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Abstract

Upon activation in epidermal stem cells, the proto-oncogene c-Myc triggers their

exit from the stem cell compartment resulting in an increase in progenitor cell

proliferation and an induction in terminal differentiation. Whether c-Myc plays

a direct transcriptional role in epidermal stem cell differentiation was unknown.

The exploration of c-Myc’s transcriptional roles at the epidermal differentiation

complex (EDC), a locus essential for skin maturation demonstrated that bind-

ing of c-Myc to the EDC can simultaneously recruit and displace specific sets

of differentiation-specific transcriptional regulators to EDC genes. Among these

factors, Sin3A acts as a transcriptional co-repressor and was initially discovered

via its direct interaction with Mxi1 and Mxd1, which are antagonists of the Myc

family network. As such, I concentrated on the role of Sin3A as a potential op-

posing factor to c-Myc activity in the epidermis.

To analyse the role of Sin3A in regulating epidermal stem cell fate in vivo, I

generated a number of trangenic mouse models. To determine whether Sin3A

functions in hair follicle stem cells, I inducibly deleted Sin3A in the hair folli-

cle bulge, where quiescent stem cells reside. However, lack of Sin3A in the hair

bulge did not cause any aberrant phenotype and I concluded that Sin3A is dis-

pensable for hair follicle homeostasis. I next analysed a mouse model in which

Sin3A is inducibly deleted in the basal layer of the epidermis. Deletion of Sin3A

resulted in a severe disruption of epidermal homeostasis-namely due to increases

in proliferation and differentiation. Further investigation demonstrated that this

phenotype is driven by enhanced genomic recruitment of c-Myc to the epidermal

differentiation complex and reactivation of c-Myc target genes involved in cellular

proliferation. I found that Sin3A causes de-acetylation of the c-Myc protein to

directly repress c-Myc’s transcriptional activity and is antagonistic to c-Myc in

the interfollicular epidermis. I hypothesised that simultaneous deletion of Sin3A

and c-Myc might return the skin to normality. Indeed, when Sin3A and Myc are

concurrently deleted, proliferation and differentiation levels returned to normal.

These results demonstrate how levels of Sin3A and c-Myc must be carefully bal-

anced for epidermal homeostasis to be maintained.
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Decreased expression of Sin3A has been linked to tumour susceptibility in other

tissues for example in non-small cell lung carcinoma making Sin3A a candidate

tumour suppressor gene. I therefore considered that loss of Sin3A may lead to

increased susceptibility to skin cancer. To investigate this I performed pilot ex-

periments using UVB irradiation of skin that has one copy of Sin3A deleted in the

basal layer of the epidermis. Under normal conditions, these mice have no identi-

fiable phenotype, but pilot experiments demonstrated that after short term and

long term UVB irradiation, they exhibit increased epidermal thickness and pro-

liferation relative to controls. This recapitulated the phenotype observed when

Sin3A is inducibly deleted in the interfollicular epidermis and further demon-

strates the role of SinA as an inhibitor of proliferation in this tissue. Overall,

these results demonstrate that an interplay between the opposing functions of

Sin3A and c-Myc are necessary to ensure that there is balanced homeostasis in

the interfollicular epidermis.
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Chapter 1

Introduction

1.1 Structure of mammalian skin

Mammalian skin is a remarkable organ in terms of its numerous functions, struc-

tural complexity and high turnover of cells, thus requiring tightly regulated home-

ostasis. Skin consists of the epidermis, separated from the dermis via a basement

membrane (Figure 1.1). The epidermis, a stratified epithelium, comprises the

outer layer of the skin and functions primarily as a barrier providing protection

against harmful external effects such as ultraviolet radiation and microbial in-

vasion as well as acting to prevent dehydration [Fuchs and Horsley, 2008]. A

single layer of proliferative cells forms the basal layer of the interfollicular epi-

dermis (IFE), which are tethered to the basement membrane. Cells from the

basal layer migrate upwards to generate the terminally differentiating stratified

suprabasal layers allowing replenishment of cells that are lost from the cornified

layers [Pincelli and Marconi, 2010] (Figure 1.1). The IFE has a number of ap-

pendages that are specified via epithelial-mesenchymal interactions throughout

development. These appendages include nails and sweat glands as well as the

hair follicle (HF) and sebaceous gland (SG), which are key components of the

pilosebaceous unit [Mikkola, 2007].

To give rise to, repair and maintain the IFE and its appendages, (Figure 1.1),

there is a reliance on epidermal stem cells. Stem cells have been identified and
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characterized in the epidermis and its appendages for example stem cells reside

in the bulge region of the HF, the SG and the basal layer of the IFE [Fuchs,

2008]. Understanding how these cells give rise to and maintain balanced epi-

dermal homeostasis and allow response to injury such as wounding is subject to

intense investigation. Firstly, I will discuss how skin is specified during embryo-

genesis and then will progress to the discussion of maintenance of adult skin.
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Figure 1.1: Schematic structure of mammalian skin. The outer layer of skin, the
epidermis, is separated from the inner layer, the dermis, via a basement membrane. The
epidermis can be considered as the interfollicular epidermis and its appendages the hair
follicle and sebaceous gland. Proliferative cells in the basal layer of the interfollicular
epidermis give rise to the cells of the differentiated spinous and granular layers. This
generates a system in which cells from the basal layer divide to replace those that are
lost from the surface, the cornified layer. The interfollicular epidermis, hair follicle
and sebaceous glands are maintained by numerous stem cell populations. Taken from
[Fuchs and Raghavan, 2002].
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1.2 Epidermal origins

Development of the skin throughout embryogenesis is a highly complex process

that relies on tightly controlled mechanisms to ensure that specification of the

layers of the skin is correct. I will concentrate on the development of the epider-

mis as this is the skin layer around which my PhD project is centred. During

embryogenesis in mammals, the epidermis develops from a single layer of multi-

potent cells from the surface ectoderm, while the dermis originates from cells in

the mesoderm and neural crest [Mack et al., 2005; Viallet and Thelu, 2004].

1.2.1 Development of the interfollicular epidermis

At mouse embryonic day 8.5 (E8.5), the single layer of multipotent epithelial

cells is specified as a consequence of Wnt signalling, which blocks the ability of

ectodermal progenitors to respond to signalling from fibroblast growth factors

(FGFs) [Fuchs, 2007]. This allows the ectodermal progenitors to respond to bone

morphogenic protein (BMP) signalling resulting in the adoption of an epidermal

cell fate [Fuchs, 2007]. The IFE develops from this single layer of epithelial cells

as a consequence of a number of developmental cues, which induce expansion and

stratification ultimately leading to the generation of a fully stratified epithelium

by E18.5 [Mack et al., 2005]. This stratified epithelium is composed of the basal

layer, the terminally differentiated spinous and granular layers of the IFE, and

the cornified envelope [Mack et al., 2005] (Figure 1.2).

The commitment to stratification is evident at the single layer stage as signified

by the expression of Keratin 5 (K5) and K14 at E9.5 [Byrne et al., 1994] (Figure

1.2). A possible factor that acts as the cue for the initiation of stratification is

the transcription factor p63, which is first expressed at E8.5 [Koster and Roop,

2004] (Figure 1.2). Initial evidence suggesting that p63 has this role came from

two papers published in the same year, which describe mouse models in which

p63 is deleted [Mills et al., 1999; Yang et al., 1999]. P63-null mice lack strati-

fied epithelia and have abnormal skin consisting of just a single cell layer [Mills

et al., 1999; Yang et al., 1999]. One of the key means by which p63 is thought to

mediate stratification is via the activation of Special AT-rich Sequence Binding
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Protein1 (SATB1), which remodels chromatin leading to transcriptional activa-

tion of genes involved in epidermal differentiation [Fessing et al., 2011].

At E10.5, the periderm, which is a temporary protective covering of the the epi-

dermis is formed and the onset of stratification begins [Fuchs, 2007; Mack et al.,

2005; MBoneko and Merker, 1988] (Figure 1.2). The function of the periderm is

thought to be to protect the embryo from amniotic fluid during embryogenesis

until barrier formation is complete [Koster and Roop, 2004]. The emergence of

suprabasal layers marked by K1 and K10 occurs at E15.5 [Byrne et al., 1994],

followed by a Loricrin-expressing layer by E16.5 and Filaggrin begins to be ex-

pressed at E17.5 [Mack et al., 2005] (Figure 1.2). The presence of the “living”

layers of the IFE : the basal layer, the spinous and granular layers as well as the

“dead” cornified layer are therefore specified and barrier function is formed by

E18.5.

This layout of the IFE, as can be seen in Figure 1.3, is maintained throughout

the life of adult skin. The maintenance of the structure of the IFE is dependent

on a stem cell population that is unique to the IFE under normal homeostatic

conditions [Benitah and Frye, 2012]. This stem cell population will be discussed

in further detail in Section 1.3.1. In order for homeostasis to be maintained, there

must be a careful balance between stem cell self-renewal and differentiation.
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Figure 1.3: Schematic representation of the established interfollicular epi-
dermis (IFE) The layers of the IFE are specified during embryonic development. The
basal layer, containing undifferentiated cells, is marked by expression of K14 and inte-
grin α6. The next layer is the spinous layer, which expresses K1 and K10. The granular
layer is marked by expression of Filaggrin and Loricrin. Proteins encoded by the epi-
dermal differentiation complex (EDC) are cross-linked to form the stratum corneum
(cornified envelope), which is essential for barrier function. See [Fuchs, 2008].

1.2.2 Differentiation processes in the interfollicular epi-

dermis

The majority of the genes responsible for differentiation in the IFE are clustered

in a genomic region spanning 2.2 megabases (Mb) in mouse and 1.6Mb in human,

called the Epidermal Differentiation Complex (EDC) [Brown et al., 2007; Nasci-

mento et al., 2011]. The EDC is located on chromosome 3f2.1 in the mouse and

chromosome 1q21 in humans [Brown et al., 2007; Nascimento et al., 2011]. The

EDC encodes four clustered gene families: the Filaggrin-Like (Flg), Late Corni-

fied Envelope (LCE), Small Proline Rich Region (SPRR) and S100 gene families

and is schematically represented in Figure 1.4.

Members of the Flg-like, LCE and SPRR families encode structural proteins that

are cross-linked by transglutaminases to form the cornified envelope (Figure 1.3),

which is essential for the establishment of normal barrier function in the IFE

[de Guzman Strong et al., 2010; McGrath and Uitto, 2008]. The S100 gene fam-

ily encodes calcium sensor proteins that are involved in signal transduction and

act as chemoattractants [Broome et al., 2003]. It has also been proposed that

7
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Figure 1.4: Schematic representation of the mouse epidermal differentiation
complex. The EDC encodes four clustered gene families. The Filaggrin-Like (Flg),
Late Cornified Envelope (LCE) and Small Proline Rich Region (SPRR) encode proteins
that are cross-linked to form the skin barrier while the S100 gene family encodes calcium
sensor proteins that are chemoattractants.
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S100 proteins encoded for by the EDC are involved in membrane remodelling

and there is evidence that the gene products are involved in inflammatory pro-

cesses [Eckert et al., 2003]. The importance of proper expression of EDC genes

is indicated by the fact that disruption of their expression leads to skin disease.

For example, a number of members of the S100 gene family have been observed

to be up-regulated in psoriasis and skin cancer [Hoffjan and Stemmler, 2007].

Disruption of the expression of genes in the Flg-like, LCE and SPRR families has

been linked with the development of atopic dermatitis and psoriasis as well as

ichthyosis vulgaris [de Guzman Strong et al., 2010].

A number of transcription factors have been implicated in the control of epidermal

differentiation and the expression of genes in the EDC. One of these transcrip-

tion factors is Kruppel-like Factor 4 (Klf4), which is expressed in the suprabasal

layers of the IFE [Segre et al., 1999]. Klf4 has been demonstrated to be essen-

tial for correct barrier formation and there is misexpression of a number of EDC

genes encoding structural components of the IFE when Klf4 is mutated [Dai and

Segre, 2004]. The zinc finger protein Ovo-like1 (Ovol1) is also a regulator of dif-

ferentiation and Ovol1-depleted epidermis has defective terminal differentiation

and increased proliferation [Nair et al., 2006]. The basic region leucine zipper

transcription factors CCAAT-enhancer Binding Protein α (Cebpα) and Cebpβ

are expressed in basal keratinocytes and are important in differentiation commit-

ment [Lopez et al., 2009]. When these transcription factors are deleted, basal

keratinocytes fail to exit the cell cycle leading to increased proliferation and an

impairment in commitment to differentiation [Lopez et al., 2009]. c-Myc is also

an important transcription factor in the process of epidermal differentiation. The

functions of c-Myc will be discussed in Section 1.5.

1.2.3 Hair follicle morphogenesis

HFs can be considered to function as factories for the production of hair shafts,

as a sensory organ for the skin, are important immunologically, provide thermal

protection and HF cells can repopulate the IFE after injury [Paus et al., 1999].

The process of HF development begins with the formation of a hair placode at

9
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E14.5, whose formation is induced by signals from mesenchymal cells underlying

the epidermis [Benitah and Frye, 2012]. One of the first and predominant factors

in hair placode induction is the Wnt signalling pathway, which is active from

E13.5 followed by Edar activities at E14.5 [Wang et al., 2012]. Sonic Hedgehog

is expressed in the placode and is responsible for the formation of the dermal

papilla at E16.5 [Fuchs, 2007; Wang et al., 2012]. Between E16.5 and E17.5

there is directional downgrowth leading to the formation of hair pegs, which is

mediated by microRNAs as well as cell matrix interactions [Benitah and Frye,

2012]. At E18.5 the inner root sheath (IRS) develops, providing a channel for hair

emergence and the outer root sheath contacts the basement membrane, which is

followed by hair emergence at birth [Fuchs, 2008]. Hair maturation continues

postnatally and the first entry into the hair cycle occurs at postnatal day 17

(P17). The steps of morphogenesis and subsequent entry into the hair cycle are

schematically represented in Figure 1.5.

1.2.4 Hair beyond morphogenesis:- the hair cycle

The first two hair cycles are synchronised in mouse back skin [Müller-Röver et al.,

2001]. The hair cycle consists of 3 different stages:- anagen, catagen and telogen

(Figure 1.5). The hair follicle is quite remarkable in that this cycling through

the hair cycle stages is maintained throughout the life of the animal. Anagen

represents the growth phase of the hair cycle and recapitulates hair follicle devel-

opment. The process is reliant on proliferation and differentiation of HF matrix

cells and ultimately leads to the regeneration of the cycling portion of the HF

with daughter cells differentiating into one of the six IRS or hair shaft lineages

[Alonso and Fuchs, 2006]. Following anagen, the hair follicles progress into the

catagen stage, which is termed the destructive phase as the non-permanent por-

tions of the hair follicle undergo apoptosis and regression occurs [Müller-Röver

et al., 2001]. A number of factors have been implicated in this transition, such

as FGF5 and Epidermal Growth Factor (EGF), but the transitional process is

not yet fully understood [Alonso and Fuchs, 2006]. Catagen leads to the dermal

papilla being located just below the bulge region of the hair follicle, a situation

which is maintained during the transition to the third hair cycle stage, telogen

10



1. Introduction

Figure 1.5: Schematic representation of hair follicle morphogenesis and the
hair cycle. Hair follicle morphogenesis begins in embryonic development and continues
postnatally. Following the completion of hair follicle morphogenesis, the hair follicles
progress into the hair cycle, which is synchronised for the first two cycles in mice.
Following anagen (the growth phase), the hair follicles synchronously enter catagen (the
destructive phase) and then enter telogen (the resting phase). Taken from [Shimomura
and Christiano, 2010].
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(the resting phase). During the resting phase, the hair shaft undergoes matu-

ration into a club hair, which is then shed from the hair follicle [Paus et al.,

1999]. There is some debate as to whether the loss of this club hair, which has

been termed as a fourth stage of the hair cycle “exogen”, is an active process

controlled by signalling mechanisms for example, or a passive process caused by

force from the growing hair fiber [Higgins et al., 2009]. When each new cycle is

initiated, the lower portion of the hair follicle is regenerated as a consequence

of interactions between cells of the dermal papilla and the secondary germ cells

in the bulge region of the hair follicle [Paus et al., 1999]. There is a reliance on

HF stem cells for the process of HF cycling to be continued, a role which will be

discussed in more detail below.

1.2.5 Sebaceous gland development

SGs are an appendage of the IFE are located above the bulge region of the HF and

secrete sebum and lipids [Stewart and Downing, 1991]. These secretions from the

SGs provide lubrication to the hair shaft and prevent microbial infection [Stewart

and Downing, 1991]. The SG starts to develop at a late point in embryogenesis

and how this process occurs is much less defined than that of the HF [Fuchs, 2007].

Two models as to how SGs come into existence have been postulated. The first is

that bulge stem cells produce multipotent progenitors that differentiate to develop

the SG while the second considers that SG-specific progenitor cells are responsible

for the production of SGs [Horsley et al., 2006]. Weight was leant to this second

model by the finding that B lymphocyte Induced Maturation Protein 1 (Blimp1)-

positive progenitor cells generated late in embryogenesis appear to establish and

form the sebaceous gland [Horsley et al., 2006]. In the case of Blimp1 mutation

or wounding, bulge stem cells can be induced to produce sebaceous gland cells

[Fuchs, 2007].

12
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1.3 Epidermal stem cells and their markers

Epidermal homeostasis involves a careful balancing act between cell loss and cell

replacement in order to avoid excess proliferation, which could lead to disorders

such as psoriasis and cancer or hypoproliferation and thinning of the skin. In order

for the epidermis to be maintained there is the reliance on stem cell populations

whose behaviour must also be controlled. Stem cells are defined by two key

properties. Firstly these cells have the ability to self-renew and secondly the

ability to produce daughter cells that can differentiate into more specialised cell

types [Smith, 2006]. The epidermis is a remarkable system in which to study

stem cell behaviour and regulation as it is known to harbour a number of stem

cell populations. Epidermal stem cells have been identified in the IFE, HF and

SG and are responsible for tissue maintenance. I will now discuss the information

that is known about these stem cell populations.

1.3.1 Stem cells in the interfollicular epidermis

An independent population of stem cells to the HF is responsible for the mainte-

nance of the IFE under normal homeostatic conditions and is located in the basal

layer of the IFE [Benitah and Frye, 2012]. These stem cells express K5 and K14

(Figure 1.6). It has been postulated that these stem cell populations are found

in epidermal proliferation units (EPUs), which consist of a central stem cell with

surrounding transit amplifying (TA) cells and that one in ten basal cells are stem

cells [Strachan and Ghadially, 2008]. This model linked into the pre-existing stem

cell/ TA cell model, in which the epidermis is considered to be maintained by

long-lived, self-renewing stem cells that give rise to short-lived TA cells, which

give rise to the differentiated progeny of the IFE [Doupé and Jones, 2012]. In

this model, long-lived stem cells can undergo asymmetric division to produce a

TA daughter cell and a stem cell daughter cell or potentially can undergo sym-

metrical divisions to produce either two TA daughter cells or two stem cells in

order to maintain the IFE.

More recently, this model has been challenged as a consequence of results obtained

from lineage tracing experiments in mouse epidermis, leading to the postulation
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Figure 1.6: Schematic representation of the different epidermal stem cell
populations. The different epidermal stem cell populations that have been identified
are represented in this figure. IFE stem cells and markers are shown in blue. Stem cells
in the junctional zone (JZ) and markers are shown in pink. Stem cells in the isthmus
(IS) and corresponding markers are represented in green. Finally, the stem cells located
in the bulge region of the HF and their markers are shown in red. Based on [Beck and
Blanpain, 2012].
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of the commited progenitor model [Clayton et al., 2007]. This model argues that

the results from lineage tracing experiments exclude the EPU and stem cell/TA

cell model. Instead, there is the proposal that the IFE is maintained by a single

population of equivalent progenitors that choose one of 3 potential fates stochas-

tically. In order for epidermal homeostasis to be maintained, the probability

of the three different outcomes, the production of two stem cells, two differenti-

ated cells or a stem cell and a differentiated cell, is equal [Doupé and Jones, 2012].

A recent publication has reconciled these apparently contradictory theories [Mascré

et al., 2012]. Using transgenic mouse models and quantitative analysis of lineage

tracing, the authors demonstrated that in the IFE there is a slow-cycling stem cell

population and a population of TA cells that cycle more rapidly and that both

of these populations exhibit stochastic choice in cell fate [Mascré et al., 2012].

Furthermore, under conditions of wounding, the stem cell population is activated

to effect repair while the contribution of TA cells is limited [Mascré et al., 2012].

Potentially, under normal homeostatic conditions, the TA population are mainly

responsible for maintenance of the IFE while activation of normally quiescent

stem cells are activated to mediate repair in response to injury [Mascré et al.,

2012].

1.3.2 Stem cells of the hair follicle and the sebaceous

gland

The HF is home to numerous stem cell populations (Figure 1.6). The best char-

acterised of these stem cell populations is the relatively quiescent population that

resides in the bulge region of HF. Bulge stem cells are label-retaining cells and are

slow-cycling under adult homestatic conditions [Cotsarelis et al., 1990; Tumbar

et al., 2004]. One of the first markers identified for the bulge stem cell population

in the mouse was CD34 [Cotsarelis, 2006; Trempus et al., 2003]. A number of

different lineage-tracing studies using reporter genes under the control of HF-

specific promoters including K15 [Morris et al., 2004] and K19 [Youssef et al.,

2010] have revealed that under normal homeostatic conditions the stem cells of
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the bulge are involved in the regeneration of the HF in the adult [Sotiropoulou

and Blanpain, 2012]. Furthermore, all hair lineages can be generated upon the

transplantation of the progeny of a single bulge stem cell [Blanpain et al., 2004].

An actively cycling, multipotent stem cell population that expresses Leucine-rich

Repeat-Containing G-protein Coupled Receptor 5 (Lgr5) and can give rise to new

HFs is also found in the bulge region [Jaks et al., 2008].

In the past few years, lineage tracing has become established as a gold stan-

dard technique to study stem cell behaviour thus helping to characterise stem

cell populations in the hair follicle, as well as other tissues. Lineage tracing is

advantageous as it allows the analysis of progeny from a single cell under home-

ostatic conditions although drawbacks are that stem cells can exhibit different

properties during homeostasis and after wounding for example and that different

techniques used for lineage tracing can yield different results [Kretzschmar and

Watt, 2012]. Despite these caveats, results from such studies have provided new

information about stem cell populations in the hair follicle. A number of stem

cell populations have been identified that are responsible for the maintenance of

the SG and the upper portion of the HF [Sotiropoulou and Blanpain, 2012].

A Leucine-rich Repeat and Immunoglobulin-like Domain Protein 1 (Lrig1) posi-

tive stem cell population has been identified in the junctional zone in the upper

region of the HF (Figure 1.6). Under normal homeostatic conditions this popula-

tion is bipotent and gives rise to cells of the SG and the IFE, but this population

has been shown to be able to contribute to all epidermal lineages in epidermal re-

constitution assays [Jensen et al., 2009]. An Lgr6-expressing stem cell population

has been identified in the isthmus portion of the hair follicle [Beck and Blanpain,

2012; Snippert et al., 2010]. Lineage-tracing experiments have demonstrated that

Lgr6-positive cells in this region can contribute to the SG, IFE and HF postna-

tally (although the HF contribution declines with age) [Snippert et al., 2010].

An additional stem cell population, which is distinguished by the expression of

MTS24 also resides in the isthmus [Jaks et al., 2010; Nijhof et al., 2006]. These

cells can reconstitute the HF and IFE and thus can be considered to have the

properties of multipotent stem cells [Nijhof et al., 2006]. It is noteworthy that a
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subset of Lgr6-positive stem cells also express MTS24 [Beck and Blanpain, 2012;

Snippert et al., 2010]. In the SG, a resident unipotent stem cell population that

expresses Blimp1 has been identified, which under physiological conditions can

give rise to sebocytes [Horsley et al., 2006; Schneider and Paus, 2010] (Figure

1.6).
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1.4 Key transcriptional regulators of epidermal

stem cells

The maintenance of stem cell populations in the epidermis and lineage commit-

ment involves dynamic regulation via regulators of transcription. I will discuss

some of the key transcription factors that have been demonstrated to be of impor-

tance in governing epidermal stem cell fate and maintenance. As I have previously

explained (see Section 1.2.1), p63 is thought to be of key importance in the epi-

dermal stratification process. In addition to this role, p63 has been demonstrated

to be expressed in epidermal stem cells [Pellegrini et al., 2001] and is required for

the maintenance of the proliferative ability of this cell type [Senoo et al., 2007;

Truong et al., 2006]. There is some debate as to whether p63 also has a role in

lineage commitment [Sotiropoulou and Blanpain, 2012]. It appears that the TA

isoforms of p63 are dispensable for differentiation while the ∆N isoforms of p63

are involved in lineage specification [Vanbokhoven et al., 2011]. It is clear that

p63 has an essential role in epidermal stem cells, however, further examination is

needed to elucidate the exact functions mediated by p63 in these cells. This is a

process that is high in complexity due to the number of different p63 isoforms and

their potentially differing roles. The canonical Notch signalling pathway also has

a role to play in in regulating cell fate in the epidermis, including the transcription

factors RBP-Jk and Hes1 [Sotiropoulou and Blanpain, 2012; Watt et al., 2008b].

Deletion of RBP-Jk or Hes1 in mouse models results in defective differentiation

and a disruption to skin barrier formation [Blanpain et al., 2006; Moriyama et al.,

2008]. The proto-oncogene c-Myc has also been demonstrated to be of key impor-

tance in the regulation of epidermal stem cells and will be discussed in Section 1.5.

A number of transcription factors have been demonstrated to have a key role in

regulating stem cell fate in the hair follicle. One of these important factors is

NFATc1 (nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent

1), which is expressed in bulge stem cells and is involved in the maintenance of

bulge quiescence [Horsley et al., 2008]. During the active phase of the hair cycle

(anagen), expression of NFATc1 is down-regulated and bulge stem cells are acti-

vated to produce progenitors [Horsley et al., 2008]. The importance of NFATc1
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is highlighted by the phenotype of premature activation of the bulge stem cell

compartment when NFATc1 is depleted in this region [Horsley et al., 2008]. An-

other factor that is important in HF stem cells is Sox9, which has a role in HF

stem cell specification [Nowak et al., 2008]. In the absence of Sox9, there are hair

cycle defects, adult bulge stem cells fail to be specified correctly and expression

of the bulge stem cell marker CD34 is lost [Vidal et al., 2005].

The circadian molecular clock has also been demonstrated to have a key role in

the regulation of epidermal stem cells [Janich et al., 2011; Lin et al., 2009]. In the

absence of the core clock components Clock and Bmal1 there is a delay in anagen

indicating a functional role of clock genes in cell cycle progression [Lin et al.,

2009]. Further studies have demonstrated that deletion of Bmal1 or Per (Period)

1/2 leads to a disruption of the maintenance of stem cells in the epidermis and

leads to defective homeostasis [Janich et al., 2011]. These results imply that the

circadian molecular clock is necessary in the balance of stem cell activation and

quiescence in the epidermis.

A further transcription factor that is important in HF development and main-

tenance is LIM/Homeobox Protein 2 (Lhx2),which has been demonstrated to

maintain “stemness” of bulge stem cells [Rhee et al., 2006]. Evidence has shown

that Runt-related Transcription Factor 1 (Runx1) is another important factor

in both HF development and maintenance of HF stem cells [Osorio et al., 2008,

2011; Raveh et al., 2006]. Skin transplantation experiments and the use of a con-

ditional knockout model in which GATA Binding Protein 3 (Gata-3) is deleted in

the epidermis have demonstrated the importance of Gata-3 in development and

maintenance of the HF and for lineage determination in the skin [Kaufman et al.,

2003; Kurek et al., 2007]. In the absence of Gata-3 there is aberrant proliferation

in the IFE leading to hyperplasia as well as the HF leading to defects in hair

maintenance and development [Kaufman et al., 2003; Kurek et al., 2007].

The canonical Wnt/β catenin signalling pathway is of key importance in the de-

velopment of the HF and in the maintenance of the HF postnatally [Reya and

Clevers, 2005; Sotiropoulou and Blanpain, 2012]. Transcription factors of the
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Tcf/Lef (Lymphoid Enhancer Binding Factor) family are key mediators of Wnt

signalling:- when Wnt signalling is active Tcf/Lef1 are bound by β catenin and

become transcriptional activators while in the absence of Wnt, Tcf1/Lef1 tran-

scription factors repress their target genes [Reya and Clevers, 2005]. Lef1-null

mice have a loss of hair formation while over-expression of Lef1 in the bulge and

IFE leads to increased formation of HFs [van Genderen et al., 1994; Zhou et al.,

1995]. Furthermore, transgenic expression of a dominant-negative form of Lef1

in K14-positive cells led to a push towards a SG fate and reduced hair differ-

entiation implicating Lef1 in fate determination in the HF [Merrill et al., 2001].

Tcf3, which is expressed in bulge stem cells, has been proposed to have a role in

bulge stem cell maintenance as expressing Tcf3 in epidermis leads to promotion

of bulge cell characteristics [DasGupta and Fuchs, 1999]. Finally, Tcf3/4 have

been demonstrated to be involved in lineage-determination in HFs as well as be-

ing required for the maintenance of epidermal homeostasis [Nguyen et al., 2009].

1.4.1 Chromatin regulators and epidermal stem cell fate

The governing of epidermal stem cell fate via transcriptional regulation involves

a complex interplay between transcription factors and chromatin-modifying fac-

tors. Here I will discuss some the roles of known regulators of chromatin that have

been implicated in the regulation of epidermal stem cell populations. The histone

deacetylases (HDACs) HDAC1/2 have been demonstrated to have an important

role in the epidermis and are critical for the development of the epidermis. When

both HDAC1 and HDAC2 are deleted, there is a recapitulation of the phenotype

observed in p63 knockout mice, namely the failure of HF specification, a lack

of proliferation and failure of the IFE to stratify [LeBoeuf et al., 2010]. Conse-

quently, it has been proposed that HDAC1/2 redundantly mediate the repressive

functions of p63 and as such play a key role in epidermal stem cell regulation

[LeBoeuf et al., 2010]. Another chromatin regulator linked to the transcriptional

roles of p63 in epidermal stem cell fate is the histone methyltransferase Setd8

(SET Domain Containing (Lysine Methyltransferase) 8). When Setd8 is condi-

tionally deleted in mouse epidermis, there is a loss of epidermal progenitors due
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to the loss of p63 expression and an increase in p53 activity leading to apopto-

sis [Driskell et al., 2011]. At this stage whether Setd8 directly modifies p63 is

unclear. Another key chromatin regulator implicated in p63-mediated control of

epidermal stem cell fate is SATB1 [Botchkarev et al., 2012]. It is proposed that

p63 regulates SATB1 to establish tissue-specific chromatin organisation in the

epidermis [Fessing et al., 2011].

Another chromatin regulator linked to epidermal stem cell fate is Mi-2β, which

is a component of the NuRD (Mi-2/Nucleosome Remodeling and Deacetylase)

chromatin remodelling complex [McDonel et al., 2009]. Upon conditional dele-

tion of Mi-2β in keratinocytes during development, the ability of basal epidermal

cells to proliferate is compromised, there are defects in terminal differentiation

in the IFE and impaired specification of HFs [Kashiwagi et al., 2007]. Addition-

ally, DNA Methyltransferase I (DNMT1) expression is enriched in IFE progenitor

cells and has been implicated in the maintenance of these cells [Sen et al., 2010].

In the absence of DNMT1 epidermal progenitors lose their ability to self-renew,

exhibit defects in proliferation and there is an abnormal induction of cell cycle

arrest genes [Sen et al., 2010], demonstrating the importance of DNA methylation

patterns in epidermal stem cell fate.

In mammals, Polycomb Repressive Complexes (PRCs) 1 and 2 consist of poly-

comb group proteins and are known to mediate the compaction of chromatin and

promote silencing of transcription [Botchkarev et al., 2012]. A number of compo-

nents of these chromatin-modifying complexes have been implicated in epidermal

stem cell behaviour. Chromobox Homolog 4 (Cbx4) is a member of PRC1 and

has been implicated in control of human epidermal stem cells in two key ways

[Luis et al., 2012]. Firstly, Cbx4 protects human epidermal stem cells from under-

going senescence in a process linked to its chromodomain and secondly prevents

excessive proliferation and differentiation via a SUMO-lygase-dependent pathway

[Luis et al., 2011]. Bmi1, another PRC1 member, has also been implicated in the

control of senescence and proliferation in human epidermal stem cells [Botchkarev

et al., 2012]. The PRC2 complex component Jumonji, AT-Rich Domain 2 (Jarid2)

is a key player in epidermal stem and progenitor cells as Jarid2-depleted mouse
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keratinocytes exhibit decreased proliferation and increased differention both in

vitro and in conditional knockout mice [Mejetta et al., 2011]. Additionally, Jarid2

conditional knockout mouse HFs have delayed entry into anagen, meaning that

Jarid2 potentially also has a role in regulation of HF stem cells [Mejetta et al.,

2011]. Furthermore, Enhancer of Zester Homologs 1/2 (EZH1/2), which are also

components of the PRC2 complex, have functionally redundant roles in epider-

mal stem cells [Botchkarev et al., 2012; Ezhkova et al., 2011; Zhang et al., 2012].

Evidence for the importance of these factors comes from mouse models in which

EZH1/2 are both depleted in mouse epidermis, which demonstrate that epidermal

development is disrupted and there is progressive degeneration of the HF and SG

[Ezhkova et al., 2009, 2011].
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1.5 c-Myc as a regulator of epidermal stem cell

fate

As explained in the previous section, there are a number of factors involved in

the transcriptional regulation of epidermal stem cells and I will now focus on

a major player in epidermal homeostasis:- c-Myc. The Myc-family of genes en-

codes basic region helix- loop- helix leucine zipper transcription factors that are

known to bind to E box sequences in target genes [Hooker and Hurlin, 2006]. Of

these, c-Myc (which will now be referred to as Myc) has been a subject of intense

study since its identification just over 25 years ago, mainly due to its oncogenic

properties, contribution to tumorigenesis and its involvement in many other fun-

damental processes such as the cell cycle and apoptosis [Meyer and Penn, 2008].

Interestingly, prior studies have shown that Myc is a player in the regulation of

epidermal stem cell homeostasis. Upon activation in epidermal stem cells, Myc

triggers their exit from the stem cell compartment, increases progenitor cell pro-

liferation and induces terminal differentiation [Arnold and Watt, 2001; Frye et al.,

2003; Waikel et al., 2001] (Figure 1.7 A).

As part of the differentiation process, Myc mediates the up-regulation of genes

involved in growth and proliferation, for example, Myc-induced SUN-domain-

containing Protein (Misu) [Gebhardt et al., 2006; Nascimento et al., 2011; Watt

et al., 2008a] (Figure 1.7 C). Direct down-regulation of genes involved in cell ad-

hesion via binding of Myc to Miz-1 is important for the exit of the stem cell niche

[Gebhardt et al., 2006; Nascimento et al., 2011; Watt et al., 2008a] (Figure 1.7 B).

Myc/Miz-1-mediated gene repression is dependent on HDAC activity in promoter

regions [Zhang et al., 2008]. Myc-induced epidermal stem cell differentiation is

accompanied by a global increase of histone modifications that are largely associ-

ated with gene repression, a process dependent on the HDAC complex [Frye et al.,

2007]. It has also recently been demonstrated that Myc acts in conjunction with

Setd8 to maintain epidermal homeostasis and that this interplay is important for

epidermal stem cell survival and behaviour to be maintained [Driskell et al., 2011].

Transgenic mouse models in which activation of Myc is sustained in the epidermis
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have revealed that erroneous activation of Myc in the basal layer of the IFE leads

to excessive proliferation and differentation into IFE and SGs [Arnold and Watt,

2001; Frye et al., 2003; Waikel et al., 2001]. Analysis of Myc’s role at the EDC

has revealed further information about Myc’s role in the epidermis. When Myc is

recruited to this locus, Myc can simultaneously recruit and displace specific sets

of differentiation-specific transcriptional regulators to EDC genes [Nascimento

et al., 2011]. More specifically, Myc binds to the EDC in conjuction with Klf4

and Ovol1, leading to activation of EDC targets whereas SIN3 Transcription Reg-

ulator Homolog A (Sin3A) and Cebpα are displaced [Nascimento et al., 2011].

The activation of Myc and thus the expression of the target genes it controls

must therefore be tightly regulated for epidermal homeostasis to be maintained.

Opposing transciptional regulators to prevent Myc becoming over-active is nec-

essary and given that Sin3A can bind to the EDC and is displaced when Myc is

over-expressed, Sin3A is a likely candidate for this role.
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Figure 1.7: Activation of Myc in epidermal stem cells leads to terminal
differentiation. A) Stem cells have the capacity to self-renew and give rise to Transit-
Amplifying (TA) cells. TA cells undergo terminal differentiation to produce cells from
the epidermal lineages. Myc activation drives terminal differentiation in the epidermis.
B) Differentiation by Myc is mediated by down-regulation of genes involved in cell
adhesion and the cytoskeleton. C) Myc up-regulates genes involved in growth and
proliferation promoting epidermal differentiation. Modified from [Watt et al., 2008a].
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1.6 The Sin3A transcriptional co-repressor com-

plex

Sin3A, one of the two mammalian homologues of the yeast repressor Sin3, is

a core component of a large, multi-protein repressor complex [Grzenda et al.,

2009]. Sin3 proteins have been conserved throughout metazoan evolution with

homologues found in yeast, mice and humans, amongst others, indicating their

functional importance [McDonel et al., 2009]. Sin3A was initially discovered along

with its paralog Sin3B, via its direct interaction with transcriptional repressors of

the Myc family network, Mad1 and Mxi1 and has been shown to supress epider-

mal proliferation [Ayer et al., 1995; Hassig et al., 1997; Laherty et al., 1997; Rao

et al., 1996; Schreiber-Agus et al., 1995]. Sin3A complexes are known to harbour

a number of core components and these transcriptional co-repressor complexes

are recruited to DNA via an array of transcription factors, for example, p53 [Mur-

phy et al., 1999] and pRB (Retinoblastoma 1) [Brehm et al., 1998], leading to

repression of their target genes. In fact, it has been demonstrated that Sin3A is

recruited by the amino-terminal repression domain of Mxi1 to mediate anti-Myc

activity [Rao et al., 1996].

1.6.1 Sin3A structure, complex components and key in-

teractions

The role of Sin3A, which itself has no intrinsic DNA binding capacity, is to

act as a scaffold protein that mediates interactions between factors that lead to

gene repression and sequence-specific transcription factors [McDonel et al., 2009]

(Figure 1.8). The key domains of the Sin3A protein that are required for these

interactions to occur are the four paired amphipathic helix (PAH) domains, which

are highly conserved domains and the regions that share the highest homology

between Sin3A and Sin3B. Another important region that is required for protein-

protein interactions is the HDAC interaction domain (HID), which is a a highly

conserved region located between PAH3 and PAH4 [Laherty et al., 1997]. Al-

though Sin3A and Sin3B share extensive structural homology in terms of their
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HID and PAH domains and have some overlap in terms of transcription factor

binding partners and target genes [Le Guezennec et al., 2006], the two proteins are

not completely functionally redundant. Evidence for this lack of complete func-

tional redundancy comes from studies demonstrating that Sin3A and Sin3B are

independently required for mouse embryonic development as embryonic lethality

occurs at different stages in Sin3A or Sin3B null embryos [Cowley et al., 2005;

Dannenberg et al., 2005; David et al., 2008].

It is known that the PAH domains of Sin3A, each consisting of about 100 residues

[Pang et al., 2003], are of the utmost importance in allowing physical interactions

of Sin3A with key transcriptional repressors, which form the co-repressor complex,

and sequence-specific transcription factors, which bind to DNA. In particular, the

PAH1 and PAH2 domains are known to interact with DNA-binding transcription

factors [Le Guezennec et al., 2006]. For example, it is known that members of the

Mad family repressors interact with Sin3A’s PAH2 domain via a motif termed the

Sin3-interaction domain (SID) [Ayer et al., 1995; Brubaker et al., 2000; Swanson

et al., 2004].

In contrast to the PAH1 and PAH2 domains, which as described above interact

with DNA-binding proteins, the function of the PAH3 domain appears to be to

interact with core subunits of the Sin3A complex [Grzenda et al., 2009]. Sin3A-

associated Protein 30 (SAP30), one of the first core components of the Sin3A

co-repressor complex to be determined, is known to interact with Sin3A’s PAH3

domain via its SID [Xie et al., 2011; Zhang et al., 1998]. As SAP30 contacts many

other core components of the Sin3A complex, including HDAC1, it is thought that

the function of this protein is to act to stabilise the complex [Xie et al., 2011].

It is also thought that SAP30 acts as a bridging protein between Sin3A and co-

repressors such as RBP1, N-CoR, transcription factors such as YY1 [Lai et al.,

2001; Viiri et al., 2009] and core complex components ING1/2 [Grzenda et al.,

2009; Kuzmichev et al., 2002] . In mammals, a paralog of SAP30, SAP30-like

(SAP30L), shares 70% sequence identity with SAP30 [Korkeamäki et al., 2008;

Viiri et al., 2006]. SAP30L also interacts with the Sin3A complex via the PAH3

domain to mediate transcriptional repression [Korkeamäki et al., 2008; Viiri et al.,
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2006]. Another SAP, SAP18 binds to PAH2 and mediates interactions with mem-

bers of the Hedgehog signalling pathway [McDonel et al., 2009].

The key enzymatic activity by which Sin3A complexes mediate modifications of

chromatin is via the recruitment of class I HDACs HDAC1 and HDAC2 [Alland

et al., 1997; Ayer, 1999; Hassig et al., 1997]. The acetylation of histones is a

dynamic process with histone acetyltransferases (HATs) mediating acetylation at

lysine residues while HDACs act to reverse this process [Yang and Seto, 2007].

Histone acetylation is associated with active gene expression while HDAC activ-

ity is predominantly associated with transcriptional silencing [Grozinger et al.,

2002]. In similarity to the NuRD co-repressor complex, the HDACs form a com-

plex with the histone-interacting proteins, Retinoblastoma Binding Proteins 4

and 7 (Rbbp4/7) that is necessary for HDAC activity and is also thought to

stabilise the interaction between the complex and nucleosomes [Fleischer et al.,

2003; Grzenda et al., 2009; McDonel et al., 2009].

Acetylation of non-histone proteins has also emerged as a critical modification

for a number of cellular processes and protein stability [Kouzarides, 2000]. For

example, Myc is known to be stabilised by acetylation at specific lysine residues

by HATs [Patel et al., 2004]. HDACs have been demonstrated to have a role in

the reversal of the acetylation modification of non-histone proteins, for example

p53 and E2F1 [Marks et al., 2003; Ozaki et al., 2009]. Interestingly, the Sin3A

complex has recently been shown to be responsible for the deacetylation of the

oncogenic transcription factor STAT3 leading to the repression of STAT3 activity

[Icardi et al., 2012].

Another core component of the Sin3A complex, Sds3, is a key mediator of the re-

lationship between Sin3A and HDACs. Sds3 appears to act as a ’bridge’ between

the interaction of Sin3A with HDACs via the HID [Alland et al., 2002]. It has

also been shown that Sds3 has an essential role in the formation of pericentric

heterochromatin and chromosome segregation [David et al., 2003]. Additionally,

two further SAP proteins, SAP180 and SAP130 have been identified, which bind

to Sin3A’s HID and are thought to be involved in complex stability [Fleischer
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et al., 2003].

The interactions that occur via the PAH4 domain and the C-terminus highly

conserved region (HCR) are quite poorly characterised [Grzenda et al., 2009].

One interaction that occurs via the PAH4 domain that has been identified is

the interaction with O-GlcNaC transferase and it is thought that this mediates

O-GlcNaC modifications that aid transcriptional repression in conjuction with

histone deacetylation [Yang et al., 2002]. It is interesting to note that the HCR

of Sin3A, which shares over 80% identity with the corresponding region in Sin3B

and is located within the HID has been identified as the domain by which Sin3A

interacts with the co-repressor Alien [Moehren et al., 2004].

1.6.2 Functional roles of the Sin3A co-repressor complex

In the mouse, Sin3A has been linked to the regulation of key biological processes

including peri-implantation development, T-cell differentiation, cellular prolifer-

ation, embryonic stem cell pluripotency and cell cycle progression. A number

of studies providing these insights into Sin3A function have made use of trans-

genic mice harbouring Sin3A floxed alleles in which Sin3A is deleted after exon

3 upon recombination, which corresponds to a region prior to any known func-

tional domains in the Sin3A protein [Dannenberg et al., 2005; McDonel et al.,

2011; Pellegrino et al., 2012]. Sin3A was shown to have an essential function

during early embryogenesis in two key papers published in 2005, which indicated

that embryonic lethality occurs at E6.5 upon Sin3A deletion [Cowley et al., 2005;

Dannenberg et al., 2005]. Sin3A has subsequently been shown to play a key role

in maintaining genomic integrity in embryonic stem cells and is a key regulator in

maintaining the cell cycle embryonic stem cells, which differs from the cell cycle

in somatic cells as embryonic stem cells drive from mitosis through to S phase

[McDonel et al., 2011].

Analysis of the loss of Sin3A in mouse embryonic fibroblasts revealed a phenotype

of apoptosis and cell cycle arrest at G2/M phases. Perhaps the most interest-
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ing aspect of the analysis of Sin3A deletion in this cell type was the revelation

that known targets of Myc, such as Cyclin D2 and Nucleolin are up-regulated,

implicating that Sin3A has a role in repressing Myc target genes [Dannenberg

et al., 2005]. Additionally, Myc has been found in co-repressor complexes that

include HDACs and Sin3A [Satou et al., 2001] and Sin3A has been found to have

a role in the transcriptional repression of the Myc target gene Cad [Pal et al.,

2003]. These studies all implicate Sin3A in the modification of Myc activity and

regulation of Myc target genes. Interestingly, Sin3A has a role in T-cell differenti-

ation and loss of a single allele of Sin3A has been shown to induce splenomegaly,

indicating that Sin3A is not required for proliferation to occur in this cell type

[Cowley et al., 2005]. Although the predominant activity of Sin3A complexes

appears to be transcriptional repression via HDAC activity, Sin3A can mediate

HDAC-independent transcriptional repression and has even been shown to have

a role in promoting transcriptional activation via the promotion of Nanog expres-

sion in embryonic stem cells [Baltus et al., 2009]. This variability highlights the

importance and complexity of Sin3A function and it is possible that Sin3A and

the transcriptional networks it controls have tissue-specific roles.

The knowledge of the function of Sin3A in tissue-specific transcriptional networks

in adult tissues to date is quite limited. However, Sin3A has been established as

an important regulator in the testis and muscle. A study in which Sin3A was

conditionally deleted in sertoli cells showed that loss of Sin3A in this cell type

led to loss of differentiated spermatogonia followed by degeneration of germ cells

leading to the conclusion by the authors that Sin3A is required in establishment

of the niche for male germline stem cells by sertoli cells and thus has a key role

in ensuring that this tissue is maintained normally [Payne et al., 2010]. Fur-

ther investigations have demonstrated that Sin3A is essential for male fertility

and confirmed that loss of Sin3A leads to loss of viable germ cells [Pellegrino

et al., 2012]. Sin3A has been linked with the maintenance of differentiated mus-

cle cells as Sin3A-mediated repression is utilised in differentiated muscle cells and

myotube-specific deletion of Sin3A leads to massive disruption in muscle main-

tenance, with a loss of differentiated cells [van Oevelen et al., 2008; VanOevelen

et al., 2010]. Additionally, Sin3A can regulate myogenic progenitors via an inter-
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action with Foxk1, which interacts with Sin3A’s PAH2 domain via its SID [Shi

and Garry, 2012; Xiaozhong et al., 2012].

Taking into account these different lines of data, there is the indication that Sin3A

potentially has an important role in Myc-mediated transcriptional repression.

Due to the role of Myc in the epidermis and its impact on epidermal stem cell

homeostasis, it is possible that Sin3A also has a role in governing epidermal stem

cell behaviour. Therefore the main goal of my PhD was to uncover a role for

Sin3A’s transcriptional functions in skin.
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1.7 Research aims

Given that the exploration of Myc’s transcriptional roles at the EDC has re-

vealed that binding of Myc to this region leads to displacement of specific sets

of differentiation-specific transcriptional regulators from EDC genes, which in-

cludes Sin3A, whose function as a transcriptional co-repressor is well established,

I speculated that Sin3A can function in the epidermis as an antagonist to Myc

activity. As such the aim of my PhD project was to determine whether Sin3A

does indeed have a function in the epidermis, in particular as an opposing fac-

tor to Myc function and to examine whether Sin3A is necessary for balanced

homeostasis to be maintained. I set out to examine the role of Sin3A and the

transcriptional networks it governs by using mouse models in which Sin3A was

conditionally deleted. Analysis of the phenotypes of these mouse models and also

the relationship of Sin3A with Myc and their shared targets produced important

revelations as to the transcriptional functions of Sin3A in the epidermis.
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Material and Methods

2.1 Mouse lines

2.1.1 Ethical statement

During the course of this work all mouse breeding and experimental protocols

used were subjected to ethical approval and performed under the terms of United

Kingdom Government Home Office Project and Personal Licenses.

2.1.2 Generation of mouse lines

All mouse lines were bred to a mixed genetic background of CBA x C57BL/6J.

Mice carrying floxed alleles for Sin3A (Sin3AF/F) [Dannenberg et al., 2005; Mc-

Donel et al., 2011] and Sin3B (Sin3BF/F) were kindly provided by Brian Hendrich,

Cambridge. In these transgenic mice, Sin3A is deleted after exon 3 upon recombi-

nation leading to a truncated protein that does not contain any known conserved

functional domains. Sin3AF/F mice were crossed with the (Krt14-Cre)1Amc/J

line (The Jackson Laboratory, originally generated by [Dassule et al., 2000])

to generate the K14Sin3A line. Rosa26RLacZ-Cre mice [Soriano, 1999] (kindly

provided by Jennifer Nichols, Cambridge), Sin3AF/F and Sin3BF/F lines were

crossed with the Krt14-cre/Esr1 line (The Jackson Laboratory) to generate the

R26K14ERLacZ reporter line, K14ERSin3AF/F and K14ERSin3BF/F lines respec-

tively. The K14ERSin3AF/F line was crossed with mice carrying floxed alleles for
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Myc (kindly provided by Alan Clarke, Cardiff) to generate the

K14ERSin3AF/FMycF/F mouse line. Sin3AF/F mice were crossed with the

K19CreERT line [Means et al., 2008] (kindly provided by Guoqiang Gu, Nashville)

to generate the K19ERSin3AF/F mouse line.

2.1.3 Genotyping

2.1.3.1 Dexoxyribonucelic acid (DNA) extraction

A buffer composed of 25mM NaOH and 0.2mM EDTA was used for DNA extrac-

tion. 25µl of this buffer was added to each ear snip and incubated for 15 minutes

at 95◦C. Following this incubation period 25µl of 40mM Tris-HCl pH 5 was added

to neutralise the solution. The samples were then stored at -20◦C until ready for

use in Polymerase Chain Reaction (PCR) analysis.

2.1.3.2 Genotyping primers

All genotyping primers were purchased from Sigma Aldrich.

Sin3A:- To distinguish between the Wild-type, floxed and null Sin3A alleles the

following primers:- 5’-TAC AAA GCC AGC CCT GAG AC-3’, 5-’CAA GAT

GGC TTG AAC TTT TGG-3’ and 5’- GCA TCC TTC CCA GCC TTC ATC-

3’. PCR amplification using these primers results in the amplification of 3 bands,

the first being the floxed allele (340 base pairs (bp)), the second being the Wild-

type (290bp) and finally the null allele (270bp).

K14CreER:- PCR amplification was also used to distinguish between K14CreER

positive and Wild-type using the following primers:- 5’-CTA GGC CAC AGA

ATT GAA AGA TCT-3’ and 5-’GTA GGT GGA AAT TCT AGC ATC ATC

C-3’, which amplifies a 324bp fragment from the Wild-type allele. An 440bp

fragment from the Cre/Esr1 construct is amplified by 2 primers:- 5’-AGG TGG

ACC TGA TCA TGG AG-3’ and 5’-ATA CCG GAG ATC ATG CAA GC-3’.

K14Cre:- The presence of the K14Cre allele was determined using the follow-

ing primers:- 5’-TTC CTC AGG AGT GTC TTC GC-3’ and 5’-GTC CAT GTC
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CTT CCT GAA GC-3’, which amplifies a 494bp product from the human growth

hormone fragment of the transgenic. Two further primers:- 5’-CAA ATG TTG

CTT GTC TGG TG-3’ and 5’-GTC AGT CGA GTG CAC AGT TT-3’ amplify

a 200bp fragment from the Wild-type allele.

Myc Flox:- Primers used to detect floxed Myc alleles were as follows:- 5’-GCC

CCT GAA TTG CTA GGA AGA CTG-3’ and 5’-CCG ACC GGG TCC GAG

TCC CTA TT-3’, which give a 450bp fragment for the Wild-type allele or a 500bp

fragment for the floxed allele when amplified using PCR.

Sin3B:- To identify the Sin3B floxed allele, the following primers were used:-

5’-TGG CTG GCA CTG CTA CCC TCT GG-3’ and 5’-GCT CTT GGT CCT

ACC CGC AGG C-3’, which amplifies a Wild-type product of 283bp and floxed

product of 350bp.

K19CreER:- The presence of K19CreER was determined using two primers:- 5’-

GTT CTT GCG AAC CTC ATC ACT C-3’ and 5’-GCA GAA TCG CCA GGA

ATT GAC C-3’, which give a 300bp product if the K19CreER allele is present.

2.1.3.3 PCR amplification

PCR was performed using the above primers for specific mouse lines using a C100

Thermal Cycler (Bio-Rad). Each reaction contained 0.1µM of each primer, 2µl

of DNA (extracted as described above), 2X PCR Master Mix (Promega) and

Milli-Q water (Millipore) to achieve a total reaction volume of 25µl. Cycling

conditions for Sin3A, Sin3B and K14Cre were as follows:- 94◦C for 5 minutes

followed by 35 cycles of denaturing (94◦C for 30 seconds), annealing (61◦C for

30 seconds) and extension (72◦C for 30 seconds). After the 35 cycles, there was

another extension step (72◦C for 2 minutes) and the reactions were then held

at 4◦C until the samples were processed using gel electrophoresis. The cycling

conditions for MycFlox, K14CreER and K19CreER were the same except for the

annealing temperature, which was 60◦C for these reactions.
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2.1.3.4 Gel electrophoresis

PCR products were resolved using a 2% (w/v) agarose gel (composed of 2%

agarose powder (Sigma Aldrich) in Tris-acetate-EDTA (TAE) buffer) containing

0.5µg/ml Ethidium Bromide (Sigma Aldrich). To determine product size, all gels

were ran with 10µl of 1Kb DNA ladder (Invitrogen) in the first well. Gels were

ran in TAE buffer at 100 volts for 45 minutes using the Mupid-One electophoresis

system. Products were then visualised and images taken using the G:Box system

(Syngene).

2.1.4 Treatment with 4-hydroxy-tamoxifen (4-OHT)

Mice were treated with 1.5mg of 4-OHT (Sigma Aldrich) diluted in acetone.

4-OHT was topically applied to either a shaved area of the dorsal skin or to

the tail skin as indicated. Unless otherwise stated, K14ERSin3AF/F mice were

treated every second day for 14 days, K14ERSin3AF/FMycF/F mice were treated

every second day for 21 days and K14ERSin3BF/F and K19ERSin3AF/F mice were

treated every second day for 28 days. R26K14ERLacZ mice were treated every

second day for the time period stated. Mice were sacrificed a day after the last

4-OHT treatment for collection of dorsal and/or tail skin. All mouse lines were

compared to either 4-OHT treated Wild-type mice or vehicle (acetone) treated

transgenic littermates. For all experiments, a minimum of 3 biological replicates

were used per mouse line or condition unless otherwise stated.

2.1.5 Treatment with phorbol 12-myristate 13-acetate

(TPA)

Mice were treated every second day with 4-OHT or vehicle (acetone) as described

above for 9 days. On days 7, 8 and 9 of treatment, 3.1µg of TPA (Sigma Aldrich)

or acetone was topically applied onto the dorsal skin or tail skin of all animals to

induce proliferation. Mice were sacrificed one day after the last TPA treatment

for collection of dorsal and/or tail skin.
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2.1.6 Treatment with ultraviolet (UV) irradation

To subject mice to UVB irradation (310nm emission) a UV-Dosimeter system

was used (Tyler Research Corporation). Dorsal and tail skin was exposed to

2500j/m2 of UVB radiation in one treatment. To calculate the exposure time in

seconds, the exposure desired (2500j/m2) was divided by the flux (j/m2/second)

which was detected using a photonic dosimeter, using the 310nm attachment,

(Tyler Research Corporation). Once exposure time was calculated, mice were

restrained in custom-made polycarbonate restraints (Department of Pathology,

University of Cambridge) and exposed to UVB radiation for the calculated time.

The irradiated area of dorsal skin was marked using a permanent marker while

the mice were still in the restraint. For short term UVB experiments, mice were

subjected to one treatment with UVB irradiation and sacrificed either 24 hours

or 48 hours post-treatment for tissue collection. For long term UVB experiments,

mice were treated 3 times a week over a 25 week period unless advised otherwise

by a veterinarian. The mice were sacrificed 24 hours after their last treatment for

tissue collection. For all experiments, a minimum of 3 biological replicates were

used per mouse line or condition unless otherwise stated.

2.1.7 Bromodeoxyuridine (BrdU) tissue labelling

For BrdU labelling, mice were injected via the intraperitoneal route with 50 mg

of BrdU (Sigma Aldrich) per kg body weight. The mice were then sacrificed 2

hours post-injection for tissue collection.
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2.2 Isolation of primary keratinocytes from

mouse skin

Primary mouse keratinocytes were isolated from shaved dorsal skin of transgenic

and non-transgenic mice. The dorsal skin was removed and washed in 10% (v/v)

betadine solution (20ml in 180ml sterile water), followed by one wash in 70% (v/v)

ethanol and two washes in 1X Phosphate Buffer Saline (PBS) (PAA Laborato-

ries). The dermal side of the skin was thoroughly scraped with a scalpel to remove

excess fat. In order to separate the dermis from the epidermis, the tissue was

trypsinized for 2 hours at 37◦C floating epidermal side up in 0.25% (v/v) trypsin

without EDTA (Invitrogen). The epidermis was subsequently scraped from the

dermis, cut into small pieces and re-suspended in 30 ml of FAD(-Ca) medium [1

part Ham’s F12 medium, 3 parts Dulbecco’s modified Eagle’s medium (DMEM),

1.8x10−4M adenine] (custom made by PAA Laboratories) supplemented with 10%

fetal calf serum (FCS) (Sigma Aldrich) and a cocktail of 0.5µg/ml hydrocortisone

(Fisher Scientific), 5µg/ml insulin (Sigma Aldrich), 10−10M cholera toxin (Enzo

Life Sciences) and 10ng/ml epidermal growth factor, EGF (Peprotech), as previ-

ously described [Jensen et al., 2010]. The cell suspensions were filtered through

a 70µm cell strainer (BD Biosciences) and centrifuged for 5 minutes at 1200 rpm

(Eppendorf, Centrifuge 5702). Cell pellets were resuspended in 3ml of complete

FAD(-Ca) media and kept on ice until further processing.
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2.3 In Situ Hybridisation (ISH)

2.3.1 ISH solutions

1) Maleic Acid Buffer (MAB), pH 7.5

11.6g Maleic Acid (Sigma Aldrich)

8.7g NaCl

MilliQ Water to 1 Litre

2) 10% Blocking Buffer

10% (w/v) Blocking reagent (Roche) in MAB pH 7.5

3) 1.5% Blocking Buffer

15% (v/v) 10% Blocking Buffer

85% MAB

4) Dot Blot Reaction Buffer pH 9.5

5.84g NaCl

10.02g MgCl2 6H2O

0.83g Tris HCl

11.58g Tris Base

MilliQ Water to 1 litre

5) PBS-Tween (PBT)

0.1% Tween 20 in 1X PBS

6) ISH Fixative

5ml 37% (v/v) Formaldehyde

200µl 0.5M EGTA (Sigma Aldrich)

45ml 1X PBS pH 7.4
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7) ISH Post-Fixative

4% (v/v) Formaldehyde

0.1% Glutaraldehyde

95.9% PBT

8) 20X Saline-Sodium Citrate (SSC)

0.3M NaCl

0.3M Sodium Citrate

9) ISH Hybridisation Mix

50% Formamide

1.3X SSC

5.0mM EDTA pH 8

50µg/ml tRNA (Sigma Aldrich)

0.2% Tween 20

0.1% Sodium Dodecyl Sulphate (SDS)

100µg/ml Heparin (Sigma Aldrich)

10) 10X ISH Tris-buffered-Saline (TBS) pH 7.4

80g NaCl

2g KCl

30g Tris Base

11) ISH TBS-Tween (TBST)

0.1 % (v/v) Tween 20 in 1X PBS

12) ISH Blocking Solution

2% Blocking Buffer

20% Goat Serum (previously decomplemented for 30 minutes at 56 ◦C)

Diluted in TBST
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13) NTMT

0.1M NaCl

0.1M Tris-HCl pH 9.5

1% Tween 20

0.05M MgCl2

2.3.2 Generation of DNA templates

The 1Kb target region of mSin3A was amplified from Wild-type mouse cDNA

using the following primers (Sigma Aldrich):-

mSin3A-ISH forward:- 5’-ATG AAG CGA CGT TTG GAT GAC-3’

mSin3A-ISH reverse:- 3’-CTT TGT AGA TGT CTG GTT GGC-3’

PCR was performed using the above primers using a C100 Thermal Cycler (Bio-

Rad). Each reaction contained 0.1µM of each primer, 2µl of cDNA (generated as

described below), 2X PCR Master Mix (Promega) and Milli-Q water (Millipore)

to achieve a total reaction volume of 25µl. Cycling conditions were as follows:-

94◦C for 3 minutes followed by 40 cycles of denaturing (94◦C for 30 seconds), an-

nealing (60◦C for 120 seconds) and extension (72◦C for 60 seconds). After the 40

cycles, there was another extension step (72◦C for 10 minutes) and the reactions

were then held at 4◦C until the samples were processed using gel electrophoresis as

described above. The PCR product was extracted using a Qiaquick Gel Extrac-

tion Kit (Qiagen). The purified PCR products were then ligated into the Strata-

clone PCR cloning vector (pSc-A-amp/kan) using the Strataclone PCR Cloning

Kit (Agilent Technologies) according to manufacturer’s guidelines. Colonies con-

taining the Sin3A insert were picked and cultured overnight in LB Broth Media,

prepared from LB Broth Powder according to manufacturer’s guidelines (Sigma

Aldrich). The plasmids were purified using the Qiaprep Spin Miniprep Kit (Qi-

agen) according to manufacture’s instructions. In order to amplify the quantity

of plasmid DNA, DH5α competent cells (Invitrogen) were transformed with the

plasmids containing the Sin3A probe sequence according to manufacturer’s guide-

lines and the plasmids were purified using a Plasmid Maxi Kit (Qiagen).
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2.3.3 Ribonucleic (RNA) probe generation

5 µg of plasmid containing the mSin3A probe sequence was linearised using either

EcoRV or SmaI restriction enzymes according to manufacturer’s guidelines (New

England Biolabs). Linearised plasmids were sequenced to ensure they contained

the correct target sequence. To generate DIG-labelled RNA probes, 1µg of lin-

earised template was transferred to an RNase-fee eppendorf tube and mixed with

4µl of 5x RNA polymerase Transcription buffer (Promega), 1µl of 0.75M DTT,

2µl of 10-X DIG-RNA labelling mix (Roche), 1µl of RNAsin (Promega) and 2µl

(20 units) of T7 or T3 RNA polymerase (Promega) and nuclease-free water to

give a final reaction volume of 20µl. Transcription of SmaI digested plasmids

using T3 RNA polymerase generated the sense probe and T7 RNA polymerase

generated the antisense probe. Transcription of EcoRV-digested plasmids with T3

RNA polymerase generated the sense probe while T7 RNA polymerase generated

the antisense probe. The samples were incubated at 37◦C for three hours and

then put on ice. While on ice, 2µl of Dnase I (Promega) and 1µl of RNasin was

added to each sample followed by a 1 hour incubation at 37 ◦C. The probe was

then purified using an RNeasy kit (Qiagen) and left at -20◦C overnight. Samples

were then centrifuged for 30 minutes at 13,000 rpm and the pellet was washed

with 70% (v/v) EtOH. After the wash step, the samples were centrifuged for an

additional minute at 13,000 rpm and any remaining EtOH was removed using a

pipette. The resulting pellet was resuspended in 100µl of 10mM EDTA and the

probe was stored at -20◦C.

2.3.4 Dot blot analysis

To check that the RNA probes were DIG-labelled a dot blot assay was performed

for each probe. 0.5µl of each probe was dotted onto a nitrocellulose membrane

(GE Healthcare) followed by cross-linking at 80◦C for 15-20 minutes. Membrane

equilibration was then performed by incubating the membrane in nuclease-free

water for 5 minutes followed by a 5 minute incubation in MAB pH 7.5. The

membrane was then blocked in 1.5% blocking buffer for 30 minutes and then

incubated for 45 minutes in an alkaline phosphatase-coupled anti-DIG (DIG-AP)

antibody (1:2000 dilution in 1.5% blocking buffer) (Roche). The membrane was
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then subjected to 3 x 10 minute washes in MAB and then incubated with Dot Blot

Reaction Buffer for 10 minutes. To develop, the membrane was then incubated

with NBT-BCIP (Roche) (1:1500 dilution in Dot Blot Reaction buffer) for 3 hours

and was then washed for 15 minutes in nuclease-free water to remove non-specific

staining.

2.3.5 Tissue preparation

Whole mounts of mouse tail epidermis were prepared as described in section 2.9.5

except for the fixation step. For ISH, the whole mounts were fixed overnight at

4◦C in ISH fixative. The whole mounts were then dehydrated by incubating for 5

minutes in 25% (v/v) MeOH in PBT, 5 minutes in 50% (v/v) in PBT, 5 minutes

in 75% (v/v) in PBT and finally 5 x 10 minute incubations in 100% MeOH. The

dehydrated tissues were then stored in 100% MeOH at -20◦C until ready for ISH.

2.3.6 Tissue rehydration, protein digestion and post-fixation

Epidermal whole mounts prepared as described in section 2.3.5 were rehydrated

by incubation for 5 minutes in 75% (v/v) MeOH in PBT, 5 minutes in 50% (v/v)

MeOH in PBT, 5 minutes in 25% MeOH in PBT and 2 x 5 minute washes PBT.

Following rehydration, the samples were incubated in PBT containing 10µg/ml

proteinase K for 50 minutes. Post-fixation was then performed by incubating

the samples in ISH Post-Fixative for 20 minutes. The samples were then washed

twice with PBT and once with a 1:1 (v/v) mixture of PBT and ISH Hybridis-

ation mix. The whole mounts were then transferred to ISH Hybridisation Mix.

Once the whole mounts sank, the ISH hybridisation was replaced with fresh ISH

hybridisation mix and the samples were stored at -20◦C overnight.

2.3.7 Hybridisation

The epidermal whole mounts were then incubated at 58◦C for a minimum of

3 hours after which, the ISH hybridisation mix was replaced with 1ml of fresh

hybridisation mix containing 50µl of DIG-labelled RNA probe. The samples were

incubtated with the probe overnight at 58◦C. The next day, the whole mounts
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were briefly washed twice with ISH hybridisation mix prewarmed to 58◦C followed

by 2 x 30 minute washes at 58◦C with ISH hybridisation mix pre-warmed to 58◦C.

Whole mounts were then washed in a 1:1 (v/v) solution of ISH Hybridisation Mix

and ISH TBST (pre-warmed to 58 ◦C) for 15 minutes at 58◦C.

2.3.8 Immuno-revelation

Samples were then briefly washed twice at room temperature in TBST followed

by a 15 minute wash in TBST with gentle agitation at room temperature. The

tissues were then blocked for 2 hours at room temperature using ISH Blocking

Solution followed by overnight incubation in DIG-AP antibody (1:2000 dilution

in ISH Blocking Solution). The antibody-labelled whole mounts were then briefly

washed 3 times with TBST and then washed 3 x 1 hour in TBST with gentle

agitation at room temperature. The next step was to wash the samples 2 x 10

minutes in freshly made NTMT on a roller followed by incubation in NBT-BCIP

solution (0.5mg/ml diluted in NTMT) at 37 ◦C until staining developed. Once

the staining had sufficiently developed, the samples were rinsed 3 times in PBT

and then post-fixed in ISH post-fixation buffer for 20 minutes with gentle agita-

tion. Whole mounts were then mounted using Mowiol prepared as described in

Section 2.9.6.
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2.4 Flow cytometry

2.4.1 Cell cycle analysis

For cell cycle analysis, mouse epidermal keratinocytes isolated following the pro-

tocol described above. Ice cold 70% (v/v) ethanol was added dropwise to the

resulting cell pellet while vortexing. The cells were incubated at 4◦C for at least

30 minutes to allow fixation to occur. The cells were then washed twice with 1X

PBS and the resulting cell pellet was resuspended with 200µl of 50µg/ml propid-

ium iodide (PI) (Sigma Aldrich). 50µl of 100µg/ml RNase stock solution (Sigma

Aldrich) was added and the cells were incubated at room temperature for 30

minutes. Following this incubation period, analysis was carried out on a CyAN

ADP analyzer (Beckman Coulter) with the help of Rachael Walker1. The cell

cycle profile was then analysed using FlowJo software (http://www.flowjo.com).

2.4.2 Sorting cells based on Integrin α6 expression

Mouse epidermal keratinocytes were isolated following the protocol described in

Section 2.2. Cell pellets were resuspended in PE-conjugated integrin α6 antibody

(1:500,Clone GoH3, eBiosciences) diluted in 0.2% (v/v) Bovine Calf Serum (BCS)

(Invitrogen) in 1X PBS. The cells were incubated for 45 minutes at 4◦C and

then washed twice in PBS (PAA Laboratories). The cells were resuspended in

0.2% (v/v) BCS (Invitrogen) in PBS containing 1µg/ml DAPI (4’,6-diamidino-

2-phenylindole, dihydrochloride) nucleic acid staining reagent (Sigma Aldrich).

Cell sorting was performed using a MoFlo high-speed sorter (Beckman Coulter).

DAPI was excited using a UV laser and PE was excited by a 488nm laser. Cells

were then gated using forward versus side scatter to eliminate debris. Cell doublet

discrimination was carried out using pulse width. The non-viable cells, stained

with DAPI, were then gated for their exclusion using a 450/50 nm filter. After

gating out dead cells, the cells were then sorted based on Integrin α6 PE levels

(fluorescence detected using a 580/30 nm filter) into Integrin α6 High, Integrin α6
Mid and Integrin α6 Low populations. The cells were sorted into 0.2% (v/v) BCS

1Flow Cytometry Facility, Wellcome Trust Centre for Stem Cell Research - University of
Cambridge
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in PBS. This work was performed in collaboration with Rachael Walker.

2.4.3 RNA isolation from sorted cells

Following sorting, the cells were transferred to RNase-free Eppendorf tubes and

centrifuged for 5 minutes at 2000 x g at 4◦C. After discarding the supernatant,

being careful not to lose the pellet, RNA was isolated using the Purelink-RNA

micro kit (Invitrogen) following manufacturer’s guidelines. Conversion of the

RNA to cDNA and quantitative PCR was carried out as described in Section 2.8.
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2.5 Cell culture

All mammalian cell culture was performed using aseptic technique under a lam-

inar flow hood. Cells were maintained at 37◦C in a humidified incubator with a

5% CO2 atmosphere. Cells were grown on plastic dishes or flasks of tissue culture

grade (Falcon). Medium renewal was performed every two to three days and,

when necessary cells were frozen in 1ml aliquots containing 106 cells per mililiter

in freezing medium (FCS and 10% (v/v) DMSO). Cell were first subjected to

freezing in a Mr. Frosty freezing container (Nalgene) and kept one day at -80◦C

following transfer to a liquid nitrogen container used as a cell bank.

2.5.1 Cell lines

COS-7 cells were obtained from ATCC and maintained in DMEM (Invitrogen)

supplemented with 10% FCS (Sigma-Aldrich), 100U/ml penicillium (PAA labo-

ratories), 100µg /ml streptomycin (PAA laboratories) and were split 1:5 once a

week according to ATCC guidelines.

3T3 J2 cells were generated from the J2 clone of random-bred Swiss mouse

3T3 cells which was selected to provide optimal feeder support of keratinocytes

[Rheinwald and Green, 1975]. These cells were maintained in DMEM (Invitro-

gen) supplemented with 10% (v/v) BCS (Invitrogen), 100U/ml penicillin (PAA

Laboratories), 100 µg/ml streptomycin (PAA Laboratories). Cells were passaged

when they reached near-confluency and re-seeded at a density of approximately

3,000/cm2. Cells were maintained for up to 12 passages after thawing, after

which a new stock of low passage number feeder cells was thawed to replace the

old stock. Feeder cells were mitotically inactivated by incubation with 4µg/ml

mitomycin C (Sigma Aldrich) for 2 hours at 37◦C to inhibit mitosis. The feeder

cells were then washed twice with PBS to remove the mitomycin C and incubated

in fresh FAD medium before used as feeders for keratinocytes. Cells were split

1:5 once a week.
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Primary mouse keratinocytes

Mouse keratinocytes were isolated as described above and were maintained on

J2-3T3 mouse feeder cells. These cells were maintained in complete FAD(-Ca)

medium (FAD-Ca + FCS + HICE) which included one part Ham’s F12 medium

and three parts Dulbecco’s modified Eagle’s medium (DMEM), supplemented

with 1.8 x 10−4M adenine (FAD); 10% (v/v) FCS (Sigma-Aldrich); 0.5µg/ml hy-

drocortisone (Fisher Scientific), 5µg/ml insulin (Sigma Aldrich), 10−10M cholera

toxin (Sigma Aldrich), 10ng/ml EGF (Peprotech) (HICE). FAD(-Ca) media with-

out phenol red was used to avoid erroneous activation of the ER domain. Before

passaging the keratinocytes, the J2-3T3 feeder cells were removed by incubation

in versene (Gibco) for 5 minutes. Keratinocytes were dissociated by incubation in

a 1:4 dilution of 0.25% v/v) trypsin solution with no EDTA (Invitrogen) in PBS

(PAA Laboratories) for 5 minutes. Complete FAD medium was added and the

cells were recovered by centrifugation at 1000 x g for 5 minutes. Keratinocytes

were resuspended in complete FAD(-Ca) medium and replated at a density of

4,000/cm2 on inactivated J2-3T3 feeder cells. After a number of weeks the ker-

atinocytes underwent spontaneous immortalisation and no longer needed to be

maintained on J2-3T3 mouse feeder cells.

2.6 Transient transfection of Cos-7 cells for acety-

lation analysis

For Myc co-immunoprecipitation and acetylation assays the following constructs

were cloned into eukaryotic expression vectors: estrogen receptor domain fused

to a Flag-tag (ER-Flag), human Myc fused to ER and Flag-tag (MycER-Flag)

(kindly provided by S. Aznar Benitah), and full length cDNA for SIN3A (kindly

provided by P. McDonel [McDonel et al., 2011]). The cytomegalovirus-driven

expression vector containing TIP60 was a kind gift from S. Khochbin [Legube

et al., 2002], GCN5 was kindly provided by S. Dent. Constructs were transfected

using Cos-7 cells which were grown in 150mm2 dishes and transfected at 50%
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confluence with the empty vector, or MYC, TIP60, GCN5 and SIN3A constructs

with Lipofectamine LTX and Plus Reagent (Invitrogen) and harvested after 24

hours.

2.7 Treatment of primary mouse keratinocytes

with tamoxifen

In order to activate Cre-recombinase activity in Sin3AF/F keratinocytes, cells at

70% confluency were treated with 200nM tamoxifen (Sigma-Aldrich) and then

24hrs after the intial treatment. To provide a control, Sin3AF/F keratinocytes

were treated with the equivalent volume of EtOH. Keratinocytes were harvested

48 hours after intitial treatment with tamoxifen or EtOH.

2.8 mRNA expression analysis

2.8.1 Extraction of total RNA from dorsal tissue

Samples from dorsal skin of transgenic and non-transgenic mice treated with 4-

OHT or acetone as described in Section 2.1.4 were taken and flash-frozen in liquid

nitrogen. Samples were stored in a liquid nitrogen dewar until further processing.

Frozen tissues were added to nalgene centrifuge 50ml tubes, previously rinsed with

RNAaseZap solution (Ambion) and containing 3ml of Trizol reagent (Invitrogen).

Tissues were macerated using a homogeneizer (this step, and all involving Trizol

usage were performed under a chemical hood) and the resulting suspensions were

incubated for 5 minutes at room temperature. Following this incubation period,

0.6ml of chloroform was added to each sample, the samples were then vortexed

for 15 seconds and subsequently incubated for 15 minutes at room temperature.

The samples were then subjected to centrifugation at 12000 x g for 30 minutes

at 4◦C. The aqueous supernatant was removed and RNA was kept for 30 minutes

on ice while precipitating in 1.5 ml of isopropanol. RNA pellets were collected

by centrifugation at 12000 x g for 30 minutes at 4◦C. The RNA pellets were

then washed with 500µl of 70% (v/v) ethanol by centrifugation at 12000 x g for 5
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minutes at 4◦C . RNA samples were air-dried and diluted in 50µl of Milli-Q water

and the concentration content was assessed using a Nanodrop spectrophotometer

(ND-1000, Nanodrop Technologies).

2.8.2 Reverse transcriptase PCR and quantitative real

time PCR (qPCR)

Total RNA samples were extracted as described in section 2.8.1. Double stranded

cDNA was generated from 1µg of RNA using 250ng random primers (Promega)

and Superscript III reverse transcriptase (Invitrogen) enzyme following manu-

facturer’s instructions. QPCR and analysis was conducted using the 7900HT

Real-Time PCR System (Applied Biosystems). The standard amplification pro-

tocol was used with pre-designed probe sets and TaqMan Fast Universal PCR

Master Mix (2) (Applied Biosystems) according to manufacturer’s instructions.

A list of the pre-designed probes used is shown in Table 2.1. A Gapdh probe

(4352932E) was used to normalize samples using the ∆Ct method. The signifi-

cance of quantitative data was tested using the unpaired, two-tailed Student’s T

test. The standard deviation of the mean of quantitative data was also calculated

and is graphically represented by error bars.

Gene Taqman Probe ID
Filaggrin Mm0176522 m1
Integrin α6 Mm01333831 m1
Involucrin Mm00515219 s1
Loricrin Mm01219285 m1
Myc Mm00487803 m1
Sin3a Mm00488255 m1
Transglutaminase1 Mm00505602 m1

Table 2.1: List of probes used for qPCR.
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2.8.3 Microarrays

Microarray experiments and analysis were performed in collaboration with Elis-

abete Nascimento1. Experimental procedures and analysis were performed as

described in [Nascimento et al., 2011].

1Frye Lab, Wellcome Trust Centre for Stem Cell Research - University of Cambridge
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2.9 Histology and immunostaining

2.9.1 Histology

Skin tissue samples from back and tail-skin was fixed overnight with 4% (w/v)

formaldehyde and then transferred to 70% (v/v) ethanol. Samples were paraffin

embedded and 5 to 10µm sections cut at the CSCR Histology facility with the

help of Margaret McLeish1. Sections were stained using standard haemotoxylin

and eosin (H&E) staining.

2.9.2 Immunohistochemistry

Paraffin sections prepared as described above were de-waxed and re-hydrated us-

ing standard protocols. Antigen retrieval was performed by covering the slides

with Vector antigen unmasking solution pH 6.0 (Vector Laboratories) and heat-

ing for 14 minutes in a microwave at full power. The slides were cooled for 5

minutes and then washed for 10 minutes with running tap water. Endogenous

peroxidase was blocked by incubating the slides in a hydrogen peroxide-methanol

solution for 10 minutes. Slides were then washed in 0.2% (v/v) Tween 20 in

PBS (PBST) twice with each wash lasting 3 minutes and then incubated in 2.5%

horse serum (ImmPressKit, Vector) for 20 minutes. Slides were then incubated

in primary antibody (Ki67; 1:100; SP6; Vector Laboratories) diluted in PBS for

60 minutes and then rinsed twice in PBST for 3 minutes. The sections were then

incubated in rabbit Immpress-labelled polymer Horseradish Peroxidase (HRP)

(Vector Laboratories) for 30 minutes and then 3 x 3 minute washes with PBST

were performed. Following a 5 minute incubation in chromagen (Vector DAB),

the slides were washed in running tap water for 1 minute, counterstained in

Haematoxylin for 30 seconds and then washed in running tap water for 2 min-

utes. The next step was to differentiate in 1% (v/v) acid alcohol for 5-10 seconds

and wash in water for 5 minutes. Slides were then immersed in 95% Industrial

Methylated Spirit (IMS) for 1 minute, 99% IMS for 2 x 3 minutes and immersed

in xylene for 2 x 3 minutes and then mounted using Mowiol.

1Histology Facility, Wellcome Trust Centre for Stem Cell Research - University of Cambridge
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2.9.3 Immunohistochemistry using Ventana Discovery

Automated immunohistochemistry was performed using the Ventana Discovery

(Ventana Medical Systems, Inc) on paraffin embedded tissues, following manu-

facturer’s guidelines. Antigen retrieval was performed using Ventana Cell Condi-

tioning 1 solution (Roche) for 40 minutes at 99◦C. Primary antibody incubation

was performed for 54 minutes at 37◦C. Secondary antibody incubation (Donkey

anti-rabbit or anti-goat Ig biotinylated, Jackson) was performed for 30 minutes at

37◦C. Antibody detection was performed using the DAB Map detection kit (Ven-

tana) and sections were counterstained using hematoxylin and bluing reagent

(Roche).The primary antibodies used were Sin3A (1:100; sc-767, Santa Cruz), c-

Myc (1:100; sc-769, Santa Cruz), Ki67 (1:100; SP6, Vector Laboratories), Cyclin

B1 (1:100; LS-C95967, Lifespan Biosciences), p53 (1:100; CM5, Vector Labora-

tories) and Uhrf1 (1:100; ab100810, Abcam).

2.9.4 Immuno-labelling of cryosections

Dorsal or tail skin samples were embedded in Optimal Cutting Temperature

(OCT) solution (Raymond A Lamb) and stored at -80◦C. 5-10µm cryosections

of mouse skin, cut with the help of Margaret McLeish, were fixed in 4% (w/v)

paraformaldehyde for 10 minutes at room temperature and then permeabilised

for 5 minutes with a 0.2% (v/v) solution of Triton X-100 at room temperature.

The sections were then blocked for 1 hour with blocking buffer containing 10%

(v/v) FCS, 0.05% (w/v) Na-azide in 1X PBS and incubated overnight at 4◦C

with the primary antibody (diluted in blocking buffer). After washing 3 times for

10 minutes with 1X PBS to remove excess antibody, the sections were incubated

for 60 minutes with the secondary antibody. Following the incubation period,

sections were washed 3 times for 10 minutes with PBS and then incubated with

DAPI DNA staining reagent (Sigma Aldrich) (1:1000 dilution) for 5 minutes.

Following 3 x 5 minute washes with 1X PBS, the sections were mounted using

Mowiol mounting media (Calbiochem) and stored at 4◦C.

The primary antibodies used were Sin3A (1:100; sc-767, Santa Cruz), Keratin14

(1:2000; PRB-155P Covance), Keratin10 (1:250; PRB-159P, Covance), Integrin
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α6 (1:250; GoH3 clone, Serotec), Involucrin (1:250; ERLI-3; a kind gift from Li [Li

et al., 2000]), Filaggrin (1:250; PRB-417-P, Covance), Cleaved Caspase 3 Asp175

(1:100; 9661, Cell Signaling Technology) and Mcm2 (1:100; LS B391, Lifespan

Biosciences). Secondary antibodies used were Rabbit IgG whole molecule Alexa

594 and 488 or Rat IgG whole molecule Alexa 594 and 488 (1:1000, Molecular

Probes).

2.9.5 Preparation and immuno-labelling of epidermal

whole mounts

Whole mounts of mouse tail epidermis were prepared and labelled as previously

described [Braun et al., 2003]. In brief, tail skin was slit lengthways using a

scalpel, peeled from the tail bone and incubated in 0.005M EDTA in 1X PBS at

37◦C for 4 hours. The epidermis was then peeled from the dermis using forceps

and the dermis discarded. The epidermis then fixed in 4% (w/v) paraformalde-

hyde for 2 hours and subsequently washed 3 times with 1X PBS. The fixed epider-

mal sheets were stored at 4◦C in 0.2% (w/v) Sodium Azide in PBS until further

processing.

For labelling, the fixed epidermal sheets were blocked and permeabilised by in-

cubation in PB buffer (0.5% skim milk powder, 0.25% fish skin gelatin (Sigma

Aldrich), 0.5% (v/v) Triton X-100 in TBS (0.9% (w/v) NaCl, 20mM HEPES,

pH 7.2) for 30 minutes. The tissue was then incubated with primary antibody

(diluted in PB buffer) overnight at room temperature with gentle agitation. The

epidermal whole mounts were then washed with PBST over a period of at least

four hours changing the buffer several times to remove excess antibody and unspe-

cific binding. The whole mounts were then incubated with secondary antibodies

using the same conditions and washed in the same way. The epidermal sheets

were then incubated with DAPI for 5 minutes followed by 3 x 5 minute washes

with PBS. The epidermal sheets were mounted using Mowiol mounting media

(Calbiochem) and stored at 4◦C. When detecting BrdU-positive cells, the epider-

mal sheets were incubated in 2N HCl at 37◦C for 20 minutes prior to incubation

with the primary (anti-BrdU) antibody.
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The primary antibodies used were Sin3A (1:100; sc-767, Santa Cruz), Ki67 (1:100;

SP6, Vector Labs), Keratin14 (1:250; PRB-155P Covance), BrdU (1:100; Abcam),

Cleaved Caspase 3 Asp175 (1:100; 9661, Cell Signaling Technology) and Integrin

α6 (1:250; GoH3 clone, Serotec). The secondary antibodies used were the same

as described in Section 2.9.4.

2.9.6 Preparation of Mowiol mounting media

Mowiol was prepared by using 24g analytical grade glycerol (Sigma Aldrich), 9.6g

Mowiol 4-88 (Sigma-Aldrich), 24ml distilled water and 48ml 0.2M Tris buffer, pH

8.5 were combined and homogeneized with a stir bar on a hot plate on 60◦C for at

least 4-5 hours until dilution of the Mowiol powder in the solution. The solution

was centrifuged at 5000 x g for 15 minutes and the supernatant was stored in

aliquots at -20◦C for a maximum of 12 months. Mowiol was used at 21-25◦C.
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2.10 β-Galactosidase analysis

To determine the pattern of recombination in the R26K14ERLacZ reporter line, a

5-bromo-4-chloro-indolyl- β-D-galactoside (X-Gal) protocol to detect β-galactosidase

activity was used. β-galactosidase analysis was performed in 20µm cryosec-

tions from OCT-embedded skin. Testes and salivary glands obtained from the

R26K14ERLacZ reporter line were embedded in OCT and 20µm cryosections cut

for this analysis.

2.10.1 Reagents

1) 0.1M phosphate buffer (pH 7.3)

2) Fix buffer:- 0.1M phosphate buffer (pH 7.3) supplemented with 5mM EGTA

(Sigma Aldrich), pH 7.3, 2mM MgCl2 and 0.2% (v/v) glutareldahyde (Sigma

Aldrich). Stored at 4◦C for up to 4 months.

3) Wash buffer:- 0.1M phosphate buffer (pH 7.3) supplemented with 2mM MgCl2.

Stored at 4◦ indefinitely.

4) X-gal staining buffer:- 0.1M phosphate buffer (pH 7.3) supplemented with 2mM

MgCl2, 5mM potassium ferrocyanide (K4Fe(CN)6-3H20 SigmaAldrich) and 5mM

potassium ferricyanide (K3Fe(CN)6 Sigma Aldrich). Stored at 4◦C covered in foil

as it is light sensitive. Before use, X-gal was added to a final concentration of

1mg/ml and filter sterilized to minimize the formation of crystals in the staining

reaction.

5) X-gal stock solution (50mg/ml):- 500mg of X-Gal (Sigma Aldrich) was resus-

pended using 10ml dimethylformamide (BDH) to generate the stock solution and

was stored at 20◦C.
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2.10.2 Experimental procedure

Sections from skin, testes or salivary glands were thawed in 1X PBS for 30 minutes

at room temperature. Slides were then incubated in Fix buffer for 15 minutes

followed by 2 x 5 minute washes in Wash buffer. X-Gal staining buffer containing

1mg/ml X-Gal was added to the slides, ensuring that the sections were fully

covered, in a humidified chamber. After covering the slides, the sections were

incubated overnight at 37◦C followed by 2 x 5 minute washes in Wash buffer.

Subsequently the sections were incubated in Fix buffer for 15 minutes at room

temperature and then mounted using Mowiol.
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2.11 Biochemistry

2.11.1 Protein extraction from mouse skin tissue

Samples of frozen tissue were added to 1.5ml of RIPA lysis buffer: 0.05% (w/v)

SDS (Sigma-Aldrich), 0.1% (w/v) Na-deoxycholate (Sigma-Aldrich), 0.5% NP-40

(v/v) (Sigma-Aldrich) in PBS containing tablets of complete Mini EDTA-free

Protease Inhibitor Cocktail (Roche) and mixed using a homogeneizer. The cell

lysate was transfered to 1.5ml microcentrifuge tubes and incubated on ice for

30 minutes. Samples were centrifuged at 4600rpm (Eppendorf 5424R) for 10

minutes at 4◦C.The supernatant was kept, but when still cloudy, due to skin

fat, it was centrifuged several times until it became completely clear. Protein

sample from the cell lysates was diluted in SDS sample buffer [40% (v/v) of

glycerol, 0.8% (v/v) of SDS and 40mM of DTT] after protein concentration was

quantified using the Pierce bicinchoninic (BCA) Protein Assay Kit, according

to the manufacturer’s instructions. Protein concentration was measured using a

Spectrophotometer and the Softmax program for protein quantification. Samples

were aliquoted and kept at -80◦C with no more than two cycles of freezing and

thawing.

2.11.2 Protein extraction from cell lines

Transfected cells lines or cells treated with cycloheximide (50µg/µl) (Sigma-

Aldrich) were lysed in RIPA buffer, (see section 2.11.1) and the protein content

was quantified using Pierce bicinchoninic (BCA) Protein Assay Kit, according to

the manufacturer’s instructions. Samples were aliquoted and kept at -80◦C with

no more than two cycles of freezing and thawing.

2.11.3 Western-blotting

Cell protein lysates were homogeneized in SDS sample buffer [40% (v/v) of glyc-

erol, 0.8% (v/v) of SDS and 40mM of DTT], containing bromophenol blue and

heated between 60-90 ◦C for 5 minutes before loading onto a stacker gel on top of

a 10% polyacrylamide (PAA) gel. The components of stacker gels and 10% PAA
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gels are as follows:-

10% PAA gel

40% PAA (Bio-Rad) 7.5ml

1.5M Tris pH 8.8 7.5ml

10% (w/v) SDS 0.3ml

10% (w/v) Ammonium Persulphate (APS) 300µl

Tetramethylethylenediamine (TEMED) 30µl

Autoclaved water 14.7ml

Stacker gel

40% PAA (Bio-Rad) 1.125ml

0.5M Tris pH 6.8 2.5ml

10% (w/v) SDS 0.1ml

10% (w/v) APS 100µl

TEMED 10µl

Autoclaved water 6.28ml

To determine band size, a protein ladder (Spectra Multicolor High Range Protein

Ladder, Thermo Fisher Scientific) was loaded into the first well of each gel. Gels

were run in SDS Running buffer [14g Glycine, 3g Tris base, 1g SDS diluted to

100ml in ultrapure water] at 200V for 40 minutes, after which the proteins were

transferred onto a nitrocellulose membrane (GE Healthcare) in Transfer buffer

[14g glycine, 3g of Tris-base diluted in 100ml of ultrapure water containing 10%

(v/v) methanol] for 2 hours at 4◦C. Membranes were blocked in 5% (w/v) non-fat

milk in TBST (0.05% (v/v) Tween-20 in TBS) for 1 hour at 21-25◦C and incu-

bated with primary antibody in blocking solution overnight at 4◦C. Primary anti-

bodies used detected either Myc (1:500 sc-764, N-262, Santa Cruz), Sin3A (1:500

sc-994, K-20, Santa Cruz), mouse monoclonal anti-acetyl-lysine (1:1000 Cell Sig-

nalling Technology) or rabbit polyclonal tubulin (1:2000 T3526, Sigma Aldrich).

The membranes were then washed 5 times in TBST and then incubated with

HRP-labeled secondary antibodies (1:5000 GE Healthcare) in blocking solution

for 1 hour at room temperature on a rocker. The membranes were then washed
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three times with TBST and the HRP was detected using the Amersham ECL

detection system (GE Healthcare). Luminescence was detected by exposing the

membrane to photographic film (Kodak) and the film was then processed using

an X-Ray film processer (Photon).

2.11.4 Co-immunoprecipitation assays

Cells, treated with tamoxifen or EtOH as described in Section 2.7, were lysed, on

ice, in lysis buffer consisting of 1X PBS without Ca2+ and Mg2+ (PAA Labora-

tories), 0.5% (v/v) NP-40, 0.1% (w/v) sodium deoxycholate, 0.05% (w/v) SDS,

and protease inhibitor tablets following the lysis step, lysates were centrifuged at

13,000rpm (Eppendorf 5424R) for 10 minutes at 4 ◦C and the supernatant was

then added to Protein G Dynabeads (Invitrogen) which had been pre-incubated

with 50 µg of rabbit polyclonal anti-Myc antibody (N-262,; Santa Cruz) for 2

hours at 4◦C. Following 2 hours incubation at 4◦C, the beads were washed five

times with lysis buffer and the immunoprecipitated protein was then eluted with

SDS sample buffer (Section 2.11.3) at 80◦C. The protein supernatant was col-

lected and ran in a polyacrylamide gel as described in Section 2.11.3.

2.11.5 Chromatin Immunoprecipitation (ChIP)

ChIP experiments and analysis were performed in collaboration with Elisabete

Nascimento1. Experimental procedures and analysis were performed as described

in [Nascimento et al., 2011].

1Frye Lab, Wellcome Trust Centre for Stem Cell Research - University of Cambridge

61



2. Material and Methods

2.12 Image acquisition

White field images were acquired using an Olympus IX80 microscope and a DP50

camera. Confocal images were acquired on a Leica TCS SP5 confocal microscope.

Z-stacks were acquired at 100 Hz with an optimal stack distance and 1024 x 1024

dpi resolutions. Z-stack projections were generated using the LAS AF software

package (Leica Microsystems). All the images were processed with Adobe Pho-

toshop CS4 software.

2.13 Quantification

The number of Ki67 or p53 positive cells were counted in randomly selected fields

of the same sized area from images of skin sections acquired as described above. 5

biological replicates of transgenic mice and appropriate controls were used unless

otherwise stated. The average number of Ki67/p53 positive cells in interfollicular

epidermis, sebaceous glands and hair follicles in transgenic mice and appropriate

controls was then calculated. The significance of quantitative data was tested

using the unpaired, two-tailed Student’s T test. The standard deviation of the

mean of quantitative data was also calculated and is graphically represented by

error bars.
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2.14 List of suppliers and distributors

Abcam, Cambridge, UK.

Ambion, Applied Biosystems, Foster City, CA, USA.

Applied Biosystems, Foster City, CA, USA.

BD Biosciences, Franklin Lakes, NJ, USA.

BDH, Hull, UK.

Beckman Coulter Instruments, Palo Alto, CA, USA.

Bio-Rad, Hercules, CA, USA.

Calbiochem, Darmstadt, Germany.

Cell Signaling Technology Inc, Danvers, MA, USA.

Covance Research Products, Cambridge Bioscience, Cambridge, UK.

Eppendorf, Histon, Cambridge, UK.

Enzo Life Sciences, Exeter, UK.

Falcon, part of Nunc A/S, Roskilde, Denmark.

Fisher Scientific, Loughborough, Leicestershire, UK.

GE Healthcare, Buckinghamshire, UK.

Invitrogen, Paisley, UK.

Jackson ImmunoResearch Laboratories, Inc, Newmarket, UK.

Leica Microsystems, Milton Keynes, UK.

Lifespan Biosciences, Stratech, Newmarket, UK.

Kodak, Hemel Hempstead, UK.

Millipore, Harrow, Middlesex, UK.

Molecular Probes, Leiden, Netherlands.

Nalgene, Thermo Fisher Scientific, Waltham, MA, USA.

Nanodrop Technologies, Thermo Fisher Scientific, Waltham, MA, USA.

New England BioLabs, Ispwich, UK.

PAA Laboratories GmbH, Pasching, Austria.

Peprotech EC Ltd, London, UK.

Photon, Swindon, UK.

Pierce, Thermo Fisher Scientific, Waltham, MA, USA.

Promega UK Ltd, Southampton, UK.

Qiagen Ltd, Crawley, UK.
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Roche, Lewes, East Sussex, UK.

Santa Cruz Biotechnology, Heidelberg, Germany.

Serotec, Oxford, UK.

Sigma-Aldrich, St. Louis, MO, USA.

Stratagene, Agilent Technologies, Santa Clara, CA, USA.

Syngene UK, Cambridge, UK.

Thermo Fisher Scientific, Waltham, MA, USA.

Tyler Reseach Corporation, Edmonton, Canada.

Vector Laboratories, Peterborough, UK.

Ventana Medical Systems, Inc, Roche, Lewes, East Sussex, UK.
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Chapter 3

In vivo analysis of Sin3A

function in the epidermis

3.1 Endogenous expression of Sin3A in the epi-

dermis

The aims of my project were to determine whether Sin3A has a role to play in

epidermal homeostasis. However, the epidermal compartments in which Sin3A is

expressed was unknown. To assess endogenous expression of Sin3A at the mRNA

level in epidermis, I generated DIG-labelled RNA probes and performed in situ

hybridisation in whole mounts of Wild-type tail epidermis. Importantly, staining

was not detected using the sense (control) Sin3A probe (Figure 3.1A). Perform-

ing in situ hybridisation using the anti-sense Sin3A probe, thus targeting Sin3A

mRNA, revealed that Sin3A expression occurs in all epidermal compartments-

the interfollicular epidermis, sebaceous gland and the hair follicle (Figure 3.1B).

To determine Sin3A localisation at the protein level, immunofluorescence was

performed in back and tail skin (Figure 3.2). Sin3A protein expression was ob-

served throughout the interfollicular epidermis, the hair follicle and the sebaceous

gland in the back skin (Figure 3.2A). To more closely determine in which layers of

the interfollicular epidermis the Sin3A protein is expressed I performed immuno-

staining in tail epidermis as the basal and suprabasal layers can be more clearly
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Figure 3.1: Endogenous expression of Sin3A mRNA. Whole mounts of tail epi-
dermis were prepared from Wild-type tail skin and in situ hybridisation was performed
using DIG-Labelled RNA probes. A) in situ hybridisation in Wild-type whole mounts
of tail epidermis using control (sense) Sin3A probe. Yellow dashed lines outline the
hair follicles and sebaceous glands. B) in situ hybridisation in Wild-type whole mounts
of tail epidermis using anti-sense Sin3A probe. HF=hair follicle SG=sebaceous gland
IFE=interfollicular epidermis. Scale Bar, 100 µm.
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Figure 3.2: Endogenous expression of Sin3A protein. Sin3A expression was
detected in sections of back or tail skin from Wild-type mice using immunofluorescence.
A) Sin3A expression (green) in Wild-type back skin, counter-stained with DAPI (blue).
B) Sin3A expression (red) in Wild-type tail skin counter-stained with DAPI (blue). The
basal layer of the interfollicular epidermis was visualised by detecting the expression of
the marker Integrin α6 (Itgα6) (green). Scale Bars, A) 75 µm B) 50 µm.
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Figure 3.3: mRNA expression levels of Sin3A in undifferentiated and dif-
ferentiated compartments of the interfollicular epidermis. Wild-type ker-
atinocytes were isolated from back skin and then stained for the surface marker Integrin
α6. The cells were then sorted into Integrin α6 high and low populations via flow cy-
tometry. (A) qPCR confirmation of Integrin α6 expression (Itgα6) in Integrin α6 high
and Integrin α6 low populations. (B) qPCR analysis of Sin3A expression in Integrin
α6 high and Integrin α6 low populations. Higher expression of Sin3A is observed in
the Integrin α6 high population, which corresponds to undifferentiated cells of the IFE.
Integrin α6 is predominantly expressed in the basal cells of the IFE, however, as lower
levels of this Integrin are expressed in the outer root sheath of the HF [Watt, 2002],
samples analysed could potentially include HF cells. Error bars indicate standard devi-
ation (n=3 biological replicates averaged over 3 technical replicates of each flow sorted
population). * P<0.05.
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visualised in this tissue. Sin3A is expressed in the basal layer and throughout the

suprabasal layers, with Sin3A-positive nuclei being enriched towards the basal

layer of the interfollicular epidermis (Figure 3.2B). To determine if this was true

at the mRNA level, I stained keratinocytes isolated from Wild-type skin for In-

tegrin α6 and then sorted the cells into Integrin α6 high (basal, undifferentiated)

populations and Integrin α6 low (differentiated) populations and then determined

Sin3A expression levels in these populations. Analysis of Sin3A RNA expression

in undifferentiated cells (Integrin α6 high) and differentiated cells (Integrin α6

low) confirmed higher expression levels of Sin3A in undifferentiated cells (Figure

3.3).

Taken together, these results demonstrate that Sin3A is expressed throughout

the different epidermal compartments at the mRNA and protein level. Sin3A

is expressed throughout hair follicles, including the bulge region, and sebaceous

glands. It appears that in the interfollicular epidermis, Sin3A expression is at its

highest in the undifferentiated cells, located in the basal layer of the epidermis.

Sin3A’s widespread expression in the epidermis further indicated that Sin3A could

have a key role to play in skin. To analyse the functional roles of Sin3A in the

epidermis I generated conditional knockout mouse models for Sin3A in skin.
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3.2 Targeting Sin3A deletion to bulge stem cells

in vivo

Sin3A had been demonstrated to be a key factor in development and other cellu-

lar processes such as apoptosis and proliferation, but nothing was known about

the role of Sin3A in skin stem cell homeostasis. To determine whether Sin3A has

a function in this process, I first decided to focus on stem cells in the bulge region

of the the hair follicle, which is the best characterised stem cell population in

the skin to date. To pursue this aim I decided to conditionally delete Sin3A in

bulge stem cells. As K19 is known to be a marker of bulge stem cells [Beck and

Blanpain, 2012] (Figure 3.4), I targeted Sin3A deletion to K19-expressing cells in

the skin.

In order to inducibly and conditionally delete Sin3A in bulge stem cells, I crossed

mice harbouring Sin3A floxed alleles (Figure 3.5) with mice expressing CreER

under the control of the K19 promoter, ultimately resulting in the generation

of the K19ERSin3AF/F line. By using this strategy, I now had the appropriate

mouse model to delete Sin3A specifically in K19-expressing cells upon topical

application of 4-OHT to the skin. As such, my aim was to characterise the im-

pact of loss of Sin3A in hair follicle stem cells by analysing the phenotype in

K19ERSin3A∆/∆ skin.

At the initiation of 4-OHT/ acetone application the mice used were 6 weeks old

and were culled at 10 weeks old. At this stage, the hair cycle in the back skin is

synchronised and HFs in this region should be in the telogen phase of the hair

cycle [Müller-Röver et al., 2001]. Following the four weeks of treatment with 4-

OHT, K19ERSin3A∆/∆ mice were phenotypically indistinguishable from acetone-

treated littermates (K19ERSin3AF/F). To examine the impact of Sin3A deletion

on hair follicle homeostasis, I initially analysed skin structure in K19ERSin3AF/F

and K19ERSin3A∆/∆ mice using H&E staining. Histological analysis of skin sec-

tions demonstrated no difference between hair follicles in K19ERSin3A∆/∆ back

skin (Figure 3.6B) in comparison to controls (Figure 3.6A). Likewise, hair folli-

cles in K19ERSin3A∆/∆ tail skin (Figure 3.7B) were indistinguishable from those
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Figure 3.4: Schematic representation of K19 expression in the bulge region
of the hair follicle. The region of the hair follicle in which K19 is expressed is
highlighted.

Figure 3.5: Schematic overview of Sin3A floxed alleles. Red triangles represent
LoxP sites. Black bars represent exons. In the Sin3A floxed allele, exon 4 is flanked by
LoxP sites. Upon recombination, this leads to a deletion after exon 3, which corresponds
to a region in the protein prior to all known functional domains.
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observed in control tails (Figure 3.7A).

These results indicated that in the time-frame of treatment used, there was not an

obvious phenotype when Sin3A was deleted from the hair follicle. Despite this, I

believed that Sin3A deletion could still impact the bulge stem cell compartment,

therefore I further characterised the K19ERSin3A∆/∆ phenotype.
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Figure 3.6: K19ERSin3A∆/∆ back skin hair follicles are phenotypically nor-
mal. Sections of back skin treated with either A) acetone (K19ERSin3AF/F) or B)
4-OHT (K19ERSin3A∆/∆) were stained using H&E. Black lines highlight the bulge
region. Scale Bar, 100 µm.

Figure 3.7: K19ERSin3A∆/∆ tail skin hair follicles are phenotypically nor-
mal. Sections of tail skin treated with either A) acetone (K19ERSin3AF/F) or B)
4-OHT (K19ERSin3A∆/∆) were stained using H&E. Black lines highlight the bulge
region. Scale Bar, 100 µm.
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3.2.1 Sin3A is dispensable for bulge stem cell homeostasis

As Sin3A deletion has been shown to induce apoptosis in other cell types [Mc-

Donel et al., 2011; Payne et al., 2010], I wanted to determine if deletion of Sin3A in

bulge stem cells results in an induction of apoptosis. However, initial experiments

indicate that this does not appear to be the case when Sin3A is deleted in the

bulge stem cell population. As demonstrated by staining to detect cleaved Cas-

pase 3, apoptosis does not appear to be erroneously induced in K19ERSin3A∆/∆

hair follicles (Figure 3.8B), with levels of active Caspase 3 being indistinguishable

from those observed in control hair follicles (Figure 3.8A). However, Caspase 3 is

not a definitive apoptosis marker and further experiments are necessary to fully

determine that apoptosis is not induced upon loss of Sin3A.

Figure 3.8: Loss of Sin3A in bulge stem cells does not induce apoptosis.
Whole mounts of tail epidermis were prepared from K19ERSin3AF/F skin treated with
either A) acetone (K19ERSin3AF/F) or B) 4-OHT (K19ERSin3A∆/∆) and were stained
for cleaved Caspase 3 (green), which as a marker of apoptosis, and counter-stained using
DAPI (blue). Dashed white lines outline hair follicles and sebaceous glands. Scale Bar,
100 µm.

In a parallel experiment in which I deleted Sin3A in the basal layer of the inter-

follicular epidermis, which will be discussed in Section 3.4.3, I found that Sin3A

deletion leads to increased proliferation. Due to these observations I next de-
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cided to determine whether Sin3A-depletion in bulge stem cells had an impact

on proliferation in this region. I first examined proliferation in back skin hair

follicles by labelling sections of back skin from either K19ERSin3AF/F (Figure

3.9A) or K19ERSin3A∆/∆ mice (Figure 3.9B) for the proliferation marker Ki67.

Quantification of the number of Ki67 cells in hair follicles (Figure 3.10) revealed

that there was no significant difference in the number of proliferating cells when

comparing samples from K19ERSin3AF/F and K19ERSin3A∆/∆ skin. Labelling

for Ki67 in whole mounts of tail epidermis prepared from either K19ERSin3AF/F

(Figure 3.11A) or K19ERSin3A∆/∆ skin (Figure 3.11B) also demonstrated no

difference in bulge stem cell proliferation when Sin3A is deleted.

Figure 3.9: Loss of Sin3A in bulge stem cells does not induce proliferation in
back skin hair follicles. Sections of back skin were prepared from K19ERSin3AF/F

mice treated with either A) acetone (K19ERSin3AF/F) or B) 4-OHT (K19ERSin3A∆/∆)
and were stained for the proliferation marker Ki67 (brown). Black lines highlight the
bulge region. Scale Bar, 100 µm.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.10: Levels of Ki67 postive cells in K19ERSin3A∆/∆ hair folli-
cles are normal. The average number of Ki67-positive cells in hair folllicles from
K19ERSin3AF/F and K19ERSin3A∆/∆ mice was calculated and is represented graphi-
cally. There was no significant difference between the two values (n.s, P>0.05). Error
bars indicate standard deviation (n=3 biological replicates averaged over 3 hair follicles
of each condition).

Figure 3.11: Loss of Sin3A in bulge stem cells does not induce prolifer-
ation in tail skin hair follicles. Whole mounts of tail epidermis were prepared
from K19ERSin3AF/F skin treated with either A) acetone (K19ERSin3AF/F) or B)
4-OHT (K19ERSin3A∆/∆) and were stained for the proliferation marker Ki67 (green)
and counter-stained using DAPI (blue). Dashed white lines outline hair follicles and
sebaceous glands. Scale Bar, 100 µm.
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3. In vivo analysis of Sin3A function in the epidermis

These findings demonstrate that upon the loss of Sin3A, neither proliferation or

apoptosis is induced in the bulge stem cell population. Thus it could be considered

that Sin3A is dispensable for bulge stem cell homeostasis. At this point, I decided

to switch focus to examine the possibility that Sin3A has a role in maintaining

homeostasis in the interfollicular epidermis.
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3. In vivo analysis of Sin3A function in the epidermis

3.3 Conditional deletion of Sin3A in the basal

layer of the epidermis

3.3.1 Conditional deletion of Sin3A in undifferentiated

cells during development leads to embryonic lethal-

ity

In Section 3.1, I determined that Sin3A is expressed throughout the epidermal

compartments and in the interfollicular epidermis, Sin3A expression is enriched

in basal, undifferentiated cells. In order to address the role of Sin3A in regulating

epidermal homeostasis, I generated a transgenic mouse model in which I condi-

tionally deleted Sin3A in undifferentiated cells of the epidermis (K14Sin3A line).

This was accomplished by crossing transgenic mice expressing Cre-recombinase

under the control of the human K14 promoter with mice harbouring Sin3A floxed

alleles (Figure 3.5). The aim of the K14Sin3A line was to generate K14Cre posi-

tive mice that were homozygous for the Sin3A floxed allele. However, from a total

of 95 mice born, no mice of this genotype were detected (Table 3.1). This data

strongly suggests that the phenotype caused by deletion of both Sin3A alleles in

K14 positive cells is embryonic lethal.

Genotype Sin3AWT/WT Sin3AWT/F Sin3AF/F

K14Cre Positive 18 62 0

K14Cre Negative 7 5 3

Table 3.1: Quantification of K14Sin3A genotypes.

78



3. In vivo analysis of Sin3A function in the epidermis

3.3.2 Conditional loss of a single allele of Sin3A in the

basal layer of the epidermis does not lead to an epi-

dermal phenotype

I wanted to determine the impact of the loss of a single allele of Sin3A in the

epidermis as there was the possibility that this could cause a disruption to epi-

dermal homeostasis. As such I performed histological analysis of back and tail

skin obtained from K14Sin3AWT/∆ mice using samples from control littermates

as a comparison. Back and tail skin obtained from K14Sin3AWT/∆ mice was phe-

notypically indistinguishable from back and tail skin obtained from the control

littermates (Figure 3.12). I contemplated that this lack of phenotype could be due

to the short time-frame of Sin3A deletion and that a phenotype could potentially

be observed in older mice. Consequently I analysed skin obtained from mice that

were over 12 months of age (Figure 3.13, 3.14). However, even after this extended

time period, K14Sin3AWT/∆ back (Figure 3.13) and tail skin (Figure 3.14) was

phenotypically indistinct from control skin. These results indicated that epider-

mal homeostasis was not disrupted by the loss of a single allele of Sin3A from

undifferentiated epidermal cells.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.12: Conditional loss of a single allele of Sin3A does not lead to an
epidermal phenotype. Histological analysis using H&E staining in sections of back
skin (top panels) and tail skin (bottom panels) obtained from control mice (left panels)
or K14Sin3AWT/∆ (right panels). These images demonstrate that K14Sin3AWT/∆ skin
is phenotypically indistinct from control skin. Scale Bars, 100 µm.
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Figure 3.13: Loss of a single allele of Sin3A in dorsal skin for more than
12 months does not lead to an epidermal phenotype. Histological analysis
using H&E staining in sections of A) control back skin and B) K14Sin3AWT/∆ back
skin obtained from mice that were over 12 months of age. These images demonstrate
that K14Sin3AWT/∆ back skin is phenotypically indistinct from control skin after an
extended time period. Scale Bar, 100 µm.

Figure 3.14: Loss of a single allele of Sin3A in tail skin for more than
12 months does not lead to an epidermal phenotype. Histological analysis
using H&E staining in sections of A) control tail skin and B) K14Sin3AWT/∆ tail skin
obtained from mice that were over 12 months of age. These images demonstrate that
K14Sin3AWT/∆ tail skin is phenotypically indistinct from control skin after an extended
time period. Scale Bar, 200 µm.
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3. In vivo analysis of Sin3A function in the epidermis

3.4 Sin3A is essential for the maintenance of

epidermal homeostasis

3.4.1 Inducible, conditional deletion of Sin3A from the

basal layer of the epidermis leads to a severe phe-

notype

As K14Sin3A∆/∆ mice were not born and K14Sin3AWT/∆ are phenotypically nor-

mal, this mouse model was not useful for analysing Sin3A function in adult skin.

Consequently, a new breeding strategy was undertaken in which mice with floxed

Sin3A alleles were crossed with K14CreER mice to generate the K14ERSin3AF/F

mouse line thus allowing temporal control over Sin3A deletion. Upon topical ap-

plication of 4-OHT to the skin of K14ERSin3AF/F mice, Sin3A can be deleted in

all undifferentiated epidermal cells. This approach meant that loss of Sin3A could

be analysed in the adult epidermis in order to gain insights into Sin3A function

in epidermal homeostasis.

To confirm loss of Sin3A in K14-positive cells, expression of Sin3A was anal-

ysed at the RNA and protein level. Analysis of RNA expression levels via qPCR

confirmed a reduction in Sin3A expression of treated K14ERSin3A∆/∆ mice rel-

ative to controls (Figure 3.15). As Sin3A was deleted only in K14-positive cells,

and RNA was isolated from a whole skin preparation, residual Sin3A expression

is detected. Sin3A expression was also observed to be lost from the nuclei of

K14 positive cells in the interfollicular epidermis of both back and tail skin of

K14ERSin3A∆/∆ mice (Figure 3.16).
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.15: Confirmation of depletion of Sin3A RNA in K14ERSin3A∆/∆

skin. RNA was isolated from back skin of control and K14ERSin3A∆/∆ mice and
converted to cDNA. Sin3A expression was analysed via qPCR confirming a reduction
of Sin3A RNA expression in K14ERSin3A∆/∆ skin. Error bars indicate standard de-
viation (n=3 biological replicates averaged over 3 technical replicates). * P<0.0005.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.16: Confirmation of depletion of Sin3A protein in K14ERSin3A∆/∆

skin. Sin3A protein was visualised via immunofluorescence in control back skin sections
(upper left and middle panels) and tail whole mounts (upper right panel). Sin3A protein
is deleted efficiently from the nuclei in K14ERSin3A∆/∆ back skin (lower left and middle
panels) and tail whole mounts (lower right panel). Sin3A-expressing nuclei are depicted
by white arrows in upper panels and non-expressing nuclei by white arrows in lower
panels. Scale Bars, 50 µm.
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3. In vivo analysis of Sin3A function in the epidermis

After topical application of 4-OHT to a shaved region of the back skin of

K14ERSin3AF/F mice, a severe phenotype was observed. K14ERSin3A∆/∆ mice

can be distinguished from control littermates due to a number of features (Figure

3.17). Perhaps most importantly, areas of treated back skin were visibly much

thicker, thicker to the touch and had lost elasticity in K14ERSin3A∆/∆ mice in

comparison to control littermates (Figure 3.17A). Additionally, K14ERSin3A∆/∆

mice appeared to salivate excessively resulting in a wet coat below the mouth

(Figure 3.17B) and males had an enlarged testes region relative to control mice

(Figure 3.17C). These exciting results led to further characterization of the skin

phenotype observed in K14ERSin3A∆/∆ mice.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.17: Deletion of Sin3A in adult skin leads to a severe phenotype.
A) Back skin of K14ERSin3AF/F mice was shaved and subsequently treated with ace-
tone (control) or 4-OHT (K14ERSin3A∆/∆). The treated area of skin (indicated by
yellow arrow) in K14ERSin3A∆/∆ mice is increased in thickness relative to control. B)
K14ERSin3A∆/∆ mice salivate excessively relative to control mice, resulting in a wet
coat below the mouth (black arrow). C) K14ERSin3A∆/∆ mice have an enlarged testes
region relative to control mice.
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3. In vivo analysis of Sin3A function in the epidermis

3.4.2 Depletion of Sin3A in the basal layer of the epider-

mis in adult skin leads to epidermal hyperplasia

To begin characterisation of the skin phenotype in K14ERSin3A∆/∆ mice, 4-OHT

was applied to the back skin in a time course experiment (Figure 3.18). Wild-

type, K14ERSin3A∆/∆ and R26K14ERLacZ back skin was treated with 4-OHT

for 1 day, 5 days, 9 days or 15 days. The R26K14ERLacZ mouse was used as

a reporter to analyse activation of Cre-recombinase (Figure 3.18A-D lower pan-

els) and demonstrated homogenous recombination in the interfollicular epidermis

after 5 days of treatment with 4-OHT (Figure 3.18B lower panel). To analyse

the skin phenotype in these mice, skin samples were taken at each time point,

sectioned and stained using H&E. Interestingly, after 9 days of treatment with

4-OHT, K14ERSin3A∆/∆ skin exhibits an increase in thickness of the interfollic-

ular epidermis and an enlargement of the sebaceous glands (Figure 3.18C middle

panel) relative to Wild-type mice (Figure 3.18C upper panel). The increase in

thickness of the interfollicular epidermis became most pronounced after 15 days

of treatment (Figure 3.18D middle panel) in comparison to Wild-type controls

(Figure 3.18 upper panel). The results of this time course experiment demon-

strated that loss of Sin3A in the epidermis leads to an increase in the thickness

of the interfollicular epidermis and an enlargement of the sebaceous glands.

To determine if the loss of Sin3A also had an impact on tail epidermis, I treated

tail-skin of K14ERSin3AF/F with 4-OHT. Following 17 days of treatment with

4-OHT, the mice were sacrificed and tail skin samples collected and sectioned

for analysis. Histological analysis using H&E staining revealed the same pheno-

type in the tail skin as in back skin, with an enlargement of the interfollicluar

epidermis in K14ERSin3A∆/∆ mice (Figure 3.19B) relative to that observed in

Wild-type tail skin (Figure 3.19A). The causes driving this phenotype of epider-

mal hyperplasia required further investigation.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.19: Effect of Sin3A loss in murine tail epidermis. Samples of tail
skin of mice treated with 4-OHT were sectioned and stained using H&E. A) Tail skin
section from control mice B) Tail skin section from K14ERSin3A∆/∆ mice. Scale Bar,
100 µm.
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3. In vivo analysis of Sin3A function in the epidermis

3.4.3 Epidermal hyperplasia in Sin3A-depleted skin is

driven by increased proliferation and differentiation

To determine if the epidermal hyperplasia observed in K14ERSin3A∆/∆ skin was

driven by an increase in proliferation, back skin sections from 4-OHT-treated

control or K14ERSin3A∆/∆ mice were stained for the proliferation marker Ki67

(Figure 3.20). The average number of Ki67-positive cells was significantly higher

in the interfollicular epidermis (Figure 3.20C+G) and sebaceous glands (Figure

3.20F+H) in K14ERSin3A∆/∆ mice relative to controls (Figure 3.20A, B, D, F+

H). To determine if this was also true in tail skin, BrdU incorporation was anal-

ysed by immunolabelling of whole mounts of tail epidermis (Figure 3.21). There

was an increase in BrdU-positive nuclei in the interfollicular epidermis (Figure

3.21A) and the sebaceous glands (Figure 3.21B) of K14ERSin3A∆/∆ mice relative

to Wild-type mice. This provided the indication that proliferation was increased

in interfollicular epidermis and sebaceous glands in both adult back and tail skin

when Sin3A is lost.

To determine if the cell cycle was also impacted, cell cycle analysis was performed

using cells isolated from K14ERSin3AF/Fand K14ERSin3A∆/∆ back skin (Figure

3.22). Results from this analysis demonstrated that loss of Sin3A results in a

significant increase of cells in the S and G2/M phases of the cell cycle (Figure

3.22A). This was confirmed by the detection of an increase in positively stained

nuclei for key cell cycle factors: CyclinB1 (Figure 3.22B), whose expression peaks

during G2/M phase [Miyazaki and Arai, 2007], UHRF1 (Figure 3.22C), which is

required for cell cycle progression [Tien et al., 2011] and Mcm2 (Figure 3.22D),

which is important in S phase [Bochman and Schwacha, 2009]. The accumulation

of proteins involved in cell cycle progression and an increased number of cells in

S and G2/M phases of the cell cycle indicates that loss of Sin3A from adult skin

leads to an increase in actively cycling cells.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.20: Deletion of Sin3A in adult back skin leads to increased prolif-
eration. Samples of back skin of mice treated with 4-OHT were sectioned and stained
for Ki67. A-C) Ki67-positive cells in 4-OHT-treated Wild-type, K14ERSin3AWT/WT

and K14ERSin3A∆/∆ interfollicular epidermis (IFE). D-F) Ki67-positive cells in 4-
OHT-treated Wild-type, K14ERSin3AWT/WT and K14ERSin3A∆/∆ sebaceous glands
(SG). G) Quantification of Ki67-positive cells in the IFE. There is a significant in-
crease in Ki67-positive cells in K14ERSin3A∆/∆ IFE relative to controls. n.s p>0.05
* p<0.0006. H) Quantification of Ki67-positive cells in the SG. There is a significant
increase in Ki67-positive cells in K14ERSin3A∆/∆ SGs relative to controls. Error bars
indicate standard deviation (n=5 animals of each mouse line) n.s p>0.05 * p<0.01 **
p<0.005. Scale Bars, A-C, 25 µm D-F, 100 µm.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.21: Deletion of Sin3A in adult tail skin leads to increased prolifera-
tion in interfollicular epidermis and sebaceous glands. BrdU incorporation was
analysed in whole mounts of tail epidermis prepared from 4-OHT treated mice to iden-
tify cycling cells using antibodies for BrdU and K14. A) BrdU incorporation in whole
mounts of tail epidermis in Wild-type (WT) mice (left panel) and K14ERSin3A∆/∆

(right panel) indicates an increase in BrdU-positive cells in K14ERSin3A∆/∆ interfol-
licular epidermis. B) BrdU incorporation in whole mounts of tail epidermis in WT mice
(left panel) and K14ERSin3A∆/∆ (right panel) indicates an increase in BrdU-positive
cells in K14ERSin3A∆/∆sebceous glands. White arrows indicate BrdU positive nuclei
in interfollicular epidermis A) and sebaceous glands B). Scale Bars, A) 250 µm, B) 75
µm.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.22: Deletion of Sin3A impacts the cell cycle. A) Cell cycle profiles
of epidermal cells isolated from K14ERSin3AF/F and K14ERSin3A∆/∆ back skin. B)
Back skin sections from Wild-type and K14ERSin3A∆/∆ back skin stained for Cyclin
B1. C) Back skin sections from Wild-type and K14ERSin3A∆/∆ back skin stained for
UHRF1. D) Back skin sections from Wild-type and K14ERSin3A∆/∆ back skin stained
for Mcm2. Error bars indicate standard deviation (n=5 animals of each mouse line) *
p<0.04 ** p<0.055. Scale Bar, 100 µm.
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3. In vivo analysis of Sin3A function in the epidermis

I next asked whether the promotion of proliferation observed when Sin3A expres-

sion is lost from adult skin leads to an induction of differentiation in the inter-

follicular epidermis. By answering this question, I could also determine whether

Sin3A is necessary for the terminal differentiation program to be completed in

the interfollicular epidermis. To do this, I looked at the expression of markers of

both undifferentiated and differentiated cell layers in K14ERSin3A∆/∆ skin.

I first examined the impact of Sin3A loss on the undifferentiated, basal layer of the

interfollicular epidermis in K14ERSin3A∆/∆ skin. In Sin3A-depleted skin, there

is an increase in the thickness of the undifferentiated basal layer, as indicated by

an increase in the expression of the basal marker Integrin α6 in comparison to

control skin (Figure 3.23A-D). The increase in expression of markers of undiffer-

entiated cells when Sin3A expression is lost in adult skin was also true at the

RNA level as shown by qPCR analysis (Figure 3.23E).

Deleting Sin3A from adult skin also increases the thickness of suprabasal layers,

which contain differentiated cells (Figures 3.23, 3.24). There is an increase in

the size of the spinous layer, as indicated by K10 staining (Figure 3.23A+B) and

granular layer, as indicated by Involucrin staining (Figures 3.23C+D, 3.24) in

K14ERSin3A∆/∆ skin. RNA analysis indicated there is an increase in expression

levels of differentiation markers including the granular layer markers Filaggrin,

Loricrin and Involucrin [Blanpain and Fuchs, 2009; Eckert et al., 2004] and the

cornified envelope marker Transglutaminase1 [Candi et al., 2005] (Figure 3.23 E).

Examination of markers of undifferentiated and differentiated cells at the RNA

and protein level in Sin3A-depleted skin therefore demonstrates that there is an

increase in expression of markers of both compartments and there is expansion

of both differentiated and undifferentiated layers of the interfollicular epidermis.

This evidence shows that Sin3A is not required for terminal differentiation in the

interfollicular epidermis to be completed.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.24: Sin3A deletion induces increased differentiation in tail skin
Sections of tail skin from A) K14ERSin3AF/F and B) K14ERSin3A∆/∆ were labelled
using the suprabasal layer marker Involucrin (Ivl). Dashed white line represents the
basal layer. Scale Bar, 100 µm.
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3. In vivo analysis of Sin3A function in the epidermis

3.5 Sin3A deletion leads to proliferation in other

adult tissues

Deletion of Sin3A in adult skin induces proliferation, which contrasts results

from studies using mouse embryonic fibroblasts, in which Sin3A deletion results

in apoptosis and cell cycle arrest [Cowley et al., 2005; Dannenberg et al., 2005].

To determine if this effect was skin-specific or whether Sin3A deletion could pro-

mote proliferation in other tissues, I examined the impact of Sin3A deletion in

the testis and salivary glands. I chose to analyse the effect of Sin3A deletion in

the salivary glands and testis of K14ERSin3A∆/∆ mice as these tissues express

K14 and exhibited a phenotype as described above. Cre-recombinase activity fol-

lowing 4-OHT treatment was confirmed in the testis (Figure 3.25A) and salivary

gland (Figure 3.26A) using the R26K14ERLacZ reporter line.

To determine if proliferation was impacted in testis and the salivary gland, sec-

tions were stained for Ki67 and the number of Ki67 cells were quantified in each

tissue (Figures 3.25, 3.26). A small, yet significant, increase in Ki67-positive cells

was observed in the testis of K14ERSin3A∆/∆ mice (Figure 3.25D-F), indicating

that proliferation was induced. A more marked effect was observed in the salivary

gland, with nearly a 4-fold increase in the observed number of Ki67 positive cells

in K14ERSin3A∆/∆ mice relative to controls (Figure 3.26D-F). In similarity to

the effect in skin, loss of Sin3A in Keratin 14 positive cells of the testis and sali-

vary gland promotes proliferation. These results demonstrate that the induction

of proliferation as a consequence of losing Sin3A is not a skin-specific effect.
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.25: Sin3A deletion induces proliferation in testis. Sections of
K14ERSin3A∆/∆ testis were compared to acetone-treated control testis. A) LacZ stain-
ing indicating Cre-recombinase activity in the testis of R26K14ERLacZ mice B+C)
H+E stained testis sections in control and K14ERSin3A∆/∆ mice. D+E) Ki67 staining
in testis sections from control and K14ERSin3A∆/∆ mice. F) Quantification of Ki67
positive cells in control and K14ERSin3A∆/∆ testis. A significant increase in Ki67
positive cells in K14ERSin3A∆/∆ testis was observed. Error bars indicate standard
deviation (n=5 animals per condition). * p<0.05).
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3. In vivo analysis of Sin3A function in the epidermis

Figure 3.26: Sin3A deletion induces proliferation in salivary glands Sec-
tions of K14ERSin3A∆/∆ tsalivary gland were compared to acetone-treated control
salivary glands. A) LacZ staining indicating Cre-recombinase activity in the salivary
glands of R26K14ERLacZ mice B+C) H&E stained salivary glands sections in con-
trol and K14ERSin3A∆/∆ mice. D+E) Ki67 staining in salivary glands sections from
control and K14ERSin3A∆/∆ mice. F) Quantification of Ki67 positive cells in control
and K14ERSin3A∆/∆ salivary glands. A significant increase in Ki67 positive cells in
K14ERSin3A∆/∆ salivary glands was observed. Error bars indicate standard deviation
(n=5 animals per condition). * p<0.03).

99



3. In vivo analysis of Sin3A function in the epidermis

3.6 Sin3B is dispensable for epidermal home-

ostasis

Sin3A and Sin3B are the mammalian homologues of the Sin3 gene in yeast and

have highly conserved domains for example the HID and PAH domains [Laherty

et al., 1997]. As well as sharing homology, the Sin3A and Sin3B complexes share

a number of core components, binding partners and gene targets [McDonel et al.,

2009]. Due to the similarity between Sin3A and Sin3B, I hypothesised that Sin3B

could also have a key role to play in adult skin. To determine the importance of

Sin3B in adult skin, I generated the K14ERSin3BF/F mouse line, in which mice

expressing CreER under the control of the K14 promoter were crossed with mice

harbouring Sin3B floxed alleles. Upon topical application of 4-OHT to the skin

of K14ERSin3BF/F mice Sin3B was deleted in undifferentiated epidermal cells,

allowing me to begin to understand the nature of Sin3B’s role in skin.

Following 28 days of 4-OHT treatment, samples of back skin from K14ERSin3B∆/∆

mice were taken and analysed histologically (Figure 3.27). In this time-frame, no

skin phenotype was observed and K14ERSin3B∆/∆ back skin was not distinguish-

able from back skin from controls (Figure 3.27). This led to the conclusion that

although Sin3A is vital for epidermal maintenance, its homologue Sin3B appears

to be dispensable for epidermal homeostasis.

100



3. In vivo analysis of Sin3A function in the epidermis

Figure 3.27: Sin3B is dispensable for epidermal homeostasis. K14ERSin3AF/F

back skin was shaved and subsequently treated with acetone or 4-OHT for 28 days.
Sectioned back skin samples were stained using H&E. A) Section of control back skin
stained using H&E B) Section of K14ERSin3B∆/∆ back skin. Skin from controls and
K14ERSin3B∆/∆ are indistinguishable. Scale Bar, 200 µm.
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3. In vivo analysis of Sin3A function in the epidermis

3.7 Summary

To examine whether Sin3A has a role in stem cell homeostasis in the skin I first

generated a conditional mouse model in which Sin3A can be inducibly deleted in

the hair follicle bulge, which is a well-characterised reservoir for quiescent stem

cells [Li and Clevers, 2010]. This was achieved by crossing mice with floxed Sin3A

alleles with mice expressing inducible Cre-recombinase under control of the Ker-

atin 19 promoter (K19ERSin3AF/F) . Following induction of Sin3A deletion in

bulge stem cells via topical application of 4-OHT to the skin, I analysed the im-

pact of Sin3A deletion in this cell population. These initial findings demonstrated

that the loss of Sin3A from the quiescent bulge stem cell population does not in-

duce proliferation or apoptosis and K19ERSin3A∆/∆ hair follicles were phenotyp-

ically indistinguishable from K19ERSin3AF/F controls. At this stage, it appears

that Sin3A is dispensable for bulge stem cell homeostasis.

As stem cells in the bulge region of the hair follicle are well-characterised as a

quiescent stem cell population, it may be that Sin3A’s functions in preventing

excess proliferation are not revealed under normal homeostatic conditions. It

may be that the nature of Sin3A’s role in this region is revealed when the bulge

stem cell population is induced to proliferate. Prior experiments by other re-

search groups have revealed means by which proliferation of bulge stem cells can

be induced. For example, it is known that upon wounding of the epidermis, stem

cells localised in the hair follicle bulge proliferate and contribute to the wound

repair process [Ito et al., 2005] and it is possible that Sin3A could be an important

factor in this process. Additionally, application of TPA to the skin is known to

induce proliferation in label retaining cells in the bulge region of the hair follicle,

leading to a depletion of this cell population [Braun et al., 2003]. Following this

protocol and analysing the impact of induction of proliferation in the bulge stem

cell population in K19ERSin3A∆/∆ skin would also provide new insights as to

Sin3A function in this cell population. In the case that Sin3A is acting to repress

genes involved in proliferation in this cell population, it may be that the loss

of the label retaining cell population, which corresponds to bulge stem cells is

accelerated in the absence of Sin3A.
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3. In vivo analysis of Sin3A function in the epidermis

Further insights into the role of Sin3A could be gained by analysing whether

Sin3A is involved in the regulation of the hair cycle. The fact that mice undergo

two esssentially synchronised hair cycles [Shimomura and Christiano, 2010] could

be utilised to determine whether loss of Sin3A during specific phases of the hair

cycle impacts hair cycle synchronisity or progression. Another possibility would

be to delete Sin3A during postnatal hair morphogenesis, prior to entry into the

hair cycle to determine if hair cycle entry and progression is impacted. Further-

more, since bulge stem cells are specified during embryogenesis [Nowak et al.,

2008], inducing Sin3A deletion during embryonic development would reveal in-

sights as to whether Sin3A deletion can lead to a disruption to the bulge stem

cell population and hair morphogenesis.

However, at this stage I decided to focus on the role of Sin3A in undifferenti-

ated cells in the basal layer of the epidermis as the use of in vivo models in which

Sin3A is conditionally deleted yielded some highly interesting results that provide

new insights into Sin3A’s role in adult skin. Results from experiments using the

K14Sin3A line suggest that in similarity to the complete knockout, loss of both

alleles of Sin3A in K14-positive cells during embryogenesis leads to embryonic

lethality [Cowley et al., 2005; Dannenberg et al., 2005], however, this is likely to

be at a later stage than in these studies as K14 only begins to be expressed in

the embryo at around E9.75 [Byrne et al., 1994; Lu et al., 2005]. As K14 is ex-

pressed in other tissues, such as the liver, as well as skin during embryogenesis, it

is possible that Cre recombinase expression and therefore deletion of Sin3A could

be occurring in other important tissues. Consequently, embryonic lethality when

both alleles of Sin3A are deleted during embryogenesis using the K14Sin3A model

could be due to effects in other tissues rather than resutling from a skin-specific

defect [Byrne et al., 1994; Lu et al., 2005].

Loss of a single allele of Sin3A in K14-positive cells did not lead to a skin

phenotype in adult mice, meaning that I moved on to an inducible system.

K14ERSin3A∆/∆ mice exhibited a severe phenotype which presented as skin

thickening, excess salivation and an enlarged testis region in comparison to con-
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3. In vivo analysis of Sin3A function in the epidermis

trol mice. In contrast, K14ERSin3B∆/∆ mice exhibited no phenotype, indicating

that Sin3B, the paralog of Sin3A in mammalian systems, is not required in adult

skin. It is possible that since Sin3A and Sin3B are known to share common tar-

gets in other tissues, Sin3A could compensate for the loss of Sin3B in adult skin.

Sin3A must have independent roles to Sin3B in this tissue as the loss of Sin3A is

not compensated for by Sin3B. These exciting initial results indicated that Sin3A

has a key role to play in the epidermis and I further characterised the impact of

the loss of Sin3A in skin.

Histological analysis of K14ERSin3A∆/∆ skin showed that loss of Sin3A in adult

skin leads to epidermal hyperplasia. I then demonstrated that thickening of the

interfollicular epidermis and enlargement of the sebaceous glands was caused by

increased proliferation in the absence of Sin3A. This in itself was interesting, as

it contrasts results from Sin3A deletion in mouse embryonic fibroblasts, where it

results in apoptosis and cell cycle arrest [Cowley et al., 2005; Dannenberg et al.,

2005; McDonel et al., 2011]. I determined that this effect was not specific to skin

and that Sin3A deletion also led to a promotion of proliferation in other adult

tissues:- the testis and salivary glands.

The increase in proliferation in K14ERSin3A∆/∆ skin drives an increase in differ-

entiation. There is an increase in the size of the undifferentiated, basal layer of

the interfollicular epidermis and also in the differentiated, suprabasal layers (as

shown by markers of the spinous and granular layers). As all layers of the inter-

follicular epidermis were present and specified in the correct order, these results

indicate that Sin3A is not required for the terminal differentiation program to be

completed in interfollicular epidermis.

Taken together, results shown in this chapter demonstrate that Sin3A has a key

role to play in maintaining balanced epidermal homeostasis. It is clear that

in the absence of Sin3A, epidermal homeostasis is disrupted leading to an in-

crease in proliferation and differentiation. Interestingly, the phenotype observed

in K14ERSin3A∆/∆skin mirrors that observed in skin in which Myc is over-

expressed in K14 positive cells, as shown in the K14MycER mouse model [Arnold
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3. In vivo analysis of Sin3A function in the epidermis

and Watt, 2001; Waikel et al., 2001]. Given that Sin3A can bind to Myc targets

at the EDC and the Sin3A complex has a role in transcriptional repression, I hy-

pothesised that Sin3A could antagonise Myc function in the epidermis. If Sin3A’s

role is to abrogate Myc function via transcriptional repression, the phenotype in

K14ERSin3A∆/∆ skin could be driven by aberrant Myc activity. When Sin3A is

absent, Myc would be free to bind to its EDC targets, leading to their expres-

sion thus driving the phenotype of increased proliferation and differentiation. To

begin to determine if this was true, I next decided to analyse Myc activity in

K14ERSin3A∆/∆ skin.
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Chapter 4

Deletion of Sin3A in adult skin

leads to aberrant Myc activity at

the EDC

4.1 Sin3A as a repressor of Myc

4.1.1 Myc expression is increased in K14ERSin3A∆/∆ skin

In the previous chapter I demonstrated that the deletion of Sin3A in adult skin

leads to an increase in proliferation and differentiation, which is highly similar to

the phenotype observed when Myc is over-expressed in adult skin. This similarity

and the prior knowledge that Sin3A can bind to Myc’s targets at the EDC led to

the hypothesis that Sin3A could antagonise Myc function in the epidermis. To

test this hypothesis, I first decided to analyse Myc expression in K14ERSin3A∆/∆

skin, with the idea that if Sin3A acts to repress Myc, Myc levels may increase

in the epidermis when Sin3A is deleted. Staining for Myc in Wild-type and

K14ERSin3A∆/∆ skin revealed that there is an enrichment of nuclear Myc stain-

ing in the basal layer of the interfollicular epidermis in the absence of Sin3A

expression (Figure 4.1).

It has previously been shown that acetylation of Myc at specific lysine residues by

GCN5 and TIP60 increases stability of the Myc protein as well as its transacti-
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Figure 4.1: Myc expression increases in the absence of Sin3A in adult
skin. Sections of skin from 4-OHT-treated Wild-type and K14ERSin3A∆/∆ mice were
stained for Myc protein. A) Myc expression in Wild-type skin B) Myc expression in
K14ERSin3A∆/∆ skin. There is an enrichment in Myc staining at the basal layer in
these mice. Basal layer is indicated by dashed line. Scale Bars, 100 µm.

vation properties [Patel et al., 2004]. As the key enzymatic activity of the Sin3A

complex is mediated by histone deacetylases, I hypothesised that the Sin3A com-

plex could potentially deacetylate Myc, leading to a reduction in Myc stability.

Conversely, in the absence of Sin3A, Myc acetylation status could increase, lead-

ing to an increase in protein stability, which might explain the increase in Myc lev-

els observed in the basal layer of the interfollicular epidermis in K14ERSin3A∆/∆

skin.

To begin to examine whether this is true, I compared the acetylation levels of

Myc in epidermal cells isolated from K14ERSin3AF/F mice treated with EtOH

(control) or tamoxifen (K14ERSin3A∆/∆) (Figure 4.2). I first confirmed that

Sin3A protein is deleted in K14ERSin3A∆/∆ primary keratinocytes (Figure 4.2

top panel). I then performed immunoprecipiation for Myc and then western blots

for acetylated-lysine residues and Myc (Figure 4.2 middle and bottom panels).

There was an increase in Myc acetylation levels in K14ERSin3A∆/∆ cells rela-

tive to control cells (Figure 4.2 middle panels). Using ImageJ, this increase was

quantified as a 1.4-fold increase in Myc acetylation relative to total Myc levels in

K14ERSin3A∆/∆ cells in comparison to controls. This indicates that an increase

in Myc acetylation status and therefore Myc stability could cause an increase in
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Myc levels in K14ERSin3A∆/∆ skin.

Figure 4.2: Myc acetylation levels increase in the absence of Sin3A. Primary
keratinocytes were isolated from K14ERSin3AF/F and were treated with EtOH (vehicle
control) or tamoxifen (K14ERSin3A∆/∆). Protein was isolated from treated cells after
48 hours. Western blotting for Sin3A was performed using the whole cell lysate (WCL)
to confirm that Sin3A was deleted in tamoxifen-treated (K14ERSin3A∆/∆) cells (top
panel). Western Blots for acetylated lysines (Ac-Lys, middle panel) and total Myc
(bottom panel) were generated following immunoprecipitation of Myc.
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4.1.2 Sin3A-Myc interaction leads to deacetylation and

destabilisation of Myc

To further characterise the relationship between Sin3A and Myc, I tested whether

they interact at the protein level. In collaboration with Salvador Aznar Benitah,

FLAG-tagged MycER or FLAG-tagged ER constructs were introduced into 293T

cells. Following treatment with tamoxifen, it was found via co-immunoprecipitation

analysis that Sin3A binds to the FLAG-tagged MycER construct, but not with

FLAG-tagged ER construct (Figure 4.3). These results demonstrate that Myc

and Sin3A indeed interact in vitro. I then wanted to determine if this interaction

could lead to Myc deacetylation thus targeting Myc for degradation.

Figure 4.3: Sin3A and Myc interact. Cells expressing Flag-tagged MycER
(MycER-Flag) or Flag-tagged-ER (pCMV-ER-Flag) were treated with tamoxifen and
protein was isolated. Immunoprecipitation was performed using a Flag antibody and
western blots were produced using antibodies for Flag, Myc and Sin3A. Sin3A and
Myc co-immunoprecipitate with Flag-tagged MycER, but not Flag-tagged ER only,
indicating that Sin3A and Myc interact. See [Nascimento et al., 2011].
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In collaboration with Shobbir Hussain, I further examined the impact of Sin3A

on Myc acetylation and Myc stability. In agreement with prior work described

by the McMahon group [Patel et al., 2004], over-expression of the histone acetyl-

transferases GCN5 and TIP60 led to an increase in Myc acetylation in comparison

to controls (Figure 4.4). In contrast, when Sin3A was over-expressed in conjunc-

tion with GCN5 or TIP60, acetylation levels of Myc were decreased, indicating

that the Sin3A complex negates histone acetyl-transferase-mediated acetylation

of the Myc protein (Figure 4.4). To determine if this effect impacted Myc pro-

tein stability, we transfected cells with the same constructs and then inhibited

protein translation using cycloheximide (Figure 4.4). As expected, the half-life of

Myc is increased when Myc and GCN5 are co-expressed in comparison to when

Myc is expressed alone (Figure 4.5 top 3 panels). Interestingly, when Sin3A is

over-expressed in conjunction with GCN5, there is a reduction in the half-life of

the Myc protein (Figure 4.5 bottom panel). Taken together, these results demon-

strate that Sin3A and Myc can interact and that this interaction targets Myc for

degradation via de-acetylation of the Myc protein.
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Figure 4.4: Sin3A leads to de-acetylation of Myc. Cells were transfected with the
following constructs: Empty Vector (Ev), Myc and empty vector, Myc and GCN5, Myc
and TIP60, Myc, GCN5 and Sin3A or Myc GCN5. Protein was extracted and western
blots were performed to check protein levels of Myc, GCN5, TIP60 and Sin3A. Myc
was immunoprecipitated (IP:Myc) and acetylated-lysine (Ac-Lys) levels were analysed
via western blot. Over-expression of Sin3A blocks Myc acetylation mediated by the
histone acetyl-transferases GCN5 and TIP60. See [Nascimento et al., 2011].
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Figure 4.5: Sin3A reduces Myc protein stability. Cells were transfected with the
following constructs: Empty Vector (Ev), Myc and empty vector (MycEV), Myc, GCN5
and empy vector (MycGCN5EV) or Myc, GCN5 and Sin3A (MycGCN5Sin3A). Fol-
lowing cycloheximide treatment for the number of hours (h) indicated, protein was ex-
tracted and western blots to detect Myc protein levels were performed. Over-expression
of Sin3A leads to a reduction of Myc levels over time. Asterisks denote non-specific
bands. See [Nascimento et al., 2011].
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4.2 Loss of Sin3A leads to abberant Myc activ-

ity at the EDC

So far I have shown that in the absence of Sin3A, Myc levels are increased at the

basal layer of the interfollicular epidermis due to an increase in Myc acetylation

levels and therefore an increase in Myc protein stability. Sin3A can interact with

Myc and target Myc protein for degradation, thus antagonising Myc function.

Given these results and the fact that Sin3A binds to Myc targets at the EDC

in a Wild-type scenario, Sin3A could act to repress Myc and its targets in this

situation. In the case that Sin3A is deleted, Myc would be able to bind to its

EDC target genes and induce target gene expression. If this was true, aberrant

Myc activity might explain the phenotype of enhanced differentiation and pro-

liferation in K14ERSin3A∆/∆ skin. To shed some light on this possibility, I first

decided to analyse Myc binding events at EDC genes in the absence of Sin3A in

collaboration with Elisabete Nascimento.

In agreement with prior experiments by Elisabete Nascimento, binding of Sin3A

to EDC genes was at its highest in Wild-type mice (Figure 4.6A, red bars), ab-

sent in K14MycER mice (Figure 4.6B, red bars) and importantly was absent in

K14ERSin3A∆/∆ mice. Myc binds to EDC genes in the opposite fashion, with

highest occurence of Myc in K14MycER mice (Figure 4.6B, blue bars) and lowest

in Wild-type mice (Figure 4.6A, blue bars). The highlight of these experiments

was the demonstration that binding of endogenous Myc to the EDC was enriched

in K14ERSin3A∆/∆ mice (Figure 4.6C, blue bars). This indicates that in the

absence of Sin3A, Myc is free to bind to its EDC target genes. This could ex-

plain the increase in differentiation in K14ERSin3A∆/∆ skin. To add evidence to

this theory, we next decided to analyse mRNA expression levels of EDC genes in

K14ERSin3A∆/∆ mice relative to Wild-type mice to determine if Myc binding to

EDC targets influences their expression in these mice.

When Sin3A is depleted, gene expression at EDC target genes is impacted, as

demonstrated by differential expression of EDC genes in K14ERSin3A∆/∆ skin

relative to Wild-type skin (Figure 4.7, red bars). Remarkably, the fold changes
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exhibited in K14ERSin3A∆/∆ skin samples were highly similar to those observed

when Myc is over-expressed as shown by expression of EDC genes in K14MycER

skin samples (Figure 4.7). These results were highly exciting as they provide

the information that when Sin3A is lost in adult skin, not only is Myc occu-

pancy of EDC genes enhanced, gene expression at this locus parallels that seen in

K14MycER samples. Thus there is the indication that enhanced differentiation

in K14ERSin3A∆/∆ skin appears to be due to the ability of Myc to bind to its

EDC targets and impact their expression.
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4.3 Summary

To build on the results from the previous chapter in which I demonstrated that

Sin3A is essential for maintenance of epidermal homeostasis as in its absence there

is increased proliferation and differentiation, I further explored Sin3A function

in adult skin, particularly in connenction to its relatationship with Myc. Due to

the high similarity of the phenotype of K14ERSin3A∆/∆ and K14MycER skin, I

considered that Sin3A could normally act to repress Myc and its targets, in par-

ticular at the EDC, in adult skin leading to aberrant Myc activity when Sin3A is

deleted. I took a number of different approaches to determine if this hypothesis

was correct.

I first demonstrated that when Sin3A is lost in adult skin, there is an increase in

Myc protein levels in the basal layer of the interfollicular epidermis and that there

is an increase in levels of acetylated Myc in K14ERSin3A∆/∆ skin. As previously

mentioned, acetylation of Myc by the histone acetyltransferases TIP60 and GCN5

leads to increased stability of the Myc protein, which could explain the enrich-

ment of Myc in K14ERSin3A∆/∆ skin. Theoretically, in a Wild-type scenario,

Sin3A could therefore act to block Myc acetylation, as the key enzymatic activity

of the Sin3A complex is mediated by histone deactylases. Intriguingly, Sin3A can

interact with Myc and when Sin3A is over-expressed, acetylation of Myc protein

is decreased, which also leads to a decrease in stability of Myc at the protein

level. This is interesting as destabilisation and targeting of Myc for degradation

by Sin3A could explain work by Elisabete Nascimento [Nascimento et al., 2011],

which demonstrated that Myc is displaced from its EDC target genes in a Wild-

type scenario thus allowing Sin3A and associated repressors for example Mxi-1,

to bind in Myc’s place. This would also fit in with Sin3A’s known function as a

transcriptional co-repressor.

If Sin3A truly acts to repress Myc and its targets at the EDC, Myc would be free

to bind to the EDC and influence target gene expression in K14ERSin3A∆/∆

skin thus explaining the enhancement of differentiation in these mice. I in-

vestigated this in conjunction with Elisabete Nascimento by combining ChIP-
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chip and gene expression analysis. Results using these approaches demonstrated

that in K14ERSin3A∆/∆, Myc binds to its EDC targets and influences EDC

target expression in a highly similar manner to that observed in K14MycER

skin. These results demonstrated that the differentiation phenotype observed in

K14ERSin3A∆/∆ skin is driven by aberrant Myc activity at the EDC, leading to

a recapitulation of the K14MycER phenotype. Further evidence has shown that

Sin3A and Myc can bind to genes involved in proliferation and cell growth in

addition to those genes that act to control epidermal differentiation [Nascimento

et al., 2011]. Given these results, it is possible that Myc could also be driving

excessive proliferation when Sin3A is deleted in adult skin.

Overall, my results so far demonstrate that Sin3A can act as an antagonist of

Myc function in the epidermis as when Sin3A is deleted, there is an increase in

Myc protein, enhanced binding of Myc to EDC targets and a de-repression of Myc

target genes leading to enhanced differentiation and proliferation. It is interest-

ing to note that recent work by Das and colleagues has demonstrated that Sin3A

also acts to oppose Myc function in Drosophila [Das et al., 2012]. It is plausible

that the opposing functions of Sin3A and Myc must be balanced in order for

harmonious epidermal homeostasis to be maintained as disrupting this balance

via deleting Sin3A or increasing Myc expression levels leads to divergence from

normal proliferation and differentiation levels culminating in epidermal catastro-

phe. In order to truly demonstrate that the skin phenotype in K14ERSin3A∆/∆

is exclusively driven by erroneous Myc activity, tfurther work was necessary. As

such subsequent experiments were focussed on further dissecting the role of rela-

tionship between Sin3A and Myc in adult skin.
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Chapter 5

Balanced epidermal homeostasis

is restored upon deletion of Myc

in K14ERSin3A∆/∆ skin

5.1 Concurrent deletion of Sin3A and Myc in

adult skin restores epidermal thickness to

normal levels

To build on prior results indicating that erroneous Myc activity and expression

of its targets leads to the skin phenotype in K14ERSin3A∆/∆ mice, I wanted to

determine if Myc is the sole driver behind the phenotype in K14ERSin3A∆/∆

skin. In order to address this, I wanted to delete Myc in K14ERSin3A∆/∆

skin, as if Myc is responsible for the excess proliferation and differentiation in

K14ERSin3A∆/∆ skin, deleting Myc should resolve these problems. As such I

crossed K14ERSin3AF/F mice with mice harbouring Myc floxed alleles (MycF/F),

resulting in the creation of the K14ERSin3AF/FMycF/F line. This enabled me

to concurrently delete Sin3A and Myc in adult skin upon topical application of

4-OHT.
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5. Balanced epidermal homeostasis is restored upon deletion of Myc
in K14ERSin3A∆/∆ skin

As K14ERSin3A∆/∆ mice display epidermal hyperplasia, I first decided to treat

the skin of K14ERSin3AF/FMycF/F mice with 4-OHT and analyse the thick-

ness of the skin in comparison to K14ERSin3A∆/∆ skin and relevant controls

(Figure 5.1). This would begin to answer the question as to whether Myc is

driving the epidermal hyperplasia observed in K14ERSin3A∆/∆ skin. Remark-

ably, K14ERSin3A∆/∆Myc∆/∆ skin (Figure 5.1B) resembled control skin (Fig-

ure 5.1C+D), with comparable epidermal thickness to controls rather than the

marked increase in epidermal thickness observed in K14ERSin3A∆/∆ skin (Figure

5.1A). These results further intimated that Myc is the primary force behind the

epidermal hyperplasia phenoype observed in K14ERSin3A∆/∆ skin.

I next wanted to confirm that expression of Sin3A and Myc is down-regulated

in K14ERSin3A∆/∆Myc∆/∆ skin. I performed qPCR analysis, which confirmed

that Myc levels are reduced in K14ERSin3A∆/∆Myc∆/∆ skin in comparison to

K14ERSin3A∆/∆ and Sin3AF/FMycF/F controls (Figure 5.2). A reduction in

Sin3A expression in K14ERSin3A∆/∆Myc∆/∆ skin relative to Sin3AF/FMycF/F

and K14ERSin3AWT/∆Myc∆/∆ controls was also confirmed by qPCR analysis

(Figure 5.3). Complete loss of Sin3A and Myc was not observed as RNA was

isolated from whole skin samples whereas Sin3A and Myc expression was only

lost in K14-positive cells.

These results confimed that K14ERSin3A∆/∆Myc∆/∆ mice have down-regulation

of both Sin3A and Myc and that deletion of Myc in K14ERSin3A∆/∆ skin reverts

skin thickness to normal levels. My next experiments were performed to reveal

whether deletion of Myc in K14ERSin3A∆/∆ skin also restores proliferation levels

to the normal levels observed in controls.
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5. Balanced epidermal homeostasis is restored upon deletion of Myc
in K14ERSin3A∆/∆ skin

Figure 5.2: Confirmation of Myc down-regulation in
K14ERSin3A∆/∆Myc∆/∆ skin. qPCR analysis was performed using RNA from
skin samples of the mice indicated to determine Myc expression levels. Myc was signif-
icantly down-regulated in K14ERSin3AWT/∆Myc∆/∆ and K14ERSin3A∆/∆Myc∆/∆

skin in comparison to Sin3AF/FMycF/F skin (P<0.005). Error bars indicate standard
deviation (n=3 biological replicates averaged over three technical replicates for each
mouse line).
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in K14ERSin3A∆/∆ skin

Figure 5.3: Confirmation of Sin3A down-regulation in
K14ERSin3A∆/∆Myc∆/∆ skin. qPCR analysis was performed using RNA from
skin samples of the mice indicated to determine Sin3A expression levels. Sin3A was sig-
nificantly downregulated in K14ERSin3A∆/∆MycWT/∆ and K14ERSin3A∆/∆Myc∆/∆

skin in comparison to Sin3AF/FMycF/F skin (P<0.01). Error bars indicate standard
deviation (n=3 biological replicates averaged over three technical replicates for each
mouse line).
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5. Balanced epidermal homeostasis is restored upon deletion of Myc
in K14ERSin3A∆/∆ skin

5.2 Deletion of Myc in K14ERSin3A∆/∆ skin leads

to restoration of normal proliferation levels

To examine whether that in addition to epidermal size, proliferation levels were

also returned to a normal state in K14ERSin3A∆/∆Myc∆/∆ skin, skin sections

from K14ERSin3A∆/∆Myc∆/∆ and control mice were labelled for the proliera-

tion marker, Ki67 (Figure 5.4). Quantification of the number of Ki67 cells in

K14ERSin3A∆/∆Myc∆/∆ skin sections was performed and compared to the num-

ber of Ki67 positive cells in K14ERSin3A∆/∆ , Sin3AF/FMycF/F and

K14ERSin3AWT/∆Myc∆/∆ skin sections (Figure 5.5). The results from this analy-

sis demonstrated that numbers of Ki67-positive cells and therefore levels of prolif-

eration in K14ERSin3A∆/∆Myc∆/∆ skin were strikingly similar to those observed

in Sin3AF/FMycF/F and K14ERSin3AWT/∆Myc∆/∆ control skin samples (Figure

5.4, 5.5). It follows, and was observed, that the number of Ki67 positive cells

counted in K14ERSin3A∆/∆Myc∆/∆ skin was significantly lower than those ob-

served in K14ERSin3A∆/∆ skin (Figure 5.4, 5.5). These results indicated that

deletion of Myc in skin in which Sin3A is deleted leads to restoration of prolifer-

ation to control levels.

I then peformed gene expression analysis of proliferation and cell cycle genes

shown to be impacted by Sin3A deletion [Nascimento et al., 2011] (Figure 5.6,

5.7). These experiments and subsequent analysis was carried out in conjunction

with Elisabete Nascimento. In agreement with the results shown by Ki67 stain-

ing, gene expression levels of proliferation and cell cycle genes were reduced in

K14ERSin3A∆/∆Myc∆/∆ skin relative to expression levels in K14ERSin3A∆/∆

skin and much more comparable to Wild-type expression levels (Figure 5.6, 5.7).
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5. Balanced epidermal homeostasis is restored upon deletion of Myc
in K14ERSin3A∆/∆ skin

Figure 5.5: Quantification of Ki67-positive cells in 4-OHT-treated
skin. The number of Ki67-positive cells in sections of Sin3A deleted skin
(K14ERSin3A∆/∆MycWT/∆, Sin3A and Myc deleted skin (K14ERSin3A∆/∆Myc∆/∆),
Myc only deleted skin (K14ERSin3AWT/∆Myc∆/∆) and skin where no Cre-recombinase
is expressed Sin3AF/FMycF/F were quantified. Numbers of Ki67-positive cells in
K14ERSin3A∆/∆Myc∆/∆ skin are comparable to controls (n.s P>0.05) and are signif-
icantly lower than in K14ERSin3A∆/∆MycWT/∆ skin (P< 0.002). Error bars indicate
standard deviation (n=5 animals per mouse line).
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5. Balanced epidermal homeostasis is restored upon deletion of Myc
in K14ERSin3A∆/∆ skin

Results from Ki67 staining and gene expression analysis of genes involved in

proliferation and cell cycle progression combined demonstrate that proliferation

levels are returned to normal when Myc is deleted from K14ERSin3A∆/∆ skin.

Since epidermal proliferation as well as the size of the epidermis were returned

to normal in K14ERSin3A∆/∆Myc∆/∆ skin, I next wanted to examine whether

differentiation was also restored.
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5.3 Differentiation is returned to normal levels

when Myc is deleted from K14ERSin3A∆/∆

skin.

I have already shown that epidermal thickness and proliferation levels are reduced

to normal levels when Myc is depleted from K14ERSin3A∆/∆ skin, but had not

yet addressed whether normal differentiation was resumed. To address this, I

first decided to analyse expression of EDC genes in K14ERSin3A∆/∆Myc∆/∆

skin and then compare this expression to the pattern of EDC gene expression in

K14ERSin3A∆/∆ skin, since I knew that EDC gene expression is perturbed in

K14ERSin3A∆/∆ skin. This work was carried out in collaboration with Elisabete

Nascimento. Via this analysis, we observed that EDC gene expression, which

is disrupted in a similar manner to K14MycER skin in K14ERSin3A∆/∆ skin,

is comparable to Wild-type expression levels in K14ERSin3A∆/∆MycWT/∆ skin

(Figure 5.8).

Leading on from this finding, I decided to analyse the protein expression of mark-

ers of both undifferentiated and differentiated layers in sections of

K14ERSin3A∆/∆Myc∆/∆ skin, with the aim of establishing whether the balance

of undifferentiated and differentiated layers is also returned to normal.

I first decided to analyse expression of markers of the undifferentiated, basal layer

of the interfollicular epidermis (Figure 5.9). Examination of the basal mark-

ers K14 and Integrin α6 expression in sections of K14ERSin3A∆/∆Myc∆/∆ skin

showed that undifferentiated layers are returned back to normal and are much

more comparable to Wild-type skin in comparison to K14ERSin3A∆/∆MycWT/∆

skin (Figure 5.9).
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in K14ERSin3A∆/∆ skin

Figure 5.9: Undifferentiated layers are returned to normal when Myc
is deleted from K14ERSin3A∆/∆ skin. Sections of 4-OHT-treated A)
K14ERSin3A∆/∆MyctextsuperscriptWT/∆ skin or B) K14ERSin3A∆/∆Myc∆/∆ skin
labelled with the basal layer marker K14 (K14). Sections of 4-OHT-treated C)
K14ERSin3A∆/∆MyctextsuperscriptWT/∆ or D) K14ERSin3A∆/∆Myc∆/∆ skin la-
belled with the basal layer marker Integrin α6 (Itga6). White bars indicate the thick-
ness of the interfollicular epidermis. Scale Bar, 50µm.
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I wanted to determine if deleting Myc in K14ERSin3A∆/∆ skin had the same

impact on differentiated layers, therefore I examined expression of markers of the

suprabasal layer, K10 and Filaggrin (Figure 5.10). K10-and Filaggrin-expressing

layers are reduced to levels comparable to Wild-type in K14ERSin3A∆/∆Myc∆/∆

skin and are much reduced when compared to K14ERSin3A∆/∆MycWT/∆ skin,

demonstrating that differentiated layers are also returned to normal (Figure 5.10).

Figure 5.10: Differentiation is returned to normal when Myc is deleted from
K14ERSin3A∆/∆ skin. A) Sections of 4-OHT-treated K14ERSin3A∆/∆MycWT/∆

skin labelled with the suprabasal marker Keratin10 (K10) B) Sections of 4-OHT-treated
K14ERSin3A∆/∆Myc∆/∆ skin labelled with the suprabasal layer marker K10 C) Sec-
tions of 4-OHT-treated K14ERSin3A∆/∆MycWT/∆ skin labelled with the suprabasal
layer marker Filaggrin (Flg) D) Sections of 4-OHT-treated K14ERSin3A∆/∆Myc∆/∆

skin were labelled with the suprabasal layer marker Flg. Dotted white lines indicate
the basement membane. Scale Bar, 50 µm.

The results from gene expression analysis and staining for differentiation markers

as well as markers for undifferentiated layers intimate that the balance of differ-

entiated and undifferentiated layers observed in K14ERSin3A∆/∆ mice is restored

to normal when Myc is also deleted.
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5.4 Sin3A and Myc are vital for epidermal home-

ostasis

I next wanted to determine what the longer term impact of deleting Sin3A and

Myc simultaneously has on skin homeostasis. To address this, I topically treated

K14Sin3AF/F, K14ERSin3A∆/∆, K14ERSin3A∆/∆Myc∆/∆ skin with TPA, which

is an agent known to induce epidermal proliferation, thus inducing an increased

rate of turnover in the same time period as with topical application of 4-OHT or

acetone alone. An increase in epidermal thickness and proliferation was observed

in K14Sin3AF/F skin as expected (Figure 5.11A+D), a phenotype which was

exacerbated in Sin3A depleted skin (Figure 5.11B+E). However, in TPA-treated

K14ERSin3A∆/∆Myc∆/∆ skin , the response to TPA is altered with the outermost

layers of the interfollicular epidermis beginning to slough off and a wound-like sit-

uation being observed (Figure 5.11C+F). In K14Sin3AF/F, K14ERSin3A∆/∆ skin

treated with TPA, differentiation can still proceed as shown by labelling for the

suprabasal marker Filaggrin (Figure 5.11G+H). In contrast, there is a disruption

to Filaggrin-expressing layers when both Sin3A and Myc are depleted (Figure

5.11I). The disruption to K14ERSin3A∆/∆Myc∆/∆ skin homeostasis and lack of

induced epidermal hyperplasia does not appear to be due to induced apoptosis,

as increased cleaved Caspase 3 is not detected (Figure 5.11L).

Challenging epidermal homeostasis in K14ERSin3A∆/∆Myc∆/∆ skin via induc-

tion of proliferation using topical application of TPA has shown that although

deletion of Myc and Sin3A reverts the proliferation and differentiation pheno-

type observed when Sin3A alone is depleted, the epidermis is not entirely normal.

These results reinforce the hypothesis that the balanced expression of Myc and

Sin3A and consequently their targets is absolutely required and that these two

factors are highly important in skin maintenance.
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Figure 5.11: TPA-induced proliferation disrupts K14ERSin3A∆/∆Myc∆/∆

skin homeostasis. H&E-stained sections of TPA-treated A) K14ERSin3AF/F, B)
K14ERSin3A∆/∆ and C) K14ERSin3A∆/∆Myc∆/∆ skin. Ki67-labelled TPA-treated
D) K14ERSin3AF/F skin, E) K14ERSin3A∆/∆ skin and F) K14ERSin3A∆/∆Myc∆/∆.
Skin sections from TPA-treated G) K14ERSin3AF/F skin, H) K14ERSin3A∆/∆ skin
and I) K14ERSin3A∆/∆Myc∆/∆ skin labelled for the differentiation marker Filag-
grin (Flg, red), counter-stained with DAPI (blue). Skin sections from TPA-treated
J) K14ERSin3AF/F, K) K14ERSin3A∆/∆ and L) K14ERSin3A∆/∆Myc∆/∆ skin la-
belled for the apoptosis marker cleaved Caspase 3 (Caspase, green), counter-stained
with DAPI (blue). Scale Bars , 100 µm. Dashed white lines indicate the basal layer of
the IFE.
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5.5 Summary

Throughout this chapter I have aimed to determine that Myc is the primary driver

behind the phenotype of enhanced differentiation and proliferation in Sin3A-

depleted skin. I had previously shown that in the absence of Sin3A, Myc can

bind to its EDC genes, resulting in enhanced expression of these targets. Further

evidence suggested that Myc could also be the cause behind the push towards

proliferation in the absence of Sin3A in the epidermis. My approach to determine

whether errant Myc activity is truly the cause of the K14ERSin3A∆/∆ phenotype

was to use a mouse model in which we could delete Myc as well as Sin3A in the

epidermis. This approach was fruitful and yielded some highly exciting results.

Deletion of Myc in K14ERSin3A∆/∆ skin led to a dramatic rescue of the skin

phenotype observed, with epidermal thickness returning to normal levels. As

shown by examination of gene expression at the RNA level, levels of expression

of genes involved in proliferation and the cell cycle are reduced and there is a

remarkable reduction of proliferation, as demonstrated by Ki67 quantification,

in K14ERSin3A∆/∆Myc∆/∆ skin relative to K14ERSin3A∆/∆ skin. Moreover,

examination of differentiation markers indicated that the balance between differ-

entiated and undifferentiated layers was returned to normality in

K14ERSin3A∆/∆Myc∆/∆ skin. These results were particularly important as they

show that when Myc is removed from K14ERSin3A∆/∆ skin, the skin phenotype

of excess proliferation and enhanced differentiation is no longer present.

Given that I have shown that balanced Sin3A and Myc activity is essential for the

mainteance of epidermal homeostasis, it was somewhat surprising that deletion

of both of these key factors simultaneously produced a relatively normal epider-

mis. However, the results that we were obtained were limited to the analysis of

short-term homeostasis. In order to examine the longer-term impacts of loss of

Sin3A and Myc, I decided to challenge the system to proliferate excessively via

the topical application of TPA, K14ERSin3A∆/∆Myc∆/∆ skin, which is known to

induce hyperplasia. In this scenario, the skin from K14ERSin3A∆/∆Myc∆/∆ skin

is not normal and the system cannot cope, thus demonstrating the importance
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of the presence of Sin3A and Myc to maintain the epidermis.

The implications of these results is that Myc is the cause of the phenotype in

skin in which Sin3A is absent and that a balance of Sin3A and Myc is required

for harmonious epidermal homeostasis. The results indicate that although Sin3A

is dispensable for terminal differentiation, Sin3A acts to antagonise Myc function

and can inhibit Myc-mediated activity thus preventing excess proliferation and

differentiation from occurring. Sin3A and Myc share target genes, but their

roles are antagonistic, meaning that levels of Sin3A and Myc must be balanced

(Figure 5.12). A perturbation of Sin3A or Myc expression leads to disruption of

the careful balance between cell-loss and cell-division that is vital for maintaining

homeostasis and a functional tissue. It follows that the opposing effects of Myc

and Sin3A on gene transcription are essential to maintain epidermal homeostasis.
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Figure 5.12: Opposing roles of Sin3A and Myc at their target genes. Upper
panel: When Myc binds to its target genes in the skin with its obligate binding partner
Max, gene expression is induced. Middle panel: Acetylation of the Myc protein en-
hances its stability. Sin3A can lead to the deacetylation of the Myc protein, decreasing
its stability and targeting the Myc protein for degradation. The exact mechanism of
degradation needs further investigation to be determined. This would ultimately lead
to the repression of shared target genes. Lower Panel: Sin3A itself has no intrinsic
DNA binding activity and so would be recruited to the DNA of target genes by spe-
cific transcription factors e.g. the Myc antagonist Mnt, to mediate gene repression.
The opposing activities of Myc (gene activation) and Sin3A (gene repression) must be
carefully balanced to avoid disruption of tissue homeostasis. For example, when Sin3A
expression is lost in skin, Myc is erroneously active leading to excess proliferation and
differentiation.
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Chapter 6

Sin3A and tumour susceptibility

in skin

6.1 Sin3A and tumour susceptibility in skin: short

term pilot experiments

As demonstrated in my results so far, a major phenotype when Sin3A expression

is lost from the interfollicular epidermis is excessive proliferation and prior stud-

ies implicated Sin3A as a potential tumour supressor [Suzuki et al., 2008]. These

findings and the knowledge that Sin3A is recruited by known tumour suppressors

to mediate their function [Goeman et al., 2005; Rampalli et al., 2005], prompted

me to investigate whether Sin3A influences susceptibility to tumourigenesis in

skin. Since K14ERSin3A∆/∆ mice have to be sacrificed after 15 days of treat-

ment with 4-OHT due to ill health, this mouse model was not suitable for analysis

of tumour generation. It has been previously demonstrated that loss of a single

allele of Sin3A is sufficient to increase susceptibility to tumor formation in other

tissues, for example with non small cell lung cancer [Suzuki et al., 2008], therefore

I decided to utilise the K14Sin3AWT/∆ mouse model in pilot experiments in order

to examine the role of Sin3A in skin tumour susceptibility.

It is known that short term exposure of skin to UVB radiation induces skin

reddening or sunburn [Matsumura and Ananthaswamy, 2004]. UVB radiation
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comprises the wavelengths 280-320nm of the solar spectrum and is absorbed into

the skin [Matsumura and Ananthaswamy, 2004]. The response of the epider-

mis to a single dose of UVB radiation is well established and is schematically

represented in Figure 6.1. As such, I decided to perform a pilot experiment to

determine whether the loss of a single allele of Sin3A impacts how the epidermis

reacts following short term exposure to UVB radiation (Figure 6.1).

To analyse the skin of K14Sin3AWT/∆ following UVB irradiation, I first performed

histological analyses on skin sections obtained 24 or 48 hours after UVB treat-

ment (Figures 6.2, 6.3). The results from this analysis were highly interesting as

the thickness of the interfollicular epidermis of K14Sin3AWT/∆ skin (Figure 6.2C)

was markedly increased in comparison to the interfollicular epidermis of control

skin collected 24 hours after exposure to UVB radiation (Figure 6.2B) as well as

K14Sin3AWT/∆ skin that has not been irradiated (Figure 6.2A). This finding was

particularly exciting as it appears that the phenotype of epidermal hyperplasia

observed in K14ERSin3A∆/∆ skin is recapitulated. By 48 hours post-UVB irra-

diation, the interfollicular epidermis in K14Sin3AWT/∆ skin (Figure 6.3C) is still

thicker than irradiated control skin (Figure 6.3B) although the difference is less

stark.
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Figure 6.1: Schematic representation of short-term UVB exposure exper-
iment. Mice were restrained as shown and exposed to one dose of UVB radiation.
Protective restraints are necessary to provide protection against damage to the eyes
and ears by the UVB radiation [Workman et al., 2010]. Dorsal skin was collected after
24 hours or 48 hours post-UV treatment. The standard response of skin to one expo-
sure of UVB radiation is well characterised. 24 hours post-exposure, apoptosis is at
its highest while after 48 hours proliferation is induced to replace those cells that have
been lost through apoptosis [Ouhtit et al., 2000].

Figure 6.2: Impact of loss of a single Sin3A allele in skin 24 hours after
UV irradiation. Mice were exposed to one dose of UVB radiation. Dorsal skin was
collected 24 hours (hr) post-exposure and was subsequently sectioned. Skin sections
from A) K14Sin3AWT/∆ mice not exposed to UVB, B) Control mice exposed to UVB
radiation and C) K14Sin3AWT/∆ mice exposed to UVB radiation were stained for
histological analysis using standard H&E staining. Scale bar, 200µm.
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Figure 6.3: Impact of loss of a single Sin3A allele in skin 48 hours after UV
irradiation. Mice were exposed to one dose of UVB radiation and dorsal skin was
collected 48 hours (hr) post-exposure. Skin samples were subsequently sectioned. Skin
sections from A) K14Sin3AWT/∆ mice not exposed to UVB, B) Control mice exposed
to UVB radiation and C) K14Sin3AWT/∆ mice exposed to UVB radiation were stained
for histological analysis using standard H&E staining. Scale bar, 200 µm.

I next determined if this increase in thickness of the interfollicular epidermis in

irradiated K14Sin3AWT/∆ skin in comparison to control irradiated skin is due to

an alteration in the induction of proliferation in this region. To this end I labelled

sections of control irradiated skin or K14Sin3AWT/∆ skin, collected 24 or 48 hours

post-exposure to UVB radiation, with the proliferation maker Ki67 (Figure 6.4).

As expected, the number of Ki67-positive cells, and thus levels of proliferation,

in the interfollicular epidermis of control skin collected 24 hours post-irradiation

is low (Figure 6.4 upper left panel), as apoptosis peaks at this time point (Fig-

ure 6.1). The average number of Ki67-positive cells is significantly increased in

the interfollicular epidermis of K14Sin3AWT/∆ skin, collected at the same point

(Figures 6.4 upper right panel, 6.5), indicating that proliferation is possibly in-

duced erroneously. Levels of Ki67-positive cells are comparable between control

and K14Sin3AWT/∆ irradiated skin collected 48 hours post-exposure (Figures

6.4 lower panels, 6.5). It is well characterised that proliferation peaks 48 hours

post-exposure to a single dose of UVB radiation (Figure 6.1), so the increase in

proliferation in control skin at this time point was expected. It is interesting that

the levels of proliferation in K14Sin3AWT/∆ irradiated skin are consistent at 24

hours and 48 hours post-exposure and differs from the normal response of skin
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to UVB irradiation (Figures 6.4 right hand panels, 6.5).

Figure 6.4: Impact of loss of a single Sin3A allele on proliferation in UVB
irradiated skin. Mice were exposed to one dose of UVB radiation. Dorsal skin was
collected either 24 hours (upper panels) or 48 hours (lower panels) post-exposure and
was subsequently sectioned. Skin sections from control (K14Sin3AWT/WT) mice (left
panels) and K14Sin3AWT/∆ mice (right panels) exposed to UVB were stained for the
proliferation marker Ki67. Dashed lines outline the basal layer of the interfollicular
epidermis. Scale bar, 50 µm.
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Figure 6.5: Quantification of Ki67-positive cells in UVB irradiated skin.
The average number of Ki67-positive (+ve) cells was quantified in sections of dorsal
skin collected from control (K14Sin3AWT/WT) or K14Sin3AWT/∆ mice either 24 hours
(24hr) or 48 hours (48hr) post-exposure to a single dose of UVB radiation. Error bars
represent standard deviation (n=5 biological replicates per mouse line for each time
point). * p<0.0001 ** p>0.05.
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As the UV response in K14Sin3AWT/∆ skin appears to be altered in terms of

increased thickness of the interfollicular epidermis and enhanced proliferation 24

hours post-exposure to UVB irradiation, I also decided to assess the impact on in-

duction of p53 following UVB irradiation. It is known that p53 is induced as a con-

sequence of UV radiation in the skin and is important in UVB irradiation-induced

apoptosis [Hildesheim et al., 2002; Kulms and Schwarz, 2000]. Additionally, levels

of apoptosis and correspondingly p53 peak at 24 hours post-irradiation (Figure

6.1). As such, I labelled skin sections collected from control and K14Sin3AWT/∆

skin either 24 or 48 hours post-irradiation using a p53 antibody (Figure 6.6).

As expected, control skin collected 24 hours post-UVB irradiation exhibited high

levels of p53-positive cells (Figure 6.6 upper left panel). However, the number

of p53-positive cells detected in the interfollicular epidermis of K14Sin3AWT/∆

skin collected 24 hours post-UVB irradiation (Figure 6.6 upper right panel) was

markedly reduced in comparison to control skin at this point (Figure 6.7). This

suggests that p53 induction after UVB irradiation of K14Sin3AWT/∆ skin is im-

paired when compared to control samples. I also examined skin collected from

control skin and K14Sin3AWT/∆ 48 hours post-UVB irradiation that was labelled

for p53 (Figure 6.6 lower panels). As anticipated, levels of p53 in control skin

collected at the 48 hour time point (Figure 6.6 lower left panel) were much re-

duced at this time point in comparison to at the 24 hour time point (Figures 6.6

upper left panel, 6.7). In contrast, levels of p53-expressing cells in K14Sin3AWT/∆

skin were comparable at the 24 hour and 48 hour time points (Figures 6.6 right

panels, 6.7). At the 48 hour time point there was a significantly higher number

of p53 positive cells in K14Sin3AWT/∆ interfollicular epidermis in comparison to

controls (Figures 6.6 lower panels, 6.7), further indicating that the loss of a single

allele of Sin3A is sufficient to cause abnormalities in UVB irradiated skin.

Taken together, these results imply that the response to short-term UV radiation

exposure is defective in K14Sin3AWT/∆ mice in comparison to control mice. The

induction of p53 in K14Sin3AWT/∆ skin is markedly reduced while proliferation

appears to peak at an earlier stage than in control skin. The phenotype of epi-

dermal hyperplasia post UV-irradiation is remarkably similar to that observed in
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Figure 6.6: Impact of loss of a single Sin3A allele on p53 induction in
skin post-UVB irradiation. Mice were exposed to one dose of UVB radia-
tion. Dorsal skin was collected either 24 hours (upper panels) or 48 hours (lower
panels) post-exposure and was subsequently sectioned. Skin sections from control
(K14Sin3AWT/WT) mice (left panels) and K14Sin3AWT/∆ mice (right panels) exposed
to UVB were stained using a p53 antibody. Scale bar, 50 µm.
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Figure 6.7: Quantification of p53-positive cells in UVB irradiated skin. The
average number of p53-positive (+ve) cells was quantified in sections of dorsal skin col-
lected from control (K14Sin3AWT/WT) or K14Sin3AWT/∆ mice either 24 hours (24hr)
or 48 hours (48hr) post-exposure to a single dose of UVB radiation. Error bars repre-
sent standard deviation (n=5 biological replicates per mouse line for each time point).
* p<0.0001 ** p<0.002.
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K14ERSin3A∆/∆ skin. As a phenotype was observed at this time point, I decided

to examine the impact of long term exposure to UVB radiation on K14Sin3AWT/∆

skin.
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6.2 Sin3A and tumour susceptibility in skin: long

term pilot experiments

It is well established that long-term exposure of mouse skin to UVB radiation

leads to the generation of skin cancer [Berg et al., 1996]. Consequently I decided

to perform pilot experiments to begin to establish whether there is a difference in

tumour development in the skin of K14Sin3AWT/∆ mice in comparison to skin of

control mice. I aimed to expose the back skin of control and K14Sin3AWT/∆ mice

to UVB radiation over a time period of up to 30 weeks in order to induce tumour

formation. The experimental design is represented schematically in Figure 6.8.

However, in practice, a number of problems with this approach came to light. Due

to negative impacts on animal welfare caused by the use of restraints, the length

of time between UVB treatment was increased as advised by a veterinarian. At

25 weeks due to adverse effects unrelated to the UVB irradiation, a number of

mice had to be culled, therefore I analysed the skin at this time point instead.

Dorsal skin obtained from control and K14Sin3AWT/∆ mice after 25 weeks of ex-

posure to UVB radiation was sectioned and then stained using H&E (Figure 6.9).

No skin tumours were observed in either control or K14Sin3AWT/∆ skin at this

time point. The interfollicular epidermis of K14Sin3AWT/∆ skin (Figure 6.9B) was

increased in thickness in comparison to control skin (Figure 6.9A). This increase

in thickness of the interfollicular epidermis coincided with a significant increase

in the average number of Ki67-positive cells in K14Sin3AWT/∆ interfollicular epi-

dermis (Figure 6.10B) in comparison to control interfollicular epidermis (Fig-

ure6.10A+E). Finally, there is a decrease in the average number of p53-positive

cells in K14Sin3AWT/∆ interfollicular epidermis (Figure 6.10D) in comparison to

those observed in control interfollicular epidermis (Figure 6.10C+F).
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Figure 6.8: Schematic representation of experimental design using long-
term UVB exposure. To assess the impact of loss of a single allele of Sin3A on
tumour susceptibility in skin, I designed a pilot experiment in which mice would be
exposed to one dose of UVB radiation, three times a week for up to 30 weeks.

Figure 6.9: Impact of loss of a single Sin3A allele on skin subjected to long-
term UVB exposure. Dorsal skin was collected from mice exposed to UVB radiation
over a 25 week period. Skin sections from A) control (K14Sin3AWT/WT mice and B)
K14Sin3AWT/∆ skin were stained using H&E. Dashed lines outline the interfollicular
epidermis. Scale bar, 100 µm.
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Figure 6.10: Impact of loss of a single Sin3A allele on levels of prolifera-
tion and p53 in UVB-irradiated skin. Dorsal skin was collected from mice ex-
posed to UVB radiation over a 25 week period. Skin sections from A) control mice
(K14Sin3AWT/WT) and B) K14Sin3AWT/∆ skin were labelled for Ki67 or C+D) p53.
The number of E) Ki67-positive (+ve) or F) p53-positive (+ve) cells were quantified
and are represented graphically. Error bars represent standard deviation (n=average of
5 IFE fields selected at random, counted from 2 biological replicates). * p<0.03. Scale
bar, 50 µm.
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In summary, pilot experiments in which mice were exposed to UVB radiation

over a 25 week time period did not lead to the generation of skin tumours. The

potential causes for this lack of tumour generation will be discussed in the chapter

summary below. Analysis of skin obtained at this time point revealed that there is

a visual increase in the thickness of the interfollicular epidermis in K14Sin3AWT/∆

skin in comparison to control skin, which coincides with an increase in prolifer-

ation and a reduction in p53 levels. Further experiments are necessary to reveal

whether Sin3A influences tumour susceptibility.
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6.3 Summary

In the above chapter I began to explore the role of Sin3A in the context of

Sin3A acting as a potential tumour suppressor in skin. Pilot experiments using

short term exposure of skin to UVB radiation revealed that there is a differen-

tial response between control skin and K14Sin3AWT/∆. Epidermal thickness and

proliferation is increased in K14Sin3AWT/∆ skin in comparison to controls and

there is a lower induction of p53 and potentially apoptosis as a consequence.

A well established effect of UVB radiation is the induction of DNA damage, for

example, thymine dimer formation which in turn leads to activation of p53 as

a transcription factor, with increased p53 levels being detectable in the nucleus

[Marrot and Meunier, 2008; Matsunaga et al., 2008]. The induction of p53 in

response to DNA damage has two main outcomes, either cell cycle arrest to allow

for repair of mutated DNA for example via nucleotide excision repair or apopto-

sis [Siliciano et al., 1997]. As lower levels of p53 are observed in K14Sin3AWT/∆

mice it would be interesting to determine if expression and activity of components

involved in p53-dependent cell cycle arrest for example P21 [Bunz et al., 1998]

and DNA repair processes such as Gadd45 [Smith et al., 1994] and p48 [Sengupta

and Harris, 2005] are disrupted in K14Sin3AWT/∆ skin. DNA damage caused by

UVB irradiation also results in the induction of Mdm2, which is both a target

and also a regulator of p53 [Wang and Jiang, 2012; Wu and Levine, 1997]. Part

of the role of Mdm2 in the regulation of p53 is via the promotion of degradation

of p53 via a p53-Mdm2-negative feedback loop [Marine et al., 2006]. It would be

interesting to determine whether Mdm2 levels are increased in K14Sin3AWT/∆

mice in comparision to controls and if this is the case to then examine the possi-

bility that Sin3A has a role in repressing Mdm2.

The most striking aspect of this experiment was the recapitulation of the phe-

notype observed in K14ERSin3A∆/∆ skin. It is possible that the absence of a

single allele of Sin3A is sufficient to allow Myc activity to be increased and its

target genes to be activated in UV irradiated skin. It is of interest to note that

Myc over-expressing skin is resistant to UVB-induced apoptosis [Waikel et al.,
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1999] and it is possible that the loss of a single allele of Sin3A in skin can lead

the recapitulation of this phenoype as there is a lower induction of p53. It would

be interesting to determine if resistance to apoptosis is cause of the increase in

epidermal thickness in K14Sin3AWT/∆ mice after short term exposure to UVB

radiation. Analysis of apoptosis using specific markers for example active cas-

pase 3 or caspase 9 [Schuler et al., 2000] would be necessary to determine if

apoptosis levels are different when a single allele of Sin3A is lost in comparison

to control skin. Further experiments are necessary to investigate the impact of

loss of Sin3A on Myc behaviour in UVB-irradiated skin, for example examina-

tion of expression levels of known Myc target genes in comparison to control skin.

The positive results from the short term pilot experiments prompted me to per-

form long term pilot experiments in which mice were exposed to UVB radiation

over a number of weeks. In this pilot study, examination of skin obtained follow-

ing 25 weeks of treatment demonstrated that despite prolonged exposure to UVB

radiation, no skin tumours had developed in either control or K14Sin3AWT/∆

skin. However, an increase in epidermal thickness and proliferation was observed

in K14Sin3AWT/∆ skin in comparison to control skin. It can be speculated that if

exposure had been continued for a longer time period, this increase in prolifera-

tion could have been sufficient to increase tumour susceptibility in K14Sin3AWT/∆

skin in comparison to controls.

The long term pilot experiments illuminated some problems that may have re-

sulted in a lack of tumour formation in the time frame of treatment. For the pos-

sibility of skin tumour development induced by UVB radiation, skin hyperplasia

must be maintained over a 12-15 week period [Workman et al., 2010]. The prob-

lems incurred during the pilot experiments may have meant that skin hyperplasia

was not maintained and therefore tumours did not develop. The use of protective

restraints was necessary to avoid damage to the eyes and ears of experimental

animals. However, the restraints used caused adverse effects on animal welfare

unrelated to UVB radiation that resulted in the length of time between UVB

treatments being increased as advised by a veterinarian. Another problem was

that due to the nature of the restraints, it is possible that the exact area of skin
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was not irradiated with each dose of UVB irradiation. Another point to consider

is that the experiments were performed using mice of a mixed genetic background.

Some mouse strains, for example mice that are homozygous for the spontaneous

Hrhr mutation, are more susceptible to tumour development following long term

UV irradiation experiments while the C57BL/6J line is more resistant as judged

by a longer exposure time needed before tumours develop [Kripke, 1977; Perez

et al., 2012].The use of a mixed genetic background, including the more resistant

C57BL/6J line, could have led to a reduced susceptibility of the K14Sin3A line

to tumour development and a longer time period of UV exposure (over 30 weeks)

necessary before tumour development could be observed. These three issues to-

gether may have led to a lack of maintenance of hyperplasia and the subsequent

lack of tumour development. If this procedure was refined and the genetic back-

ground of the mice was taken into account when planning future experiments, it

could prove useful to go beyond pilot experiments and use larger numbers of mice.

An alternative approach could involve the use of two-stage chemical carcinogen-

esis to induce skin tumours using 7,12-dimethylbenz(a)anthracene (DMBA) and

TPA. This technique has long been used to induce skin carcinogenesis [Filler

et al., 2007] and determination as to whether there is differential susceptibility

between control and K14Sin3AWT/∆ skin using this approach could yield interest-

ing results. Pilot experiments would be necessary to establish appropriate doses

of DMBA and TPA for tumour initiation and promotion. Further experiments

could include the evaluation of levels of Sin3A expression in skin tumours ob-

tained from either experimental mice or human patients. Recent observations by

Das et al have demonstrated that expression levels of Sin3A are reduced in a num-

ber of human tumours including lung, renal and liver tumours [Das et al., 2012].

If Sin3A acts a tumour suppressor in skin it could be hypothesised that Sin3A

levels could be reduced in skin tumour samples in similarity to the other tissues

analysed by Das and colleagues [Das et al., 2012]. Finally, another possibility

to evaluate the influence of Sin3A on tumour susceptibility in skin could be to

cross K14Sin3AWT/∆ mice with a mouse model in which Ras is activated as Ras is

known to have a key role in skin carcinogenesis [Caulin et al., 2007]. For example,

RasGRP1 transgenic mice spontaneously develop both papillomas and cutaneous
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squamous cell carcinomas [Diez et al., 2009; Oki-Idouchi and Lorenzo, 2007]. The

deletion of Sin3A in this genetic background and assessing the speed of tumour

development, tumour type and severity and number of tumours in comparison to

controls could be a useful approach. In the scope of my PhD project it was not

feasible to create another mouse line, but I believe that this approach could lead

to some interesting results.

Overall, initial pilot experiments described in this chapter have yielded some

promising results despite some setbacks. As loss of a single allele of Sin3A leads

to epidermal hyperplasia and an increase in proliferation in these pilot experi-

ments, the initial signs that Sin3A is important in carcinogenesis are promising.

Further investigations as described above including alternative approaches or re-

finement of the UVB radiation techniques would be useful to establish whether

Sin3A has a role has a tumour suppressor in skin.
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Chapter 7

Conclusions and future
perspectives

The aims of my thesis were to establish a role for the transcriptional functions of

Sin3A in skin and to determine if Sin3A played a role as an opposing factor to

Myc in this region. In order to meet these aims I used a number of transgenic

mouse models to conditionally delete Sin3A in skin and analysed the resultant

phenotypes using a variety of techniques. The approaches I used yielded a num-

ber of highly interesting result and provided new insights into the role of Sin3A

in a complex mammalian tissue.

Preliminary analyses demonstrate that Sin3A appears to be dispensable for bulge

stem cell homeostasis, however, it is possible that more in depth investigations

could reveal a role for Sin3A in the bulge region of the HF. It would be interesting

to examine the impact of loss of Sin3A in the bulge region under non-homeostatic

situations such as in the case of wounding. It is known that bulge stem cells are

activated and contribute to the wound repair process in the IFE following skin

injury [Ito et al., 2005]. Lineage tracing experiments have demonstrated that

the progeny of bulge stem cells can be detected in the early parts of the wound

healing process, around 5 days after injury, while the number of progeny detected

rapidly decreases by 20 days after injury [Ito et al., 2005] leading to the sugges-

tion that bulge stem cells are part of an ’emergency response’ to epidermal repair

[Plikus et al., 2012]. As part of this process, bulge stem cell progeny exhibits

greater plasticity in fate as under normal homeostatic conditions these stem cells
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only give rise to cells of the HF [Plikus et al., 2012] and it is possible that bulge

stem cells lacking Sin3A could be defective in this scenario. Performing wounding

experiments similar to those performed by Ito and colleagues ([Ito et al., 2005])

using K19ERSin3A∆/∆ mice and appropriate controls to determine whether the

wound healing repair process is analagous to controls when Sin3A is lost from the

bulge could yield some highly exciting results. Additionally, application of TPA

to the skin is known to induce proliferation in label retaining cells in the bulge

region of the hair follicle, leading to a depletion of this cell population [Braun

et al., 2003]. Following this protocol and analysing the impact of induction of

proliferation in the bulge stem cell population in K19ERSin3A∆/∆ skin would

also provide new insights as to Sin3A function in this cell population. In the

case that Sin3A is acting to repress genes involved in proliferation in this cell

population, it may be that the loss of the label retaining cell population, which

corresponds to bulge stem cells is accelerated in the absence of Sin3A.

In order to establish a role for Sin3A in the HF it could also be interesting to

analyse the role of Sin3A in normal bulge homeostasis in a more controlled man-

ner. As the first two hair cycles are synchronised in the back skin of mice, Sin3A

could be deleted from the bulge at specific stages of the hair cycle i.e. catagen,

anagen or telogen to examine the impact of Sin3A loss on hair cycle progression

as well as on hair follicle morphology at specific stages. One potential point of

consideration when planning these experiments is that treatment with 4-OHT

has been known to cause hair cycle delay of up to three weeks when mice are

treated with 4-OHT in the first telogen (P21-28), leading to an extended telogen

stage before entry into anagen (Cedric Blanpain, Kim Jensen, personal commu-

nication). In this case, it would be more feasible to compare 4-OHT-treated skin

from K19ERSin3A∆/∆ mice with 4-OHT treated skin K19ERSin3AWT/WT from

age and sex matched controls rather than acetone-treated K19ERSin3AF/F litter-

mates. However, this hair cycle delay upon 4-OHT treatment is a phenomenon

that has not been observed in my hands, possibly due to a lower concentration

of 4-OHT being used (1.5mg per application).

As mentioned in my introduction, the hair follicle is home to numerous stem cell
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populations and as such it is possible that Sin3A could have a role in other hair

follicle stem cell populations aside from the bulge. The question as to whether

Sin3A does govern aspects of stem cell behaviour in the hair follicle outside of

the bulge is not yet answered. To begin to address this question, Sin3AF/F could

be crossed with mice expressing inducible Cre-recombinase under the control of

lineage-specific promoters. For example Sin3AF/F mice could be crossed with the

Lgr6tm2.1(cre/ERT2)Cle mouse line (The Jackson Laboratory, [Snippert et al.,

2010]) allowing Sin3A to be deleted in Lgr6-expressing stem cells, which reside

in the isthmus region of the hair follicle, upon application of 4-OHT to the skin.

Alternatively, Sin3AF/F mice could be crossed with the Lrig1tm1.1(cre/ERT2)Rjc

mouse line (The Jackson Laboratory, [Powell et al., 2012], which would lead to

Sin3A deletion in the infundibulum upon application of 4-OHT. The assessment

of the phenotype observed when Sin3A is deleted from these stem cell popula-

tions initially by histological analysis, gene expression analysis and for expression

of hair follicle markers could provide more exciting results about Sin3A’s role in

hair follicle homeostasis.

As I did not establish a role for Sin3A in hair follicle stem cells, I next wanted to

determine if Sin3A could have a role in governing homeostasis in the interfollicu-

lar epidermis. To address this I used a mouse model in which I deleted Sin3A in

the undifferentiated cells in this region. An initial approach involving conditional

deletion of Sin3A in K14-positive cells yielded no K14Sin3A∆/∆ pups leading to

the conclusion that loss of Sin3A in K14 positive cells during embryogenesis leads

to embryonic lethality. It is possible that embryonic lethality is not due to skin-

specific deletion of Sin3A as K14 and therefore Cre-recombinase is expressed in

other tissues during embryogenesis . To investigate the stage at which embryonic

lethality occurs, timed matings using K14Sin3AWT/∆ mice could be set up in

order for embryos to be collected at specific time points during embryogenesis.

As K14 expression begins at around E9.75 in the embryo [Byrne et al., 1994;

Lu et al., 2005], embryos could be collected from E9 onwards and genotyped to

try and detect K14Sin3A∆/∆ embryos. If identified, K14Sin3A∆/∆ embryos could

then be compared to control embryos to determine any abnormalities that could

lead to lethality. It is noteworthy that loss of a single allele of Sin3A did not
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lead to a phenotype in skin as judged by comparisons of K14Sin3AWT/∆ skin to

control skin. This concurs with results from studies of deletion of a single Sin3A

allele during embryogenesis using the Sin3A floxed allele, which demonstrated

that embryos with this genotype are indistinguishable from Wild-type whereas

complete loss of Sin3A leads to lethality [Dannenberg et al., 2005; McDonel et al.,

2011].

On account of these results, I then turned to an inducible model in which the

deletion of Sin3A could be controlled temporally as well as spatially to begin

to unravel the functions of Sin3A in the interfollicular epidermis. The initial

outcomes of these experiments were highly intriguing as K14ERSin3A∆/∆ mice

presented with a severe phenotype, namely thickened skin, excess salivation and

an enlargement of the testes region in males. Upon further investigation of the

skin phenotype, I showed that when Sin3A is deleted in this tissue there is hyper-

proliferation in the interfollicular epidermis and sebaceous glands and enhanced

differentiation in the interfollicular epidermis. This was highly interesting as up

to this point, aside from functions in muscle [VanOevelen et al., 2010] and testis

[Pellegrino et al., 2012], Sin3A’s role in adult tissues has been poorly defined.

An interesting aspect of the phenotype of excess proliferation when Sin3A is

deleted is that this is not limited only to skin and can be observed in the salivary

glands and the testis. Additional experiments to determine the exact impact of

Sin3A loss in these tissues would be intriguing. The determination of the exact

cell types impacted by Sin3A loss and perhaps examining the effects on expression

of Sin3A targets would be intriguing to perform. In particular, determination of

the cell types affected in the testis and and the examination of the impact of

Sin3A-loss in these K14-expressing cells in this region could be quite fascinating

as fertility could be affected. Furthermore prior analyses by other groups have

demonstrated that deletion of Sin3A in testis impacts Sertoli cells [Payne et al.,

2010; Pellegrino et al., 2012], which provide a niche for germ cells in the testis

[Grover et al., 2004] providing a basis that Sin3A is important in certain cell

types in this region. However, I believe that a different approach to topical appli-

cation of 4-OHT to the back skin to generate K14ERSin3A∆/∆ tissues could be
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better to target the testis region more efficiently. A possibility would to be inject

the 4-OHT via the intraperitoneal route, however, as judged by the severity of

the phenotype when 4-OHT is applied topically, it is possible that injection of

4-OHT could lead to more severe side effects more quickly, making experiments

to examine fertility difficult. Further examination of the K14ERSin3A∆/∆ testis

phenotype would be useful to determine if the results concur with those recently

published by Pellegrino and colleagues who show that Sin3A expresssion is re-

quired for the germ cell lineage in the mouse [Pellegrino et al., 2012].

Since there is a severe phenotype when Sin3A is deleted in K14-positive cells,

at this point I decided to perform experiments using a transgenic mouse model

in which the mammalian homologue of Sin3A, Sin3B, was deleted in undifferen-

tiated cells of the epidermis upon application of tamoxifen. As a consequence

of a lack of revelation of a skin phenotype in these experiments, Sin3B appears

to be non-essential in skin. This is not altogether surprising as despite the high

homology between Sin3A and Sin3B, these two factors have independent roles

in other processes for example embryogenesis and muscle development [Cowley

et al., 2005; Dannenberg et al., 2005; David et al., 2008; McDonel et al., 2009;

VanOevelen et al., 2010] and thus could act independently in skin. However, the

possibility that Sin3B does have some function in the skin that is compensated

for by Sin3A in the absence of Sin3B can not be completely discarded. Further

experiments could include crossing the K14ERSin3A and K14Sin3B lines to gen-

erate K14ERSin3AF/FSin3BF/F mice in which both Sin3A and Sin3B could be

deleted in the epidermis concurrently upon 4-OHT application to the skin and

subsequent analysis of the skin phenotpe observed. It may be that Sin3B could

compensate for some features of Sin3A loss and that a more extreme phenotype

would be observed upon removal of both of these factors.

I next wanted to probe the causes of the enhanced differentation and increased

proliferation phenotype observed in K14ERSin3A∆/∆ skin. As explained in my

research aims, I belived that Sin3A could act as an antagonist to Myc in the

epidermis and as a consequence I wanted to determine if aberrant Myc activity

could be contributing to excess proliferation and increased differentiation when
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Sin3A is lost in skin. Via a combination of microarray and ChIP-chip analysis I

provided some enlightenment as to causes of this phenotype and Sin3A’s relation-

ship with Myc. Results from these analyses revealed that in the absence of Sin3A

in the interfollicular epidermis, Myc aberrantly binds its target genes at the EDC

leading to their activation and a push towards differentiation. Furthermore, Myc

also activates genes involved in growth and proliferation when Sin3A is deleted,

leading to epidermal hyperplasia.

It is also interesting to note that the presence of Sin3A leads to de-acetylation

and a reduction in stability of the Myc protein. However, ChIP-chip experiments

revealed that Sin3A is absent from promoter regions in a scenario of Myc over-

expression. This indicates that when high levels of Myc are bound, Sin3A is

unable to form a stable repressor complex on chromatin. Consequently, the in

vivo interaction of Sin3A and Myc is likely to occur indirectly via core complex

components or mediating the de-acetylase enzymatic activity or other interact-

ing proteins rather than directly with the Sin3A protein. This differs from Mad

family repressors, which interact with Sin3A’s PAH2 domain via their SID [La-

herty et al., 1997]. Investigations into the mechanism by which this occurs are

necessary. One possible candidate for this role is Yin Yang 1, which has been

demonstrated to interact with Sin3A to mediate transcriptional repression [Lu

et al., 2011] and has been implicated in Myc degradation [Parija and Das, 2003].

It is known that Myc acetylation leads to a reduction of ubiquitination of the

Myc protein [Popov et al., 2010; Vervoorts et al., 2003] thus it is possible that

de-acetylation has the opposing impact on Myc ubqiquitination and could be

linked to the ubiquitin proteosome pathway. Experiments to examine the effect

of Sin3A loss on Myc ubiquitination could therefore yield interesting results.

In a similar scenario to Sin3A’s impact on c-Myc, Sin3A has been shown to be

able to deacetylate STAT3 [Icardi et al., 2012]. Interestingly, studies have re-

vealed that STAT3 activation in skin leads to skin defects such as squamous

cell carcinoma and psoriasis while repression of STAT3 can improve these con-

ditions [Aggarwal et al., 2006]. The investigation of Sin3A’s relationship with

STAT3 specifically in the skin has not been examined in detail and it could be
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exciting to determine if Sin3A can lead to STAT3 repression specifically in skin.

Firstly, simply determining whether STAT3 is up-regulated in K14ERSin3A∆/∆

via qPCR, western blotting or immunostaining could provide some insight as to

whether there is a relationship between these factors in skin. Following on from

this, examining whether Sin3A and STAT3 can interact in keratinocytes and

examination of the acetylation status in K14ERSin3A∆/∆ keratinocytes versus

control keratinocytes could yield new, interesting information about the roles of

Sin3A in skin.

Evidence that Myc is the primary driver behind the phenotype in the absence of

Sin3A was cemented by the lack of epidermal hyperplasia and excess differenti-

ation when Myc is deleted in Sin3A-depleted skin. Moreover, expression levels

of EDC genes and genes involved in proliferation and the cell cycle are close to

normality in skin in which Myc and Sin3A have been deleted. However, when the

system is challenged by an induction of proliferation, the interfollicular epidermis

responds in an abnormal fashion, indicating that the Sin3A/Myc network is not

dispensable in the interfollicular epidermis.

These highly exciting results demonstrated that Sin3A and Myc share target

genes within the EDC and beyond and that a transcriptional regulatory net-

work governs behaviour in the interfollicular epidermis. This system must be

carefully balanced as misregulation causes disruption to epidermal homeostasis.

This means that the transcriptionally activating powers of Myc must be opposed

by the transcriptionally repressing activities of the Sin3A repressor complex at

shared target genes in a balanced manner. Interestingly, Sin3A has also been

shown to oppose Drosophila Myc activity [Das et al., 2012] so this relationship

between Sin3A and Myc could be conserved in other tissues and organisms.

Aside from revealing the relationship with Sin3A and Myc in skin, the results

that I have obtained to date have demonstrated that Sin3A appears to inhibit

proliferation. At the same time it appears that Sin3A is dispensable for the ter-

minal differentiation program to occur in the interfollicular epidermis. It would

be interesting to further probe the role of Sin3A in the interfollicular epidermis to
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determine if Sin3A acts to prevent differentiation. For example, over-expressing

Sin3A specifically in basal keratinocytes either in vitro or in vivo could give in-

sights into Sin3A’s role in the differentiation process. It could be hypothesised

that over-expression of Sin3A in this cell-type specifically leads to a block of dif-

ferentiation in this tissue.

In addition to impacts in the interfollicular epidermis, I revealed that Sin3A

deletion leads to increased size and proliferation of sebceous glands, however,

this phenotype was not fully explored during my project, leaving some questions

unanswered. For example, it would also be of interest to determine if Sin3A has a

conserved function in the sebaceous glands in terms of opposing proliferation and

possibly differentiation induced by Myc. This could be the case as it is known

that Myc activation induces sebocyte differentiation in both human and mouse

epidermis [Arnold and Watt, 2001; Frye et al., 2003; LoCelso et al., 2008; Waikel

et al., 2001]. Examination of K14ERSin3A∆/∆ sebaceous glands in more detail

to determine what sebaceous gland cell types are impacted by the loss of Sin3A

for example are there increased numbers of undifferentiated or differentiated cells

in this region?

Disruption of the balance of Sin3A and Myc in the interfollicular epidermis could

potentially lead to diseases involving hyper-proliferation such as cancer and pso-

riasis [Gudjonsson and Elder, 2007]. Building on the pilot experiments that were

performed using UVB radiation in Sin3A-depleted skin would provide insights

into Sin3A’s possible function as a tumour suppressor. One approach could in-

volve the use of two-stage chemical carcinogenesis to induce skin tumours using

DMBA and TPA, which is an established technique used to induce skin carcino-

genesis [Filler et al., 2007]. Determination as to whether there is differential

susceptibility between control and K14Sin3AWT/∆ skin using this approach could

provide information as to whether or not Sin3A acts as a tumour suppressor

in skin. Pilot experiments would be necessary to establish appropriate doses of

DMBA and TPA for tumour initiation and promotion.

Further experiments could include the evaluation of levels of Sin3A expression in
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skin tumours obtained from either experimental mice or human patients. Recent

observations by Das et al have demonstrated that expression levels of Sin3A are

reduced in a number of human tumours including lung, renal and liver tumours

[Das et al., 2012]. If Sin3A acts a tumour suppressor in skin it could be hypoth-

esised that Sin3A levels could be reduced in skin tumour samples in similarity

to the other tissues analysed by Das and colleagues [Das et al., 2012]. Finally,

another possibility to evaluate the influence of Sin3A on tumour susceptibility in

skin could be to cross K14Sin3AWT/∆ mice with a mouse model in which Ras is

activated as Ras is known to have a key role in skin carcinogenesis [Caulin et al.,

2007]. For example, RasGRP1 transgenic mice spontaneously develop both pa-

pillomas and cutaneous squamous cell carcinomas [Diez et al., 2009; Oki-Idouchi

and Lorenzo, 2007]. The deletion of Sin3A in this genetic background and assess-

ing the speed of tumour development, tumour type and severity and number of

tumours in comparison to controls could be a useful approach.

It would also be interesting to analyse the role of Sin3A in other hyper-proliferative

skin diseases such as psoriasis. From the results I have obtained indicating that

Sin3A acts to suppress proliferation, it could be hypothesised that loss of Sin3A

function for example via decreased expression or mutation could lead to excess

proliferation, therefore contributing to these diseases. One approach could be to

examine Sin3A expression levels in samples of psoriatic skin from human patients

and compare these levels to those observed in normal skin. An alternative ap-

proach could take advantage of the existence of a number of appropriate mouse

models for psoriasis, such as K5.Stat3C mice, which are transgenic mice with

keratinocytes expressing a constitutively active STAT3, [Gudjonsson et al., 2007;

Sano et al., 2004]. Skin from these mice could then be examined for Sin3A ex-

pression, loss or mutations to establish a role for Sin3A in disease processes.

The maintenance of homeostasis in mammalian tissues requires a balance between

cell loss and replacement to avoid diseases such as cancer or tissue failure due to

over-proliferation or under-proliferation. The results that I have produced have

demonstrated that the presence of Sin3A is essential for the maintenance of bal-

anced homeostasis in skin, a complex mammalian tissue. Furthermore, I found
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that Sin3A is antagonistic to Myc function in the interfollicular epidermis and is

necessary to prevent hyperproliferation or excess differentiation in this tissue. As

a whole, the work completed in this thesis indicates that a complex interplay be-

tween chromatin regulators, in this case Sin3A, and transcription factors, in this

case Myc, are of key importance in dictating epidermal cell fate and behaviour.

Sin3A and Myc are two key regulators in mammalian epidermis whose opposing

functions provide a balance between transcriptional activation and repression to

govern proliferation and differentiation. The interplay between these factors must

be tightly controlled to ensure that epidermal homeostasis is maintained.
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P. Janich, G. Pascual, A. Merlos-Suárez, E. Batlle, J. Ripperger, U. Albrecht,

H.Y.M. Cheng, K. Obrietan, L. Di Croce, and S.A. Benitah. The circadian

molecular clock creates epidermal stem cell heterogeneity. Nature, 480(7376):

209–214, 2011. 19

K Jensen, C Collins, E Nascimento, D Tan, M Frye, S Itami, and F Watt. Lrig1

expression defines a distinct multipotent stem cell population in mammalian

epidermis. Cell Stem Cell, 4(5):427–439, 2009. 16

K Jensen, R Driskell, and F Watt. Assaying proliferation and differentiation

capacity of stem cells using disaggregated adult mouse epidermis. Nature Pro-

tocols, 5(5):898–911, 2010. 39

M. Kashiwagi, B.A. Morgan, and K. Georgopoulos. The chromatin remodeler

mi-2β is required for establishment of the basal epidermis and normal differen-

tiation of its progeny. Development, 134(8):1571–1582, 2007. 21

C.K. Kaufman, P. Zhou, H.A. Pasolli, M. Rendl, D. Bolotin, K.C. Lim, X. Dai,

M.L. Alegre, and E. Fuchs. Gata-3: an unexpected regulator of cell lineage

determination in skin. Genes & development, 17(17):2108–2122, 2003. 19
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M. Suraj, J. Nichols, B. Kübler, S.A. Benitah, et al. The opposing transcrip-

tional functions of sin3a and c-myc are required to maintain tissue homeostasis.

Nature Cell Biology, 13(12):1395–1405, 2011. 7, 23, 24, 52, 61, 109, 111, 112,

114, 116, 117, 118, 124, 127, 128, 131

H. Nguyen, B.J. Merrill, L. Polak, M. Nikolova, M. Rendl, T.M. Shaver, H.A.

Pasolli, and E. Fuchs. Tcf3 and tcf4 are essential for long-term homeostasis of

skin epithelia. Nature genetics, 41(10):1068–1075, 2009. 20

180



REFERENCES

J.G.W. Nijhof, K.M. Braun, A. Giangreco, C. Van Pelt, H. Kawamoto, R.L. Boyd,

R. Willemze, L.H.F. Mullenders, F.M. Watt, F.R. de Gruijl, et al. The cell-

surface marker mts24 identifies a novel population of follicular keratinocytes

with characteristics of progenitor cells. Development, 133(15):3027–3037, 2006.

16

J Nowak, L Polak, H Pasolli, and E Fuchs. Hair follicle stem cells are specified

and function in early skin morphogenesis. Cell Stem Cell, 3(1):33–43, 2008.

19, 103

C.E. Oki-Idouchi and P.S. Lorenzo. Transgenic overexpression of rasgrp1 in mouse

epidermis results in spontaneous tumors of the skin. Cancer research, 67(1):

276, 2007. 156, 165

K.M. Osorio, S.E. Lee, D.J. McDermitt, S.K. Waghmare, Y.V. Zhang, H.N. Woo,

and T. Tumbar. Runx1 modulates developmental, but not injury-driven, hair

follicle stem cell activation. Development, 135(6):1059–1068, 2008. 19

K.M. Osorio, K.C. Lilja, and T. Tumbar. Runx1 modulates adult hair follicle stem

cell emergence and maintenance from distinct embryonic skin compartments.

The Journal of Cell Biology, 193(1):235–250, 2011. 19

A. Ouhtit, H.K. Muller, D.W. Davis, S.E. Ullrich, D. McConkey, and H.N. Anan-

thaswamy. Temporal events in skin injury and the early adaptive responses in

ultraviolet-irradiated mouse skin. The American journal of pathology, 156(1):

201, 2000. 141

T. Ozaki, R. Okoshi, M. Sang, N. Kubo, and A. Nakagawara. Acetylation status of

e2f-1 has an important role in the regulation of e2f-1-mediated transactivation

of tumor suppressor p73. Biochemical and biophysical research communications,

386(1):207–211, 2009. 29

S. Pal, R. Yun, A. Datta, L. Lacomis, H. Erdjument-Bromage, J. Kumar,

P. Tempst, and S. Sif. msin3a/histone deacetylase 2-and prmt5-containing

brg1 complex is involved in transcriptional repression of the myc target gene

cad. Molecular and cellular biology, 23(21):7475–7487, 2003. 31

181



REFERENCES

Y.P. Pang, G.A. Kumar, J.S. Zhang, and R. Urrutia. Differential binding of sin3

interacting repressor domains to the pah2 domain of sin3a. FEBS letters, 548

(1-3):108–112, 2003. 28

T Parija and B Das. Involvement of YY1 and its correlation with c-myc in NDEA

induced hepatocarcinogenesis, its prevention by d-limonene. Molecular Biology

Reports, 30(1):41–46, 2003. 162

J Patel, Y Du, P Ard, C Phillips, B Carella, C Chen, C Rakowski, C Chatterjee,

P Lieberman, W Lane, and S McMahon. The c-MYC oncoprotein is a substrate

of the acetyltransferases hGCN5/PCAF and TIP60. Molecular and Cellular

Biology, 24(24):10826–10834, 2004. 29, 107, 110

R. Paus, G. Cotsarelis, et al. The biology of hair follicles. N Engl J Med, 341(7):

491–497, 1999. 9, 12

C Payne, S Gallagher, O Foreman, J Dannenberg, R DePinho, and Braun R.

Sin3a is required by sertoli cells to establish a niche for undifferentiated sper-

matogonia, germ cell tumors, and spermatid elongation. Stem Cells, 28(8):

1424–1434, 2010. 31, 74, 160

G. Pellegrini, E. Dellambra, O. Golisano, E. Martinelli, I. Fantozzi, S. Bondanza,

D. Ponzin, F. McKeon, and M. De Luca. p63 identifies keratinocyte stem cells.

Proceedings of the National Academy of Sciences, 98(6):3156, 2001. 18

J. Pellegrino, D.H. Castrillon, and G. David. Chromatin associated sin3a is

essential for male germ cell lineage in the mouse. Developmental Biology, 2012.

30, 31, 160, 161

C. Perez, J. Parker-Thornburg, C. Mikulec, D.F. Kusewitt, S.M. Fischer, J. Di-

Giovanni, C.J. Conti, and F. Benavides. Skhin/sprd, a new genetically defined

inbred hairless mouse strain for uv-induced skin carcinogenesis studies. Exper-

imental dermatology, 21(3):217–220, 2012. 155

C Pincelli and A Marconi. Keratinocyte stem cells: friends and foes. Journal of

Cellular Physiology, 225(2):310–315, 2010. 1

182



REFERENCES

M.V. Plikus, D.L. Gay, E. Treffeisen, A. Wang, R.J. Supapannachart, and G. Cot-

sarelis. Epithelial stem cells and implications for wound repair. In Seminars

in Cell & Developmental Biology. Elsevier, 2012. 157, 158
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