preferred means without intervention.
SCORE's key novelty comes in its ability to create person-

alized bundles by learning and predicting viewing preferences.
Exploiting this, SCORE automatically records and stores items
speculatively from the broadcast channel. The SCORE element
consists of a predictor and an optimizer. The predictor calculates
weighting factors for each content item based on the program
series to which it belongs. The decision on which items will be
recorded (from the broadcast channel) speculatively is made by

Fig. 7. Schematic of a DVR/STB with SCORE.

an optimizer, which calculates the expected utility of specula-
tively recording an item, subject to the storage limitations, and
the other items that are due to be broadcast. The SCORE opti-
mizer is run at the beginning of every week, using the upcoming
broadcast schedule and the user's previous catch-up viewing
history as inputs. The output is a schedule of content items to
record speculatively from the DTT interface. SCORE wakes up
the DVR from sleep/stand by at the scheduled broadcast time,
records the item, and goes back to sleep. This therefore allows
the user to stream the content locally, rather than use pull-based
delivery via the Internet.

C. Optimizer
First, we describe SCORE's optimizer component. Specula-

tive recording will never increase network traffic, but recording
content not watched later on wastes energy. Although savings
from watched items can compensate for unwatched items over a
set of recordings, there can still be net energy loss. This is partic-
ularly undesirable, as these losses will be incurred by the viewer
(in terms of their energy bills). As such, it is critical to ensure
that energy reductions occur in a wider context, creating bene-
fits across all stakeholders (both in the home and networking
infrastructure). Consequently, we conservatively offload only
content that is expected to minimize the overall energy spent
in providing catch-up functionality.
Deciding which items to record can be formulated as a binary

integer linear programming problem. Formally, given a set of
content items that are known to be broadcast in a given week,
and a space constraint that a maximum of bits can be stored,
the task of the optimizer is to compute a binary valued variable

for each item . if is stored in the
DVR, 0 otherwise. The decision is based on , the power
consumption characteristics of the IP streaming option, ,
the power consumed by the DVR for speculative recording, and
the characteristics of the content item: the duration and the
bit rate encoding , which determine the space occupied, and a
weighting factor that encodes the probability that
the user will watch item based on the TV series that
is part of.
We model energy consumed in the Internet by on-demand

streaming in terms of an energy per bit figure , following
Baliga et al. [7]. This is a well-known and widely used model
for capturing the energy consumption of a network infrastruc-
ture. Although it cannot provide exact measurements of energy
consumption, it is built upon a realistic design of a countrywide
network, assuming data from commercially deployed net-
working equipment. It also uses a nationwide video-on-demand
service as a driving case study, therefore closely matching
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our needs. As such, we find it an effective choice to use for
SCORE, as even loosely accurate energy predictions allow
SCORE to make effective decisions (as we later show). As with
any such model, however, we are required to perform several
approximations. Section V-A provides numerical details and
discusses how we resolve the dependency on the value
by sensitivity analysis. In practice, for the storage levels we
assume, the savings realized are relatively insensitive to ,
especially for higher bit rates, which are indicative of future
trends. Speculative recording on the DVR can therefore save
energy only if

(2)
It is important to note that speculative recording cannot be

used bluntly. It can waste energy in either of two ways. First,
the optimizer might decide to store an item that is subsequently
never watched; thus, wasting the energy involved in specula-
tively storing the item in the DVR. Second, the optimizer might
decide not to store a content item that is subsequently streamed
by the user, incurring a larger energy footprint than recording.
The function of the optimizer is therefore to minimize wasted

energy expenditure while speculatively recording content. This
is encoded in the following decision problem:

minimize

(3)
subject to (4)

The objective function (3) is composed of two addends. The
first computes the expected power spent for streaming items
that the optimizer decides not to store, based on a probability of
watching . The second addend computes the expected power
spent speculatively recording content that is not subsequently
watched, based on the probability of not watching . Equa-
tion (4) imposes the constraint that the amount of stored contents
must to be smaller or equal to the size of the memory avail-
able on the DVR.
Simplifications for Practical Application: In theory, solving

the above decision problem accurately is a 0–1 Knapsack
problem, which is well known to be NP-hard. However, we can
adopt a greedy approach and select content items one by one
in descending order of the objective function value (3) until we
run out of space . This works well in practice because most
high probability content items are 30- or 60-min programs;
thus, this heuristic fills available storage except for a small slot
usually 60 min long.
Similarly, in theory, it is possible that the resulting schedules

generated by SCORE may contain more than two items that are
broadcast simultaneously. Given that typical DVRs have two
tuners, it is not feasible to record all simultaneous broadcasts.
However, as described in Section III-B-4, users are in general
interested in only one among the items that share the same air-
time. For the rare cases when the recording schedule generated
by SCORE may require simultaneously broadcast shows (this
happens on average for 0.01% of users), it may be possible to ex-
ploit the fact that many shows have repeat broadcasts and record
at a later time (assuming the user has not streamed from iPlayer
before the repeat). Unfortunately, our dataset does not contain
times of all subsequent repeats of a program, so we are unable
to quantify (in Section V) the benefits of utilizing repeats for

speculative recordings. In extremely rare cases, it maymean that
some shows are not able to be recorded and need to be streamed.
Equally, it is possible that the user has a more advanced DVR
or simply has additional TV tuners installed to handle the case.
Given that the vast majority of users do not watch simultane-
ously broadcast shows on catch-up, we consider this a corner
case, and rather than complicate the optimization problem for
all users, we handle the recordings as a “best effort”: In case of
conflict, SCORE could simply choose to record the content with
the higher .
D. Weighting Factors
To be usable in the optimizer, the end requirement from a

weighting model is a weighting factor for
each user and program , with larger indicating greater
confidence that episodes of will be watched via IP streaming.
The episodic nature of TV programs and the strong pref-

erence of users for serialized content, as discovered in
Section III-A-1, gives a simple but powerful history-based
weighting model: Watching previous episodes of a series is a
good indication that the future episodes will also be watched.
Formally, a weighting factor can be derived for a user
who has previously watched episodes of a program with

episodes, as the probability of watching that program

(5)

Plugging in in the optimization problem
(3)–(4) obtains the best performance among the alternatives
we have tried. Therefore, our main evaluation of SCORE uses
this weighting factor. This holds for the content makeup on
BBC iPlayer, however this is not generalizable to all content
repositories. As such, alternative models would be required
for different repository types (e.g., movies); other weighting
factors are explored in Section VI.

V. PERFORMANCE ANALYSIS

This section analyzes the performance of SCORE using
the trace discussed before (Section II-B). We compute the
aggregate energy and traffic savings achieved when SCORE
is run by users in our trace and present the results as per-
centage savings. We first discuss the simulation parameters
used (Section V-A). Then, we assess the energy (Section V-B)
and traffic (Section V-C) savings achieved by SCORE. In
each case, we first use an oracle-based approach to compute
the theoretical limits of the savings achievable by speculative
recording. Next, the savings achieved by SCORE is measured
relative to the oracle. The dependence on parameter values is
resolved by sensitivity analysis across the range of possible
values for all parameter combinations.
In computing the list of content items to speculatively record,

we focus on weeks 4–6 of our 8-week trace. This allows SCORE
to work with the previous 3 weeks of history for the predictor,
and at least 2 weeks after the broadcast for the user to watch the
show, allowing a better estimation of achievable savings.
A. Parameters for Trace-Driven Simulation
SCORE balances two factors that contribute to energy con-

sumption other than on the content provider servers. The first
factor is the energy consumed on DVRs to record the content.
We conservatively consider HD double-tuner DVRs, which are
the most energy-intensive of the simple set-top boxes under EU
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regulations. EU regulations [1] mandate amaximum power con-
sumption of 13 W when turned on or on active standby, and
1 W when on passive standby. DVRs must also automatically
be switched into standby mode when not in use. The SCORE
DVR must therefore adhere to these requirements. Hence, the
power consumption added by speculatively storing a content
in the DVR, , is conservatively taken as the maximum
power difference possible between on and stand by states, i.e.,
12W. For the experiments, we assume that users do not use their
DVRs, as this represents the worst-case scenario for SCORE
(i.e., it is necessary to take the DVR out of standby for all spec-
ulative recordings).
The second factor, the energy spent in the IP network to

transport the content to the user, is much harder to quantify.
However, this is vital to measure the combined energy impact
of both the network infrastructure and the home environment.
Our use case of distributing content from a national broadcaster
to audiences within the country over the public Internet closely
fits the assumed model of Baliga et al. [7], which is based on
a paper design of a national-level network in a broadband-en-
abled country, and includes a video distribution network for ap-
plications such as Video on Demand. The model makes detailed
calculations using realistic numbers from various networking
equipment currently deployed commercially. It therefore pro-
vides an effective and convenient method to calculate energy
consumption parameterized in terms of , the average en-
ergy per bit transported. However, as with other current energy
models for the Internet, this introduces assumptions about the
models and technology of networking equipment used, network
hops from server to user, network over-provisioning and mul-
tiplexing levels, etc. To account for these uncertainties, Baliga
et al. derive a range of values possible for this figure, from

for current networks down to , for
a future energy-efficient all-optical network. Power consumed
can be calculated as , where is the bit rate en-
coding of the content provider. Given the inherent uncertainty
and approximations involved in coming up with these values,
we perform a sensitivity analysis over a wide range of values.
This allows us to model the energy use for a large set of po-
tential networked environments.
When calculating energy consumption, we first vary the bit

rate as kb/s to calculate the number
of bits transmitted within each stream. kb/s represents
the current default rate;6 higher rates show currently available,
and potential future encoding rates. We use constant bit rate en-
coding, which means that the number of bits transmitted within
a stream is proportional to the encoding rate.7 To calculate the
actual cost per bit transmitted, we use a variety of values to
capture the many possible network setups. Specifically, we ex-
periment with , to see the ef-
fects over four (binary) orders of magnitude.We do not consider

, the lowest value in the Baliga et al. [7], because

6http://www.bbc.co.uk/blogs/bbcinternet/2009/04/bbc_iplayer_goes_hd_
adds_highe.html. However, when operating in full-screen mode on modern
laptops, BBC iPlayer is seen to switch to 1500 kb/s.

7The impact of changing to variable bit rate (VBR) encoding would also be
negligible because, on average, the file size (and therefore stream size) will be a
product of the video length and encoding rate (although the rate will vary over
time).

8Error bars in all figures show 95% confidence intervals.

when , for the bit rates we consider,
making streaming greener than recording.
The amount of content that can be offloaded depends on

the storage available on individual users' DVRs. Many current
DVRs may have a 500-GB or 1-TB hard disk. Standardized
technical specifications such as YouView DVR specify a min-
imum of 320 GB [36]. However, users also need this space for
manually set recordings. Therefore, we assume that SCORE
has access to a small fixed-size partition in this space. As a
baseline, we assume that a storage of GB is available,
similar to the size of “reserved” partitions in architectures such
as YouView [36]. We refer to this as the constant S case. As
the content encoding bit rate increases, fewer content items can
be stored in a fixed-size partition, leading to decreased gains.
Therefore, we also experiment with a rate-proportional S case,
where the partition size is taken as proportional to the bit rate
encoding as .

B. Understanding Energy Savings
The energy benefits are quantified by computing the metric

, where
is the energy consumption of streaming all the contents and

is the energy consumption using SCORE.
We wish to understand energy savings at two levels. First, we

quantify the theoretical potential of content offloading. Second,
we measure the savings achieved by SCORE.
1) Oracle-Based Savings: To understand the full potential

of content offloading, we consider the best-case scenario for
a personalized solution: An oracle that has full knowledge of
future content consumption decides what to offload. Every item
stored is guaranteed to be watched by the user. In this scenario,
the achievable savings are limited only by the storage available.
Fig. 8 shows the results, for different combinations of param-

eter settings.8 Note that the use of constant bit rate encoding
means that the different encoding rates have a linear relation-
ship. The energy savings metric depends on and , which de-
termine the power consumed by the IP streaming option, and ,
which determines the amount of content that can be offloaded.
Only those combinations where inequality (2) holds are consid-
ered; combinations of low and , known to result in neg-
ative energy savings, are not shown. In general, as and
increase, IP streaming consumes more energy, and the energy
savings are higher. However Fig. 8(a) shows that for very high
bit rates, storage can become a limiting factor: The oracle is
not able to store as many items as possible at lower bit rates,
resulting in smaller energy savings (e.g., at , the
savings from kb/s is smaller than savings from lower
bit rates). Fig. 8(b) shows that this limitation is overcome when
the storage is proportional to bit rate encoding. Fig. 8(c) shows
the maximum savings achievable, by removing all storage con-
straints (i.e., ). If every item can be stored locally when
broadcast, up to 97% savings can be achieved at high and .
Themaximum savings are 75% considering a constant storage

GB, and 90% considering a rate-proportional
.
2) Energy Savings in SCORE: Next, we study the savings

achieved by SCORE, given access to GB.9 Fig. 9 per-
forms a sensitivity analysis and shows the average energy sav-

9Due to space constraints, only the more challenging constant case is pre-
sented for SCORE energy and traffic savings.
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Fig. 8. Average energy savings (%) with oracle for different , , and parameter combinations. (a) Constant . (b) Rate-proportional . (c) No storage
constraints .

Fig. 9. Energy savings of SCORE relative to oracle. Parameter combinations
where Internet streaming ismore energy-efficient thanDVR recording (i.e.,

) are omitted since SCORE (similarly oracle) would not record
content in settings guaranteed to waste energy.

ings by using SCORE for different combinations of parameter
choices. For low values of and , the achievable energy sav-
ings are small, and errors in speculatively recording items not
watched later can lead to negative energy savings. However, at
higher bit rates, savings appear to be relatively insensitive to the
assumed values of and SCORE can recover 40%–60% of the
optimal savings achieved by the oracle.

C. Understanding Traffic Savings

Next, we study traffic savings by computing the metric:
, where

and are the 95th percentile bandwidth taken
across 5-min intervals by using SCORE and by streaming all
the contents, respectively. This metric is intended to approx-
imate the reductions in operating costs for ISPs, which often
rely on 95th percentile bandwidth pricing. We compute the
savings across the entire trace, and therefore the figure may be
seen as representative of the savings for the content provider or
its content delivery network (CDN) affiliate. Similar results are
obtained by replacing the 95th percentile with average traffic
savings, and also at the level of individual autonomous system
or AS (these results omitted due to space constraints).
1) Oracle-Based Savings: Fig. 10 shows the traffic savings

obtained using an oracle with complete knowledge of future re-
quests. Unlike the energy savings computation, the oracle-based
traffic savings do not depend on , but only on , the bit rate
encoding, which determines the size of the IP flow, and , the
storage available on the DVR, which determines the amount of
content that can be offloaded; an oracle with infinite storage can

Fig. 10. Peak bandwidth savings of oracle.

Fig. 11. SCORE peak bandwidth savings relative to oracle.

offload all the traffic. Thus, we only study the variation in sav-
ings for different values of and finite values of . The figure
highlights that peak bandwidth is insensitive to the bit rate for
rate-proportional because the memory size per content item
remains constant across bit rates. Fig. 10 shows that the peak
bandwidth savings can be up to 96% (i.e., peak bandwidth with
the oracle can be as low as 4% of the peak without oracle-based
offloading), but the peak bandwidth savings rapidly decreases
when storage becomes a constraint (constant scenario, for
higher bandwidths).
2) Traffic Benefits From SCORE: Fig. 11 shows a sensitivity

analysis of the peak bandwidth savings obtained by SCORE for
different parameter settings. Note that unlike the oracle case,
the savings with SCORE depend on as well as and .
This is because the items to download are decided as a side ef-
fect of saving energy [(3), also see discussion in Section VI-B].
As with energy, SCORE typically recovers 40%–60% of the
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Fig. 12. Performance of “natural” alternatives in optimization and prediction. Parameters used: ( , kb/s, GB). (a) Optimizing
energy (green) vs optimizing Traffic (non-green) savings. The green variant incurs 1.05–1.15 times more traffic than the non-green version. However, green also
saves 40% more energy than non-green. (b) History versus collaborative filtering. Collaborative filtering does not offer any significant energy savings
benefit over just history . (c) Collaborative filtering versus genres. Privacy-preserving recommender using only genre affinity performs similarly to
collaborative filtering .

TABLE I
INDISCRIMINATELY RECORDING MOST POPULAR ITEMS FOR EVERY USER
LEADS TO NEGATIVE ENERGY SAVINGS RELATIVE TO STREAMING FROM THE

INTERNET ( , kb/s, GB, WEEK 6)

traffic savings achieved by the oracle, using 32 GB storage.6
These savings are relatively insensitive to .

VI. “NATURAL” DESIGN ALTERNATIVES

The generic SCORE approach presented in Section IV con-
sists of an optimizer that decides to speculatively record items
based on weighting factors assigned by a predictor. However,
the specific version evaluated in Section V uses a personalized
optimizer for each user, which attempts to minimize the energy
consumed by the user's content access needs, using knowledge
of previously watched programs. Alternatives to the design pre-
sented above can be generated by using different optimization
functions or predictors that yield different weighting factors.
We illustrate this by considering three “natural” design vari-
ants: First, we study a nonpersonalized version, where the same
weighting factor is generated for each user, based on program
popularity. Next, we consider a different optimizer that aims to
reduce traffic in the network, arguably a more “natural” goal. Fi-
nally, we consider how to assign weighting factors for programs
not watched previously by the user. In each case, we highlight
why the design we presented earlier departs from these expected
“natural” choices.

A. Understanding the Need for Personalization
As a baseline, we first study a simple and straightforward

approach to content offloading: offloading the most popular
content to all users. Table I shows that doing so can lead to large
numbers of unwatched items; recording items not watched
wastes energy, resulting in decreased energy savings as is
increased. We see a net energy loss for and beyond,
motivating the need for a personalized, user-specific solution
as developed by SCORE. Sections V-B-2 and V-C-2 show
that our personalized solution can perform better than the best
performing baseline: saving the most popular 10 items for
every user (top10 in Table I).

B. Traffic Optimization
As previously discussed, SCORE is optimized for energy ef-

ficiency. This can result in suboptimal traffic savings because

storage capacity might not be used if the energy cost is too high.
Our second design alternative therefore considers the implica-
tions of optimizing for traffic costs alone.
To achieve this, SCORE should speculatively record items

regardless of energy costs. We evaluate this “price of green,”
by changing the optimizer to the following “non-green” version,
which purely minimizes the probability that a recorded content
is not watched

minimize (6)

subject to the memory constraint (4).
Fig. 12(a) shows the impact of greening on the energy and

traffic savings in terms of the ratio of the savings achieved in
the energy-aware or “green” case considered previously (3) to
the savings achieved using the “non-green” case (6). The black
bars show that the green solution saves up to 40% more energy
compared to the non-green solution. The white bars highlight
that using energy-unaware SCORE, we could only achieve a
traffic savings that is about 1.05 times greater, for the param-
eter settings indicated. This gap would be bigger if we consider
lower values of . It is worth highlighting that different users
can freely choose different options, optimizing for traffic or en-
ergy, since SCORE operates solely on the user's device.

C. Speculatively Recording New Program Recommendations

Up until now, we have employed a relatively simple his-
tory-based algorithm to inform SCORE. Although our evalu-
ations show its effectiveness, the predictor of (5) cannot assign
nonzero weights to new programs previously unwatched by the
user. Similarly, this cannot be used for one-off programs such
as movies. Next, we explore new weighting models that allow
such predictions to be made.
1) Collaborative Filtering Weighting Model : Our first

approach is based on the same intuition as recommender sys-
tems: that new programs explored by users will be similar to
programs watched in the past. Therefore, to recommend new
programs to speculatively record, historical data about pairwise
similarities between programs are captured as a global param-
eter matrix . The prediction task is to use this global prior in-
formation to perform a Bayesian inference of future probabili-
ties of watching a programs for each user. We develop a latent
variable probabilistic model parameterized by to perform this
inference. Because it is parameterized by the program-program
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similarity matrix , this amounts to an item-item collaborative
filtering approach similar to [4], [28].
Formally, let, denote latent multinomial (categorical)

random variables for a user's history and future programs, re-
spectively. These random variables can take on 1-of- states,
each state corresponding to a different program. Let denote
the recorded historical data (programs watched by the user). The
probabilistic model is then given by

(7)
or making the assumption that the recorded history is depen-
dent only on

(8)
In the above, is the program likelihood, which we
compute as

if ,
otherwise. (9)

Similarly, is the prior belief between the
history and future programs that we define as

(10)
where, is the entry in the parameter matrix. In this
work, is computed using historical data as ,
where are the sets of the users watching programs and
, respectively. Thus, attempts to capture global prior infor-
mation of correlations (similarities) between programs.
The final task is to infer user-specific posterior probabilities

of watching different programs in the future , given the history
of recorded observations . Using Bayes's rule

(11)

By performing the summation on the right-hand side (RHS), the
posterior predictive probability for a program and user is

(12)

where is a normalization factor.
It is natural to combine the benefits of our initial model, (5),

which accurately assigns high weights for episodes of programs
regularly watched by a user, with the second model (12), which
can assign nonzero weights to new programs. Thus, we get a
new weighting factor

(13)
2) Privacy Preserving Recommendations : CF and

CF H require a central server to collect and retain information
about all users' viewing patterns to create the global matrix .
Although this is done inherently in iPlayer's current streaming
model, it will not be the case with SCORE, which records
autonomously from the broadcast interface. Consequently,
we must sacrifice some degree of privacy to implement a CF
strategy. We therefore extend this to offer a local content-based
filtering approach that does not require a user to reveal viewing
history.
Our content-based filtering model weights each program

based on the affinity of the user to the genre(s) of the program.
We adopt a vector space approach and assign to each user
a vector , where is the number of
content items of the th genre watched by the user. Similarly,
each program is assigned a vector ,

where is the number of episodes of tagged with the th
genre. The genre-based weight is then calculated as the
cosine similarity between the user's genres and the genres of
the program

(14)

As before [e.g., (13)], we combine this with the user's per-
sonal history (which can be computed and kept locally on the
user's DVR, and thus does not compromise privacy)

(15)
3) Evaluating Program Recommendation Extensions: We

evaluate these new weighting models by randomly selecting
27 459 users from our traces, who watched at least 2 programs
a week (to allow program-program similarity to be calculated).
Fig. 12(b) compares this against our original history-based
weighting model . It presents the energy savings, and the
overall traffic savings, as defined by ,
where and are the amount of streamed traffic
by using SCORE and by streaming all the watched content,
respectively.
It can be seen that by itself performs poorly, suggesting

that users' content consumption patterns are dictated more by
history (i.e., watching different episodes of the same programs),
rather than by exploring new programs. Indeed, even

does not offer any significant benefits over the much sim-
pler weighting factor . Fig. 12(c) shows that the privacy-pre-
serving model performs similarly to , sug-
gesting that simple models may be sufficient to incorporate rec-
ommendations for speculatively recording new programs not
watched before. Of course, results for are limited to corpora
that are serial-based. The BBC, and most terrestial TV channels
in the UK, have a heavy bias towards serial content, which is
why is so effective. Although these channels do serve non-
serial content, this does not achieve the popularity of their se-
rialized counterparts. This means that SCORE would be effec-
tive at serving most TV channels, excluding those specializing
in one-off shows, e.g., movies. Our future work will involve
looking at the performance of these weighting models for dif-
ferent corpora.

VII. RELATED WORK

A number of seminal works [3], [11], [16], [20], [37] have
examined different forms of (video) delivery over the Internet.
These range from walled garden IPTV architectures to P2P
live streaming workloads. We add to this list by examining
a catch-up TV workload. Here, we focus on push- versus
pull-style accesses. Previously, we have also examined the
factors affecting adoption and usage of TV streaming across the
UK ISP ecosystem [25]. In comparison to the previous largest
measurement study of catch-up TV [3], our work makes new
observations on push versus pull access patterns, includes radio
workloads in addition to TV, and proposes SCORE as a novel
mechanism to mitigate the footprint of catch-up. Our dataset
also contains orders of magnitude more users.
The key contribution of our work has been a novel approach

to combining the benefits of push and pull content delivery.
This has been driven by an optimizer targeted at reducing
energy costs. It has been recognized before that a large amount
of savings can be realized by offloading content from the
servers [21]. In walled-garden IPTV approaches, when the
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operator has control over the network, caching at appropriate
locations and branch points within the network can be ef-
fective [6], [9], [34]. Deployments operating over the public
Internet have to rely on end-users, and a popular strategy is to
use P2P approaches where users collaboratively download from
each other to decrease server load. However, supporting the
delivery constraints of streaming in P2P architectures typically
introduces complexity such as elaborate mesh/tree topology
construction (e.g., [10] and [26]), or careful chunk-scheduling
strategies (e.g., [5], [13], [22], and [35]). Instead of peers,
SCORE exploits the existing broadcast channel to decrease
server and network load. While this makes the SCORE solution
specific to catch-up TV/radio, it also makes the design straight-
forward. Recently, we have shown that peer-assisted CDNs can
also be effective for catch-up TV [24].
Prefetching content is a common trick in CDNs (e.g., [9],

[23], [33], and references therein). However, most such works
that consider delivering large objects such as videos need to bal-
ance the bandwidth consumed by speculative prefetching with
the potential benefits. Instead, SCORE uses a cheaper, out-of-
band distribution channel (DTT), and hence can replicate freely,
subject only to storage constraints. In this respect, SCORE is
similar to offloading from 3G/4G onto cheaper Wi-Fi networks
(e.g., [19] and [27]). However, mobile data offloading schemes
typically involve delaying access until Wi-Fi becomes avail-
able, whereas with SCORE, content is prefetched and therefore
immediately available. Importantly, Wi-Fi allows fetching data
using user-specific request/response streams, whereas SCORE
operates over a broadcast delivery mechanism common to all
users. This allows the benefits of SCORE to accrue not only to
users and access networks, but also the core and also decreases
the content provider's network costs. Recent work explores the
use of cellular broadcast channels (e.g., in LTE) to broadcast
popular objects [18]. However, recording the top- items could
lead to negative energy savings (c.f., Table I). SCORE exploits
semantic knowledge of access patterns to catch-up videos (e.g.,
serial affinity), to make more informed, personalized decisions.
Our focus on decreasing system-wide energy footprint (rather
than just on mobile phones) is also a distinguishing factor.
Functionality similar to SCORE is available on some com-

mercially available DVRs, but there are differences. For ex-
ample, some DVRs, such as TiVo, assist in content discovery
by recommending new programs to watch [32]. Our goal is
similar, but with an important difference: We wish to learn the
existing viewing habits of users and anticipate their usage of
catch-up TV. TiVo essentially records as many relevant sugges-
tions as possible, as low-priority items to be erased if user-re-
quested recordings require space. SCORE is much more con-
servative because recording content not watched later on wastes
energy. Recent commercial offerings in the US such as “Prime-
time Anytime” (c.f., http://dishuser.org/ptat.php) from DISH,
automatically record evening prime time shows for the four
major broadcast networks during evening Prime Time. Sky TV
in the UK follows a similar approach. The programs recorded
by these offerings are expected to be the most popular shows.
However, as discussed above, this could lead to negative energy
savings.

VIII. DISCUSSION AND CONCLUSION
We are currently witnessing the long-predicted convergence

of IP and media networks in various forms. While this has

offered additional functionality such as catch-up TV, the en-
croaching of broadcast media on the IP network can lead to
additional network traffic and energy consumption.
Our contributions are twofold. First, we have explored

the key differences between traditional broadcast (push) and
emerging pull-based models of delivery. These observations
led us to our second contribution: a simple approach that can
leverage both broadcast push and online pull—the Speculative
Content Offloading and Recording Engine (SCORE). SCORE
exploits the predictable nature of users' content consumption
patterns to reduce the energy and network footprint of catch-up
TV. Our evaluation using traces from BBC iPlayer showed that
significant energy savings can be achieved (up to 77%) while
also reducing the network footprint. We believe that the results
are robust, given the scale of our trace. The results may be
also generalizable to other catch-up TV systems (e.g., iView in
Australia, Hulu in the US, or 4oD and ITV Player in the UK),
which all share similar access patterns such as a dominance of
serialized TV shows.
Our main motivation in developing SCORE was to demon-

strate that it is relatively easy to offload catch-up video streams
from the Internet. Various future avenues of work exist for ex-
panding upon this concept. There is great potential for devel-
oping more sophisticated prediction algorithms. Although we
experimented with this, we did not find notable savings over
SCORE's simple history-based approach. Future work would
therefore need to focus on exploiting alternative information
sources, e.g., content ratings or social network information. A
second avenue of future work would be to develop optimization
algorithms that focus on different considerations, e.g., content
provider preferences or ISP costs.
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