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Abstract

Analytical and numerical techniques for wave scattering

Georg Andreas Maierhofer

In this thesis, we study the mathematical solution of wave scattering problems which

describe the behaviour of waves incident on obstacles and are highly relevant to a raft of

applications in the aerospace industry. The techniques considered in the present work

can be broadly classed into two categories: analytically based methods which use special

transforms and functions to provide a near-complete mathematical description of the

scattering process, and numerical techniques which select an approximate solution from a

general finite-dimensional space of possible candidates.

The first part of this thesis addresses an analytical approach to the scattering of

acoustic and vortical waves on an infinite periodic arrangement of finite-length flat blades

in parallel mean flow. This geometry serves as an unwrapped model of the fan components

in turbo-machinery. Our contributions include a novel semi-analytical solution based on the

Wiener–Hopf technique that extends previous work by lifting the restriction that adjacent

blades overlap, and a comprehensive study of the composition of the outgoing energy flux

for acoustic wave scattering on this array of blades. These results provide an insight into

the importance of energy conversion between the unsteady vorticity shed from the trailing

edges of the cascade blades and the acoustic field. Furthermore, we show that the balance

of incoming and outgoing energy fluxes of the unsteady field provides a convenient tool for

understanding several interesting scattering symmetries on this geometry.

In the second part of the thesis, we focus on numerical techniques based on the boundary

integral method which allows us to write the governing equations for zero mean flow in

the form of Fredholm integral equations. We study the solution of these integral equations

using collocation methods for two-dimensional scatterers with smooth and Lipschitz

boundaries. Our contributions are as follows: Firstly, we explore the extent to which least-

squares oversampling can improve collocation. We provide rigorous analysis that proves

guaranteed convergence for small amounts of oversampling and shows that superlinear

oversampling can ensure faster asymptotic convergence rates of the method. Secondly,

we examine the computation of the entries in the discrete linear system representing



the continuous integral equation in collocation methods for hybrid numerical-asymptotic

basis spaces on simple geometric shapes in the context of high-frequency wave scattering.

This requires the computation of singular highly-oscillatory integrals and we develop

efficient numerical methods that can compute these integrals at frequency-independent

cost. Finally, we provide a general result that allows the construction of recurrences for

the efficient computation of quadrature moments in a broad class of Filon quadrature

methods, and we show how this framework can also be used to accelerate certain Levin

quadrature methods.



To my parents, Birgitta and Hans-Jörg, and my brother, Thomas,

for their love, patience and unwavering support.





Acknowledgements

First and foremost, I would like to thank my supervisors Prof. Nigel Peake and Prof. Arieh

Iserles. It has been a tremendous privilege to work under their guidance for the past four

years.

I would like to thank Nigel for his steady support in my scientific endeavours and

his openness to so many directions of research, which has afforded me the wonderful

opportunity to pursue my interests and work on projects that I am truly passionate about.

Nigel’s calm and positive style has been a great source of motivation, especially during the

times when projects did not go to plan, and helped me persevere in the face of challenge.

Throughout the years I have been grateful for Nigel’s willingness to meet and discuss

research, regardless of how busy his schedule was. Indeed, working under his supervision

not only offered me the chance to learn from him about exciting mathematical ideas, but

also to admire his purposefulness and genuine devotion to the students and scientific ideals

of the University of Cambridge, displayed by Nigel as a teacher, supervisor, and in various

roles of academic leadership. I truly wish that someday I will be able to replicate Nigel’s

commitment to the advancement of knowledge through research and education in the

physical sciences.

At the same time, I would like to thank Arieh for his unrivalled enthusiasm for

mathematical research, which has inspired me to see the beauty and find true joy in my

work. Throughout the years, I have been amazed by his generosity in spending time

helping his research students. Arieh has always been available for a chat, to exchange

ideas, and to proofread my writings, regardless of how many papers or other projects he

was working on. His commitment to research and supervision has not only supported

my work directly but has also instilled a sense of responsibility that has helped me to

challenge myself to live up to this standard. During my time at Cambridge, I have not

come across a single topic in numerical analysis and, in fact, any mathematical field, that

Arieh was not happy to discuss and for which he was not aware of exciting theorems and

stories to share. I can only strive and hope that, along my scientific journey, I will be able

to acquire a fraction of his mathematical knowledge.

Next, I would like to express my sincere gratitude to Prof. Daan Huybrechs, most

importantly for proposing and for working together on such an exciting research project

(Chapter 4 of this thesis). In his considerate and friendly style, Daan has taught me a lot



about integral equations, numerical quadrature and wave scattering, and gave me a chance

to explore a truly exciting field of research. I am especially grateful for his hospitality

during my visit to KU Leuven in 2018 and for his flexibility and commitment to making our

collaboration work even when an extended visit was prevented by the ongoing pandemic.

It has been a pleasure to work alongside so many brilliant and kind mathematicians

in the Waves group and the Cambridge Centre for Analysis (CCA) over the past years.

From the Waves group, I would like to express my gratitude in particular to Dr Lorna

Ayton and Dr Anastasia Kisil for many exciting and helpful conversations about research.

I am indebted to Anastasia for the opportunity to be part of the steering committee for

the Mathematical Analysis in Acoustics special interest group of UKAN, which allowed

me to learn about ongoing and future research goals from some of the leading experts of

my time. I am also grateful to Dr Mark Spivack for acting as my graduate advisor, and

both to him and Dr Orsola Rath Spivack for their enthusiasm and support and for many

interesting conversations about scattering in random media. I would also like to thank Dr

Stephen Cowley for his unwavering support of students and junior researchers, which has

helped me since my first research internship in DAMTP. I am grateful for many helpful

and interesting discussions with Mungo Aitken, Dr Peter Baddoo, Dr David Baker, Sam

Bradford, Dr Ed Brambley, Alistair Hales, Chris Sear, and Dr Mike Smith. I am especially

grateful to Matthew Priddin for a truly exciting collaboration on some topics beyond the

scope of this thesis, and many helpful conversations concerning the topics presented here.

Being a member of the CCA has allowed me to learn a great deal about analysis

beyond my present research in waves. In this regard, I am grateful to the Cambridge

Image Analysis group, and especially to Dr Angelica Aviles-Rivero, Dr Martin Benning, Dr

Matthias Ehrhardt and Prof. Carola-Bibiane Schönlieb, for their collaboration on several

projects outside the scope of this thesis. I would also like to thank Dr Luca Magri from the

Department of Engineering, who taught me a lot about Lyapunov exponents and ergodic

systems during my CCA external project. I am similarly grateful to Daniel Heydecker for

collaboration and many fun coffee breaks, and to the many bright colleagues in the CCA

alongside whom I had the pleasure to work during the past four years. These include Dr

Andrew Celsus, Dr Matthew Colbrook, and Karen Luong as fellow numerical analysts, and

in particular, my office mate Peter Taylor, whom I thank for providing an enjoyable and

collegiate environment to work in. I would like to extend a special thank you to Mungo

Aitken, Karen Luong and Dr Shuvrangsu Das for proofreading a draft of this thesis. It

is impossible to imagine a CCA without the person keeping watch over all CCA cohorts,

Tessa Blackman, and I would like to thank her for always keeping an open door, for many

nice CCA coffee breaks, and for providing essential support in administrative matters,

without which we could not carry out our research.

My work presented here has benefited from numerous scientific discussions with many



experts in the field. In particular, I would like to express my gratitude to Prof. David

Abrahams, Prof. Simon Chandler-Wilde, Dr Alfredo Deaño, Dr Andrew Gibbs, Dr Anders

Hansen, Dr Dave Hewett, Prof. Stefano Serra-Capizzano, Dr Pranav Singh, and Dr Marcus

Webb, for their patience and enthusiasm in explaining and exchanging mathematical

concepts and ideas.

I am also grateful for having had the privilege to work and learn as a member of

Trinity College since the beginning of my undergraduate studies. The collegiate community

has looked after my well-being and academic development, and has allowed me to forge

many lifelong friendships. Within the college, I would like to thank especially my tutor

Prof. Caterina Ducati and my tutorial administrator Janice Chambers for their support

throughout my studies and during the challenges brought about by the pandemic. I am

also grateful to Prof. John Hinch for acting as my college mentor.

I would also like to gratefully acknowledge financial support through a research schol-

arship and travel grants from my college, travel support from the Cambridge Philosophical

Society and support from the UK Engineering and Physical Sciences Research Council

(EPSRC) grant EP/L016516/1 for my studies at the CCA.

There were many close friends without whom my time in Cambridge would have been

much less enjoyable. I would like to thank in particular Eero, Diana and Jedrek, Irene

and Matthew, Katya and Will, Matthew, Olivér, and Wuyhun, for the many good times

together and for keeping me sane during the busier times of my studies.

None of this would have been possible without the unconditional love and support

from my family, especially from my parents, Birgitta and Hans-Jörg, and from my brother

Thomas. They have always been there to build me up when things did not go to plan,

and ready to celebrate with me when things went well. I am particularly grateful for their

advice and help in navigating so many of life’s challenges during these past years and for

their proofreading of this thesis and of many of my previous texts and papers – they are

part of a very small number of people that will have read the content of this thesis in its

entirety.

Finally, I want to thank Maria, my companion, friend and love, who has stuck with

me through thick and thin. Her caring support and kind spirit have helped me navigate

the tough times, her mathematical knowledge has been of invaluable help in countless

discussions about research, and her cheerfulness has provided an enduring source of joy

during my studies and beyond.





Contents

List of Figures xvii

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Cascades of blades in jet engines . . . . . . . . . . . . . . . . . . . 3

1.1.2 Computational wave scattering . . . . . . . . . . . . . . . . . . . . 7

1.2 Mathematical techniques and preliminaries . . . . . . . . . . . . . . . . . . 12

1.2.1 The Wiener–Hopf technique . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Boundary integral equations . . . . . . . . . . . . . . . . . . . . . . 18

1.2.3 Highly oscillatory quadrature and Filon methods . . . . . . . . . . 24

1.3 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Wave scattering by an infinite cascade of non-overlapping blades 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 The equations of motion and mathematical formulation . . . . . . . . . . . 38

2.2.1 Boundary and edge conditions . . . . . . . . . . . . . . . . . . . . . 39

2.3 Formulation as a Wiener–Hopf problem . . . . . . . . . . . . . . . . . . . . 42

2.3.1 The scalar Wiener–Hopf kernel . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Derivation of Wiener–Hopf equations . . . . . . . . . . . . . . . . . 44

2.4 Solution using the Wiener–Hopf technique . . . . . . . . . . . . . . . . . . 46

2.4.1 Factorisation of κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4.2 The uncoupled leading edge problem . . . . . . . . . . . . . . . . . 46

2.4.3 Asymptotic behaviour of the kernel factors and residues . . . . . . . 47

2.4.4 The trailing edge correction . . . . . . . . . . . . . . . . . . . . . . 49

2.4.5 The leading edge correction . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Reduction to an infinite algebraic system . . . . . . . . . . . . . . . . . . . 53

2.5.1 Stable formulation under Im Ω̃→ 0− . . . . . . . . . . . . . . . . . 54

2.5.2 Approximate solution of the linear system . . . . . . . . . . . . . . 55

2.6 Equivalence to previous solutions for overlapping cascades when d < 1 . . . 56

2.6.1 Review of previous work in the case of overlap . . . . . . . . . . . . 56

xiii



2.6.2 Proof of equivalence when d < 1 . . . . . . . . . . . . . . . . . . . . 57

2.7 Total unsteady lift and far-field behaviour . . . . . . . . . . . . . . . . . . 59

2.7.1 Total unsteady lift . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.7.2 Far-field behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.8 Numerical examples and results . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.1 Total unsteady lift . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.8.2 Far field behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.A The kernel κ and its factorisation . . . . . . . . . . . . . . . . . . . . . . . 70

2.B Wiener–Hopf splitting for the trailing edge correction . . . . . . . . . . . . 71

2.C Reduction to an infinite algebraic system . . . . . . . . . . . . . . . . . . . 74

2.D The finite section method and convergence . . . . . . . . . . . . . . . . . . 76

2.E Expressions for the solution with acoustic downstream incidence . . . . . . 78

3 Acoustic and hydrodynamic power of wave scattering by an infinite

cascade of blades in mean flow 83

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.2.1 Dispersion relation for free space solutions . . . . . . . . . . . . . . 87

3.2.2 Form of the far-field . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.3 An energy balance for the cascade of blades . . . . . . . . . . . . . . . . . 90

3.3.1 Time-averaged energy balance in terms of amplitudes . . . . . . . . 91

3.3.2 Interpretations of the interaction terms . . . . . . . . . . . . . . . . 94

3.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.4.1 Symmetries in the field and zero acoustic reflection . . . . . . . . . 96

3.4.2 The significance of the hydrodynamic and energy conversion terms

in balancing the energy . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4.3 Negative acoustic energy absorption and sound power generation in

wave-cascade scattering . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 Oversampled collocation methods for boundary element methods in

two dimensions 113

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 An oversampled collocation method . . . . . . . . . . . . . . . . . . . . . . 118

4.2.1 Mathematical assumptions . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.2 From least-squares to a discrete Bubnov–Galerkin method . . . . . 123

xiv



4.3 Oversampling in collocation methods and in approximation on Hilbert spaces125

4.3.1 Stable function approximation on Hilbert spaces . . . . . . . . . . . 125

4.3.2 Least-squares oversampled collocation method . . . . . . . . . . . . 126

4.4 Convergence analysis of the oversampled collocation method . . . . . . . . 127

4.4.1 Strang estimate for convergence on energy space . . . . . . . . . . . 128

4.4.2 Superconvergence and the discrete Aubin–Nitsche lemma . . . . . . 131

4.4.3 Exact expression for the error for equispaced spline bases . . . . . . 133

4.5 Oversampled collocation in specific settings . . . . . . . . . . . . . . . . . . 139

4.5.1 Non-equispaced sampling points . . . . . . . . . . . . . . . . . . . . 140

4.5.2 Lipschitz domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.6 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.6.1 Smooth domains with equispaced sampling . . . . . . . . . . . . . . 144

4.6.2 Suboptimal choice of collocation points . . . . . . . . . . . . . . . . 147

4.6.3 Polygonal scatterers . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.A Error estimate in the discrete inner product . . . . . . . . . . . . . . . . . 156

4.B Error estimate for the discrete inner product non-uniform collocation points157

4.C Derivation of exact error expression for equispaced grids . . . . . . . . . . 158

4.D Pseudodifferential form of the single layer operator . . . . . . . . . . . . . 161

4.E Perturbation argument for modified oversampled collocation . . . . . . . . 164

4.F Perturbation argument for oversampled collocation (Laplace) . . . . . . . . 166

4.G Perturbation argument for oversampled collocation (Single layer Helmholtz) 175

5 Recursive moment computation in Filon methods 187

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.2 The extended Filon method . . . . . . . . . . . . . . . . . . . . . . . . . . 190

5.2.1 The Achilles’ heel of Filon methods: Moment computation . . . . . 191

5.2.2 Fast interpolation at Filon–Clenshaw–Curtis points . . . . . . . . . 192

5.3 Recursive moment computation in Filon methods . . . . . . . . . . . . . . 193

5.3.1 Recursive moment computation for Filon–Clenshaw–Curtis methods 198

5.4 Application to integrals with algebraic singularities and stationary points . 200

5.4.1 Stability analysis of the recurrences . . . . . . . . . . . . . . . . . . 202

5.4.2 Stability results for the initial regime . . . . . . . . . . . . . . . . . 202

5.4.3 Change of behaviour of homogeneous solutions and Oliver’s algorithm204

5.4.4 Numerical examples and comparison to previous work . . . . . . . . 205

5.5 Application to high-frequency wave scattering . . . . . . . . . . . . . . . . 208

5.5.1 Recursive moment computation . . . . . . . . . . . . . . . . . . . . 210

5.5.2 Initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

xv



5.5.3 Behaviour of homogeneous solutions and initial stability . . . . . . 212

5.5.4 Numerical evidence of stable forward propagation . . . . . . . . . . 214

5.5.5 Wave scattering on a screen in two dimensions . . . . . . . . . . . . 215

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.A Fast interpolation at Clenshaw–Curtis points, mid- and endpoint derivatives222

5.B Proof of Theorem 5.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

5.C Proof of Theorem 5.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

5.D Expression for initial moments in §5.5.2 . . . . . . . . . . . . . . . . . . . . 232

5.E Proof of Proposition 5.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6 An efficient Levin–Clenshaw–Curtis method for a class of highly

oscillatory integrals 235

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.2 The Levin method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.3 Accelerating the Levin method using banded matrix computations of

Chebyshev coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.3.1 Algorithm for the efficient construction of the Levin method . . . . 244

6.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.4.1 Linear phase function . . . . . . . . . . . . . . . . . . . . . . . . . . 244

6.4.2 Quadratic phase function . . . . . . . . . . . . . . . . . . . . . . . . 246

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

List of symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

7 Concluding remarks 251

7.1 Future work by chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

References 257

xvi



List of Figures

1.1 The predominant design in commercial aircraft engines, the turbofan. . . . 4

1.2 Schematic of a row of rotor blades and a row of stator blades. . . . . . . . 5

1.3 The minimum degrees of freedom required by a spline Galerkin boundary

element method to a solve a wave scattering problem to fixed accuracy as

the frequency increases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Sketch of a domain- and a boundary-based mesh. . . . . . . . . . . . . . . 10

1.5 Complex half planes R± and strip of overlap R+ ∩R− ⊂ C. . . . . . . . . . 13

1.6 The branch cuts of γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.7 The trapezoidal rule (ν = 9) applied to the real part of Iω[1/(1 + x2)]. . . . 25

2.1 The cascade geometry with mean-flow and blade labels. . . . . . . . . . . . 38

2.2 The regions of different asymptotic behaviour of |κ| in the complex α-plane. 48

2.3 Total lift L for M ∈ [0.2, 0.9]. . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.4 Total lift |L| as a function of K3. . . . . . . . . . . . . . . . . . . . . . . . 64

2.5 Total lift |L| as a function of α0. . . . . . . . . . . . . . . . . . . . . . . . . 65

2.6 Relative transmission and reflection amplitudes of the incident wave. . . . 66

2.7 Relative transmission and reflection amplitudes as a function of d. . . . . . 67

2.8 The domain D of algebraic behaviour of |κ+| in the complex α-plane. . . . 73

3.1 Sketch of cascade of blades with incident acoustic wave. . . . . . . . . . . . 86

3.2 Dispersion curves for radiation modes away from the cascade. . . . . . . . 88

3.3 Control domain for the energy balance. . . . . . . . . . . . . . . . . . . . . 90

3.4 Relative modal pressures of the first transmitted and reflected mode, with

α0 = 30◦ and ΩM = π/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.5 Relative modal pressures of the first transmitted and reflected mode, with

α0 = 30◦ and ΩM = 5π/4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.6 Special symmetries in the field for zero mean flow. . . . . . . . . . . . . . . 99

3.7 The contributions to the outgoing energy flux as percentage of the total

incoming power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.8 The acoustic and hydrodynamic power for varying incident frequency. . . . 106

3.9 Relative acoustic energy absorption by the wake (linear scale). . . . . . . . 107

xvii



3.10 Relative outgoing sound powers (dB scale). . . . . . . . . . . . . . . . . . . 108

4.1 The improved convergence properties of oversampled collocation on a smooth

scatterer in the single layer potential formulation. . . . . . . . . . . . . . . 116

4.2 Sketch of the mesh refinement for J = 4. . . . . . . . . . . . . . . . . . . . 134

4.3 Error in the numerical method for a smooth circular scatterer, using the

single layer potential formulation and linear splines. . . . . . . . . . . . . . 145

4.4 The effect of linear oversampling for the same experiment as in Fig. 4.3. . . 147

4.5 Error in an interior field point for wave scattering on a smooth domain,

with equispaced points that are offset from the equispaced spline mesh. . . 148

4.6 Double layer formulation of the interior Dirichlet problem for the Helmholtz

equation. The sampling points are drawn uniformly at random. . . . . . . 150

4.7 Error in the numerical method for a regular pentagonal scatterer, using the

single layer potential (order 2α = −1) and linear splines (d = 1), with offset

equispaced collocation points. . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.8 Single layer formulation of the exterior Dirichlet problem for the Helmholtz

equation on a pentagonal scatterer. . . . . . . . . . . . . . . . . . . . . . . 152

5.1 The growth of solutions to Eq. (5.18) as measured by
∥∥∥∏N

n=1 Aj

∥∥∥. . . . . . 206

5.2 Comparison of our direct Filon method using recursive moment computation,

with the literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.3 The growth of solutions to Eq. (5.18) as measured by
∥∥∥∏N

n=1 B
(j)
∥∥∥. . . . . . 215

5.4 Scattering of a Gaussian beam on a perfectly conducting finite screen. . . . 216

5.5 Relative error of the direct Filon method for evaluating S(∂nψi)(sm). . . . 219

6.1 The error in the Levin–Clenshaw–Curtis method for I
(1)
ω [f ] as a function of

ω for fixed ν = 4, 64, 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

6.2 The error and timing of the Levin–Clenshaw–Curtis method as a function

of the number of collocation points ν for fixed frequency ω. . . . . . . . . . 246

6.3 The error in the Levin–Clenshaw–Curtis method for I
(2)
ω [f ]. . . . . . . . . . 247

xviii



Chapter 1

Introduction

The generation, propagation and deflection of waves plays an important role in a vast range

of modern engineering applications. These include systems where the controlled generation

of acoustic and electromagnetic waves is desired for remote and non-invasive measurements

such as radar, magnetic resonance imaging, sonar and ultrasound; systems for the exchange

of information such as telecommunication networks; structures where controlled deflection

enhances entertainment such as the acoustics of opera houses; and even systems for

the targetted delivery of energy in medical applications such as high-intensity focused

ultrasound and radiation therapy. The UK Acoustics Network estimates that in 2019

the acoustics industry alone contributed £4.6 billion to the United Kingdom’s economy

annually, employing over 16,000 people in 750 companies nationwide (UK Acoustics

Network, 2019). In the same year the electech sector (encompassing applications such as

radar and telecommunications) generated a revenue of around £100 billion and employed

more than 1 million people in over 45,000 businesses nationwide (Innovate UK, 2019).

Together the two sectors make up a significant portion of the UK’s GDP each year.

Acoustic waves can also play an antagonistic role: uncontrolled production of sound

is an undesired by-product of nearly any movement of mechanical parts at rapid speed,

including in aeroplanes, industrial gas turbines, and wind turbines. Such sound waves

are typically referred to as noise and form an enormous portion of the negative impact of

industrialisation on nature and human life. The European Environment Agency estimates

that at least 20% of the EU population lives in areas where environmental noise levels

are harmful to health (European Environment Agency, 2020). According to this report,

in addition to an estimated 12,000 premature deaths caused by noise pollution on the

European territory alone, industrial and traffic noise causes a range of physiological and

behavioural responses in wildlife resulting in increased mortality, reduced reproductive

success and, hence, to overall lower population densities. Consequently, a large part of

national and international acoustics research is devoted to the control and reduction of

noise.

1



1.1 Background

The first step in controlling waves (whether for targeted generation, or for the reduction of

unwanted noise) lies in the understanding of the underlying mechanisms and the solution

of the ‘forward problem’, i.e. the description of how waves produced by specific sources

are deflected by obstacles. Sound waves are manifestations of pressure fluctuations in a

fluid, and their propagation in inviscid isentropic flows is described by the acoustic wave

equation, which follows from the linearised momentum and continuity equations,

D2p

Dt2
− c2

0∆p = 0, (1.1)

where p = p(x, t) is the unsteady pressure field (the quantity describing acoustic fluctua-

tions), c0 is the speed of sound in the medium, ∆ = ∇2 is the Laplacian, and D/Dt is the

material derivative. In general c0 may depend on x, t but for the purpose of this thesis we

focus on homogeneous fluids, for which c0 is constant.

Alternatively, the unsteady field in inviscid isentropic flows may be described by the

unsteady velocity field u(x, t), which also satisfies the acoustic wave equation D2u/Dt2 −
c2

0∆u = 0. This velocity field can be decomposed, u = uv + ua, into a solenoidal part uv

(with ∇ · uv = 0) which does not contribute to the acoustics and an irrotational part ua

(with ∇× ua = 0) which can be expressed in terms of a scalar velocity potential φ(x, t)

such that ua = ∇φ. The unsteady velocity potential φ(x, t) again satisfies the acoustic

wave equation, D2φ/Dt2 − c2
0∆φ = 0.

Electromagnetic waves are governed by a similar equation, the electromagnetic wave

equation (which follows from Maxwell’s equations)

∂2E

∂t2
− 1

µε
∇2E = 0,

∂2B

∂t2
− 1

µε
∇2B = 0,

where E,B are the electric and magnetic field respectively, µ is the permeability and ε is

the permittivity of the medium.

In many problems it is appropriate to assign a harmonic time-dependence to the

unsteady field (essentially by considering the modal components of the field) and to write,

for instance, p(t,x) = Re
(
p̃(x)eiωt

)
. Henceforth, it is understood that physical quantities

are equal to the real part of the corresponding quantities in the equations and the real

part is not written in the interest of brevity. In this case, the spatial part p̃ satisfies an

elliptic partial differential equation, the Helmholtz or the convected Helmholtz equation,

which for zero mean flow takes the simple form

∆p̃+ k2p̃ = 0,
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where k = ω/c0 is the wave number.

In this thesis we shall focus on the scalar wave equation Eq. (1.1). Nevertheless, we

note that many of the techniques for the solution of wave scattering problems, specifically

those concerning the computational methods developed in Chapters 4-6, extend to the

electromagnetic case, and that the relevant literature often shares ideas between the

electromagnetics and the acoustics communities.

We shall be interested in solving Eq. (1.1) subject to suitable boundary conditions

which are used to describe the shape and the surface properties of relevant obstacles by

which the waves are deflected. Our main goal is to develop mathematical techniques to

solve these ‘wave scattering’ problems. Depending on the context ‘to solve’ means to

produce numerical values of the scattered field that are computed to a specified precision,

to produce results that demonstrate the overall qualitative nature of the scattered waves,

or to provide some physical insight into certain properties of the scattered field for a given

obstacle.

1.1.1 Cascades of blades in jet engines

One major source of noise pollution is commercial air traffic. As a result of an ever

growing amount of air traffic and increasing environmental awareness, governing bodies

have imposed progressively more stringent requirements on the permissible noise emission

of aircraft over the recent decades. The most up-to-date set of goals in the European

aviation sector is established in the EU’s vision Flightpath 2050 (European Commission,

2012) which aims to reduce the perceived noise of flying aircraft by 65% in 2050 relative

to the noise level of a typical new aircraft in 2000. This has prompted a number of

transnational research efforts including the ‘Silent’ Aircraft Initiative (Dowling et al.,

2007) and the ENOVAL (Engine Module Validators) program (ENOVAL Consortium,

2019) seeking to reduce perceived noise and noise emissions through a radical redesign of

airframe and engine components respectively.

Currently, the predominant engine design on commercial aircraft is the turbofan engine.

In this design a large rotor fan forms the first stage of the compressor with the majority

of the mass flow generated by the fan bypassing the engine core. The remainder of the

flow enters the engine core where it is further compressed, mixed with fuel and ignited,

and, after powering the turbine, exits the core in the form of jet exhaust. The thrust of

the jet engine results from both the bypass flow and the exhaust stream.

A schematic of such a turbofan engine is shown in Fig. 1.1a. In Fig. 1.1b we see an

artist’s rendering of the latest turbofan engine developed by Rolls-Royce, called the Trent

7000. It is apparent that an integral component of the engine consists of the fan blades,

which provide a major proportion of the thrust, and the compressor blades, which are used

to compress air entering the combustor. A design change in these turbofan engines that
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has proven particularly advantageous over the past decades is an increase in the bypass

ratio (BPR) (the ratio between the mass flow rate of the bypass air to the air entering the

engine core as shown in Fig. 1.1a) which allowed engine manufacturers to enhance the

fuel efficiency and to reduce the jet noise arising from the mixing of the hot jet exhaust

with cold ambient air (Peake and Parry, 2012). For example the Trent 7000 has a BPR of

10:1, and ENOVAL Consortium (2019) proposed the next generation of ultra-high bypass

engines to work in even larger regimes with 12 < BPR < 20. At the same time, this

development led to an increase in the relative importance of fan and compressor noise

(Peake and Parry, 2012).

(a) Schematic of a turbofan engine.1 (b) Rolls-Royce Trent 7000.2

Figure 1.1: The predominant design in commercial aircraft engines, the turbofan.

The fan and compressor components are arrangements of blades with alternating rows

of rotating blades (rotors) that compress the flow and provide thrust, and stationary vanes

(stators) that direct the flow to avoid excessive swirl. A simplified model of a single rotor

and stator row (called a compressor stage) is shown in Fig. 1.2.

In the study of noise emissions of turbomachinery one is therefore interested in both the

effects of scattering of acoustic waves on single rows of blades (which can be compounded

to provide an understanding of the ‘blockage’ by the fan components of sound generated

elsewhere) and the rotor-stator interaction noise. The latter arises from the interaction of

vorticity waves, which are generated from the movement of the rotors through the fluid,

with the solid stator blades. In both cases it is reasonable to assume that the flow is

radially restricted to near cylindrical surfaces (Posson et al., 2010, Baddoo, 2020), which

allows us to unwrap and provide a 2D representation of the important features of the

geometry as is shown in Fig. 1.2. If, in addition, the hub-tip ratio of the fan is close to

unity chord-wise effects can be included, by expanding in terms of span-wise wavenumber

(Goldstein, 1976).

1Image from Adobe Stock, modified and reproduced under the appropriate license.
2Reproduced with permission. Copyright Rolls-Royce plc.
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Figure 1.2: The cascade of blades is an unwrapped model of blade rows in turbomachinery.

We shall henceforth refer to this infinitely extending arrangement of blades as a ‘cascade

of blades’. Motivated by this modelling application, wave scattering on the cascade of

blades has received a large amount of attention over several decades, including studies

by Whitehead (1970), Kaji and Okazaki (1970), Koch (1971), Peake (1992, 1993), Glegg

(1999), Baddoo and Ayton (2020b), and Baddoo (2020). We will provide a more detailed

description of the specifics of past contributions in §2.1, but note that several interesting

open questions remain. One aspect which we address in this thesis is that all previous

solutions based on the Wiener–Hopf technique for this problem imposed a requirement of

overlap of consecutive blades in the cascade, and in Chapter 2 we provide a Wiener–Hopf

solution that lifts this restriction.

A particularly interesting feature in this model for turbomachinery blade rows is the

inevitable presence of nonzero mean flow (for our purposes assumed subsonic), which

leads to profound consequences in the properties of the acoustic field. The large Reynolds

number in the flow permits the use of a simplified inviscid model for the flow in the body

of the fluid, however viscous boundary effects and resulting flow separation at the sharp

trailing edge of each cascade blade cannot be ignored. It is understood that these effects

can to a large extend be accounted for in the simplified inviscid model by introducing

a single edge condition, which is known as the ‘Kutta–Joukowsky hypothesis’ and more

commonly simply referred to as the ‘Kutta condition’ (Crighton, 1985). The viscous

effects in the boundary layer result in the shedding of vorticity from the sharp trailing
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edges, which when imposing the Kutta condition is modelled in the inviscid equations

using infinitely thin vortex sheets attached at the cascade trailing edges – the wake. The

interaction of the unsteady vortical component of the field with the irrotational acoustic

component facilitates an exchange of energy between these components. As a result of

this energy exchange, and from the outset perhaps somewhat surprisingly, acoustic energy

is no longer conserved in the presence of vorticity (in contrast to the total energy in the

fluid which, of course, is conserved).

This effect has been subject to a large amount of research over the second half of

the twentieth century. While it was well-known since the pioneering work by Lighthill

(1952) that vorticity and turbulence can generate noise (i.e. pass energy to the acoustic

field) it took several more decades until the converse effect, i.e. the generation of vorticity

through sound, was understood. The first time this effect was conclusively described

experimentally was in the work by Bechert et al. (1977), who found significant attenuation

(at low frequencies) of the transmitted sound power of pure tones exiting a nozzle in

the presence of a low Mach number jet flow. The details of past contributions will be

discussed in §3.1, but we mention that this observed sound attenuation was first explained

analytically in the work of Howe (1979) and Myers (1986). The attenuation of sound by

conversion into vorticity has potential for exciting engineering applications, such as the

work by Vér (1982), who managed to use this effect to suppress acoustic resonances in

exchange heaters by inserting thin perforated plates aligned parallel with the mean flow

into the heat exchanger cavity (the generation of vorticity in the perforations of the screen

results in damping of the acoustic field).

This exchange of energy is of interest also for understanding the properties of the

scattering process on blade rows and we provide a study of the energy balance for this

system in Chapter 3. Indeed, it was found by Rienstra (1981) that, for single sharp trailing

edges, energy can be exchanged in both ways between these components of the field, and

we confirm that also for blade rows this effect can lead both to significant attenuation as

well as to production of sound.

Finally, we mention that there are a number of interesting special properties of the field

arising from the scattering of incident acoustic waves on the cascade of blades, including

symmetries and zero reflection at non-trivial angles of attack. In reference to those

properties one may consider blade rows as perfectly transmitting metamaterials at special

angles of attack as demonstrated by Porter (2021). In Chapter 3 we show rigorously that

zero reflection in the leading acoustic mode at special angles of attack is present for an

arbitrary choice of incident frequency and hence extend previous results to the regime

beyond the first modal cut-on frequency.
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1.1.2 Computational wave scattering

Over the past decades the development of computers with ever greater processing power

has opened up many new opportunities for (aero-)acoustical and electromagnetic research.

Indeed, in the 1990s Sir James Lighthill foresaw the dawn of a “second golden age of

aeroacoustics” facilitated by computer simulations (Lighthill, 1993). While some of the

earliest wave scattering simulations could afford only a few dozen degrees of freedom (for

instance Banaugh and Goldsmith (1963) were restricted to just 72 degrees of freedom in

their numerical solution of the Helmholtz equation on an IBM 709), today aeroacoustical

computations involving millions of data points are not uncommon (Lele and Nichols, 2014).

The availability of high-fidelity simulations has tremendous ramifications for manufac-

turing processes, for instance through the use of aeroacoustical simulations in the design

process of modern turbomachinery, and electromagnetic simulations for the design of

compact antennae. However, computing power is not limitless and there are hard bounds

on what is feasible even with today’s state-of-the-art: in 2019 Rolls-Royce estimated

that a full-fidelity multiphysics simulation (including thermo-mechanics, electromagnetics,

computational aeroacoustics and computational fluid dynamics) of a complete gas-turbine

engine during operation would require about one billion core hours per calculation. At

a cost of about 1p per core hour in 2019 this would equate to a total cost of roughly

£10 million for just a single calculation, which is clearly outside the remits of practicality

(Lapworth, 2019). Thus the construction of efficient numerical algorithms supported by

theoretical formulations and reduced models is extremely important even in the modern

‘age of high performance computing’.

Indeed a particular challenge is posed by accurate wave propagation with minimal

numerical artefacts (Lele and Nichols, 2014). This problem becomes especially pronounced

at large frequencies: at the heart of modern numerical techniques (such as Galerkin,

collocation, and Nystöm methods) lie Taylor expansions, even though they are sometimes

disguised by the formalism of order and regularity in Sobolev spaces (Engquist et al., 2009).

Thus the numerical error typically scales like a derivative of the approximated solution,

which is large for highly-oscillatory functions, meaning oscillatory problems become more

expensive to solve with classical techniques as the frequency increases. A practical way of

judging whether a wave scattering problem strays in the ‘high-frequency’ regime is the

dimensionless quantity kL, where k is the wavenumber as defined above and L is a typical

length-scale of the scattering obstacle (Chandler-Wilde, Graham, Langdon and Spence,

2012). Typically for classical methods one requires a few mesh points per wavelength,

meaning the number of mesh points scales like (kL)d, where d is the dimension of the

domain of the problem. Several important technologies operate in the high-frequency

regime in this sense, for example:

• Sonar operates at frequencies of roughly 100 kHz – 1 MHz (Andrews, 2003), and
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the speed of sound in water is approximately 1500 ms−1, which means k = ω/c0 ≈
66 – 666 m−1. Thus if we wish to detect underwater structures of a length of a few

meters the non-dimensional quantity kL ≈ 102 – 103.

• Fifth-generation wireless (5G) operates at a frequency of 3.4 – 3.8 GHz (Ofcom

and HM Government, 2020) and the speed of light is roughly 3× 108 ms−1, which

means k ≈ 10 m−1 and so if we wish to understand the propagation of these waves

in the presence of civil structures which have a length scale of about a dozen meters,

we expect kL ≈ 102.

The effect of an increase in computational cost with increasing wavenumber k can be seen

on the simple example in Fig. 1.3. Here we consider the minimum number of degrees

of freedom (DOFs) that a spline Galerkin boundary element method requires to solve a

simple plane wave scattering problem on a disk. Specifically, in this example we solve

the exterior Dirichlet problem for the Helmholtz equation on the unit disk using a single

layer integral formulation as described in Eq. (1.16). In the Galerkin method the trial

and test spaces are chosen as continuous piecewise linear splines defined on an equispaced

mesh on the boundary of the disk, {x ∈ R2 | |x| = 1}. The number of DOFs corresponds

to the number of mesh points. The computational domain, the boundary of the disk, has

dimension d = 1, so we expect a linear increase in cost with k which we indeed observe in

Fig. 1.3a.

(a) Minimum DOFs required to solve to fixed absolute error. (b) The geometry and field point.

Figure 1.3: The minimum degrees of freedom (DOFs) required by a spline Galerkin
boundary element method to solve the wave scattering problem in (b) to a fixed absolute
error at a typical field point. We observe a clear linear increase in cost as we increase the
wavenumber.3

3Figure produced using the Julia package IntegralEquations2D.jl (Huybrechs, 2021).
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As a consequence further development of efficient computational techniques for wave

scattering is of immense importance. The principle of most modern solvers of partial

differential equations (PDEs) relies on the selection of an optimal candidate solution from

a sufficiently large (but finite dimensional) trial space. The specifics of the method usually

determine a set of optimality conditions which serve as a way for the algorithm to judge

the accuracy of approximation of the true solution by a given candidate. Thus the speed

and usefulness of a numerical method typically depends on the following aspects:

• The size of the trial space: A larger trial space (i.e. more degrees of freedom)

naturally permits the close approximation of a larger class of functions. However, an

increase in degrees of freedom also leads to an inevitable increase in complexity of

the PDE solver.

• The cost of evaluating the optimality conditions: Of course, the best opti-

mality condition would be an orthogonal projection of the true solution onto the

trial space. However, knowledge of the true solution is not available and so typically

one encounters a trade-off between simple optimality conditions (such as collocation

equations) that are cheap and easy to evaluate and more involved ones (such as

orthogonality with respect to bilinear forms in Galerkin methods) that are harder

to evaluate but yield provably more accurate results. An example of this provably

faster convergence rate for Galerkin methods can be found in the study by Arnold

and Wendland (1983) who provided optimal convergence estimates for spline (i.e.

piecewise polynomial) collocation methods for integral equations on 1D boundaries,

which are then compared to known optimal convergence estimates for Galerkin

methods.

For computational wave scattering in zero mean flow (or uniform mean flow after a

suitable convective transform) arguably one of the most groundbreaking achievements

of the twentieth century is the development of the boundary integral equation method.

We provide a slightly more detailed introduction to the relevant mathematical results in

§1.2.2 but in essence the method transforms partial differential equations on a domain into

integral equations over its boundary. This means the computational domain reduces in

dimension and thus the number of degrees of freedom required to approximate the solution

to specified accuracy can be significantly smaller than in domain-based methods (as is

indicated in Fig. 1.4). Additionally, for wave scattering, boundary integral formulations

are attractive as they automatically incorporate a radiation condition at infinity, which

needs to be imposed artificially for domain-based methods (for instance using the method

of perfectly matched layers introduced by Berenger (1994)). Although these observations

do not provide a complete picture of the advantages and disadvantages when compared

to domain-based methods, in many settings the boundary integral equation method
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can provide a competitive alternative to domain-based computations. Nevertheless, we

highlight that boundary integral formulations also bring inherent challenges, for instance

the fact that the discretisation matrices are dense (as opposed to sparse matrices arising

in domain-based methods with basis functions of compact support) and involve singular

integral operators whose numerical evaluation is difficult. There are ways of overcoming

these problems, for instance by using specially designed numerical quadrature for these

singular integral operators (cf. the work by Schwab and Wendland (1992) and our methods

developed in Chapter 5), and fast multipole methods introduced by Rokhlin (1985) that

result in linear discretisation systems which, albeit dense, can be solved at significantly

reduced cost. At the same time, domain-based methods can perform very well for wave

scattering problems, and the method of perfectly matched layers has also been successfully

applied in a range of complex settings for example in recent work by Bonnet-Ben Dhia et al.

(2016). For this thesis of particular relevance is the success that boundary integral equation

methods have seen in the solution of high-frequency wave scattering problems, where

so-called hybrid numerical-asymptotic schemes have been developed that can numerically

approximate the solution of the relevant integral equations at cost that increases only very

slowly or not at all in the frequency of the wave field Chandler-Wilde, Graham, Langdon

and Spence (2012). We describe these hybrid numerical-asymptotic methods in some more

detail below.

(a) Domain-based mesh. (b) Boundary-based mesh.

Figure 1.4: Reduction of the dimension of the domain in boundary element methods.

The development of the boundary integral equation method followed on from profound

insights by some of the most brilliant mathematicians over the past two centuries, including

Green (1828), Fredholm (1903) and Ritz (1909), to name but a few. The history of the

method is rich and complex, and it is impossible to point towards a single seminal paper

that introduced the boundary integral equation method (also referred to as the boundary

element method) as it is researched and known today (see Cheng and Cheng, 2005, for a
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comprehensive review). However, we highlight several important contributions by Jaswon

(1963), Symm (1963), Kupradze and Aleksidze (1964), and Rizzo (1967) who were amongst

the first to directly exploit boundary integral formulations for computations in potential

theory and elasticity. Their work helped spark a wider interest and research effort in this

approach during the second half of the twentieth century (Cheng and Cheng, 2005). In

the numerical analysis part of this thesis (Chapters 4 & 5) we focus on the solution of

these boundary integral equations.

Once the PDE is put in integral form one can solve the resulting Fredholm integral

equation using a range of techniques, including Galerkin, Nyström and collocation methods.

From a theoretical perspective the Galerkin method appears to have many advantages

including provable stability and convergence (Hsiao et al., 2017), and, in some cases, faster

convergence rates compared to collocation (Arnold and Wendland, 1983). However, the

optimality conditions in collocation methods (and even more so for fully discrete Nyström

methods) are much easier to evaluate, which makes collocation an attractive alternative.

Nevertheless, rigorous convergence analysis of collocation methods for integral equations

is relatively scarce in the literature and restricted to isolated instances (Sloan, 1992). In

Chapter 4 of this thesis, motivated by recent practical applications by Huybrechs and

Olteanu (2019) and Gibbs et al. (2020), we take a non-standard point of view of collocation

methods by introducing oversampling, i.e. by taking more collocation points than the

dimension of the trial space. In the aforementioned practical applications it was found

that oversampling can help improve the convergence properties of collocation methods,

specifically by enhancing their robustness towards the choice of collocation points when

compared to a non-oversampled version of the same method. As we shall see in Chapter 4

oversampling can, in some cases, even improve the asymptotic convergence rate of the

collocation method. We provide an initial, but rigorous analysis that helps explain some

of these observations in Chapter 4.

The specific challenge of high-frequency wave scattering has been subject to a large

amount of research since the 1970s. One of the first successful approaches seeking to

alleviate the problem of increased cost for larger frequencies was put forward by Burnside

et al. (1975) in the context of electromagnetic wave scattering, who proposed to incorporate

an Ansatz from the geometrical theory of diffraction in the numerical method. A similar

approach was taken by Uncles (1976) for an example of acoustic plane wave scattering by

a rigid sphere. In essence, the Ansatz ensures the numerical method only has to solve for

slowly varying components of the field (i.e. the amplitudes), thus reducing the required size

of the trial space and hence the cost at large frequencies enormously. This idea was taken

forward and has evolved into so-called hybrid numerical-asymptotic boundary integral

methods that incorporate some asymptotic knowledge of the field in the basis space to

achieve near frequency-independent cost. A review of recent progress can be found in
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Chandler-Wilde, Graham, Langdon and Spence (2012).

However, a choice of oscillatory trial functions also brings new challenges, specifically for

the evaluation of the optimality conditions in the method. Amongst those challenges is the

assembly of the collocation system for hybrid numerical-asymptotic methods which requires

the computation of highly oscillatory integrals. Although highly oscillatory quadrature

has seen considerable development over the past two decades (Deaño et al., 2017), there

are still many open questions when it comes to applying efficient quadrature to hybrid

numerical-asymptotic methods in wave scattering. Of particular interest for this thesis are

Filon methods which are described in §1.2.3. These methods are generally advantageous

because, if applied correctly, they allow the accurate computation of highly-oscillatory

integrals at frequency-independent cost. However, in the context of hybrid numerical-

asymptotic (HNA) wave-scattering, their application has not fully matured yet. Until now

it has proven infeasible to construct Filon methods that compute the integrals relevant to

HNA methods at uniform cost to fixed relative accuracy. This is an issue that we overcome

for some individual cases of interest in Chapter 5.

1.2 Mathematical techniques and preliminaries

In this thesis we rely on a number of mathematical techniques, most importantly the

Wiener–Hopf method, the boundary integral equation method, and highly oscillatory

quadrature. Here we shall introduce the main features and important results available in

the literature for each method.

1.2.1 The Wiener–Hopf technique

The technique was first described by Wiener and Hopf (1931) as a way to find exact

solutions to integral equations with convolution type kernels in the context of the radiation

equilibrium of stars. Comprehensive introductions can be found in the classical book by

Noble (1958), in the thesis of Kisil (2015) and in the lecture notes by Abrahams and

Aitken (2019). Here we provide an overview of the main methodology for the scalar case

that will be used in Chapter 2 of this thesis. Throughout we shall focus on the ‘Jones’s

method’ version of the Wiener–Hopf technique as described by Noble (1958).

The Wiener–Hopf technique provides a way to solve explicitly (or approximately) a

class of linear partial differential equations (PDEs) with semi-infinite boundary conditions.

The basic idea is to transform the linear PDE and work in the Fourier domain, in which

case sometimes the original boundary value problem can be reduced to solving a scalar
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and complex equation of the form:

K(α)Φ+(α) + Ψ−(α) + F (α) = 0, (1.2)

which holds in some strip R+ ∩R− around the real axis, with

R+ = {α ∈ C | Im (α) > −ε}, R− = {α ∈ C | Im (α) < ε},

for some ε > 0 (see sketch in Fig. 1.5). In the following we will often refer to R± as the

‘upper/lower half-plane’ respectively.

In Eq. (1.2) Φ+,Ψ− are the unknowns and quantities with superscript ‘±’ are complex

functions that are analytic on R±, and that have at worst algebraic growth as α→∞ in

R±, respectively. This means, more precisely, that there are constants C± > 0 and n ∈ N
such that

|Φ+(α)| ≤ C+|α|n ∧ |Ψ−(α)| ≤ C−|α|n, for all α ∈ R±. (1.3)

Im (α)

Re (α)

R+

R+ ∩R−

R−

Figure 1.5: Complex half planes R± and strip of overlap R+ ∩R− ⊂ C.

Example 1.2.1. Consider the Helmholtz equation (∆ + k2)u = 0 on {(x, y)
∣∣y > 0} with

semi-infinite boundary conditions

u(x, 0) = f(x), x < 0,

∂

∂y
u(x, 0) = g(x), x > 0.

13



Taking the Fourier transform U(α, y) =
∫∞
−∞ u(x, y)eiαx dx, reduces the equation to

∂2

∂y2
U(α, y)− γ(α)2U(α, y) = 0,

where γ(α)2 = α2 − k2 and we take the branch cuts of γ as shown in Fig. 1.6a, which is

such that the real part of the function takes non-negative values on the real axis. More

precisely we choose the following branch of the multivalued complex function γ:

γ(α) = |α + k| 12 ei
θ1
2 |α− k| 12 ei

θ2
2 ,

where θ1 = arg(α + k) ∈ [−3π/2, π/2) and θ2 = arg(α− k) ∈ [−π/2, 3π/2). If we enforce

u(x, y) to be bounded as y → +∞ for any x (a radiation condition) then U(α, y) =

A(α)e−γ(α)y. Restricting to the boundary at y = 0 yields the following condition

∂U

∂y
(α, 0) = −γ(α)U(α, 0).

In order to arrive at a complex equation valid on a strip R+ ∩R− in the form of Eq. 1.2,

we now introduce a small amount of artificial damping by taking Im k = −ε < 0. This has

the effect of moving the branch cuts of γ away from the real axis, thus creating a strip

R+ ∩R− on which γ is analytic and has non-negative real part, as indicated in Fig. 1.6b.

Im (α)

Re (α)

−k
k

(a) Im k = 0.

Im (α)

Re (α)

R+

R+ ∩R−

R−

−k
k

(b) Im k < 0.

Figure 1.6: The branch cuts of γ.

Finally, imposing the boundary conditions results in a complex analytic equation on

R+ ∩R− with the desired form Eq. (1.2):

γ(α)U+(α, 0) +
∂U

∂y

−
(α, 0) +

(
γ(α)F−(α) +G+(α)

)
= 0,
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where we have used the following notations for the half-line Fourier transforms:

U−(α, y) :=

∫ 0

−∞
eiαxu(x, y) dx, U+(α, y) :=

∫ ∞
0

eiαxu(x, y) dx, (1.4)

and we assumed the unknowns u and ∂u/∂y decay sufficiently fast as x → +∞ and

x → −∞ respectively, such that their half-line Fourier transforms are well-defined and

analytic functions in R+ and R− respectively.

The following theorem provides a set of sufficient conditions for the (half-line) Fourier

transform of a function to be analytic in a complex strip or half-plane.

Theorem 1.2.2 (Thm. A in Noble (1958, p. 23)). Let f(x) be a function of the real variable

x such that |f(x)| ≤ A exp (τ−x) as x→ +∞ and |f(x)| ≤ B exp(τ+x) as x→ −∞, with

τ−, τ+ ∈ R and τ− < τ+. Suppose the Fourier inversion theorem holds for f(x), and define

F (α) =

∫ ∞
−∞

f(x)eiαx dx. (1.5)

Then F (α) is an analytic function of α on the domain Imα ∈ (τ−, τ+) and for any

τ ∈ (τ−, τ+) we have

f(x) =
1

2π

∫ iτ+∞

iτ−∞
F (α)e−iαx dα, ∀x ∈ R.

Note the special case when τ± = ±∞, implies that the Fourier half transform F± as

defined in Eq. (1.4) is analytic in Imα ≷ τ±. By the case τ+ = +∞ we mean specifically

that if f(x) ≡ 0 for any x < X0, some X0 < 0, and we have |f(x)| ≤ A exp(τ−x) for

x ≥ 0, and if in addition the Fourier inversion theorem holds for f(x), then F (α) defined

as in Eq. (1.5) is an analytic function of α on the domain Imα ∈ (τ−,+∞), and for any

τ ∈ (τ−,+∞) we have

f(x) =
1

2π

∫ iτ+∞

iτ−∞
F (α)e−iαx dα, ∀x ∈ R.

The analogous meaning is assigned to the case τ− = −∞. Moreover, by Noble (1958,

Eq. (1.74)), if f ∈ C1((0,∞)), i.e. is continuously differentiable on (0,∞), and satisfies

appropriate constraints on its behaviour at x = +∞ (for instance it suffices that |f(x)| ≤
A exp(τx) for some τ < 0), then for any η ∈ (−1, 1):

f(x) ∼ Axη as x→ 0+ ⇒ F+(α) ∼ AΓ(η + 1)e
1
2
πi(η+1)α−η−1 as α→∞, Imα > τ−. (1.6)

The statement remains true when η ∈ [1,∞) as long as f has a sufficient number of

derivatives on (0,∞) (with appropriate decay at x = +∞), but for the purposes of this
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thesis we shall only use the result in the case η ∈ (−1, 1). This gives us a means to control

the growth of F+ at infinity, thus enforcing the crucial condition that F+ is at worst of

algebraic growth in its domain. The analogous statement is also true for F− after inverting

the signs. The Wiener–Hopf technique then prescribes the following procedure to find an

analytic solution to Eq. (1.2): Firstly we factorise the so-called Wiener–Hopf kernel K by

expressing it in the form

K(α) = K+(α)K−(α) for all α ∈ R+ ∩R−, (1.7)

where K+(α), K−(α) are nonzero and analytic in the respective half-plane R± and such

that both K± and 1/K± are at worst of algebraic growth in the corresponding domain.

Although in the scalar case this factorisation is no more challenging than the additive

splitting described below, in the case when K is matrix valued (i.e. when the functions

Φ+,Ψ− are vector valued) a constructive Wiener–Hopf factorisation is, in general, very

challenging to perform. All Wiener–Hopf kernels considered in this thesis are scalar, thus

we shall not discuss the matrix case in any detail. However, we highlight that the topic of

matrix Wiener–Hopf factorisations offers many beautiful results, including classes of matrix

kernels that can be factorised exactly (Daniele, 1978, Khrapkov, 1971) and approximate

methods for matrix Wiener–Hopf factorisation (Abrahams, 1997, Kisil, 2018, Priddin et al.,

2020). Having performed the multiplicative factorisation Eq. (1.7) we rewrite (1.2) as

K+(α)Φ+(α) = − 1

K−(α)
Ψ−(α)− 1

K−(α)
F (α).

The next step is to additively decompose the ‘forcing’ term:

− 1

K−(α)
F (α) = A+(α) +B−(α), for all α ∈ R+ ∩R−, (1.8)

where again A+ is analytic and at worst of algebraic growth in R+ and the same holds for

B− in R−. Here a useful approach is given by an exact ‘Cauchy-type’ splitting.

Theorem 1.2.3 (Thm. B in Noble (1958, p. 13)). Let F (α) be a complex function that

is analytic in an open neighbourhood of the closed strip τ− ≤ 0 ≤ τ+ such that |F (α)| <
C(1 + |Reα|)−p for some C, p > 0, in τ− ≤ Imα ≤ τ+. Then, for τ− < c < d < τ+, we

may define

F+(α) =
1

2πi

∫ ∞+ic

−∞+ic

F (ξ)

ξ − α dξ, F−(α) = − 1

2πi

∫ ∞+id

−∞+id

F (ξ)

ξ − α dξ,
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which are such that

F (α) = F+(α) + F−(α), when Imα ∈ (c, d).

Furthermore, F+ is analytic in Imα > c and F− is analytic in Imα < d.

Using Eq. (1.8), we have that Eq. (1.2) is equivalent to

K+(α)Φ+(α)− A+(α) = − 1

K−(α)
Ψ−(α) +B−(α), α ∈ R+ ∩R−. (1.9)

In Eq. (1.9) the left hand side is defined and analytic on R+, and the right hand side is

defined and analytic on R−, so we can use the uniqueness of analytic continuation in the

following form.

Theorem 1.2.4 (Analytic continuation, see Weisstein (2002, p. 73)). Let f1 and f2 be

analytic functions on domains Ω1 and Ω2 (i.e. Ω1,Ω2 are connected open subsets of C) ,

respectively, and suppose that the intersection Ω1 ∩ Ω2 is not empty and that f1 = f2 on

Ω1 ∩ Ω2. Then f2 is called an analytic continuation of f1 to Ω2, and vice versa. Moreover,

if it exists, the analytic continuation of f1 to Ω2 is unique.

This allows us to uniquely define an entire function E(α) on the whole complex plane, by

setting

E(α) :=

K+(α)Φ+(α)− A+(α), if α ∈ R+,

− 1
K−(α)

Ψ−(α) +B−(α), if α ∈ R−.

At this point we note that, by the algebraic behaviour of the forcing terms A+, B− and of

K±, and by our assumptions on the unknowns Φ+,Ψ− in Eq. (1.3), that E has algebraic

behaviour in the entire complex plane. Thus we can use the extended form of Liouville’s

theorem:

Theorem 1.2.5 (Liouville’s theorem, see Noble (1958, p. 6)). If f(α) is an entire function

such that there exist real constants M, p with |f(α)| ≤ M |α|p for all α ∈ C, then f is a

polynomial of degree at most bpc.

Note in particular if we have a bound of this form for E with p < 1, then E must be

constant, and if p < 0 this constant must be zero. Additionally, for any value of p ∈ R, if

there is a particular direction along which |E| decays to zero, then E must be identically

zero. Therefore, in this case we can immediately conclude

Φ+(α) =
A+(α)

K+(α)
for all α ∈ R+,

Ψ−(α) = K−(α)B−(α) for all α ∈ R−;
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thus we have solved the original problem. Even in the case when p > 1, or when the

constant is nonzero, this method provides a solution of the original problem up to a finite

(usually small) number of constants, which often can be determined by physical conditions

or constraints. This is the basic idea of the Wiener–Hopf method for scalar equations

which we will apply in Chapter 2.

1.2.2 Boundary integral equations

Comprehensive introductions to the topic of boundary integral equations can be found

in the classical book by McLean (2000), and in the recent review papers by Chandler-

Wilde, Graham, Langdon and Spence (2012) and by Hsiao et al. (2017). Of particular

interest to this thesis is the exterior scattering problem in the two-dimensional case, with

Dirichlet boundary conditions (i.e. sound-soft obstacles). Although we note that the

Neumann problem, interior scattering and higher-dimensional scattering problems can also

be expressed in a similar boundary integral formulation, we shall focus on the following

particular case in to this thesis.

We assume that our scattering obstacle is represented by a bounded Lipschitz domain

Ω ⊂ R2. This means Ω is a bounded connected open subset of R2 whose boundary, Γ = ∂Ω,

is locally the graph of a Lipschitz function. We assume further that R2 \Ω is connected (so

that Ω is simply connected, i.e. does not have any holes), and that the domain Ω is only

on one side of its boundary Γ. We wish to solve the following problem on Ω+ := R2 \ cl Ω:

∆φ(x) + k2φ(x) = 0, for x ∈ Ω+,

φ(x) + φinc(x) = 0, for x ∈ ∂Ω+,
(1.10)

where φinc corresponds to the boundary values (the ‘trace’) of some incident field, and

φ(x) is the unknown velocity potential of the scattered field. In the context of boundary

integral equations we shall follow the convention of using plain x to denote coordinates

in R2 (rather than bold-face x used in the remainder of this thesis). This applies also to

our treatment in Chapter 4. An important physical observation is that scattered waves

must be outgoing at infinity, which means that for our compact scatterer we need to

impose a radiation condition in order to ensure the solution is both physical and unique:

The appropriate radiation condition in this case is the Sommerfeld radiation condition

(Chandler-Wilde, Graham, Langdon and Spence, 2012, Eq. (2.9)). We say that φ satisfies

the Sommerfeld radiation condition in two dimensions if

lim
r:=|x|→∞

sup
x/r∈S1

r1/2

(
∂

∂r
+ ik

)
φ(x) = 0, (1.11)
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where S1 = {x ∈ R2 | ‖x‖ = 1} is the 1-sphere. In order to make rigorous statements about

solutions to the scattering problem, we make use of the formalism of Sobolev spaces, which

will specifically allow us to state the existence and uniqueness of solutions to Eq. (1.10).

Sobolev spaces and norms

Let us firstly recall the usual definition of L2(R2),

L2(R2) :=

{
f : R2 → C measurable

∣∣∣ ∫
R2

|f(x)|2 dx <∞
}
.

Using the fact that the Fourier transform F : L2(R2)→ L2(R2) is a continuous isomorphism,

we then define Sobolev spaces of positive real order, s ∈ R≥0, by

Hs(R2) :=
{
f ∈ L2(R2)

∣∣ ‖f‖Hs <∞
}
,

where ‖f‖Hs(R2) :=

(∫
R2

(1 + |ξ|2)s|(Fu)(ξ)|2 dξ

) 1
2

.

This also allows us to define Sobolev spaces of negative order as the continuous dual spaces,

Hs(R2) := (H−s(R2))
∗
, s < 0. From this definition of Sobolev spaces and norms on R2

we can define domain-based Sobolev spaces on Ω+ by restriction. We define for s ∈ R and

any smooth compactly supported f ∈ C∞comp(cl Ω+):

‖f‖Hs(Ω+) := inf
f̃∈C∞(R2),f̃ |Ω+

=f
‖f̃‖Hs(R2).

Then Hs(Ω+) can be defined as the completion of C∞comp(cl Ω+) (i.e. functions with compact

support in cl Ω+ that are infinitely differentiable up to the boundary Γ) with respect to

the norm ‖f‖Hs(Ω+). We will not discuss in detail the rich and interesting properties of

domain-based Sobolev spaces, since for the purpose of this thesis our interest is focused

on Sobolev spaces on the boundary. These spaces can be defined for general Lipschitz

boundaries, but the definition is easier to formulate if the boundary can be covered by a

single chart, i.e. if ∂Ω is the graph of a 1-periodic Lipschitz map with Lipschitz inverse

z : [0, 1)→ Γ ⊂ R2

t 7→ (z1(t), z2(t)).

If the boundary Γ is not covered by a single chart, we can still find (by compactness)

an open cover of finitely many charts and use a partition of unity splitting to extend

the definitions from a single chart to the full boundary. This procedure is described in

more detail in Chandler-Wilde, Graham, Langdon and Spence (2012, p. 278), and not

repeated here in the interest of brevity. We define the boundary space L2(Γ) for measurable
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functions on Γ in the usual sense, with the norm

‖g‖′L2(Γ) :=

(∫
Γ

|g|2 dsΓ

) 1
2

=

(∫ 1

0

|g(z(t))|2 |z′(t)| dt
) 1

2

,

where dsΓ is the line element on the boundary Γ, i.e. dsΓ = |z′(t)| dt in terms of the

parametrisation z of the boundary. The integral is well-defined in the Lebesgue sense,

since for Lipschitz functions z′(t) exists almost everywhere and is essentially bounded. To

begin with, we focus on the case when z is a smooth diffeomorphism meaning that z is

bijective, infinitely differentiable as a periodic function on [0, 1) and that z′(t) 6= 0 for all

t ∈ [0, 1). In this case the norm ‖ · ‖′L2(Γ) is equivalent to the norm ‖ · ‖L2(Γ) which we

define as

‖g‖L2(Γ) := ‖g ◦ z‖L2([0,1)):=

(∫ 1

0

|g(z(t))|2 dt

) 1
2

.

Based on this, we could define weak derivatives and integer-order Sobolev norms on the

boundary by requiring that the first s weak derivatives of g tangential to Γ lie in L2(Γ) in

the above sense, resulting also in a norm ‖g‖′Hs(Γ). However, since z is a diffeomorphism,

Sobolev norms defined in this way are equivalent to the Sobolev norms of the mapped

function on [0, 1), i.e. for any s ∈ R there is a non-negative constant Cs (which depends

on the boundary Γ), such that

C−1
s ‖g‖′Hs(Γ) ≤ ‖g ◦ z‖Hs([0,1)) ≤ Cs‖g‖′Hs(Γ). (1.12)

Note, for g ∈ Hs with s < 0 (i.e. for g an element of the dual space of H−s) we mean by

g ◦ z the linear map on H−s([0, 1)) defined by

g(χ) := g(χ ◦ z−1), ∀χ ∈ H−s([0, 1)).

Thus we can equivalently define the Sobolev norms and spaces for any s ≥ 0 as

Hs(Γ) := {g : Γ→ C measurable
∣∣ g ◦ z ∈ Hs([0, 1))},

‖g‖Hs(Γ) := ‖g ◦ z‖Hs([0,1)),
(1.13)

where we use the following definitions of the Sobolev norm and space on [0, 1). We define

Hs([0, 1)) to be the completion of C∞([0, 1)) under the Sobolev norm ‖ · ‖Hs([0,1)), where

‖g‖Hs([0,1)) :=

(
|ĝ0|2 +

∑
06=m∈Z

|m|2s|ĝm|2
) 1

2

, (1.14)
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and ĝm :=
∫ 1

0
e−2πimtf(t) dt, m ∈ Z, are the Fourier coefficients of the function g. The

definition of ‖ · ‖Hs([0,1)) makes sense both for positive and negative real values of s and, in

particular, provides us with a way to evaluate the Sobolev norms for any g ∈ L1([0, 1)).

We define negative order Sobolev spaces on the boundary as the continuous dual spaces, i.e.

for any s < 0 we define Hs(Γ) := (H−s(Γ))
∗

where X∗ denotes here the continuous dual

of a Banach space. This definition (Eqs. (1.13)-(1.14)) of Sobolev spaces on the boundary

Γ is valid also when z is only a Lipschitz function with Lipschitz inverse.

There is a natural correspondence between the spaces Hs(Ω+) and Hs(Γ) given by the

exterior trace operator γ+. We define γ+ for f ∈ C∞comp(cl Ω+) as

γ+f := f
∣∣
Γ
.

As proved by Costabel (1988) (see also Chandler-Wilde, Graham, Langdon and Spence

(2012, Eq. (A.17))), this is a bounded linear map in the following sense

‖γ+f‖Hs−1/2(Γ) ≤ Cs‖f‖Hs(Ω+),
1

2
< s <

3

2
,

whenever the parametrisation of the boundary, z, is Lipschitz. When z is a smooth

diffeomorphism, the bound holds for all s > 1
2
. Thus we can extend γ+ to a bounded linear

map

γ+ : Hs(Ω+)→ Hs−1/2(Γ),

for the aforementioned values of s, i.e. 1/2 < s < 3/2 when z is Lipschitz and s > 1/2

when z is a smooth diffeomorphism. This is the final ingredient required to make rigorous

statements about the solutions of the exterior scattering problem from Eq. (1.10).

Theorem 1.2.6 (Existence and uniqueness in the exterior scattering problem, see Chan-

dler-Wilde, Graham, Langdon and Spence (2012, Thm. 2.10)). Given φinc ∈ H
1
2 (Γ), there

is a unique φ ∈ C2(Ω+) such that Eq. (1.10) holds, ζφ ∈ H1(Ω+) for all ζ ∈ C∞comp(R2),

γ+φ = −φinc, and φ satisfies the radiation condition Eq. (1.11).

Boundary integral formulation

Thus the (Dirichlet) boundary values of a solution to the Helmholtz equation on Ω+ uniquely

determine the value of the field everywhere in the domain. This abstract statement can

be made more explicit in terms of so-called boundary layer potentials. Assume for the

time being that Γ is smooth and that φ ∈ C2(cl Ω+) solves ∆φ+ k2φ = 0 in Ω+. Then, by

Green’s second identity, we have (see for instance Thm. 2.6.2 in Huybrechs (2006)) for all
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x ∈ Ω+

φ(x) =

∫
Γ

(
∂φ

∂ny
(y)G(x, y)− φ(y)

∂G

∂ny
(x, y)

)
dsy, (1.15)

where G(x, y) = i
4
H

(1)
0 (k|x− y|) is the Green’s function of the Helmholtz equation with

wavenumber k, and ∂/∂ny is the normal derivative on the boundary Γ pointing outwards

from Ω+, i.e. into the scatterer Ω. This direction is well-defined since we assumed that Ω

is on one side of ∂Ω only. In the above H
(1)
0 denotes the Hankel function of the first kind of

order zero (Abramowitz and Stegun, 1965, Eq. (9.1.3)). This motivates the introduction

of the following layer potentials,

Su(x) =

∫
Γ

G(x, y)u(y) dsy, x ∈ Ω+,

Du(x) =

∫
Γ

∂G

∂ny
(x, y)u(y) dsy, x ∈ Ω+,

for x ∈ Ω+. S and D are linear maps taking functions defined on the boundary Γ to

functions defined on the full domain Ω+. They are continuous in the following sense: for

any ζ ∈ C∞comp(R2), denote by ζS the composition of S with pointwise multiplication by ζ,

then the layer potentials have continuous extensions to bounded linear maps

ζS : Hs− 1
2 (Γ)→ Hs+1(Ω+),

ζD : Hs+ 1
2 (Γ)→ Hs+1(Ω+),

for −1/2 ≤ s ≤ 1/2 (Chandler-Wilde, Graham, Langdon and Spence, 2012, Thm. 2.15).

Moreover, if k > 0, for any u ∈ H−1(Γ) the functions Su,Du ∈ C2(R2 \Γ) and they satisfy

Eq. (1.10) and Eq. (1.11) pointwise (Chandler-Wilde, Graham, Langdon and Spence,

2012, Thm. 2.14). Intuitively speaking, one might therefore expect to be able to express

the solution φ(x) of Eq. (1.10) in the form φ(x) = (Su)(x) or φ(x) = (Du)(x) for some

unknown function u : Γ → C, and then take an appropriate limit as x approaches the

boundary in Eq. (1.15) to find an integral equation for u on the boundary. This is called

the ‘indirect approach’ for a boundary integral formulation of the Helmholtz exterior

problem and can be formalised as follows.

Firstly, we define the single- and double-layer operators for u ∈ C(Γ) as

Su(x) =

∫
Γ

G(x, y)u(y) dsy, x ∈ Γ,

Du(x) =

∫
Γ

∂G

∂ny
(x, y)u(y) dsy, x ∈ Γ.
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These are continuous linear maps in that

S : Hs− 1
2 (Γ)→ Hs+ 1

2 (Γ),

D : Hs+ 1
2 (Γ)→ Hs+ 1

2 (Γ),

for all |s| ≤ 1/2 (Chandler-Wilde, Graham, Langdon and Spence, 2012, Thm. 2.17). These

boundary operators and potentials allow us to formulate the following Fredholm integral

equation versions of the exterior scattering problem Eqs. (1.10) & (1.11).

Theorem 1.2.7 (Eq. (2.63) in Chandler-Wilde, Graham, Langdon and Spence (2012)).

Given q ∈ H1/2(Γ), we have φ = Su : Ω+ → C satisfies γ+φ = q and Eqs. (1.10) & (1.11)

pointwise if and only if

Su = q in H
1
2 (Γ). (1.16)

Theorem 1.2.8 (Eq. (2.64) in Chandler-Wilde, Graham, Langdon and Spence (2012)).

Given q ∈ H1/2(Γ), we have φ = Du : Ω+ → C satisfies γ+φ = q and Eqs. (1.10) & (1.11)

pointwise if and only if (
1

2
I +D

)
u = q in H

1
2 (Γ), (1.17)

where I : u 7→ u is the identity map.

Thus, in order to solve the exterior Dirichlet problem Eq. (1.10) we can instead solve

the integral equations Eqs. (1.16) and (1.17). The solubility of these boundary integral

equations can be summarised in the following way.

Theorem 1.2.9 (Thm. 2.25 in Chandler-Wilde, Graham, Langdon and Spence (2012)).

For k > 0 and Γ Lipschitz, we have for any |s| ≤ 1/2 that the mappings

S : Hs− 1
2 (Γ)→ Hs+ 1

2 (Γ) (1.18)

1

2
I +D : Hs+ 1

2 (Γ)→ Hs+ 1
2 (Γ) (1.19)

are Fredholm of index zero (an introduction to Fredholm theory of operators on Banach

spaces can be found in (Evans, 2010, Appendix D.5) and (Edmunds and Evans, 2018, §1)).

Furthermore, for |s| ≤ 1/2, S is invertible between the spaces indicated above if and only

if the interior homogeneous Dirichlet problem,

∆φ(x) + k2φ(x) = 0, for x ∈ Ω,

φ(x) = 0, for x ∈ Γ,
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only has the trivial solution, and 1
2
I +D is invertible between the spaces indicated above if

and only if the interior homogeneous Neumann problem,

∆φ(x) + k2φ(x) = 0, for x ∈ Ω,

∂

∂n
φ(x) = 0, for x ∈ Γ,

only has the trivial solution.

In summary, this Fredholm property means that the operators S, 1
2
I +D are continuous

isomorphisms on the spaces indicated in Eqs. (1.18)-(1.19), away from a countable set

of resonance frequencies 0 < k1 < k2 < · · · (which of course depend on Ω). If the

boundary Γ is smooth, this result extends to all s ∈ R. Therefore, away from resonances,

the integral equations Eqs. (1.16) & (1.17) provide a suitable formulation to solve the

exterior scattering problem. We note that the problem with resonances can be overcome

by combined formulations, essentially taking a linear combination of the equations above,

which can be constructed to have unique solutions for all values of k > 0. For the purpose

of this thesis, the above integral formulations suffice, and we refer the interested reader to

Chandler-Wilde, Graham, Langdon and Spence (2012, §2.6).

1.2.3 Highly oscillatory quadrature and Filon methods

The efficient approximation of highly oscillatory integrals is a notoriously difficult problem.

In this section we provide a brief introduction to recent developments concerning efficient

methods for the computation of such integrals. Of particular relevance to this thesis

are the so-called Filon methods, and our attention shall therefore be focused on the

relevant background of these methods. A comprehensive introduction to highly oscillatory

quadrature in its many forms can be found in the recent monograph by Deaño et al. (2017).

Let us begin by outlining the difficulty that classical methods face when trying to

approximate a highly oscillatory integral. Consider a finite range Fourier transform

Iω[f ] :=

∫ 1

−1

f(x)eiωxdx,

where we take, for simplicity, f to be an infinitely differentiable real valued function

f : [−1, 1]→ R. Suppose we apply the trapezoidal rule with ν + 2 points, denoted by

Q[ν]
T [f(x) exp(iωx)] =

1

ν + 1

ν+1∑′′

n=0

f

(
2n

ν + 1
− 1

)
exp

(
iω

(
2n

ν + 1
− 1

))
, (1.20)

where
∑′′

means that the first and final terms in the sum are halved. This approximation

arises from interpolating the integrand f(x) exp(iωx) with a piecewise linear function as
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sketched for the real part of the integrand in Fig. 1.7a, and then integrating this piecewise

linear function exactly. In the example of Fig. 1.7 we took f(x) = 1/(1 + x2) and fixed

ν = 9. As can be seen in Fig. 1.7b, when the oscillations of the integrand increase for fixed

ν, the piecewise linear interpolation will fail to resolve the oscillations accurately. More

precisely we note for fixed ν we may consider the discrete set of frequencies ω = 2(ν+1)πω0,

ω0 ∈ N for which the approximation Eq. (1.20) becomes

Q[ν]
T [f(x) exp(i2π(ν + 1)ω0x)] =

1

ν + 1

ν+1∑′′

n=0

f

(
2n

ν + 1
− 1

)
,

and is hence independent of ω0. On the other hand we know by the Riemann-Lebesgue

lemma that

I2π(ν+1)ω0 [f ]→ 0 as ω0 →∞.

Thus there is a clear mismatch between the asymptotic behaviour of the integral Iω[f ]

and the trapezoidal rule Q[ν]
T [f(x) exp(iωx)] as ω →∞. The only way to overcome this

problem in the trapezoidal rule is to increase ν as we increase ω (because our only free

parameter is the number of quadrature nodes). A similar problem appears in classical

Gaussian quadrature, where the full oscillatory integrand is interpolated by a polynomial

(instead of a piecewise linear function) which is then integrated exactly: in order to resolve

the oscillations accurately the degree of the polynomial (and hence of the quadrature

nodes and the cost) has to increase with ω.

x

y

−1 1

−1

1

0

(a) For ω = π the approximation is accurate.

x

y

−1 1

−1

1

0

(b) For ω = 10π the oscillations are not resolved.

Figure 1.7: The trapezoidal rule (ν = 9) applied to the real part of Iω[1/(1 + x2)].
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To overcome this increase in cost we need to construct quadrature rules that match

the asymptotic behaviour of Iω[f ]: By the method of stationary phase we have (Deaño

et al., 2017, Eq. (2.1))

Iω[f ] ∼ −
∞∑
k=0

1

(−iω)k+1

[
f (k)(1)eiω − f (k)(−1)e−iω

]
, ω →∞, (1.21)

where we used the symbol ∼ to denote that the right hand side is a Poincaré expansion of

Iω[f ] as ω →∞, i.e. for all N ∈ N∣∣∣∣∣Iω[f ] +
N−1∑
k=0

1

(−iω)k+1

[
f (k)(1)eiω − f (k)(−1)e−iω

]∣∣∣∣∣ = O
(
ω−(N+1)

)
, ω →∞.

Thus one notices that the asymptotic behaviour of Iω[f ] is uniquely determined by

the function- and derivative-values of f at the endpoints of the domain of integration,

{f (k)(±1)}∞k=0. Whilst a construction of the following form was first described by Filon

(1930) it was realised much later by Iserles (2004, 2005) and Iserles and Nørsett (2004) that

this observation can be used to construct a quadrature for Iω[f ] that is uniformly accurate

as the frequency increases: For this we firstly construct p, an interpolating polynomial of

degree ν + 1 satisfying the following interpolation conditions

p(±1) = f(±1), and p(cl) = f(cl), l = 1, . . . , ν, (1.22)

for some specified interior interpolation points −1 < c1 < · · · < cν < 1. Then the Filon

quadrature rule is defined as

Q[ν]
ω [f ] := Iω[p] =

∫ 1

−1

p(x)eiωx dx.

Suppose for a moment that we can compute Iω[p] exactly. Then, by Eq. (1.21) it is easy

to see that the first term in the Poincaré series of the quadrature rule matches the one

from the integral Iω[f ], and therefore

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ = O
(
ω−2

)
, ω →∞.

This means for a fixed number of Filon quadrature nodes ν the error in the Filon method

actually decays as the frequency increases. While this behaviour could also be achieved

by approximating Iω[f ] with the first term in the asymptotic series in Eq. (1.21), the

interior interpolation points c1, . . . , cν ensure that there is a uniform convergence even

for moderate frequencies since integration by parts allows us to show estimates of the

following form (essentially equivalent to Lemma 1.3 in (Melenk, 2010)).
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Proposition 1.2.10 (Filon paradigm for Iω). Let f ∈ C2([0, 1]) and be p the unique

polynomial of degree ν+1 satisfying Eq. (1.22). Then there is a constant C > 0, independent

of f, {cj}νj=1, such that:

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ = |Iω[f ]− Iω[p]| ≤ Cω−2 (‖f ′ − p′‖∞ + ‖f ′′ − p′′‖∞) ,

for all ω > 0.

This reduces the error in the Filon method to the uniform error (of derivatives) of

interpolation at the points −1 = c0 < c1 < · · · < cν < cν+1 = 1. There are a number of

ways to estimate ‖f (j) − p(j)‖∞. One possibility is via the Hermite interpolation formula

as was used by Melenk (2010). Another way is to relate the error to the regularity of f

in periodic Sobolev norms on [0, 2π] via the change of variable x = cos θ, this approach

was taken by Domı́nguez et al. (2011). Finally, in our opinion, a very elegant way is

via optimal error bounds using the Peano kernel theorem; in particular we can use the

following result due to Shadrin (1995): Define the nodal polynomial for the interpolation

problem Eq. (1.22) as r̃(x) = (x2 − 1)
∏ν

j=1(x− cj), then we have the following bounds

(where the constants in the inequalities are optimal over f ∈ Cν+1([−1, 1])):

‖f (j) − p(j)‖∞ ≤
‖r̃(j)‖∞
(ν + 1)!

‖f (ν+1)‖∞. (1.23)

We can combine Eq. (1.23) with Prop. 1.2.10 and the trivial estimate

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ ≤ ∫ 1

−1

|f(x)− p(x)| dx ≤ 2‖f − p‖∞ (1.24)

to find:

Corollary 1.2.11. For any f ∈ C∞([−1, 1]), ν ∈ N, ω > 0:

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ ≤ min
{

2‖r̃‖∞, Cω−2 (‖r̃′‖∞ + ‖r̃′′‖∞)
} ‖f (ν+1)‖∞

(ν + 1)!
, (1.25)

where C > 0 is a constant independent of f, {cj}νj=1, ν, and ω.

Proof. From Eq. (1.23) we have

‖f − p‖∞ ≤ ‖r̃‖∞
‖f (ν+1)‖∞
(ν + 1)!

.

Thus, we can combine this with Eq. (1.24) to find the first bound on the right hand side
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of Eq. (1.25):

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ ≤ 2‖f − p‖∞ ≤ 2‖r̃‖∞
‖f (ν+1)‖∞
(ν + 1)!

. (1.26)

To find the second estimate on the right hand side of Eq. (1.25) we proceed analogously

by combining Eq. (1.23) with Prop. 1.2.10.

In essence the estimate in Prop. 1.2.10 and Corollary 5.5.3 guarantees, as long as the

points {cj}νj=1 are suitably spaced, good convergence properties of the method uniformly

in frequency. For example if f is analytic in a neighbourhood of the complex unit ball

{|z| ≤ 1} then Cauchy’s integral formula yields the following bound on the derivatives of

f for any x ∈ [−1, 1]:

|f (ν+1)(x)| =
∣∣∣∣(ν + 1)!

2πi

∮
|z|=1

f(z)

(z − x)ν+2
dz

∣∣∣∣ ≤ (ν + 1)! sup
|z|=1|

|f(z)|,

where the integral is taken counter-clockwise over the unit circle. Suppose we take {cj}ν+1
j=0

to be Legendre points, i.e. the zeros of the Legendre polynomial Pν+2, then r̃(x) is a

normalised Legendre polynomial with the normalisation (cf. Abramowitz and Stegun, 1965,

Eq. 22.3.8)

r̃(x) =
(ν + 2)!

2ν+2
(

1
2

)
ν+2

Pν+2(x), (1.27)

where (1/2)ν+2 denotes the Pochhammer symbol. It is well known (cf. Abramowitz and

Stegun, 1965, Eq. 22.14.1) that ‖Pn‖∞ ≤ 1 for all n ∈ N, and moreover we have (as a

direct consequence of Rodrigues’ formula (cf. Abramowitz and Stegun, 1965, Eq. 22.11.5))

d

dx
Pn+1 = (n+ 1)Pn +

d

dx
Pn, for n ≥ 0,

d2

dx2
Pn+1 = (n+ 2)

d

dx
Pn +

d2

dx2
Pn, for n ≥ 1.

These two identities allow us to show the following bounds by induction, which are valid

for all ν ∈ N:

‖P′ν+2‖∞ ≤
(ν + 2)(ν + 3)

2
, ‖P′′ν+2‖∞ ≤

(ν + 2)(ν + 3)(ν + 4)(ν + 5)

8
.

Combining these estimates with Eq. (1.27) and the simple estimate

(ν + 2)!(
1
2

)
ν+2

=
(ν + 2)(ν + 1) · · · 1(
ν + 3

2

) (
ν + 1

2

)
· · · 1

2

≤ 2(ν + 1)
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we find for all ν ∈ N

‖r̃‖∞ ≤ 2−(ν+1)(ν + 2),

‖r̃′‖∞ ≤ 2−ν(ν + 2)2(ν + 3),

‖r̃′′‖∞ ≤ 2−ν+2(ν + 2)2(ν + 3)(ν + 4)(ν + 5).

Therefore, for functions f analytic in a neighbourhood of the complex unit disk, Corol-

lary 5.5.3 guarantees that there is a constant C > 0 independent of ν, ω such that for all

ω ≥ 0 and ν ∈ N:

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ ≤ C2−ν min
{
ν, ω−2ν5

}
sup
|z|=1|

|f(z)|,

i.e. such that we have exponential convergence in ν uniformly in the frequency ω. Moreover,

for fixed ν the error decreases in ω, i.e. is smaller for larger frequencies. Note this type

of analysis can be carried out also for other interpolation points or classes of functions.

For instance Melenk (2010) provided results concerning the behaviour of the Filon error

for amplitudes f that are analytic in just a small complex neighbourhood of the interval

[−1, 1] by applying the Hermite interpolation formula directly to the right hand side of

Prop. 1.2.10.

This idea of constructing the Filon method by matching asymptotic behaviour of exact

integral also extends to more complicated oscillators. For instance integrals of the form

Iω[f ; g] =

∫ 1

−1

eiωg(x)f(x) dx

can also be approximated efficiently by taking p as an interpolating polynomial that

matches the values of f at ±1 and at any point x ∈ (−1, 1) with g′(x) = 0 (i.e. the

stationary points of the integrand). The corresponding Filon method is defined by

Q[ν]
ω,g[f ] := Iω[p; g] =

∫ 1

−1

eiωg(x)p(x) dx.

By matching the values of f at the endpoints and stationary points, the Filon method is

again seen to match the asymptotic behaviour of Iω[f, g], and hence results in an error

that decays in ω and intermediate interpolation points for p can again be added to ensure

uniform convergence. An interesting further development of this methodology is the

extended Filon method first described by Iserles and Nørsett (2005), which achieves an

even better match of the asymptotic behaviour of the integral by interpolating derivative

values of f . For instance an extended Filon method for Iω[f ] can be constructed by taking

q to be the unique polynomial of degree 2s+ν+1 satisfying the Hermite-type interpolation
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conditions

q(j)(±1) = f (j)(±1), j = 0, . . . , s, and q(cl) = f(cl), l = 1, . . . , ν, (1.28)

where as above −1 < c1 < · · · < cν < 1. By Eq. (1.21) this leads to an asymptotic error

of the form

∣∣Iω[f ]−Q[ν]
ω [f ]

∣∣ = O
(
ω−(s+2)

)
, ω →∞.

The idea extends also to multivariate integrals (see Deaño et al. (2017, §3.2)) but our

interest in this thesis remains focused on the univariate case. A central question we

address in Chapter 5 is how one may compute Iω[p] efficiently and stably for integrals with

complicated oscillatory kernel functions. Finally, we highlight that there are number of

interesting and efficient alternatives to Filon methods, including the method of numerical

steepest descent developed by Huybrechs and Vandewalle (2006) and Levin methods

introduced by Levin (1982, 1996) the latter of which we will briefly discuss in Chapter 6.

1.3 Thesis structure

We now provide an overview of the structure and the main contributions in each chapter

of this thesis. The novel scientific content is provided in Chapters 2–6 and for each of

those chapters we include a list of symbols (notation may change between chapters due to

differing mathematical conventions) which is located after the conclusion of the chapter

and before any appendices. A few concluding remarks and an outlook towards future

research are provided in the final Chapter 7.

Chapter 2

In this chapter, we consider the scattering of waves by an infinitely extending three-

dimensional cascade of finite-length flat blades in subsonic flow at zero angle of attack. As

mentioned in §1.1.1 this geometry is of specific relevance as it provides a model for the

components in turbofan engines. We study the scattering problem analytically, considering

both acoustical and vortical incident fields, spanwise wavenumbers and transverse mean

flow.

Our main contributions are a Wiener–Hopf solution of the scattering problem which

lifts the restriction that adjacent blades overlap, a condition that had thus far been crucial

for the (semi-)analytical study of this problem. Our approach relies on the solution of

three coupled scalar Wiener–Hopf problems, corresponding to an uncoupled leading-edge

approximation, and a subsequent trailing-edge and leading-edge correction. We provide
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closed-form expressions for the far-field behaviour of the scattered velocity potential

upstream and downstream of the cascade as well as for the total unsteady lift on each

blade in the cascade, depending only on the solution of an infinite matrix equation. Finally,

we provide a rigorous convergence analysis guaranteeing that the matrix system can be

truncated to find numerical values of this solution.

Chapter 3

In this chapter, we study the balance of outgoing and incoming power for acoustic wave

scattering by the cascade of flat blades in uniform subsonic mean flow based on the solution

we found in Chapter 2. In nonzero mean flow the Kutta condition at the trailing edge of the

cascade plates leads to the production of vorticity and the appearance of unsteady vortex

sheets attached at the trailing edges, which results in a hydrodynamic power flux and a

mechanism for energy conversion between the unsteady vorticity and the acoustic field.

Although the scattering problem itself has been subject to extensive previous research, a

comprehensive study of the composition of the outgoing energy flux for this geometry has

not previously been conducted.

Our main contribution is a comprehensive study of this composition and we use energy

balance arguments to provide analytical proofs of certain symmetries of the field with

respect to the angle of incidence relative to the cascade face when there is no mean flow

and of the effect of zero acoustic reflection at certain angles of incidence in the case of

mean flow. The latter is a new result that holds for all frequencies (i.e. also beyond the first

modal cut-on). We provide several numerical experiments covering a range of parameter

values that show significant attenuation of sound at low frequencies and demonstrate that

the vortex shedding can lead to an increase in sound power output over the incident field.

Our numerical results also demonstrate that, for certain parameter values, this can result

in a reflected acoustic wave with amplitude larger than the amplitude of the incident wave.

Chapter 4

In this chapter, we explore the extent to which oversampling can improve both robustness

and convergence properties of collocation methods when applied as a method of solving

Fredholm integral equations. Our interest is motivated by considering boundary integral

equation formulations of the exterior Dirichlet problem of the Helmholtz equation.

Our main contributions in this chapter are several results which form the first rig-

orous convergence analysis for least-squares collocation methods. We demonstrate how

oversampling impacts the convergence properties of the method in specific settings. This

includes the case of optimal, equispaced collocation points for smooth scatterers, for

which we show that already oversampling by a constant factor J (leading to a rectangular
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system of size JN ×N) leads to significant improvement in the error, and that quadratic

oversampling leads to a convergence rate that is faster than in the standard Galerkin

formulation. We also provide rigorous results that guarantee convergence in several more

general cases including the case of suboptimal irregularly-spaced collocation points and

Lipschitz domains. Our results are illustrated using a number of numerical examples which

show that the predicted amount of oversampling required to achieve certain convergence

rates is close to optimal.

Chapter 5

In this chapter, we study the efficient approximation of highly oscillatory integrals using

Filon methods, motivated by the desire to efficiently assemble the discretisation matrix

for collocation methods based on a hybrid numerical-asymptotic basis in high-frequency

wave scattering. A crucial step in the implementation of these methods is the accurate

and fast computation of the Filon quadrature moments.

Our main contributions in this chapter include a general framework that shows how

moment recurrences can be constructed for a wide class of oscillatory kernel functions,

based on the observation that many physically relevant kernel functions are in the null

space of a linear differential operator whose action on the Filon interpolation basis is

represented by a banded (infinite) matrix. We discuss in further detail the application to

two classes of particular interest: integrals with algebraic singularities and stationary points

and integrals involving a Hankel function. We provide rigorous stability results for the

moment computation for the first of these classes and demonstrate how the corresponding

Filon method results in an accurate approximation at truly frequency-independent cost.

For the Hankel kernel, we derive a Filon paradigm describing the convergence behaviour

of the method in terms of the frequency and the number of Filon quadrature points.

Finally, we show how Filon methods with recursive moment computation can be applied

to compute efficiently integrals arising in hybrid numerical-asymptotic collocation methods

for high-frequency wave scattering on a screen.

Chapter 6

In this chapter, we study a further application of a result proved in Chapter 5, specifically

concerning the recursive computation of Chebyshev coefficients of functions in the null-

space of certain differential operators.

Our main contribution in this chapter is the development of an efficient Levin method,

which we term the Levin–Clenshaw–Curtis method and which allows us to approximate

certain highly oscillatory integrals at frequency independent cost at rapid speed comparable

to a fast implementation of Clenshaw–Curtis quadrature. Although the permissible
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oscillatory kernels that can be treated with this method are fewer than for the Filon method

discussed in Chapter 5, the Levin method removes the need for moment computation and

hence presents an attractive and efficient alternative. Our Levin–Clenshaw–Curtis method

is able to reduce the cost of a usual Levin method from O(ν3) to just O(ν log ν) operations,

where ν represents the analogue of the number of quadrature points in the Levin method.

We provide several numerical examples demonstrating the favourable properties of this

approach.
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Chapter 2

Wave scattering by an infinite

cascade of non-overlapping blades

2.1 Introduction

In this chapter of the thesis we consider a Wiener–Hopf solution to the scattering of

vortical and acoustic waves incident on a cascade of blades which, as introduced in §1.1.1,

serves as a model for fan components in turbomachinery. As indicated in the introductory

chapter, this scattering problem has been subject to a large amount of research over

the past decades. Before describing our new contributions let us provide a slightly more

detailed overview of past work. The groundwork for the analytical solution of these types

of problems was laid in a sequence of works by Carlson and Heins (1947), Heins and

Carlson (1947) and Heins (1950), who considered an analogous problem of electromagnetic

scattering by a cascade of perfectly conducting semi-infinite blades extending to x = +∞.

One of the earliest works considering a cascade of finite-length blades was presented by

Kaji and Okazaki (1970), who considered a sound wave incident on the cascade and

developed a numerical scheme based on a distribution of doublets to match the pressure

jump on the blades. The problem was further studied by Whitehead (1970), who developed

the ‘LINSUB’ code, which provides a numerical scheme to solve for a variety of incident

fields on a cascade located in subsonic mean-flow. This approximate solution is based on

expanding the full pressure field in terms of separable waves in the Prandtl–Glauert plane

and using a collocation type approach to match the upwash velocity at the blades. A more

analytically-based approach was given by Koch (1971), who used a scalar Wiener–Hopf

formulation (of similar nature to Carlson and Heins (1947)) to solve the problem of incident

sound waves exactly (up to the truncation of an infinite system of linear equations) in the

case of overlapping blades, thus allowing the computation of the scattered radiation in

this case.

More recent work has focused on extending these results to incorporate more general
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geometries and incident fields, as well as to allow for a more efficient, and hence practically

feasible solution. Peake (1992) derived an asymptotic kernel factorisation for the large

reduced frequency regime and used a small number of iterates in a Schwarzschild-type

approach (Schwarzschild, 1901) to produce an efficient scheme for an incident vorticity

wave, which allows for the computation of the unsteady lift distribution. This asymptotic

kernel factorisation was later extended by Peake and Kerschen (1995) to be uniformly valid

even for close to cut-off conditions of the radiation modes or duct modes. A subsequent

work by Peake (1993) solves the complete system exactly using a Wiener–Hopf type

approach and presents an expression for the unsteady lift distribution that is valid for

arbitrary reduced frequency. In both cases the method of solution relies on an assumption

of overlap of adjacent blades in order to arrive at a coupling of the Wiener–Hopf equations

that describe the leading-edge and trailing-edge interaction problems. Glegg (1999) further

extended the analysis to blades in a three-dimensional setting, including the effects of

spanwise wave number and cross-flow (which, as mentioned in the introductory chapter,

allow for the modelling of chord-wise effects in a rotor/stator blade row if the hub-tip

ratio of the fan is close to unity), and analysed in detail the unsteady loading and far-field

behaviour of the scattered field for an incident vortical gust. Glegg’s method of solution

can be motivated by a Schwarzschild-type distribution of boundary conditions, and results

in a system of four coupled scalar Wiener–Hopf equations, which takes a similar form to

the one derived by Peake (1993). These can then be solved, and an exact expression for

the solution can be found which relies only on the solution of an infinite linear matrix

equation.

In recent years several studies have succeeded in analysing the effect of realistic blade

geometry, periodicity and mean flow on the cascade scattering problem. In particular,

Peake and Kerschen (1997, 2004) studied the effect of blade mean loading on the generation

of noise in the case of mean flow that is aligned at a nonzero incidence angle to the cascade

blades. Evers and Peake (2002) included the effect of small but nonzero camber and

thickness in a cascade of airfoils. The analytical studies of the cascade also provided a

basis for Posson et al. (2010), who were able to use the two-dimensional cascade solution

as a source distribution for the scattering problem on an annular blade-row. Ayton and

Peake (2013) used the same velocity potential and streamfunction coordinate system as

had been applied in Peake and Kerschen (1997, 2004) to analyse realistic airfoil shapes

by reduction to flat blades and appropriate boundary conditions. This coordinate system

was successfully used by Baddoo and Ayton (2020b) to find an exact solution to the

scattering problem by an infinite cascade of airfoils again based on the solution presented

by Glegg (1999). In a related approach Baddoo and Ayton (2020a) were able to include

more complex boundary conditions such as porosity of the blades.

However, in all of the aforementioned work which uses the Wiener–Hopf technique
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to find either exact or approximate solutions to the scattering problem, the restriction

to the case of overlapping blades is required. This restriction was necessary in previous

studies because it effectively allows the Wiener–Hopf analysis to be based on the duct

modes, which are the only modes present in overlapping parts of the geometry. If the

blades do not overlap the modal structure is more complicated and the Wiener–Hopf

solution needs to account for that. The main novelty presented in this chapter is the first

Wiener–Hopf solution of the problem which does not rely on overlapping blades and is

in fact valid for arbitrary blade spacing. This is achieved by a formulation as a system

of coupled scalar Wiener–Hopf equations, and by judiciously choosing an appropriate

additive Wiener–Hopf splitting (which is described in detail in §2.4.4), that allows us

to reduce the scattering problem to an infinite system of linear equations. Our additive

splitting is based on pole removal at the radiation modes, which leads to a discrete linear

system with decaying coefficients that can be solved by truncation regardless of the choice

of overlap. In contrast, the coefficients of the linear systems in previous work using the

Wiener–Hopf method would increase exponentially when the blades do not overlap, so do

not provide a convergent method in this case. We derive our solution in a very general

three-dimensional setting, allowing for effects of spanwise wave number and cross-flow, as

well as considering both incident vorticity and acoustic waves. This solution allows us to

derive exact expressions for the field away from the cascade structure and the unsteady lift

on the blades, which, similarly to the previous work, are in closed form apart from the need

to solve the aforementioned linear system numerically. Albeit we focus our attention on the

case of flat plates and meanflow that is aligned with the plates, we expect our methodology

can be extended to the case of nonzero angles of attack and realistic airfoil shapes of the

blades using the aforementioned velocity potential and streamfunction coordinate system

exploited by Peake and Kerschen (1997, 2004). We comment in more detail on possible

extensions of our work in §7.1. These expressions form the basis for further study of the

energy balance in this system as described in Chapter 3.

We begin this chapter by outlining the equations of motion together with the relevant

boundary conditions in §2.2. This is followed by a formulation of the scattering problem

as a system of coupled Wiener–Hopf equations in §2.3, which is then solved using a

Cauchy-type additive splitting in §2.4. The solution can be reduced to an infinite system of

linear equations and this reduction is described in §2.5. It is possible to derive expressions

for the total unsteady lift and the far-field sound based on our solution to the scattering

problem, and these expressions are provided in §2.7. Finally, we provide numerical results

using our solution in §2.8 which are used to demonstrate the accuracy of our method based

on previous work in the overlapping case and to study the effects of cascade geometry and

spanwise wavenumber on the scattered field. Our results are summarised in the concluding

remarks in §2.9.
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2.2 The equations of motion and mathematical

formulation

We consider a cascade of blades of zero thickness and camber, which are parallel to the

xz-plane, of finite length in the x-direction, staggered in the y-direction and extend to

infinity in the spanwise z-direction as shown in Fig. 2.1.

Mean flow

y

x

α0

s

1
d

(a) Projection onto the xy-plane.

z

x
y

Mean flow

U W

n = 0

n = 1

n = −1

(b) Full three-dimensional geometry.

Figure 2.1: The cascade geometry with mean-flow and blade labels.

We assume the blades lie in an inviscid isentropic fluid with nonzero uniform subsonic

mean flow u = (U, 0,W ), with corresponding speed U∞ :=
√
U2 +W 2 and Mach number

M := U∞/c0, where c0 is the undisturbed speed of sound. We suppose that the flow is

perturbed by an incoming wave (which could correspond to an acoustic wave or a vortical

gust) that is incident from x = −∞, and which has the following velocity field

uinc = AeiΩt−iK·x,

where K = (K1, K2, K3) is the non-dimensionalised wave vector. The form of the incident

field for acoustic waves and harmonic gusts is discussed in more detail in §2.2.1. As

described in §1.1, by Goldstein’s splitting theorem (Goldstein, 1976, pp. 220–222) the

perturbed velocity potential can be decomposed into a solenoidal part (which is zero

for incident acoustic waves, and equal to the incident field for vorticity waves) and an

irrotational part corresponding to the scattered field (plus the incident field for acoustic

waves). The scattered component φ̃(x, y, z, t) of this velocity potential satisfies, as described

in Chapter 1

1

c2
0

D2φ̃

Dt2
−∆φ̃ = 0, (2.1)

where ∆ = ∇2 is the Laplacian in three dimensions. We non-dimensionalise our equations

by rescaling the physical quantities as follows: We rescale lengths by l the blade chord, times

by l/U∞, density perturbations by the undisturbed fluid density ρ0, pressure fluctuations

by ρ0U∞U , and we let Mx := U/c0,Mz := W/c0 be the Mach numbers of the x, z-
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components of the flow. Note that the rescaling of times by l/U∞ is chosen in order for

our analysis to fit into the context and notation of the relevant literature using a similar

non-dimensionalisation (Peake, 1992, 1993, Peake and Kerschen, 2004). However, this

choice means that U∞ → 0 becomes a singular limit and we need to be careful when

taking the limit of zero mean flow in the results of this chapter. Nevertheless, we note

that the correct physical limit is recovered if we take M → 0 with MΩ = k fixed in the

following non-dimensionalised algebraic expressions. Finally, the normalised blade stagger

d, and interblade spacing s are defined as in Fig. 2.1a, resulting in the stagger angle

α0 = arctan (s/d). Crucially, we wish to include the case of non-overlapping blades, so

that d may be greater than 1.

We look for time-harmonic solutions of the form:

φ̃(x, t) = φ(x, y)eiΩt−iK3z,

where Ω = ωl/U∞ is the reduced frequency, and K3 = lk3 is the non-dimensional spanwise

wavenumber. Then, by Eq. (2.1), φ must satisfy the dimensionless equation

β2∂2
xφ+ ∂2

yφ− 2iΩ̃MxM∂xφ+
(

Ω̃2M2 −K2
3

)
φ = 0, (2.2)

where we denoted the Prandtl–Glauert number by β2 = 1−M2
x , and we call Ω̃ = Ω−K3

Mz

M

the effective reduced frequency, where we require Ω̃2M2
x ≥ K2

3β
2 for propagating acoustic

modes to exist (as will be seen from the dispersion relation Eq. (2.6)).

2.2.1 Boundary and edge conditions

Let us label the blades by 0,±1,±2, . . . , then for incident harmonic waves (either vortical

or acoustical) the (time-dependent) upwash normal to the nth blade (the y-velocity of the

incoming wave on the blades in the upward pointing direction) is given by

V exp (iΩt− iK1x+ inσ) , (2.3)

where K1 = lk1 is the non-dimensional x-component of the wavevector, and we assume

that the incident wave is periodic in the transverse direction, with the change in its phase

between adjacent blades (the so-called interblade phase angle) being σ = −dK1 − sK2.

We impose a Kutta condition at the trailing edges of the cascade blades which allows us to

incorporate a significant amount of the effect of viscosity in the boundary layer of a real

airfoil in viscous flow into our inviscid equation of motion Eq. (2.1) (Crighton, 1985). The

Kutta condition essentially models the trailing edge stagnation point of airfoils in viscous

flow which leads to the shedding of vorticity. This vortex shedding process is commonly

modelled (in simplified form) in the inviscid equation by vortex sheets attached at the
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trailing edges of the cascade blades, henceforth referred to as the ‘wake’. In summary, φ

must therefore satisfy the following conditions:

(i) The total normal velocity (i.e. the sum of upwash and normal component of the

scattered potential) must vanish on the rigid stationary blades, i.e.

∂φ

∂y
= −V einσ−iK1x on {0 ≤ x− nd ≤ 1, y = ns} .

(ii) The unsteady pressure, which is given in dimensionless form by

p = −Dφ̃

Dt
= −

(
iΩ̃
M

Mx

+
∂

∂x

)
φ,

is continuous away from the blades.

(iii) The scattered field must satisfy a radiation condition, which, with our introduction

of a small amount of fictitious damping Im Ω < 0 in the formulation of the problem

as a Wiener–Hopf system, as described in §2.3.2, is equivalent to requiring φ to be

bounded at infinity.

(iv) The incident field has a periodicity as specified in Eq. (2.3). We require the scattered

potential to exhibit a similar property, namely for all −∞ < x < ∞, 0 ≤ y ≤ s,

n ∈ Z:

φ(x, y) = e−inσφ(x+ nd, y + ns). (2.4)

This is essentially a Bloch condition as we move from one cell in the cascade to the

next. This means, in particular, that we need only determine the velocity potential

in the first cascade cell {−∞ < x <∞, 0 ≤ y ≤ s}, and the solution everywhere else

is determined from Eq. (2.4).

(v) The total velocity normal to the blades ∂φ/∂y must be continuous everywhere (which

is a consequence of the continuity of pressure and the consideration of infinitely thin

blades).

(vi) The scattered field satisfies the Kutta condition at the trailing edge (see for instance

Peake (1992) and Crighton (1985)), i.e. [p] is non-singular at the points (x, y) =

(1 + nd, ns), and the usual inverse square-root singularity at the leading edge, i.e. φ

has an inverse square-root singularity at the points (x, y) = (nd, ns).
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In (vi) we introduce the notation [ · ] for the jump in an unsteady quantity across the first

cascade cell, so that for instance the jump in unsteady pressure p is given by

[p] (x) := p(x, 0+)− e−iσp(x+ d, s−) = p(x, 0+)− p(x, 0−). (2.5)

In the present work we are particularly interested in incident (harmonic) vortical gusts

and acoustic waves as described below.

Incident harmonic gust

A harmonic vortical disturbance, representing for instance a component of the wake shed

from an upstream blade row, corresponds to an incident velocity field of the form

uinc = AeiΩt−iK·x,

which must satisfy mass conservation ∇ · uinc = 0, i.e. A ·K = 0, and is convected with

the flow, i.e. Duinc/Dt = 0. This results in the dispersion relation K1 = Ω̃MM−1
x and

implies σ = −dΩ̃MM−1
x − sK2.

Incident acoustic waves

Acoustic waves, representing perhaps noise generated elsewhere in the aeroengine, have a

velocity potential proportional to exp (iΩt− iK1x− iK2y − iK3z) and which satisfies the

convected wave equation Eq. (2.1). Thus we find the following dispersion relation

β2

(
K1 +

Ω̃MxM

β2

)2

+K2
2 +K2

3 =
Ω̃2M2

β2
. (2.6)

This ellipsoid in wave phase space can be parametrised as follows:

K1 =
Ω̃M cosϕ sin θ

1 +Mx cosϕ sin θ
, K2 =

Ω̃M sinϕ sin θ

1 +Mx cosϕ sin θ
, K3 =

Ω̃M cos θ

1 +Mx cosϕ sin θ
. (2.7)

From this parametrisation we can immediately extract the incident direction of the wave

(in terms of azimuthal angle ϕ and polar angle θ). Moreover, in terms of ϕ, θ we have

σ =
(− sin θ)Ω̃M

1 +Mx cosϕ sin θ
(d cosϕ+ s sinϕ) .

We focus our attention initially on the case when acoustic waves are incident from upstream,

which for us means s(Mx + sin θ cosϕ)− d sin θ sinϕ ≥ 0 and is specified in more detail

in §2.3.1. The case of downstream incident acoustic waves can be treated analogously

and the relevant expressions of the Wiener–Hopf analysis and far-field are provided for
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completeness in Appendix 2.E.

2.3 Formulation as a Wiener–Hopf problem

The periodicity condition (iv) allows us to restrict our attention to the first cascade

cell, {−∞ < x < ∞, 0 ≤ y ≤ s}. We aim to apply the Fourier transform directly to

the differential equation and boundary conditions in order to arrive at a Wiener–Hopf

formulation, i.e. we take the approach described in §1.2.1. Let us use the following

convention for the x-wise Fourier transform:

Φ(α, y) :=

∫ ∞
−∞

φ(x, y)eiαx dx.

Fourier transforming Eq. (2.2) and boundary condition (v) we find

∂2Φ

∂y2
(α, y)− γ2(α)Φ(α, y) = 0, (2.8)

∂Φ

∂y
(α, 0+)− e−iσ−idα∂Φ

∂y
(α, s−) = 0, (2.9)

where γ2(α) = α2β2 + 2αΩ̃MxM −
(

Ω̃2M2 −K2
3

)
and the branch cuts of γ are chosen

such that the function always has positive real part in the strip R+ ∩ R− ⊂ C which is

defined in §2.4.1. We also note that the Fourier transform of the pressure fluctuations is

related to the Fourier-transformed velocity potential by

P (α, y) = −
(

iΩ̃
M

Mx

− iα

)
Φ(α, y), and [P ] (α) = −

(
iΩ̃
M

Mx

− iα

)
[Φ] (α). (2.10)

The solution to Eq. (2.8) takes the form Φ(α, y) = A(α) exp (γ(α)y) +B(α) exp (−γ(α)y),

which together with the periodicity Eq. (2.9) and with Eq. (2.10) implies after a few steps

of algebra that

[P ] (α) = κ(α)
∂Φ

∂y
(α, 0), (2.11)

where the scalar Wiener–Hopf kernel κ is given by

κ(α) =
2
(

Ω̃ M
Mx
− α

)
(cos(σ + dα)− cosh(γs))

iγ sinh(γs)

=

(
Ω̃ M
Mx
− α

)
iγ sinh(γs)

(
1− e−iσ−γs−idα

) (
1− e−iσ+γs−idα

)
eiσ+idα.
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We observe that κ(α) is single-valued in the complex plane, since its direct dependence on

γ is even.

2.3.1 The scalar Wiener–Hopf kernel

One can easily check (as described by Peake (1992)) that κ is meromorphic, with simple

poles located at α = k±n , n ∈ N where

k±n =


−MxMΩ̃∓

√
M2
xM

2Ω̃2−β2(n2π2s−2+K2
3−M2Ω̃2)

β2 if n ≤ p,

−MxMΩ̃±i
√
−M2

xM
2Ω̃2+β2(n2π2s−2+K2

3−M2Ω̃2)

β2 if n > p,

and p is the largest integer such that M2
xM

2(Re Ω̃)2−β2(n2π2s−2 +K2
3 −M2(Re Ω̃)2) ≥ 0.

Furthermore κ has simple zeros at the convected wavenumber α = Ω̃ M
Mx

and at α =

σ±m,m ∈ Z, where for −r ≤ m ≤ q:

σ±m =
−(s2MxMΩ̃ + dσ + 2dπm)

s2β2 + d2

∓

√(
s2MxMΩ̃ + dσ + 2dπm

)2

− (s2β2 + d2)
(

(σ + 2πm)2 − s2
(

Ω̃2M2 −K2
3

))
s2β2 + d2

,

and for m > q,m < −r:

σ±m =
−(s2MxMΩ̃ + dσ + 2dπm)

s2β2 + d2

±
i

√
−
(
s2MxMΩ̃ + dσ + 2dπm

)2

+ (s2β2 + d2)
(

(σ + 2πm)2 − s2
(

Ω̃2M2 −K2
3

))
s2β2 + d2

,

with −r, q being the smallest and largest integer respectively such that(
s2MxM(Re Ω̃) + dσ + 2dπm

)2

− (s2β2 + d2)
(

(σ + 2πm)2 − s2
(

(Re Ω̃)2M2 −K2
3

))
≥ 0.

We call k±n the duct modes (which are cut-on if and only if n ≤ p) and σ±m the radiation

modes (which are cut-on if and only if −r ≤ m ≤ q). These are the coherent acoustic

modes that appear in this geometry as a result of the arrangement of the blades in the

cascade, and α = Ω̃M/Mx is the hydrodynamic mode supporting the wake downstream of

the blades. Note only cut-on radiation modes carry energy to ±∞ and the cut-off modes

are evanescent. The radiation modes for cascade scattering are an analogue of Bragg

angles for periodic media and are the coherent waves present in the scattered field as a
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result of the periodic nature of the geometry. This periodicity means the field is split into

a discrete set of modes, as can be seen from the dispersion relation derived in §3.2.1. Their

physical interpretation is discussed to some extend by Peake (1993, §5).

Incident acoustic waves

For acoustic waves we can verify using the parametrisation Eq. (2.7) that

K1 =

σ−0 if s(Mx + sin θ cosϕ)− d sin θ sinϕ ≥ 0,

σ+
0 if s(Mx + sin θ cosϕ)− d sin θ sinϕ < 0,

(2.12)

i.e. K1 = σ−0 if the incident wave is travelling downstream with respect to the cascade

stagger (i.e. is incident from upstream), and K1 = σ+
0 if the wave travels upstream (i.e. is

incident from downstream). For simplicity we restrict our analysis initially to the case of

incident waves from upstream (i.e. for acoustic waves when K1 = σ−0 ), but the scattering

problem can be solved in an analogous (reflected) way in the case of upstream travelling

waves incident from downstream as well, as is described in Appendix 2.E.

2.3.2 Derivation of Wiener–Hopf equations

A convenient notation for the zeros of the Wiener–Hopf kernel κ is, for all m ∈ Z,

σ̃+
m = σ+

m, σ̃−m =


Ω̃ M
Mx
, if m = 0,

σ−m−1, if m ≥ 1,

σ−m, if m ≤ −1,

which allows us to write the Neumann boundary condition for incident acoustic and

vorticity waves as

∂φ

∂y
= −V einσ−iσ̃−η x on {0 ≤ x− nd ≤ 1, y = ns} ,

where our analysis facilitates a solution for any −r ≤ η ≤ q and in particular for the

physically relevant values η = 0, 1, which correspond to incident gusts (η = 0) and incident

(downstream travelling) acoustic waves (η = 1).

We follow the standard practice of assuming that Ω̃ has a small negative imaginary

part Im Ω̃ < 0, which will be taken to zero at the end of the analysis. By construction this

introduces a small negative imaginary part for both types of incident fields, and physically

amounts to a small amount of damping downstream (for both types of incident fields) and

ensures that certain integral transforms in the later analysis are well-defined.
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We begin by deriving the system of Wiener–Hopf equations which we shall use to

solve the problem. We use an approach similar to Glegg (1999) (although we are able to

reduce the number of equations from four to three) and split the boundary value problem

into three problems on {−∞ < x < ∞, 0 ≤ y ≤ s}, each of which has to satisfy only a

combination of two semi-infinite boundary conditions hence facilitating the application

of the Wiener–Hopf technique on coupled scalar equations. We define φ1, φ2, φ3, each to

satisfy Eq. (2.2) on the first cascade cell (i.e. on the space between the first and second

blade of the cascade, {−∞ < x < ∞, 0 ≤ y ≤ s}), the radiation condition (iii) and the

continuity of the blade-normal velocity everywhere (v) (which translates to the jump in

normal velocity across the first cascade strip, as defined in Eq. (2.5), being zero). Finally,

we impose the following pairs of semi-infinite boundary conditions (together with an

appropriate distribution of the edge conditions (vi)) on φj and the corresponding pressures

pj, j = 1, 2, 3:

• Leading-edge interaction with incident field:

∂φ1

∂y
(x, 0) = −V e−iσ̃−η x on x > 0,

[p1] (x) = 0 on x < 0,

and φ1 has the conventional inverse square-root singularity at the leading edge x = 0.

• Trailing-edge correction:

∂φ2

∂y
(x, 0) = 0 on x < 1,

[p1 + p2 + p3] (x) = 0 on x > 1,

and φ2 satisfies the Kutta condition at the trailing edge x = 1.

• Leading-edge correction:

∂φ3

∂y
(x, 0) = 0 on x > 0,

[p2 + p3] (x) = 0 on x < 0,

and φ3 has at worst an inverse square-root singularity at the leading edge x = 0.

Thus φ1 corresponds to the scattered potential of a wave incident on a cascade of semi-

infinite blades, while φ2, φ3 act jointly to correct the pressure jumps downstream of the

trailing edge and to ensure that φ = φ1 + φ2 + φ3 is a solution to the original problem.

Since the derivation of Eq. (2.11) relied only on the time-reduced convected wave-equation,

together with the radiation condition and the continuity of normal velocity, we find that
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each of φj, j = 1, 2, 3, satisfies Eq. (2.11) as well. If we then transform the additional

boundary conditions we arrive at the following system of scalar Wiener–Hopf equations:[
P+

1

]
(α)

κ(α)
=
∂Φ−1
∂y

(α, 0)− iV

α− σ̃−η
, (2.13)

∂Φ̃+
2

∂y
(α, 0) =

1

κ(α)

([
P̃−2

]
(α)−

[
P̃+

1

]
(α)−

[
P̃+

3

]
(α)
)
, (2.14)

∂Φ−3
∂y

(α, 0) =
1

κ(α)

([
P+

3

]
(α)−

[
P−2
]

(α)
)
, (2.15)

where we used the following notation of half-line Fourier transforms for a given function ψ:

Ψ+(α, y) :=

∫ ∞
0

ψ(x, y)eiαx dx, Ψ−(α, y) :=

∫ 0

−∞
ψ(x, y)eiαx dx,

Ψ̃+(α, y) := e−iα

∫ ∞
1

ψ(x, y)eiαx dx, Ψ̃−(α, y) := e−iα

∫ 1

−∞
ψ(x, y)eiαx dx.

2.4 Solution using the Wiener–Hopf technique

2.4.1 Factorisation of κ

Given Im Ω̃ < 0 there is ε such that ±Im σ̃±m > ε and ±Im k±n > ε. Defining the overlapping

half-planes R± :=
{
α ∈ C

∣∣∣± Imα > −ε
}

we observe that each of Eqs. (2.13)-(2.15) is

valid in the strip R+ ∩R− and we note that the half-line Fourier transforms are analytic

in R± according to their superscripts (under the a priori assumption that the solutions

φ1, φ2, φ3 decay sufficiently fast along the x-direction).

Using the Weierstrass factorisation theorem (see Thm. 5.14 in Conway (1978, p. 170)

or the special case given in Noble (1958, p. 40)), and applying the procedure for analysing

the asymptotic behaviour of infinite products as outlined by Noble (1958), it is possible to

construct functions κ+, κ− which are analytic in R+, R− respectively, satisfy κ = κ+κ−,

and have the following algebraic growth behaviour:

∣∣κ+(α)
∣∣ ∼ C+|α| 12 as α→∞ in R+, (2.16)∣∣κ−(α)
∣∣ ∼ C−|α|− 1

2 as α→∞ in R−, (2.17)

for some nonzero constants C±. The details of this splitting are described in §2.A.

2.4.2 The uncoupled leading edge problem

We notice that Eq. (2.13) is uncoupled from the remaining two Wiener–Hopf equations.

The equation corresponds essentially to the scattering problem on a cascade of semi-infinite
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blades, and explicit solutions have been provided by a number of authors. Amongst the

earliest work on this problem is Carlson and Heins (1947), and solutions are also given by

Mani and Horvay (1970), Glegg (1999), and Peake (1992). Here we briefly summarise the

main steps taken by Peake in the solution of this uncoupled problem (see Peake, 1992, pp.

267-273). Using the aforementioned kernel factorisation we can rewrite Eq. (2.13) in the

form [
P+

1

]
(α)

κ+(α)
+

iV κ−(σ̃−η )

α− σ̃−η
= κ−(α)

∂Φ−1
∂y

(α, 0)− κ−(α)
iV

α− σ̃−η

(
1− κ−(σ̃−η )

κ−(α)

)
= E1(α),

which is valid in R+ ∩ R−. Thus analytic continuation allows us to define an entire

function E1(α). As mentioned above we assume that the unsteady field φ1 possesses the

conventional inverse square-root singularity (condition (vi) from §2.2.1) at the leading

edge x = 0, which results in the following asymptotic behaviour (Peake, 1992, p. 269):

∂Φ−1
∂y

(α, 0) = O
(
α−

1
2

)
as α→∞ in R−,[

P+
1

]
(α) = O

(
α−

1
2

)
as α→∞ in R+.

This inverse square-root singularity is a direct consequence of the flow being effectively

incompressible and therefore satisfying Laplace’s equation nearby the leading edge. This

behaviour, together with Liouville’s theorem, implies E1(α) ≡ 0 and therefore yields the

solution to Eq. (2.13)

[
P+

1

]
(α) = −iV κ−(σ̃−η )

κ+(α)

α− σ̃−η
,

∂Φ−1
∂y

(α, 0) =
iV

α− σ̃−η

(
1− κ−(σ̃−η )

κ−(α)

)
. (2.18)

2.4.3 Asymptotic behaviour of the kernel factors and residues

Before we can solve Eq. (2.14) and Eq. (2.15) we first need to look more closely at the

asymptotic behaviour of the kernel factors κ± and their residues. We find that |κ| has

two asymptotic regimes - one regime with constant asymptotic behaviour, and one with

exponential growth:

• As α→∞ with ± argα ∈
(
arctan

(
sβ
d

)
, π

2

)
∪
(
π
2
, π − arctan

(
sβ
d

))
,

|κ(α)| ∼ 2ed|Imα|−βs|Reα|

β
.

• And as α→∞ with argα ∈
(
− arctan

(
sβ
d

)
, arctan

(
sβ
d

))
or
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argα ∈
(
π − arctan

(
sβ
d

)
, π + arctan

(
sβ
d

))
,

|κ(α)| ∼ 2

β
.

These regimes are sketched in Fig. 2.2: |κ| has exponential growth at infinity in regions

2 and 4 and is asymptotically constant in regions 1 and 3 . Now since κ+ can be

expressed in R− by κ+ = κ
κ− , this means that κ+ is not only of algebraic growth in R+

but in fact in the following larger part of the complex plane

R+ ∪
{
α
∣∣∣ argα ∈

(
− arctan

(
sβ

d

)
, arctan

(
sβ

d

))
∪
(
π − arctan

(
sβ

d

)
, π + arctan

(
sβ

d

))}
,

which corresponds to a strip around the real axis together with regions 1 , 2 and 3 .

An analogous statement is true for κ−. Furthermore one finds that 1
κ+ is a meromorphic

function, with simple poles and growth of order O(α−
1
2 ) away from its poles (because

either it decays algebraically or it decays exponentially).

Re (α)

Im (α)

13

2

4

Figure 2.2: The regions of different asymptotic behaviour of |κ| in the complex α-plane.

In order to understand the poles of κ±, 1
κ± it suffices, by way of expressing the functions

as above, to understand the residues of κ, 1
κ
. We can quickly check that for each m ∈ Z,

n ∈ N:

Res

(
1

κ
, σ+

m

)
=

iγ(σ+
m)2

(−2)(Ω̃ M
Mx
− σ+

m) (idγ(σ+
m) + sσ+

m)
, (2.19)

Res

(
1

κ
, σ−m

)
=

iγ(σ−m)2

2(Ω̃ M
Mx
− σ−m) (idγ(σ−m)− sσ−m)

, (2.20)
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Res (κ, k+
n ) =

2(Ω̃ M
Mx
− k+

n )(cos(σ + dk+
n )− (−1)n)

(−1)nik+
n s

, (2.21)

Res (κ, k−n ) =
2(Ω̃ M

Mx
− k−n )(cos(σ + dk−n )− (−1)n)

(−1)nik−n s
. (2.22)

2.4.4 The trailing edge correction

We can rewrite Eq. (2.14) as

κ+(α)
∂Φ̃+

2

∂y
(α, 0) =

1

κ−(α)

([
P̃−2

]
(α)−

[
P̃+

1

]
(α)−

[
P̃+

3

]
(α)
)
.

Thus to proceed with the Wiener–Hopf technique we must additively split the term

g(α) =
1

κ−(α)

([
P̃+

1

]
(α) +

[
P̃+

3

]
(α)
)
.

We now recall from Eq. (2.17) that 1
κ− is of order O

(
α

1
2

)
uniformly in some strip containing

the real axis, i.e. in a set of the form (−∞,∞)× (−ε, ε), such that (−∞,∞)× [−ε, ε] ⊂
R+ ∩R−. It is also possible to show (as is proved in detail in Appendix 2.B) that[

P̃+
1

]
(α) = O

(
α−1
)

as α→∞, α ∈ R+, and hence that [p1] is non-singular at x = 1. Imposing the unsteady

Kutta condition (condition (vi) in §2.2.1) at the trailing edge to [p2] and noting that

[p3] (x) = − [p1] (x) − [p2] (x), for x > 1, we conclude that the pressure jump [p3] (x)

must be non-singular at x = 1, and it can thus be shown (as we saw in Eq. (1.6)) that[
P̃+

3

]
(α) = O(α−1) as α→∞, α ∈ R+. Hence there is a strip S containing the real axis

and a constant C such that∣∣∣∣ 1

κ−(α)

([
P̃+

1

]
(α) +

[
P̃+

3

]
(α)
)∣∣∣∣ ≤ C (1 + |Reα|)− 1

2 for all α ∈ S.

Thus the assumptions of Thm. B in Noble (1958, p. 13) are satisfied and we can choose

c > 0 and construct two functions such that g = g− + g+, where

g+(α) =
1

2πi

∫ ∞−ic

−∞−ic

g(ζ)

ζ − α dζ and g−(α) = − 1

2πi

∫ ∞+ic

−∞+ic

g(ζ)

ζ − α dζ. (2.23)

Let us shrink R± such that

R− =
{
α ∈ C

∣∣∣Imα < δ
}

and R+ =
{
α ∈ C

∣∣∣Imα > −δ
}
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for some 0 < δ < c, then the functions g± are analytic in R± respectively. Furthermore

they are also bounded in their respective half-plane, as is proved in Appendix 2.B. We

now observe that g(ζ)
ζ−α is meromorphic in an open neighbourhood of {ζ

∣∣Im ζ ≥ −c}, with

simple poles at σ+
m,m ∈ Z and, by Eqs. (2.16) & (2.17), decay of O

(
ζ−

3
2

)
. Thus we can

use the residue theorem to express g−(α) in terms of the following infinite series of pole

contributions:

g−(α) =
∑
m∈Z

1

α− σ+
m

Res

(
1

κ−
, σ+

m

)([
P̃+

1

]
(σ+

m) +
[
P̃+

3

]
(σ+

m)
)
. (2.24)

We note that the splitting which we are arrived at in Eq. (2.24) is simply the classical

method of pole removal. The novelty in our present approach is to use this pole removal for

the offending poles, the radiation modes σ+
m, which are natural to the geometry irrespective

of the value of d > 0. This is in contrast to previous work which relied on the removal of

duct modes k±n . Indeed the corresponding splitting used in previous studies (for instance

Peake (1992) and Glegg (1999)) relies essentially on the following observation: If d < 1

then [p1] (x) + [p3] (x), x > 1, can be written as an (infinite) linear combination of duct

modes k−n . This is because in the region x > 1 the consecutive semi-infinite boundary

conditions form a duct geometry (cf. §2.3.2). Thus, when d < 1, their half-line Fourier

transform is of the form [
P̃+

1

]
(α) +

[
P̃+

3

]
(α) =

∑
n∈N

Ln
α− k−n

(2.25)

for some complex constants Ln. With this knowledge one can close the contour of

integration of g+(α) in the lower half plane and derive a linear system from the discrete

pole contributions at the duct modes k−n , n ∈ N. However Eq. (2.25) is no longer valid

when d > 1, because the modal structure of the pressure [p1] (x) + [p3] (x) becomes more

complicated in the region 1 < x < d, since there is no overlap of consecutive boundary

conditions in this part of the domain. As such the additive splitting and linear system

from previous work are restricted to the case d < 1. We observe, however, that no such

assumption was necessary to arrive at Eq. (2.24), indeed collecting the pole contributions at

the radiation modes avoids making a distinction between overlapping and non-overlapping

geometries altogether and forms a valid splitting for any value of d > 0. Now we note

by Eq. (2.19), and Eqs. (2.54) & (2.55), that the series in Eq. (2.24) converges locally

uniformly in α ∈ R− (since the terms in the series decay like m−3/2).
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This allows us to recast Eq. (2.14) into

κ+(α)
∂Φ̃+

2

∂y
(α, 0) + g+

1 (α) =
1

κ−(α)

[
P̃−2

]
(α)

−
∑
m∈Z

1

α− σ+
m

Res

(
1

κ−
, σ+

m

)([
P̃+

1

]
(σ+

m) +
[
P̃+

3

]
(σ+

m)
)

= E2(α),

which by analytic extension defines an entire function E2(α). By the unsteady Kutta

condition at the trailing edge, both the normal velocity and the pressure field are non-

singular at x = 1, y = 0. Thus there is a constant C such that∣∣∣∣∣∂Φ̃+
2

∂y
(α, 0)

∣∣∣∣∣ ≤ C

1 + |Imα| if α ∈ R+, and
∣∣∣[P̃−2 ] (α)

∣∣∣ ≤ C

1 + |Imα| if α ∈ R−,

(2.26)

which implies together with our previous analysis that |E2(α)| ≤ C|α| 12 uniformly in C,

and thus by the extended Liouville theorem E2(α) must be constant. Moreover, E2(iy)→ 0

as y → −∞ and thus E2 must be identically zero, which then implies:

1

κ−(α)

[
P̃−2

]
(α) =

∑
m∈Z

1

α− σ+
m

Res

(
1

κ−
, σ+

m

)([
P̃+

1

]
(σ+

m) +
[
P̃+

3

]
(σ+

m)
)
. (2.27)

2.4.5 The leading edge correction

We proceed similarly to the trailing edge correction: firstly note that Eq. (2.15) is equivalent

to

κ−(α)
∂Φ−3
∂y

(α, 0) =
1

κ+(α)

([
P+

3

]
(α)−

[
P−2
]

(α)
)
.

Thus, we must additively split the term

h(α) =
1

κ+(α)

[
P−2
]

(α).

We now observe that by construction [p2] (x) = − [p3] (x), for x < 0. Additionally we

assumed that [p3] (x) exhibits at worst the conventional inverse square-root singularity

at the leading edge (cf. §2.3.2). Therefore [p2] (x) must also have at worst an inverse

square-root singularity at x = 0 and thus
[
P−2
]

(α) = O
(
α−1/2

)
as α→∞, α ∈ R−. This

means that there is a strip S around the real axis and a constant C such that

|h(α)| ≤ C (1 + |Reα|)− 1
2 ∀α ∈ S.
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Thus we may proceed as before to apply Thm. B from Noble (1958, p. 13) and construct

two functions h+, h− which are bounded and analytic in R+, R− respectively, and are given

by

h+(α) =
1

2πi

∫ ∞−ic

−∞−ic

h(ζ)

ζ − α dζ, and h−(α) =
1

2πi

∫ ∞+ic

−∞+ic

h(ζ)

ζ − α dζ.

Since h(ζ)
ζ−α is a meromorphic function with simple poles in an open neighbourhood containing

{ζ
∣∣Im ζ ≤ c}, we can use the residue theorem to collect the contributions of poles and

express h+ as the following convergent series:

h+(α) =
∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m),

which converges locally uniformly due to the decay in the residues. This is again simply a

pole removal splitting based on the radiation modes σ̃−m. We highlight again that as in

§2.4.4 this additive Wiener–Hopf splitting relying on radiation modes is the main difference

to previous work by Peake (1992) and Glegg (1999), and is valid for all d > 0, hence

overcomes the restriction to overlapping blades. Thus Eq. (2.15) is equivalent to

κ−(α)
∂Φ−3
∂y

(α, 0)− h−(α) =
1

κ+(α)

[
P+

3

]
(α)−

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m)

= E3(α).

As for the previous two Wiener–Hopf equations this defines, by analytic continuation, an

entire function E3(α). We further assumed that φ3 has at worst an inverse square root

type singularity at the leading edge, which implies that the growth of
∂Φ−3
∂y

(α, 0),
[
P+

3

]
(α)

in R−, R+ is similar to the corresponding growth of
∂Φ−1
∂y

(α, 0),
[
P+

1

]
(α) respectively, which

amounts to (cf. §2.4.2)

∂Φ−3
∂y

(α, 0) = O
(
α−

1
2

)
as α→∞ in R−,[

P+
3

]
(α) = O

(
α−

1
2

)
as α→∞ in R+.

Thus the entire function E3(α) is bounded. Furthermore if we take α→∞ with argα =

π/2, then the right hand side of the equation decays to zero, thus Liouville’s theorem

combined with this observation implies E3(α) ≡ 0. Therefore, in particular

1

κ+(α)

[
P+

3

]
(α) =

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m). (2.28)
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2.5 Reduction to an infinite algebraic system

In order to reduce Eq. (2.18), (2.27) and (2.28) to a discrete matrix equation we define

the following coefficients (for m ∈ Z)

Am :=
[
P̃+

1

]
(σ̃+

m), Bm :=
[
P−2
]

(σ̃−m), Cm :=
[
P̃+

3

]
(σ̃+

m).

Then using Eq. (2.27) we find by Fourier inversion and several changes of order of

summation and integration, which are rigorously justified in Appendix 2.C:

Bj =
[
P−2
]

(σ̃−m) =
∑
m∈Z

Gjm (Am + Cm) ,

where

Gjm =
−1

2πi
Res

(
1

κ−
, σ̃+

m

)∫ ∞+iε

−∞+iε

eiακ−(α)

(α− σ̃−j )(α− σ̃+
m)

dα. (2.29)

We can also use Fourier inversion on Eq. (2.28) (which is given in full detail in Appendix 2.C)

to arrive at a second collection of linear equations. This allows us to reduce the scattering

problem to the following linear system:

Bj =
∑
m∈Z

Gjm (Am + Cm) , (2.30)

Cj =
∑
m∈Z

FjmBm, (2.31)

where Gjm are as in Eq. (2.32) and

Fjm =
1

2πi
Res

(
1

κ+
, σ̃−m

)∫
Γ−

e−iακ+(α)

(α− σ̃+
j )(α− σ̃−m)

dα, (2.32)

where the contour of integration Γ− behaves at its tails like

argα ∼

−ε̃, Reα→ +∞,
π + ε̃, Reα→ −∞.

for some 0 < ε̃ � 1. A sketch of Γ− is shown in Fig. 2.8. In this system Bj, Cj are

unknown coefficients which determine the solution to the scattering problem, while Aj are

known and using the results from §2.4.2 we can express these as

Aj =
−V
2π

κ−(σ̃−η )

∫
Γ−

e−iακ+(α)

(α− σ̃+
j )(α− σ̃−η )

dα,
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where, as we outlined in §2.3.2, the incidence parameter η, takes values −r ≤ η ≤ q, with

η = 0 corresponding to the case of an incident gust, and η = 1 corresponding to the case

of an incident sound wave.

2.5.1 Stable formulation under Im Ω̃→ 0−

We now wish to reduce the fictitious damping Im Ω̃ to zero. Note in the above analysis we

chose the contours of integration in the system Eqs. (2.30)-(2.31), i.e. the oriented curves

Γ− and Imα = ε, such that all poles and zeros in R+ are above the curves and all poles

and zeros in R− are below the curves. Therefore if we were to fix our current contours

of integration and then considered the limit Im Ω̃ → 0−, the poles of the cut-on modes

would then have to cross the contours of integration in order to move onto the real-axis.

In addition, if we allowed the contours of integration to change according to the above

restrictions when Im Ω̃→ 0−, then the contours would coalesce on the real axis (at least

in a neighbourhood of the origin) and the poles corresponding to cut-on modes would

end up on the contours. This means that our current contours (although appropriate

for the analytical treatment) are not suitable for numerical evaluation in the physical

case of zero damping (i.e. when Im Ω̃ = 0). In order to overcome this problem we change

contours of integration to a set of contours that allows us to evaluate the linear system

numerically even when all the cut-on modes are located on the real axis. Thus we consider

the following change of contours: Choose |Im Ω̃| = δ sufficiently small such that there is a

constant ε1 > 0 such that for all 0 ≤ Im Ω̃ ≤ δ, we have Im Ω̃ M
Mx

> −ε1,

|Imσ±m| < ε1, if − r ≤ m ≤ q + 1, and |Imσ±m| > ε1, if m > q + 1,m < −r,

i.e. such that all cut-on modes are inside a strip of width 2ε1 around the real axis, and

all cut-off modes are outside. Then we can change the contours as follows, in each case

picking up a pole contribution if the corresponding mode is cut-on:

Fjm =
1

2πi
Res

(
1

κ+
, σ̃−m

)∫ ∞+iε1

−∞+iε1

e−iακ+(α)

(α− σ̃+
j )(α− σ̃−m)

dα

+ Res

(
1

κ+
, σ̃−m

)e−iσ̃+
j κ+(σ̃+

j ) 1
σ̃+
j −σ̃

−
m
, if σ̃+

j is cut-on,

0, otherwise,

Gjm =
−1

2πi
Res

(
1

κ−
, σ̃+

m

)∫ ∞−iε1

−∞−iε1

eiακ−(α)

(α− σ̃−j )(α− σ̃+
m)

dα

+ Res

(
1

κ−
, σ̃+

m

)eiσ̃−j κ−(σ̃−j ) 1
σ̃−j −σ̃

+
m
, if σ̃−j is cut-on,

0, otherwise,
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Aj = − V
2π
κ−(σ̃−η )

∫ ∞+iε1

−∞+iε1

e−iακ+(α)

(α− σ̃+
j )(α− σ̃−η )

dα

− iV

e−iσ̃+
j κ+(σ̃+

j )κ−(σ̃−η ) 1
σ̃+
j −σ̃

−
η
, if σ̃+

j is cut-on,

0, otherwise.

In these new expressions we are able to take the limit Im Ω̃→ 0− while keeping the contour

of integration fixed, thus allowing us to solve the resulting system without the fictitious

damping (by setting Im Ω̃ = 0).

2.5.2 Approximate solution of the linear system

The system Eqs. (2.30) & (2.31) is equivalent to:

(I− GF)B = GA, (2.33)

C = FB, (2.34)

where I is the identity operator. For our numerical results in §2.8 we solve Eq. (2.33)

approximately using the finite section method (truncation), together with a numerical

approximation to the integral coefficients F,G. The precise version of the finite section

method employed in our numerical examples as well as a convergence analysis is described

in Appendix 2.D.

In light of Chapters 5 & 6 we mention that the cost of solution of the scattering

problem using this present Wiener–Hopf-based approach is frequency-independent and

indeed increases with frequency for the following reasons. Firstly, an increase in frequency

leads to a larger number of cut-on radiation and duct modes (cf. the explicit expressions

given in §2.3.1) which means that the onset of asymptotic decay of the entries of matrices

and vectors in Eqs. (2.30) & (2.31) will occur at larger indices. This means more equations

must be retained to provide an accurate approximation using the finite section method.

Secondly, the larger number of cut-on poles and zeros will lead to a larger number of

alternating zeros and poles of κ on the real axis, which effectively results in oscillations of

κ± along the contours of integration for the integral expressions for F,G, A given in §2.5.1.

Therefore the numerical implementation has to compute rapidly varying integrals which,

as explained in §1.2.3, is computationally expensive unless tailored quadrature methods

can be developed. On the upside however, we highlight the work by Peake (1992) who

provided an asymptotic kernel factorisation of κ that is valid in the regime Ω̃� 1, and

indicates the possibility of reducing the cost of the Wiener–Hopf solution using asymptotic

insights.
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2.6 Equivalence to previous solutions for overlapping

cascades when d < 1

Before moving on to consider different observables of the scattering problem which can

be evaluated numerically using our solution, we briefly demonstrate that in the case of

overlapping blades (d < 1) our solution based on pole removal at the radiation modes σ̃±m

is equivalent to the method based on pole removal at duct modes k±n which was described

by Peake (1993) and Glegg (1999).

2.6.1 Review of previous work in the case of overlap

In order to demonstrate this relationship, we briefly summarize the main points of the

arguments given in these two papers adopted to the notation and context of this thesis. As

already mentioned in Eq. (2.25) when d < 1 one can show from physical considerations in

the region of overlap d < x < 1 (which is a duct, hence only duct modes k±n are present),

that there are complex constants Dn, En, Fn such that

[
P̃+

1

]
(α) =

∑
n∈N

Dne−ik−n

α− k−n
,
[
P−2
]

(α) =
∑
n∈N

En
α− k+

n

,
[
P̃+

3

]
(α) =

∑
n∈N

Fne−ik−n

α− k−n
. (2.35)

This observation, which is valid only in the case of overlap, provides the basis for an

alternative additive splitting to the one which we described in §2.4.4 and §2.4.5: For

instance one can split the term

1

κ−(α)

[
P̃+

1

]
(α) =

1

κ−(α)

∑
n∈N

Dne−ik−n

α− k−n

=
∑
n∈N

Dne−ik−n

α− k−n
1

κ−(k−n )
+
∑
n∈N

Dne−ik−n

α− k−n

(
1

κ−(α)
− 1

κ−(k−n )

)
.

This means, when d < 1, we can perform a pole removal based on duct modes k±n instead

of our pole removal based on radiation modes σ̃±m. This additive splitting can be used

to solve the Wiener–Hopf problems Eqs. (2.14) & (2.15), and in this setting reduce the

scattering problem to an infinite system of linear equations which takes the form (l ∈ N)

El = −
∑
n∈N

ei(k+
l −k

−
l )

k+
l − k−n

Res (κ−, k+
l )

κ−(k−n )
(Dn + Fn), (2.36)

Fl = −
∑
n∈N

Res (κ+, k−l )

κ+(k+
n )

1

k−l − k+
n

En. (2.37)
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Here the coefficients Dn are known in terms of V, σ̃η (as a direct consequence of the solution

to the uncoupled leading edge problem in Eq. (2.18)) and En, Fn are to be determined

from Eqs. (2.36)-(2.37).

2.6.2 Proof of equivalence when d < 1

Our aim is now to express Dn, En, Fn in terms of Am, Bm, Cm and to see if we can recover

Eqs. (2.30) & (2.31) from Eqs. (2.36) & (2.37). The two systems are equivalent in the

following sense:

Claim 2.6.1. Let 0 < d < 1, and be φ1, φ2, φ3 be a solution to the three coupled boundary

value problems as described in §2.3.2. Let all Fourier (half-)transforms be defined as before,

and let the constants Am, Bm, Cm,m ∈ Z, and Dl, El, Fl, l ∈ N, be defined as

Am =
[
P̃+

1

]
(σ̃+

m), Dl = eik−n Res
([
P̃+

1

]
(α), k−n

)
,

Bm =
[
P−2
]

(σ̃−m), El = Res
([
P−2
]

(α), k+
n

)
,

Cm =
[
P̃+

3

]
(σ̃+

m), Fl = eik−n Res
([
P̃+

3

]
(α), k−n

)
.

Then the following equivalence is true:{
Am, Bm, Cm satisfy (2.30)-(2.31)

}
⇐⇒

{
Dl, El, Fl satisfy (2.36)-(2.37)

}
.

Proof. We shall demonstrate here only that Dl, El, Fl satisfying Eq. (2.37) implies that

Am, Bm, Cm satisfy Eq. (2.31) and we note that all other implications follow similarly.

From Eq. (2.35) we find that

Am =
∑
n∈N

Dne−ik−n

σ̃+
m − k−n

, Bm =
∑
n∈N

En
σ̃−m − k+

n

, Cm =
∑
n∈N

Fne−ik−n

σ̃+
m − k−n

.

This implies, using (2.37), for all j ∈ Z:

Cj = −
∑
n∈N

e−ik−n

σ̃+
j − k−n

∑
l∈N

Res (κ+, k−n )

κ+(k+
l )

1

k−n − k+
l

El. (2.38)

At this point the following identity (valid when d < 1) proves useful:

Lemma 2.6.2.

− 1

κ+(k+
l )

1

k−n − k+
l

=
∑
m∈Z

1

k−n − σ̃−m
1

σ̃−m − k+
l

Res

(
1

κ+
, σ̃−m

)
. (2.39)
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Proof. Both of the above sides are found to be equal to the following integral

−
∫ ∞
−∞

1

(k−n − α)(α− k+
l )κ+(α)

dα,

by closing the contour in the correct complex half-plane and collecting the appropriate

residue contributions (notice that k−n is a zero of 1
κ+ hence does not contribute a residue

when the contour is closed in the lower half plane). The contours can be closed on either

side since we showed in §2.4.3 that 1
κ+ has at worst O

(
α−

1
2

)
growth away from its poles

in either half-plane. �

Using Eqs. (2.38) & (2.39) we have

Cj =
∑
n∈N

e−ik−n

σ̃+
j − k−n

∑
l∈N

∑
m∈Z

1

k−n − σ̃−m
1

σ̃−m − k+
l

Res

(
1

κ+
, σ̃−m

)
Res

(
κ+, k−n

)
El

=
∑
m∈Z

Res

(
1

κ+
, σ̃−m

)∑
n∈N

e−ik−n

σ̃+
j − k−n

1

k−n − σ̃−m
Res

(
κ+, k−n

)∑
l∈N

1

σ̃−m − k+
l

El

=
∑
m∈Z

FjmBm,

which is precisely Eq. (2.31). The final line follows by considering the form of Fjm, which

according to Eq. (2.32) is

Fjm =
1

2πi
Res

(
1

κ+
, σ̃−m

)∫
Γ−

e−iακ+(α)

(α− σ̃+
j )(α− σ̃−m)

dα.

We recall from the discussion in §2.4.3 that κ+ grows at worst like O
(
ed|Imα|) as α→∞

in R−. Therefore, when d < 1, we can close the contour of Fjm in R− to obtain only

contributions at the simple poles of κ+ which are given by

Fjm = −
∑
n∈N

1

k−n − σ̃+
j

e−ik−n Res (κ+, k−n )
1

k−n − σ̃−m
Res

(
1

κ+
, σ̃−m

)
. (2.40)

Thus we have indeed shown that Eq. (2.37) implies Eq. (2.31), and by using analogous

arguments we can prove that Eq. (2.36) implies Eq. (2.30). The implication in the other

direction follows analogously by considering the expressions Eqs. (2.57) & (2.58) which

allow us, when d < 1, to express El and Fl respectively in terms of Am, Bm, Cm using a

similar expression of the corresponding integrals in terms of pole contributions as above.

Remark 2.6.3. We have thus shown that, although our approach, using a pole removal

splitting based on radiation modes σ̃±m, works for general values of d > 0, it is equivalent to

previous work using pole removal at duct modes k±n , when d < 1. This is mainly because

in the overlapping case the coefficients in the linear system Eqs. (2.30) & (2.31) simplify
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as was shown in Eq. (2.40). This trick is not possible when d > 1, however the integral

expressions for Fjm,Gjm remain valid in the general case.

2.7 Total unsteady lift and far-field behaviour

We can now use our solution to find expressions for the total unsteady lift and the form of

the velocity potential in the far-field given an incident gust, η = 0, and an incident sound

wave, η = 1.

2.7.1 Total unsteady lift

The total unsteady lift on a single blade is (recalling the boundary condition (ii))

L =

∫ 1

0

[p] (x) dx =

∫ ∞
−∞

[p] (x) dx = [P ] (0).

Given our solution we can evaluate this quantity as follows: By the boundary condition

(ii) we have

[P ] (α) =
[
P+

1

]
(α) +

[
P+

2

]
(α) +

[
P+

3

]
(α), (2.41)

and we showed earlier that

[
P+

1

]
(α) = −iV κ−(σ̃−η )

κ+(α)

α− σ̃−η
, (2.42)

[
P+

3

]
(α) = κ+(α)

∑
m∈Z

Bm

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)
. (2.43)

Furthermore

[
P+

2

]
(α) = eiα

[
P̃+

2

]
(α) + eiα

[
P̃−2

]
(α)−

[
P−2
]

(α), (2.44)

and we can express these in terms of our known quantities Am, Bm, Cm as follows (for

Eq. (2.45), (2.49) & (2.50) we used Fourier inversion and then the appropriate forward

half-transform):

[
P−2
]

(α) =
∑
m∈Z

(Am + Cm)Res

(
1

κ−
, σ̃+

m

)(−1

2πi

)∫ ∞+iε

−∞+iε

eiα′κ−(α′)

(α′ − α)(α′ − σ̃+
m)

dα′, (2.45)

[
P̃−2

]
(α) = κ−(α)

∑
m∈Z

(Am + Cm)
1

α− σ̃+
m

Res

(
1

κ−
, σ̃+

m

)
, (2.46)
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(2.47)[
P̃+

2

]
(α) = −

[
P̃+

1

]
(α)−

[
P̃+

3

]
(α), (2.48)[

P̃+
1

]
(α) =

−iV

2iπ

∫ ∞−iε

−∞−iε

e−iα′κ+(α′)

(α′ − α)(α′ − σ̃−η )
κ−(σ̃−η ) dα′, (2.49)[

P̃+
3

]
(α) =

1

2iπ

∑
m∈Z

BmRes

(
1

κ+
, σ̃−m

)∫
Γ−

e−iα′κ+(α′)

(α′ − α)(α′ − σ̃−m)
dα′. (2.50)

Similarly to §2.5.1 we can express the contour integrals in a form that is stable under

Im Ω̃→ 0− and in summary the total unsteady lift has the following form which can be

evaluated numerically:

L = iV κ−(σ̃−η )
1

2πi

∫ ∞+iε1

−∞+iε1

e−iακ+(α)

α(α− σ̃−η )
dα

−
∑
m∈Z

ResBm

(
1

κ+
, σ̃−m

)
1

2iπ

∫ ∞+iε1

−∞+iε1

e−iακ+(α)

α(α− σ̃−m)
dα

+
∑
m∈Z

(Am + Cm)Res

(
1

κ−
, σ̃+

m

)
1

2πi

∫ ∞−iε1

−∞−iε1

eiακ−(α)

α(α− σ̃+
m)

dα.

Here ε1 > 0 is such that when Im Ω̃ = 0 all cut-off modes lie outside the strip |Imα| ≤ ε1.

2.7.2 Far-field behaviour

We aim to understand the behaviour of the scattered potential φ far downstream (x >

0, |x| � 1) and far upstream (x < 0, |x| � 1) of the blades. To do so we observe the

following identity, which follows after a few steps of algebra from Eq. (2.8) together with

the periodicity Eq. (2.9) and the expression for the pressure Eq. (2.10):

Φ(α, y) = [P ] (α)
cosh(γy)eiσ+idα − cosh(γ(y − s))

κ(α) sinh(γs)γ
.

Thus we can find the velocity potential φ by computing the inverse Fourier transform

φ(x, y) =
1

2π

∫ ∞
−∞

e−iαx [P ] (α)
cosh(γy)eiσ+idα − cosh(γ(y − s))

κ(α) sinh(γs)γ
dα. (2.51)

We can then express [P ] using Eqs. (2.41)-(2.50). The resulting integrand when multiplied

by e−iαx decays exponentially in the upper half complex plane if sx < yd, and decays

exponentially in the lower half complex plane if s(x− 1) > yd. In both cases we can then

close the contour of integration, and collect the appropriate pole contributions. This yields,

after a few steps of algebra and taking care when exchanging order of summation and

integration, the following exact expressions which are valid outside of the cascade structure

60



i.e. in the regions indicated. The far-field consists of only the contributions from the cut-on

modes, as the cut-off modes will decay exponentially as we move downstream/upstream of

the cascade respectively.

Far field downstream

For s(x− 1) > yd and 0 ≤ y ≤ s:

φ(x, y) =
∑
m∈Z

e−ixσ̃−mfm(y)Res

(
1

κ
, σ̃−m

)
1

γ(σ̃−m)
(−i) [P ] (σ̃−m), (2.52)

where

(−i) [P ] (σ̃−m) =

[
iBm − i

∑
l∈Z

(Al + Cl)e
iσ̃−mRes

(
1

κ−
, σ̃+

l

)
κ−(σ̃−m)

σ̃−m − σ̃+
l

−iV κ−(σ̃−η )eiσ̃−m 1

2π

∫ ∞+iε1

−∞+iε1

e−iα

α− σ̃−η
κ+(α)

α− σ̃−m
dα

+
∑
l∈Z

Res

(
1

κ+
, σ̃−l

)
Ble

iσ̃−m 1

2π

∫ ∞+iε1

−∞+iε1

e−iα

α− σ̃−l
κ+(α)

α− σ̃−m
dα

]
.

In the above expression we have introduced

fm(y) =
cosh(γ(σ̃−m)y)eiσ+idσ̃−m − cosh(γ(σ̃−m)(y − s))

sinh(γ(σ̃−m)s)
,

which can be further simplified for the acoustic modes (i.e. when m 6= 0):

fm(y) =

eγ(σ−m−1)y, if m ≥ 1,

eγ(σ−m)y, if m < 0.

We observe that the far field downstream of the blades consists only of radiating modes

that travel downstream, and a hydrodynamic mode Ω̃ M
Mx

which supports the wake.

Far field upstream

For sx < yd and 0 ≤ y ≤ s:

φ(x, y) =
∑
m∈Z

e−iσ̃+
mxRes

(
1

κ
, σ̃+

m

)
e−γ(σ̃+

m)y

γ(σ̃+
m)

i [P ] (σ̃+
m), (2.53)
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where

i [P ] (σ̃+
m) = V κ−(σ̃−η )

κ+(σ̃+
m)

σ̃+
m − σ̃−η

+ iκ+(σ̃+
m)
∑
l∈Z

Bl

σ̃+
m − σ̃−l

Res

(
1

κ+
, σ̃−l

)
+
∑
l∈Z

Al + Cl
2π

Res

(
1

κ−
, σ̃+

l

)∫ ∞−iε1

−∞−iε1

eiα

α− σ̃+
l

κ−(α)

α− σ̃+
m

dα− ieiσ̃+
m(Am + Cm).

Similarly to the far field downstream, the scattered potential upstream consist only of

radiating modes which travel upstream. Moreover, there is no contribution from the

hydrodynamic mode, since there is no wake upstream of the blades.

2.8 Numerical examples and results

The expressions for total unsteady lift and far-field amplitudes which we derived in §2.7

allow us to provide numerical results on the effects of cascade geometry and incident-

wave properties on the scattered potential. The effects of incidence angle, spanwise wave

numbers and mean flow are studied in detail in Kaji and Okazaki (1970), Koch (1971),

and Glegg (1999), and we therefore do not aim to provide a comprehensive parametric

study of these effects, but rather we show typical results that can be achieved using

our method, with particular focus on the effect of blade spacing and of non-overlapping

cascade geometries. Furthermore, we note that the effect of the cross-flow W was absorbed

in our definition of Ω̃, so that a larger cross-flow simply results in a smaller value of

the effective reduced frequency, and therefore we need not study the effect of cross-flow

separately. We also provide examples that allow comparison to previous results in order

to validate the accuracy of our method. Finally, we note that m, the number of equations

retained when solving Eq. (2.33) using the finite section method (see §2.5.2), was chosen

to ensure the results shown are close to the limit value as m→∞ (i.e. the algorithm has

converged). The typical number chosen was m ≈ 70, but for large mean flow significantly

fewer equations were required whilst for small mean flow a larger number was retained

(m ≈ 250 when M =
√
M2

x +M2
z ≈ 0.2).

2.8.1 Total unsteady lift

For the total unsteady lift we begin by comparing our solution to results provided by Peake

(1993) for overlapping blades in a two-dimensional setting. For this we consider the same

parameter settings as in Peake (1993, p. 269): Mz = 0, K3 = 0, η = 0 (i.e. an incident gust

of reduced frequency Ω), Ω̃ = Ω = 1.0, σ = 2π/3, s = d = 1/
√

2,M = Mx ∈ [0.2, 0.9].

The results can be seen in Figs. 2.3a and 2.3c and our solution appears to be in

very good agreement with the reference result. The rapid variation observed in Fig. 2.3c
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corresponds to the first downstream radiating mode σ−0 becoming cut-on.

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0

Re(L)

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Im

(L
)

M= 0. 2

M= 0. 7

M= 0. 72

M= 0. 9

Present work
Peake 93

(a) s = d = 1√
2
.

5 4 3 2 1 0 1 2

Re(L)

3

2

1

0

1

2

3

Im
(L

)

M= 0. 2

M= 0. 553612
M= 0. 553610

M= 0. 9

Present work

(b) s = d =
√

2.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mx

1.0

1.5

2.0

2.5

3.0

3.5

4.0

|L
|

Present work
Peake 93

(c) s = d = 1√
2
.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mx

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

|L
|

Present work

(d) s = d =
√

2.

Figure 2.3: Total lift L for M ∈ [0.2, 0.9].

However, some discrepancy between our present work and the reference solution (Peake,

1993) can be observed in Fig. 2.3a for small and large values of M . This is due to the

algebraic decay in the coefficients of our linear system Eqs. (2.33)-(2.34), which is found

to be slower (not in the algebraic order, but in the constant multiplying this decay rate)

for small and large values of M , which means in effect more terms must be retained in

the linear system. In this particular numerical example the number of equations retained

(m ≈ 250) was at the limit of what could be achieved in reasonable computing time. We

expect that more efficient implementation and an appropriate preconditioning of the linear

system might lead to improved performance, however we also highlight that for potential

practical application a relative accuracy below 5% is often sufficient.

In Figs. 2.3b and 2.3d we plot the total unsteady lift in a case of non-overlapping

blades (inaccessible to Peake (1993) and other previous work), with s = d =
√

2, and the

remaining parameters as before. We observe overall a similar shape of the total lift. The

increased blade spacing however has the effect of the radiating modes cutting on at lower
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Mach numbers which results in a rapid variation at M ≈ 0.55 (corresponding to σ−0 cutting

on) and at M ≈ 0.85 (corresponding to σ−1 cutting on). Moreover, comparing Fig. 2.3c

and Fig. 2.3d we can see that the amplitude of the unsteady lift is (almost always) reduced

in the non-overlapping case, as would be expected for a more widely spaced cascade.
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Figure 2.4: Total lift |L| as a function of K3.

Next we study the effect of spanwise wavenumber on the total lift. We consider M =

Mx = 0.3, Ω̃ = Ω = 10.0, η = 0 (i.e. an incident gust), σ = 3π/4, s ∈ {0.6, 1.8, 3.6} , α =

5π/18 and vary K3 ∈ [0, 4.5]. The total unsteady lift is shown in Fig. 2.4, where in the

black curve we can see the result for a case of overlapping blades and the remaining

ones correspond to non-overlapping blades. In the case d = 0.5 the effect of K3 is most

apparent: From the formulae in §2.3.1 increasing K3 sufficiently far has the effect of

cutting off the acoustic modes. Indeed, we observe a rapid variation in the lift around

K3 ≈ 2.4 which is just after the radiating mode σ−0 has cut off. For increased blade spacing

we observe the interplay of this cut-off effect with increasing K3 to the effect of more

modes becoming cut-on as spacing increases. For d = 3.0, K3 = 0 all of σ±m,−2 ≤ m ≤ 2,

and k±n ,−3 ≤ n ≤ 3, are cut-on, however as we increase K3 they all cut off successively

resulting in the rapid variations observed in the corresponding green curve. As we reach

K3 = ΩMx

β
≈ 3.14 all of the acoustic modes have to become cut-off since by the dispersion

relation Eq. (2.6) there are no propagating acoustic modes for K3 >
ΩMx

β
. This is indeed

observed in Fig. 2.4.

Finally, we consider the effect of the cascade stagger angle α0 on the total lift. In

Fig. 2.5 we see the dependence of the total unsteady lift on α0, with
√
s2 + d2 = 1.5

fixed. The remaining parameters were chosen as M = Mx = 0.3,Mz = 0, η = 0, σ =

3π/4, Ω̃ = Ω = 1.0, K3 ∈ {0, 1.0, 2.0, 3.0}. We note that here we have d > 1 for α0 < 48.18◦.

64



Most importantly we observe the smooth transition of L from the non-overlapping to

the overlapping regime as α0 increases from 0. We also observe an apparently singular

behaviour as α0 → 0, which corresponds to the limit of no vertical separation between the

blades where our model is clearly invalid.
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Figure 2.5: Total lift |L| as a function of α0.

2.8.2 Far field behaviour

We now consider the far field sound for an incident acoustic wave as derived in §2.7.2.

We begin by reproducing results given by Koch (1971, p. 125), who considered the

transmission and reflection amplitudes relative to the incident amplitude as a func-

tion of angle of incidence. In order to match Koch’s settings we restrict ourselves

to the case Mz = 0, θ = π/2, which means we consider an incident acoustic wave

(η = 1) with K1 = Ω̃M cosϕ
1+Mx cosϕ

, K2 = Ω̃M sinϕ
1+Mx cosϕ

, K3 = 0. We further choose (s, d) ∈
{(sinα0, cosα0), (2 sinα0, 2 cosα0), (3 sinα0, 3 cosα0)} , M = Mx ∈ {0.3, 0.5, 0.7} , k0 =

0.25π, α0 = π/6 and Ω̃ = Ω = k0/M . In Fig. 2.6 we show the transmission and reflection

amplitudes relative to the incident amplitude I = γ(σ−1 )−1V .

These amplitudes Tm, Rm,m ∈ Z, are such that

φ(x, y) =

TΩ̃ M
Mx

e−ixΩ̃ M
Mx f0(y) +

∑
m∈Z Tme−ixσ−m+γ(σ−m)y x > d+ 1,∑

m∈ZRme−iσ+
mx−γ(σ+

m)y x < 0,

and they are explicitly given in Eq. (2.52) and (2.53). In order to match Koch’s setting we

plot the modal pressure corresponding to the first transmitted and reflected acoustic mode
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of the total field φ+φinc. In our case these are given by P t
0 = i(σ−0 − Ω̃M/Mx)(T0 +I), P i

0 =

i(σ−0 − Ω̃M/Mx)I, P
r
0 = i(σ+

0 − Ω̃M/Mx)R0.
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150 180 210 240 270 300 330 360

ϕ− α0

0.0

0.2

0.4

0.6

0.8

1.0

|P
r 0
|/|
P
i 0
|

M=0.3

M=0.5

M=0.7

(d) d = 2 cosα0 ≈ 1.73

150 180 210 240 270 300 330 360

ϕ− α0

0.0

0.2

0.4

0.6

0.8

1.0

|P
t 0
|/|
P
i 0
|

M=0.3

M=0.5

M=0.7

(e) d = 3 cosα0 ≈ 2.60
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Figure 2.6: Relative transmission and reflection amplitudes of the incident wave. The
points in Figs. 2.6a and 2.6b represent reference values taken from Koch (1971).

The results are shown in comparison to a number of point values taken from Koch
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(1971) in Figs. 2.6a and 2.6b. Our solution is found to be in good agreement with the

cited results. We are also able to show the corresponding results when the blade spacing

is increased. The overall trend to be observed is an increase in |P t
0/P

i
0| and a decrease

in |P r
0 |/|P i

0| as the blade spacing increases. The increased blade spacing also allows for

more interesting effects to occur: We observe rapid variations in Figs. 2.6e and 2.6f when

M = 0.7 around ϕ − α0 ≈ 190◦, 247◦ which correspond to radiating and duct modes

becoming cut-on. In this example we focused our attention to acoustic waves which are

incident from upstream, but we note that a similar plot is made available, and studied

further also for downstream incidence in §3.4.

The effect of increased transmission and reduced reflection is further observed in our

final result, which shows the relative transmission and reflection amplitudes for the modes

σ−0 , σ
−
1 , σ

+
0 as a function of blade spacing. This result is shown in Fig. 2.7, where we

consider a similar setting as in Fig. 2.6 with M = Mx = 0.7, ϕ = 7π/6, α0 = π/6 and vary

d ∈ [0.5, 6] with s/d fixed.
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Figure 2.7: Relative transmission and reflection amplitudes as a function of d.

The figure demonstrates two central effects of the increasing blade spacing on the far

field: Firstly, the increase in spacing results in an increasing trend of |T0 + I|/|I| to 1 and a

decreasing trend of all other amplitudes to 0. Secondly, as d increases, the radiating modes

and duct modes become cut-on successively, resulting in the rapid variations observed

in the graph. Both effects can be interpreted to mean that, as an acoustic obstacle, the

cascade becomes more permeable as the spacing increases.
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2.9 Conclusions

In this chapter we have developed the first Wiener–Hopf solution to the scattering problem

of a cascade of finite-length non-overlapping blades. The solution allowed us to express

the scattered field only relying on the solution of an infinite algebraic system with

decaying coefficients, which can be provably truncated to achieve convergent numerical

approximations. In contrast, all previous work resulted in systems that are well-behaved

when d ≤ 1, but whose coefficients are exponentially increasing when d > 1, thus cannot

yield a valid approximation in that case. Our solution applies in a general regime including

effects of spanwise wavenumber and cross-flow, as well as incident acoustic and vortical

waves, and we provided explicit expressions for the total unsteady lift on each blade as

well as the far-field sound upstream and downstream of the cascade. We found that our

solution applies to both the overlapping, d < 1, and the non-overlapping regime, d ≥ 1,

which showed that a number of features such as the form of the far-field is shared between

the regimes, and that quantities such as the total lift transition smoothly as d increases

across d = 1. We have also provided extensive numerical results demonstrating both the

accuracy of our solution in comparison to previous work, and the type of predictions that

we are able to achieve for the first time in the non-overlapping regime. This includes the

study of transmission amplitudes as the gap spacing increases as well as the effect of the

stagger angle α on the lift for large solidity. Our results confirm the physical expectation

that the cascade becomes more permeable with increased blade spacing.

We will use the present Wiener–Hopf solution in Chapter 3 to study the energy balance

of acoustic wave scattering on this cascade of blades.
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List of symbols

Symbol Description

Mx Chordwise Mach number.

Mz Spanwise Mach number.

M Total Mach number.

P t
j , P

r
j Transmitted and reflected modal pressures (for incident sound field).

R± Overlapping complex half planes.

Tm, Rm Modal amplitudes of the transmitted and reflected field respectively.

α0 Cascade stagger angle.

β Prandtl–Glauert number of chordwise flow.

V Amplitude of normal velocity of incident wave on the blade.

η Mode number of incident wave (η = 1 is acoustic, η = 0 is vortical wave).

κ Scalar Wiener–Hopf kernel.

K Non-dimensional wave vector of the incident field.

u Unsteady velocity field.

L Total unsteady lift on a single blade.

D/Dt Material derivative.

F,G Infinite matrix operators in the discrete solution of the Wiener–Hopf system.

φ Spatial component of unsteady velocity potential.

σn Streamwise wavenumber of radiation modes.

σ Interblade phase angle.

θ Polar incident angle for acoustic waves.

φ̃ Time-dependent unsteady velocity potential.

σ̃±n Zeros of the Wiener–Hopf kernel κ.

ϕ Azimuthal incident angle for acoustic waves.

Ω̃ Effective reduced frequency.

d Blade stagger.

k±n Streamwise wavenumber of duct modes.

p Unsteady time-harmonic pressure field.

s Interblade spacing.
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2.A The kernel κ and its factorisation

For completeness we provide a brief overview of the Wiener–Hopf factorisation of κ(α).

This and very similar kernels have already been factorised by Koch (1971), Peake (1992)

and Glegg (1999), and the reader is referred to these papers for a detailed treatment.

The kernel κ is meromorphic with simple poles at k±n and zeros at Ω̃ M
Mx
, σ±m which cluster

linearly along the following rays as |m|, n→∞:

σ±m ∼ 2π
−d± isβ

s2β2 + d2
m+

∓isdMMxΩ̃/β ± isβσ −MMxΩ̃s
2 − dσ

s2β2 + d2
as m→ +∞, (2.54)

σ±−m ∼ 2π
d± isβ

s2β2 + d2
m+

±isdMMxΩ̃/β ∓ isσβ −MMxΩ̃s
2 − dσ

s2β2 + d2
as m→ +∞, (2.55)

k±n ∼
±iπ

sβ
n− MMxΩ̃

β2
as n→∞.

Thus by the Weierstrass factorisation theorem (see Thm. 5.14 in Conway (1978, p. 170)

or the special case given in Noble (1958, p. 40)) we can express κ in the form

κ(α) = eg(α)(1− αMx/(Ω̃M))

∏
m∈Z (1− α/σ−m) eα/σ

−
m
∏

m∈Z (1− α/σ+
m) eα/σ

+
m∏∞

n=0 (1− α/k−n ) eα/k
−
n
∏∞

n=0 (1− α/k+
n ) eα/k

+
n

where g(α) is some entire function. This suggests a construction of κ+ as follows

κ+(α) = eχ1(α)(1− αMx/(Ω̃M))

(
1− α/σ−0

)(
1− α/k−0

) ∞∏
n=1

(1− α/σ−n )
(
1− α/σ−−n

)
(1− α/k−n )

.

Let us denote a1 = 2π −d−isβ
s2β2+d2 , a2 = 2π d−isβ

s2β2+d2 , a3 = − iπ
sβ

, then the infinite products in

above expression are well-defined because, for any fixed α ∈ R+, as n → ∞ the factors

have the asymptotic behaviour

(1− α/σ−n )
(
1− α/σ−−n

)
(1− α/k−n )

∼

(
1− α

a1n
+O(n−2)

)(
1− α

a2n
+O(n−2)

)
(

1− α
a3n

+O(n−2)
)

∼ 1− α

n

(
1

a1

+
1

a2

− 1

a3

)
︸ ︷︷ ︸

=0

+O(n−2) ∼ 1 +O(n−2).

To analyse the behaviour of κ+ and find a suitable choice of χ1, we can use the following

result from Noble (1958, p. 128):
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Lemma 2.A.1 (Consequence of Stirling’s formula). Let

F (α) =
∞∏
n=1

(1 + α/αn)e−α/βn ,

and suppose that αn = an+ b+O(n−1) and βn = an+ c+O(n−1) as n→∞. Then we

have for any ε > 0: As α→∞ in Imα > −Im (α1) + ε, where α1 is the root of F (α) with

smallest imaginary part, that

F (α) ∼ C1 exp

(
α

a
(1− γ)−

(
α

a
+
b

a
+

1

2

)
ln

(
α

a
+
b

a
+ 1

)
+ α

∞∑
n=1

(
1

an
− 1

βn

))
,

where γ is the Euler-Mascheroni constant.

Applying this lemma to our expression for κ+ shows, after a few steps of algebra, that:

κ+(α) ∼ α
1
2 exp

[
χ1(α) + α

(
1

a1

ln

(
a3

a1

)
+

1

a2

ln

(
a3

a2

))]
as α→∞ in R+.

Thus by choosing

χ1(α) = −α
(

1

a1

ln

(
a3

a1

)
+

1

a2

ln

(
a3

a2

))
,

we can ensure that κ+(α) ∼ α
1
2 as α→∞ in R−. Using lemma 2.A.1 one finds g(α) to be

a constant and so the equivalent expression for κ− can easily be found from κ/κ−, which

behaves as κ−(α) ∼ α−
1
2 as α→∞ in R−.

Finally, we note that in this construction κ± are only defined up to a multiplicative

constant, and thus in our numerical implementation we fix the factors by requiring that

κ+(0) = κ(0).

2.B Wiener–Hopf splitting for the trailing edge

correction

We have outlined in §2.4.4 how to additively split the term

g(α) =
1

κ−(α)

([
P̃+

1

]
(α) +

[
P̃+

3

]
(α)
)
,

and in this appendix we provide the detailed derivation of this splitting. Although we

could remove the poles directly by defining the splitting in terms of Eq. (2.24), in §2.4.4

we exploit the equivalence of this pole removal to the Cauchy splitting Eq. (2.23) to show

appropriate decay and analyticity of g± for the application of Liouville’s theorem. In this
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appendix we prove the relevant properties of the Cauchy form of this splitting (including

that the Cauchy splitting for g is well-defined).

Firstly, we recall from §2.4.2 that

[
P+

1

]
(α) ∝ κ+(α)

α− σ̃−η
, η = 0, 1,

where we have introduced the notation A(α) ∝ B(α) to mean that A(α) = CB(α) for

some constant C ∈ C. Thus taking inverse and half-line transform we find:[
P̃+

1

]
(α) ∝ e−iα

∫ ∞
1

∫ ∞
−∞

e−ix(α′−α) 1

α′ − α′
κ+(α′)

α− σ̃−η
dα′ dx

∝ e−iα

∫ ∞
1

∫
Γ−

e−ix(α′−α) 1

α′ − α
κ+(α′)

α′ − σ̃−η
dα′ dx

∝
∫

Γ−

e−iα′ 1

α′ − α
κ+(α′)

α′ − σ̃−η
dα′, (2.56)

where in the second line we use the properties of κ+ established in §2.4.3 to change the

contour of integration to Γ− which at its tails behaves like

argα ∼

−ε̃, Reα→ +∞,
π + ε̃, Reα→ −∞,

for some 0 < ε̃� 1. It is possible to change to this contour since we observed in §2.4.3

that κ+ is analytic and of algebraic behaviour in the domain

D = R+ ∪
{
α
∣∣∣ argα ∈

(
− arctan

(
sβ

d

)
, arctan

(
sβ

d

))
∪
(
π − arctan

(
sβ

d

)
, π + arctan

(
sβ

d

))}
,

which in particular contains Γ− (see Fig. 2.8). Along this contour the integrand is absolutely

integrable in the product space and so Fubini’s theorem applies, and we can exchange

order of integration as we did in the third line, Eq. (2.56).

We note now that the final integral in Eq. (2.56) has integrand with exponential decay

along Γ− and thus there is a constant C such that for all α ∈ R+:∣∣∣[P̃+
1

]
(α)
∣∣∣ ≤ C|α|−1

∫
Γ−

∣∣∣∣e−iα′ κ
+(α′)

α′ − Ω

∣∣∣∣ dα′, i.e.
[
P̃+

1

]
(α) = O

(
α−1
)
.
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Re (α)

Im (α)

Γ−

D

C \ D

Figure 2.8: The domain D of algebraic behaviour of |κ+| in the complex α-plane.

As mentioned in §2.4.4, imposing the unsteady Kutta condition at the trailing edge

implies that the pressure field must be non-singular at x = 1 (see for instance Peake, 1992,

p. 274), which means that the above behaviour of
[
P̃+

1

]
(α) is indeed expected. Imposing

the unsteady Kutta condition (condition (vi) in §2.2.1) at the trailing edge to [p2] and

noting that [p3] (x) = − [p1] (x)− [p2] (x), for x > 1, we conclude that the pressure jump

[p3] (x) must be non-singular at x = 1, and it can thus be shown by integration-by-parts

that
[
P̃+

3

]
(α) = O(α−1) as α→∞, α ∈ R+. As noted in §2.4.4 this implies that there is

a strip S containing the real axis and a constant C such that

|g(α)| ≤ C (1 + |Reα|)− 1
2 , for all α ∈ S,

which allows us to apply Thm. B from Noble (1958, p. 13). This yields the additive

splitting g = g− + g+ where:

g+(α) =
1

2πi

∫ ∞−ic

−∞−ic

g(ζ)

ζ − α dζ and g−(α) =
1

2πi

∫ ∞+ic

−∞+ic

g(ζ)

ζ − α dζ.

These functions are analytic in R+ and R− respectively (after shrinking the domains R±

if necessary), and they are bounded in their respective half-planes, since: For all α, with

Imα > −δ,∣∣∣∣∫ ∞−ic

−∞−ic

g(ζ)

ζ − α dζ

∣∣∣∣ ≤ C

∫ ∞
−∞

(1 + |t|)− 1
2

|t− ic− α| dt ≤
√

2C

∫ ∞
−∞

(1 + |t|)− 1
2

|t− Reα|+ |c− δ| dt,

and so the boundedness of g+ in R+ is a consequence of the following lemma:

Lemma 2.B.1. Let ε > 0, then the function I : R→ R, defined by

I(y) :=

∫ ∞
−∞

(1 + |t|)− 1
2

|t− y|+ ε
dt,

73



is bounded.

Proof. For y 6= 0:

I ′(y) =

∫ ∞
−∞

−sgn (t− y)(1 + |t|)− 1
2

(|t− y|+ ε)2
dt

=

∫ y

−∞

(1 + |t|)− 1
2

(|t− y|+ ε)2
dt−

∫ ∞
y

(1 + |t|)− 1
2

(|t− y|+ ε)2
dt

=

∫ 0

−∞

(1 + |t− y|)− 1
2

(|t|+ ε)2
dt−

∫ ∞
0

(1 + |t− y|)− 1
2

(|t|+ ε)2
dt

≤ 0, if y > 0,

≥ 0, if y < 0.

The boundedness of g− in R− follows analogously. This allows us to solve the trailing-

edge correction problem as shown in Eq. (2.27).

2.C Reduction to an infinite algebraic system

In §2.5 we outlined how the scattering problem can be reduced to the solution of an

infinite algebraic system, by repeated application of Fourier inversion and change of order

of integration. Here we justify these steps rigorously: To derive Eq. (2.30) note that

[
P−2
]

(α′) =
1

2π

∫ 0

−∞

∫ ∞
−∞

eix(α′−α)eiα
[
P̃−2

]
(α) dα dx

=
1

2π

∫ 0

−∞

∫ ∞+iε

−∞+iε

eix(α′−α)eiα
[
P̃−2

]
(α) dα dx

=
−1

2πi

∫ ∞+iε

−∞+iε

eiακ−(α)

α− α′
∑
m∈Z

1

α− σ̃+
m

Res

(
1

κ−
, σ̃+

m

)([
P̃+

1

]
(σ̃+

m) +
[
P̃+

3

]
(σ̃+

m)
)

dα,

where in the second line we changed the contour for some small ε > 0 (small enough for

the contour to remain within R+ ∩ R−) using Cauchy’s theorem and the analyticity of

the integrand, and in the third line we used absolute integrability in the product space

(along the given contours) to exchange the order of integration by Fubini’s theorem, and

we substituted
[
P̃−2

]
(α) using Eq. (2.27). Using the linear asymptotic growth of σ̃+

m (cf.

Eq. (2.54),(2.55)), and the form of residues from Eq. (2.19), we observe that

∑
m∈Z

∣∣∣∣ 1

α− σ̃+
m

Res

(
1

κ−
, σ̃+

m

)([
P̃+

1

]
(σ̃+

m) +
[
P̃+

3

]
(σ̃+

m)
)∣∣∣∣
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is uniformly bounded for Im (α) = ε. Thus we have sufficient decay, of order O
(
α−

3
2

)
, for

∣∣∣∣ 1

α− β eiακ−(α)

∣∣∣∣∑
m∈Z

∣∣∣∣ 1

α− σ̃+
m

Res

(
1

κ−
, σ̃+

m

)([
P̃+

1

]
(σ̃+

m) +
[
P̃+

3

]
(σ̃+

m)
)∣∣∣∣

to be integrable along the given contour. Therefore the dominated convergence theorem

applies and we can exchange order of summation and integration to find[
P−2
]

(α′) =
∑
m∈Z

[([
P̃+

1

]
(σ̃+

m) +
[
P̃+

3

]
(σ̃+

m)
)

(−1)

2πi

∫ ∞+iε

−∞+iε

1

α− α′ e
iακ−(α)

1

α− σ̃+
m

Res

(
1

κ−
, σ̃+

m

)
dα

]
.

(2.57)

Thus noting that Bj =
[
P−2
]

(σ̃−m) this yields precisely Eq. (2.30). Similarly by considering

Eq. (2.28) we find[
P̃+

3

]
(α′) =

1

2π
e−iα′

∫ ∞
1

∫ ∞
−∞

eix(α′−α)
[
P+

3

]
(α) dα dx

=
1

2π
e−iα′

∫ ∞
1

∫ ∞−iε

−∞−iε

eix(α′−α)
[
P+

3

]
(α) dα dx

= − 1

2πi

∫ ∞−iε

−∞−iε

1

α′ − αe−iα
[
P+

3

]
(α) dα

= − 1

2πi

∫ ∞−iε

−∞−iε

e−iακ+(α)

α′ − α
∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)[
P−2
]

(σ̃−m) dα. (2.58)

Here we cannot interchange the integration and summation straight away since |κ+| grows

like |α| 12 along this contour. We note, however, that the sum is again uniformly bounded

along the given contour and remains so if we change to a contour Γ−, which at its tails

behaves like

argα ∼

−ε̃, Reα→ +∞,
π + ε̃, Reα→ −∞,

for some 0 < ε̃� 1. This change of contour is analogous to the one applied in Appendix 2.B.

Along Γ− we observe exponential decay of the integrand, so absolute convergence on the

product space for sum and integrand, so we can exchange the order of summation and

integration to find Eq. (2.31).
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2.D The finite section method and convergence

Here we provide a more detailed description of the finite section method which we apply

to approximately solve Eq. (2.33). We also include a proof of convergence for this method

when it is applied to our linear system.

Working on l2(Z) we shall denote by Pm ∈ B(l2(Z)) the projection onto the coordinates

−m,−m+ 1, . . . ,m− 1,m and we implicitly identify Pm(l2(Z)) ∼= C2m+1. We employ the

following version of the finite section method which is described and analysed for instance

by Ben-Artzi et al. (2020): Our approximation of the solution to the system Lx = b is

Γm(L, b) defined by

Γm(L, b) = (PmLPm)−1Pmb,

which corresponds to truncating the linear system to 2m + 1 entries and solving the

resulting system on C2m+1. The following lemma provides a guarantee for convergence:

Lemma 2.D.1 (Convergence of the finite section method). If L is invertible as bounded

linear operator on l2(Z) and it has bounded dispersion, i.e.

lim
m→∞

‖(I− Pm)LPm‖ = 0, (2.59)

then limm→∞ Γm(L, b) = x.

Proof. The proof is based on the arguments provided in Ben-Artzi et al. (2020, pp. 70–71).

Let x ∈ l2(Z) be the true solution to Lx = b, then we have the following error estimate:

‖x− Γm(L, b)‖ ≤ ‖L−1‖‖b− LΓm(L, b)‖
≤ ‖L−1‖ (‖b− PmLPmΓm(L, b)‖+ ‖(I− Pm)LPmΓm(L, b)‖)
≤ ‖L−1‖ (‖b− Pmb‖+ ‖(I− Pm)LPm‖‖x‖)

+ ‖L−1‖‖(I− Pm)LPm‖‖x− Γm(L, b)‖.

Therefore,

(
1− ‖L−1‖‖(I− Pm)LPm‖

)
‖x− Γm(L, b)‖ ≤ ‖L−1‖ (‖b− Pmb‖+ ‖(I− Pm)LPm‖‖x‖) .

(2.60)

Now, since L is invertible, we have ‖L−1‖ < ∞. Moreover b ∈ l2(Z), thus limm→∞ ‖b −
Pmb‖ = 0. Therefore the result follows by combining Eq. (2.60) and Eq. (2.59).

Below we will show that I−GF is Fredholm of index zero with bounded dispersion in the

sense of Eq. (2.59). Thus, whenever I−GF is invertible (i.e. away from cascade resonances),
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Γm (I− GF, A) converges to the true solution B as m→∞ and in the case when (I− GF)

is not invertible the space of eigensolutions (i.e. resonant modes) is finite dimensional.

Acoustic resonances in similar cascade geometries have been observed experimentally

by Parker (1966) and were analysed by Koch (2009), and we refer the reader to these

references for a more detailed treatment. Here we shall mostly be interested to guarantee

convergence in the case when I− GF is indeed invertible. Given the decay in the entries

of F as shown in Eq. (2.61) we also have PmFPmB → C as m → ∞. Thus all of these

facts combined mean that the finite section method can be applied to our algebraic system

Eq. (2.33)-(2.34) and provides a valid way to approximately solve the scattering problem.

In the following we shall use the convenient notation A(x) . B(x), for functions

A(x), B(x), when there exists a constant K > 0 independent of x such that A(x) ≤ KB(x).

To begin with let us look more closely at the coefficients in the linear system: Considering

Eq. (2.32) we firstly note that the e−iα term in the integrand decays exponentially along

the given contour, thus we can estimate:

|Fjm| .
∣∣∣∣∣ 1

α− σ̃+
j

1

α− σ̃−m

∣∣∣∣∣
∣∣∣∣Res

(
1

κ+
, σ̃−m

)∣∣∣∣ ∫
Γ−

∣∣e−iακ+(α)
∣∣ dα

. j−1m−
3
2

∫
Γ−

∣∣e−iακ+(α)
∣∣ dα . (1 + |j|)−1(1 + |m|)− 3

2 , (2.61)

for some constant that does not depend on j,m. In the above derivation we also used the

growth of the residues of 1
κ+ as we established in §2.4.3. We can change the contour of

integration for Gjm to one that is of V shape with tails of the form

argα ∼

ε̃, Reα→ +∞,
π − ε̃, Reα→ −∞,

for some 0 < ε̃� 1. This way we ensure the same exponential decay of the integrand and

we can similarly deduce

|Gjm| . (1 + |j|)−1(1 + |m|)− 1
2 .

This allows us to show:

Claim 2.D.2. GF is a compact operator on l2(Z).

Proof. It is sufficient to prove that GF has finite Hilbert–Schmidt norm (Conway, 2010, p.
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267):

‖GF‖2
HS =

∑
j∈Z

∑
l∈Z

∣∣∣∣∣∑
m∈Z

GlmFmj

∣∣∣∣∣
2

.
∑
j∈Z

∑
l∈Z

(∑
m∈Z

(1 + |l|)−1(1 + |m|)− 1
2 (1 + |m|)−1(1 + |j|)− 3

2

)2

.

(∑
j∈Z

(1 + |j|)−3

)(∑
l∈Z

(1 + |l|)−2

)(∑
m∈Z

(1 + |m|)− 3
2

)2

<∞.

Thus I−GF is a compact perturbation of the identity, and as such is Fredholm of index

zero.

Finally, the operator has bounded dispersion since we have for any x ∈ l2(Z):

‖(I− Pm)(I− GF)Pmx‖2
2 = ‖(I− Pm)GFPmx‖2

2 ≤
∑
|k|>m

∑
|j|≤m

∣∣∣∣∣∑
m∈Z

GkmFmjxj

∣∣∣∣∣
2

≤ ‖x‖2
∑
|k|>m

∑
|j|≤m

∣∣∣∣∣∑
m∈Z

GkmFmj

∣∣∣∣∣
2


. ‖x‖2

∑
|k|>m

(1 + |k|)−2

∑
|j|≤m

(1 + |j|)−3

(∑
m∈Z

(1 + |m|)− 3
2

)2

. ‖x‖2
∑

|k|>m+1

(1 + |k|)−2

︸ ︷︷ ︸
→0 as m→∞

.

Thus I − GF indeed satisfies Eq. (2.59), and hence the finite section method converges

away from cascade resonances.

2.E Expressions for the solution with acoustic down-

stream incidence

For completeness we provide a brief account of the Wiener–Hopf analysis as well as

expressions for the field away from the cascade structure, when acoustic waves are incident

from downstream rather than upstream. The analysis proceeds analogously to the case of

upstream incidence as given above, and we omit the repetition of details in the interest of

brevity and instead provide just the main formulae of importance to this case.
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Boundary conditions and Wiener–Hopf system

We again split φ = φ1 + φ2 + φ3 where each of φ1, φ2, φ3 satisfies Eq. (2.2) on the

first cascade cell (i.e. on the space between the first and second blade of the cascade,

{−∞ < x < ∞, 0 ≤ y ≤ s}), the radiation condition (iii) and the continuity of the

blade-normal velocity everywhere (v). For downstream incidence we impose the following

pairs of semi-infinite boundary conditions (together with an appropriate distribution of

the edge conditions (vi)) on φj and the corresponding pressures pj, j = 1, 2, 3:

• Trailing-edge interaction with incident field:

∂φ1

∂y
(x, 0) = −V e−iσ̃+

η x on x < 1,

[p1] (x) = 0 on x > 1,

and φ1 satisfies the Kutta condition at the trailing edge x = 1.

• Leading-edge correction:

∂φ2

∂y
(x, 0) = 0 on x > 0,

[p1 + p2 + p3] (x) = 0 on x < 0,

and φ2 has the conventional inverse square-root singularity at the leading edge x = 0.

• Trailing-edge correction:

∂φ3

∂y
(x, 0) = 0 on x < 1,

[p2 + p3] (x) = 0 on x > 1,

and φ3 satisfies the Kutta condition at the trailing edge x = 1.

Taking the Fourier transform of these boundary conditions and imposing them on Eq. (2.11)

we find the following system of coupled Wiener–Hopf equations:[
P̃−1

]
(α)

κ(α)
=
∂Φ̃+

1

∂y
(α, 0) +

iV e−iσ̃+
η

α− σ̃+
η

, (2.62)

∂Φ−2
∂y

(α, 0) =
1

κ(α)

([
P+

2

]
(α)−

[
P−1
]

(α)−
[
P−3
]

(α)
)
, (2.63)

∂Φ̃+
3

∂y
(α, 0) =

1

κ(α)

([
P̃−3

]
(α)−

[
P̃+

2

]
(α)
)
, (2.64)

where the half-line Fourier transforms are as defined in §2.3.2.
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Solution to the Wiener–Hopf problems

We can solve this system analogously to the analysis in §2.4 and find the following solutions

to Eqs. (2.62)-(2.64):

[
P̃−1

]
(α) = iV κ+(σ̃+

η )
κ−(α)

α− σ̃+
η

e−iσ̃+
η , (2.65)

∂Φ̃+
1

∂y
(α, 0) =

−iV e−iσ̃+
η

α− σ̃+
η

(
1− κ+(σ̃+

η )

κ+(α)

)
, (2.66)

1

κ+(α)

[
P+

2

]
(α) =

∑
m∈Z

1

α− σ̃−m
Res

(
1

κ+
, σ̃−m

)([
P−1
]

(σ̃−m) +
[
P−3
]

(σ̃−m)
)
, (2.67)

1

κ̃−(α)

[
P̃−3

]
(α) =

∑
m∈Z

1

α− σ̃+
m

Res

(
1

κ−
, σ̃+

m

)[
P̃+

2

]
(σ̃+

m). (2.68)

Reduction to infinite algebraic system

Setting

Am :=
[
P−1
]

(σ̃−m), Bm :=
[
P̃+

2

]
(σ̃+

m), Cm =
[
P−3
]

(σ̃−m),

we can reduce the conditions Eqs. (2.65)-(2.68) to the infinite linear system (j ∈ Z):

Bj =
∑
m∈Z

Fjm(Am + Cm),

Cj =
∑
m∈Z

GjmBm,

where G,F are as in Eqs. (2.29) & (2.32) and the forcing is

Aj =
−V
2π

κ+(σ̃+
η )

∫ ∞−iε1

−∞−iε1

e−iσ̃+
η eiακ−(α)

(α− σ̃−j )(α− σ̃+
η )

dα

+ iV

eiσ̃−j e−iσ̃+
η κ−(σ̃−j )κ+(σ̃+

η ) 1
σ̃−j −σ̃

+
η
, if σ̃−j is cut-on,

0, otherwise.

Expression for the far field

Note as before the potential at any point is given by the Fourier inversion

φ(x, y) =
1

2π

∫ ∞
−∞

e−iαx [P ] (α)
cosh(γy)eiσ+idα − cosh(γ(y − s))

κ(α) sinh(γs)γ
dα.
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Far field downstream

For s(x− 1) > yd and 0 ≤ y ≤ s we can close the contour in the lower half plane to find

φ(x, y) =
∑
m∈Z

e−ixσ̃−mfm(y)Res

(
1

κ
, σ̃−m

)
1

γ(σ̃−m)
(−i) [P ] (σ̃−m), (2.69)

where, as in §2.7.2,

fm(y) =
cosh(γ(σ̃−m)y)eiσ+idσ̃−m − cosh(γ(σ̃−m)(y − s))

sinh(γ(σ̃−m)s)
,

which simplifies for acoustic modes to

fm(y) =

eγ(σ−m−1)y, if m ≥ 1,

eγ(σ−m)y, if m < 0.

And for downstream incident acoustic fields we have:

(−i) [P ] (σ̃−m) = V κ+(σ̃+
η )

κ−(σ̃−m)

σ̃−m − σ̃+
η

ei(σ̃−m−σ̃+
η ) − ieiσ̃−mκ−(σ̃−m)

∑
j∈Z

Bj

σ̃−m − σ̃+
j

Res

(
1

κ−
, σ̃+

j

)

+ eiσ̃−m
∑
j∈Z

(Aj + Cj)Res

(
1

κ+
, σ̃−j

)
1

2π

∫ ∞+iε1

−∞+iε1

κ+(α)

α− σ̃−m
e−iα

α− σ̃−j
dα

+ iAm + iCm.

Far field upstream

For sx < yd and 0 ≤ y ≤ s we can close the contour in the upper half plane and find:

φ(x, y) =
∑
m∈Z

e−iσ̃+
mxRes

(
1

κ
, σ̃+

m

)
e−γ(σ̃+

m)y

γ(σ̃+
m)

i [P ] (σ̃+
m), (2.70)

where for downstream incident fields we have

i [P ] (σ̃+
m) = −ieiσ̃+

mBm + i
∑
j∈Z

(Aj + Cj)Res

(
1

κ+
, σ̃−j

)
κ+(σ̃+

m)

σ̃+
m − σ̃−j

+ i
V

2π

∫ ∞−iε1

−∞−iε1

eiα

α− σ̃+
m

κ−(α)

α− σ̃+
η

e−iσ̃+
η κ+(σ̃+

η ) dα

+
∑
j∈Z

Res

(
1

κ−
, σ̃+

j

)
Bj

2π

∫ ∞−iε1

−∞−iε1

eiα

α− σ̃+
m

κ−(α)

α− σ̃+
j

dα.
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Chapter 3

Acoustic and hydrodynamic power of

wave scattering by an infinite

cascade of blades in mean flow

3.1 Introduction

In Chapter 2 we derived a solution for the wave scattering problem on a cascade geometry

based on the Wiener–Hopf technique. This present chapter is devoted to understanding

more closely the energy balance of this system, when the cascade is subjected to an incident

acoustic wave from either upstream or downstream. In order to simplify some of the

algebraic expressions involved we will focus our attention to the two-dimensional case, i.e.

a cascade as pictured in Fig. 2.1a, and we omit spanwise variations in the field, which is

equivalent to taking K3 = 0 in the formulation of Chapter 2.

We already indicated in the introductory Chapter 1 that the presence of mean flow

leads to interesting aspects in the considerations concerning acoustic energy conservation.

This is perhaps somewhat surprising given that the energy of the full flow is conserved:

The inviscid continuity and momentum equations for a flow without sources or sinks are

∂ρ̃

∂t
+∇ · (ρ̃ũ) = 0,

∂ũ

∂t
+ ũ ·∇ũ +

1

ρ̃
∇p̃ = 0,

where ρ̃, p̃, ũ are the density, pressure and velocity field of the full fluid body. Those two

equations can be combined to yield the following energy conservation law for the full flow

(here written in the isentropic case) as shown for instance in Myers (1986):

∂Et
∂t

+∇(ũEt + ũp̃) = 0, Et = ρ̃
ũ2

2
+ ρ̃

∫ ρ̃ p̃(ρ̂)

ρ̂2
dρ̂.

Suppose we then write the flow as p̃ = p0 +p+O(ε2), ρ̃ = ρ0 +ρ+O(ε2), ũ = U+u+O(ε2),
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where p0, ρ0,U correspond to some steady mean flow and p, ρ,u = O(ε) are first order

perturbation quantities – the unsteady fluctuations on the acoustic order. An important

question that was subject of a large amount of research in the 1960s and 1970s, amongst

others by Cantrell and Hart (1964), Möhring (1970, 1973) and Morfey (1971), was whether

an energy conservation law holds that can be expressed in terms of quantities on the

acoustic scale alone (i.e. in terms of first order perturbed quantities, without having to

calculate the contributions from higher order terms that satisfy more complicated nonlinear

equations of motion). Only in the late 1970s, based on exact relations as given by Goldstein

(1976) and Myers (1986), the idea took hold that acoustic energy is not conserved – instead

the acoustic field can exchange energy with the vortical components of the flow at the

same scale. For isentropic flows the exact energy balance for first order quantities takes

the following form (non-dimensionalised according to §2.2)

∂E

∂t
+∇ · I = U · ((∇× u)× u) + ρu · ((∇×U)×U), (3.1)

where

E =
pρ

2
+
u2

2
+ ρU · u, I = (p+ U · u) (u + ρU) .

The terms on the right hand side of Eq. (3.1) corresponds to energy exchange between

acoustic and vortical components of the field, and its form suggests it may be both

positive and negative, meaning sound can be both generated and attenuated through this

interaction. The possibility of generation of sound through vorticity has been well known

since the pioneering work by Lighthill (1952), and appears for instance in the Ffowcs

Williams acoustic analogy of turbulence passing a trailing edge (Ffowcs Williams and

Hall, 1970) and in Crighton’s model problem of a vortex passing an edge (Crighton, 1972).

However, the possibility of attenuation of sound by vorticity was confirmed experimentally

only several years later in the work by Bechert et al. (1977), who found conclusive evidence

of sound attenuation in a pure tone exiting a cylindrical nozzle with mean flow. The

experiment was studied and explained analytically based on Eq. (3.1) by Howe (1979,

1980). In case of a sharp trailing edge we already discussed in Chapter 2 the appearance of

a vortex sheet attached at the edge, and the amount of acoustic energy lost into this wake

was first given explicitly by Rienstra (1981), who also provided a full energy balance for

an open ended annular duct (Rienstra, 1984). For incompressible flow a similar exchange

of energy appears between a region of localised vorticity and the first order perturbation

in the flow and this was studied by Arzoumanian (2011) (we outline the connection to

this work in §3.3.2).

The sound attenuation through the production of vorticity is highly relevant to fluid

mechanical engineering systems, including to turbomachinery, since the attenuation of
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sound is a very favourable by-product of the geometry and needs to be taken into account

for noise prediction schemes. It is therefore perhaps surprising that in the context of

cascades the full power balance for this system has remained largely unstudied in the

literature. There is a brief discussion given by Glegg (1999) however this is considering

only the acoustic power that is scattered from the cascade, i.e. only the contribution of

∇ · I in Eq. (3.1) and not accounting for the energy exchange term.

The main novelty described in this chapter is a detailed study of the energy balance in

the case of an infinite cascade of blades. In particular, we account for all contributions to

the outgoing power – acoustic, hydrodynamic and energy exchange terms. In so doing we

provide a physical interpretation of the relevant terms in context of previous literature

and its relation to similar expressions found for incompressible flow. Our expressions allow

us to conduct numerical experiments from which we can draw a number of interesting

conclusions. Specifically, the energy exchange term and the hydrodynamic power account

in many parameter settings for a significant portion of the outgoing energy, i.e. lead to

significant attenuation in the sound pressure level. We confirm that in the case of a cascade

the energy exchange term can be negative (as was found for a single trailing edge by

Rienstra (1981)), which means the cascade can harvest energy from the flow and convert

it into sound. This leads to additional energy in the scattered acoustic field and in some

cases can result in an amplification of the acoustic power, and over-reflection, whereby the

scattered acoustic field has a larger amplitude than the incoming acoustic field.

In addition to the numerical experiments, our expressions for the power balance can

be used to infer properties of the far-field, such as symmetries with respect to certain

angles of incidence and perfect transmission at specific angles of attack. The latter is

related to recent work by Porter (2021), who studied perfectly transmitting blade rows

and demonstrated that closely spaced blade rows in zero mean flow may be regarded as

negative-refraction metamaterials, and we are able to show that some of his conclusions

extend to the case when nonzero mean flow is present.

The present chapter is structured as follows: §3.2 provides a very brief recap of the

mathematical formulation of the acoustic wave scattering problem which we solved in

Chapter 2. We outline the exact modal structure of the field away from the cascade

(consisting of radiation acoustic and hydrodynamic modes). In §3.3 we derive the energy

balance for this system based on the usual form of conservation of acoustic energy given

by Goldstein (1976), and we include a discussion outlining an interpretation of the energy

exchange terms and their relation to previous work in §3.3.2. This section includes an

explicit form of the time-averaged energy balance in terms of the modal amplitudes of

the field. These expressions are used in §3.4 to study symmetries in the field and to give

numerical examples to understand the form of each contribution to the energy balance.

Concluding remarks are provided in §3.5.
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3.2 Problem statement

For completeness we briefly recap the most important properties of the field in this acoustic

wave scattering problem, but we refer the reader to Chapter 2 for further details.

Our two-dimensional geometry consists of an infinitely extending cascade of plates

located at {(x, ns), nd < x < nd+ 1}, n ∈ Z. We highlight that the inclusion of a third

dimension, with a given spanwise wavenumber as was done in Chapter 2, does not involve

any conceptual difficulties but it would complicate some of the algebraic expressions in this

chapter. The cascade is located in an inviscid isentropic fluid with nonzero uniform mean

flow parallel to the cascade blades. We assume the incidence of harmonic acoustic waves

on the cascade with reduced frequency Ω, amplitude I, and normal to the wavefronts that

is inclined at an angle ϕ as shown in Fig. 3.1.

2π − ϕ

Incident wave

Mean flow

α0

d
1

s

Figure 3.1: Sketch of cascade of blades with incident acoustic wave.

As a result, all quantities describing the perturbed flow are time-harmonic, and indeed

can be expressed in terms of a velocity potential exp(iΩt)φ(x, y) (here Ω = ωl/U∞ is the

reduced frequency) which is the sum of incoming wave and scattered potential:

φ(x, y) = Ie−ikxx−ikyy + φs(x, y),

where

kx = ΩM
cosϕ

1 +M cosϕ
, ky = ΩM

sinϕ

1 +M cosϕ
. (3.2)

The total velocity potential must then satisfy the two-dimensional convected wave equation:

D2φ

Dt2
−M−2∆φ = 0,

where the non-dimensional material derivative for time-harmonic quantities is given by

D/Dt = iΩ + ∂x. In addition to the equation of motion we impose the boundary and edge

conditions (i)-(vi) as described in §2.2. We note that the Bloch condition (iv) becomes for
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incident acoustic waves: For all (x, y) ∈ R2, n ∈ Z:

φ(x, y) = e−inσφ(x+ nd, y + ns),

where, according to Eq. (3.2)

σ = − ΩM

1 +M cosϕ
(d cosϕ+ s sinϕ). (3.3)

3.2.1 Dispersion relation for free space solutions

In this chapter we are specifically interested in the energy transported to the far-field, thus

let us begin by considering the kind of waves that exist in the parts of the geometry away

from the cascade structure. We shall see in this section that, as a result of the periodic

nature of the geometry, away from the cascade structure the field splits into a discrete set

of nodes, the so-called radiation modes (cf. Bragg angles for wave scattering on periodic

media). We recall the expression Eq. (2.51)

φ(x, y) =
1

2π

∫ ∞
−∞

e−iαx [P ] (α)
cosh(γy)eiσ+idα − cosh(γ(y − s))

κ(α) sinh(γs)γ
dα,

which is of the form

φ(x, y) =
1

2π

∫ ∞
−∞

e−ixαf(α, y)

D(α)

(∫ 1

0

[p](x̃) dx̃

)
dα, (3.4)

where D(α) = (iΩ− iα) (cos(σ + dα)− cosh γs) and α 7→ f(α, y) is an entire function for

any y ∈ [0, 1). As we saw in §2.7.2 the zeros of D(α) give rise to wave-like modes away

from the cascade structure (i.e. modes which are x-harmonic if sx < dy or s(x− 1) > dy).

Therefore the dispersion relation for modal solutions in free space away from the cascade

structure is given by

D(α) = 0. (3.5)

This dispersion relation Eq. (3.5) has a discrete set of solutions, the radiation modes,

denoted by α = σ±m(Ω), m ∈ Z, and the hydrodynamic mode, with the superscript ±
denoting upstream and downstream travelling modes respectively. The hydrodynamic

mode is convected with the dimensional mean-flow speed, leading to the nondimensional
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wavenumber α = Ω. We recall that the analytic expressions for the radiation modes are

σ±m =
−(s2M2Ω + dσ + 2dπm)

s2β2 + d2

∓

√
(s2M2Ω + dσ + 2dπm)2 − (s2β2 + d2) ((σ + 2πm)2 − s2 (Ω2M2))

s2β2 + d2
,

(3.6)

where β2 = 1−M2. They are called ‘cut-on’ (i.e. propagate to infinity) when m ∈ Z is

such that

(
s2M2(Re Ω) + dσ + 2dπm

)2 − (s2β2 + d2)
(
(σ + 2πm)2 − s2

(
(Re Ω)2M2 −K2

3

))
≥ 0,

and the modes are evanescent (called ‘cut-off’) otherwise. The dispersion curves for

Eq. (3.5) are shown in Fig. 3.2. We recall from Eq. (3.3) that the value of σ depends on

the frequency and angle of the incident field, thus it implicitly depends on Ω. This means

firstly that in the current formulation the incident acoustic wave always corresponds to

σ±0 (± corresponding to down- and upstream incidence respectively) and secondly that σ±0

are proportional to Ω, and hence results in the straight-line dispersion curves for σ±0 as

observed in Fig. 3.2.

σ+
0 →

σ−
0 −→ ← Ω

←− σ−
−1σ+

−1 →

Figure 3.2: Dispersion curves for radiation modes away from the cascade. The dashed red
line marks the value of Ω for which σ±−1 become cut-on. Upstream travelling modes are
marked with dash-dotted blue lines, downstream travelling modes correspond to the solid
black lines.
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3.2.2 Form of the far-field

We already discussed the solution of the scattering problem in Chapter 2, therefore we take

a brief moment here to quickly summarise the shape of the field away from the cascade

blades in Tab. 3.1. Note the expressions here specify φ in the first cascade cell 0 ≤ y < s

and the field is determined uniquely in the remaining cells by condition (iv). Moreover, the

form of the field presented in Tab. 3.1 is the exact form which is valid for each coordinate

(x, y) in the range indicated (sx < dy, and s(x− 1) > dy respectively). This means the

evanescent modes (which, of course, do not contribute to the asymptotic far-field) are

included and their contribution is important when evaluating the exchange of acoustic

and vortical energy near the trailing edge as discussed in §3.3.

Table 3.1: Expressions for the total field with upstream and downstream incident acoustic
waves.

Upstream incidence Downstream incidence

Incident wavenumber: kx = σ−0 Incident wavenumber: kx = σ+
0

Upstream (sx < dy)

φ(x, y) = Ie−iσ−0 xeγ(σ−0 )y

+
∑
m∈Z

Ume−iσ+
mxe−γ(σ+

m)y,

Upstream (sx < dy)

φ(x, y) =
∑
m∈Z

Ume−iσ+
mxe−γ(σ+

m)y,

Downstream (s(x− 1) > dy)

φ(x, y) = Be−iΩxg(y)

+
∑
m∈Z

Dme−iσ−mxeγ(σ−m)y.

Downstream (s(x− 1) > dy)

φ(x, y) = Ie−iσ+
0 xe−γ(σ+

0 )y +Be−iΩxg(y)

+
∑
m∈Z

Dme−iσ−mxeγ(σ−m)y.

In Tab. 3.1, Um, Dm are complex constants, the amplitudes of the radiation acoustic

modes upstream and downstream of the cascade respectively, and the complex constant

B is the amplitude of the hydrodynamic mode shed from the trailing edge of each blade.

Furthermore we have introduced the function

g(y) =
eiσ+idΩ cosh(Ωy)− cosh(Ω(s− y))

2(cos(σ + dΩ)− cosh(sΩ))
. (3.7)

In §3.4 we will evaluate the amplitudes Um, Dm numerically using the solution developed

in Chapter 2.
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3.3 An energy balance for the cascade of blades

S+ S−

S2

S1

V y

x

Figure 3.3: Control domain for the energy balance.

We saw in Chapter 2 that the unsteady velocity field u can be expressed as the gradient

of a potential φ which is continuous except for a finite jump across the blades and across

the wake downstream of the cascade, so that the unsteady vorticity, in terms of this jump,

is

ω =∇× u = −ẑδ(y) [∂xφ] . (3.8)

For the purpose of describing energy density and flux in this section, we reintroduce a

time-dependence in our quantities, such that for instance φ = φ(t, x, y). The equation

relating the rate of change of acoustic energy, E, to the acoustic energy flux, I, in uniform

mean flow U is well-known and can be found for instance in Goldstein (1976, p. 41)

(stated here in non-dimensionalised form for an isentropic, source-free flow):

∂E

∂t
+∇ · I = u · (U× ω) , (3.9)

where

E =
pρ

2
+

( |u|2
2

+ ρU · u
)
, I = (p+ U · u) (u + ρU) ,

and p, ρ denote the acoustic pressure and density perturbations. Now consider the domain

V = {(x, y);−s/2 < y < s/2,−X1 + yd/s < x < X2 + yd/s}, as shown in Fig. 3.3.

Integrating Eq. (3.9) over V yields:

d

dt

∫
V

E dx+

∫
∂V

I · n ds =

∫
V

u · (U× ω) dx,

and taking a time average one can infer, in the absence of external forces and sources, the

following balance of energy fluxes for time-harmonic flows:∫
∂V

I · n ds =

∫
V

u · (U× ω) dx, (3.10)
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where on the right hand side the time average 〈φψ〉 = 1
2
Re [φ∗ψ] is understood (where for

z ∈ C we denote its complex conjugate by z∗) and I denotes the time averaged acoustic

energy flux

I =
1

2
Re [(p+ U · u)∗ (u + ρU)] .

In Eq. (3.10) the term on the left hand side represents the time-averaged acoustic energy

flux through the boundary ∂V , and the right hand side arises as a consequence of the

possibility of energy conversion between the acoustic and vortical unsteady flow and vice

versa, as we mentioned in the introduction §3.1.

3.3.1 Time-averaged energy balance in terms of amplitudes

Let us now find an explicit expression for the contributions in Eq. (3.10) in terms of the

modal amplitudes of the field. Noting the continuity of the velocity potential across S1, S2

we observe that in Eq. (3.10) the contributions from S1 and S2 cancel. Moreover, on the

blade we have ∂φ/∂y = 0 so the contribution from this part of ∂V is zero, and the left

hand side of Eq. (3.10) reduces to an integral over S+ and S−.

Let us now focus on the time-harmonic case and take the usual time-average. By the

expressions for the field from §3.2.2 we have only acoustic contributions to
∫
S+

and acoustic

mixed with hydrodynamic contributions to
∫
S−

. Of course, the evanescent (cut-off) acoustic

modes carry zero energy to the far-field, but the interaction of all the downstream acoustic

modes σ−m with the hydrodynamic mode along S− will, in general, involve contributions

proportional to exp (i((σ−m)∗ − Ω)X2). It turns out that these contributions cancel with

terms from
∫
V

u · (U× ω) dx. To see this let us demonstrate the idea based on the special

case when we have upstream incidence and d = 0 (this is such that the algebraic expressions

remain within reasonable simplicity). Here the contribution from
∫
S−

takes the form

∫
S−

Ī · n ds =
1

2
Re

[∫ s

0

(−iΩφ(X2, y))∗
(
β2∂xφ(X2, y)− iΩM2φ(X2, y)

)
dy

]
=

1

2
Re

[
iΩ

∫ s

0

(
B∗eiΩX2g∗(y) +

∑
m∈Z

D∗mei(σ−m)∗X2eγ(σ−m)∗y

)
(
Be−iΩX2(−iβ2Ω− iΩM2)g(y)

+
∑
m∈Z

Dme−iσ−mX2eγ(σ−m)y
(
−iσ−mβ

2 − iΩM2
))

dy

]
.

The contribution from terms involving both the hydrodynamic and acoustic modes are

91



thus

1

2
Re

[
iΩ

∫ s

0

(∑
m∈Z

D∗mei(σ−m)∗X2Be−iΩX2eγ(σ−m)∗yg(y)

)
(
−iβ2Ω− iΩM2 − i(σ−m)∗β2 − iΩM2

)
dy

]

=
1

2
Re

[
−iΩ

∑
m∈Z

D∗mei(σ−m)∗X2Be−iΩX2
(
iβ2Ω + 2iΩM2 + i(σ−m)∗β2

) ∫ 1

0

eγ(σ−m)∗yg(y) dy

]
.

Using Eq. (3.7) we find

∫ s

0

eγ(σ−m)∗ỹg(y) dy =

∫ s

0

eγ(σ−m)∗yeiσ cosh(Ωy)− eγ(σ−m)∗y cosh(Ω(s− y))

2(cosσ − cosh(sΩ))
dy

= − γ∗(σ−m)

(γ∗(σ−m))2 − Ω2
,

where we used sγ(σ−m)∗ = −iσ − 2πim. Thus the contribution on S− from terms involving

both the hydrodynamic and acoustic modes equals

1

2
Re

[
−iΩ

∑
m∈Z

D∗mei(σ−m)∗X2Be−iΩX2γ∗(σ−m)
(−iβ2Ω− 2iΩM2 − i(σ−m)∗β2)

((σ−m)∗)2β2 + 2(σ−m)∗M2Ω− Ω2(1 +M2)

]

=
1

2
Re

[
−iΩ

∑
m∈Z

D∗mBei(σ−m)∗X2e−iΩX2
γ∗(σ−m)

i(σ−m)∗ − iΩ

]
.

In this special case the integral
∫
V

u · (U× ω) dx, takes the form∫
V

u · (U× ω) dx =
1

2
Re

∫ X2

1

∂yφ(x, 0)∗[∂xφ](x) dx

=
1

2
Re

[
− iΩ

∫ X2

1

(
Be−iΩxΩ

sinh(sΩ)

2(cos(σ + dΩ)− cosh(sΩ))

+
∑
m∈Z

Dmγ(σ−m)e−iσ−mx
)∗
Be−iΩx dx

]

=
1

2
Re

[
−iΩ

∫ X2

1

∑
m∈Z

D∗mBγ(σ−m)∗e(i(σ−m)∗−iΩ)x dx

]

=
1

2
Re

[
−iΩ

∑
m∈Z

D∗mBγ(σ−m)∗
e(i(σ−m)∗−iΩ)X2 − ei(σ−m)∗−iΩ

i(σ−m)∗ − iΩ

]
. (3.11)

Thus one can see that any terms involving exp (i((σ−m)∗ − Ω)X2) cancel exactly in Eq. (3.10).

This remains true for downstream incidence and when d 6= 0 (though the algebra is more

tedious) and it is therefore possible, for X1, X2 sufficiently large, to arrive at an exact
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energy balance in terms of the modal amplitudes which is independent of X1, X2:

PU + PD + PH + Πω = PI , (3.12)

where in the above PU , PD are the acoustic sound powers that are radiated to x = ±∞
respectively and PI is the sound power of the incoming wave. Furthermore, PH is the

power carried by the hydrodynamic mode to x = +∞ and Πω is the energy conversion term

due to the lift force experienced by particles on the vortex sheet, arising from the right

hand side of equation Eq. (3.10). After a few steps of algebra we find the following explicit

expressions in terms of the amplitudes, where the aforementioned cancelling contributions

proportional to exp (i((σ−m)∗ − Ω)X2) have been dropped (this is equivalent to taking an

average over X2 ∈ (1,∞) in the sense 〈Πω〉 = limL→∞ L
−1
∫ L

0
Πω dX2 using the expression

Eq. (3.11)):

PU = −Ω

2

∑
m∈Z
cut−on

|Um|2(sΩM2 + sβ2σ+
m − dγ(σ+

m)),

PD =
Ω

2

∑
m∈Z
cut−on

|Dm|2(−sΩM2 − sβ2σ−m − dγ(σ−m)),

PI =

Ω
2
|I|2(−sΩM2 − sβ2σ−0 − dγ(σ−0 )), if kx = σ−0 ,

Ω
2
|I|2(−sΩM2 − sβ2σ+

0 + dγ(σ+
0 )), if kx = σ+

0 .

Furthermore:

PH =
Ω

2
|B|2

(
sΩ

∫ 1

0

|g(st)|2 dt+ Im

[
d

∫ 1

0

g(st)∗g′(st) dt

])
=

Ω|B|2
8(cos(σ + dΩ)− cosh(Ω))2(

Ωs+ cosh(Ωs) sinh(Ωs)− cos(σ + dΩ)(Ωs cosh(Ωs) + sinh(Ωs))

Ωs

− Ωd sin(σ + dΩ) sinh(Ωs)

)
,

and finally,

Πω = −Ω

2
Im

∑
m∈Z

B∗Dmγ(σ−m)
eiΩ−iσ−m

iΩ− iσ−m
+

0, if kx = σ−0

−B∗Iγ(σ+
0 ) eiΩ−iσ+

0

iΩ−iσ+
0

, if kx = σ+
0

 .
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3.3.2 Interpretations of the interaction terms

Before moving on to provide numerical results based on Eq. (3.12), let us provide a few

possible ways to interpret the energy exchange terms appearing in Eq. (3.10). These

interpretations reflect slightly different points of view taken by various researchers, and

we believe there is value in each of these interpretations. For this section we return to

considering time-dependent quantities.

Interpretation 1: Rate of work done by a lift force

Howe (1980) and Guo (1991, p. 191) found that the term
∫
V

u · (U×ω) dx can be regarded

to correspond to the rate of work done by the lift force U × ω experienced by vortex

elements in the unsteady velocity field of the sound u (see also Howe, 1998, p. 407). The

interpretation of the term U×ω as a lift force is a well-known result introduced by Prandtl

(1918, Eq. (5)); see also Saffman (1993, §3.1).

Interpretation 2: Acoustic energy flux into the wake

This is the point of view taken by Rienstra (1981): Consider two surfacesW± := {(x, y)|x >
0, y = 0±} just above/below the wake respectively (i.e. just above/below the blue curves

in Fig. 3.3). Then the acoustic energy flux into the region enclosed by those two curves

(i.e. into the wake) is given by∫
W−+W+

I · n ds = −
∫ ∞

1

(p+ U · u) (u + ρU)
∣∣∣
y=0+

· ŷ ds

+

∫ ∞
1

(p+ U · u) (u + ρU)
∣∣∣
y=0−

· ŷ ds

= −
∫ ∞

1

[p+ ∂xφ] ∂yφ ds

= −
∫ ∞

1

[∂xφ] ∂yφ ds,

where ŷ = (0, 1). We also have using Eq. (3.8), −
∫
V

u ·(U× ω) dx = −
∫∞

1
[∂xφ] n ·∇φ ds.

So we find

−
∫
V

u · (U× ω) dx =

∫
W−+W+

I · n ds,

i.e. the energy exchange term can be regarded as the acoustic energy flux into the wake.
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Interpretation 3: Change of kinetic energy in the vortical field

This interpretation was given by Howe (1984): Let us focus on the downstream part of

the domain, s(x− 1) > dy, define the vortical component of the field v :=∇φv, where

φv(x, y) = e−iΩxg(y), g(y) =
eiσ+idΩ cosh(Ωy)− cosh(Ω(s− y))

2(cos(σ + dΩ)− cosh(sΩ)
,

and denote by φa the velocity potential of the strictly acoustic contributions (i.e. the modal

contributions from σ±m as shown in Tab. 3.1, whose velocity is continuous everywhere),

such that u =∇φa + v. We can write the linearised momentum equation in the form

∂tv +∇ (∂tφa + p+ U · (v +∇φa)) = −ω × (U + v +∇φa) .

Taking the dot product of both sides with U + v gives to second order

1

2
∂t|v|2 + v ·∇ (∂tφa + p+ U · (v +∇φa)) = −v · (ω ×U)−U · (ω × u)

= −∇φa · (U× ω).

Integration over Ṽ = {(x, y);−s/2 < y < s/2, 1 + yd/s < x < X2 + yd/s} and using the

divergence theorem with the observation that ∇ · v = 0 we find∫
Ṽ

v ·∇ (∂tφa + p+ U · (v +∇φa)) dx =

∫
∂Ṽ

(n · v) (∂tφa + p+ U · (v +∇φa)) ds

=

∫
∂Ṽ

(n · v) (∂tφa + p+ U · u) ds

=

∫
∂Ṽ

n · Iv ds,

where Iv = (U · v) v is the energy flux of the vortical field. Therefore the rate of change

of vortical kinetic energy in Ṽ can be expressed as

d

dt

∫
Ṽ

1

2
|v|2 dx = −

∫
∂Ṽ

n · Iv ds︸ ︷︷ ︸
flux of vortical energy out of Ṽ

−
∫
Ṽ

∇φa · (U× ω) dx︸ ︷︷ ︸
exchange of energy with acoustic field

.

Relationship to interface flux

We can also relate the energy exchange term on the right hand side of Eq. (3.10) directly

to the ‘interface flux’ that is described by Arzoumanian (2011) for a vortex sheet in an

incompressible fluid (and which also occurs when two fluid layers are separated by an

elastic sheet as described in Crighton and Oswell (1991)). Indeed, in reality, the vortex

sheets are located at a small displacement y = η(t, x), which is to ensure they are convected
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with the flow (zero flow across the wake):

Dη

Dt
= ∂yφ.

Furthermore, the form of the discontinuity in φ is fixed to ensure continuity of pressure

(cf. Jones, 1972) such that

−D [φ]

Dt
= [p] = 0.

We can combine these two observations to show (after a few steps of algebra):∫
V

u · (U× ω) dx =

∫
V

u · ŷδ(y) [∂xφ] dx

=
d

dt

∫ X2

1

η [∂xφ] ds− Ji(X2) + Ji(1),

where Ji(x) = η [∂tφ]. We note that the wake is attached to the blades at the trailing edges,

η(1) = 0, thus Ji(1) = 0. Taking a time average ensures that, in our time-harmonic flow,

the contribution from d
dt

∫ X2

1
η [∂xφ] ds vanishes. This allows us to conclude that the time-

average of the right hand side in Eq. (3.10) is −Ji(X2), which is precisely the expression

for the interface flux described by Arzoumanian (2011) (given here in non-dimensionalised

form), and the analogue for a vortex sheet of the definition by Crighton and Oswell (1991).

3.4 Results and discussion

3.4.1 Symmetries in the field and zero acoustic reflection

We begin by considering the amplitudes of the first radiating modes U0, D0 for various

values of ϕ. In Figs. 3.4 & 3.5 we have plotted these amplitudes as a function of ϕ. In

these graphs we choose α0 = π/6, d2 + s2 = 1, and ΩM = π/4, 5π/4 respectively, such

that the parameters for the two figures differ only in reduced frequency and hence in the

number of cut-on radiation modes. In particular in Fig. 3.4 only σ±0 are cut-on, whereas

in Fig. 3.5 the cut-on radiation modes are σ±0 , σ
±
−1.

In order to allow for comparison against earlier work by Koch (1971) (as we showed in

Fig. 2.6) we plot the modal pressures defined as follows:

P i
0 =

(−i)(Ω− σ−0 )I, if kx = σ−0 ,

(−i)(Ω− σ+
0 )I, if kx = σ+

0 ,
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P t
0 =

(−i)(Ω− σ−0 )D0, if kx = σ−0 ,

(−i)(Ω− σ+
0 )U0, if kx = σ+

0 ,
P r

0 =

(−i)(Ω− σ+
0 )U0, if kx = σ−0 ,

(−i)(Ω− σ−0 )D0, if kx = σ+
0 .

In Figs. 3.4 & 3.5 the transition from upstream to downstream incidence and vice

versa is marked with � and N respectively (solid, left-half-filled and right-half-filled shapes

correspond to M = 0.0, 0.3 and 0.7 respectively), such that for each value of M the wave is

downstream incident if ϕ− α0 is between � and N. Note the region of upstream incidence

is fixed by the condition M sinα0 + sin(α0 − ϕ) > 0 (cf. Eq. (2.12)).
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M=0.7

(a) Transmitted modal pressure.
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(b) Reflected modal pressure.

Figure 3.4: Relative modal pressures of the first transmitted and reflected mode, with
α0 = 30◦ and ΩM = π/4.
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(a) Transmitted modal pressure.
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(b) Reflected modal pressure.

Figure 3.5: Relative modal pressures of the first transmitted and reflected mode, with
α0 = 30◦ and ΩM = 5π/4.

Due to convection, larger values of M result in a wider range of values for ϕ − α0

corresponding to upstream incidence. There are a few interesting features that we can

observe in Figs. 3.4 & 3.5:

1. When only σ±0 are cut-on radiation modes (as is the case in Fig. 3.4) and we have

zero mean flow (M = 0), the reflected and transmitted amplitudes are symmetric

about ϕ = π + α0, i.e. the amplitudes for ϕ− α0 = π + β equal in modulus those

for ϕ− α0 = π − β for any β ∈ (0, π). This is in addition to the obvious symmetry

between the amplitudes for ϕ− α0 = β and ϕ− α0 = β + π. The latter is simply

due to the fact that for M = 0 there is no distinction between upstream incidence
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and downstream incidence as shown in Fig. 3.6a. However a proof of the former

requires slightly more careful consideration as is shown below.

2. For any value of M ∈ [0, 1),Ω ∈ [0,∞) the cascade is perfectly transmitting

(|P t
0|/|P i

0| = 1) when ϕ = 0, π (the points ϕ − α0 = 330◦ and ϕ − α0 = 150◦

respectively), corresponding to incident waves from upstream and downstream

respectively propagating perfectly parallel to, and therefore being unimpeded by, the

blades.

3. For any choice of M and Ω there are two additional points of zero acoustic reflection

(|P r
0 |/|P i

0| = 0), marked with H and • in Figs. 3.4b & 3.5b. When M = 0 these

are located at ϕ = 2α0, π + 2α0 and for nonzero M these points shift slightly to

increased/decreased values of ϕ respectively.

These features were observed numerically, for the case of a single cut-on radiation

mode σ±0 , by Koch (1971), and studied analytically for the case of zero mean flow, M = 0,

by Porter (2021). It turns out that point 1 above is indeed a property of the field as long

as only a single cut-on propagating mode exits upstream and downstream of the cascade

and in Fig. 3.5a we see that the symmetry breaks down for the transmitted amplitude

when multiple radiation modes are cut-on. Furthermore, points 2 and 3 are properties of

the field for any value of M and Ω. Of course, it is clear that point 2 must hold since for

ϕ = 0, π the waves are unimpeded by the blades. In this section we provide a proof of

features 1 and 3 based entirely on the energy balance – the underlying idea is that there

is a direct correspondence between the cascade response for an incident mode σ−0 from

upstream and the response for an incident mode σ+
0 from downstream.

α0

β β

(a) Standard symmetry in the field when M = 0.

α0

ϕ− α0 − πϕ− α0 − π

σ−0

σ+
0

(b) The angles of propagation for σ±0 (M = 0).

Figure 3.6: Special symmetries in the field for zero mean flow.

To understand this correspondence, we need to write the angle of propagation for the

zeroth radiating modes σ±0 more explicitly and for this purpose it is useful to describe the
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geometry in terms of the stagger angle α0 and the leading edge separation c such that

s = c sinα0, d = c cosα0. This allows us to write the inter-blade phase angle, as defined in

Eq. (3.3), as

σ =
−ΩM

1 +M cosϕ
c cos(ϕ− α0),

and hence the zeroth radiating mode (cf. Eq. (3.6)) in the form

σ±0 =
MΩ

(
cosϕ(1−M2 sin2 α0)−M sin2 α0 − sinα0 sin(α0 − ϕ)

)
(1 +M cosϕ)

(
1−M2 sin2 α0

)
∓ MΩ sinα0|M sinα0 + sin(α0 − ϕ)|

(1 +M cosϕ)
(
1−M2 sin2 α0

) .

As mentioned above, an incident acoustic wave with kx = ΩM cosϕ/(1 + M cosϕ) is

effectively incident from upstream if and only if M sinα0 + sin(α0−ϕ) > 0 (cf. Eq. (2.12)),

and in that case we have

σ−0 =
ΩM cosϕ

1 +M cosϕ
= kx, σ+

0 =
ΩM cos ϕ̃

1 +M cos ϕ̃
, (3.13)

where

cos ϕ̃ =
cos(ϕ− 2α0)− 2M sin2 α0 −M2 cosϕ sin2 α0

1 + 2M sin(α0 − ϕ) sinα0 +M2 sin2 α0

.

In the case of zero mean flow the latter expression reduces to cos ϕ̃ = cos(ϕ − 2α0). If

we have downstream incidence, M sinα0 + sin(α0 − ϕ) < 0, the expressions for these

two modes are reversed. As mentioned earlier the cascade is perfectly transmitting

(|P t
0|/|P i

0| = 1, |P r
0 |/|P i

0| = 0) when ϕ = 0, π due to the incident waves propagating parallel

to, and therefore being unimpeded by, the cascade blades. There are two corresponding

angles of inclination of the normal to the wavefronts, ϕ̃0, ϕ̃π in the following sense:

• If ϕ = 0, then

σ+
0 =

ΩM cos ϕ̃0

1 +M cos ϕ̃0

,

cos ϕ̃0 =
cos(2α0)− 2M sin2 α0 −M2 sin2 α0

1 + 2M sin2 α0 +M2 sin2 α0

,

(3.14)

and in particular when M = 0 we have ϕ̃0 = 2α0.
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• If ϕ = π, then

σ−0 =
ΩM cos ϕ̃π

1 +M cos ϕ̃π
,

cos ϕ̃π =
cos(π + 2α0)− 2M sin2 α0 +M2 sin2 α0

1 + 2M sin(α0 − π) sinα0 +M2 sin2 α0

,

(3.15)

and in particular when M = 0 we have ϕ̃π = π + 2α0.

This means that σ+
0 has a direction of propagation as if it was reflected directly on the

cascade front (cf. sketch for M = 0 in Fig. 3.6b). So in a sense σ±0 are the usual plane

wave modes that one would expect to find for reflection on a flat material that is located

parallel to the cascade front.

Symmetry along the cascade face in zero mean flow

We now show the symmetry of the transmission and reflection amplitudes with respect to

ϕ− α0 = π in the case of zero mean flow, i.e. property 1 as described above. As can be

seen from Fig. 3.5a this symmetry is no longer true for the transmitted amplitude if there

is more than a single propagating wave mode upstream and downstream of the cascade.

Thus in this section we focus on the case when only σ±0 are cut-on. Let ϕ = π + α0 + β

and ϕ̃ = π + α0 − β for some β > 0. Then the cascade response for an incident field with

normal to the wavefronts that is inclined at an angle ϕ is

φ1(x, y) =

Ie−iσ−0 xeγ(σ−0 )y +R1e−iσ+
0 x + cut-off modes, sx < dy,

T1e−iσ−0 xeγ(σ−0 )y + cut-off modes, sx > dy + 1,

and the response for an incident field with normal to the wavefronts that is inclined at an

angle ϕ̃ is (according to Eq. (3.13) the radiation modes are the same: σ±0 (ϕ) = σ±0 (ϕ̃))

φ2(x, y) =

T2e−iσ+
0 x + cut-off modes, sx < dy,

Ie−iσ+
0 xeγ(σ+

0 )y +R2e−iσ−0 xeγ(σ−0 )y + cut-off modes, sx > dy + 1.

By linearity we can add the two fields to produce a valid solution of the scattering problem

of the following form (for any arbitrary z ∈ C):

φ1 + zφ2 =

zIe−iσ−0 xeγ(σ−0 )y + (R1 + zT2)e−iσ+
0 x + cut-off modes, sx < dy,

Ie−iσ+
0 xeγ(σ+

0 )y + (T1 + zR2)e−iσ−0 xeγ(σ−0 )y + cut-off modes, sx > dy + 1.

This field must satisfy the original equation of motion, and thus the time-averaged energy

balance must remain valid (in this case however we have both upstream and downstream

101



contribution from the incident wave):

|I|2 + |zI|2 = |R1 + zT2|2 + |T1 + zR2|2, ∀z ∈ C. (3.16)

Taking z → 0,∞ respectively yields

|I|2 = |T1|2 + |R1|2 = |T2|2 + |R2|2. (3.17)

We can simplify Eq. (3.16) using Eq. (3.17) to find

Re [zR∗1T2] = −Re [zT ∗1R2] , ∀z ∈ C.

Since this holds for all values of z ∈ C we infer that R∗1T2 = T ∗1R2 which, together with

Eq. (3.17), proves |R1| = |R2|, |T1| = |T2|, i.e. transmission and reflection amplitudes are

symmetric with respect to ϕ− α0 = π.

Zero acoustic reflection in leading radiating mode for subsonic mean flow

Although this aforementioned symmetry is not preserved in the case when M > 0, we still

find two special angles of inclination of the normal to the wavefronts, ϕ̃0, ϕ̃π as defined

in Eqs. (3.14) & (3.15), for which the reflected acoustic field has zero contribution from

the zeroth radiating mode (and hence is identically zero in the far-field when there is only

one cut-on mode). Note this property holds irrespective of the number of cut-on modes

in the field. These special angles are marked in Figs. 3.4b, 3.5b & 3.7, with H and •
corresponding to ϕ̃0 and ϕ̃π respectively. As can be seen from Fig. 3.7, when M > 0,

there may be a nonzero contribution from the hydrodynamic mode (which is part of the

reflected field in the case ϕ̃0).

We focus on the case ϕ̃0 (i.e. downstream incidence) since the case ϕ̃π can be treated

analogously: Let the total velocity potential due to an incident wave with normal to the

wavefronts inclined at an angle ϕ̃0 be denoted by

φ̃(x, y) =


∑

m∈Z Tme−iσ+
mxe−iγ(σ+

m)y, sx < dy,

Ie−iσ+
0 xe−γ(σ+

0 )y +Be−iΩxg(y) +
∑

m∈ZRme−iσ−mxeγ(σ−m)y, sx > dy + 1.

We know from our prior discussion that the mode σ−0 = σ−0 (ϕ̃0) = σ−0 (0) corresponds to

the angle ϕ = 0 and that the response for this type of parallel-propagating mode must be

of the form

φ(x, y) = Ie−iσ−0 xe−iγ(σ−0 )y = Ie−iσ−0 x, (x, y) ∈ R2.
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As for the zero mean flow case, we consider the superposition of these two fields, φ̃+ zφ,

which is a valid solution to the scattering problem and hence satisfies the time-averaged

energy balance (which must again account for incident fields both upstream and downstream

of the cascade):

PU + PD + PH + Πω = PI , (3.18)

where

PU = −
∑
m∈Z
cut−on

|Tm|2(sΩM2β−1 + sβσ+
m − dβ−1γ(σ+

m)),

PD = |R0 + zI|2(−sΩM2β−1 − sβσ−0 − dβ−1γ(σ−0 ))

+
∑

m∈Z\{0}
cut−on

|Rm|2(−sΩM2β−1 − sβσ−m − dβ−1γ(σ−m)),

PI = |zI|2(−sΩM2β−1 − sβσ−0 − dβ−1γ(σ−0 )) + |I|2(−sΩM2β−1 − sβσ+
0 + dβ−1γ(σ+

0 )),

PH = |B|2
(
sΩβ−1

∫ 1

0

|g(st)|2 dt+ Im

[
β−1d

∫ 1

0

g(st)∗g′(st) dt

])
,

Πω = −Im

[
B∗(zI +R0)γ(σ−0 )

eiΩ−iσ−0

iΩβ − βσ−0
−B∗Iγ(σ+

0 )
eiΩ−iσ+

0

iΩβ − βσ+
0

+
∑

m∈Z,m 6=0

B∗Rmγ(σ−m)
eiΩ−iσ−m

iΩβ − βσ−m

]
.

One can quickly check that in the current case γ(σ−0 ) = 0, and hence by setting z → 0,+∞,
and using the resulting equations to cancel appropriate terms in Eq. (3.18), we arrive at

Re [R∗0zI] (−sΩM2β−1 − sβσ−0 ) = 0 ∀z ∈ C,

which implies R0 = 0, i.e. the leading radiating mode σ−0 has zero contribution to the

reflected far-field. Of course, in general, the remaining reflected amplitudes, Rm with

m 6= 0, need not vanish when ϕ = ϕ̃0 or ϕ = ϕ̃π, i.e. sound may be scattered into higher

order reflected modes. Thus, while R0 = 0 holds regardless of the choice of frequency

and subsonic mean-flow speed, the reflected sound power is truly zero only when a single

radiation mode is cut-on.
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3.4.2 The significance of the hydrodynamic and energy

conversion terms in balancing the energy

We now visualise the terms from the time-averaged energy balance Eq. (3.12), to understand

their individual contribution to the overall outgoing power. In order to facilitate comparison

against the amplitudes shown in Fig. 3.4 we plot here (and also in §3.4.3) the reflected

sound power PR and the transmitted sound power PT . These are simply given in terms

of upstream and downstream sound powers taking appropriate account for the change of

incidence direction as follows (recall that the acoustic wave is incident from upstream if

sin(ϕ− α0) < M sinα0):

PR =

PU , if sin(ϕ− α0) < M sinα0,

PD, if sin(ϕ− α0) > M sinα0,

PT =

PD, if sin(ϕ− α0) < M sinα0,

PU , if sin(ϕ− α0) > M sinα0.

(3.19)

In Fig. 3.7 we see the contribution of each individual term as a percentage of the overall

outgoing power – the reflected and transmitted sound power, hydrodynamic power, and

conversion between acoustic energy and kinetic energy in the vortical field. The results in

the graph correspond to a stagger angle of α0 = π/6, a blade separation of c = 1, a Mach

number of M = 0.3 and a reduced frequency with ΩM = π/4.

The curves in Fig. 3.7 are cumulative, so that for instance the value of PH is given as

the difference of the green curve (marked with diamond shapes) and the blue curve (marked

with circles) – the value of PH is highlighted in light-green in the graph. The vertical

red dashed lines marked with � and N respectively correspond to the values of ϕ which

separate downstream (ϕ− α0 ∈ (9◦, 171◦)) and upstream (ϕ− α0 ∈ [0◦, 9◦) ∪ (171◦, 360◦])

incident regimes. Note that the roles of reflected and transmitted fields are reversed

at these vertical lines, such that for ϕ − α0 ∈ (9◦, 171◦) the reflected sound power PR

represents the downstream sound power PD and for ϕ − α0 ∈ [0◦, 9◦) ∪ (171◦, 360◦] the

reflected sound power represents to the upstream sound power PU , and vice versa for PT

(cf. Eq. (3.19)). The important point to observe is that the purely acoustic contributions

to the outgoing energy are everything below the blue curve (with circles) in the graph. It

is clear that for a range of angles of incidence the acoustic contribution only accounts for a

fraction of the total outgoing power, indeed sometimes less than half of it, meaning there

is significant attenuation of the incident acoustic field. This example is representative for

a wide range of numerical experiments that were performed: the acoustic contributions

alone account for the significant majority of outgoing power only in very specific cases and
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generally the conversion of acoustic energy into vortical kinetic energy plays an important

role in balancing the incoming and outgoing energy flux.

Figure 3.7: The contributions as percentage of the total incoming power; PU and PD are
respectively the upstream and downstream acoustic power, PH is the hydrodynamic power
and Πω is the sound power absorbed by the wake. The vertical red dashed lines (marked
with � and N) separate downstream and upstream incidence and the symbols H and •
correspond to ϕ̃0 and ϕ̃π respectively.

3.4.3 Negative acoustic energy absorption and sound power

generation in wave-cascade scattering

It was observed by Rienstra (1981, §4) for a single trailing edge in mean flow that the

acoustic energy flux into the wake, Πω can take negative values which effectively means

the blade harvests energy from the flow to increase the total outgoing acoustic and

hydrodynamic power (i.e. PR + PT + PH) to be greater than the incident power PI . In

some cases this exchange of energy leads to effective sound power generation when the

total outgoing sound power is larger than the incoming acoustic power. We shall see that

this effect can also be observed for the cascade of blades, indeed specifically we found the

appearance of negative acoustic energy absorption (i.e. acoustic energy emission) by the

wake in two scenarios of interest. A particular new contribution in this present section

is our detailed study of the size of individual terms PR, PT , PH ,Πω that constitute the

overall outgoing power, which allows us to gain more insight into the consequences of

conversion of energy between the acoustic field and the unsteady vortex sheets that takes

place at the trailing edge of the cascade blades. One of those insights (which can be seen

in Fig. 3.10 and which is described in more detail below) is that energy conversion between

vortical and acoustic field can, in some cases, lead to over-reflection on the cascade – i.e.
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the reflected wave can be larger in amplitude than the incoming wave |R0| > |I|.

Acoustic energy emission from the wake near modal cut-on

In Fig. 3.8 we plot the relative acoustic power PA = PR +PT and the hydrodynamic power

PH as well as their sum (we have rescaled all quantities by PI) on a decibel scale (i.e. we

plot for example 10 log10(PA/PI)). The geometry in this case is taken to be s = 1, d = 0,

and we choose ϕ = 4π/3 and M = 0.75.

Whenever the black curve (marked with stars) rises above 0 in the graph, we have

PH + PA > PI , i.e. the acoustic energy absorbed by the wake Πω must be negative.

Interestingly, we observe this phenomenon at those frequencies just before radiation modes

σ±m become cut-on. In the figure these cut-on values of the reduced frequency Ω are

highlighted by the red vertical dashed curves – the first one of these corresponds to the red

dashed line in the dispersion diagram in Fig. 3.2. The following trend becomes apparent

(as was also observed by Glegg (1999, §5.3) for the purely acoustic part of the power): just

before a new mode becomes cut-on the hydrodynamic power rises and the acoustic power

falls, but sometimes their sum reaches values greater than the incoming power. This is

followed by a rapid decay in hydrodynamic power and an increase in acoustic power as the

frequency is increased further. Indeed, we may also infer from this figure that for larger

frequencies Ω the hydrodynamic effects (both in terms of PH and Πω) play a significant

role only close to modal cut-on and that the attenuation of sound is especially pronounced

at lower frequencies, which is similar to the observations made by Bechert et al. (1977).

Figure 3.8: The acoustic and hydrodynamic power for varying incident frequency (dB
scale, i.e. we plot for example 10 log10(PA/PI)). The vertical red dashed lines highlight
the frequencies where new propagating modes become cut-on.
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Sound power generation and over-reflection

Finally, we highlight that even for fixed frequencies the acoustic energy absorbed by the

wake Πω can become negative for specific values of M and ϕ.

The effect is particularly pronounced for downstream incidence and large subsonic

Mach numbers, and in some cases results in a reflection amplitude that is larger than the

incoming amplitude, i.e. |R0| > |I|. In Figs. 3.9 & 3.10 we plot the relevant quantities

from the energy balance for various values of M and ϕ. The cascade geometry in this case

is α0 = π/6, c = 1 and the incident frequency is ΩM = π/4.

Figure 3.9: Relative acoustic energy absorption by the wake (linear scale), the solid white
line marks Πω = 0.

In Fig. 3.9 we see the energy absorbed by the wake relative to PI (i.e. Πω/PI) on a

linear scale. The solid white lines highlight contours of constant Πω = 0. We observe the

absorbed energy can become negative for a range of angles of incidence, meaning effectively

that there is a flux of acoustic energy out of the wake. As is the case for a single trailing

edge (cf. Rienstra, 1981, Fig. 3), the majority of this region of acoustic energy emission

occurs when the waves are incident from downstream (i.e. when sin(ϕ− α0) > M sinα0).

It is precisely in these regions that amplification of the outgoing acoustic power can occur.

Indeed looking at Fig. 3.10 (which shows the relative outgoing acoustic power, and the

reflected sound power on a decibel scale) we observe that for large Mach numbers, and

when ϕ− α0 ≈ 105◦, this amplification is indeed observed in practice. In fact, we find in

Fig. 3.10b that for a part of this parameter region we even have PR > PI , i.e. |R0| > |I|,
which means that the incident wave is over-reflected.

We also observe in Fig. 3.10a that there is significant attenuation of sound over a large

range of directions of incidence. This attenuation is due to the conversion of sound into

107



the wake through the shedding of unsteady vorticity at the trailing edge, and as might be

expected the attenuation is found to be greater for larger Mach numbers.

Finally, we highlight that in Fig. 3.10b for every fixed value of M the four dark regions

contain isolated zeros of PR at ϕ = ϕ̃0, π, ϕ̃π, 0 in this order as described in §3.4.1 (i.e. for

any fixed value of M the ratio PR/PI takes the value −∞ on the decibel scale at four

distinct values of ϕ).

(a) Total outgoing sound power, where the solid red line marks PR + PT = PI .

(b) Reflected sound power, where the solid red line marks PR = PI .

Figure 3.10: Relative outgoing sound powers (dB scale).
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3.5 Conclusions

In this chapter we studied the energy balance for a cascade of flat plates in uniform

subsonic mean flow. We showed that the outgoing power is composed of acoustic and

hydrodynamic contributions and a term facilitating energy exchange between the wake

and acoustic field, all of which, in general, yield a non-negligible contribution to the

outgoing energy flux. Specifically, we provided numerical evidence that there is significant

attenuation of sound over a large region of Mach numbers and angles of incidence for

incoming sound waves, and that this effect is particularly pronounced at low frequencies.

We also found numerical evidence of sound power generation when the waves are incident

from downstream and showed the generated power can result in a reflected wave with

amplitude greater than the incident one.

Finally, we showed that this energy balance can be used to understand symmetries

of the field in the angle of inclination of the wave fronts with respect to the cascade face

when there is no mean flow as well as the effect of zero acoustic reflection at certain angles

of incidence with mean flow.
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List of symbols

Symbol Description

(kx, ky) Non-dimensional wave vector of the incident field.

B Amplitude of the hydrodynamic mode.

E Acoustic energy density.

M Mach number of the uniform mean flow.

PH Power carried by the hydrodynamic mode to x = +∞.

PI Incident sound power.

PU , PD Acoustic sound powers radiated to x = ±∞ respectively.

P t
j , P

r
j Transmitted and reflected modal pressures.

Um, Dm Up-/Downstream amplitudes of acoustic modes in the scattered field.

Ω Reduced frequency.

Πω Power absorbed by the wake.

α0 Cascade stagger angle.

β Prandtl–Glauert number of the mean flow.

η First order unsteady displacement of the wake.

I Acoustic intensity (acoustic energy flux).

U Velocity field of the uniform mean flow.

u Unsteady velocity field.

I Time averaged acoustic energy flux.

φ Spatial component of unsteady velocity potential.

ρ Unsteady density field.

σ Interblade phase angle.

ũ Velocity field of the full flow.

ρ̃ Density field of the full flow.

p̃ Pressure field of the full flow.

ϕ Angle of inclination of the normal to the incident wavefronts.

c Leading edge separation of blades, c =
√
s2 + d2.

p Unsteady pressure field.

z∗ Complex conjugate of z ∈ C.
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Chapter 4

Oversampled collocation methods for

boundary element methods in two

dimensions

4.1 Introduction

Following the treatment of scattering problems by analytical techniques in the previous

two chapters, we shall now focus on the study of numerical methods. Specifically, in this

chapter we will study the solution of wave scattering problems in the boundary integral

formulation which we described in the introduction of this thesis in §1.1.2.

During the recent decade, the concept of oversampling (i.e. taking more observations

than the dimension of the trial space) has found increasing attention in the numerical

analysis community as a method to achieve enhanced reconstruction and function ap-

proximation. In a range of settings it is now understood that the effects of suboptimal

observations can be mitigated and reconstructions stabilised by introducing a sufficient

number of additional observations. As one of the first works in this direction we mention

Adcock and Hansen (2012), who found that oversampling provides a suitable paradigm

for function approximation by sampling from a Riesz basis in a Hilbert space, even when

the sampling and trial spaces are distinct. It was then shown by Adcock et al. (2014)

that oversampling can be used for equispaced Fourier extensions to achieve superalgebraic

convergence in a numerically stable manner (where it is known that no method for the

Fourier extension problem can be both numerically stable and exponentially convergent).

More recently, oversampling was studied in the context of function approximation using

frames by Adcock and Huybrechs (2020) who found it can lead to much-improved accu-

racy in the approximation and help further mitigate ill-conditioning arising from using a

redundant set rather than a basis if an appropriate regularisation is used.
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In the present chapter, we are interested in the study of least-squares oversampling in

collocation methods for Fredholm integral equations arising in wave scattering problems

as described in §1.2.2. The use of collocation methods to solve these types of integral

equations is generally speaking a delicate matter. On the one hand, the discretization

matrix entries are given by lower-dimensional integrals, which makes the methods easier

to implement and permits the use of a wider range of techniques for numerical integration

(see for instance Deaño et al. (2017), Gibbs et al. (2020) and the techniques described in

Chapter 5 of this thesis). On the other hand, at present no general framework for the

convergence analysis of collocation methods exists. This is in stark contrast to Galerkin

methods, for which there is a well-known and wide-ranging convergence theory based

mainly on the coercivity of associated bilinear forms. Even though a general framework

for the convergence analysis of collocation methods is not available, the literature offers

a number of deep insights into convergence properties in specific settings. One of the

most complete studies, by Arnold and Wendland (1983), provides guarantees for optimal

convergence rates for integral equations on 2D smooth Jordan curves for odd degree

spline approximations. Their work is based on a coercivity assumption of the integral

operator with respect to the inner product on Sobolev spaces Hj(Γ), j ≥ 1, and shows

that the corresponding collocation methods are convergent, albeit at a slower rate than

the associated Galerkin methods. These estimates were further extended to even degree

splines on Jordan curves (subject to a specific pseudo-differential form of the integral

operator) by Saranen and Wendland (1985). A unified analysis of spline collocation for

strongly elliptic boundary integral and integro-differential operators is given by Arnold

and Wendland (1985). Recently, there have also been some advances in the analysis of

collocation methods for integral equations on higher dimensional spaces, although these

have been restricted to biperiodic spaces where the use of Fourier series is available. These

include the work by Arens and Rösch (2016) for integral operators with weakly singular

kernels whose singularity can be removed by a transformation to polar coordinates.

In these particular settings it was found that the collocation method converges at

a slower rate than the corresponding Galerkin method with a similar trial space. This

observation has attracted further research by Sloan (1988), Sloan and Wendland (1989)

and Chandler and Sloan (1990), who developed the so-called qualocation method (or

‘quadrature-modified collocation method’), which essentially expresses the inner product

in the Galerkin equations through a discrete quadrature rule that is specifically chosen

to optimise the convergence rate of the overall method. In those results already a linear

amount of appropriately weighted oversampling leads to superconvergence at the same

rate as the Galerkin method, which is very promising. However, this approach leads to

very specific sampling weights that are tuned to the setting of equispaced sampling and

spline spaces on smooth domains in two dimensions.
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A further level of discretisation from qualocation methods leads to fully discrete

methods, for instance Nyström methods as described by Bremer and Gimbutas (2012) and

by Hao et al. (2014) (see also (Meier et al., 2000) for integral equations on unbounded

domains), which can be applied to Fredholm integral equations of the second kind. In

Nyström methods a discrete representation of the integral operator is chosen with great

care and typically tailored quadrature schemes are incorporated to ensure good convergence

properties of the overall method. This means that the discretisation needs to be adapted

to the type of integral equation, and specifically the singular kernel of the integral operator

at hand. Convergence analysis of Nyström methods dates back at least to Anselone (1971)

and further details in the case of integral operators with continuous kernel can be found

in the books by Anselone (1971), Atkinson (1997) and Kress (1999, Chapter 12). The case

of integral operators with weakly singular kernels has also been subject of intense research

and many relevant cases are now understood from a convergence theory point of view,

such as integral equations arising in two-dimensional wave scattering on smooth obstacles

(Kress, 1999, §12.3) and on obstacles with corners (Colton and Kress, 1998, §3.5). Finally,

scattering by three-dimensional obstacles has also been studied for instance by Ganesh

and Graham (2004), Bruno et al. (2013) and Colton and Kress (1998, §3.6).

In this chapter, we raise the question of how one may improve the convergence

properties of collocation methods by introducing oversampling without having to choose

the collocation points optimally. Intuitively one might expect that, if used appropriately,

any information obtained from additional collocation points can help improve the quality

of the approximate solution. One should expect that this is the case even when sampling

and basis are not perfectly matched, i.e. when collocation points are chosen suboptimally.

This observation was recently verified for a number of practical settings involving wave

scattering problems (for instance in the work of Barnett and Betcke (2018), Huybrechs

and Olteanu (2019) and Gibbs et al. (2020)).

An example of the favourable convergence properties of oversampled collocation is

given in the numerical experiments of Fig. 4.1. Here we plot the error of a boundary

element collocation method for the Helmholtz equation measured in a field point of the

exterior domain (the point is marked in Fig. 4.1b). In the graph, N denotes the number

of basis functions and M is the number of collocation points (more details on the meaning

of M,N are provided in §4.2). In this example the basis functions are piecewise linear

on an equispaced grid and the collocation points are chosen as an equispaced refinement

of this grid. We are specifically interested in the convergence rate of the method if we

choose M as a fixed function (linear, or quadratic) of N . We observe in the figure that

the error for collocation with linear oversampling (M = 3N) initially follows the Galerkin

rate, and eventually follows the standard asymptotic collocation rate (M = N) with a

smaller error constant. We will show that faster-than-linear oversampling may result in
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higher asymptotic convergence rates, slightly higher even than Galerkin in this example

(when M = N2).

(a) Relative error in the field point. (b) The geometry and field point.

Figure 4.1: The convergence properties of oversampled collocation with equispaced grid
points on a smooth scatterer in the single layer potential formulation, with no oversampling
(M = N), linear oversampling (M = 3N), and quadratic oversampling (M = N2). Here
M is the number of collocation points, and N is the number of basis functions.

In this chapter, we provide an introductory but rigorous analysis of the least-squares

oversampled collocation method, motivated by the favourable performance observed in

practice. To the best of our knowledge, this is the first time a rigorous error analysis

for oversampled collocation methods is performed in the context of integral equations.

Although the results focus on some specific cases for one-dimensional integral equations,

we believe the analysis highlights important reasons why least-squares oversampling works

(since it provides an approximation to a Bubnov–Galerkin method), and indicates the

determining factor for optimal rates of oversampling in the integral equation setting (the

quality of approximation in the corresponding trapezoidal rule in the relevant function

spaces).

Structure and main results in this chapter

This chapter contains a number of technical results. In order to allow for better clarity,

before embarking on the main contents of the chapter we outline both the structure as

well as the main ideas of each result in slightly more detail than usual. We introduce

the general formulation of the oversampled collocation method together with necessary

mathematical assumptions for the later analysis in §4.2. This is followed by a discussion

of the principle of oversampling in the context of recent literature in §4.3, and a rigorous

convergence analysis of the method in §4.4. In Thm. 4.4.2 we prove convergence of the
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oversampled collocation method in the energy space for a broad class of boundary integral

operators on smooth domains, subject to using certain regular boundary element spaces that

include commonly used basis functions such as piecewise polynomials (Assumption 4.2.2

and Assumption 4.2.3). The convergence is related to a quadrature error estimate in

a particular form Eq. (4.31), which can be defined and analysed for arbitrary sets of

collocation points. Here, the main point is that the quadrature error may not be small

when M = N , but it can be made arbitrarily small by increasing M relative to N with

minimal assumptions on the points. Though the dimension can be arbitrary, our examples

are limited to integral equations on one-dimensional domains. We illustrate the robustness

in §4.6 by choosing random collocation points.

In Thm. 4.4.7 we analyse convergence rates and show that the approximate solution to

the integral equation computed by an oversampled collocation method may converge to the

true solution at optimal rates in a range of Sobolev spaces, so long as we take a sufficient

amount of oversampling. This result represents an discrete extension of the so-called

Aubin–Nitsche lemma and shows that the lowest possible order of the Sobolev spaces in this

range dictates the highest order of convergence of the corresponding error at a field point.

This demonstrates superconvergence properties of the oversampled collocation method,

though only for domains which are the graph of a smooth parametrisation and with higher

than linear oversampling. The latter is, of course, computationally less desirable as it

increases the computational complexity of the solver.

Finally, in Thm. 4.4.10, based on earlier results by Sloan (1988), Sloan and Wendland

(1989) and Chandler and Sloan (1990) we quantify the impact of the oversampling factor

in the computationally more favourable regime of linear oversampling, where M = JN

for constant J . The analysis is restricted to integral operators of a specific form, but we

note that the integral equations from the single and double layer potential formulations

Eqs. (1.16) & (1.17) on smooth domains in two dimensions, using spline basis functions

and matching (oversampled) equispaced collocation points, satisfy the assumptions of this

theorem. This setting is the most restrictive, but also the most explicit and shows that

the error may decay quite rapidly with J . Though the asymptotic convergence rate in

the linear oversampling regime remains unchanged compared to standard collocation, the

constant involved decays rapidly, for instance like J−3 when using linear splines for the

single layer integral formulation. This is worthwhile because the cost of the oversampled

collocation method increases only linearly with J .

This analysis is followed by a discussion of the results in more general settings in

§4.5, including non-equispaced collocation points and Lipschitz domains. These and the

aforementioned theoretical results are exhibited on a number of numerical examples in §4.6

and we conclude the chapter with a summary of the main insights in this chapter in §4.7.
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4.2 An oversampled collocation method

We first describe the overall set-up and notation before embarking on a more detailed

analysis in §4.4. We follow the notation and preliminaries introduced in §1.2.2, but for

completeness we repeat a few of the most central assumptions and definitions. We are

given an approximation (trial) space SN , with dimSN = N , and a domain Γ which we

assume to be a plane Jordan curve with a regular parametrisation, i.e. it is the graph of

bijective 1-periodic function

z : [0, 1)→ R2

t 7→ (z1(t), z2(t)),
(4.1)

which is at least Lipschitz continuous and has z′(t) 6= 0 almost everywhere. As mentioned

in §1.2.2, in this chapter we shall follow the convention of using plain letters, e.g. x, to

denote coordinates in R2 (rather than bold-face x used in the remainder of this thesis). The

two main cases of concern in this chapter are when z is a diffeomorphism and when Γ is a

polygon (i.e. z is piecewise linear). Here by diffeomorphism we mean that z : [0, 1)→ R2 is

infinitely differentiable (on the periodic domain [0, 1)), z is bijective, and that z′(t) 6= 0 for

all t ∈ [0, 1). In this chapter and throughout the thesis we refer to infinitely differentiable

functions as ‘smooth’. We consider an integral equation on Γ of the form

V u = f,

where V : Hs+α(Γ) → Hs−α(Γ) is a continuous linear map between two Sobolev spaces

on the boundary for some values of s, α ∈ R. In the integral equation f ∈ Hs−α(Γ) is

given and u ∈ Hs+α is the unknown function to be determined. In the usual way we call

2α the order of the operator V and its role will become apparent in later sections of this

chapter, and the limitations on s are described in §4.2.1. We can rewrite this as an integral

equation on the periodic interval I = [0, 1) through the parametrisation z, in the form

Ṽ ũ = f̃ ,

where f̃(t) = f(z(t)), ũ(t) = u(z(t))z′(t) and the action of Ṽ on a function χ : I → C is

defined by

Ṽ χ(τ) = V

(
χ ◦ z−1

z′ ◦ z−1

)
(z(x)), ∀x ∈ I. (4.2)

Note this transformation is well-defined because, by assumption, z′(t) 6= 0 almost every-

where. In the case when z is a diffeomorphism Sobolev-regularity properties are preserved

under the map z in the sense of Eq. (1.12) and thus Ṽ is continuous as a linear map
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Ṽ : Hs+α(I) → Hs−α(I). This means we can reformulate the integral equation on Γ as

an integral equation on [0, 1) in a way which preserves the continuity properties of V

regardless of the value of s, α. When z is just Lipschitz (specifically when z is bijective,

Lipschitz and z′ 6= 0 a.e.), then the continuity properties of V are also preserved under this

reformulation on I = [0, 1) as long as |s± α| ≤ 1 (cf. Chandler-Wilde, Graham, Langdon

and Spence, 2012, Appendix A.3).

Therefore we may, in this chapter, focus on the numerical solution of integral equations

on the periodic interval I = [0, 1) in the form (we drop the tilde for simplicity of notation)

V u = f, (4.3)

where V : Hs+α(I) → Hs−α(I). Assuming s − α > 1/2, such that Hs−α(I) ⊂ C(I), our

method of solution is a ‘least-squares oversampled collocation method’, whereby we proceed

as follows. Firstly, we choose a sequence of approximation spaces SN , N = 1, 2, . . . , with

dimSN = N and with the following approximation property: ∀ξ ∈ Hs+α(I) there exists a

sequence ξN , N = 1, 2, . . . , with aN ⊂ SN such that

lim
N→∞

ξN = ξ in Hs−α(I).

Then, for each value of N , we choose M = M(N) ≥ N distinct collocation points

xm ∈ I,m = 1, . . . ,M , and define an approximation u
(M)
N to the true solution u in the

space SN as follows. We take a basis {φn}Nn=1 for SN (i.e. a spanning set of linearly

independent functions) and we expand

u
(M)
N =

N∑
n=1

anφn, (4.4)

after which the collocation conditions

N∑
n=1

anφn(xm) = V u
(M)
N (xm) = f(xm), m = 1, . . . ,M,

provide an overdetermined M ×N linear system for a = (a1, a2, . . . , aN)T. Motivated by

recent results in approximation theory (Adcock and Huybrechs, 2019, 2020), we consider

a weighted least-squares solution to this system, such that

(
G∗M,NWMGM,N

)
a = G∗M,N f , (4.5)
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where f = (f(x1), f(x2), . . . , f(xM))T, GM,N is an M ×N matrix with entries given by

(GM,N)m,n = V φn(xm), m = 1, . . . ,M, n = 1, . . . , N,

and G∗M,N denotes the conjugate adjoint of GM,N , and WM is an M ×M diagonal matrix

with entries corresponding to distances between sampling points, i.e.

(WM)m =
|xm+1 − xm−1|

2
, m = 1, . . . ,M.

In the above sum it is understood that xN+1 = x1.

This provides us with a sequence {u(M)
N }N∈N (recall that M = M(N) is a function of N)

of approximations to the true solution u, and in this chapter we are specifically interested

in the convergence properties of this sequence as N →∞, when M = M(N) > N . Note,

this method reduces to the standard collocation method when M = N .

4.2.1 Mathematical assumptions

We focus our attention on integral operators V with the following mapping properties:

• V is a continuous linear map

V : Hs+α(I)→ Hs−α(I) (4.6)

for some α ∈ R and any s ∈ R with |s| ≤ s0, some fixed constant s0.

• The inverse of V is a well-defined continuous linear map

V −1 : Hs−α(I)→ Hs+α(I) (4.7)

for any s ∈ R with |s| ≤ s1, some fixed constant s1.

In the usual way we call 2α the order of the operator. For simplicity we write in the

following analysis H t = H t(I).

In particular, on [0, 1), we use the following definitions of the Sobolev norm for f ∈ L2

as we described in §1.2.2:

‖f‖s = ‖f‖Hs([0,1)) :=

(∑
m∈Z

[m]2s|f̂m|2
)1/2

, (4.8)
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where

f̂m :=

∫ 1

0

e−2πimtf(t)dt, and [m] :=

1, if m = 0,

|m|, if m 6= 0.
(4.9)

Note that the Fourier coefficients of f ∈ L2 are well-defined since on compact domains

L2 ⊂ L1. Furthermore, we use the following definition of the L2-duality pairing for

f ∈ Hs, g ∈ H−s ∩ L2:

〈f, g〉 :=
∑
m∈Z

f̂mĝm =

∫ 1

0

f(x)g(x)dx.

We also use the following definition for the Hs-inner product which is consistent with the

definitions of the Sobolev norms in Eq. (4.8):

〈f, g〉s = 〈f, g〉Hs([0,1)) =
∑
m∈Z

[m]2sf̂mĝm. (4.10)

By density of L2 in Hs for any s ∈ R these definitions of the Sobolev norms, inner products

and pairing extend by continuity to arbitrary elements of Hs, and H−s respectively. Note

that in §4.4.2 we will also make use of the expression

‖f‖s = sup
g∈C∞
‖g‖−s=1

|〈f, g〉|, (4.11)

which follows immediately from Eq. (4.8). Moreover, it will be helpful to introduce the

following notation for the operator norm of a map V : Hs → H t, with s, t ∈ R:

‖V ‖s→t = sup
‖f‖s=1

‖V f‖t. (4.12)

Example 4.2.1 (Integral formulations of the Helmholtz equation, see Eqs. (1.16) &

(1.17)). In §1.2.2 we already introduced the single- and double-layer formulations of the

exterior Dirichlet problem of the Helmholtz equation on a Lipschitz domain Ω+. Suppose

Γ = ∂Ω+ is the image of a map z as described in Eq. (4.1). Let us follow the notation of

§1.2.2 and denote by S,D the single and double layer operators which are, away from the

resonant frequencies mentioned in Thm. 1.2.9, such that the following maps are continuous
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isomorphisms of the relevant spaces

S : Hs− 1
2 (Γ)→ Hs+ 1

2 (Γ)

1

2
I +D : Hs+ 1

2 (Γ)→ Hs+ 1
2 (Γ),

for all s ∈ R if Ω+ is smooth, and for all |s| ≤ 1/2 if Ω+ is Lipschitz. Thus, away from

resonant frequencies, the following holds:

• If z is bijective, infinitely differentiable and with z′(t) 6= 0,∀t ∈ I, then the integral

equations Eqs. (1.16) & (1.17) can be reformulated using the parametrisation z on the

domain I = [0, 1) as described in Eq. (4.2) and the resulting integral equations on I

are of the form Eq. (4.3) with an integral operator V satisfying assumptions Eqs. (4.6)

& (4.7) for all s ∈ R with orders 2α = −1 (for the single layer formulation) and

2α = 0 (for the double layer formulation) respectively.

• If z is bijective, Lipschitz and with z′ 6= 0 a.e., then the single layer integral equation

Eq. (1.16) can be reformulated on I as above, and the resulting mapped integral

operator V satisfies assumptions Eqs. (4.6) & (4.7) for |s| ≤ 1/2 with 2α = −1.

We suppose that the sequence of approximation spaces SN , N = 1, 2, . . . , satisfies the

following properties: There is a sequence of ‘mesh sizes’ h = h(N) > 0 with limN→∞ h(N) =

0 and non-negative real numbers l,m > 0 such that SN ⊂ Hm+1/2 and the following

assumptions are satisfied:

Assumption 4.2.2 (Approximation property). For fixed t ≤ s ≤ l and t < m+ 1
2

there

exists a constant c such that for any v ∈ Hs, there is a sequence χN ∈ SN such that

‖v − χN‖t ≤ chs−t‖v‖s, ∀N ∈ N. (4.13)

Moreover for any fixed σ < m+ 1/2 there is such a sequence χN which satisfies Eq. (4.13)

for all t > σ, i.e. which can be chosen independently of t.

Assumption 4.2.3 (Inverse property). For given t ≤ s ≤ m+ 1
2
, there exists a constant

C such that for all χN ∈ SN ,

‖χN‖s ≤ Cht−s‖χN‖t, ∀N ∈ N.

These spaces are typically called (l,m)-regular boundary element spaces with the

inverse assumption in the sense of Babuška and Aziz (1972, Section 4.1) . Note we followed

the convention by Hsiao et al. (2017, p. 38) for one-dimensional domains for the upper

bounds m+ 1/2 on the Sobolev indices in the above assumptions, which is different from

the case of approximation spaces for two-dimensional domains to reflect the difference in
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Sobolev-regularity of piecewise polynomial functions on subsets of R and R2. This has no

further effect on the remainder of this chapter, but is convenient for the following example.

Example 4.2.4 (Spline spaces on ρ-quasiuniform mesh).

Let ∆N = {0 = x1 < x2 < · · · < xN < 1} , N = 1, 2, . . . , be a sequence of ρ-quasiuniform

meshes for some ρ > 0, i.e. such that for all N ≥ 1:

max
1≤j≤N

|xj+1 − xj| ≤ ρ min
1≤j≤N

|xj+1 − xj|,

where it is understood that xN+1 = x1. For each N let SN be the space of all 1-periodic,

d− 1 times continuously differentiable piecewise polynomials of degree d ∈ N subordinate

to the partition ∆N . Then the sequence SN , N = 1, . . . , satisfies all the aforementioned

assumptions on our approximation spaces with h(N) = N−1, l = d + 1 and m = d. We

call such a sequence of spaces henceforth ‘smoothest splines of degree d’.

A proof of these properties for splines on uniform meshes can be found in (Saranen

and Vainikko, 2013, §13.3) and an extension to quasiuniform meshes is given in (Arnold

and Wendland, 1983, pp. 352-353 & pp. 359-360).

4.2.2 From least-squares to a discrete Bubnov–Galerkin method

Oversampled collocation leads to a rectangular linear system and this system is solved in

a least-squares sense, recall (4.5). In view of the chosen weights, we will see that these

normal equations have a continuous limit as M → ∞ for fixed N . However, that limit

differs from the classical Galerkin method of the same integral equation. The latter leads

to the orthogonality conditions

〈χN , V uN〉 = 〈χN , f〉, ∀χN ∈ SN . (4.14)

The central observation in the following analysis is that the least-squares system

Eq. (4.5) amounts to a discrete Bubnov–Galerkin method instead, in the following sense.

Let ∆M = {0 ≤ x1 < x2 < · · · < xM < 1} be the collocation points and let u
(M)
N ∈ SN

be the least-squares collocation approximation to the true solution u in the sense of

Eq. (4.4)–(4.5), then we note that Eq. (4.5) is equivalent to〈
V χN , V u

(M)
N

〉
M

= 〈V χN , V u〉M , ∀χN ∈ SN . (4.15)

Here we defined the discrete inner product to be

〈f, g〉M =
M∑
j=1

|xj+1 − xj−1|
2

f(xj)g(xj), (4.16)
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where it is understood that |xN+1 − xN−1| = x1 + 1 − xN−1.The ‘discrete orthogonality

condition’ Eq. (4.15) plays a central role in the analysis of §4.4. To see the equivalence of

Eq. (4.5) and Eq. (4.15) note that the linear system Eq. (4.5) can be written line-for-line

as

M∑
m=1

N∑
n=1

(
G∗M,N

)
j,m

(WM)m (GM,N)m,n an =
M∑
m=1

(
G∗M,N

)
j,m

(WM)m fm, j = 1, . . . , N.

Substituting the entries of GM,N ,WM yields the equivalent expression

M∑
m=1

N∑
n=1

V φj(xm)
|xm−1 − xm+1|

2
V φn(xm)an =

M∑
m=1

V φj(xm)
|xm−1 − xm+1|

2
fm, j = 1, . . . , N,

⇐⇒
〈
V φj, V u

(M)
N

〉
M

= 〈V φj, V u〉M , j = 1, . . . , N.

Recalling that {φn}Nn=1 is a basis for SN we can immediately conclude that the final line is

indeed equivalent to Eq. (4.15).

Remark 4.2.5. Note that, compared to the classical Galerkin orthogonality conditions (4.14),

the discrete conditions Eq. (4.15) feature an additional integral operator V in the first

argument of the inner product. This is the case both in the left hand side and in the right

hand side of the equation: the integral equation is projected using the basis {V χN}χN∈SN
rather than {χN}χN∈SN . If V has negative order, then the former is smoother than the

latter and that underlies some of the differences in convergence rates between Galerkin and

the large oversampling limit of the collocation method.

Remark 4.2.6. One might also wish to consider a discretisation of the standard Galerkin

method Eq. (4.14), which would result in the discrete orthogonality conditions〈
χN , V u

(M)
N

〉
M

= 〈χN , V u〉M , ∀χN ∈ SN . (4.17)

We call this the ‘modified oversampled collocation method’ because instead of weighted

normal equations Eq. (4.5) it can be formulated as

(
B∗M,NWMGM,N

)
a = B∗M,NWM f ,

where

f = (f(xm))Mm=1 , GM,N = (V φn(xm))M,N
m=1,n=1 ,

BM,N = (φn(xm))M,N
m=1,n=1 , WM =

|xm+1 − xm−1|
2

For this method, most of the analysis in the following sections can be conducted in a similar
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fashion. However, in this case the assumption of invertibility of V is no longer sufficient to

guarantee uniform ellipticity of the corresponding discrete forms and it would be necessary

to impose a discrete inf-sup assumption on the operator V (similar to what would be

required for the guaranteed convergence of the continuous Galerkin method Eq. (4.14)).

In this thesis our attention shall be focused on the least squares oversampled collocation

method and we will not discuss the modified form in detail.

4.3 Oversampling in collocation methods and in

approximation on Hilbert spaces

In this section, we provide a brief discussion concerning the connection between our

approach for least-squares oversampling in collocation methods and least-squares oversam-

pling for function reconstruction on Hilbert spaces as described by Adcock and Hansen

(2012). It turns out that the underlying principle, which allows oversampling to improve

the quality of approximation, is closely related between these two cases. In particular, the

mechanism underpinning the success of oversampling in both methods is the following:

Observation 4.3.1. Least-squares oversampling leads to improved approximation because

the discrete least-squares system constitutes an approximation to an exact continuous

orthogonality condition on the relevant Hilbert space, see Eqs. (4.21) & (4.22) below.

4.3.1 Stable function approximation on Hilbert spaces

Let us begin by reviewing the method for stable function approximation on Hilbert spaces

described by Adcock and Hansen (2012): Let T = {ψn}n∈N, S = {φn}n∈N be two distinct

Hilbert bases (i.e. complete linearly independent orthonormal sets) for H and let f ∈ H.

Our goal is to find the best approximation of f in SN = span{φn}Nn=1 from observations

in TM = span{ψm}Mm=1, i.e. from {〈ψm, f〉}Mm=1, where M ≥ N and 〈 · , · 〉 denotes the

inner product on H. Given no prior information about the relation between S and T the

samples {〈ψm, f〉}Mm=1 may be suboptimal, and it is challenging to find an optimal strategy

for approximating f in this way.

The idea presented by Adcock and Hansen (2012) is to expand f
(M)
N =

∑N
n=1 f̂

(M)
n φn

and to use a least-squares solution of an overdetermined linear system of equations in

order to determine the coefficients f̂
(M)
n . The overdetermined linear system is

GM,N f̂ (M) = b, (4.18)

where f̂ (M) =
(
f̂

(M)
1 , . . . , f̂

(M)
N

)T

and (GM,N)mn = 〈ψm, φn〉, bm = 〈ψm, f〉, for m =
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1, . . . ,M, n = 1, . . . N. The least-squares solution to Eq. (4.18) is

G∗M,NGM,N︸ ︷︷ ︸
=(
∑M
m=1〈φi,ψm〉〈ψm,φj〉)

f̂ (M) = G∗M,Nb.︸ ︷︷ ︸
=(
∑M
m=1〈φi,ψm〉〈ψm,f〉)

, (4.19)

By Parseval’s identity we know that for any g, h ∈ H

lim
M→∞

M∑
m=1

〈g, ψm〉〈ψm, h〉 = 〈g, h〉. (4.20)

Thus the N ×N system in Eq. (4.19) converges, as M →∞, to the following limit:

N∑
n=1

〈φj, φn〉f̂ (∞)
n = 〈φj, f〉, j = 1, . . . N. (4.21)

This is precisely the condition for the orthogonal projection of f onto SN , i.e.

f
(∞)
N = argminχN∈SN‖f − χN‖.

This means, by taking M = M(N) sufficiently large, we can always recover the best

approximation, even with suboptimal samples in a different basis T . Note, as indicated

in Observation 4.3.1, the central reason why this works is because of Parseval’s identity

Eq. (4.20) which ensures that the least-squares system approximates the appropriate inner

product on H.

4.3.2 Least-squares oversampled collocation method

A similar mechanism ensures the success of least-squares oversampling for collocation

methods as introduced in Eq. (4.5). Indeed, recall from Eq. (4.15) that the solution

u
(M)
N ∈ SN of the least-squares collocation method is uniquely characterised by the

following (discrete) orthogonality condition〈
V χN , V u

(M)
N

〉
M

= 〈V χN , V u〉M , ∀χN ∈ SN ,

where the discrete inner product 〈·, ·〉M is as defined in Eq. (4.16). The main insight

is that under a suitably distributed choice of collocation points ∆M we have an error

estimate of the form Eq. (4.26) below, which ensures that these discrete inner products

approximate the continuous L2-inner product as M →∞. In particular, for any fixed N

we will show that, under suitable assumptions on ∆M , we have limM→∞ u
(M)
N = u

(∞)
N for
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some u
(∞)
N ∈ SN which satisfies〈

V χN , V u
(∞)
N

〉
L2

= 〈V χN , V u〉L2 , ∀χN ∈ SN . (4.22)

These are the Bubnov–Galerkin orthogonality conditions and we know that these yield a

quasi-optimal approximation to u in SN with respect to the norm on the energy space of

V :

‖u− u(∞)
N ‖2α ≤ C inf

χN∈SN
‖u− χN‖2α.

Thus the reason oversampling works for collocation methods is that the trapezoidal rule

Eq. (4.26) ensures that the least-squares system approximates the L2-inner product in the

limit M →∞. A central question we study in this chapter is how large M = M(N) needs

to be, as N increases, in order to ensure u
(M)
N converges to u at optimal rates in N .

4.4 Convergence analysis of the oversampled colloca-

tion method

As mentioned above the central idea in the analysis is to regard the oversampled collocation

method as a discrete version of a Bubnov–Galerkin method, by which we mean the

approximation uN ∈ SN which is defined through the continuous orthogonality conditions

〈V χN , V uN〉L2 = 〈V χN , f〉L2 , ∀χN ∈ SN . (4.23)

A combination of Strang-type estimates (cf. Ciarlet, 2002, Thms. 4.1.1 & 4.2.2) and the

error of the trapezoidal rule for the inner product allows us to study the convergence

rates of our methods. We begin by focusing on the case when u, f ∈ C∞per(I) and when

assumptions Eqs. (4.6) & (4.7) hold for any s ∈ R i.e. when

V : Hs+α → Hs−α (4.24)

is a continuous isomorphism for all s ∈ R.

In the case of the boundary integral equations Eqs. (1.16) & (1.17) we have already

seen a useful way of assessing the error in Fig. 4.1. Specifically, in the potential formulation

of the exterior Dirichlet problem, the solution φ : Ω+ → C is expressed in the form

φ(x) =

∫ 1

0

k(x, z(t))u(t) dt, x ∈ Ω,

where k(x, y) equals either G(x, y) or ∂nyG(x, y) with G(x, y) being the Green’s function
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of the Helmholtz equation. Note in the above u : I → C denotes the true solution to

the integral equation formulated on the boundary as discussed in Example 4.2.1. The

kernel k(x, y) is a smooth function away from x = y, which means we can estimate, for

any s ∈ R,

|φN(x)− φ(x)| =
∣∣∣∣∫ 1

0

k(x, z(t)) (uN(t)− u(t)) z′(t) dt

∣∣∣∣ =

∣∣∣∣〈k(x, z(·))z′(·), uN − u
〉
L2(I)

∣∣∣∣
≤ ‖k(x, z(·))z′(·)‖s‖u− uN‖−s, x ∈ R2 \ Γ. (4.25)

Since y 7→ k(x, y) ∈ C∞(Γ) for all x ∈ R2 \ Γ the convergence rate of the approximation

φN(x) to φ(x) is governed by the fastest convergence of ‖u− uN‖−s in any Sobolev norm

for s ∈ R. We shall see in the coming two sections that optimal convergence rates can be

obtained in low order Sobolev spaces for sufficient amounts of oversampling. It will later

become apparent in §4.5.2 that the smoothness of the domain boundary affects the range

of Sobolev spaces one can consider, hence limiting the fastest convergence rates that can

be achieved.

4.4.1 Strang estimate for convergence on energy space

The first step in the analysis is to show that already a small amount of oversampling is

sufficient to guarantee convergence of the least-squares oversampled collocation method

on the energy space H2α. As before, we let ∆M = {0 ≤ x1 < · · · < xM < 1} be the

collocation points. As the dimension N of the approximation space SN = Sl,mh increases,

we also increase the number of collocation points M = M(N) in a predefined way and we

assume that there is an error estimate for the proximity of the discrete inner product to

a continuous L2 pairing in the following form. For some r, s > 0 there is a sequence of

constants Er,s(∆M) > 0, such that for any f, g ∈ Hmax{s,r} we have

|〈g, f〉 − 〈g, f〉M | ≤ Er,s(∆M) (‖f‖r‖g‖s + ‖f‖s‖g‖r) . (4.26)

We will derive such error estimates in a number of settings further on in Lemma 4.4.5 and

Lemma 4.5.1.

Proposition 4.4.1. If Eq. (4.26) holds for s, r with max{r, s} < m + 1/2 − 2α, and if

∆M = ∆M(N) is chosen such that

lim
N→∞

Er,s(∆M)h−(r+s) = 0,

where h = h(N), then the bilinear forms (f, g) 7→ 〈V f, V g〉M are uniformly SN -elliptic,
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for N ≥ N0, some N0 > 0, meaning they satisfy

γ‖χN‖2
2α ≤ 〈V χN , V χN〉M , ∀χN ∈ SN ,

for some positive constant γ independent of N ≥ N0.

Proof. By Eq. (4.24) we know that for any χN ∈ SN

‖χN‖2
2α ≤ ‖V −1‖2

0→2α (|〈V χN , V χN〉M |+ |〈V χN , V χN〉 − 〈V χN , V χN〉M |)
≤ ‖V −1‖2

0→2α (|〈V χN , V χN〉M |
+2Er,s(∆M)‖V ‖r+2α→r‖V ‖s+2α→s‖χN‖r+2α‖χN‖s+2α) ,

where in the above we used the notation ‖ · ‖0→2α for the operator norm of a linear map

from H0 to H2α as introduced in (4.12). By the inverse property of SN (Assumption 4.2.3)

we have, whenever max{r, s} < m+ 1/2− 2α,

‖χN‖r+2α‖χN‖s+2α ≤ Ch−(r+s)‖χN‖2
2α,

and therefore(
1− C̃Er,s(∆M)h−(r+s)

)
‖χN‖2

2α ≤ ‖V −1‖2
0→2α |〈V χN , V χN〉M | .

Hence, since limN→∞ Er,s(∆M)h−(r+s) = 0, the result follows.

Theorem 4.4.2 (Strang-type bound for convergence in H2α). Suppose our trial spaces

SN , are (l,m)-regular boundary element spaces satisfying the inverse property according

to Assumptions 4.2.2 & 4.2.3, for some l,m > 0. If Eq. (4.26) holds for s, r with

max{r, s} < m+ 1/2− 2α, and ∆M = ∆M(N) is chosen such that

lim
N→∞

Er,s(∆M)h−(r+s) = 0,

then there are constants N0, C > 0 independent of M,N, u such that, for all N ≥ N0,

‖u(M)
N − u‖2α ≤ Chl−2α‖u‖l.

This means the optimal convergence rate in H2α is achieved.

Proof. We begin with the following estimate on the energy space H2α:

‖u(M)
N − u‖2α ≤ inf

χN∈SN

{
‖u− χN‖2α + ‖u(M)

N − χN‖2α

}
.

We can estimate the second term using Prop. 4.4.1 and the discrete orthogonality condition
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Eq. (4.15) as follows

γ‖u(M)
N − χN‖2

2α ≤
∣∣∣〈V (u

(M)
N − χN), V (u

(M)
N − χN)

〉
M

∣∣∣
=
∣∣∣〈V (u− χN), V (u

(M)
N − χN)

〉
M

∣∣∣
≤
∣∣∣〈V (u− χN), V (u

(M)
N − χN)

〉∣∣∣
+
∣∣∣〈V (u− χN), V (u

(M)
N − χN)

〉
−
〈
V (u− χN), V (u

(M)
N − χN)

〉
M

∣∣∣
≤ ‖V ‖2

2α→0‖u− χN‖2α‖u(M)
N − χN‖2α

+ Er,s(∆M)‖V ‖r+2α→r‖V ‖s+2α→s‖u− χN‖r+2α‖‖u(M)
N − χN‖s+2α

+ Er,s(∆M)‖V ‖r+2α→r‖V ‖s+2α→s‖u− χN‖s+2α‖‖u(M)
N − χN‖r+2α

(4.27)

Using the inverse property of SN (Assumption 4.2.3) we find if max{r, s} < M + 1/2− 2α,

γ̃‖u(M)
N − χN‖2α ≤‖u− χN‖2α + Er,s(∆M)h−s‖u− χN‖r+2α + Er,s(∆M)h−r‖u− χN‖s+2α

for some γ̃ > 0 independent of N,∆M , u. Therefore, since limN→∞ Er,s(∆M)h−(r+s) = 0,

we have, for N sufficiently large,

γ̃‖u(M)
N − χN‖2α ≤ ‖u− χN‖2α + hr‖u− χN‖r+2α + hs‖u− χN‖s+2α.

By the approximation property of SN (Assumption 4.2.2) the result follows.

We note that Thm. 4.4.2 implies optimal convergence in Sobolev norms that are of

higher order than the energy space by the following argument.

Corollary 4.4.3. Let SN ,∆M = ∆M(N) satisfy the assumptions of Thm. 4.4.2, then for

all 2α < t < m+ 1/2 we have optimal convergence in the sense that there are constants

C,N0 > 0 independent of N,∆M , u, such that, for all N ≥ N0,

‖u(M)
N − u‖t ≤ Chl−t‖u‖l.

Proof. Let 2α < t < m+ 1/2, then

‖u(M)
N − u‖t ≤ ‖u− ψN‖t + ‖ψN − u(M)

N ‖t
≤ ‖u− ψN‖t + Ch2α−t‖ψN − u(M)

N ‖2α

≤ ‖u− ψN‖t + Ch2α−t
(
‖ψN − u‖2α + ‖u− u(M)

N ‖2α

)
,

and the result follows by Thm. 4.4.2 and by the uniform approximation property in

Assumption 4.2.2.
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Remark 4.4.4. One can see that the statements in Thm. 4.4.2 and Prop. 4.4.1 are in

fact true for much more general settings, including the case of two-dimensional boundary

integral equations, i.e. when dim Γ = 2, as long as appropriate error estimates for the

discrete inner product similar to (4.26) are available. However, for the purpose of this

thesis we shall remain in the two-dimensional setting.

Although the above statements are phrased in a general form we can use them to make

concrete predictions. We begin by considering equispaced collocation points |xj+1 − xj| =
1/M , for which we have the following error estimate for the L2-inner product as in

Eq. (4.26):

Lemma 4.4.5 (Error in discrete L2 inner product for equispaced sampling). Let ∆M =

{xm = x̃ + j/M}Mm=1 be a set of equispaced collocation points (where it is understood

x+ 1 ≡ x) and fix r > 1/2. For f, g ∈ Hr([0, 1)) let

〈f, g〉M =
1

M

M∑
m=1

f(xm)g(xm),

then there is a constant Cr,s > 0 independent of f, g such that, for any r≥s > 1/2,

|〈f, g〉 − 〈f, g〉M | ≤ Cr,sM
−r
(
‖f‖r‖g‖s + ‖f‖s‖g‖r

)
.

Proof. For completeness the proof is given in Appendix 4.A.

If we now choose SN to be a sequence of smoothest spline spaces of degree d on a

quasi-equispaced mesh (cf. Example 4.2.4) we find the following convergence result for

the oversampled collocation method. Note in particular that here the collocation points

need not match the mesh of the basis functions, i.e. this result reflects the idea that a

small amount of oversampling can guarantee convergence even if the collocation points are

chosen suboptimally.

Corollary 4.4.6. If ∆M are equispaced, SN are smoothest spline spaces of degree d on a

quasi-equispaced mesh, and M = M(N) ≥ Nβ for some β > 1 + 1
2d+1−4α

, then there are

constants C,N0 > 0 independent of u, β such that, for all N ≥ N0,

‖u(M)
N − u‖2α ≤ CN2α−d−1‖u‖d+1.

4.4.2 Superconvergence and the discrete Aubin–Nitsche lemma

Although the results in Thm. 4.4.2 guarantee convergence of the oversampled collocation

method, we have yet to ask at what asymptotic rate we expect this to occur. For continuous

Galerkin methods it is possible to prove superconvergence by a duality argument, the
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so-called Aubin–Nitsche lemma (see Hsiao et al. (2017, §4.3) and Hsiao and Wendland

(1981)). We will demonstrate that a sufficient amount of superlinear oversampling can

achieve such superconvergence for the oversampled collocation method as well.

Theorem 4.4.7 (Discrete Aubin–Nitsche lemma). Let −l ≤ t ≤ 0 and suppose Eq. (4.26)

holds for s, r with max{r, s} < min{m+ 1/2,−t} − 2α, and that ∆M = ∆M(N) is chosen

such that

lim
N→∞

Er,s(∆M)h2α−t−max{r,s} = 0.

Then there are constants C,N0 > 0 independent of u such that, for all N ≥ N0,

‖u(M)
N − u‖t+4α ≤ Chl−t−4α‖u‖l.

Proof. Note we have by the expression for the dual norm Eq. (4.11), for all t ≤ 0,

‖(V ∗V )(u− u(M)
N )‖t = sup

ψ∈C∞
‖ψ‖−t=1

|〈(V ∗V )(u− u(M)
N ), ψ〉|

= sup
ψ∈C∞
‖ψ‖−t=1

|〈V u− V u(M)
N ), V ψ〉|

≤ sup
ψ∈C∞
‖ψ‖−t=1

inf
χN∈SN

(
|〈V u− V u(M)

N , V ψ − V χN〉|+ |〈V u− V u(M)
N , V χN〉|

)
= sup

ψ∈C∞
‖ψ‖−t=1

inf
χN∈SN

(
|〈V u− V u(M)

N , V ψ − V χN〉|

+ |〈V u− V u(M)
N , V χN〉 − 〈V (u− u(M)

N ), V χN〉M |
) (4.28)

≤ sup
ψ∈C∞
‖ψ‖−t=1

inf
χN∈SN

(
‖V ‖2

2α→0‖u− u(M)
N ‖2α‖ψ − χN‖2α

+ Er,s(∆M)‖V ‖r+2α→r‖V ‖s+2α→s‖u− u(M)
N ‖r+2α‖‖χN‖s+2α

+Er,s(∆M)‖V ‖r+2α→r‖V ‖s+2α→s‖u− u(M)
N ‖s+2α‖‖χN‖r+2α

)
.

(4.29)

Here Eq. (4.28) follows from Eq. (4.15), and Eq. (4.29) follows from Eq. (4.26) since

max{r, s} < m+ 1/2− 2α. We now refer back to the approximation property of the basis

spaces SN (Assumption 4.2.2) which guarantees that for any ψ ∈ H−t we have χN ∈ SN ,

such that

‖ψ − χN‖s < Ch−(s+t)‖ψ‖−t

uniformly for all −l < s < m+ 1/2 and s ≤ −t ≤ l. For this choice of χN it also follows
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that

‖χN‖s ≤ ‖ψ − χN‖s + ‖ψ‖s
≤ ‖ψ − χN‖s + ‖ψ‖−t ≤ (1 + Ch−(s+t))‖ψ‖−t ≤ C̃‖ψ‖−t

for some C̃ > 0 independent of ψ. Thus, choosing χN in this way, the right hand side of

Eq. (4.29) is bounded by

˜̃C
(
‖u− u(M)

N ‖2αh
−(2α+t) + Er,s(∆M)

(
‖u− u(M)

N ‖r+2α + ‖u− u(M)
N ‖s+2α

))
,

since max{r, s} < −t − 2α. Now we use Corollary 4.4.3 to conclude, for N sufficiently

large:

‖u− u(M)
N ‖Ht+4α ≤ ˜̃Chl−(4α+t)

(
1 + Er,s(∆M)h2α−t−max{r,s}) ‖u‖Hl

for some constant ˜̃C independent of N,∆M , u and the result follows.

As before, we can use Lemma 4.4.5 to make concrete predictions for equispaced

collocation points ∆M = {x̃+m/M}Mm=1 and approximation spaces SN consisting of degree

d smoothest splines on a quasi-equispaced grid.

Corollary 4.4.8. If ∆M are equispaced, SN are smoothest spline spaces of degree d on a

quasi-equispaced mesh, and M = M(N) ≥ Nβ for some β > 2 + 1
2d+1−4α

, then there are

constants C,N0 > 0 independent of u such that, for all N ≥ N0,

‖u(M)
N − u‖−d−1+4α ≤ CN4α−2d−2‖u‖d+1.

This tells us that just slightly more than quadratic oversampling suffices to achieve

the fastest convergence rate in H−d−1+4α. We can infer similar results for the convergence

rates in ‖ · ‖t+4α for −d− 1 < t ≤ 0.

4.4.3 Exact expression for the error for equispaced spline bases

So far we have tried to keep the analysis fairly general to allow for suboptimal choices

of collocation points. In this section, we are interested in understanding the effects of

oversampling when the collocation points and approximation spaces are chosen in an

optimal way. This is motivated by the desire to understand both the effect of linear

oversampling and the exact rates of superlinear oversampling leading to improvements in

the convergence rate of the method. Ultimately we expect that, with sufficient oversampling,

the least-squares oversampled collocation method recovers the convergence rate of an

associated Bubnov–Galerkin method, and we shall see that quadratic oversampling is
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sufficient in this present setting to achieve this. Specifically, in this section we choose SN to

consist of smoothest splines of degree d on an equispaced grid 0 < x1 < x2 < · · · < xN = 1,

with xn = n/N, n = 1, . . . N , and we let the corresponding collocation points be given by

the following mesh refinement (cf. sketch in Fig. 4.2)

∆M =

{
l + ξj
N

∣∣∣ l = 1, . . . , N, j = 1, . . . , J

}
, ξj = j/J, (4.30)

such that M = JN, J ∈ N, and the discrete inner product is given by

〈f, g〉M =
1

N

N∑
n=1

1

J

J∑
j=1

f

(
l + ξj
N

)
g

(
l + ξj
N

)
. (4.31)

l+ξ1
N

l+ξ2
N

l+ξ3
N

l+1
N

l
N

· · ·· · ·

Figure 4.2: Sketch of the mesh refinement for J = 4.

The approach we take here was first described by Sloan (1988) (see also the work by

Chandler and Sloan (1990) and Sloan (1992)) as a way to study generalised quadrature

rules for the inner product in the Galerkin orthogonality conditions. In the following, we

adapt the results from Chandler and Sloan (1990) to our setting, with the main difference

between our case and theirs being that our test functions are of the form V χN as opposed

to χN . While Chandler and Sloan (1990) were mainly focused on constructing specific

quadrature rules similar to Eq. (4.31) which keep J fixed as N increases, the main novelty

for this section is to use their arguments to understand the behaviour when J = J(N)

varies with N .

In order to facilitate this, we need to make a slightly stronger assumption on V , namely

that it can be expressed in the form

V = V0 +K, (4.32)

where V0 is a constant multiple of an operator that has a Fourier series representation in

the form

V0g(x) =
∑
m∈Z

[m]2αĝme2πimx, (4.33)

and K is a compact perturbation, whose form we will describe in more detail below. In

the above we used the notation [m] which we introduced in Eq. (4.9). This means that we

assume V0 is a pseudo-differential operator whose action maps every Fourier mode to a
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constant multiple of itself. We will consider two types of compact perturbations:

• K : Hs → H t is continuous for any choice of s, t ∈ R. Any integral operator of the

form u 7→
∫ 1

0
g(x, y)u(y) dy with g ∈ C∞per([0, 1)× [0, 1)) has the continuity properties

of K. In particular, the operators S, 1
2
I +D for smooth boundaries Γ with k = 0 (i.e.

for Laplace’s equation) are of the form V0 +K (Sloan, 1992, §3), where α = −1/2, 0

respectively.

• K arising from S̃ = V0 + K on [0, 1) which is the integral operator that comes

from reformulating S for smooth domains and k > 0 through the parametrisation

z : [0, 1)→ R2. The properties of this class are described in Lemma 4.4.9.

Lemma 4.4.9. The integral operator S̃ on [0, 1) which arises when we reformulate S for

smooth domains through the parametrisation z : [0, 1)→ R2 has the form Eq. (4.32), with

α = −1/2 and K that satisfies: KV −1
0 : Hs → Hs+1.25 is continuous for all s ∈ R and the

action of K can be expressed in terms of Fourier modes as follows for every u ∈ L2:

KV −1
0 u(x) =

∑
m∈Z

∑
n∈Z

km,nûme2πinx, x ∈ [0, 1)

where the series converges absolutely uniformly and for every s, t ∈ R there is a constant

Cs such that ∀m,n ∈ Z:

|km,n| ≤ Cs,t

(
(1 + |m|)s+1(1 + |n|)t

+ (1 + |m|)
∑
l∈Z

(1 + |m− l|)−3(1 + |l|)t(1 + |m− n− l|)s
)
.

(4.34)

Proof. These properties were shown by Kress and Sloan (1993), whose original proof of the

continuity property for s→ s+1 can be easily adapted to show continuity for s→ s+1.25.

For completeness these arguments are given in Appendix 4.D.

To begin with, we shall focus on the case when V = V0, since in this case we are able

to find an exact expression for the Fourier coefficients of the error u
(M)
N − u and use this

to derive tight estimates on the convergence rate as shown in Thm. 4.4.10 below. These

results can then be extended to the case V = V0 +K using a perturbation argument as

follows:

• When K : Hs → H t is continuous for any choice of s, t ∈ R the results are valid

verbatim and are proved in Appendix 4.F.

• When K satisfies the properties described in Lemma 4.4.9, the conclusion of the

theorem holds when M ≥ N2 and this is stated and proved in Appendix 4.G.
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Theorem 4.4.10. If the method satisfies the consistency condition d > 2α, then it

converges satisfying the following error estimate,

‖u(M)
N − u‖4α−(d+1) ≤ C

(
M−(d+1)+2α +N−2(d+1)+4α

)
‖u‖d+1,

where C > 0 is a constant depending on d, α, but independent of N,M .

This means that the method converges like

u− u(M)
N = O

(
M−(d+1)+2α +N−2(d+1)+4α

)
,

and hence the fastest possible rate is achieved for M = N2. Moreover, the result also

implies that linear oversampling, M = JN for a constant J ∈ N, leads to an improvement

of the error by a factor of J−(d+1)+2α, so long as J . N . For the single layer potential

with linear splines this means that the error decreases by a factor of J−3 which is indeed

observed in practice, as we show in Fig. 4.4.

Remark 4.4.11. We mentioned in §4.2.2 that one might also consider a modified over-

sampled collocation method which is defined through a modified discrete orthogonality

condition Eq. (4.17) of the form〈
χN , V u

(M)
N

〉
M

= 〈χN , V u〉M , ∀χN ∈ SN , (4.35)

and which corresponds to a discrete version of a standard Galerkin method. The analysis

in this present section can be applied in an analogous way for this modified oversampled

collocation method, and one can prove (under the same consistency assumption d > 2α)

that there is C > 0 such that:

‖u(M)
N − u‖2α−(d+1) ≤ C

(
M−(d+1)+2α +N−2(d+1)+4α

)
‖u‖d+1. (4.36)

We highlight also that one can show a similar convergence estimate as Eq. (4.36) in the case

when V = V0 + K, where V0 takes the form shown in Eq. (4.33) and K : Hs → Hs−2α+1

is continuous as a bounded linear map for all s, t ∈ R. This follows from a standard

argument that is described for instance in Arnold and Wendland (1985, §3) and reproduced

for completeness in Appendix 4.E.

Proof of Thm. 4.4.10. To begin with we focus on the case V = V0. An argument extending

this result to the case V = V0 +K is provided in Appendix 4.F. We follow Chandler and

Sloan (1990, §2) and Sloan (1992, §7) and introduce a convenient basis for SN (where we

136



write ΛN = {µ ∈ Z : −N/2 < µ ≤ N/2} and Λ∗N = ΛN \ {0}):

ψµ(x) =

1, µ = 0,∑
k≡µ(N)(µ/k)d+1e2πikx, µ ∈ Λ∗N .

(4.37)

Here and in the following we write k ≡ µ(N) to mean k is congruent to µ modulo N .

If d = 0 the Fourier series in the above expression and in the following analysis is not

absolutely convergent and has to be understood as the limit of the symmetric partial sums

(cf. Sloan, 1992, p. 326). We highlight that under this convention our results and proofs

apply to the case d = 0 in the same manner. Note also that ψµ, as defined in Eq. (4.37),

is indeed a smoothest spline of the given degree d since its Fourier coefficients satisfy the

appropriate recurrence relation,

kd+1v̂k = µd+1v̂µ, if k ≡ µ(N).

In many ways the basis {ψµ}µ∈ΛN behaves like a Fourier basis, in particular

ψµ(x+ n/N) = e2πiµn/Nψµ(x),

which allows us to treat the leading order terms in the oversampled collocation system

exactly: let us write our oversampled collocation approximation as

u
(M)
N =

∑
ν∈ΛN

aνψν ,

and let the true solution to Eq. (4.3) be u(x) =
∑

m∈Z ûm exp(2πimx). The discrete

orthogonality conditions Eq. (4.15) are∑
ν∈ΛN

〈V ψµ, V ψν〉M aν = 〈V ψµ, V u〉M , µ = 1, . . . N. (4.38)

One can then show, after a few steps of algebra which we provide in Appendix 4.C, that

for µ ∈ ΛN :

aµ=


1
J

∑J
j=1

∑
n≡0(N)[n]2αûn exp

(
n
N
ξj
)
, if µ = 0,

D
(
µ
N

)−1 1
J

∑J
j=1

∑
n≡µ(N)

[
n
µ

]2α

exp
(
2πin−µ

N
ξj
)
ûn

(
1 + Ω

(
ξj,

µ
N

))
, if µ 6= 0,

(4.39)

where

D(y) =
1

J

J∑
j=1

|1 + Ω (ξj, y)|2 , Ω(ξ, y) = |y|d+1−β
∑
l 6=0

1

|l + y|d+1−β e2πilξ.
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In consequence it follows that

aµ − ûµ =

ZN , if µ = 0,

−E(µ/N)
D(µ/N)

ûµ +RN(µ), if µ 6= 0,
(4.40)

where

ZN =
∑
n∈Z
n6=0

[nM ]2α ûnM ,

E(y) = |y|d+1−2α
∑
l 6=0

1

|lJ + y|d+1−2α
+

1

J

J∑
j=1

|Ω(ξj, y)|2 ,

RN(µ) = D
( µ
N

)−1
(∑

k 6=0

[
µ+ kM

µ

]2α

ûµ+kM

+
∑
k 6=0

[
µ+ kN

µ

]2α

ûµ+kN

∣∣∣ µ
N

∣∣∣d+1−2α ∑
l≡k(J)
l 6=0

∣∣∣∣ 1

l + µ/N

∣∣∣∣d+1−2α
)
.

The details of this derivation require only very minor modification compared to the

discussion in Chandler and Sloan (1990, §2), but for completeness the arguments are

provided in Appendix 4.C. We show in Appendix 4.C in Eq. (4.64) that

D(y) ≥ 1, ∀y ∈ [−1/2, 1/2],

for any choice J = J(N) : N>0 → N>0. This means the oversampled collocation system is

well-posed and stable for any integer rate of oversampling M = J(N)N . The expression

for the error in the small frequency Fourier modes in Eq. (4.40) determines the fastest

possible rate of convergence in any Sobolev norm, because the following ‘projection’ PN

onto the low-frequencies,

PN : f 7→
∑
µ∈ΛN

f̂µψµ(x),

satisfies (Saranen and Vainikko, 2013, Eq. (13.11))

‖f − PNf‖s ≤ CsN
s−t‖f‖t, ∀s+ 1/2 < t ≤ d+ 1. (4.41)

We can use the expressions in Eq. (4.40) analogously to Sloan (1992, Eqs. (7.38)-(7.39))
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and show that, subject to the consistency assumption d > 2α,

|ZN |2 +
∑
µ∈Λ∗N

|µ|2(4α−d−1)|RN(µ)|2 (4.42)

≤ Cα,r
(
M−2r+4α‖u‖2

r +N−2r−2(d+1)+8α‖u‖2
r

)
, ∀r > 2α + 1/2.

Thus, by taking r arbitrarily large, we can ensure an arbitrarily fast rate of decay in the

terms arising from ZN , RN(µ). Therefore, the leading order error term is due to E(µ/N),

and we can in fact estimate this one as well:∣∣∣∣E(µ/N)

D(µ/N)
ûµ

∣∣∣∣2 ≤ Cα,d

(
|M |4α−2(d+1) |µ|2(d+1)−4α + |N |8α−4(d+1) |µ|4(d+1)−8α

)
|ûµ|2 , (4.43)

if d > 2α. Thus combining Eqs. (4.42) & (4.43) we have:

‖u(M)
N − PNu‖2

4α−(d+1) =
∑
µ∈ΛN

[µ]2(4α−(d+1)) |aµ − ûµ|2
(

1 +
∑
l 6=0

[
µ

µ+ lN

]4(d+1)−8α
)

≤ C
∑
µ∈ΛN

[µ]2(4α−(d+1)) |aµ − ûµ|2 (4.44)

≤ C̃
(
M4α−2(d+1)‖u‖2

2α +N8α−4(d+1)‖u‖2
d+1

+M−2r+4α‖u‖2
r +N−2r−2(d+1)+8α‖u‖2

r

)
, ∀r > 2α + 1/2.

(4.45)

Taking r = d+ 1 and combining this with the projection estimate Eq. (4.41) yields the

desired bound

‖u(M)
N − u‖4α−(d+1) ≤ C

(
M2α−(d+1) +N−2(d+1)+4α

)
‖u‖d+1.

4.5 Oversampled collocation in specific settings

In the previous section, we focused our attention mainly on smooth boundaries with

equispaced collocation points, but in this section we aim to demonstrate that a slight

amount of oversampling can stabilise the oversampled collocation method even in the

case of Lipschitz domains and the case of highly sub-optimal choices of collocation points.

This is with a view to the possible advantages of oversampled collocation methods in

general settings/geometries, particularly in three dimensions, where an optimal choice of

collocation points may not be immediately obvious.
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4.5.1 Non-equispaced sampling points

We begin by examining non-equispaced collocation points. Let us consider a general

sequence of collocation points

∆M = ∆M(N) = {0 ≤ x1 < · · · < xM < 1} .

We now assume nothing more than the requirement that the maximum spacing of consec-

utive collocation points,

dist (∆M) = max
1≤j≤M

|xj+1 − xj|,

reduces to 0 in a certain way as N → ∞. Here it is again understood that xN+1 = x1

and the distance is measured on the periodic domain [0, 1). We have the following error

estimate for the discrete inner product.

Lemma 4.5.1. Let ∆M (N) be as above and fix r > 5/2, s > 1/2. Then there is a constant

Cr,s > 0, independent of ∆M , such that for any f, g ∈ Hmax{r,s}:

|〈f, g〉 − 〈f, g〉M | ≤ Cr,sM dist(∆M)3 (‖f‖r‖g‖s + ‖f‖s‖g‖r) . (4.46)

Proof. The error estimate is based on Morrey’s inequality and the well-known error-

expression for the trapezoidal rule for C2-functions. For completeness, a proof is included

in Appendix 4.B.

The estimate in Eq. (4.46) is precisely of the form Eq. (4.26), which allows us to apply

Thms. 4.4.2 & 4.4.7 to prove the following result.

Corollary 4.5.2. If for some ε > 0 we have 5/2 + ε ≤ m+ 1/2− 2α, and ∆M = ∆M(N)

is chosen such that

lim
N→∞

dist(∆M)3h−3−εM = 0, (4.47)

then there are constants C,N0 > 0 independent of u such that, for all N ≥ N0

‖u(M)
N − u‖H2α ≤ Chl−2α‖u‖Hl .

If in addition we have for some −l ≤ t ≤ 5/2 + ε+ 2α

lim
N→∞

dist(∆M)3h2α−t−5/2−ε = 0, (4.48)
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then there are constants C,N0 > 0 independent of u such that, for all N ≥ N0

‖u(M)
N − u‖Ht+4α ≤ Chl−t−4α‖u‖Hl .

These results guarantee convergence of oversampled collocation methods even when

the collocation points are very badly chosen. A sufficient condition for success is that, as

N increases, the collocation points are distributed sufficiently uniformly to provide a good

approximation to the L2-inner product in the sense of Eqs. (4.47) & (4.48). Indeed one

may see Corollary 4.5.2 as confirmation that, in settings when standard collocation fails, a

certain amount of oversampling can help resolve the convergence issues. We will see this

to be the case in practice in §4.6.2.

Remark 4.5.3. Although this is not a main focus of this thesis we highlight that through

a similar argument to Prop. 4.4.1 it can be seen that conditioning of the weighted normal

equations Eq. (4.5) depends (if sufficiently many collocation points are taken) mainly on

the properties of the basis functions SN and the integral operator V (specifically on the

order 2α of V ). Hence, for a sufficient amount of oversampling, the conditioning of the

linear system Eq. (4.5) is closely related to the conditioning of the corresponding linear

system arising in the Bubnov–Galerkin method Eq. (4.23).

4.5.2 Lipschitz domains

So far we focused on the case when V satisfies assumptions Eqs. (4.6) & (4.7) for any

s ∈ R and when u, f ∈ C∞(I). As mentioned in Example 4.2.1 this includes the case of

single and double layer formulations for the exterior Dirichlet problem on smooth domains.

In this section we aim to show on a more specific case that our results in Thm. 4.4.2

and Corollary 4.4.6 extend to wave scattering problems on Lipschitz domains. In the

process of extending our results to less regular boundaries, we must pay attention to the

limited continuity properties of the integral operators when the problem is reformulated

on I = [0, 1) using the Lipschitz parametrisation z.

The continuity properties of the integral operators need to be considered on a case-

by-case basis. For that reason and for simplicity, we shall focus on the single layer

integral equation on the boundary of a Lipschitz domain (e.g. a polygon) for the exterior

Dirichlet problem of the Helmholtz equation. This means, in the above notation, that the

parametrisation z : [0, 1)→ Γ as in Eq. (4.1) is a Lipschitz function with Lipschitz inverse

(piecewise linear in the case of polygonal boundaries) and our original integral equation on

Γ is
Su = f, (4.49)

where the single layer operator S is as defined §1.2.2.
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We recall from Thm. 1.2.9 (see also Torres and Welland, 1993, p. 1466) that

S : Hs+1/2(Γ)→ Hs−1/2(Γ)

for |s| ≤ 1/2 is bounded linear, and furthermore that S is invertible as a mapping between

the spaces indicated above for |s| ≤ 1/2 as long as the wavenumber k is not in a discrete

set of resonant values. As we note in §1.2.2 (see also Chandler-Wilde, Graham, Langdon

and Spence, 2012, Appendix A.3), the reformulation of the integral equation on I = [0, 1)

using the parametrisation z as described in Eq. (4.2) preserves the continuity properties

of the integral operator in the limited regime |s± 1/2| ≤ 1. In particular, as long as k is

not a resonant wavenumber, the integral operator S̃ defined by Eq. (4.2) is a continuous

isomorphism, with continuous inverse as a map

S̃ : Hs+1/2(I)→ Hs−1/2(I).

To distinguish between the integral equation on Γ and its reformulation on I for this

section only we shall keep the tilde notation, i.e. the integral equation on I is

S̃ũ = f̃ .

We now look back at the proofs of Prop. 4.4.1 and Thm. 4.4.2 and notice that in all

estimates the only norm bounds on V and its inverse appeared as

‖V −1‖2α→0, ‖V ‖r+2α→r, ‖V ‖s+2α→s,

which means that as long as 0 ≤ r, s ≤ 1 these terms are still bounded in the present case.

Furthermore, in the upper bound Eq. (4.27) any term of the form ‖u− χN‖Ht has t ≤ 0

(by virtue of r, s ≤ 1 = −2α). Thus, the conclusions of these two statements remain true

for the present case.

Corollary 4.5.4. Let V = S̃, suppose Eq. (4.26) holds for s, r with 0 ≤ r, s < min{m+

3/2, 1}, and that ∆M = ∆M(N) is chosen such that

lim
N→∞

Er,s(∆M)h−(r+s) = 0,

then for any t ≥ 0 there are constants C,N0 > 0 independent of ũ such that, for all

N ≥ N0:

‖u(M)
N − ũ‖H−1 ≤ Chmin{l,t}+1‖ũ‖Ht . (4.50)

This means the optimal convergence rate in H−1 is achieved.
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To make a more specific conclusion we can combine this with the estimate in Lemma 4.4.5

to show that for equispaced sampling on smoothest spline spaces convergence in H−1 is

achieved if

M = M(N) = Nβ, for some β > 3/2.

It is well-known that for smooth boundary conditions on polygonal scatterers, the solution

u to Eq. (4.49) has specific corner singularities (see Chandler-Wilde and Langdon, 2007,

Thm. 2.3). This means its regularity for arbitrary boundary conditions in C∞0 (R2)
∣∣
Γ

is

restricted to

u ∈ Hs(Γ) if and only if s < −1/2 + π/max
j

Ωj, (4.51)

where Ωj, j = 1, . . . , 2K, are the interior and exterior angles of the polygon. Since

−1/2 + π/maxj Ωj < 1/2 the continuity property is preserved under z, i.e.

ũ = u ◦ z ∈ Hs(I) if and only if s < −1/2 + π/max
j

Ωj,

thus placing a limit on the maximum possible value of t in Eq. (4.50). We shall see in

§4.6.3 that these predicted rates are indeed close to the observed convergence rates in

numerical experiments.

4.6 Numerical results

In this section, we confirm the aforementioned theoretical results using several numerical

experiments. In the following examples we consider the two types of integral operators

introduced in Example 4.2.1 arising in the single and double layer potential formulations

for the exterior Dirichlet problem of the Helmholtz equation as examples of integral

operators with orders 2α = −1 and 2α = 0 respectively. As discussed in §4.2 we solve

these integral equations numerically by reformulating them on the interval I = [0, 1) using

the parametrisation z as in Eq. (4.2). To avoid confusing the two formulations we keep

the tilde notation to refer to quantities defined on I and recall the formulations:

V u = f, u, f : Γ→ C,

Ṽ ũ = f̃ , ũ, f̃ : I → C, (4.52)

with the bijective correspondence ũ = u◦z, f̃ = f◦z. We denote by ũ
(M)
N the approximations

to ũ arising from the oversampled collocation method applied to Eq. (4.52).
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4.6.1 Smooth domains with equispaced sampling

We begin by verifying that the results in Thm. 4.4.10 are indeed tight and accurately

predict the effect of oversampling for equispaced grids and matching collocation points as

defined in Eq. (4.30). In the first example, we present results for the single layer potential

formulation

Su = f,

where u represents the normal derivative of the field ∂nφ on the boundary Γ. We choose

Γ = {|x| = 1}, the unit circle, and wavenumber k = 4.2. For this domain an exact reference

solution u in terms of Bessel functions is available (cf. Morse and Feshbach (1953, pp.

501–504) and Weisstein (2002, p. 1332)). Therefore, we can evaluate the error directly

in the Sobolev norms ‖ · ‖Hs , which we compute using the expression in terms of Fourier

coefficients as in Eq. (4.8). We note that for practical purposes these Fourier coefficients

can be approximated efficiently using the fast Fourier transform (FFT). In this example

the approximation spaces SN are taken to be smoothest spline spaces of degree d = 1

subordinate to an equispaced mesh on [0, 1) (cf. Example 4.2.4). In Fig. 4.3 we display

the Sobolev error ‖ũ− ũN‖Hs(I) and the error in a field point |S(ũ ◦ z−1 − ũ(M)
N ◦ z−1)(x)|,

the latter of which converges at the fastest rate of any Sobolev error as per Eq. (4.25).

We consider the following approximations to ũ:

• Hs–projection: The orthogonal projection of ũ onto SN with respect to the inner

product 〈·, ·〉Hs(I) which we defined in Eq. (4.8). The projection is computed by

expanding ũN =
∑N

n=1 anφn in a basis {φn}Nn=1 for SN and solving the following

linear system for the coefficients an, n = 1, . . . , N :

N∑
n=1

an〈φm, φn〉Hs(I) = 〈φm, ũ〉Hs(I), m = 1, . . . , N, (4.53)

where the inner product 〈·, ·〉Hs(I) is computed from the Fourier coefficients of the

functions using Eq. (4.10).

• Galerkin method: The solution of the continuous Galerkin equations on Γ

〈χN ◦ z−1, V (ũn ◦ z−1)〉L2(Γ) = 〈χN ◦ z−1, f〉L2(Γ), ∀χN ∈ SN .

The Galerkin approximation is computed by expanding ũN =
∑N

n=1 anφn in a

basis {φn}Nn=1 for SN and solving the following linear system for the coefficients
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an, n = 1, . . . , N,

N∑
n=1

an〈φm ◦ z−1, V (φn ◦ z−1)〉L2(Γ) = 〈φm ◦ z−1, f〉L2(Γ), m = 1, . . . , N. (4.54)

The L2-inner products are computed using adaptive quadrature in Julia (in particular

the HCubature.jl package).

• Collocation – M = N : The standard collocation method at equispaced points,

xm = m/M .

• Collocation – M = NdN1/2e, M = N2: The oversampled collocation method at

equispaced points with the appropriate rates of oversampling.

(a) ‖ũ− ũ(M)
N ‖−1. (b) ‖ũ− ũ(M)

N ‖−3.

(c) ‖ũ− ũ(M)
N ‖−4. (d) Error in a field point.

Figure 4.3: Error in the numerical method for a smooth circular scatterer, using the single
layer potential formulation and linear splines. In (d) the error in a field point shows the
fastest convergence rate in any Sobolev norm, the blue dash-dotted lines indicate, from
top to bottom, C3N

−3, C5N
−5 and C6N

−6 respectively, for some appropriately chosen
constants C3, C5 and C6.

We use smoothest splines of degree 1 which means, in terms of earlier notation, d = 1,

2α = −1. Recall that the single layer operator S is of the form S = S0 + K, where
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S0 has the form Eq. (4.33) and K is an integral operator satisfying the properties in

Lemma 4.4.9. Thus we can refer to the results in §4.4.3, where we showed that for this

case the convergence rates of the oversampled collocation method are

O
(
N−2(d+1)+4α

)
= O

(
N−6

)
,

as long as M ≥ N2, and that the fastest possible rate is attained in H4α−(d+1) = H−4.

Indeed, the same reasoning as in the proof of Thm. 4.4.10 suggests that one might be

able to prove the finer result that the convergence order for the oversampled collocation

method in H t, 4α− (d+ 1) ≤ t ≤ 2α, is

O
(
M−(d+1)+2α +Nmin{t−(d+1),−2(d+1)+4α}) = O

(
M−3 +Nmin{t−2,−6α}) .

In Fig. 4.3 we observe that the predictions of Thm. 4.4.10 match the numerical experiments

very well:

• In the energy space, H−1, the optimal convergence rates are achieved for any choice

of M = JN , J = J(N) ≥ 1, in particular for the standard collocation method

(J = 1), which reflects the results from Arnold and Wendland (1983).

• In the space H−3 the Galerkin method achieves its fastest rate of convergence O(N−5)

(see e.g. Hsiao et al., 2017, Lemma 4.7), as does the oversampled collocation method

with M = NdN1/2e. Indeed as we expect, we also see that the standard collocation

method converges at a slower rate than oversampled collocation and Galerkin in this

norm.

• Finally, in the space H−4 the oversampled collocation method withM = N2 converges

at the optimal rate O(N−6) as predicted by the results in §4.4.3, whereas all of

the other methods, including Galerkin, converge at slower rates. We note that the

Bubnov–Galerkin method would also converge at this same fastest rate O(N−6). This

can be seen, for instance, from the error analysis in (Hsiao et al., 2017, Lemma 4.7)

applied to the operator V ∗V .

Remark 4.6.1. We note in Fig. 4.3c that the convergence rates of our methods appear to

level off around N ≈ 102. This is a result of numerical errors due to the ill-conditioning in

the H−4-projection matrix and the need to compute a large number of Fourier coefficients

of the error function to very high accuracy to accurately compute the Sobolev norm.

Of course, faster than linear oversampling is unlikely to yield methods which are

overall computationally competitive, though it cannot be ruled out a priori that structured

low-rank approximations to the system matrix in Eq. (4.15) may (partially) offset the

increased dimension of the matrix. Still, we are interested in the quantification of the
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benefit of linear oversampling. We highlight that Thm. 4.4.10 actually has a consequence

for linear oversampling as well.

Figure 4.4: The effect of linear oversampling for the same experiment as in Fig. 4.3. Here
we plot the error in a field point as a function of J = M/N for N = 64 and N = 128.
For linear splines (d = 1), Eq. (4.43) predicts O(J−(d+1)+2α) = O(J−3) behaviour, for
1 ≤ J . N .

Indeed, if we fix N sufficiently large, and then choose a range of constants J ∈ N with

1 ≤ J . N , the theorem predicts that, by taking M = JN , we can achieve a decay in

the error of order O(J−(d+1)+2α) = O(J−3) as we increase J in the initial regime J . N .

This means, whilst linear oversampling improves the overall error just by a constant, the

improvement is cubic in J and so still worthwhile. The result is observed in practice as

shown in Fig. 4.4.

4.6.2 Suboptimal choice of collocation points

Having understood the effect of oversampling for an optimal choice of collocation points

on smooth domains (i.e. equispaced collocation points which refine the grid of the spline

basis spaces), we turn our attention to the case of suboptimal choices of these points. For

the present examples we consider the double layer formulation of the Helmholtz equation

on a smooth domain, i.e.

V =
1

2
I +D,

which has order 2α = 0. We now consider two examples for the interior Dirichtlet problem

on the kite shape shown in Fig. 4.1, which is parametrised by

z : t 7→ (− sin(2πt)− cos(4πt), cos(2πt)), t ∈ [0, 1).
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In both cases we plot the error in a field point for the interior field, which is given by∣∣∣φ(x)− φ(M)
N (x)

∣∣∣ =
∣∣∣D (ũ ◦ z−1 − ũ(M)

N ◦ z−1
)

(x)
∣∣∣

=

∣∣∣∣∫ 1

0

∂G

∂ny
(x, y)

∣∣∣
y=z(t)

(
ũ(t)− ũ(M)

N (t)
)
z′(t) dt

∣∣∣∣ ,
and captures the optimal convergence properties of the method in any Sobolev norm as we

demonstrated in Eq. (4.25). We solve the interior Dirichlet problem with the field point

x = (0.1, 0.2), wavenumber k = 5 and plane wave boundary conditions

φ
∣∣
Γ
(x1, x2) = ei cos θx1+i sin θx2 ,

with θ = 0, for which an exact reference solution of the interior problem is given precisely

in terms of a plane wave φ(x) = φ(x1, x2) = exp (i cos θx1 + i sin θx2).

The first example concerns linear splines (d = 1) on an equispaced mesh, but we

take collocation points that are slightly offset. In particular we take

∆M =
{

0.5/N +m/M
∣∣m = 1, . . . ,M

}
,

i.e. for M = N the collocation points are the midpoints of the spline mesh and for higher

rates of oversampling the collocation points are shifted by 0.5/N . The results are shown

in Fig. 4.5.

Figure 4.5: Error in an interior field point
∣∣∣D (ũ ◦ z−1 − ũ(M)

N ◦ z−1
)

(x)
∣∣∣ for wave scattering

on a smooth domain, with equispaced points that are offset from the equispaced spline
mesh.

We find that, as guaranteed by Corollary 4.4.6, there is convergence at rate O(N−2)

for slightly more than linear oversampling M = Nβ, with β = 1 + 1
2d+1−4α

= 4/3 and

convergence at rate O(N−4) for slightly more than quadratic oversampling M = Nβ, with
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β = 2 + 1
2d+1−4α

= 7/3. These two rates are indicated with the blue dash-dotted lines in

Fig. 4.5.

In contrast, the standard (midpoint) collocation method using odd degree splines for

an integral operator of even order is known to be unstable (Sloan, 1992, p. 327). This

is observed to some extend by the erratic behaviour of the method in Fig. 4.5, which

is particularly bad for small values of N . We highlight that this example exhibits that

already a small amount of oversampling can help enhance the robustness of the method

towards the choice of collocation points.

The positive effect of oversampling is even more noticeable in our second example

in Fig. 4.6, where we choose the collocation points in a highly suboptimal way: we draw

the points independently from a uniform random distribution:

ym ∼ U [0, 1), m = 1, . . . ,M, (4.55)

and {xm}Mm=1 = {ym}Mm=1 with 0 ≤ x1 < x2 < · · · < xM < 1. In this example we take

smoothest splines of degree d = 2 (again on an equispaced mesh) to satisfy the assumptions

of Corollary 4.5.2, but other than that consider the same integral equation as in the previous

example of Fig. 4.5. As before, in §4.5.1, we let dist(∆M ) = max1≤m≤M |xm+1 − xm|. One

can then show that (see e.g. Holst, 1980, Thm. 2.2) the expected maximum distance in

the collocation points is

E [dist(∆M)] =
1

M − 1

M−1∑
m=1

1

m
≤ log(M − 1)

M − 1
. (4.56)

We recall from Corollary 4.5.2 that convergence in the energy space H2α = H0 (since

for the double layer potential 2α = 0) is guaranteed if ∆M = ∆M(N) is chosen such that,

for some ε > 0,

lim
N→0

dist(∆M)3MN3+ε = 0. (4.57)

Based on Eq. (4.56) we expect Eq. (4.57) to be the case whenever M ≥ Nβ, β > 4/3.

However, due to the log-term in Eq. (4.56) this convergence may only occur for rather

large values of N . As such, in the present example we increase the amount of oversampling

(still in the form Eq. (4.55)) for our experiment to M = NdN1.5e ≥ N2.5.

The results are shown in Fig 4.6. In Fig. 4.6b one can see the quantity dist(∆M )3MN3

which tends to zero for the oversampled collocation method, but which diverges for the

case M = N , i.e. for the standard collocation method. In Fig. 4.6a we see the error in the

field point x = (0.1, 0.2) for the Galerkin method, the collocation method with M = N

and for the oversampled collocation method with M = N5/2. We notice that the standard
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collocation method, with random collocation points as per Eq. (4.55), does not converge.

In contrast the oversampled collocation method exhibits convergence and the predicted

asymptotic rate O(N2α−(d+1)) = O(N−3) starts to emerge for large N , although, due to

the random nature of the samples, the convergence behaviour is slightly more unsteady

than in previous examples. In the plot this asymptotic rate is highlighted by the upper

blue dash-dotted line. Of course, as expected from standard convergence theory for the

method (see e.g. Hsiao et al., 2017, Lemma 4.7), the Galerkin method converges at the

rate O(N2α−2(d+1)) = O(N−6) since the random sampling plays no role in the Galerkin

method, just in the collocation method.

(a)
∣∣∣D (ũ ◦ z−1 − ũ(M)

N ◦ z−1
)

(x)
∣∣∣ (b) dist(∆M )3MN3

Figure 4.6: Double layer formulation of the interior Dirichlet problem for the Helmholtz
equation. The sampling points are drawn uniformly at random xm ∼ U [0, 1).

4.6.3 Polygonal scatterers

Our final numerical example concerns a polygonal domain. Specifically, we consider the

single layer formulation for the exterior scattering problem on a pentagonal domain as

shown in Fig. 4.8b. We solve the integral equation using a smoothest spline basis of degree

1 based on the piecewise parametrisation z : [0, 1) → Γ of the pentagon. We showed in

Corollary 4.5.4 that taking

M = Nβ, β > 3/2,

is sufficient to guarantee convergence at the optimal rate in the energy space H−1. For the

present example we offset the collocation points by a quarter of the spline basis mesh, i.e.

∆M =
{

0.25/N +m/M
∣∣m = 1, . . . ,M

}
,

to emphasize that the results are not dependent on an optimal choice of collocation points,

even for polygonal domains. The geometry is a regular polygon of side length 2 sin 2π
5

and
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we take k = 10.

In Fig. 4.7 the error for standard collocation and oversampled collocation methods are

compared to the Galerkin method and the optimal rate of convergence provided by the

H−1-projection, which is

O(N−1/2−π/maxj Ωj) = O(N−9/8)

according to Eq. (4.51). We observe that all three methods follow the optimal rate very

closely, albeit the oversampled collocation method does so with a smaller error constant

than the standard collocation. Of course, it seems even the standard collocation method

converges, which suggests that already smaller amounts of oversampling may be beneficial

and guarantee convergence.

Figure 4.7: Error in the numerical method ‖ũ− ũ(M)
N ‖−1 for a regular pentagonal scatterer,

using the single layer potential (order 2α = −1) and linear splines (d = 1), with offset
equispaced collocation points.

Although there is no guarantee in the polygonal case that this energy space provides

the lowest Sobolev order for which optimal convergence holds (since polygonal boundaries

are slightly more regular than general Lipschitz ones), we can, in Fig. 4.8a, look at the

convergence rates of the method in a field point. This means we plot∣∣∣S(ũ ◦ z−1 − ũ(M)
N ◦ z−1)(x)

∣∣∣ .
The blue dash-dotted line again indicates the optimal convergence rate in H−1, which

we recall is O(N−9/8). It appears that the convergence rate in the field point is very

close to this rate, and we also observe again that, even though standard and oversampled

collocation methods appear to converge at similar rates, the latter does so with a smaller

constant and improved stability for small values of N .
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(a) Convergence rates in the field point. (b) The geometry and field point.

Figure 4.8: Single layer formulation of the exterior Dirichlet problem for the Helmholtz
equation on a pentagonal scatterer.

4.7 Conclusions

In the present chapter, we considered an ‘oversampled collocation method’ for Fredholm

integral equations, i.e. a collocation method for which the number of collocation points is

greater than the dimension of the trial space. Specifically, in the method of consideration,

the approximation is given as a weighted least-squares solution to the overdetermined

linear system arising from this oversampling process. Our goal was to understand whether

this process can be used to enhance the approximation in the collocation setting, with a

particular emphasis on avoiding having to choose the collocation points in a very specific,

optimal way.

We sought to understand the properties of the oversampled collocation method both

through rigorous analysis and numerical examples and our conclusions are twofold. Firstly,

we showed that for sufficient amounts of (superlinear) oversampling the convergence rate of

the collocation method can be improved using oversampling. Indeed, it is well-known in the

literature (Arnold and Wendland, 1983, 1985) that spline collocation on quasi-equispaced

grids converges, when they are stable at the rate O(N−(d+1)+2α) where N and d are the

dimension and degree of the smoothest spline approximation space respectively and 2α

is the order of the integral operator. We showed that due to the relationship of the

oversampled collocation method with a Bubnov–Galerkin method, superlinear sampling

can double the convergence rate to O(N−2(d+1)+4α). Our main results in this direction are

Thms. 4.4.7 & 4.4.10. The former was formulated in a very general framework, based on a

general selection of collocation points and regular boundary element spaces in the sense of

Babuška and Aziz (1972), and provides a sufficient rate of oversampling to guarantee these
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improved convergence rates. Thm. 4.4.10 is specific to settings where the integral operator

is a perturbation of an operator of certain pseudo-differential form which allowed us to give

an exact expression for the error and to show that in the corresponding setting the fastest

convergence rate is achieved in the oversampled collocation method when M ∝ N2. Of

course, oversampling at a quadratic rate may not be favourable in practice but the same

results show that in some cases even linear oversampling at rate M = JN can decrease

the error of the method by a factor of J−3, which seems certainly worthwhile, given that

the cost of the oversampled collocation method grows only linearly with J .

Our second conclusion is that oversampling can help to enhance the robustness of the

method to a suboptimal choice of collocation points. The main result in this direction is

Thm. 4.4.2 which provides a convergence guarantee for the oversampled collocation method

for a very general choice of collocation points and trial spaces. Indeed this result quantifies

a sufficient amount of oversampling that guarantees convergence of the method even for

highly suboptimal choices of collocation points. This result was exhibited specifically in

Fig. 4.6 where a suboptimal choice of collocation points lead the standard collocation

method to diverge, whilst the oversampled version converges. Additionally, in Fig. 4.5 and

Fig. 4.8 we provided numerical evidence that shows, especially for small values of N (i.e.

the initial range in the convergence plots), oversampling has a significant stabilising effect

on the error of the collocation method.
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List of symbols

Symbol Description

2α Order of the integral operator V .

Hs(Γ) Boundary Sobolev space of order s.

I The periodic interval [0, 1).

M Number of collocation points; M > N means oversampling.

N Dimension of the trial space.

S,D Single and double layer potentials.

SN = Sl,mh Regular boundary element spaces of dimension N .

V0 Pseudodifferential component of the operator V .

V Integral operator of order 2α.

∆M Set of M collocation points.

Γ The domain of the integral equations, Γ ⊂ R2.

Λ∗N Set of indices ΛN excluding ν = 0, i.e. Λ∗N = ΛN \ {0}.
ΛN Set of indices ν ∈ Z with −N/2 < ν ≤ N/2.

Ω Domain in R2 representing the scatterer.

β Algebraic rate of oversampling, M = NdNβ−1e.
u Exact solution to the integral equation.

〈 · , · 〉M Discrete inner product resulting from M collocation points.

〈 · , · 〉L2 Continuous L2 inner product.

Er,s(∆M) Generic error constant in the error of the discrete inner product.

H A generic Hilbert space.

K∗ Continuous adjoint of the map K.

K Perturbation component of the integral operator, V = V0 +K.

S,D Single and double layer operators.

dist(∆M) Maximum spacing of consecutive collocation points.

z Complex conjugate of z ∈ C.

d Degree of the piecewise polynomials in the spline basis.

h Maximum mesh spacing of trial space mesh.

u
(M)
N Oversampled collocation approximation to the solution.

uN Galerkin approximation to the solution.
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4.A Error estimate in the discrete inner product

Here we describe the proof of Lemma 4.4.5. We recall the statement of the Lemma:

Lemma 4.A.1 (Error in discrete L2 inner product for equispaced sampling). Let ∆M =

{xm = x̃ + j/M}Mm=1 be a set of equispaced collocation points (where it is understood

x+ 1 ≡ x) and fix r > 1/2. For f, g ∈ Hr([0, 1)) let

〈f, g〉 =
1

M

M∑
m=1

f(xm)g(xm),

then there is a constant Cr,s > 0 independent of f, g such that, for any r≥s > 1/2,

|〈f, g〉 − 〈f, g〉M | ≤ Cr,sM
−r
(
‖f‖r‖g‖s + ‖f‖s‖g‖r

)
.

Since x̃ introduces a simple phase shift in all Fourier modes we may, without loss of gener-

ality, for the purpose of proving this result assume x̃ = 0. LetQM [f ] = 1/M
∑M−1

m=0 f(m/M)

be the trapezoidal rule, then we have the following well-known result.

Lemma 4.A.2. If f ∈ L2([0, 1)) then∫ 1

0

f(x) dx−QM [f ] =
∑
j 6=0

f̂jM .

Proof.

QM [f ] =
1

M

M−1∑
m=0

∑
k∈Z

e2πimk/M f̂k =
1

M

∑
k∈Z

f̂k

M−1∑
m=0

e2πimk/M =
∑
j 6=0

f̂jM .

This implies the following estimate.

Corollary 4.A.3. For all t > 1/2, there is a constant Ct > 0 (independent of M), such

that ∣∣∣∣∫ 1

0

f(x) dx−QM [f ]

∣∣∣∣ ≤ CtM
−t‖f‖Ht .

In particular from Corollary 4.A.3 we have that for any t > 1/2:

|〈f, g〉 − 〈f, g〉M | ≤ CtM
−t‖fḡ‖Ht .

Proof of Lemma 4.4.5. We observe, using the notation . when there is a constant inde-

pendent of u,w implicit in the inequality, and by .s we mean that this implicit constant
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may depend on s,

‖uw‖2
r =

∣∣∣∣∣∑
m∈Z

û−mŵm

∣∣∣∣∣
2

+
∑
n∈Z

|n|2r
∣∣∣∣∣∑
m∈Z

ûn−mŵm

∣∣∣∣∣
2

.

(∑
m∈Z

|û−m|2
)(∑

m∈Z

|ŵm|2
)

+
∑
n∈Z

∣∣∣∣∣∑
m∈Z

|n−m|rûn−mŵm +
∑
m∈Z

|m|rûn−mŵm
∣∣∣∣∣
2

. ‖u‖2
0‖w‖2

0 +
∑
n∈Z

∣∣∣∣∣∑
m∈Z

|n−m|rûn−mŵm
∣∣∣∣∣
2

+

∣∣∣∣∣∑
m∈Z

|m|rûn−mŵm
∣∣∣∣∣
2

, (4.58)

where in Eq. (4.58) we used that for t ≥ 1/2 there is a constant C = Ct > 0 such that

(|m|+ |n|)t ≤ C(|m|t + |n|t), ∀m,n ∈ Z.

By the discrete Minkowski integral inequality

∑
n∈Z

∣∣∣∣∣∑
m∈Z

|n−m|rûn−mŵm
∣∣∣∣∣
2

≤

∑
m∈Z

(∑
n∈Z

|n−m|2r|ûn−m|2|ŵm|2
) 1

2

2

(4.59)

≤ ‖u‖2
r

(∑
m∈Z

|ŵm|
)2

.s ‖u‖2
r‖w‖2

s, any s > 1/2.

The final term in Eq. (4.58) can be bounded similarly and this concludes the proof of

Lemma 4.4.5.

4.B Error estimate for the discrete inner product

non-uniform collocation points

Here we provide a proof of Lemma 4.5.1. We recall the statement of the lemma:

Lemma 4.B.1. Let Γ,∆M(N) be as above and fix r > 5/2, s > 1/2. Then there is a

constant Cr,s > 0, independent of ∆M , such that for any f, g ∈ Hmax{r,s}:

|〈f, g〉 − 〈f, g〉M | ≤ Cr,sM dist(∆M)3 (‖f‖Hr‖g‖Hs + ‖f‖Hs‖g‖Hr) .

Proof. For f ∈ C2 we have the well-known estimate∣∣∣∣∫ b

a

f(x) dx− b− a
2

(f(b) + f(a))

∣∣∣∣ ≤ (b− a)3

12
f ′′(ξ), some ξ ∈ (a, b). (4.60)

This means in particular for any choice of quadrature points 0 = x1 < x2 < · · · < xM < 1
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that the trapezoidal rule with weights,

∫ 1

0

f(x) dx ≈
M∑
m=1

|xj+1 − xj−1|
2

f(xj),

has an error of the form∣∣∣∣∣
∫ 1

0

f(x) dx−
M∑
m=1

|xj+1 − xj−1|
2

f(xj)

∣∣∣∣∣ ≤ M

12
sup
x∈[0,1)

|f ′′(x)| max
1≤j≤N

|xj+1 − xj|3.

We can translate this to Sobolev spaces using Morrey’s inequality: For any l ∈ N

∣∣f (l)(x)
∣∣ =

∣∣∣∣∣∑
m∈Z

(2πim)le2πimf̂m

∣∣∣∣∣ ≤∑
m∈Z

|2πm|l|f̂m|

≤ (2π)l

(∑
m∈Z

|m|−2s

)1/2(∑
m∈Z

|m|2s+2l|f̂m|2
)1/2

.s ‖f‖Hl+s any s > 1/2,

where .s indicates an implicit constant independent of f but dependent on s. Thus we

have for any f ∈ Hr, r > 5/2,∣∣∣∣∣
∫ 1

0

f(x) dx−
M∑
m=1

|xj+1 − xj−1|
2

f(xj)

∣∣∣∣∣ .r M max
1≤j≤N

|xj+1 − xj|3‖f‖Hr .

Following through the same steps Eqs. (4.58) & (4.59) as in Appendix 4.A we find

|〈f, g〉 − 〈f, g〉M | .r,s M max
1≤j≤N

|xj+1 − xj|3 (‖f‖Hr‖g‖Hs + ‖f‖Hs‖g‖Hr) ,

for any r > 5/2, s > 1/2.

4.C Derivation of exact error expression for equi-

spaced grids

Here we provide the derivation of Eqs. (4.39) & (4.40). The arguments are analogous to

the discussion in Chandler and Sloan (1990, §2) with very minor modifications to adapt

to our notation and the discrete Bubnov–Galerkin setting. Given the pseudo-differential
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form Eq. (4.33) of V , its action on the basis ψµ is quickly determined to be

V ψµ =
∑

m≡µ(N)

[m]2α
( µ
m

)d+1

e2πimx = [µ]2α
∑

m≡µ(N)

[
m

µ

]2α ( µ
m

)d+1

e2πimx

= [µ]2αe2πiµx
(

1 + Ω
(
Nx,

µ

N

))
,

where

Ω(ξ, y) = |y|d+1−2α
∑
l 6=0

1

|l + y|d+1−2α
e2πilξ.

Thus we can write the discrete inner product Eq. (4.31) coming from our collocation points

as follows

〈V ψµ, V ψν〉M =


0, if µ 6= ν,

1, if µ = ν = 0,

[µ]4α 1
J

∑J
j=1

∣∣1 + Ω
(
ξj,

µ
N

)∣∣2 , if µ = ν 6= 0.

Similarly, we can compute

〈V ψµ, exp (2πin · )〉M =


0, if µ 6≡ ν(N),

1
J

∑J
j=1 exp(2πilξj), if n = lN, µ = 0,

1
J

∑J
j=1 exp(2πilξj)[µ]2α

(
1 + Ω

(
ξj,

µ
N

))
, if n = µ+ lN, µ 6= 0.

Thus we have for a general u:

〈V ψµ, V u〉M =
∑
m∈Z

[m]2αûm 〈V ψµ, exp (2πim · )〉M

=


1
J

∑J
j=1

∑
n≡0(N)[n]2αûn exp

(
2πi n

N
ξj
)
, if µ = 0,

[µ]2α 1
J

∑J
j=1

∑
n≡µ(N) exp

(
2πin−µ

N
ξj
)

[n]2αûn

(
1 + Ω

(
ξj,

µ
N

))
, if µ 6= 0.

Hence the linear system Eq. (4.38) for the coefficients aµ of u
(M)
N in the basis ψµ (u

(M)
N =∑

ν∈ΛN
aνψν) is diagonal and we find

aµ =


1
J

∑J
j=1

∑
n≡0(N)[n]2αûn exp

(
n
N
ξj
)
, if µ = 0,

D
(
µ
N

)−1 1
J

∑J
j=1

∑
n≡µ(N)

[
n
µ

]2α

exp
(
2πin−µ

N
ξj
)
ûn

(
1 + Ω

(
ξj,

µ
N

))
, if µ 6= 0,

(4.61)
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where

D(y) =
1

J

J∑
j=1

|1 + Ω (ξj, y)|2 . (4.62)

As in §4.4.3 we let the true solution to Eq. (4.3) be u(x) =
∑

m∈Z ûm exp(2πimx). Thus,

simplifying Eq. (4.61) we find the required expressions Eq. (4.40),

aµ − ûµ =

PN , if µ = 0,

−E(µ/N)
D(µ/N)

ûµ +RN(µ), if µ 6= 0,

where:

PN =
1

J

J∑
j=1

∑
n≡0(N)
n6=0

[n]2αûn exp (2πinξj/N)

E(y) =
1

J

J∑
j=1

Ω (ξj, y)
(

1 + Ω (ξj, y)
)

RN(µ) = D
( µ
N

)−1 1

J

J∑
j=1

∑
n≡µ(N)
n6=µ

[
n

µ

]2α

exp

(
2πi

n− µ
N

ξj

)
ûn

(
1 + Ω

(
ξj,

µ

N

))
.

We can now use the fact that ξj = j/J and the identity

1

J

J∑
j=1

exp(2πimj/J) =

1, m ≡ 0 (J),

0, m 6≡ 0 (J),
(4.63)

to further simplify the above expressions:

D(y) = 1 +
1

J

J∑
j=1

|Ω (ξj, y)|2 + 2Re

(
1

J

J∑
j=1

Ω (ξj, y)

)

= 1 +
1

J

J∑
j=1

|Ω (ξj, y)|2 + 2|y|d+1−2α
∑
l 6=0

1

|lJ + y|d+1−2α

≥ 1, ∀y ∈ [−1/2, 1/2]. (4.64)
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Similarly we find

ZN =
∑
n∈Z
n 6=0

[nJN ]2α ûnJN =
∑
n∈Z
n6=0

[nM ]2α ûnM ,

E(y) = |y|d+1−2α
∑
l 6=0

1

|lJ + y|d+1−2α
+

1

J

J∑
j=1

|Ω(ξj, y)|2 ,

where we made extensive use of the trigonometric identity Eq. (4.63). Finally, we simplify

the expression for RN(µ)

RN(µ) = D
( µ
N

)−1
(∑

k 6=0

[
µ+ kM

µ

]2α

ûµ+kM

+
∑

n≡µ(N)
n6=µ

[
n

µ

]2α

ûn

∣∣∣ µ
N

∣∣∣d+1−2α 1

J

J∑
j=1

∑
l 6=0

1

|l + µ/N |d+1−2α
exp

(
2πi

(
n− µ
N
− l
)
j

J

))

= D
( µ
N

)−1
(∑

k 6=0

[
µ+ kM

µ

]2α

ûµ+kM

+
∑
k 6=0

[
µ+ kN

µ

]2α

ûµ+kN

∣∣∣ µ
N

∣∣∣d+1−2α ∑
l≡k(J)
l 6=0

∣∣∣∣ 1

l + µ/N

∣∣∣∣d+1−2α
)
.

4.D Pseudodifferential form of the single layer oper-

ator

Here we provide a proof of Lemma 4.4.9. These properties were proved by Kress and Sloan

(1993) and we reproduce this proof with minor adaptions to our present setting. We recall

the statement of the lemma:

Lemma 4.D.1. The integral operator S̃ on [0, 1) which arises when we reformulate S for

smooth domains through the parametrisation z : [0, 1)→ R2 have the form Eq. (4.32), with

α = −1/2 and K that satisfies: KV −1
0 : Hs → Hs+1.25 is continuous for all s ∈ R and the

action of K can be expressed in terms of Fourier modes as follows for every u ∈ L2:

KV −1
0 u(x) =

∑
m∈Z

∑
n∈Z

km,nûme2πinx, x ∈ [0, 1)

where the series converges absolutely uniformly and for every s, t ∈ R there is a constant
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Cs such that ∀m,n ∈ Z:

|km,n| ≤ Cs,t

(
(1 + |m|)s+1(1 + |n|)t

+ (1 + |m|)
∑
l∈Z

(1 + |m− l|)−3(1 + |l|)t(1 + |m− n− l|)s
)
.

(4.65)

Proof. Let us consider the form of the operator arising from re-parametrising S using

Eq. (4.2). Write z(t) = (z1(t), z2(t)) then S̃ is given by

S̃u(t) =

∫ 1

0

i

4
H

(1)
0

(
k
√

(z1(t)− z1(τ))2 + (z2(t)− z2(τ))2
)
u(τ) dτ

For notational simplicity we drop the constant factor i/4 henceforth (this does not alter

the analysis in any way). Thus the integral operator takes the form

S̃u(t) =

∫ 1

0

K(t, τ)u(τ) dτ.

Kress and Sloan (1993, pp. 207-208) showed that the integral kernel can be written in the

form

K(t, τ) = ln

(
4

e
sin2(π(t− τ))

)
+K1(t, τ) sin2(π(t− τ)) ln

(
4

e
sin2(π(t− τ))

)
+K2(t, τ),

where K1 and K2 are infinitely differentiable, i.e. K1, K2 ∈ C∞per([0, 1)× [0, 1)). We split

the integral operator S̃ therefore in the following way S̃ = V0 + K (again dropping the

constant factor i/4 for notational simplicity), where

V0u(t) =

∫ 1

0

ln

(
4

e
sin2(π(t− τ))

)
u(t) dt,

Ku(t) =

∫ 1

0

(
K1(t, τ) sin2(π(t− τ)) ln

(
4

e
sin2(π(t− τ))

)
+K2(t, τ)

)
u(τ) dτ.

The operator V0 is precisely of the form Eq. (4.33) (cf. Kress and Sloan, 1993, Eq. (3.11))

with α = −1/2, specifically

V0u(t) = −
∑
m∈Z

[m]−1ûme2πimx. (4.66)

Moreover we have (Kress and Sloan, 1993, Eq. (3.12)) for any m ∈ Z:∫ 1

0

sin2(πτ) ln

(
4

e
sin2(πτ)

)
e2πimτdτ =

1

4
(2[m]−1 − [m+ 1]−1 − [m− 1]−1) =: γm.
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In particular, for |m| ≥ 2, we have

γm =
1

2(1−m2)|m| . (4.67)

We begin by showing that K : H−2.25 → L2 is bounded: For this we follow Kress and

Sloan (1993) and let

am(t) =

∫ 1

0

K1(t, τ)u(τ)e−2πimτdτ.

This implies

|K1u(t)|2 ≤
∑
m∈Z

[m]9/2|γm|2
∑
m∈Z

|am(t)|2
[m]9/2

= c‖K1(t, ·)u‖2
−2.25

where

K1u(t) =

∫ 1

0

K1(t, τ) sin2(π(t− τ)) ln

(
4

e
sin2(π(t− τ))

)
u(τ) dτ.

This is true because for |m| sufficiently large we have [m]9/2|γm|2 . [m]−3/2. Thus we have

‖K1u‖0 ≤ c sup
0≤t≤1

‖K1(t, ·)u‖−2.25,

hence K1 : H−2.25 → L2 is bounded. Since K2 ∈ C∞per([0, 1)× [0, 1)) the same holds true for

K. We can then follow the arguments in (Kress and Sloan, 1993, p. 209) analogously to

show by differentiation of Ku(t) that the boundedness remains true for K : Hs−2.25 → Hs

for all s ∈ N the result for arbitrary s ∈ R then follows by interpolation and duality as in

(Kress and Sloan, 1993, p. 209).

Let us now prove Eq. (4.65). Because K1, K2 ∈ C∞per([0, 1) × [0, 1)) we can express

them in terms of their bivariate Fourier series in the form

Kj(t, τ) =
∑
m,n∈Z

η̂(j)
m,ne2πimte2πinτ , j = 1, 2, (4.68)

with coefficients that decay spectrally fast, i.e. which are such that for every s, t ∈ R there

are constants C
(1)
s,t , C

(2)
s,t > 0, such that

|η̂(j)
m,n| ≤ C

(j)
s,t (1 + |m|)s(1 + |n|)t, ∀m,n ∈ Z.

Using this observation we can write the action of K on a Fourier mode φl(t) := exp(2πilt)
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as

Kφl(t) =
∑
m,n∈Z

e2πimt

∫ 1

0

(
η(1)
m,n sin2(π(t− τ)) ln

(
4

e
sin2(π(t− τ))

)
+ η(2)

m,n

)
e2πinτe2πilτ dτ

=
∑
m,n∈Z

e2πimt
(

e2πi(n+l)tη(1)
m,nγn+l + η

(2)
m,−l

)
.

Define

k̃l,ξ := η
(2)
ξ,−l +

∑
n+l+m=ξ

η(1)
m,nγn+l

Then we have, by Eq. (4.67) & (4.68), for any s, t ∈ R

|k̃l,ξ| ≤ Cs,t

(
(1 + |ξ|)t(1 + |l|)s +

∑
n+l+m=ξ

(1 + |n+ l|)−3(1 + |m|)s(1 + |n|)t
)

≤ Cs,t

(
(1 + |ξ|)t(1 + |l|)s +

∑
n∈Z

(1 + |l + n|)−3(1 + |ξ − l − n|)s(1 + |n|)t
)
. (4.69)

Combining Eqs. (4.66) & (4.69) yields the desired bound Eq. (4.65).

4.E A perturbation argument for modified over-

sampled collocation

Here we outline the compact perturbation argument referenced in Remark 4.4.11 which is

standard in the relevant literature for the analysis of collocation methods, see for instance

Arnold and Wendland (1985, §3). Suppose we proved the following a priori estimate for

some s < t:

Lemma 4.E.1. If a
(M)
N ∈ SN is such that〈

χN , V0a
(M)
N

〉
M

= 〈χN , V0ã〉M ∀χN ∈ SN , (4.70)

for some ã ∈ H t, then we have ‖ã− a(M)
N ‖s . N s−t‖ã‖t.

Here, and in the remainder of this appendix, we use the notation A(ã, aN) . B(ã)

to mean there is a constant C > 0 independent of N, ã, aN such that A(ã, aN) ≤ CB(ã).

Under the perturbation V = V0 +K, where K : Hp → Hp−2α+1 is continuous for all p ∈ R,

the orthogonality conditions Eq. (4.35) become〈
χN , (V0 +K)u

(M)
N

〉
M

= 〈χN , (V0 +K)u〉M ∀χN ∈ SN . (4.71)
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The trick, given by Arnold and Wendland (1985), is then to write Eq. (4.71) in the

equivalent form〈
χN , V0u

(M)
N

〉
M

=
〈
χN , V0

(
V −1

0 (V0 +K)u− V −1
0 Ku(M)

N

)〉
M
∀χN ∈ SN ,

which means that by Eq. (4.70) we have∥∥∥(V −1
0 (V0 +K)u− V −1

0 Ku(M)
N

)
− u(M)

N

∥∥∥
s
. N s−t

∥∥∥V −1
0 (V0 +K)u− V −1

0 Ku(M)
N

∥∥∥
t
.

Simplifying both sides we have∥∥∥V −1
0 (V0 +K)

(
u− u(M)

N

)∥∥∥
s
. N s−t

∥∥∥u+ V −1
0 K

(
u− u(M)

N

)∥∥∥
t
.

Now, by the pseudo-differential form Eq. (4.33), V0 : Hs+2α → Hs is continuous and by

the assumptions on V , we have V = V0 +K : Hs+2α → Hs is invertible, thus∥∥∥u− u(M)
N

∥∥∥
s
.s
∥∥∥V −1

0 (V0 +K)
(
u− u(M)

N

)∥∥∥
s
,

and, by continuity of K : H t−1 → H t−2α and of V −1
0 : H t−2α → H t,∥∥∥u+ V −1

0 K
(
u− u(M)

N

)∥∥∥
t
≤ ‖u‖t + C

∥∥∥u− u(M)
N

∥∥∥
t−1

.

By the uniform approximation property (Assumption 4.2.2) and the inverse property

(Assumption 4.2.3) we can find constants C̃, ˜̃C > 0 such that∥∥∥u− u(M)
N

∥∥∥
t−1
≤ ‖u− χN‖t−1 +

∥∥∥χN − u(M)
N

∥∥∥
t−1

≤ C̃N−1‖u‖t + C̃N t−1−s
∥∥∥χN − u(M)

N

∥∥∥
s

≤ C̃N−1‖u‖t + C̃N t−1−s
(∥∥∥u− u(M)

N

∥∥∥
s

+ ‖χN − u‖s
)

≤ ˜̃CN−1‖u‖t +N t−s−1
∥∥∥u− u(M)

N

∥∥∥
s

Thus, in summary, there is a constant C > 0 independent of N,M, u such that∥∥∥u− u(M)
N

∥∥∥
s
(1− CN−1) . N s−t ‖u‖t .

Finally, since (1− CN−1)→ 1 as N →∞, we find for some N0 > 0 and all N ≥ N0∥∥∥u− u(M)
N

∥∥∥
s
. N s−t ‖u‖t ,

i.e. the conclusion of Lemma 4.E.1 still holds when V0 is replaced by V0 +K.
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4.F A perturbation argument for least-squares over-

sampled collocation (Laplace)

Our goal is to develop a perturbation approach for the discrete Bubnov-Galerkin method

similar to the approach given in Appendix 4.E. This Bubnov-Galerkin case requires a few

additional steps which, to the best of our knowledge, are not yet available in the literature.

Specifically, recalling Thm. 4.4.10, we will prove the following statement.

Theorem 4.F.1. If u
(M)
N ∈ SN is such that〈

(I +K)V0χN , (I +K)V0u
(M)
N

〉
M

= 〈(I +K)V0χN , (I +K)V0u〉M , ∀χN ∈ SN , (4.72)

where I + K : Hs → Hs is a continuous isomorphism for all s ∈ R and K : Hs → H t

is continuous for all s, t ∈ R, then we still have the estimate Eq. (4.36), i.e. there are

constants M0, N0, C > 0 independent of N, u,M such that, for all M ≥M0, N ≥ N0,

‖u(M)
N − u‖2α−(d+1) ≤ C(M2α−(d+1) +N4α−2(d+1))‖u‖d+1. (4.73)

Note our formulation of this theorem is equivalent to the perturbation V = V0 + K
simply by writing

V = (I +KV −1
0 )V0,

since, by the pseudodifferential form of V0, the map KV −1
0 : Hs → H t is still continuous

for all s, t ∈ R, and V : Hs+2α → Hs being invertible for all s ∈ R is equivalent to

I +KV −1
0 : Hs → Hs being invertible for all s ∈ R. In order to prove this statement in a

similar fashion to the perturbation argument given in Appendix 4.E we need to find a way

to take the ‘discrete adjoint’ of K with respect to 〈·, ·〉M . Specifically, we would like to

formulate the orthogonality conditions Eq. (4.72) in a form similar to〈
V0χN , (I +K∗)(I +K)V0u

(M)
N

〉
M

= 〈V0χN , (I +K∗)(I +K)V0u〉M ∀χN ∈ SN ,
(4.74)

where by K∗ we have denoted the continuous adjoint map corresponding to K, which is

a continuous map K∗ : H−t → H−s for all s, t ∈ R. We note that Eq. (4.74) would be

exactly equivalent to Eq. (4.72) if we were to replace 〈·, ·〉M by the exact L2-inner product

〈·, ·〉L2 . However, the discrete nature of 〈·, ·〉M prevents this exact equivalence, and so

we need to find a way to account for the error incurred in u
(M)
N when we choose to solve

Eq. (4.74) instead of Eq. (4.72).
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In order to do so let us introduce the following bilinear form ε:

ε(χN , b̃) :=
〈
V0χN ,K∗V0b̃

〉
M
−
〈
KV0χN , V0b̃

〉
M
.

Note that the continuity properties of K allow us to represent the map K by its action on

the Fourier basis, i.e. letting kmn = 〈exp(2πin · ),K exp(2πim · )〉L2 we have for any u ∈ L2

(Ku)(x) =
∑
m∈Z

∑
n∈Z

kmnûme2πinx,

and the series converges absolutely uniformly, since (by continuity of K : Hs → H t, ∀s, t ∈
R) for every s, t ∈ R there is Cs,t > 0 such that

|kmn| ≤ Cs,t(1 + |m|)−s(1 + |n|)−t, ∀m,n ∈ Z. (4.75)

Similarly, K∗ is represented by the conjugate transpose of these values, i.e.

〈exp(2πin · ),K∗ exp(2πim · )〉L2 = knm

where y denotes the complex conjugate of y ∈ C. The following is the central new a priori

estimate facilitating the proof of Thm. 4.F.1.

Lemma 4.F.2. Suppose a
(M)
N ∈ SN satisfies〈

V0χN , V0a
(M)
N

〉
M

= 〈V0χN , V0ṽ〉M + ε(χN , b− cN), ∀χN ∈ SN , (4.76)

for some ṽ, b ∈ Hd+1 and a sequence of spline functions cN ∈ SN , N ∈ N. Then there is a

constant C > 0 independent of N,M, ṽ, b, cN such that for all M ≥ N > 0:

‖ṽ − a(M)
N ‖4α−(d+1) ≤ C

(
M2α−(d+1) +N4α−2(d+1)

)
(‖ṽ‖d+1 + ‖b‖d+1)

+ CN−1‖b− cN‖4α−(d+1).

Proof of Lemma 4.F.2. We recall that for the basis {ψµ}µ∈ΛN of SN , which we introduced

in Eq. (4.37), the orthogonality conditions Eq. (4.76) are represented by a diagonal matrix

system for the coefficients aµ of the expansion a
(M)
N =

∑
µ∈ΛN

aµψµ. The linear system

arising from using this basis in Eq. (4.76) therefore differs from the linear system Eq. (4.38)

only in the right hand side, and more specifically only by terms of the form

ε(ψµ, b− cN).

Thus let us express those terms in a more explicit way: Let us write b̂n, ĉn for the

Fourier coefficients of b, cN respectively, noting that for all n ∈ Λ∗N , l ∈ Z, we have
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ĉn+lN = nd+1/(n + lN)d+1ĉn. Let us focus on the case µ ∈ Λ∗N first, and consider µ = 0

after this initial calculation. We can compute

KV0ψµ =
∑
n∈Z

∑
m≡µ(N)

[m]2α
( µ
m

)d+1

kmne2πinx.

Thus

〈KV0ψµ,V0(b− cN)〉M

=
∑
n∈Z

∑
m≡µ(N)

∑
p∈Z

[m]2α
( µ
m

)d+1

kmn [p]2α(b̂p − ĉp) 〈exp (2πin · ) , exp (2πip · )〉M

=
∑
n∈Z

∑
m≡µ(N)

∑
p≡n(M)

[m]2α
( µ
m

)d+1

kmn [p]2α(b̂p − ĉp).

Similarly we find

〈V0ψµ,K∗V0b〉M

=
∑
n∈Z

∑
m∈Z

[m]2α(b̂m − ĉm)knm

〈 ∑
p≡µ(N)

[p]2α
(
µ

p

)d+1

exp (2πip · ) , exp (2πin · )
〉
M

=
∑

p≡µ(N)

∑
n≡p(M)

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)knm.

Therefore we have

ε(ψµ, b− cN) = 〈V0ψµ,K∗V0(b− cN)〉M − 〈KV0ψµ, V0(b− cN)〉M

=
∑

p≡µ(N)

∑
n≡p(M)

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)knm

−
∑
n∈Z

∑
m≡µ(N)

∑
p≡n(M)

[m]2α
( µ
m

)d+1

kmn [p]2α(b̂p − ĉp)

=
∑

p≡µ(N)

∑
n≡p(M)

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)knm

−
∑
m∈Z

∑
n≡µ(N)

∑
p≡m(M)

[n]2α
(µ
n

)d+1

knm [p]2α(b̂p − ĉp).
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We can then extract the low-frequency terms in both sums which are found to cancel:

ε(ψµ, b− cN) =
∑

p≡µ(N)

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)kpm

−
∑
m∈Z

∑
n≡µ(N)

[n]2α
(µ
n

)d+1

knm [m]2α(b̂m − ĉm)

+
∑

p≡µ(N)

∑
n≡p(M),n6=p

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)knm

−
∑
m∈Z

∑
n≡µ(N)

∑
p≡m(M)
p 6=m

[n]2α
(µ
n

)d+1

knm [p]2α(b̂p − ĉp)

=
∑

p≡µ(N)

∑
n≡p(M),n6=p

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)knm︸ ︷︷ ︸
=:A1

−
∑
m∈Z

∑
n≡µ(N)

∑
p≡m(M)
p 6=m

[n]2α
(µ
n

)d+1

knm [p]2α(b̂p − ĉp)

︸ ︷︷ ︸
=:A2

.

In what follows we will bound the remaining two terms A1, A2 individually. For this (and

the remainder of this appendix) we shall again make use of the notation . to indicate an

implicit constant in the inequality, which is in all cases independent of a
(M)
N , ṽ, b, cN , N,M ,

though it may sometimes depend on other parameters in the inequalities. Where this is of

relevance we will indicate this dependence by a subscript, for instance .r.

|A1| ≤

∣∣∣∣∣∣
∑

n≡µ(M),n 6=µ

[µ]2α ̂(KV0(b− cN))n

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

p≡µ(N),p 6=µ

∑
n≡p(M),n 6=p

[p]2α
(
µ

p

)d+1

̂(KV0(b− cN))n

∣∣∣∣∣∣
.r [µ]2αM−r‖KV0(b− cN)‖r

+
∑
l 6=0

∑
n≡µ+lN(M)
n6=µ+lN

[µ+ lN ]2α
∣∣∣∣ µ

µ+ lN

∣∣∣∣d+1 ∣∣∣ ̂(KV0(b− cN))n

∣∣∣
.r [µ]2αM−r‖KV0(b− cN)‖r

+
∑
l 6=0

[µ+ lN ]2α
∣∣∣∣ µ

µ+ lN

∣∣∣∣d+1 ∑
n≡µ+lN(M)

∣∣∣ ̂(KV0(b− cN))n

∣∣∣
for any r > 1/2. Therefore,
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|A1| .r [µ]2αM−r‖KV0(b− cN)‖r

+
∑
l 6=0

[µ+ lN ]2α
∣∣∣∣ µ

µ+ lN

∣∣∣∣d+1

Cr‖KV0(b− cN)‖r,
(4.77)

for any r > 1/2. For the second term we have

|A2| =
∣∣∣∣∣ ∑
n≡µ(N)

[n]2α
(µ
n

)d+1 ∑
m∈Z

∑
p≡m(M)
p 6=m

knm ̂(V0(b− cN))p

∣∣∣∣∣
≤
∣∣∣∣∣ ∑
n≡µ(N)

[n]2α
(µ
n

)d+1 ∑
m∈ΛN

∑
p≡m(M)
p 6=m

knm ̂(V0(b− cN))p

∣∣∣∣∣
︸ ︷︷ ︸

=:A21

+

∣∣∣∣∣ ∑
n≡µ(N)

[n]2α
(µ
n

)d+1 ∑
m/∈ΛN

∑
p≡m(M)
p 6=m,p/∈ΛN

knm ̂(V0(b− cN))p

∣∣∣∣∣
︸ ︷︷ ︸

=:A22

.

Let us estimate A21, A22 separately: Firstly, using the continuity properties of K, i.e.

Eq. (4.75) we find for any s1, t1 ∈ Z:

A21 ≤
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1 ∑
m∈ΛN

∑
p≡m(M)
p6=m

|knm|
∣∣∣ ̂(V0(b− cN))p

∣∣∣
.s1,t1

∑
n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1 ∑
m∈ΛN

∑
p≡m(M)
p 6=m

(1 + |n|)−s1(1 + |m|)−t1
∣∣∣ ̂(V0(b− cN))p

∣∣∣ .
Moreover, we have for t1 > −4α + d+ 3/2:∑

m∈ΛN

(1 + |m|)−t1
∑

p≡m(M)
p 6=m

[p]2α
∣∣∣ ̂(b− cN)p

∣∣∣
=
∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]2α

∣∣∣∣∣b̂m+lM −
(

m

m+ lM

)d+1

ĉm

∣∣∣∣∣
≤
∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]2α

(
|b̂m+lM |+ |ĉm|

∣∣∣∣ m

m+ lM

∣∣∣∣d+1
)

.
∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]2α−(d+1)[m+ lM ]d+1|b̂m+lM |

+M2α−(d+1)
∑
m∈ΛN

(1 + |m|)−t1 |m|d+1|ĉm|.
(4.78)
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Therefore, for t1 > −4α + d+ 3/2,∑
m∈ΛN

(1 + |m|)−t1
∑

p≡m(M)
p 6=m

[p]2α
∣∣∣ ̂(b− cN)p

∣∣∣
.t1

( ∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]4α−2(d+1)

) 1
2

‖b‖d+1

+M2α−(d+1)‖cN‖4α−(d+1)

.t1 M
2α−(d+1)

(
‖b‖d+1 + ‖cN‖4α−(d+1)

)
(4.79)

.t1 M
2α−(d+1)

(
‖b‖d+1 + ‖b− cN‖4α−(d+1) + ‖b‖4α−(d+1)

)
.t1 M

2α−(d+1)
(
2‖b‖d+1 + ‖b− cN‖4α−(d+1)

)
,

where in Eqs. (4.78) & (4.79) we used that |m| ≤ N/2 ≤ M/2 for all m ∈ ΛN and the

consistency condition d > 2α, which implies that d+ 1− 2α > 1. In the final line we also

relied on the consistency condition d > 2α, which implies d+ 1 > 4α− (d+ 1). Therefore,

we found, for t1 > −4α + d+ 3/2:

A21 .s1,t1

 ∑
n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1

(1 + |n|)−s1
M2α−(d+1)

(
2‖b‖d+1 + ‖b− cN‖4α−(d+1)

)
(4.80)

For A22 we have by Eq. (4.75)

A22 ≤
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1 ∑
m/∈ΛN

∑
p≡m(M)
p 6=m

|knm|| ̂(V0(b− cN))p|

.s2,t2
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1 ∑
m/∈ΛN

∑
p≡m(M)
p6=m

(1 + |n|)−s2(1 + |m|)−t2| ̂(V0(b− cN))p|

.s2,t2
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1

(1 + |n|)−s2
∑
m/∈ΛN

(1 + |m|)−t2
∑
p∈Z

| ̂(V0(b− cN))p|

.s2,t2,δ
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1

(1 + |n|)−s2
∑
m/∈ΛN

(1 + |m|)−t2‖V0(b− cN)‖−2α+d+1/2−δ,

where by the consistency assumption d > 2α we were able to choose δ with 0 < δ < d− 2α

which implies
∑

p∈Z[p]2(−2α+d+1/2−δ) <∞. By the approximation property of splines spaces

(Assumption 4.2.2) we can choose χN ∈ SN such that for some c > 0 and for all t < d+1/2:

‖b− χN‖t ≤ c‖b‖d+1.
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This allows us to estimate, using the inverse property of smoothest splines (Assump-

tion 4.2.3),

‖V0(b− cN)‖−2α+d+1/2−δ . ‖b− cN‖d+1/2−δ .
(
‖b− χN‖d+1/2−δ + ‖χN − cN‖d+1/2−δ

)
.
(
N−1/2−δ‖b‖d+1 +N2d+3/2−δ−4α‖χN − cN‖4α−(d+1)

)
.
(
N−1/2−δ‖b‖d+1 +N2d+3/2−δ−4α‖b− χN‖4α−(d+1)

+N2d+3/2−δ−4α‖b− cN‖4α−(d+1)

)
.
(
N−1/2−δ‖b‖d+1 +N2d+3/2−δ−4α‖b− cN‖4α−(d+1)

)
.

Furthermore we have, whenever t2 > 1,∑
m/∈ΛN

(1 + |m|)−t2 ≤ ˜̃Ct2N
1−t2

for some constant ˜̃Ct2 > 0 independent of N . We can combine these estimates to show

that, when t2 = 3/2− δ + 2(d+ 1)− 4α,

A22 .s2,t2
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1

(1 + |n|)−s2
(
N4α−2(d+1)‖b‖d+1 +N−1‖b− cN‖4α−(d+1)

)
.

(4.81)

This means combining Eqs. (4.77), (4.80) & (4.81) gives a bound on ε(ψµ, b−cN ), whenever

µ ∈ Λ∗N . A similar bound for µ = 0 can be found by simply replacing the sums over∑
n≡µ(N) by the unique choice n = 0 with no summation. We now understand how the

linear system for aµ is affected by the perturbation ε(ψµ, b− cN ), and we can use a similar

procedure as in the proof of Thm. 4.4.10 to understand how this affects ‖ṽ− a(M)
N ‖4α−(d+1).

Specifically, since the linear system is diagonal we have following analogue of Eq. (4.61)

aµ = a′µ + [µ]−4αD
( µ
N

)−1

ε(ψµ, b− cN), µ ∈ ΛN ,

where

a′µ =


1
J

∑J
j=1

∑
n≡0(N)[n]2αv̂n exp

(
n
N
ξj
)
, if µ = 0,

D
(
µ
N

)−1 1
J

∑J
j=1

∑
n≡µ(N)

[
n
µ

]2α

exp
(
2πin−µ

N
ξj
)
v̂n

(
1 + Ω

(
ξj,

µ
N

))
, if µ 6= 0,

and D(y) is as defined in Eq. (4.62). We recall from Eq. (4.64) that D(µ/N) ≥ 1, ∀µ ∈ ΛN ,

and note that therefore the coefficients aµ are affected by the perturbation ε(ψµ, b− cN)
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as follows

|aµ − a′µ| ≤ [µ]−4α|ε(ψµ, b− cN)|.

To estimate the norm ‖a(M)
N − ṽ‖4α−(d+1) we recall the proof of Thm. 4.4.10 and specifically

the estimate Eq. (4.44), which implies

‖a(M)
N − PN ṽ‖2

4α−(d+1) ≤ C
∑
µ∈ΛN

[µ]2(4α−(d+1))|aµ − v̂µ|2.

Therefore, compared to Thm. 4.4.10, the additional term in the Sobolev error arising from

the perturbation ε(ψµ, b− cN) is bounded above by

C
∑
µ∈ΛN

[µ]2(4α−(d+1))|aµ − a′µ|2 ≤ C
∑
µ∈ΛN

[µ]−2(d+1)|ε(ψµ, b− cN)|2,

where C > 0 is independent of ṽ, a
(M)
N ,M,N, b, cN . We can now apply the estimates

derived in Eqs. (4.77), (4.80) & (4.81), to find there are constants Cr, Cs > 0 such that

for any r > 1/2 and any s > 0

C
∑
µ∈ΛN

[µ]−2(d+1)|ε(ψµ, b− cN)|2 ≤ Cr
∑
µ∈ΛN

(
[µ]2α−(d+1)M−r +

∑
l 6=0

[µ+ lN ]2α−(d+1)

)2

‖KV0(b− cN)‖2
r

+ Cs
∑
µ∈ΛN

 ∑
n≡µ(N)

[n]2α−(d+1)(1 + |n|)−s
2

(
M2α−(d+1)‖b‖d+1 +M2α−(d+1)‖b− cN‖4α−(d+1)

+N4α−2(d+1)‖b‖d+1 +N−1‖b− cN‖4α−(d+1)

)2
.

Given that 2α−d < 0, we have
∑

l 6=0[µ+lN ]2α−(d+1) . N−1. Moreover K : H2α−(d+1) → Hr

is continuous, and so we find for r > 1 and s > 1:∑
µ∈ΛN

[µ]−2(d+1)|ε(ψµ, b− cN)|2 . N−2‖b− cN‖2
4α−(d+1)

+ (M2α−(d+1) +N4α−2(d+1))2‖b‖2
d+1.

Combining this with the estimates Eqs. (4.45) & (4.41) yields

‖a(M)
N − ṽ‖4α−(d+1) ≤ C(M2α−(d+1) +N4α−2(d+1)) (‖ṽ‖d+1 + ‖b‖d+1)

+ CN−1‖b− cN‖4α−(d+1),
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for some constant C > 0 independent of a
(M)
N , ṽ, N,M, b, cN , which completes the proof of

Lemma 4.F.2.

We can now use Lemma 4.F.2 to prove Thm. 4.F.1 in a manner closely related to the

argument given in Appendix 4.E.

Proof of Thm. 4.F.1. We proceed in two steps: Firstly we show that a perturbation of the

test functions V0χN 7→ (I +K)V0χN yields a similar error estimate as in Thm. 4.4.10 and

then we proceed to perturb the operator V0 on the right hand side of the orthogonality

conditions.

Claim 4.F.3. Suppose a
(M)
N ∈ SN satisfies〈

(1 +K)V0χN , V0a
(M)
N

〉
M

= 〈(1 +K)V0χN , V0ã〉M , ∀χN ∈ SN , (4.82)

where K satisfies the assumptions of Thm. 4.F.1. Then there are constants C,M0, N0 > 0

independent of ã, a
(M)
N ,M,N such that for M ≥M0, N ≥ N0:

‖a(M)
N − ã‖4α−(d+1) ≤ C(M2α−(d+1) +N4α−2(d+1))‖ã‖d+1. (4.83)

Proof. To begin with we note the conditions Eq. (4.82) are equivalent to〈
V0χN , (I +K∗)V0a

(M)
N

〉
M

= 〈V0χN , (I +K∗)V0ã〉M + ε(χN , a
(M)
N − ã), ∀χN ∈ SN .

This can be equivalently written as〈
V0χN , V0a

(M)
N

〉
M

=
〈
V0χN , V0

(
ã+ V −1

0 K∗V0(ã− a(M)
N )

)〉
M

+ ε(χN , a
(M)
N − ã), ∀χN ∈ SN .

Therefore, Lemma 4.F.2 applies and shows that

‖V −1
0 (I +K∗)V0(ã− a(M)

N )‖4α−(d+1)

≤ C
(
M2α−(d+1) +N4α−2(d+1)

)
‖ã+ V −1

0 K∗V0(ã− a(M)
N )‖d+1

+ C
(
M2α−(d+1) +N4α−2(d+1)

)
‖ã‖d+1

+ CN−1‖ã− a(M)
N ‖4α−(d+1).

Noting that V0 : H4α−(d+1) → H4α−(d+1) is a continuous isomorphism, and that I +K∗ :

H2α−(d+1) → H2α−(d+1) is invertible, there is a constant C̃ > 0 such that

‖ã− a(M)
N ‖4α−(d+1) ≤ C̃

(
M2α−(d+1) +N4α−2(d+1)

)
‖ã‖d+1

+ C̃
(
M2α−(d+1) +N4α−2(d+1) +N−1

)
‖ã− a(M)

N ‖4α−(d+1).
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Equivalently,(
1− C̃

(
M2α−(d+1) +N4α−2(d+1) +N−1

))
‖ã− a(M)

N ‖4α−(d+1)

≤ C̃
(
M2α−(d+1) +N4α−2(d+1)

)
‖ã‖d+1.

The we conclude that, for M,N sufficiently large, the estimate Eq. (4.83) holds. �

Having proved Claim 4.F.3 we can proceed to prove Thm. 4.F.1 in an analogous way

to the arguments in Appendix 4.E: Suppose u
(M)
N ∈ SN satisfies〈

(I +K)V0χN , (I +K)V0u
(M)
N

〉
M

= 〈(I +K)V0χN , (I +K)V0u〉M , ∀χN ∈ SN .

These conditions are equivalent to〈
(I +K)V0χN , V0u

(M)
N

〉
M

=
〈

(I +K)V0χN , V0

(
u+ V −1

0 KV0(u− u(M)
N )

)〉
M
, ∀χN ∈ SN .

Thus by Claim 4.F.3 we have for some C > 0

‖V −1
0 (I +K)V0

(
u

(M)
N − u

)
‖4α−(d+1)

≤ C
(
M2α−(d+1) +N4α−2(d+1)

)
‖u+ V −1

0 KV0(u− u(M)
N )‖d+1.

We note that by continuity of K : H2α−(d+1) → Hd+1−2α we again have

‖u+ V −1
0 KV0(u− u(M)

N )‖d+1 . ‖u‖d+1 + ‖u− u(M)
N ‖4α−(d+1).

Moreover, by the assumptions on V0,K the map V −1
0 (I +K)−1V0 : H4α−(d+1) → H4α−(d+1)

is bounded and, therefore, we have, for some C̃ > 0 independent of u, u
(M)
N ,M,N ,(

1− C̃
(
M2α−(d+1) +N4α−2(d+1)

))
‖u− u(M)

N ‖4α−(d+1) ≤ C̃
(
M2α−(d+1) +N4α−2(d+1)

)
‖u‖d+1.

Thus, similarly to the proof given in Appendix 4.E, we conclude for N,M sufficiently large

the estimate Eq. (4.73) holds, hence completing the proof of Thm. 4.F.1.

4.G A perturbation argument for least-squares over-

sampled collocation (Single Layer Helmholtz)

In this appendix we will weaken some of the continuity assumptions used in Appendix 4.F

in order to show that the following result holds also for the integral operators arising

from the single layer formulation of Helmholtz equation on a smooth curve. Specifically,
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recalling Thm. 4.4.10, we will prove the following statement. We note that in this appendix

we have α = −1/2 throughout as we are working with single layer operator.

Theorem 4.G.1. If u
(M)
N ∈ SN is such that〈

(I +K)V0χN , (I +K)V0u
(M)
N

〉
M

= 〈(I +K)V0χN , (I +K)V0u〉M , ∀χN ∈ SN , (4.84)

where V0 has the form Eq. (4.33) with α = −1/2 and I + K : Hs → Hs is a continuous

isomorphism for all s ∈ R and K : Hs → Hs+1.25 with a representation in the form

Ku(x) =
∑
m∈Z

∑
n∈Z

km,nûme2πinx, x ∈ [0, 1)

for every u ∈ L2 and km,n satisfy the estimate Eq. (4.34) for all s, t ∈ R, then we still have

the estimate Eq. (4.36), i.e. there are constants N0, C > 0 independent of N, u,M such

that, for all M ≥ N2 and N ≥ N0,

‖u(M)
N − u‖2α−(d+1) ≤ CN4α−2(d+1)‖u‖d+1. (4.85)

As in Appendix 4.F this formulation of the theorem is equivalent to the perturbation

V = V0 +K simply by writing

V = (I +KV −1
0 )V0,

and by Lemma 4.4.9 the assumptions of this theorem are satisfied by the integral operator

arising from a single layer formulation on a smooth curve Γ. We will follow the proof of

Thm. 4.F.1 in Appendix 4.F very closely. In particular we will again introduce the bilinear

form ε:

ε(χN , b̃) :=
〈
V0χN ,K∗V0b̃

〉
M
−
〈
KV0χN , V0b̃

〉
M
.

Similarly to Lemma 4.F.2 we will rely on a crucial a priori estimate in order to facilitate

the proof of Thm. 4.G.1.

Lemma 4.G.2. Suppose a
(M)
N ∈ SN satisfies〈

V0χN , V0a
(M)
N

〉
M

= 〈V0χN , V0ṽ〉M + ε(χN , b− cN), ∀χN ∈ SN , (4.86)

for some ṽ, b ∈ Hd+1 and a sequence of spline functions cN ∈ SN , N ∈ N. Given

r, r1, r2 > 1/2 and t > 0, there is a constant C > 0 independent of N,M, ṽ, b, cN such that
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for all M ≥ N > 0:

‖ṽ − a(M)
N ‖4α−(d+1) ≤ C(M2α−(d+1) +N4α−2(d+1))‖ṽ‖d+1

+ C(M−r1‖b− cN‖r1−2.25 +N2α−(d+1)+1/2‖b− cN‖r2−2.25)

+ CM2α−(d+1) (‖b‖d+1 + ‖b− cN‖d−1)

+ C
(
N−t +N2α−(d+1)−1/2

)
N−r‖b− cN‖r+2α.

Proof of Lemma 4.G.2. We closely follow the proof of Lemma 4.F.2. Let us write b̂n, ĉn

for the Fourier coefficients of b, cN respectively, noting that for all n ∈ Λ∗N , l ∈ Z, we have

ĉn+lN = nd+1/(n + lN)d+1ĉn. We first recall that for µ ∈ Λ∗N we can write the bilinear

form ε evaluated at ψµ, b− cN in the following way

ε(ψµ, b− cN) =
∑

p≡µ(N)

∑
n≡p(M),n6=p

∑
m∈Z

[p]2α
(
µ

p

)d+1

[m]2α(b̂m − ĉm)knm︸ ︷︷ ︸
=:A1

−
∑
m∈Z

∑
n≡µ(N)

∑
p≡m(M)
p 6=m

[n]2α
(µ
n

)d+1

knm [p]2α(b̂p − ĉp)

︸ ︷︷ ︸
=:A2

.

In what follows we will bound the remaining two terms A1, A2 individually. For this (and

the remainder of this appendix) we shall again make use of the notation . to indicate an

implicit constant in the inequality, which is in all cases independent of a
(M)
N , ṽ, b, cN , N,M ,

though it may sometimes depend on other parameters in the inequalities. Where this is of

relevance we will indicate this dependence by a subscript, for instance .r. Note that it is

specifically these estimates which differ from similar steps in the proof of Lemma 4.F.2,

because in the present case K satisfies slightly weaker continuity assumptions. Firstly we

have

|A1| ≤

∣∣∣∣∣∣
∑

n≡µ(M),n 6=µ

[µ]2α ̂(KV0(b− cN))n

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∑

p≡µ(N),p 6=µ

∑
n≡p(M),n 6=p

[p]2α
(
µ

p

)d+1

̂(KV0(b− cN))n

∣∣∣∣∣∣ .
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Therefore,

|A1| .r1 [µ]2αM−r1‖KV0(b− cN)‖r1

+
∑
l 6=0

∑
n≡µ+lN(M)
n6=µ+lN

[µ+ lN ]2α
∣∣∣∣ µ

µ+ lN

∣∣∣∣d+1 ∣∣∣ ̂(KV0(b− cN))n

∣∣∣
.r1 [µ]2αM−r1‖KV0(b− cN)‖r1

+
∑
l 6=0

[µ+ lN ]2α
∣∣∣∣ µ

µ+ lN

∣∣∣∣d+1 ∑
n≡µ+lN(M)

∣∣∣ ̂(KV0(b− cN))n

∣∣∣
for any r1 > 1/2. Therefore,

|A1| .r1,r2 [µ]2αM−r1‖KV0(b− cN)‖r1

+
∑
l 6=0

[µ+ lN ]2α
∣∣∣∣ µ

µ+ lN

∣∣∣∣d+1

‖KV0(b− cN)‖r2 ,
(4.87)

for any r1, r2 > 1/2. For the second term we have

|A2| =
∣∣∣∣∣ ∑
n≡µ(N)

[n]2α
(µ
n

)d+1 ∑
m∈Z

∑
p≡m(M)
p 6=m

knm ̂(V0(b− cN))p

∣∣∣∣∣
≤
∣∣∣∣∣ ∑
n≡µ(N)

[n]2α
(µ
n

)d+1
3N/4∑

m=−3N/4

∑
p≡m(M)
p 6=m

knm ̂(V0(b− cN))p

∣∣∣∣∣
︸ ︷︷ ︸

=:A21

+

∣∣∣∣∣ ∑
n≡µ(N)

[n]2α
(µ
n

)d+1 ∑
|m|>3N/4

∑
p≡m(M)
p 6=m,p/∈ΛN

knm ̂(V0(b− cN))p

∣∣∣∣∣
︸ ︷︷ ︸

=:A22

.

Let us estimate A21, A22 separately: Firstly, using the bounds Eq. (4.34) of the Fourier

series representation of K we have for any s1, t1 ∈ R:

A21 ≤
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1
3N/4∑

m=−3N/4

∑
p≡m(M)
p 6=m

|knm|
∣∣∣ ̂(V0(b− cN))p

∣∣∣ .
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Therefore

A21 .s1,t1
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1
3N/4∑

m=−3N/4

∑
p≡m(M)
p6=m

(
(1 + |n|)−s1+1(1 + |m|)−t1+

(1 + |n|)
∑
l∈Z

(1 + |n− l|)−3(1 + |l|)−t1(1 + |m− n− l|)−s1
)∣∣∣ ̂(V0(b− cN))p

∣∣∣ .
Moreover, we have for t1 > −4α + d+ 3/2:

3N/4∑
m=−3N/4

(1 + |m|)−t1
∑

p≡m(M)
p 6=m

[p]2α
∣∣∣ ̂(b− cN)p

∣∣∣
=
∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]2α

∣∣∣∣∣b̂m+lM −
(

m

m+ lM

)d+1

ĉm

∣∣∣∣∣
≤
∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]2α

(
|b̂m+lM |+ |ĉm|

∣∣∣∣ m

m+ lM

∣∣∣∣d+1
)

.
∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]2α−(d+1)[m+ lM ]d+1|b̂m+lM |

+M2α−(d+1)
∑
m∈ΛN

(1 + |m|)−t1|m|d+1|ĉm|.
(4.88)

Therefore, for t1 > −4α + d+ 3/2,∑
m∈ΛN

(1 + |m|)−t1
∑

p≡m(M)
p 6=m

[p]2α
∣∣∣ ̂(b− cN)p

∣∣∣
.t1

( ∑
m∈ΛN

(1 + |m|)−t1
∑
l 6=0

[m+ lM ]4α−2(d+1)

) 1
2

‖b‖d+1

+M2α−(d+1)‖cN‖4α−(d+1)

.t1 M
2α−(d+1)

(
‖b‖d+1 + ‖cN‖4α−(d+1)

)
(4.89)

.t1 M
2α−(d+1)

(
‖b‖d+1 + ‖b− cN‖4α−(d+1) + ‖b‖4α−(d+1)

)
.t1 M

2α−(d+1)
(
2‖b‖d+1 + ‖b− cN‖4α−(d+1)

)
,

where in Eqs. (4.88) & (4.89) we used that |m| ≤ N/2 ≤ M/2 for all m ∈ ΛN and the

consistency condition d > 2α, which implies that d+ 1− 2α > 1. In the final line we also

relied on the consistency condition d > 2α, which implies d+ 1 > 4α− (d+ 1). Next we
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observe that for t1 > 3, s1 > −1:∑
l′∈Z

(1 + |m− l′|)−3(1 + |l′|)−t1(1 + |m− n− l′|)−s1 ≤
∑
l′∈Z

(1 + |m− l′|)−3(1 + |l′|)−t1

≤ (1 + |m|/2)−3
∑
|l′|≤m/2

(1 + |l′|)−t1 + (1 + |m|/2)−t1
∑
|l′|>n/2

(1 + |m− l′|)−3

. (1 + |m|)−3.

Moreover, when |n| ≥ N and |m| < 3N/4 we have in addition the following estimate∑
l′∈Z

(1 + |m− l′|)−3(1 + |l′|)−t1(1 + |m− n− l′|)−s1 ≤
∑
l′∈Z

(1 + |l′|)−t1(1 + |m− n− l′|)−s1

≤ (1 + |n|/8)−s1
∑
|l′|<n/8

(1 + |l′|)−t1 + (1 + |n|/8)−s1
∑
|l′|>n/8

(1 + |m− n− l′|)−s1

. (1 + |n|)−min{s1,t1}.

Therefore we have, setting the summation index to l′ = m− n− l, if |n| < N :

3N/4∑
m=−3N/4

∑
p≡m(M)
p 6=m

(1 + |n|)
∑
l′∈Z

(1 + |m− l′|)−3(1 + |m− n− l′|)−t1(1 + |l′|)−s1
∣∣∣ ̂(V0(b− cN))p

∣∣∣
. (1 + |n|)

3N/4∑
m=−3N/4

(1 + |m|)−3
∑

p≡m(M)
p 6=m

[p]2α
∣∣∣ ̂(b− cN)p

∣∣∣
.t1 N(1 + |n|)−2

(∑
l 6=0

[m+ lM ]4α−2(d+1)

) 1
2

‖b‖d+1

+ (1 + |n|)M2α−(d+1)‖cN‖d−1

.t1 (1 + |n|)M2α−(d+1) (‖b‖d+1 + ‖cN‖d−1) (4.90)

.t1 (1 + |n|)M2α−(d+1) (‖b‖d+1 + ‖b− cN‖d−1 + ‖b‖d−1)

.t1 (1 + |n|)M2α−(d+1) (2‖b‖d+1 + ‖b− cN‖d−1) ,

and, if |n| ≥ N ,

3N/4∑
m=−3N/4

∑
p≡m(M)
p 6=m

(1 + |n|)
∑
l′∈Z

(1 + |m− l′|)−3(1 + |m− n− l′|)−t1(1 + |l′|)−s1
∣∣∣ ̂(V0(b− cN))p

∣∣∣
.t1,s1 |n|−min{s1,t1}+1M2α−(d+1) (2‖b‖d+1 + ‖b− cN‖d−1) ,
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and so on the whole we estimate

A21 .s1,t1

 ∑
n≡µ(N)|n|<N

[n]2α
∣∣∣µ
n

∣∣∣d+1

(1 + |n|) +
∑

n≡µ(N)|n|≥N

[n]−min{s1,t1}
∣∣∣µ
n

∣∣∣d+1


M2α−(d+1) (2‖b‖d+1 + ‖b− cN‖d−1) .

(4.91)

For A22 we have the following upper bound:

A22 ≤
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1 ∑
|m|≥3N/4

∑
p≡m(M)
p 6=m,p/∈ΛN

|knm|| ̂(V0(b− cN))p|

.s2,t2
∑

n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1 ∑
|m|≥3N/4

∑
p≡m(M)
p6=m,p/∈ΛN

(
(1 + |n|)−s+1(1 + |m|)−t

(1 + |n|)
∑
l∈Z

(1 + |n− l|)−3(1 + |l|)−t(1 + |n−m− l|)−s
)
| ̂(V0(b− cN))p|.

Firstly, analogously to Eq. (4.81) we have for t > 3/2− δ + 2(d+ 1)− 4α,∑
|m|≥3N/4

∑
p≡m(M)
p 6=m,p/∈ΛN

(1 + |m|)−t| ̂(V0(b− cN))p| .s,t
(
N4α−2(d+1)‖b‖d+1 +N−1‖b− cN‖4α−(d+1)

)
.

Secondly, let m′ be the unique integer with m′ ∈ ΛN and m′ ≡ m(N), then for an arbitrary

set of Fourier coefficients f̂p and any r > 1/2∑
p≡m(M),p 6=m,p/∈ΛN

|f̂p| ≤
∑

p≡m′(N),p 6=m′
|f̂p| . N−r‖f‖r.

Therefore∑
|m|≥3N/4

∑
p≡m(M)
p6=m,p/∈ΛN

∑
l∈Z

(1 + |n− l|)−3(1 + |l|)−t(1 + |n−m− l|)−s| ̂(V0(b− cN))p|

.r
∑

|m|≥3N/4

∑
l∈Z

(1 + |n− l|)−3(1 + |l|)−t(1 + |m− n− l|)−sN−r‖V0(b− cN)‖r.
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Now in addition we can estimate∑
n≡µ(N)

[n]2α
∣∣∣µ
n

∣∣∣d+1

(1 + |n|)
∑

|m|≥3N/4

∑
l∈Z

(1 + |n− l|)−3(1 + |l|)−t(1 + |m− n− l|)−s

. [µ]2α(1 + |µ|)
∑

|m|≥3N/4

∑
l∈Z

(1 + |µ− l|)−3(1 + |l|)−t(1 + |µ−m− l|)−s

+
∑
j 6=0

∣∣∣∣ µ

µ+ jN

∣∣∣∣d+1 ∑
|m|≥3N/4

∑
l∈Z

(1 + |µ+ jN − l|)−3(1 + |l|)−t(1 + |µ+ jN −m− l|)−s

Note that µ−m > N/4 thus the first term on the right hand side is, for s, t sufficiently

large

. [µ]2αN
∑

|m|≥3N/4

∑
l∈Z

(1 + |l|)−t(1 + |µ−m− l|)−s .s,t [µ]2αN−t+1

We can also estimate the second term as follows (note 2α = −1):

∑
j 6=0

∣∣∣∣ µ

µ+ jN

∣∣∣∣d+1 ∑
|m|≥3N/4

∑
l∈Z

(1 + |µ+ jN − l|)−3(1 + |l|)−t(1 + |µ+ jN −m− l|)−s

.
∑
j 6=0

∣∣∣∣ µ

µ+ jN

∣∣∣∣d+1

(1 + |µ+ jN |)−3
∑

|m|≥3N/4

.
∑
j 6=0

∣∣∣∣ µ

µ+ jN

∣∣∣∣d+1

(1 + |µ+ jN |)−3N . [µ]d+1N−(d+1)−2

So overall we estimate

A22 .
(
[µ]2αN−t+1 + [µ]d+1N−(d+1)−2

)
N−r‖b− cN‖r+2α. (4.92)

A similar bound for |ε(ψµ, b− cN)|2 in the case µ = 0 can be found by simply replacing

the sums over
∑

n≡µ(N) by the unique choice n = 0 with no summation. We can now

combine Eqs. (4.87),(4.91) & (4.92) to find the following estimate for r, r1, r2 > 1/2, t > 0

and some constant C = Cr1,r2,r,t:
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∑
µ∈ΛN

[µ]−2(d+1)|ε(ψµ, b− cN)|2 ≤ C
∑
µ∈ΛN

[µ]4α−2(d+1)M−2r1‖KV0(b− cN)‖2
r1

+C
∑
µ∈ΛN

(∑
l 6=0

[µ+ lN ]2α−(d+1)

)2

‖KV0(b− cN)‖2
r2

+ C
∑
µ∈ΛN

 ∑
n≡µ(N)|n|<N

[n]−(d+1) +
∑

n≡µ(N)|n|≥N

[n]−t

2

(
M2α−(d+1) (2‖b‖d+1 + ‖b− cN‖d−1)

)2

+ C
∑
µ∈ΛN

[µ]−2(d+1)
(
[µ]4αN−2t + [µ]2(d+1)N4α−2(d+1)−2

)
N−2r‖b− cN‖2

r+2α.

Therefore we have by the continuity properties of K, for N sufficiently large,∑
µ∈ΛN

[µ]−2(d+1)|ε(ψµ, b− cN)|2 . (M−2r1‖b− cN‖2
r1−2.25 +N4α−2(d+1)+1‖b− cN‖2

r2−2.25)

+M4α−2(d+1)
(
‖b‖2

d+1 + ‖b− cN‖2
d−1

)
+
(
N−2t +N4α−2(d+1)−1

)
N−2r‖b− cN‖2

r.

Similar to the proof of Lemma 4.F.2 we can combine this estimate with the estimates

Eqs. (4.45) & (4.41) to bound the solution of the linear system Eq. (4.86) in the following

way

‖a(M)
N − ṽ‖4α−(d+1) ≤ C(M2α−(d+1) +N4α−2(d+1))‖ṽ‖d+1

+ C(M−r1‖b− cN‖r1−2.25 +N2α−(d+1)+1/2‖b− cN‖r2−2.25)

+ CM2α−(d+1) (‖b‖d+1 + ‖b− cN‖d−1)

+ C
(
N−t +N2α−(d+1)−1/2

)
N−r‖b− cN‖r+2α

for some constant C > 0 independent of a
(M)
N , ṽ, N,M, b, cN , which completes the proof of

Lemma 4.G.2.

We can now use Lemma 4.G.2 to prove Thm. 4.G.1 in a manner closely related to the

proof of Thm. 4.F.1.

Proof of Thm. 4.G.1. We proceed in two steps: Firstly we show that a perturbation of

the test functions V0χN 7→ (I +K)V0χN yields a similar error estimate as in Thm. 4.4.10

and then we proceed to perturb the operator V0 on the right hand side of the orthogonality

conditions.
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Claim 4.G.3. Suppose a
(M)
N ∈ SN satisfies〈

(1 +K)V0χN , V0a
(M)
N

〉
M

= 〈(1 +K)V0χN , V0ã〉M , ∀χN ∈ SN , (4.93)

where K satisfies the assumptions of Thm. 4.G.1. Then there are constants C,N0 > 0

independent of ã, a
(M)
N such that for M ≥ N2, N ≥ N0:

‖a(M)
N − ã‖4α−(d+1) ≤ CN4α−2(d+1)‖ã‖d+1. (4.94)

Proof. To begin with we note the conditions Eq. (4.82) are equivalent to〈
V0χN , (I +K∗)V0a

(M)
N

〉
M

= 〈V0χN , (I +K∗)V0ã〉M + ε(χN , a
(M)
N − ã), ∀χN ∈ SN .

This can be equivalently written as〈
V0χN , V0a

(M)
N

〉
M

=
〈
V0χN , V0

(
ã+ V −1

0 K∗V0(ã− a(M)
N )

)〉
M

+ ε(χN , a
(M)
N − ã), ∀χN ∈ SN .

Therefore, Lemma 4.G.2 applies and shows that

‖V −1
0 (I +K∗)V0(ã−a(M)

N )‖4α−(d+1)

≤ C
(
M2α−(d+1) +N4α−2(d+1)

)
‖ã+ V −1

0 K∗V0(ã− a(M)
N )‖d+1

+ C(M−r1‖ã− a(M)
N ‖r1−2.25 +N2α−(d+1)+1/2‖ã− a(M)

N ‖r2−2.25)

+ CM2α−(d+1)
(
‖ã‖d+1 + ‖ã− a(M)

N ‖d−1

)
+ C

(
N−t +N2α−(d+1)−1/2

)
N−r‖ã− a(M)

N ‖r+2α

(4.95)

Let r1 = d+ 1.25 then we have (using the usual estimates exploiting Assumptions 4.2.2 &

4.2.3):

M−r1‖ã− a(M)
N ‖r1−2.25 .M−(d+5/4)

(
N−2‖ã‖d+1 +N2(d+1)−4‖ã− a(M)

N ‖4α−(d+1)

)
For the second term we take r2 = 3/4 then we have similarly

N2α−(d+1)+1/2‖ã− a(M)
N ‖r2−2.25

. N2α−(d+1)+1/2
(
N−3/2−(d+1)‖ã‖d+1 +N−3/2−4α+(d+1)‖ã− a(M)

N ‖4α−(d+1)

)
. N4α−2(d+1)‖ã‖d+1 +N−1/2‖ã− a(M)

N ‖4α−(d+1)
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In a similar manner (again using Assumptions 4.2.2 & 4.2.3) we can estimate:

M2α−(d+1)‖ã− a(M)
N ‖d−1 .M2α−(d+1)

(
‖ã− χN‖d−1 + ‖χN − a(M)

N ‖d−1

)
.M2α−(d+1)

(
N−2‖ã‖d+1 +N−4α−2d‖χN − a(M)

N ‖4α−(d+1)

)
.M2α−(d+1)N−2‖ã‖d+1 +M2α−(d+1)N−4α−2d‖ã− a(M)

N ‖4α−(d+1).

Finally, we also have for t > −2α + d+ 3/2 and any r > 1/2:

(
N−t +N2α−(d+1)−1/2

)
N−r‖ã− a(M)

N ‖r+2α

. N2α−(d+1)−1/2−r
(
N r+2α−(d+1)‖ã‖d+1 +N r+2α−4α+(d+1)‖ã− a(M)

N ‖4α−(d+1)

)
. N4α−2(d+1)−1/2‖ã‖d+1 +N−1/2‖ã− a(M)

N ‖4α−(d+1)

Therefore the estimate Eq. (4.95) simplifies for N sufficiently large to

‖V −1
0 (I +K∗)V0(ã− a(M)

N )‖4α−(d+1)

≤ C
(
M2α−(d+1) +N4α−2(d+1)

)
‖ã+ V −1

0 K∗V0(ã− a(M)
N )‖d+1

+ C
(
M−(d+5/4)N−2 +N4α−2(d+1) +M2α−(d+1)

)
‖ã‖d+1

+ C
(
M−(d+5/4)N2(d+1)−4 +N−1/2 +M2α−(d+1)N−4α+2(d+1)N−2

)
‖ã− a(M)

N ‖4α−(d+1)

Noting that V0 : H4α−(d+1) → H4α−(d+1) is a continuous isomorphism, and that I +K∗ :

H2α−(d+1) → H2α−(d+1) is invertible, there is a constant C̃ > 0 such that

‖ã− a(M)
N ‖4α−(d+1) ≤ C̃

(
M2α−(d+1) +N4αM−(d+1)−1/4 +N4α−2(d+1)

)
‖ã‖d+1

+ C̃
(
M2α−(d+1) +N4α−2(d+1) +M−(d+5/4)N2(d+1)−4

+N−1/2 +M2α−(d+1)N−4α+2(d+1)N−2
)
‖ã− a(M)

N ‖4α−(d+1).

Letting M ≥ N2 we find

‖ã− a(M)
N ‖4α−(d+1) ≤ C̃N4α−2(d+1)‖ã‖d+1

+ C̃
(
N4α−2(d+1) +N−9/2 +N−1/2 +N−2

)
‖ã− a(M)

N ‖4α−(d+1).

Equivalently, for N sufficiently large, there is a constant C̃ > 0 such that,(
1− C̃

(
N4α−2(d+1) +N−1/2

))
‖ã− a(M)

N ‖4α−(d+1) ≤ C̃N4α−2(d+1)‖ã‖d+1.

The we conclude that, for M ≥ N2 and N sufficiently large, the estimate Eq. (4.94)
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holds. �

Having proved Claim 4.G.3 we can proceed to prove Thm. 4.G.1 in an analogous way

to the arguments in Appendix 4.E: Suppose u
(M)
N ∈ SN satisfies〈

(I +K)V0χN , (I +K)V0u
(M)
N

〉
M

= 〈(I +K)V0χN , (I +K)V0u〉M , ∀χN ∈ SN .

These conditions are equivalent to〈
(I +K)V0χN , V0u

(M)
N

〉
M

=
〈

(I +K)V0χN , V0

(
u+ V −1

0 KV0(u− u(M)
N )

)〉
M
, ∀χN ∈ SN .

Thus by Claim 4.G.3 we have for some C > 0

‖V −1
0 (I +K)V0

(
u

(M)
N − u

)
‖4α−(d+1)

≤ CN4α−2(d+1)‖u+ V −1
0 KV0(u− u(M)

N )‖d+1.

We note that by continuity of K : Hd+1−2α−1 → Hd+1−2α we again have (using the

Assumptions 4.2.2 & 4.2.3)

‖u+ V −1
0 KV0(u− u(M)

N )‖d+1 . ‖u‖d+1 + ‖u− u(M)
N ‖d

. N−1‖u‖d+1 +N2(d+1)−4α−1‖u− u(M)
N ‖4α−(d+1).

Moreover, by the assumptions on V0,K the map V −1
0 (I +K)−1V0 : H4α−(d+1) → H4α−(d+1)

is bounded and, therefore, we have, for some C̃ > 0 independent of u, u
(M)
N ,M,N ,(

1− C̃N−1
)
‖u− u(M)

N ‖4α−(d+1) ≤ C̃N4α−2(d+1)‖u‖d+1.

Thus, we conclude for M ≥ N2 and N sufficiently large the estimate Eq. (4.85) holds,

hence completing the proof of Thm. 4.G.1.
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Chapter 5

Recursive moment computation in

Filon methods

5.1 Introduction

In Chapter 4 we saw how efficient (oversampled) collocation methods may be constructed

for wave scattering problems on compact obstacles. An essential step in the implementation

of these methods is the assembly of the collocation matrix entries, which are given as

integrals of the kernel of the layer operators (i.e. the Green’s function of the Helmholtz

equation or its normal derivative) against the basis functions of the trial space (denoted

by SN in Chapter 4). As the frequency increases the spline bases discussed in the previous

chapter are no longer able to capture the solution efficiently (essentially because the

dimension of the trial space would have to increase linearly with the frequency of the

incident wave in order to preserve the quality of approximation). As we discussed in

§1.1.2, a way to overcome this is by introducing oscillatory elements in the trial space,

hence leading to so-called hybrid numerical-asymptotic boundary integral methods. In this

setting the trial space consists of functions with predefined oscillations, and the degrees

of freedom are limited to the approximation of slowly varying amplitudes. However this

brings the challenge that basis functions are supported on a range much larger than a single

wavelength and therefore the assembly of the collocation matrix requires the integration

of these oscillatory basis functions against the singular, oscillatory Green’s function (see

for instance Chandler-Wilde, Graham, Langdon and Spence, 2012, §4), creating a demand

for the efficient approximation of highly-oscillatory integrals.

While our motivation in this thesis comes from wave scattering, we note that highly

oscillatory integrals arise in the simulation of many physical systems involving high-

frequency phenomena, including quantum physics and laser dynamics (Iserles et al.,

2019a,b), and in electronic engineering (Condon et al., 2009). Although efficient methods

for the computation of certain highly oscillatory integrals had been discovered as early
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as the first half of the twentieth century by Louis Napoleon George Filon (1930), as we

mentioned in §1.2.3, and thorough research over the past decades has led to an immense

increase in efficiency and applicability of such methods (Deaño et al., 2017), many open

problems remain. Amongst them is the so-called ‘moment-problem’, i.e. the computation

of Filon quadrature moments, which can be given in simple explicit form only for isolated

instances of interpolation bases and oscillators. This hinders the direct application of Filon

methods to several important classes of integrals which involve complicated oscillatory

kernel functions.

In the present chapter, we address this problem by providing a method for the con-

struction of recursive relations satisfied by the Filon quadrature moments, which leads

to a very efficient strategy for finding the moments in a range of settings. This is a

continuation of extensive work on Filon methods over the past two decades which was

started by Iserles (2004, 2005) and Iserles and Nørsett (2004) who were the first to provide

a detailed asymptotic error analysis and an extension of the ideas presented by Filon

(1930) specifically describing the favourable asymptotic properties of Filon methods in the

high-frequency regime. Improvements to the Filon method by reducing the asymptotic

error were introduced by Iserles and Nørsett (2005) through including information about

the derivative values of the amplitude function f , and resulted in the development of the

extended Filon method which was studied in greater detail by Gao and Iserles (2017a,b).

With the goal to understand the quadrature error uniformly in the frequency, it was shown

by Melenk (2010) that the error analysis of Filon methods for non-stationary oscillators

can, in essence, be reduced to the study of the interpolation error of the amplitude function

at the relevant quadrature points. Both Melenk (2010) (based on analyticity properties in

a neighbourhood of the domain of integration) and Domı́nguez et al. (2011) (based on

the regularity of the amplitude in certain periodic Sobolev spaces) use this observation

to provide error estimates that are explicit in the frequency of oscillations as well as the

number of interior quadrature points in the non-stationary case.

The interest in extending these Filon methods from simple linear oscillators to more

general kernels has led to work by Olver (2006, 2007), who described a moment-free version

of the Filon method that is applicable to algebraic singularities and stationary points.

A different type of approach involves recursive moment computation, which has been

successfully applied to a number of individual cases in the context of Clenshaw–Curtis

interior points: for integrals involving Bessel functions of linear arguments by Piessens

and Branders (1983), for linear oscillators by Domı́nguez et al. (2011), and for linear

oscillators with logarithmic singularities in the form log |x− α| by Domı́nguez (2014). In

a related context of computing indefinite integrals over oscillatory and singular functions

using a Levin-type method, Keller (1999, 2007) described a method for the recursive

computation of Chebyshev coefficients for functions that satisfy a linear differential
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equation with polynomial coefficients. This is based on earlier work by Lewanowicz (1991)

on the recursive computation of Jacobi coefficients of special functions satisfying similar

differential equations. The ideas underpinning these final three studies, namely that the

null space of certain differential operators can be related to expansions in a Hilbert basis

whose coefficients satisfy recurrences, are closely related to Thm. 5.3.2 in this chapter.

In recent years, high-frequency wave scattering has provided strong motivation for

further advances in the development of highly oscillatory quadrature. Domı́nguez et al.

(2013) constructed a composite (graded) version of the Filon method that can be applied to

arbitrary algebraic and logarithmic singularities, and which has been successfully applied

to hybrid numerical-asymptotic methods in wave scattering by Chandler-Wilde, Graham,

Langdon and Spence (2012), Kim (2012) and Parolin (2015). While this method is already

significantly better than traditional quadrature, the flexibility of this graded method comes

at the price of losing some of the favourable asymptotic properties of Filon methods,

and we will see in the present chapter how this may be overcome in certain cases by the

construction of a direct Filon method for the corresponding integrals. An alternative

approach to computing highly oscillatory integrals is the method of numerical steepest

descent which was introduced by Huybrechs and Vandewalle (2006). Numerical steepest

descent has recently been applied by Gibbs et al. (2020) to wave scattering problems on

multiple screens (see Gibbs (2020a,b)). These results serve as a motivation and reference for

the application of our methods to a collocation method in high-frequency wave scattering

in §5.5.5.

The structure and main contributions of this chapter are as follows. We begin with

a general description of the extended Filon method as introduced by Gao and Iserles

(2017a,b) in §5.2 building on what we have discussed in §1.2.3. This sets the scene for the

‘moment-problem’ in Filon methods, and specifically for our first main result, Thm. 5.3.2,

which we prove in §5.3. The theorem provides a set of sufficient conditions for Filon

moments to satisfy recurrences, and is based on the observation that many relevant

interpolation bases are in fact a (scaled) Hilbert basis of a weighted L2-space and that

several relevant oscillators satisfy differential equations of special form. Following two

instructive examples, we focus on applying this methodology to Filon–Clenshaw–Curtis

methods in §5.4 & §5.5.

Specifically, in §5.4 we construct a direct Filon–Clenshaw–Curtis method for integrals

with either a stationary point or an algebraic singularity. In this section our main results

are the rigorous stability analysis for the corresponding moment recurrences in Thms. 5.4.1

& 5.4.2. Although we focus our attention to the initial stability regime (which is most

relevant for practical computations) we also indicate how one may use Oliver’s algorithm

(Oliver, 1968) for the stable computation of the tail. The computation of the tail of the

recurrence is not studied in detail since it is mostly of theoretical interest, as in practice
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the computational advantage of Filon methods over classical quadrature exists only when

the number of required moments is smaller than the frequency of the oscillator, N . ω.

Numerical examples are included in §5.4.4 demonstrating the advantage of this direct

application of the Filon method over composite versions.

The second major application of our methodology is described in §5.5, where we consider

the direct construction of Filon methods for hybrid numerical-asymptotic collocation

methods for high-frequency wave scattering on a screen. The first step in this construction

is the proof of a Filon paradigm in Prop. 5.5.2, which is a simple, but non-trivial result

describing the asymptotic behaviour of the integral over the combination of a linear

exponential oscillator and a Hankel function, the latter of which has a frequency dependent

singularity in the domain of integration. This facilitates the study of error estimates

that are explicit in both frequency and number of interior points in Corollary 5.5.3.

Although the stability analysis for the relevant moment recurrences is non-tractable for

theoretical study, the recursive moment evaluation provides an enormous improvement in

practical computations when combined with the expressions for initial moments found in

Lemma 5.5.4. We evaluate the practical performance of the method based on an example

of a hybrid numerical-asymptotic method describing the scattering of a Gaussian beam by

a finite screen in §5.5.5.

Our results are summarised in the concluding remarks in §5.6.

5.2 The extended Filon method

We begin with a review of the extended Filon method as introduced by Iserles and

Nørsett (2005) and Gao and Iserles (2017a,b) based on the following generic form of a

one-dimensional oscillatory integral:

Iω[f ] =

∫ b

a

f(x)hω(x) dx, −∞ < a < b <∞.

Here the kernel function hω(x) is an ω-oscillatory function and Filon quadrature methods

are designed to approximate Iω[f ] with good accuracy and at uniform cost when ω � 1.

One may think of the example hω(x) = exp(iωg(x)) with a suitable choice of g, although

in §5.5 we will also study the possibility when hω(x) is expressed in terms of certain

special functions. Iserles and Nørsett (2005) observed that for hω(x) = exp(iωg(x)) with

g′(x) 6= 0, x ∈ (a, b), the asymptotic expansion of Iω[f ] for large ω depends only on the

values S = {f (j)(a), f (j)(b)
∣∣j = 0, 1, . . . }, if f ∈ C∞([a, b]), and thus proposed to construct

a Filon quadrature method by computing Q[ν,s]
ω [f ] := Iω[p], where p is an interpolating
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polynomial of degree 2s+ ν + 1 satisfying the Hermite-type interpolation conditions

p(j)(±1) = f (j)(±1), j = 0, . . . , s, and p(cl) = f(cl), l = 1, . . . , ν, (5.1)

for some specified interior interpolation points a = c0 < c1 < · · · < cν < cν+1 = b. Since

the asymptotic behaviour of Iω[f ] is determined by the values in S, one can show that the

asymptotic error of this quadrature method is

∣∣Q[ν,s]
ω [f ]− Iω[f ]

∣∣ = O
(
ω−s−2

)
, ω →∞,

i.e. it can be made to decay at an arbitrary algebraic rate in ω so long as f possesses a

sufficient number of derivatives on [a, b] (cf. Eq. (5.16) and Prop. 5.5.2). This idea extends

more generally also to oscillators with stationary points and to higher dimensions: as long

as the derivative values of p match those of f on a specified finite set of points (consisting

of stationary points, hidden stationary points, and singularities) up to a certain order, the

asymptotic error of the quadrature method Qω[f ] := Iω[p] decays in ω. For more details

we refer the reader to (Deaño et al., 2017, §4).

5.2.1 The Achilles’ heel of Filon methods: Moment computation

In practice the interpolation problem Eq. (5.1) is solved by finding the coefficients of

p with respect to a given set of interpolation basis functions {φn}ν+2s+1
n=0 . These are

typically polynomials on finite intervals, but we shall see an example below where φn

can be taken to be Fourier modes (see Example 5.3.3). Although formally there is no

difference in the particular choice of finite degree polynomial basis, the conditioning and

(as explained in §5.2.2) the speed of the interpolation algorithm are affected. Depending

on the choice of interior nodes cj, j = 1, . . . , ν, it is therefore often advantageous to express

the interpolating polynomial in terms of its coefficients with respect to a specific basis of

orthogonal polynomials. Following the solution of the interpolation problem Eq. (5.1) the

polynomial p is thus expressed in the form

p(x) =
ν+2s+1∑
n=0

pnφn(x),

and we compute the Filon quadrature as Q[ν,s]
ω [f ] = Iω[p] =

∑ν+2s+1
n=0 pnIω[φn]. Hence

an important step in the Filon method is to evaluate the Filon quadrature moments

{Iω[φn]}ν+2s+1
n=0 . For a general oscillator hω(x) this task is extremely tricky, mainly because

explicit expressions for the moments are only rarely available, or given in terms of special

functions that are computationally expensive to evaluate. Thus it is fair to say that the

computation of moments is the ‘Achilles’ heel’ of Filon methods.
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5.2.2 Fast interpolation at Filon–Clenshaw–Curtis points

Before embarking on a more thorough study of recursive moment computation, let us

consider the choice of interior interpolation points in greater detail. A good choice of

interior points cn is determined by a number of competing goals: accuracy for ω � 1,

uniform accuracy, simplicity of coefficients, and, for large values of ν, minimization of

computation cost for the interpolation problem. This aspect was studied in Deaño et al.

(2017, §4.2), and it was first shown by Domı́nguez et al. (2011) that for finite intervals

[a, b] a particularly interesting choice of intermediate interpolation points are shifted

Clenshaw–Curtis points: Suppose without loss of generality a = −1, b = 1, then the

Clenshaw–Curtis points (in this case no shift is required since [−1, 1] is the standard

domain of Clenshaw–Curtis points) are given by

cn = cos

(
nπ

ν + 1

)
, n = 0, . . . , ν + 1. (5.2)

It is well-known that for s = 0 the solution of the interpolation problem Eq. (5.1) can

be expressed as a finite linear combination of Chebyshev polynomials Tn using a single

application of a Discrete Cosine Transform, DCT-I, bringing the cost of the interpolation

part of the Filon method to just O(ν log ν) operations. The work by Domı́nguez et al.

(2011) is particularly close to the present considerations in this chapter as it proposed

a recursive approach for computing the Chebyshev moments Iω[Tn] for an exponential

oscillator with linear phase, exp(iωx). Our present results can be seen as a generalisation of

this recursive approach. The advantageous interpolation properties of interior Chebyshev

points carry over to nonzero values of s, as was shown by Gao and Iserles (2017a): the

interpolation problem Eq. (5.1) for p in a basis of Chebyshev polynomials can be solved

very efficiently by a single application of DCT-I, and the solution of a small auxiliary linear

system of size 2s× 2s, bringing the overall cost of interpolation to O(ν log ν + νs+ s3).

For full details on this procedure we refer the reader to the original work (Gao and Iserles,

2017a).

As we indicated in §1.2.3, it is possible for the asymptotic behaviour of the integral

Iω[f ] to also depend on interior derivative values of f , for instance in the presence of

a stationary point of hω. Subject to a few minor modifications, which we describe in

Appendix 5.A, the aforementioned procedure can also be used to solve efficiently the

following interpolation problem: Compute q, the unique polynomial of degree 3s+ ν + 1

such that

q(j)(0) = f (j)(0), q(j)(±1) = f (j)(±1), j = 0, . . . , s,

and q(cn) = f(cn), n = 1, . . . , ν,
(5.3)
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where cn are as in Eq. (5.2) and we take ν to be odd, to ensure that 0 = c(ν−1)/2 is amongst

the interior points. Indeed, as was the case for Eq. (5.1), the Chebyshev coefficients of

q can again be found in O(ν log ν + νs + s3) operations. We will use this result when

considering integrals with stationary points and algebraic singularities at the origin in

§5.4.

5.3 Recursive moment computation in Filon methods

As remarked above, a crucial step in the Filon method is the accurate and efficient

computation of the quadrature moments Iω[φn]. In this section, we present a constructive

result that can be used to find recurrences for these quadrature moments in a range of

settings, by regarding them as the coefficients in a Hilbert basis formed by the (appropriately

scaled) interpolation basis. This generally yields a very efficient way for computing Filon

moments, provided initial conditions for the recurrence can be found.

We note that a related result for the recursive computation of Chebyshev coefficients

of functions satisfying linear ODEs with polynomial coefficients is given in Lemma 2.4 by

Keller (2007) and we also highlight similar work by Lewanowicz (1991) for the recursive

computation of Jacobi coefficients of functions satisfying linear ODEs with polynomial

coefficients. The general constructive result is given in Thm. 5.3.2, and we shall see some

applications to relevant problems in the sequel. We provide a rigorous stability analysis of

some of these types of recurrences for Filon–Clenshaw–Curtis methods in §5.4.

In order to obtain a recurrence for the Filon moments, it is useful to consider them

as coefficients of the oscillatory kernel function with respect to a Hilbert basis of some

weighted L2-space. Let us quickly recap the following definition:

Definition 5.3.1. Let −∞ < a < b < ∞ and let W : [a, b] → [0,∞) be a non-negative

measurable weight function with W 6= 0 almost everywhere. We define the weighted space

L2([a, b],W ) as

L2([a, b],W ) :=

{
f : [a, b]→ C

∣∣∣ f measurable, ‖f‖2
L2 :=

∫ b

a

|f(x)|2W (x) dx <∞
}
.

For two functions f, g ∈ L2([a, b],W ) we can then define the weighted L2-inner product,

denoted by (·, ·)L2 where the weight function is to be understood from context, with the

convention

(g, f)L2 :=

∫ b

a

g(x)f(x)W (x) dx,

note the complex conjugate of g is taken in this definition to ensure this is indeed an inner

product on the complex vector space L2([a, b],W ).
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Theorem 5.3.2. Let {φn}n∈I (I = N or Z) be a Hilbert basis, i.e. a complete orthonormal

set, of L2([a, b],W ) for some non-negative weight function W : [a, b]→ [0,∞), with W 6= 0

almost everywhere and −∞ < a < b < ∞. Suppose further hω ∈ L2([a, b],W ), and

consider the moments expressed in the form

σn =

∫ b

a

φn(x)hω(x)W (x) dx, n ∈ I.

If there is a linear differential operator L∗ω such that for all m,n ∈ I:

L∗ωφn ∈ L2([a, b],W ), (5.4)

(L∗ωφn, hω)L2 = 0, (5.5)

and such that the action of L∗ω on the conjugate of the basis functions is given by a banded

(infinite) matrix [Bmn]m,n∈I with bandwidth k, i.e.

L∗ωφn =
∑
m∈I

Bnmφm, ∀n ∈ I. (5.6)

Then the moments satisfy a 2k − 1-term recurrence relation,
∑

n∈I B
T
mnσn = 0, for m ∈ I.

Proof. Since {φn}n∈I is a Hilbert basis, the set of complex conjugates {φn}n∈I is also a

Hilbert basis for L2([a, b],W ). Moreover, since hω ∈ L2([a, b],W ), we have (in both cases

I = N,Z):

hω = lim
N→∞

∑
|n|≤N

(
φn, hω

)
L2 φn.

Thus, for any m ∈ I, we can write by Eqs. (5.4) & (5.5)

0 =
(
L∗ωφm, hω

)
L2 = lim

N→∞

∑
|n|≤N

(
L∗ωφm, φn

)
L2

(
φn, hω

)
L2

By Eq. (5.6) we can express the right hand side in terms of the entries of the transpose of

B:

0 = lim
N→∞

∑
|n|≤N

BTnm
(
φn, hω

)
L2 = lim

N→∞

∑
|n|≤N

BTnmσn.

Since B is banded, the above sum over n involves only finitely many non-zero terms and

therefore convergences as N →∞ simply to the desired recurrence∑
n∈I

BTnmσn.
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Note in several important cases we can initiate these recurrences with initial conditions

that are given in terms of special functions, or, alternatively, in terms of simple integrals

that can be approximated efficiently (for instance exponentially decaying integrals as in

Lemma 5.5.4).

We will demonstrate based on a few examples that a simple way of constructing L∗ω is

to take the adjoint (via integration by parts) of a differential operator Lω which maps hω

to zero and whose action on the basis functions can be represented by a banded matrix.

We note that the choice of L∗ω is not unique, but in practice it is often possible to spot a

simple choice by inspection, leading to a low-order recurrence. Let us begin by illustrating

the result with a simple example where recurrences for moments are already well-known.

Example 5.3.3. Consider f ∈ L2[0, 2π] ∩ Cper[0, 2π] and the oscillatory integral

Iω[f ] :=

∫ 2π

0

eiω cosxf(x) dx.

In this case a natural interpolation basis is the Fourier basis
{

1√
2π

einx
}
n∈Z

, which has good

interpolation properties on equispaced points, and which is also a Hilbert basis for L2[0, 2π].

The oscillator in the weighted space is hω(x) = eiω cosx and the weight is W (x) = 1. We

note hω satisfies the following differential equation

Lωhω = 0, Lω =
d

dx
+ iω sinx.

Moreover,

Lωφn =

(
d

dx
+ iω sinx

)
1√
2π

e−inx =
ω

2
φn−1 − inφn −

ω

2
φn+1 =:

∑
m∈Z

Bnmφm. (5.7)

Because we work on a periodic domain we can integrate by parts to note for any f, g ∈ C1
per∫ 2π

0

(L∗ωf) (x)g(x) dx =

∫ 2π

0

f(x) (Lωg) (x) dx, L∗ω := − d

dx
+ iω sinx.

Thus, in particular we have by Eq. (5.7)

(L∗ωφn, φm)L2 = (φn,Lωφm)L2 =
∑
j∈Z

Bmj(φn, φj)L2 = Bmn, (5.8)

i.e. the action of L∗ω on the conjugate of the basis functions is indeed given by a banded

infinite matrix. Thus we note that hω,W, {φn}n∈Z and L∗ω satisfy the assumptions of

Thm. 5.3.2 and we deduce that the Filon moments, σn = Iω[φn] must satisfy the following
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recurrence

−ω
2
σn−1 − inσn +

ω

2
σn+1 = 0. (5.9)

This recurrence provides a highly efficient way of computing the moments, and we have

actually recovered a well-known relation: In the present case the moments can be expressed

in terms of Bessel functions of the first kind, Jn (cf. the integral expression Abramowitz

and Stegun, 1965, Eq. 9.1.21)

σn =
√

2πeiπn/2Jn(ω),

and the recurrence Eq. (5.9) is equivalent to the Bessel recurrence satisfied by Jn (Abramowitz

and Stegun, 1965, Eq. 9.1.27).

The next example concerns a case where, to the best of our knowledge, recurrences are

not yet readily available in the literature:

Example 5.3.4. For our second example we consider an integral over [−1, 1] with a

quadratic oscillator,

Iω[f ] :=

∫ 1

−1

eiωx2

f(x) dx.

One possible choice of interpolation basis is the use of Legendre polynomials (when s = 0

in Eq. (5.3)). This choice is guided by the idea that interpolating f at Legendre points

optimises the order of the method when ω = 0, as described by Deaño et al. (2017, §4.2.1).

Thus, we choose φn = P̃n :=
√
n+ 1

2
Pn, n = 0, . . . , where Pn are Legendre polynomials

with the standard normalisation Pn(1) = 1 and P̃n are scaled such that they form a Hilbert

basis for L2([−1, 1]), i.e. with W (x) = 1. The oscillator hω(x) = exp(iωx2) satisfies

Lωhω = 0, Lω = (x2 − 1)
d

dx
− 2xiω(x2 − 1).

We have chosen Lω specifically with the following two identities in mind (Abramowitz and

Stegun, 1965, Eqs. 22.8.5 & 22.7.10):

x2 − 1

n

d

dx
Pn(x) =

n+ 1

2n+ 1
Pn+1(x)− n+ 1

2n+ 1
Pn−1(x), n ≥ 1, (x2 − 1)

d

dx
P0(x) = 0,

(5.10)

xPn(x) =
n+ 1

2n+ 1
Pn+1(x) +

n

2n+ 1
Pn−1(x), n ≥ 1, xP0(x) = P1(x). (5.11)

The identities Eqs. (5.10) & (5.11) ensure that the action of Lω on the basis
{

P̃n

}∞
n=0

can

be represented by a banded infinite matrix. We also note that by simple integration by
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parts, for any f, g ∈ C1([−1, 1]):∫ 1

−1

(L∗ωf) (x)g(x) dx =

∫ 1

−1

f(x) (Lωg) (x) dx,

where L∗ωf(x) := − d

dx

(
(x2 − 1)f(x)

)
− 2xiω(x2 − 1)f(x).

The boundary terms from integration by parts at x = ±1 are zero by construction of Lω.

Analogously to Eq. (5.8) we thus conclude that the action of L∗ω on the basis functions

is represented by a banded infinite matrix and hence that Thm. 5.3.2 can be applied. In

fact, one may use Eqs. (5.10) & (5.11) in an analogous way to find a suitable differential

operator for any oscillator of the form exp(iωq(x)) when q(x) is a polynomial. Thm. 5.3.2

allows us to construct, after a few steps of algebra, the following recurrence,

0 =− 2i(n− 2)(n− 1)nω√
2n− 5(2n− 3)(2n− 1)

√
2n+ 1

σ̃n−3

+
n (2iω(n2 − 3) + (2n− 3)(2n+ 3)(n− 1))

(2n− 3)
√

2n− 1
√

2n+ 1(2n+ 3)
σ̃n−1

+
(n+ 1) (2iω(n2 + 2n− 1)− (2n− 1)(n+ 2)(2n+ 5))

(2n− 1)
√

2n+ 1
√

2n+ 3(2n+ 5)
σ̃n+1

− 2i(n+ 1)(n+ 2)(n+ 3)ω√
2n+ 1(2n+ 3)(2n+ 5)

√
2n+ 7

σ̃n+3,

valid for n ≥ 3, where the moments are σn = Iω[P̃n], n ≥ 0. Additionally, the first column

of the matrix representation Bnm of Lω gives rise to the extra condition

σ4 =

√
5

9

5(21i + 2ω)

24ω
σ2 +

√
1

9

7

12
σ0,

which means that the moments σ2n, n ≥ 0, can be computed from just two initial conditions

for which we have the following expressions:

σ0 =
eiπ

4√
2ω

(
γ

(
1

2
,−iω

))
, σ2 =

√
5

2

[
3

2

eiω

iω
−
(

3

4iω
+

1

2

)
eiπ

4√
ω

(
γ

(
1

2
,−iω

))]
,

where γ(·, ·) is the lower incomplete Gamma function (Abramowitz and Stegun, 1965,

Eq. 6.5.2). Of course, for all moments of odd order, σ2n+1 = 0, n ≥ 0, since exp(iωx2) is

an even function. We note that many efficient methods exist for computing the incomplete

Gamma function (Cody, 1976, Gautschi, 1979), so the above expressions constitute a

suitable way of initiating the recurrence.

In a similar spirit to Example 5.3.4, one may choose other orthogonal polynomials

as interpolation basis (and their zeros as corresponding interior nodes) in an attempt to

maximize the order of the Filon quadrature when ω = 0 and to ensure the interpolation
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problem is well-conditioned. In many cases one can use a similar approach to the above

and exploit the three-term recurrence of orthogonal polynomials to extract recurrences for

the moments in this manner.

5.3.1 Recursive moment computation for Filon–Clenshaw–Curtis

methods

In the remainder of this chapter we shall focus our attention to Filon–Clenshaw–Curtis

methods, motivated by fast interpolation properties as described in §5.2.2. We have seen

in the previous section how one may construct a suitable differential operator L∗ω to apply

Thm. 5.3.2 through integration by parts.

In the remainder of this chapter we focus in particular on the application of this

theorem to Chebyshev interpolation bases. To outline the overall recipe for constructing

recurrences for the Chebyshev–Filon moments, let us consider an integral of the form

Ĩω[f ] =

∫ 1

−1

f(x)h̃ω(x) dx,

where, to begin with, we take h̃ω(x) ∈ C1([−1, 1]). The enormous speed up achieved by

the use of Clenshaw–Curtis points in the Filon method makes those an excellent choice for

interior interpolation points even when the weight function W does not match the original

integral. This is in a similar spirit to classical quadrature where Clenshaw–Curtis points

can be preferable to optimal Legendre points as noted by Trefethen (2008). Thus we need

to compute the moments

Ĩω[φn] =
√
sn

∫ 1

−1

Tn(x)h̃ω(x) dx.

To ensure the interpolation basis is a Hilbert basis such that we can apply a methodology

similar to Thm. 5.3.2 it is thus appropriate to write Ĩω[f ] in the form

Ĩω[φn] =

∫ 1

−1

f(x)hω(x)
dx√

1− x2
, (5.12)

where hω(x) =
√

1− x2h̃ω(x). We then construct L∗ω based on the following observations:

Let us follow the convention T−n(x) = Tn(x), then one can show the following using

standard trigonometric identities.

Lemma 5.3.5 (Eqs. 22.7.4 & 22.8.3 in Abramowitz and Stegun (1965)). For all n∈Z:

xTn(x) =
1

2
Tn−1(x) +

1

2
Tn+1(x), and (1− x2)T′n(x) =

n

2
Tn−1(x)− n

2
Tn+1(x).

198



In particular, the actions of x, (1− x2)d/dx on
{√

sn Tn

}∞
n=0

are both of bandwidth 3.

These operators are such that boundary terms in the integration by parts argument

are zero. Indeed, consider the operator L = (1 − x2)d/dx and suppose hω is C1([a, b]).

Then by simple integration by parts we have:∫ 1

−1

Tn(x)L
(√

1− x2hω(x)
) dx√

1− x2

= lim
ε→0+

∫ 1−ε

−1+ε

Tn(x)(1− x2)
d

dx

(√
1− x2hω(x)

) dx√
1− x2

= lim
ε→0+

[
Tn(x)(1− x2)hω(x)

]1−ε
−1+ε

− lim
ε→0+

∫ 1−ε

−1+ε

d

dx

(√
1− x2Tn(x)

)(√
1− x2hω(x)

) dx√
1− x2

(5.13)

=

∫ 1

−1

d

dx

(√
1− x2Tn(x)

)(√
1− x2hω(x)

) dx√
1− x2

=

∫ 1

−1

L∗Tn(x)
(√

1− x2hω(x)
) dx√

1− x2
,

meaning if we can find an operator L∗ω which is a linear combination of (1− x2)d/dx and

xn, such that

Lωhω = 0, Lωφn =
∑
m∈N

Bnmφm,

for a banded matrix B, then we can construct a suitable adjoint operator L∗ω similar

to Examples 5.3.3 & 5.3.4, which satisfies the assumptions of Thm. 5.3.2. In fact the

same integration by parts argument can be applied if h̃ω satisfies an ordinary differential

equation with polynomial coefficients that has a simple singularity in the interior of the

domain. We shall demonstrate the principle on two types of integrals in greater detail:

Integrals with stationary points/algebraic singularities in §5.4, and integrals involving

Hankel functions and hybrid numerical-asymptotic basis functions in §5.5.
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5.4 Application to integrals with algebraic singulari-

ties and stationary points

Consider the case of algebraic singularities or stationary points at x = 0, i.e. integrals of

the form

I(1)
ω [f ] =

∫ 1

−1

f(x)eiωxrdx, r ∈ N, r ≥ 2,

and I(2)
ω [f ] =

∫ 1

−1

sgn(x)|x|αeiωxf(x) dx, α ∈ (−1, 1).

By using the simple change of variable y = xr the integral I
(1)
ω [f ] can be brought into the

form I
(2)
ω [f ]. In fact, by the inverse function theorem, an integral with a general oscillator

hω(x) = exp(iωg(x)) with g(j)(0) = 0, j = 0, . . . , r, g(r+1)(0) 6= 0, g′(x) 6= 0, ∀x 6= 0,

can also be brought into the above forms, by substituting g(x) = yr, or, equivalently,

as noted by Olver (2007), by choosing an interpolation basis that is in the span of

{sgn(x)g′(x)|g(x)|(n+1−r)/r}ν+2s+1
n=0 . These types of integrals were considered in the Filon

context by Olver (2007) and Domı́nguez et al. (2013). To illustrate the main ideas we focus

on the integral I
(2)
ω [f ]. Here the natural basis described by Olver (2006, 2007) essentially

reduces to a monomial interpolation basis, xn, and the central observation is that its

moments can be expressed explicitly in terms of the lower incomplete gamma function γ:

For any n ≥ 0,

I(2)
ω [xn] = (−iω)−1−n−α γ(1 + n+ α,−iω) + (iω)−1−n−α γ(1 + n+ α, iω). (5.14)

This approach is particularly suitable when only a small number ν of interior interpolation

points and hence moments are required. However, if we choose ν at moderate or large size

relative to s the cost of interpolating with standard polynomials increases rapidly. Yet

resolving to fast interpolation at Clenshaw–Curtis points is seemingly prevented by the

well-known exponential instability of computing I
(2)
ω [Tn] through directly expanding Tn in

terms of xn (cf. Fokas et al., 2013, Eq. (3.5)). Domı́nguez et al. (2013) approached the

problem from a slightly different perspective, which also applies to integrals of the form

I
(2)
ω [f ]. Choosing a mesh −1 = x−M < · · · < x−1 < x0 = 0 < x1 < · · · < xM = 1 that is

graded towards the algebraic singularity/stationary point at x0 = 0, the method presented

by Domı́nguez et al. (2013) evaluates the integral by splitting it into integrals on each

subinterval [xl, xl+1],−M ≤ l ≤M − 1, and approximates those as follows:

• The integrals on each subinterval [xl, xl+1],−M ≤ l ≤ −2, 1 ≤ l ≤ M − 1 (and

l = −1, 0 when α ≥ 0), are approximated using the classical non-singular Filon

method;
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• The integrals over [x−1, 0] and [0, x1] are approximated by 0 when −1 < α < 0.

While this approach is quite flexible, as it avoids having to know the exact type of

singularity at x = 0, this flexibility comes at the price of asymptotic sub-optimality.

Indeed, we know from the method of stationary phase, for any −1 < α < 0, and ε > 0

fixed: ∫ ε

−ε
sgn(x)|x|αeiωxf(x) dx ∼ I(2)

ω [f ], as ω →∞, (5.15)

i.e. we have asymptotic concentration near the singularity. Thus the method proposed by

Domı́nguez et al. (2013) leads, as ω increases, to an absolute error that is of the same size

as the original integral (this is demonstrated in practical examples in §5.4.4).

A resolution of these two approaches can be found based on the methodology from

Thm. 5.3.2: We can apply a direct version of the Filon method to integrals of the form

I
(2)
ω [f ] and still interpolate at Clenshaw–Curtis points as in Eq. (5.3), by computing the

Chebyshev moments I
(2)
ω [Tn] accurately and efficiently using a recurrence initialised with

exact expressions in Eq. (5.14). Indeed, one can easily check using Watson’s lemma

(Bender and Orszag, 2013, pp. 263–265) that, if q satisfies the interpolation conditions

Eq. (5.3) and f ∈ Cs+2([−1, 1]), the direct Filon quadrature Q[ν,s]
ω [f ] := I

(2)
ω [q] satisfies

∣∣I(2)
ω [f ]−Q[ν,s]

ω [f ]
∣∣ = O

(
ω−(s+2)−min{0,α}) , ω →∞. (5.16)

We note that an explicit derivation of Eq. (5.16) shows that there is Cα,s > 0, dependent

on α, s, such that∣∣I(2)
ω [f ]−Q[ν,s]

ω [f ]
∣∣ ≤ Cα,s min

0≤j≤s
ω−j−2

(
ω−α‖f (j) − q(j)‖L∞([−1,1])

+‖f (j+1) − q(j+1)‖L∞([−1,1])

)
,

(5.17)

thus allowing us to account for the dependency on ν by studying the quality of interpolation

of f by q. This principle is the same as for a non-stationary oscillator as described by

Melenk (2010, §1.1). In the interest of brevity we omit the details of this derivation here,

and instead refer to an analogous argument for a Hankel oscillator which we provide

in Prop. 5.5.2 and Corollary 5.5.3. Having understood that the direct application of

a Filon method truly matches the asymptotic behaviour of the integral it remains to

compute the moments σn = I
(2)
ω [φn] = I

(2)
ω [
√
sn Tn]. In line with Eq. (5.12) we write

hω(x) =
√

1− x2sgn(x)|x|α exp (iωx). We can now follow the recipe of Thm. 5.3.2: A

suitable differential operator is given by

Lω = x(1− x2)
d

dx
+ x2 − α(1− x2)− iωx(1− x2),
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which is such that Lωhω(x) = 0 pointwise for all x 6= 0 (and including x = 0 when

α ≥ 0). Moreover, in the same way as in Eq. (5.13) we can take L∗ω the adjoint of Lω
using integration by parts (this time also excluding a small neighbourhood of x = 0) thus

ensuring the assumptions of Thm. 5.3.2 are satisfied. After a few steps of algebra this

results in the following recurrence, where for ease of notation we introduced σ̃n := σn/
√
sn

and follow the convention σ−n = σn:

σ̃n−3 +
2(−(n− 3) + α)

iω
σ̃n−2 − σ̃n−1 +

4− 4α

iω
σ̃n

− σ̃n+1 +
2(n+ 3 + α)

iω
σ̃n+2 + σ̃n+3 = 0, ∀n ∈ Z.

(5.18)

This means, in particular, that the initial values σ̃0, σ̃1 = σ̃−1, σ̃2 = σ̃−2 are sufficient

in order to compute all the moments using Eq. (5.18). For those we have the explicit

expressions in terms of the lower incomplete gamma function based on Eq. (5.14):

σ̃0 = I(2)
ω [x0], σ̃1 = I(2)

ω [x1], σ̃1 = 2I(2)
ω [x2]− I(2)

ω [x0].

5.4.1 Stability analysis of the recurrences

In this section we seek to understand the stability of moment recurrences for the integrals

I
(1)
ω , I

(2)
ω . Similar to work by Piessens and Branders (1983) and Domı́nguez et al. (2011) we

find there is a balance between N , the number of required moments, and ω, the frequency

of oscillation, which results in two regions of different behaviour:

• The initial regime, when N � ω: Here the recurrences lead at worst to algebraic

instabilities, which are moderate relative to the decay of the interpolation coefficients

for sufficiently smooth f . We provide rigorous results for two cases of interest in

§5.4.2 below.

• The tail of the recurrences, when N � ω: This is mostly of theoretical interest,

since in practice, if we require N ∼ ω moments, Gaussian quadrature applied to the

full integral will be of comparable cost and error to the Filon method thus there is

no necessity to resort to Filon methods in this regime. Nevertheless, in §5.4.3 we

provide an indication of the behaviour of the recurrences in this regime which can be

used in practice to compute their tail stably using Oliver’s algorithm (Oliver, 1968).

5.4.2 Stability results for the initial regime

We note, firstly, that for a linear phase function, i.e. integrals of the form
∫ 1

−1
f(x)eiωx dx,

it was shown by Domı́nguez et al. (2011) that (an equivalent) recurrence to the one found

through the application of Thm. 5.3.2 is algebraically stable for n < ω. Our first stability
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result shows that a very similar analysis can be applied to the case of a simple stationary

point at x = 0, i.e. integrals of the form Iω[f ] =
∫ 1

−1
f(x)eiωx2

dx. Although this case

is covered by the recurrence Eq. (5.18), we can find a simpler version by noting that

Lωhω = 0, where

hω(x) =
√

1− x2eiωx2

, Lω = (1− x2)
d

dx
− iω2x(1− x2) + x.

The resulting recurrence satisfied by the moments is (again writing σ̃n = σn/
√
sn and

σ̃−n = σ̃n):

σ̃n−3 +

(
−1− 2(n− 2)

iω

)
σ̃n−1 +

(
−1 +

2(n+ 2)

iω

)
σ̃n+1 + σ̃n+3 = 0, n ∈ Z, (5.19)

and we see, as we observed in Example 5.3.4, by the symmetry of the kernel, σ̃2n+1 =

0, n ≥ 0. We also have the following initial conditions in terms of the lower incomplete

Gamma function:

σ̃0 =
eiπ

4√
ω

(
γ

(
1

2
,−iω

))
, σ̃2 = 2

eiω

iω
−
(

1 +
1

iω

)
eiπ

4√
ω

(
γ

(
1

2
,−iω

))
.

Theorem 5.4.1. Suppose the moments ˇ̃σn are computed using Eq. (5.19) with slightly

perturbed initial conditions: ˇ̃σ0 = σ̃0 + ε0, ˇ̃σ2 = σ̃2 + ε2, for some |ε0|, |ε2| < ε. Then, for

any n with 2n+ 1 < ω,

|ˇ̃σ2n − σ̃2n| <
8nω

1
2

3 (ω2 − (2n+ 1)2)
1
4

(
2 +

1

ω

)
ε.

Proof. The proof of this result is new, though similar to Domı́nguez et al. (2011, Thm. 5.1),

and can be found in Appendix 5.B.

This result tells us that we can reliably compute the first N moments from two initial

conditions using Eq. (5.19), and, as long as N < Cω for some constant C < 1, any error

in initial conditions grows no faster than linearly in N .

We now consider the recurrence Eq. (5.18) for a general value of α > −1: We can

still guarantee at worst linear growth of initial perturbations, but this time our rigorous

analysis applies to the slightly narrower regime N + 1 < min{C√ω, ω} for some C > 0.

Theorem 5.4.2. Suppose the moments ˇ̃σn are computed using Eq. (5.18) with the perturbed

initial conditions ˇ̃σ0 = σ̃ + ε0, ˇ̃σ1 = ˇ̃σ−1 = σ̃1 + ε1, ˇ̃σ2 = ˇ̃σ−2 = σ̃2 + ε2, |εj| < ε for some

ε > 0, and assume ˇ̃σ3 = ˇ̃σ−3. Then, whenever n+ 1 < min{C√ω, ω} for a given C > 0,
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we have

|ˇ̃σn − σ̃n| ≤ ε
(K0 + nK1)

2

(
K2ω

1
2

K2ω
1
2 − 1

exp

(
C

K2 − ω−
1
2

)
+ 1

)
,

where the constants K0, K1, K2 are independent of n and are given by

K0 =
2
√
ω√

ω − C2
, K1 =

ω + 2 + |α|√
ω2 − C2ω

, K2 =
(ω − C2)

1
4

ω
1
4

√
2|α|+ 2

.

Proof. The proof of this result is given in Appendix 5.C.

Note that the above constants have simple limits as ω →∞ which means that for ω

sufficiently large we can simplify the upper bound:

Corollary 5.4.3. For any δ > 0, C > 0, there is ω0 > 0 such that whenever the

assumptions of Thm. 5.4.2 are satisfied, and ω ≥ ω0, the error is bounded above by

|ˇ̃σn − σ̃n| ≤ ε
((2 + δ) + (1 + δ)n)

2

(
exp

(
C
√

2|α|+ 2(1 + δ)
)

+ 1
)
.

5.4.3 Change of behaviour of homogeneous solutions and Oliver’s

algorithm

The above results suggest that, as n increases, there will be change in the behaviour

of homogeneous solutions to Eq. (5.18) and Eq. (5.19) and that, for sufficiently large n,

some of the solutions will exhibit super-algebraic growth. Understanding when exactly

this transition occurs for general recurrences with non-constant coefficients is an open

problem, however, based on numerical experiments, we find that the following heuristic

argument provides a reasonably accurate practical indication of the location of this change

of behaviour: Our Ansatz is that the change from algebraic to super-algebraic regime

occurs when n ∝ ω. Thus we let n = Cn,ωω in Eq. (5.18), set λ = σn+1/σn and we assume

that for −3 ≤ j ≤ 3:

σn+j

σn
∼ λj as n→∞.

Plugging into Eq. (5.19) and matching the leading order terms in n yields the condition

λ−3 + (−1 + 2iCn,ω)λ−1 + (−1− 2iCn,ω)λ+ λ3 = 0,

which has solutions λ = ±1,±
√

iCn,ω ±
√

1− C2
n,ω. Thus these solutions for λ have

modulus no larger than one if and only if n/ω = Cn,ω < 1. This prediction matches our

rigorous result in Thm. 5.4.1 which showed no larger than linear growth in that regime. For
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n/ω = Cn,ω > 1, two of those values of λ have modulus greater than one, thus indicating

that there may be two out of six linearly independent solutions to Eq. (5.19) that exhibit

super-algebraic growth in this regime.

A similar heuristic argument can be applied to Eq. (5.18), which reduces to the

condition

λ−3 + (2iCω,n +O(ω−1))λ−2 − λ−1 − λ+ (−2iCω,n +O(ω−1))λ2 + λ3 = 0. (5.20)

The solutions are now λ = ij, j = 1, . . . 4, and λ = iCn,ω ±
√

1− C2
n,ω. This means we

expect algebraic behaviour in the regime n/ω = Cn,ω < 1, which suggests that the results

in Thm. 5.4.2 might extend to larger values of n than we are currently able to prove.

This near-linear growth until n ≈ ω is indeed observed in practice as we show in Fig. 5.1.

Finally, when n/ω = Cn,ω > 1, one of the solutions for λ has modulus greater than

one, which indicates that we might expect to have one out of six linearly independent

solutions exhibiting super-algebraic growth in this regime. Of course, the moments σn

decay algebraically as n→∞ for any fixed ω. This suggests that the tail (i.e. moments

with n > ω) can be computed stably using Oliver’s algorithm (Oliver, 1968) with five

initial and one endpoint value, the latter of which can be approximated by an asymptotic

expression for σn as n→∞, as was done for a linear oscillator by Domı́nguez et al. (2011).

Numerical experiments support this observation, but in the interest of brevity those are

omitted from this thesis. Instead we shall provide numerical evidence that supports the

above argument of algebraic stability for Eq. (5.18) when n < Cω for some C < 1.

5.4.4 Numerical examples and comparison to previous work

One way to verify this numerically is by expressing the recurrence Eq. (5.18) in the

equivalent form

xN+1 = ANxN = ANAN−1 · · ·A0x0 =:
N∏
n=1

Anx1, ∀N ∈ Z, (5.21)

where xn = (xn+2, . . . , xn−3)T and An, n ≥ 0, are 6× 6 matrices given by

An =

(
−2(n+3+α)

iω
1 4α−4

iω
1 2(n−3)−α

iω
−1

I5 0

)
, (5.22)

where I5 is the 5× 5 identity matrix. The growth of an arbitrary homogeneous solution to

Eq. (5.18) with given initial conditions x−2, . . . , x3 is then bounded above by the norm∥∥∥∏N
n=1 An

∥∥∥ ‖x1‖. In Figure 5.1 we plot this quantity for various values of ω and α. As

guaranteed by Thm. 5.4.2, the initial regime exhibits only linear growth, which changes
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to super-algebraic growth near n ≈ ω as has been predicted by the heuristic argument

Eq. (5.20).
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(b) α = −0.7

Figure 5.1: The growth of solutions to Eq. (5.18) as measured by
∥∥∥∏N

n=1 Aj

∥∥∥. The initial

linear growth transitions to super-algebraic growth nearby n ≈ ω as predicted heuristically
in Eq. (5.20).

In our second numerical example we evaluate the practical performance of the direct

Filon method with recursive moment computation for I
(2)
ω . In this example we let α = −0.25

and f(x) = x/(1 + x2) + 1/(1 + x4), i.e. we approximate the integral

I(2)
ω [f ] =

∫ 1

−1

sgn(x)|x|−0.25eiωx

(
x

1 + x2
+

1

1 + x4

)
dx.

We begin by considering the absolute error of the direct Filon method

E[s,ν][f ] =
∣∣I(2)
ω [f ]−Q[s,ν]

ω [f ]
∣∣ ,

where Q[s,ν]
ω [f ] = I

(2)
ω [q], and q satisfies Eq. (5.3). Figure 5.2a shows this absolute error

for the range ω ∈ [16, 400] with fixed values of ν = 5, s = 0, 1, 2. The black dash-dotted

curves correspond to the asymptotic orders O(ω−k−2+0.25) and confirm Eq. (5.16).

In Fig. 5.2b we compare the efficiency of our direct method (for s = 0) with the

composite Filon method described by Domı́nguez et al. (2013) and with a simple graded

Clenshaw–Curtis approach. As we described in §5.4, both of the latter methods define

a mesh that is graded towards the singularity at x = 0 with xj = sgn(j)|j/M |r for

j = −M, . . . ,M, and split the integral into its contribution on each of the intervals

[xj, xj+1] proceeding as follows:

• The integrals over [xj, xj+1], j = −M, . . . ,−2, 1, . . . ,M, are approximated by the

classical Filon method as in Domı́nguez et al. (2011) for the composite Filon method,
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and by Clenshaw–Curtis quadrature in the graded Clenshaw–Curtis case. These

‘sub-methods’ on each [xj, xj+1] come with an additional parameter ν, where ν + 2

is the number of quadrature points on [xj, xj+1] analogously to Eq. (5.1) with s = 0.

• For both methods the integral on [x−1, x0] and [x0, x1] is approximated by zero.

These contributions are then summed to provide an overall approximation to I
(2)
ω [f ].

0 100 200 300 400

10
-10

10
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10
-6

10
-4
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-2

(a) E[s,ν][f ], for a constant number of interior
evaluations ν = 5.
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0.15

(b) Min. CPU time to achieve relative
error ≤ 10−7.

Figure 5.2: Comparison of our direct Filon method using recursive moment computation,
with the literature. On the left we show the absolute error for our present method, and on
the right a comparison of the minimum CPU time necessary to achieve a fixed relative
accuracy using our present work in comparison to the composite Filon method1 and a
graded Clenshaw–Curtis method.

In the figure we compare the minimum CPU time each of the methods required in

order to compute the integral to a fixed relative error of 10−7. According to Domı́nguez

et al. (2013), if we choose r > (ν + 2)/(1 + α) the composite Filon method converges as

M → ∞. Thus we fix ν = 4, r = 8.1 and proceed by increasing M from M = 10 until

we reach the desired relative error with a certain choice M0(ω). The CPU time plotted

in Fig. 5.2b is the time the method took to evaluate the integral with the fixed setting

M = M0(ω). We repeat the process for each frequency ω and proceed similarly for the

graded Clenshaw–Curtis method. According to Eq. (5.17) the direct Filon–Clenshaw–

Curtis method converges as ν →∞ and so for this case we start with ν = 3 and proceed

by increasing ν until we achieve the desired relative error with some ν0(ω) before plotting

the CPU time it took to evaluate the method with ν = ν0(ω) and repeating the process for

each frequency. All experiments were performed on a single core of an Intel Core i5-8500

CPU.

1We used the original code kindly provided to us by Victor Domı́nguez for the integration on each
subinterval, but the grading is due to our own implementation based on the description in Domı́nguez
et al. (2013).
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While this example is certainly no complete parametric study of the convergence

properties of all three methods, and especially the absolute value of the timings depends

significantly on the specific implementation and CPU used, the point to take away is the

clear overall trend in the cost as ω increases: As expected the classical graded Clenshaw–

Curtis method requires the fastest, linear, increase in cost. While the composite Filon

method performs better, it is, as explained in Eq. (5.15), still required to increase the

cost with frequency, since it does not fully match the asymptotic behaviour of the integral

near the singularity. Finally, the direct application of the Filon method achieves the

approximation, as expected, at completely frequency-independent cost.

In all of the above numerical examples the reference solution for the true integral was

computed with a graded Clenshaw–Curtis method with M = 3000, ν = 10, r = 40.

5.5 Application to high-frequency wave scattering

As a final application of our method for recursive moment computation we consider integrals

arising in hybrid numerical-asymptotic methods for high-frequency wave-scattering on

a screen. As will be explained in more detail in §5.5.5 the integrals of relevance in this

context are of the form

I
(3)
ω,β[f ] = 2

∫ 1

0

f (2x− 1) H
(1)
0 (ωx)eiωβx dx

=

∫ 1

−1

f(x)H
(1)
0

(
ω
x+ 1

2

)
eiωβ(x+1)/2 dx,

(5.23)

where β ∈ R, β 6= −1, and H
(1)
0 is the Hankel function of first kind and order zero

(Abramowitz and Stegun, 1965, Eq. 9.1.3). As a first step in constructing a suitable direct

Filon method, we aim to understand the asymptotic properties of the integral I
(3)
ω,β. In

order to do so we recall the following property of H
(1)
0 .

Lemma 5.5.1 (Phase extraction of H
(1)
0 , see Chandler-Wilde, Graham, Langdon and

Spence (2012, Lemma 4.6)). Let h0(z) := exp(−iz)H
(1)
0 (z), then for each n ≥ 0 there is a

constant Cn such that

∣∣∣∣ dn

dzn
h0(z)

∣∣∣∣ ≤ Cn

max {1 + log(1/z), z−n} , z ∈ (0, 1],

z−(n+1/2), z ∈ [1,∞).

With this control on the oscillations in h0(ωx) we can proceed to show:

Proposition 5.5.2 (Filon paradigm for I
(3)
ω,β). For any k ∈ N there is a constant Ck > 0

such that for all β ∈ R, β 6= −1, ω ≥ 1 and any function f̃ ∈ Ck+2[0, 1] with f̃ (j)(±1) = 0
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for j = 0, . . . , k:

∣∣∣I(3)
ω,β[f̃ ]

∣∣∣ ≤ Ck

(
ω−(k+2)‖f̃ (k+1)‖∞

|β + 1|k+3 − 1

|β + 1| − 1
+ ω−(k+2) logω‖f̃ (k+2)‖∞|β + 1|−(k+2)

)
.

Proof. The proof is given in Appendix 5.E.

This means that the Filon–Clenshaw–Curtis rule, Q[s,ν]
ω [f ] := I

(3)
ω,β[p] with p satisfying

Eq. (5.1), has the asymptotic error∣∣∣I(3)
ω,β[f ]−Q[s,ν]

ω [f ]
∣∣∣ = O(ω−(k+2) logω), ω →∞.

Moreover Prop. 5.5.2 allows us to understand the ν-dependency of the quadrature error

through the quality of approximation of f by the interpolating polynomial p. We already

mentioned in §1.1.2 that there are a number of ways to estimate ‖f (j) − p(j)‖∞ including

via the Hermite interpolation formula as was done in the Filon context for non-stationary

oscillators by Melenk (2010), by relating the error to the regularity of f in periodic Sobolev

norms on [0, 2π] via the change of variable x = cos θ, this approach was taken for linear

oscillators by Domı́nguez et al. (2011), or via the optimal estimates using the Peano kernel

theorem given by Shadrin (1995). We shall use the latter approach: Define the nodal

polynomial for the interpolation problem Eq. (5.1) as r̃(x) = (x2− 1)s+1
∏ν

j=1(x− cj) then

we have the following bounds (where the constants are optimal over f ∈ C(ν+2s+1)([−1, 1])):

‖f (j) − p(j)‖∞ ≤
‖r̃(j)‖∞

(ν + 2s+ 1)!
‖f (ν+2s+1)‖∞. (5.24)

We can combine Eq. (5.24) with Prop. 5.5.2 and the trivial estimate∣∣∣I(3)
ω,β[f ]−Q[s,ν]

ω [f ]
∣∣∣ ≤ ω−1‖H(1)

0 ‖L1([0,ω])‖f − p‖∞,

to find:

Corollary 5.5.3. For any s ∈ N there is Cs > 0 such that for all f ∈ C∞([−1, 1]), ν ∈
N, β 6= 0, ω ≥ 1:

∣∣∣I(3)
ω,β[f ]−Q[s,ν]

ω [f ]
∣∣∣ ≤ min

{
ω−1‖H(1)

0 ‖L1([0,ω])‖r̃‖∞, Ckω−(s+2)
(
‖r̃(s+1)‖∞

|β + 1|s+3 − 1

|β + 1| − 1

+ logω‖r̃(s+2)‖∞|β + 1|−(s+2)
)}‖f (ν+2s+1)‖∞

(ν + 2s+ 1)!
.
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5.5.1 Recursive moment computation

The results in Prop. 5.5.2 and Corollary 5.5.3 guarantee convergence of the direct Filon

method Q[ν,s]
ω [f ] = I

(3)
ω,β[p], where p satisfies Eq. (5.1). Thus it remains to compute the

corresponding quadrature moments σn :=
√
snI

(3)
ω,β[Tn]. The oscillatory kernel of I

(3)
ω,β with

respect to the Chebyshev weight is

hω(x) =
√

1− x2H
(1)
0

(
ω
x+ 1

2

)
eiωβ(x+1)/2.

The Hankel function satisfies Bessel’s equation (x2(d/dx)2 + xd/dx + x2)H
(0)
1 (x) = 0

(Abramowitz and Stegun, 1965, Eq. 9.1.1). Thus a change of variable and multiplication

by (1− x) (to ensure the equation involves a combination of operators from Lemma 5.3.5)

shows Lωhω = 0 for

Lω =

(
(1− x2)

d

dx

)2

+ i
(
βω
(
x2 − 1

)
− i(3x+ 1)

)((
1− x2

) d

dx

)
− 1

4

(
(β2 − 1)ω2

(
x2 − 1

)2 − 2iβω(x− 1)(x+ 1)2 − 4
(
x2 + x+ 1

))
.

By Lemma 5.3.5, the action of Lω on the basis φn =
√
sn Tn has a banded matrix

representation. We can use the same integration by parts argument as in Eq. (5.13) to

construct L∗ω satisfying all assumptions of Thm. 5.3.2 holds and we find, after a few steps

of algebra, the following recursive relation satisfied by the moments valid for all n ∈ Z,

where we again use the notation σ̃n = σn/
√
sn and σ̃−n = σ̃n,

(1− β2)σ̃n−4 −
4iβ(2n− 7)

ω
σ̃n−3 +

16(n− 3)2 + 8iβω − 4(1− β2)ω2

ω2
σ̃n−2

+
−32(n− 2) + 4iβ(6n− 7)ω

ω2
σ̃n−1 +

32(3− n2)− 16iβω + 6(1− β2)ω2

ω2
σ̃n

+
32(n+ 2)− 4iβ(6n+ 7)ω

ω2
σ̃n+1 +

16(n+ 3)2 + 8iβω − 4(1− β2)ω2

ω2
σ̃n+2

+
4iβ(2n+ 7)

ω
σ̃n+3 + (1− β2)σ̃n+4 = 0.

(5.25)

5.5.2 Initial conditions

Since the recurrence Eq. (5.25) holds when n = 0, 1, 2, 3, four initial conditions σ̃0, . . . , σ̃4

are sufficient to start the moment computation (and just three initial conditions suffice

when β = 1). We begin by proving an expression that allows for efficient and accurate

computation of σ̃0:
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Lemma 5.5.4. For ω > 0, β 6= −1:

σ̃0 = −2i

π
ω−1ei(β+1)ω

∫ ∞
0

1√
t

e−tω√
2i− t(1 + β + it)

dt

+
2

π
ω−1


2√

1−β2
arctan

√
1−β2

1+β
, |β| < 1,

1√
β2−1

ln
1+β+
√
β2−1

1+β−
√
β2−1

, |β| > 1,

1, β = 1.

(5.26)

Proof. We have the following integral expression (DLMF, 2021, Eq. 10.9.10)

H
(1)
0 (z) = −2i

π

∫ ∞
0

eiz cosh t dt, ∀ 0 < arg z < π.

Thus we have

ωσ0 = lim
ε→0+

∫ ω

0

H
(1)
0 (x+ iε)eiβx dx = −2i

π
lim
ε→0+

∫ ω

0

(∫ ∞
0

e(ix−ε) cosh t dt

)
eiβx dx

= − 2

π
lim
ε→0+

∫ ∞
0

e−ε cosh t e
iω(cosh t+β) − 1

cosh t+ β
dt = − 2

π

∫ ∞
0

eiω(cosh t+β) − 1

cosh t+ β
dt

= − 2

π

∫ ∞
1

eiω(y+β)

y + β

dy√
y2 − 1

+
2

π

∫ ∞
0

1

cosh t+ β
dt,

where in the final line we used the change of variable y = cosh t. The second integral can

be evaluated explicitly (Gradshteyn and Ryzhik, 2000, Eq. 3.513.2) when β 6= ±1 and by

taking an appropriate limit as β → 1+, which is justified by the dominated convergence

theorem, we can also deduce its value for β = 1. For the first integral the decay of the

integrand is sufficient so that we can deform the contour of integration to y = 1 + it

(noting that the square root singularity at y = 1 can be dealt with by excluding a small

neighbourhood of the origin during the change of contour). Combining those observations

yields precisely the expression Eq. (5.26).

If we set gβ(t) = (
√

2i− t(1+β+it))−1 we can write the remaining integral in Eq. (5.26)

in the form

−2i

π
ω−1

∫ ∞
0

1√
t

ei(β+1)ωe−tω√
2i− t(1 + β + it)

dt = −2i

π
ω−

3
2 ei(β+1)ω

∫ ∞
0

gβ

(
t

ω

)
1√
t
e−t dt.

Differentiation with respect to β (justified by the dominated convergence theorem) allows

us to find similar expressions for the remaining initial conditions σ̃j, j = 1, 2, 3. For

completeness these are provided in Appendix 5.D. Thus we found expressions for the initial
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moments in terms of simple functions and integrals of the form∫ ∞
0

f

(
t

ω

)
1√
t
e−t dt =

√
ω

∫ ∞
−∞

f
(
z2
)

e−ωz
2

dz,

which have an exponentially decaying integrand (with faster exponential decay in z as ω

increases). An efficient method for evaluating these integrals using modified trapezium

rules can be found in the thesis of Al Azah (2017) and the work by Al Azah and Chandler-

Wilde (2021). We shall not provide a detailed study of the evaluation, but note that we

can write

gβ

(
t2

ω

)
= ω

3
2

1√
2iω − t2

1

(1 + β)ω + it2
,

which means the integrand becomes nearly singular when ω, (1 + β)ω � 1. Thus for

practical purposes we restrict the use of Eq. (5.26) to the case when ω, (1 + β)ω ≥ 1.

Of course, the kernel of I
(3)
ω,β[f ] takes the form h0(ωx) exp (iω(1 + β)x) (cf. Lemma 5.5.1)

which means it is only highly oscillatory when ω(1 + β) � 1, and so in the case when

Eq. (5.26) is near singular we do not need to use Filon methods for the approximation of

I
(3)
ω,β[f ] to begin with. The same holds true for the analogous expressions for σ̃j, j = 1, 2, 3,

as given in Appendix 5.D.

5.5.3 Behaviour of homogeneous solutions and initial stability

Note that we can write the recurrence Eq. (5.25) in the form

(1− β2) (σ̃n−4 − 4σ̃n−2 + 6σ̃n − 4σ̃n+2 + σ̃n+4)

=
n2

ω2
(−16)(σ̃n−2 − 2σ̃n + σ̃n+2)

+
n

ω
8iβ (σ̃n−3 − 3σ̃n−1 + 3σ̃n+1 − σ̃n+3)

+
n

ω2
32 (−3σ̃n−2 + σ̃n−1 − σ̃n+1 − 3σ̃n+2)

+
1

ω
4iβ (−7σ̃n−3 − 2σ̃n−2 + 7σ̃n−1 + 4σ̃n + 7σ̃n+1 − 2σ̃n+2 − 7σ̃n+3)

+
1

ω2
(−32) (3σ̃n−2 + 2σ̃n−1 + 2σ̃n + 2σ̃n+1 + 3σ̃n+2) .

(5.27)

A similar argument to the proof of Thm. 5.4.2 shows that, whenever β 6= 1, if ω is sufficiently

large compared to n, the solutions to Eq. (5.27) grow no faster than algebraically with n.
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For the case β = 1 the recurrence reduces to seven terms and takes the form

(−2n+ 7)σ̃n−3 + 2σ̃n−2 + (6n− 7) σ̃n−1 + (−4) σ̃n

+ (−6n− 7) σ̃n+1 + 2σ̃n+2 + (2n+ 7)σ̃n+3

= −−12n+ 28 + 4(n− 2)(n− 1)

iω
σ̃n−2 −

−8n+ 16

iω
σ̃n−1 −

−8n2 + 24

iω
σ̃n

− 8n+ 16

iω
σ̃n+1 −

12n+ 28 + 4(n+ 1)(n+ 2)

iω
σ̃n+2.

(5.28)

Here we can understand the behaviour of the recurrence operator on the left hand side by

substituting ξn = (2n+ 3)σ̃n+2 + σ̃n − (2n+ 1)σ̃n−2, which is such that

(−2n+ 7)σ̃n−3 + 2σ̃n−2 + (6n− 7) σ̃n−1

+ (−4) σ̃n + (−6n− 7) σ̃n+1 + 2σ̃n+2 + (2n+ 7)σ̃n+3 = ξn−2 − 2ξn + ξn+2,

and shows, by a simple discrete variation of constants argument, that if ω is sufficiently

large compared to n then the solutions to Eq. (5.28) grow at most linearly in n. In both

cases β 6= 1 and β = 1 the solutions to Eq. (5.25) thus have algebraic behaviour in the initial

regime. We find from numerical experiments that this behaviour changes as n increases

for fixed ω, and that some of the solutions exhibit super-algebraic growth for n sufficiently

large, thus leading to instability in Eq. (5.25). To understand where this transition occurs

we follow the procedure described in §5.4.3. We suspect the change of behaviour occurs

when n ∝ ω. Thus we let n = Cn,ωω and make the Ansatz σ̃n+j/σ̃n = λj, −4 ≤ j ≤ 4,

which, when substituted into Eq. (5.25), results in the following condition at leading order

in ω:

(1− β2)λ−4 − 8iβCn,ωλ
−3 +

(
16C2

n,ω − 4(1− β2)
)
λ−2 + (24iβCn,ω)λ−1

+
(
−32C2

n,ω + 6(1− β2)
)

+ (−24iβCn,ω)λ+
(
16C2

n,ω − 4(1− β2)
)
λ2

+ 8iβCn,ωλ
3 + (1− β2)λ4 = 0.

(5.29)

When β 6= 1 the condition has eight solutions for λ:

λ = ±1,±1,
−2iCn,ω ±

√
(1− β)2 − 4C2

n,ω

1− β ,
2iCn,ω ±

√
(1 + β)2 − 4C2

n,ω

(β + 1)
.

All of those values are in modulus equal to 1 if and only if n/ω = Cn,ω ≤ min{|1+β|/2, |1−
β|/2}, so we expect algebraic behaviour in this regime and the onset of super-algebraic

growth to occur when n ≈ ωmin{|1 + β|/2, |1 − β|/2}. This behaviour is confirmed in

Fig. 5.3b. When n/ω = Cn,ω ≥ min{|1 + β|/2, |1− β|/2} at most two of the values for λ

have modulus greater than 1 and we thus expect Oliver’s algorithm (Oliver, 1968) with six

initial and two endpoint values to provide a stable way of computing the remainder of the
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moments. As we explained in §5.4.1, in practical applications of Filon methods it is less

important to compute moments when n & ω since at that point classical quadrature is just

as expensive as the Filon method. In the interest of brevity we therefore omit a discussion

of the application of Oliver’s algorithm, but note that we performed initial numerical

experiments which suggest that this indeed provides a satisfactory way for computing the

remaining quadrature moments.

When β = 1, Eq. (5.29) has six solutions, λ = ±1,±1, iCn,ω ±
√

1− C2
n,ω. These

solutions have modulus equal to 1 whenever n/ω = Cn,ω ≤ 1 which suggests the onset

of super-algebraic growth lies around n ≈ ω. This is confirmed in Fig. 5.3a. Moreover,

when n/ω > 1 one of the solutions for λ has modulus greater than 1, which indicates that

Oliver’s algorithm with five initial and one endpoint value can be used to compute the

remaining moments in a stable way.

5.5.4 Numerical evidence of stable forward propagation

Similar to Eq. (5.21) we can write the recurrence Eq. (5.25) in the form

x
(j)
N+1 =

N∏
n=1

B(j)
n x

(j)
1 , ∀N ∈ Z,

where j = 1 corresponds to the case β = 1 and j = 2 covers the case β 6= 1. Here

x
(1)
n = (xn+2, . . . , xn−3)

T , x
(2)
n = (xn+3, . . . , xn−4)

T , and B
(j)
n , n ≥ 0, j = 1, 2, are 6 × 6,

and 8 × 8 matrices respectively whose entries are, analogously to Eq. (5.22), given by

the coefficients of the recurrence Eq. (5.25) in the top row and the bottom left 5× 5 and

7× 7 entries are given by the identity matrix of respective size I5, I7. This means that the

matrices are of the shape

B(1)
n =

(
? ?

I5 0

)
, B(2)

n =

(
? ?

I7 0

)
,

where ? is a placeholder for the nonzero entries given by the coefficients of the recurrence

Eq. (5.25) which are not repeated in the interest of brevity. Similar to §5.4.4 we have

the upper bound ‖x(j)
N ‖ ≤

∥∥∥∏N
n=1 B

(j)
n

∥∥∥ ‖x(j)
1 ‖, thus we can look at the norm of the matrix

product to find an upper bound on the growth of solutions to the recurrence Eq. (5.25).

In Fig. 5.3 we plot these norms and we see initial algebraic growth which transitions to

super-algebraic growth roughly at the points predicted in §5.5.3: when n ≈ ω in Fig. 5.3a

and when n ≈ 0.4ω in Fig. 5.3b.
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Figure 5.3: The growth of solutions to Eq. (5.18) as measured by
∥∥∥∏N

n=1 B
(j)
∥∥∥ , j = 1, 2.

The initial algebraic transitions to super-algebraic growth roughly at the points predicted
heuristically in §5.5.3.

5.5.5 Wave scattering on a screen in two dimensions

Integrals of the form Eq. (5.23) appear in hybrid numerical-asymptotic collocation methods

for high-frequency wave scattering on screens in two dimensions (see for instance Hewett

et al. (2015) and Parolin (2015)). Closely related integrals also appear in the impedance

boundary value problem for the Helmholtz equation in a half-plane with piecewise constant

boundary data (Langdon and Chandler-Wilde, 2006). Recently, Gibbs et al. (2020)

constructed a very efficient numerical steepest descent (NSD) method that can be used

to assemble the matrix and right hand side in the corresponding collocation system at

frequency-independent cost. In this example, we demonstrate that our direct Filon method

with recursive moment computation can be applied to achieve the same goal.

As a conceptual difference, we highlight that our method relies on evaluations of the

integrand strictly in the domain of integration, in contrast to NSD where a complex

extension of the integrand is evaluated along steepest descent paths. This can be of

advantage when the amplitude of the incident field is complicated, or not available in

closed functional form. For instance, this arises in hybrid methods that employ ad hoc high

frequency approximations to extend the Kirchhoff approximation to the shadow boundary

on the scatterer, by exploiting knowledge from low-frequency scattering solutions (see

Mavaleix-Marchessoux et al., 2020, §3.4). In the present set-up, one might imagine a

screen placed in the shadow of a second object. In this case, an incident plane wave of

unit amplitude would, to leading order in the small wavelength, result in an incident plane

wave on the screen that has an amplitude varying from one in the illuminated region to

zero in the shadow.

The aforementioned feature, of Filon methods evaluating the integrand only on the
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domain of integration, is also useful when a complex extension of the highly oscillatory

integrand is not readily available or difficult to evaluate due to the presence of branch cuts

in the complex plane. Such a situation arises, for instance, when we consider the scattering

of a two-dimensional highly oscillatory Gaussian beam by a finite screen Γ extending from

(−1, 0) to (1, 0) in R2. This scattering problem can be modelled by the Dirichlet problem

of the Helmholtz equation on this boundary, and its solution is visualised in Fig. 5.4.

The solution of this problem can be interpreted physically as the z-component of the

electric field arising from the scattering of a laser beam by a perfectly conducting screen

in three-dimensional space extending along {(x, y, z) | − 1 ≤ x ≤ 1, y = 0, z ∈ R}. A more

detailed description of the physical set-up can be found in the work by Kozaki (1982) who

considered a similar scattering problem by an infinitely extending dielectric cylinder.

In the high-frequency regime the propagation of a laser beam can be described (at

leading order in (ωa)−1 � 1, where ω is the non-dimensional frequency of the beam and a

is the non-dimensionalised width of the beam) by an incident field of the form

ψi(x, y) =

(
1 +

iỹ

ωa2

)− 1
2

exp

(
iωỹ − x̃2

2a2

(
1 +

iỹ

ωa2

)− 1
2

)
,

where x̃ = x sin θ − y cos θ, ỹ = x cos θ + y sin θ (cf. Kravtsov (1967, Eq. (55)), Keller and

Streifer (1971, Eq. (17)), and Kozaki (1982, Eq. (7))). This describes a Gaussian beam

focused at (x, y) = (0, 0), which propagates in the direction (cos θ, sin θ) at frequency

ω and has width a in the plane {ỹ = x cos θ + y sin θ = 0}. The incident field with

a = 0.25, θ = π, ω = 16 can be seen in Fig. 5.4a.

(a) Incident Gaussian beam. (b) Total field and screen.

Figure 5.4: Scattering of a Gaussian beam on a perfectly conducting finite screen.

This scattering problem on the perfectly conducting screen (i.e. with Dirichlet boundary
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conditions) can be written in the single layer formulation Gibbs et al. (2020, Eq. (7))

ψi(sx) = S (∂nψ) (sx) :=
i

4

∫ 1

−1

H
(1)
0 (ω|sx − sy|) ∂nψ(sy) dsy, sx ∈ [−1, 1],

where ψ is the unknown scattered field and sx, sy are coordinates in arclength along the

screen.

We follow the hybrid Ansatz described by Hewett et al. (2015) where the unknown

∂nψ is expanded in the form

∂nψ(sy) = V0(sy;ω) +
L∑
l=1

V +
l (sy)e

iωsy + V −l (sy)e
−iωsy ,

where V0(sy;ω) = 2∂ψi(sy)/∂n is the geometrical optics approximation and V ±l are

piecewise polynomials of low degree defined on a mesh graded towards the endpoints of

the screen. Thus the collocation system for the free parameters in V ±l takes the form

N∑
l=1

S
(
V +
l (·) eiω · + V −l (·) e−iω · ) (sm) = ψi(sm)− 2S (∂nψi) (sm), (5.30)

for some collocation points sm ∈ [−1, 1],m = 1, . . . ,M . In the present example we shall

focus on the evaluation of the geometrical optics contribution, but we note that the

integrals over the basis terms V ±l (sy) exp(±iωsy), where V ±l are piecewise polynomials,

can also be approximated efficiently using expressions of the form Eq. (5.26). On the

blade, the incident Gaussian beam takes the form

∂nψi(sy, 0) =

[
−8ia2ωsy cos θ + 3s2

y cos(2θ) + 5s2
y

8a4ω2

(
1 +

isy cos θ

a2ω

)−2

+
−1

2a2ω2

(
1 +

isy cos θ

a2ω

)− 3
2

+

(
1 +

isy cos θ

a2ω

)− 1
2

]

iω sin θ exp

(
iωsy cos θ − s2

y sin2 θ

2a2

(
1 +

isy cos θ

ωa2

)− 1
2

)
=: A(sy;ω) exp (iωsy cos θ) ,

where we have extracted the amplitude of ∂nψi in A. Note the only ω dependency of A is

via a constant multiplication out front and via the function f(x) = (1 + ix cos θ/a)−1/2 in

the form f(x/ω). We observe

∣∣∣∣ dj

dxj
f(x)

∣∣∣∣ =
(2j − 1)!!

2j
| cos θ|ja−j

∣∣∣∣1 +
ix cos θ

ωa2

∣∣∣∣− 1
2
−l

≤ Cjx
− 1

2
−j, ∀ j ≥ 0,
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where (2j−1)!! = (2j−1)(2j−3) · · · 1. Thus tangential derivatives of A(sy;ω) do not grow

in ω, i.e. this is a smooth non-oscillatory function is well-approximable by polynomials on

[−1, 1] uniformly in ω ≥ 1 in the sense of Eq. (5.24). The geometrical optics approximation

in a collocation method with the Ansatz Eq. (5.30) requires us to compute, for each

collocation point sm ∈ [−1, 1],

2

∫ 1

−1

H
(1)
0 (ω|s− sm|)∂nψi(s, 0) ds

= 2

∫ s0

−1

H
(1)
0 (ω|s− sm|)A(s)eiωs cos θ ds+ 2

∫ 1

s0

H
(1)
0 (ω|s− sm|)A(s)eiωs cos θ ds

= 2(1 + sm)eiωs0 cos θ

∫ 1

0

H
(1)
0 (ω(1 + sm)t)A(sm − (1 + sm)t)e−iω(1+sm)t cos θ dt

+ 2eiωsm cos θ

∫ sm

0

H
(1)
0 (ωt)A(t+ sm)eiωt cos θ dt.

We can write these integrals in the form

eiωsm cos θ
(

(1 + sm)I
(3)
ω(1+sm),− cos θ[A1] + (1− sm)I

(3)
ω(1−sm),cos θ[A2]

)
, (5.31)

where we tookA1(x) = A ((s0 − 1)/2− x(s0 + 1)/2), A2(x) = A ((s0 + 1)/2 + x(1− s0)/2).

Therefore, we can consider the approximation of Eq. (5.31) using the direct Filon method

with recursive moment computation as described in §5.5.1. The performance of this method

is demonstrated by the results in Fig. 5.5. Here we choose a = 0.25, θ = π/4, sm = 0.

In Fig. 5.5a we see the behaviour of the relative error of the direct Filon method as a

function of ω with ν = 6 fixed. We recall from Prop. 5.5.2 that the direct Filon method

has asymptotic error O(ω−s−2 logω) and a similar argument shows that 2S(∂nψi)(sn) has

asymptotic behaviour O(ω−1 logω). Thus we expect the relative error to behave like

O(ω−s−1) which is confirmed in Fig. 5.5a. This means that the direct Filon method can

approximate the integral to a fixed relative error at uniform cost in ω.

In Fig. 5.5b we consider the convergence properties of the method for a fixed ω = 100

as ν increases. Since A1, A2 are smooth we expect, by Corollary 5.5.3, to find spectral

convergence in ν for any fixed value of ω. This is indeed confirmed in Fig. 5.5b. In both

numerical examples the reference solution for the true integral was computed with a graded

Clenshaw–Curtis method (as described in §5.4.4) with M = 6000, ν = 10, r = 40.
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Figure 5.5: Relative error of the direct Filon method for evaluating S(∂nψi)(sm) with
a = 0.25, θ = π/4, sm = 0. The black dash-dotted lines in (a) mark O(ω−s−1) for s = 0, 1, 2
respectively.

5.6 Conclusions

In this chapter we sought to address the ‘moment-problem’ for Filon methods by providing

a general framework for constructing recurrences satisfied by the Filon quadrature moments.

This framework is based on the observation that many physically relevant oscillatory kernels

are in the null space of certain differential operators whose action on the interpolation

basis is represented by a banded matrix. The recursive moment computation allowed

us to construct direct Filon methods for several examples of interest, two of which we

studied in further detail: integrals with algebraic singularities and stationary points and

integrals involving a Hankel function. For the former we proved rigorous stability results

guaranteeing that the initial moments can be computed with at worst linear error growth.

We also demonstrated the advantageous properties of the direct Filon method which

perfectly matches the asymptotic behaviour of the integral up to certain order in the

frequency ω. The second type of integrals are relevant in evaluating the geometrical

optics approximation in high-frequency wave scattering. Based on numerical evidence we

found that the recurrences incur only weak (algebraic) error growth as long as N . ω,

meaning the recurrences are a suitable means for computing the quadrature moments

for most practical purposes. We provided rigorous convergence results that facilitate

the understanding of both ν- and ω-dependency of the quadrature error and showed an

application to high-frequency wave scattering of a Gaussian beam on a finite screen in two

dimensions.
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List of symbols

Symbol Description

( · , · )L2 Inner product on L2([a, b],W ).

Iω[f ] Oscillatory integral with frequency ω and amplitude function f .

Jn,Yn Bessel functions of the first and second kind of order n.

Tn Chebyshev polynomial of the first kind of degree n.

H
(1)
0 Hankel function of the first kind of order zero.

Ln Laguerre polynomial of degree n.

Pn Legendre polynomial of degree n.

α Parameter determining the strength of the algebraic singularity in I
(2)
ω [f ].

β Parameter determining the phase of the oscillatory kernel in I
(3)
ω,β[f ].

γ( · , · ) Lower incomplete Gamma function.

〈g, f〉 Action of g ∈ H−s([a, b],W ) on f ∈ Hs([a, b],W ).

L∗ω Adjoint of the differential operator Lω.

Lω Differential operator in mapping hω to zero.

Q A quadrature technique (different versions depending on the context).

B Banded infinite matrix representation of the action of Lω on {φn}n∈I .
ν + 1 Number of quadrature nodes (for function values) in the Filon method.

ω Frequency in the integral.

z Complex conjugate of z ∈ C.

σn Filon quadrature moments.

{φn}n∈I Set of interpolation basis functions.

f Non-oscillatory amplitude function in the integral.

hω Oscillatory kernel function in the integral.

jn, yn Spherical Bessel functions of the first and second kind.

p, q Polynomials interpolating the amplitude function f .

s Number of interpolated derivative values of f in the Filon method.
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5.A Fast interpolation at Clenshaw–Curtis points, mid-

and endpoint derivatives

Here we provide a some more detail on how the interpolation problem Eq. (5.3) can be

solved at cost O(ν log ν + sν + s3) as mentioned in §5.2.2. Recall that we wish to solve

the following interpolation problem:

q(j)(0) = f (j)(0), q(j)(±1) = f (j)(±1), j = 0, . . . , s, and q(cn) = f(cn), n = 1, . . . , ν,

where ν is odd, using an expansion in Chebyshev polynomials q(x) =
∑ν+3s+1

n=0 qnTn(x).

Let us adopt the notation used by Gao and Iserles (2017a) and define

q̂0 = 2q0, q̂k = qk, k = 1, . . . , ν, q̂ν+1 = 2qν+1,

hj = fj −
ν+3s∑
m=ν+2

qm cos

(
jmπ

ν + 1

)
, fj = f

(
cos

jπ

ν + 1

)
, j = 0, . . . , ν + 1.

Then the interpolation conditions q(cn) = f(cn), n = 0, . . . , ν + 1, are equivalent to saying

that Cν+1q̂ = h, where Cν+1 is the discrete cosine transform DCT-I. The inverse is

q̂m =
(
C−1
ν+1h

)
m

=
2

ν + 1

ν+1∑′′

j=0

hj cos

(
jmπ

ν + 1

)
for m = 0, . . . , ν + 1, (5.32)

where
∑′′ν+1

j=0
means that for j = 0 and j = ν + 1 the terms are halved. We can simplify

the expressions for hj as follows:

hj = fj −
ν+3s+1∑
m=ν+2

cos

(
jmπ

ν + 1

)
qm

= fj −
3s∑
m=1

(−1)j cos

(
jmπ

ν + 1

)
qν+1+m, j = 0, . . . , ν + 1. (5.33)

Using Eq. (5.33) in Eq. (5.32) we find for m = 0, . . . , ν + 1 (and with q̌ = C−1
ν+1f):

q̂m = q̌m −
2

ν + 1

3s∑
n=1

qν+1+n

[
ν+1∑′′

j=0

(−1)j cos

(
jnπ

ν + 1

)
cos

(
jmπ

ν + 1

)]

= q̌m −
1

ν + 1

3s∑
n=1

qν+1+n

[
ν+1∑′′

j=0

(−1)j cos

(
j(n+m)π

ν + 1

)

+

ν+1∑′′

j=0

(−1)j cos

(
j(n−m)π

ν + 1

)]
.
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Now, because ν is odd, one can quickly check using standard trigonometric identities that

ν+1∑′′

j=0

(−1)j cos

(
j(n+m)π

ν + 1

)
=

0, n+m 6= ν + 1,

ν + 1, n+m = ν + 1.

Thus we find q̂m = q̌m −
∑3s

n=1 qν+1+n(δn+m,ν+1 + δn−m,ν+1) which implies

qn =
1

2
q̌n, n = 0, ν + 1,

qn = q̌n, n = 1, . . . , ν − 3s,

qn = q̌n − q2ν−n+2, n = ν − 3s+ 1, . . . , ν.

The remaining interpolation conditions, q(j)(0) = f (j)(0), q(j)(±1) = f (j)(±1), for j =

1, . . . , s, are equivalent to the following 3s×3s system allowing us to find qν+2, . . . , qν+3s+1:

3s∑
n=1

qν+1+n

[
T

(j)
ν+1+n(−1)− T

(j)
ν+1−n(−1)

]
= f (j)(−1)−

ν+1∑′′

n=0

q̌nT(j)
n (−1),

3s∑
n=1

qν+1+n

[
T

(j)
ν+1+n(0)− T

(j)
ν+1−n(0)

]
= f (j)(0)−

ν+1∑′′

n=0

q̌nT(j)
n (0),

3s∑
n=1

qν+1+n

[
T

(j)
ν+1+n(1)− T

(j)
ν+1−n(1)

]
= f (j)(1)−

ν+1∑′′

n=0

q̌nT(j)
n (1).

Note that the coefficients in this linear system can be found explicitly:

T(j)
n (±1) = (±1)n−j

2jj!n(n+ j − 1)!

(2j)!(n− j)! , for 0 ≤ j ≤ n and n+ j ≥ 1, (5.34)

T(j)
n (0) =

(−1)r n(n−r−1)!
r!

2j−1, if r = (n− j)/2 ∈ N ∪ {0},
0, otherwise,

where the former expression is proved in Gao and Iserles (2017a, Eq. (2.3)) and the latter

follows from the expansion of Tn in the usual monomial basis (Abramowitz and Stegun,

1965, Eq. 22.3.6).

5.B Proof of Theorem 5.4.1

We recall the statement of Thm. 5.4.1:

Theorem 5.B.1. Suppose the moments ˇ̃σn are computed using Eq. (5.19) with slightly

perturbed initial conditions: ˇ̃σ0 = σ̃0 + ε0, ˇ̃σ2 = σ̃2 + ε2, for some |ε0|, |ε2| < ε. Then, for
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any n with 2n+ 1 < ω,

|ˇ̃σ2n − σ̃2n| <
8nω

1
2

3 (ω2 − (2n+ 1)2)
1
4

(
2 +

1

ω

)
ε.

Proof. Let xn = ˇ̃σn − σ̃n. By linearity it suffices to solve the recurrence Eq. (5.19) for xn

with initial conditions x0 = ε0, x2 = ε2, and x2n+1 = 0. Substitute xn = ρn+1−ρn−1, n ≥ 0,

with ρ−1 := −ε0/2 and let γn = ρn+2 + 2n
iω
ρn− ρn−2 for n ≥ 1. We also note that x2n+1 = 0

so we may, without loss of generality, choose ρ2n = 0, n ≥ 0. Then the recurrence Eq. (5.19)

is equivalent to solving

γn+2 − 2γn + γn−2 = 0, n ≥ 3,

with the initial conditions γ1 = γ3 = ρ3 + 2
iω
ρ1 − ρ−1 = ε2 + ε0(1 + 1

iω
). Here equality of

γ1 = γ3 was achieved by setting ρ−1 = −ε0/2 and by using Eq. (5.19) for n = 1. Hence

we have γ2n+1 = γ1, ∀n ≥ 1. Therefore, the problem of finding x2n from given initial

conditions is equivalent to

ρn+2 +
2n

iω
ρn − ρn−2 = γ1, n ≥ 1, (5.35)

subject to ρ1 = ε0/2, ρ3 = ε2 + ε0/2 and ρ2n = 0, where γ1 = x2 + x0(1 + 1
iω

). To solve this

let us consider the homogeneous recurrence

a2n+3 +
2(2n+ 1)

iω
a2n+1 − a2n−1 = 0. (5.36)

This has two linearly independent solutions that can be expressed in terms of spherical

Bessel functions jn, yn (see Abramowitz and Stegun, 1965, §10.1) namely

a2n+1 = Aeiπ
2
njn

(ω
2

)
+Beiπ

2
nyn

(ω
2

)
,

for A,B ∈ C. Let us write j̃n(z) := inj(z) and ỹn(z) := iny(z), then the solution to

Eq. (5.36) with initial conditions a1, a3 is given by(
a2n+3

a2n+1

)
=

(
j̃n+1(ω/2) ỹn+1(ω/2)

j̃n(ω/2) ỹn(ω/2)

)(
j̃1(ω/2) ỹ1(ω/2)

j̃0(ω/2) ỹ0(ω/2)

)−1(
a3

a1

)
, n ≥ 1.

Now we have the following useful identity (Abramowitz and Stegun, 1965, Eq. 10.1.31):

j̃n(z)ỹn−1(z)− j̃n−1(z)ỹn(z) = (−1)n+1iz−2, n ≥ 1.
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Hence we have

det

(
j̃n+1(ω/2) ỹn+1(ω/2)

j̃n(ω/2) ỹn(ω/2)

)
= (−1)n+1i

(
2

ω

)2

.

Thus, we can write the solution to Eq. (5.35), by discrete variation of constants, as(
ρ2n+3

ρ2n+1

)
= i
(ω

2

)2
(
j̃n+1(ω/2) ỹn+1(ω/2)

j̃n(ω/2) ỹn(ω/2)

)[
n∑
k=1

(−1)k+1

(
ỹk(ω/2) −ỹk+1(ω/2)

−j̃k(ω/2) j̃k+1(ω/2)

)(
γ1

0

)

+ (−1)

(
ỹ0(ω/2) −ỹ1(ω/2)

−j̃0(ω/2) j̃1(ω/2)

)(
ρ3

ρ1

)]
.

(5.37)

According to Watson (1995, Eq. (1) in §13.74) we have, for z ≥ ν + 1/2 ≥ 1,

|jν(z)|2 + |yν(z)|2 < 1

|z|
√
z2 − (ν + 1/2)2

.

Thus, we can apply Cauchy–Schwarz to Eq. (5.37) and find

|ρ2n+3| ≤
(ω

2

)2

 1∣∣ω
2

∣∣√(ω
2

)2 − (n+ 3/2)2

 1
2

 n∑
k=1

 1∣∣ω
2

∣∣√(ω
2

)2 − (k + 1/2)2

 1
2

|γ1|

+

 1∣∣ω
2

∣∣√(ω
2

)2 − (3/2)2

 1
2

|ρ1|+

 1∣∣ω
2

∣∣√(ω
2

)2 − (1/2)2

 1
2

|ρ3|


≤ ω

(ω2 − (2n+ 3)2)
1
4

[
n∑
k=1

|γ1|
(ω2 − (2k + 1)2)

1
4

+
|ρ1|

(ω2 − 32)
1
4

+
|ρ3|

(ω2 − 1)
1
4

]
.

Finally, we notice by the integral test for 2n+ 1 < ω:

n∑
k=1

1

(ω2 − (2k + 1)2)
1
4

≤
∫ n

0

1

(ω + 2x+ 1)
1
4

1

(ω − 2x− 1)
1
4

dx ≤ ω−
1
4

∫ n

0

dx

(ω − 2x− 1)
1
4

≤ 2

3
ω−

1
4

(
(ω − 1)

3
4 − (ω − 2n− 1)

3
4

)
≤ 2

3
ω−

1
2 (ω − (ω − (2n+ 1))) = ω−

1
2

2(2n+ 1)

3
.

Thus, we have overall

|ρ2n+3| ≤
ω

1
2

(ω2 − (2n+ 3)2)
1
4

2(2n+ 1)

3

(
2 +

1

ω

)
+

1

2
(
1− 32

ω2

) 1
4

+
3

2
(
1− 12

ω2

) 1
4

 ε.
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A similar estimate holds for ρ2n+1 and hence the result follows, since x2n+2 = ρ2n+3 −
ρ2n+1.

5.C Proof of Theorem 5.4.2

We recall the statement of Thm. 5.4.2:

Theorem 5.C.1. Suppose the moments ˇ̃σn are computed using Eq. (5.18) with the perturbed

initial conditions ˇ̃σ0 = σ̃ + ε0, ˇ̃σ1 = ˇ̃σ−1 = σ̃1 + ε1, ˇ̃σ2 = ˇ̃σ−2 = σ̃2 + ε2, |εj| < ε for some

ε > 0, and assume ˇ̃σ3 = ˇ̃σ−3. Then, whenever n+ 1 < min{C√ω, ω} for a given C > 0,

we have

|ˇ̃σn − σ̃n| ≤ ε
(K0 + nK1)

2

(
K2ω

1
2

K2ω
1
2 − 1

exp

(
C

K2 − ω−
1
2

)
+ 1

)
,

where the constants K0, K1, K2 are independent of n and are given by

K0 =
2
√
ω√

ω − C2
, K1 =

ω + 2 + |α|√
ω2 − C2ω

, K2 =
(ω − C2)

1
4

ω
1
4

√
2|α|+ 2

.

Proof. Define xn := ˇ̃σn − σ̃n. Then, by linearity, it suffices to solve for xn which satisfies

Eq. (5.18) subject to x0 = ε0, x1 = x−1 = ε1, x2 = x−2 = ε2, x3 = x−3. We can formulate

the recurrence equivalently in the form

xn−3 −
2(n− 2)

iω
xn−2 − xn−1 +

4

iω
xn − xn+1 +

2(n+ 2)

iω
xn+2 + xn+3

= −2α

iω
(xn−2 − 2xn + xn+2)− 2

iω
(xn−2 + 2xn + xn+2)

for n ≥ 0. We can solve the homogeneous difference equation corresponding to the left

hand side exactly, and we view the right hand side as a perturbation of the recurrence in

the following sense: Let

xn =
n−2∑
j=0

ω−jx(j)
n , n ≥ 2.

Then xn is the unique solution of the recurrence Eq. (5.18) with the specified initial

conditions if we define

x
(0)
n−3 −

2(n− 2)

iω
x

(0)
n−2 − x(0)

n−1 − x(0)
n+1 +

2(n+ 2)

iω
x

(0)
n+2 + x

(0)
n+3 = 0, n ≥ 0, (5.38)
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with the initial conditions x
(0)
n = ε0, x

(0)
−1 = x

(0)
1 = ε1, x

(0)
−2 = x

(0)
2 = ε2, and

x
(0)
−3 = x

(0)
3 =

2α− 2

iω
ε0 + ε1 −

2(3 + α)

iω
ε2,

and if we further choose

x
(j+1)
n−3 −

2(n− 2)

iω
x

(j+1)
n−2 − x(j+1)

n−1 − x(j+1)
n+1 +

2(n+ 2)

iω
x

(j+1)
n+2 + x

(j+1)
n+3

= 2iα(x
(j)
n−2 − 2x(j)

n + x
(j)
n+2) + 2i(x

(j)
n−2 + 2x(j)

n + x
(j)
n+2)

(5.39)

for j ≥ 0 and n ≥ j, under the extra symmetry condition x
(j)
n = x

(j)
−n and with the initial

conditions x
(j+1)
j+2 , x

(j+1)
j+1 , x

(j+1)
j , x

(j+1)
j−1 = 0.

Let us firstly solve Eq. (5.38): We let γ
(0)
n = x

(0)
n+1 + 2n

iω
x

(0)
n − x

(0)
n−1, n ≥ −2, which

ensures that Eq. (5.38) is equivalent to

γ
(j+1)
n+2 − γ(j+1)

n−2 = 0, n ≥ 0,

γ
(0)
−2 =

2− 2α

iω
ε0 +

2 + 2α

iω
ε2, γ

(0)
−1 = ε0 −

2

iω
ε1 − ε2, γ

(0)
0 = 0, γ

(0)
1 = ε2 +

2

iω
ε1 − ε0.

Thus γ
(0)
4n+j = γ

(0)
j for j = −2, . . . , 1 and n ≥ 0. Hence, it remains to solve

x
(0)
n+1 +

2n

iω
x(0)
n − x(0)

n−1 = γ(0)
n , n ≥ 1, (5.40)

with initial conditions x
(0)
0 = ε0, x

(0)
1 = ε1. As described by Domı́nguez et al. (2011) the

homogeneous solutions of this recurrence can be expressed in terms of Bessel functions,

where it will be convenient to express the solutions in terms of the functions J̃n(ω) :=

inJn(ω), Ỹn(ω) := inYn(ω), where Jn(ω),Yn(ω) are the standard Bessel functions of the

first and second kind, as defined for instance in Abramowitz and Stegun (1965). The

solution to Eq. (5.40) can be written using discrete variation of constants as(
x

(0)
n+1

x
(0)
n

)
=

iπω

2

(
J̃n+1(ω) Ỹn+1(ω)

J̃n(ω) Ỹn(ω)

)(
n∑
k=1

(−1)k+1

(
Ỹk(ω) −Ỹk+1(ω)

−J̃k(ω) J̃k+1(ω)

)(
γ

(0)
k

0

)

+(−1)

(
Ỹ0(ω) −Ỹ1(ω)

−J̃0(ω) J̃1(ω)

)(
ε1

ε0

))
,

(5.41)

for n ≥ 1. Here, analogously to Domı́nguez et al. (2011), we used the identity (Abramowitz

and Stegun, 1965, Eq. (9.1.16))

det

(
J̃n+1(ω) Ỹn+1(ω)

J̃n(ω) Ỹn(ω)

)
= (−1)n+1−2i

πω
.
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We can now perform a similar estimate to Domı́nguez et al. (2011, p. 1271) on Eq. (5.41):

Note the upper bound given by Watson (1995, §13.74)

|Jn(ω)|2 + |Yn(ω)|2 ≤ 2

π

1√
ω2 − n2

, for ω > n > 1/2. (5.42)

Combining this with Cauchy–Schwarz on Eq. (5.41) yields, for n ≥ 2,

|x(0)
n | ≤

ω

(ω2 − n2)
1
4

(
n−1∑
k=1

1

(ω2 − k2)
1
4

|γ(0)
k |+ ε

1∑
j=0

1

(ω2 − j2)
1
4

)
.

Thus, summing these contributions, we obtain the following estimate when n < min{C√ω, ω}:

|x(0)
n | ≤

ε√
1− C2

ω

(
n

(
1 +

2 + |α|
ω

)
+ 2

)
. (5.43)

We now consider the perturbed recurrence Eq. (5.39) order by order. To do so, let us write

f (j)
n = 2i(1 + α)

(
x

(j)
n−2 + x

(j)
n+2

)
+ 2i(1− α)x(j)

n , n ≥ j.

Thus, for j ≥ 0, we need to solve the recurrence

x
(j+1)
n−3 −

2(n− 2)

iω
x

(j+1)
n−2 − x(j+1)

n−1 − x(j+1)
n+1 +

2(n+ 2)

iω
x

(j+1)
n+2 + x

(j+1)
n+3 = f (j)

n , n ≥ j

subject to the initial conditions x
(j+1)
j+2 , x

(j+1)
j+1 , x

(j+1)
j , x

(j+1)
j−1 = 0. We again substitute

γ
(j)
n = x

(j)
n+1 + 2n

iω
x

(j)
n − x(j)

n−1, n ≥ j − 2, which ensures that this recurrence is equivalent to

γ
(j+1)
n+2 − γ(j+1)

n−2 = f (j)
n , n ≥ j − 2, γ

(j+1)
j−2 , γ

(j+1)
j−1 , γ

(j+1)
j , γ

(j+1)
j+1 = 0

Therefore, we easily find

γ
(j+1)
4n+j =

n−1∑
m=0

f
(j)
4m+j+2, γ

(j+1)
4n+j+1 =

n−1∑
m=0

f
(j)
4m+j+3, γ

(j+1)
4n+j−1 =

n−1∑
m=0

f
(j)
4m+j+1, γ

(j+1)
4n+j−2 =

n−1∑
m=0

f
(j)
4m+j.

Now it remains to solve

γ(j)
n = x

(j)
n+1 +

2n

iω
x(j)
n − x(j)

n−1, n ≥ j + 2

with the initial conditions x
(j+1)
j+2 , x

(j+1)
j+1 = 0. Similarly to the case for x

(0)
n we can write the

solution in terms of J̃n(ω), Ỹn(ω), which yields
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(
x

(j+1)
n+1

x
(j+1)
n

)
=

iπω

2

(
J̃n+1(ω) Ỹn+1(ω)

J̃n(ω) Ỹn(ω)

)
n∑

k=j+2

(−1)k+1

(
Ỹk(ω) −Ỹk+1(ω)

−J̃k(ω) J̃k+1(ω)

)(
γ

(j+1)
k

0

)
.

Therefore, we can use Cauchy–Schwarz and Eq. (5.42), as we did previously, to estimate

|x(j+1)
n | ≤ πω

2

2

π

1

(ω2 − n2)
1
4

n−1∑
k=j+2

1

(ω2 − k2)
1
4

|γ(j+1)
k |. (5.44)

Now we recall f
(j)
n = 2iα(x

(j)
n−2 − 2x

(j)
n + x

(j)
n+2) + 2i(x

(j)
n−2 + 2x

(j)
n + x

(j)
n+2), which means that

γ
(j+1)
4n+j =

n−1∑
m=0

f
(j)
4m+j+2 = 2iα

(
x

(j)
4n+j + 2

2n−1∑
l=1

(−1)lx
(j)
j+2l

)
+ 2i

(
x

(j)
4n+j + 2

2n−1∑
l=1

x
(j)
j+2l

)
,

∴ |γ(j+1)
4n+j | ≤ (2α + 2)

(
|x(j)

4n+j|+ 2
2n−1∑
l=1

|x(j)
j+2l|

)
.

Analogously we find for k = −2,−1, 1:

|γ(j+1)
4n+k+j| ≤ (2α + 2)

(
|x(j)

4n+k+j|+ 2
2n−1∑
l=1

|x(j)
j+2l+k|

)
,

where, of course, x
(j)
j , x

(j)
j+1 = 0. To complete a total estimate on the size of x

(j+1)
n we

proceed as follows:

Claim 5.C.2. If |x(j)
n+j| ≤ nb, for b ≥ 0 and all n+ j + 1 < C

√
ω, then

|x(j+1)
n+j+1| ≤

2 + 2|α|√
1− C2

ω

(
nb+2

(b+ 2)(b+ 1)
+ 2

nb+1

b+ 1
+ nb

)
.

Proof of Claim.

|γ(j+1)
4n+j | ≤ (2|α|+ 2)

(
|x(j)

4n+j|+ 2
2n−1∑
l=1

|x(j)
j+2l|

)
≤ C(2|α|+ 2)

(
(4n)b + 2

2n−1∑
l=1

(2l)b

)

≤ C(2|α|+ 2)

(
(4n)b + 2

∫ 2n

0

(2x)b dx

)
= C(2|α|+ 2)

(
(4n)b +

1

b+ 1
(4n)b+1

)
,

where in the final step we used the integral test to find an upper bound. Analogously, we

find in general,

|γ(j+1)
k+j | ≤ C(2|α|+ 2)

(
1

b+ 1
kb+1 + kb

)
, k ≥ 2.
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Thus we have, based on Eq. (5.44),

|x(j+1)
n+j+1| ≤

ω

(ω2 − (n+ j + 1)2)
1
4

n+j∑
k=j+2

1

(ω2 − k2)
1
4

|γ(j+1)
k |

≤ C(2|α|+ 2)ω

(ω2 − (n+ j + 1)2)
1
4

n∑
k=2

1

(ω2 − (j + k)2)
1
4

(
1

b+ 1
kb+1 + kb

)
.

Thus, if n+ 1 + j < C
√
ω, we can simplify the above estimate to complete the proof of

the claim:

|x(j+1)
n+j+1| ≤

C(2|α|+ 2)√
1− C2

ω

n∑
k=2

1

b+ 1
kb+1 + kb ≤ C(2|α|+ 2)√

1− C2

ω

[
nb+2

(b+ 2)(b+ 1)
+ 2

nb+1

(b+ 1)
+ nb

]
.

�

We have shown in Eq. (5.43) that

|x(0)
n | ≤ nε

(
1 + 2+|α|

ω

)
√

1− C2

ω︸ ︷︷ ︸
K1

+ε
2√

1− C2

ω︸ ︷︷ ︸
K0

.

Thus we have, by linearity, for n ≥ 2

|xn| ≤
n−2∑
j=0

ω−j
∣∣x(j)
n

∣∣ ≤ n−2∑
j=0

 (2|α|+ 2)

ω
√

1− C2

ω

j [
2j∑
l=0

(
2j

l

)
(n− j)l

l!

(
K0ε+K1ε

n− j
l + 1

)]

≤ (K0 + nK1)ε
n−2∑
j=0

 (2|α|+ 2)

ω
√

1− C2

ω

j

L2j(−n+ j), (5.45)

where L2j are Laguerre polynomials and the final line follows from the explicit expansion

of L2j in the usual monomial basis (Abramowitz and Stegun, 1965, Eq. 22.3.9). Thus we

seek to find an upper bound for the function f(z, n) =
∑n−2

j=0 z
−jL2j(−n + j). Note to

begin with that Laguerre polynomials are strictly monotonically decreasing for negative

arguments, i.e. for x < y < 0 we have for any n ≥ 1

Ln(x) > Ln(y) > Ln(0) = 1, and L0 ≡ 1.
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This follows by induction from the following identity (Abramowitz and Stegun, 1965,

Eqs. 22.5.17 & 22.7.30)

d

dx
Ln+1 =

d

dx
Ln − Ln, n ≥ 0,

since we have Ln(x) > 0 for any x < 0, n ≥ 0 (because the zeros of the Laguerre polynomials

are located in [0,∞) and Ln(0) = 1). Thus, we may estimate

f(z, n) ≤
n−2∑
j=0

(
z

1
2

)−2j

L2j(−n) ≤ 1

2

n−2∑
j=0

(
z

1
2

)−2j

L2j(−n) +
1

2

n−2∑
j=0

(
−z 1

2

)−2j

L2j(−n).

By the three-term recurrence for Laguerre polynomials (Abramowitz and Stegun, 1965,

22.7.12),

Ln+1(x) = Ln(x)− x

n+ 1
Ln +

n

n+ 1
(Ln(x)− Ln−1(x)),

and by induction we have Ln+1(x) > Ln(x) for any x < 0, n ≥ 0. Therefore,

f(z, n) = f(z, n) + z−
1
2f(z, n)− z− 1

2f(z, n)

≤ 1

2

∞∑
j=0

z−
j
2 Lj(−n) +

1

2

∞∑
j=0

(
−z 1

2

)j
Lj(−n). (5.46)

The generating function of the Laguerre polynomials (Abramowitz and Stegun, 1965,

Eq. 22.9.15) is

∞∑
j=0

ajLj(x) =
1

1− a exp

(
xa

a− 1

)
, ∀x ∈ R, |a| < 1,

which allows us to simplify the estimate Eq. (5.46) to

f(z, n) ≤ 1

2

z
1
2

z
1
2 − 1

exp

(
n

z
1
2 − 1

)
+

1

2

1

1 + z
1
2

exp

(
− n

z
1
2 + 1

)
.

Therefore we conclude, by Eq. (5.45),

|xn| ≤
(K0 + nK1)

2
ε

(
K2ω

1
2

K2ω
1
2 − 1

exp

(
n

ω
1
2K2 − 1

)
+

1

K2ω
1
2 + 1

exp

(
− n

ω
1
2K2 + 1

))
,

where K2 = (2|α|+ 2)−1/2(1− C2/ω)1/4 and the result follows.
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5.D Expression for initial moments in §5.5.2

Let us define the standard moments by ρn := I
(3)
ω,β[xn], then we have the expressions

σ̃0 = ρ0, σ̃1 = 2ρ1 − ρ0, σ̃2 = 8ρ2 − 8ρ1 + ρ0, σ̃3 = 32ρ3 − 48ρ2 + 18ρ1 − ρ0.

Differentiating Eq. (5.26) with respect to β yields:

iωρ1 = −2i

π
ω−

3
2 ei(β+1)ω

∫ ∞
0

[
iωgβ

(
t

ω

)
+

(
∂βgβ

(
t

ω

))]
1√
t
e−t dt

+


1

1−β2 +
2β tanh−1

(√
β−1
β+1

)
(β2−1)3/2 , β > −1, β 6= 1,

1/3, β = 1,

1
1−β2 −

2β tanh−1
(√

β−1
β+1

)
(β2−1)3/2 , β < −1,

−ω2ρ2 = −2i

π
ω−

3
2

∫ ∞
0

[
−ω2gβ

(
t

ω

)
+ 2iω

(
∂βgβ

(
t

ω

))
+

(
∂2
βgβ

(
t

ω

))]
1√
t
e−t dt

+


3β

(β2−1)2 −
(4β2+2) tanh−1

(√
β−1
β+1

)
(β2−1)5/2 , β > −1, β 6= 1,

−4/15, β = 1,

3β

(β2−1)2 +
(4β2+2) tanh−1

(√
β−1
β+1

)
(β2−1)5/2 , β < −1,

and, when β 6= 1, we find additionally:

−iω3ρ3 =− 2i

π
ω−

3
2 ei(β+1)ω

∫ ∞
0

[
−iω3gβ

(
t

ω

)
− 3ω2

(
∂βgβ

(
t

ω

))
+3iω

(
∂2
βgβ

(
t

ω

))
+

(
∂3
βgβ

(
t

ω

))]
1√
t
e−t dt

+
2

π
ω−1


11β2+4

(β2−1)3 −
6β(2β2+3) tanh−1

(√
β−1
β+1

)
(β−1)7/2(β+1)7/2 , β > −1, β 6= 1,

11β2+4

(β2−1)3 +
6β(2β2+3) tanh−1

(√
β−1
β+1

)
(β−1)7/2(β+1)7/2 , β < −1.

5.E Proof of Proposition 5.5.2

We recall the statement of Prop. 5.5.2:

Proposition 5.E.1 (Filon paradigm for I
(3)
ω,β). For any k ∈ N there is a constant Ck > 0

such that for all β ∈ R, β 6= −1, ω ≥ 1 and any function f̃ ∈ Ck+2[0, 1] with f̃ (j)(±1) = 0

for j = 0, . . . , k:

∣∣∣I(3)
ω,β[f̃ ]

∣∣∣ ≤ Ck

(
ω−(k+2)‖f̃ (k+1)‖∞

|β + 1|k+3 − 1

|β + 1| − 1
+ ω−(k+2) logω‖f̃ (k+2)‖∞|β + 1|−(k+2)

)
.
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Proof. We write

I
(3)
ω,β[f̃ ] =

∫ ω−1

0

H
(1)
0 (ωx)f̃(2x− 1)eiωβx dx+

∫ 1

ω−1

H
(1)
0 (ωx)f̃(2x− 1)eiωβx dx. (5.47)

By Taylor’s theorem we have |f̃ (j)(2x− 1)| ≤ C̃kx
k+1−j‖f̃ (k+1)‖∞, j = 0, . . . , k + 1, for all

x ∈ [−1, 1] and for some constant C̃k > 0 independent of x. To bound the first integral

note, by Lemma 5.5.1 with n = 0, that∣∣∣H(1)
0 (ωx)

∣∣∣ ≤ 2C0(ωx)−1/2, ∀x > 0,

since 1 + log(1/z) ≤ 2z−1/2, |h0(z)| ≤ 2C0z
−1/2 when z ≤ 1. Thus we have∣∣∣∣∣

∫ ω−1

0

H
(1)
0 (ωx)f̃(2x− 1)eiωβx dx

∣∣∣∣∣ ≤ 2C0C̃kω
− 1

2‖f̃ (k+1)‖∞
∫ ω−1

0

xk+ 1
2 dx

. ω−k−2‖f̃ (k+1)‖∞, (5.48)

where A(ω) . B(ω) means A(ω) ≤ KB(ω) for a constant K > 0 independent of ω.

Moreover, by integration by parts and noting that h0 is non-singular on (0, 1], and

f̃ (j)(1) = 0, j = 0, . . . k, we have∫ 1

ω−1

H
(1)
0 (ωx)f̃(2x− 1)eiωβx dx =

∫ 1

ω−1

h0(ωx)f̃(2x− 1)eiω(β+1)x dx

= −
k+1∑
j=0

( −1

iω(β + 1)

)j+1 [
eiω(β+1)x dj

dxj

(
h0(ωx)f̃(2x− 1)

)]
x=ω−1

+

( −1

iω(β + 1)

)k+2 [
eiω(β+1)x dk+1

dxk+1

(
h0(ωx)f̃(2x− 1)

)]
x=1

+

( −1

iω(β + 1)

)k+2 ∫ 1

ω−1

eiω(β+1)x dk+2

dxk+2

(
h0(ωx)f̃(2x− 1)

)
dx.

(5.49)

We bound each term in turn using the Leibniz rule for the derivatives of a product:

∣∣∣∣[ dj

dxj

(
h0(ωx)f̃(2x− 1)

)]
x=ω−1

∣∣∣∣ . j∑
l=0

ωl
∣∣∣∣[dlh0

dxl

]
x=1

∣∣∣∣ ∣∣∣f̃ (j−l)(2ω−1 − 1)
∣∣∣

. ω−k−1+j‖f̃ (k+1)‖k+1, (5.50)

where we used
∣∣∣f̃ (l)(−1 + 2ω−1)

∣∣∣ ≤ C̃kω
k+1−l‖f̃ (k+1)‖k+1, l = 0, . . . , k + 1. Similarly we

find∣∣∣∣[ dk+1

dxk+1

(
h0(ωx)f̃(2x− 1)

)]
x=1

∣∣∣∣ = 2k+1
∣∣∣(h0(ω)f̃ (k+1)(1)

)∣∣∣ . ω−1/2‖f̃ (k+1)‖∞, (5.51)
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where the first equality holds because f̃ (j)(1) = 0, j = 0, . . . , k. Finally, we have

∣∣∣∣ dk+2

dxk+2

(
h0(ωx)f̃(2x− 1)

)∣∣∣∣ ≤ k+2∑
l=0

(
k + 2

l

) ∣∣∣∣ dl

dxl
h0(ωx)

∣∣∣∣ ∣∣∣2k+2−lf̃ (k+2−l)(2x− 1)
∣∣∣

. ω−1/2x−1/2
∣∣∣f̃ (k+2)(2x− 1)

∣∣∣+
k+2∑
l=1

ω−1/2x−l−1/2
∣∣∣f̃ (k+2−l)(2x− 1)

∣∣∣
. ω−1/2x−1/2‖f̃ (k+2)‖∞ +

k+2∑
l=1

ω−1/2x−l−1/2xl−1‖f̃ (k+1)‖∞ . x−1‖f̃ (k+2)‖∞,

where the final estimate holds uniformly in ω−1 ≤ x ≤ 1, since in that region ω−1/2x−1/2 ≤ 1.

Therefore, ∣∣∣∣∫ 1

ω−1

eiω(β+1)x dk+2

dxk+2

(
h0(ωx)f̃(2x− 1)

)
dx

∣∣∣∣ . ‖f̃ (k+2)‖∞
∫ 1

ω−1

x−1 dx

. ‖f̃ (k+2)‖∞ logω. (5.52)

Thus, combining Eqs. (5.47)–(5.52) yields the estimate

∣∣∣I(3)
ω,β[f̃ ]

∣∣∣ . ω−(k+2)‖f̃ (k+1)‖∞
k+2∑
j=0

|β + 1|−j + ω−(k+2) logω|β + 1|−(k+2)‖f̃ (k+2)‖∞,

which completes the proof.
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Chapter 6

An efficient Levin–Clenshaw–Curtis

method for a class of highly

oscillatory integrals

6.1 Introduction

In this chapter we will explore a further application of the ideas from Thm. 5.3.2 which

we proved in Chapter 5. In Thm. 5.3.2 we showed that a function which lies in the

nullspace of a certain differential operator has Chebyshev coefficients that satisfy a linear

recurrence involving a finite number of terms. In the previous chapter this insight was used

to construct a very efficient way of computing the Filon quadrature moments in certain

cases. Here we will use this observation to construct an efficient Levin–Clenshaw–Curtis

method for the computation of highly oscillatory integrals similar to the ones considered in

the previous chapter. Originally introduced in two seminal papers by Levin (1982, 1996),

the Levin method provides an alternative to numerical steepest descent (NSD) and Filon

methods. The central idea, which we will outline in some more detail in §6.2, is to replace

the computation of a highly oscillatory integral with the solution of a non-oscillatory

ordinary differential equation (ODE). One can then proceed to solve this ODE with a

collocation method, and, if the collocation points are chosen carefully, the solution of the

ODE provides a way of approximating the original integral at frequency independent cost.

The Levin method has the advantage that, unlike NSD, it relies on evaluations of the

amplitude function (f as defined in Eq. (6.1)) strictly on the domain of integration, and,

unlike the Filon method, it does not require the computation of quadrature moments.

However, the Levin method cannot be constructed in the presence of singularities and

stationary points (Deaño et al., 2017), and therefore its practical use is more limited

than that of the other two methods. Nevertheless, in those cases when the Levin method

can be constructed, it provides a fast and uniformly accurate alternative to approximate
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highly-oscillatory integrals.

The collocation part in the Levin method typically leads to a dense (ν + 2)× (ν + 2)

linear system, where ν + 2 is the number of collocation points, and thus, in general, the

Levin method costs O(ν3) operations to evaluate. In a similar spirit as the speed-up of

the Filon method achieved by the Filon–Clenshaw–Curtis construction (see Domı́nguez

et al. (2011) and Gao and Iserles (2017a)), we are able to exploit the use of a Chebyshev

basis and the recursion for the spectral coefficients of the oscillatory kernel to achieve a

significant acceleration, solving the collocation equations in just O(ν log ν) operations.

This chapter is structured as follows: In §6.2 we begin with a brief introduction to

Levin methods as can be found in the relevant literature. In §6.3 we introduce an efficient

Levin–Clenshaw–Curtis method, which is able to compute the full Levin approximation in

just O(ν log ν) operations. The algorithm is summarised in §6.3.1, and we provide two

numerical examples in §6.4 that show how the method performs in practice, highlighting

both the uniform convergence across all frequencies ω ≥ 0 and the significant speed-up

achieved when compared to a direct solution of the collocation equations. We conclude

the chapter in §6.5 with a summary of our results.

6.2 The Levin method

In this chapter we are interested in constructing efficient approximations to integrals of

the form

Iω[f ] :=

∫ 1

−1

f(x)eiωg(x) dx, (6.1)

where g(x) is a polynomial of finite degree d ∈ N, with g′(x) 6= 0, ∀x ∈ [−1, 1]. Our

goal is to build on the method introduced by Levin (1982, 1996) and to demonstrate

how the use of a Chebyshev polynomial basis and the discrete computation of Chebyshev

spectral coefficients can lead to a significant speed-up of the Levin method in the setting

of Eq. (6.1). Let us begin with a quick overview of how a general Levin method for Iω[f ]

may be constructed, and refer the interested reader to Deaño et al. (2017, §3.3) and the

original papers by Levin (1982, 1996) for a comprehensive introduction to the topic.

The central idea of the Levin method is to relate the computation of Iω[f ] to the

solution of an ordinary differential equation of non-oscillatory nature. As a first step

consider a function u1(x) which satisfies

u′1(x) + iωg′(x)u1(x) = f(x), x ∈ [−1, 1]. (6.2)
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We can use the function u1 to write the integrand of Iω[f ] as an exact differential

f(x)eiωg(x) dx =
d

dx

(
u1(x)eiωg(x)

)
dx = d

(
u1(x)eiωg(x)

)
,

and therefore to compute Iω[f ] by evaluating u1:

Iω[f ] = u1(1)eiωg(1) − u1(−1)eiωg(−1).

The idea is that in solving for a non-oscillatory solution of Eq. (6.2) the numerical method

requires significantly fewer degrees of freedom than would be required to approximate the

oscillatory integral Iω[f ] directly. This idea is supported by the following observation:

Theorem 6.2.1 (See Levin (1996, Appendix)). Suppose f ∈ C∞([−1, 1]), and that

f(g−1(ξ))/g′(g−1(ξ)) is slowly oscillatory in the sense that its spectrum is bounded, i.e.

there is a smooth function H ∈ C∞([−1, 1]) and w0 > 0 such that w0 � ω and

f(g−1(ξ))

g′(g−1(ξ))
=

∫ w0

−w0

H(t)eiξt dt.

Then Eq. (6.2) has a slowly varying solution u
(ω)
1 ∈ C∞([−1, 1]) with spectrum in [−w0, w0],

i.e. there is a smooth H̃ ∈ C∞([−1, 1]) such that

u
(ω)
1 (g−1(ξ)) =

∫ w0

−w0

H̃(t)eiξt dt.

The Levin method then solves Eq. (6.2) using collocation, i.e. we seek an approximation

u
[ν]
1 =

∑ν+1
j=0 αjψj(x) for some ν ∈ N and some basis functions {ψj}ν+1

j=0 , by solving the

following linear system:

ν+1∑
j=0

αj(ψ
′
j(cm) + iωg′(cm)ψj(cm)) = f(cm), m = 0, . . . , ν + 1, (6.3)

where −1 = c0 < c1 < · · · < cν+1 = 1 are the collocation points. A useful class of basis

functions are given by so-called Chebyshev sets. They can be defined through the following

equivalent properties (cf. Powell, 1981, §7.3):

Definition 6.2.2. Let N ∈ N. A set of N linearly independent functions A = {φn}Nn=1 ⊂
C([−1, 1]), defined on the interval [−1, 1], is called a Chebyshev set if it satisfies any of

the following two equivalent properties:

1. If a linear combination of functions in A has more than N − 1 zeros then it must be

identically zero.
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2. Let {ξj}Nj=1 be any set of distinct points in [−1, 1] then the N×N matrix with entries

{φn(ξj)}Nn,j=1 is non-singular.

It can be shown that if {ψj}ν+2
j=0 is a Chebyshev set (see Def. 6.2.2) then the solution of

Eq. (6.3) approximates a slowly varying solution of Eq. (6.2):

Proposition 6.2.3 (Prop. 3.4 in Deaño et al. (2017)). Let {ψj}ν+2
j=0 be a Chebyshev set and

let α be the solution of Eq. (6.3). Then, to leading order in ω � 1, each αn is a rational

function of ω (more specifically a ratio of a (ν + 1)-degree polynomial over a (ν + 2)-degree

polynomial). Thus u
[ν]
1 varies slowly in ω.

The result follows essentially from observing that for ω � 1 the dominant part of the

collocation equations Eq. (6.3) is

ν+1∑
n=0

αnψn(cm) =
f(cm)

iωg′(cm)
+O(ω−2), m = 0, . . . , ν + 1. (6.4)

Therefore, if the interpolation basis forms a Chebyshev set the system Eq. (6.4) must

have a solution for any distribution of collocation points −1 = c0 < c1 < · · · < cν+1 = 1

provided ω is sufficiently large. Following the solution of the linear system Eq. (6.3) the

Levin quadrature rule is then given by

QL,[ν]
ω [f ] = u

[ν]
1 (1)eiωg(1) − u[ν]

1 (−1)eiωg(−1).

So long as we ensure c0 = −1, cν+1 = 1, the Levin method is well-suited for approximating

Iω[f ] at frequency independent cost, because the quadrature method QL,[ν]
ω [f ] is able to

match the first term in the Poincaré series of Iω[f ] as the following result demonstrates.

Theorem 6.2.4 (Thm. 3.5 in Deaño et al. (2017)). If f ∈ C2([−1, 1]) and g′(cn) 6= 0 for

all n = 0, . . . , ν + 1, the Levin method has an asymptotic error of the form

∣∣QL,[ν]
ω [f ]− Iω[f ]

∣∣ = O(ω−2), as ω →∞.

However, the linear collocation system Eq. (6.3) is, in general, a dense (ν+ 2)× (ν+ 2)-

linear system and hence requires O(ν3) operations to solve. This is the point where

banded spectral computations become useful as we shall see in the following section. As

a final remark concerning the properties of Levin methods in general, we highlight that

the conditions of Thm. 6.2.4 exhibit a central limitation of the Levin method, which is

that it cannot be constructed in the presence of stationary points: Similar to the Filon

method (cf. §1.2.3) we would require the stationary point to be amongst the collocation

points in order to match the asymptotic behaviour of the approximated integral, but this

is prevented by the requirement g′(cm) 6= 0, m = 0, . . . , ν + 1 (Deaño et al., 2017, p. 46).
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6.3 Accelerating the Levin method using banded

matrix computations of Chebyshev coefficients

We shall now discuss how one may use a Chebyshev polynomial basis for the approximate

solution of Eq. (6.2) in order to achieve a significant acceleration in finding the coefficients

α as defined in Eq. (6.3). Ultimately, we will see that our method is able to compute

the full approximation to the integral Iω[f ] in just O(ν log ν + d2ν) operations, where we

recall that d is the polynomial degree of the phase function, d = deg g. As is explained in

sequence, we require ν to be even and we assume ν > d. The latter assumption is made

since we shall rely on the solution of a banded matrix system, with bandwidth 2d+ 3, so

in the case d ≥ ν the matrix would be dense and yield no significant speed up over the

direct solution of Eq. (6.5). Our Ansatz is, therefore,

u1(x) =
ν+1∑
l=0

αlTl(x),

and we use Clenshaw–Curtis collocation points cm = cos(mπ/(ν + 1)), 0 ≤ m ≤ ν + 1.

Thus, we wish to find the coefficients α from the following set of interpolation conditions

Aα = f , (6.5)

where Amn = LωTn(cm), fm = f(cm), m,n = 0, . . . , ν + 1, and here we denoted

Lω =
d

dx
+ iωg′(x).

As a first observation, we note that once α is found, we can evaluate the Levin approxi-

mation to Iω[f ] using just O(ν) additions. Indeed, by the expressions Eq. (5.34) given in

Appendix 5.A of the previous chapter we have Tn(±1) = (±1)n, and hence

u
[ν]
1 (±1) =

ν+1∑
j=0

(±1)jαj.

To speed up the solution of Eq. (6.2) we will show that ν of the ν+ 2 degrees of freedom in

the equation can be found through the solution of a banded matrix system of bandwidth

2d+ 3.

In order to do so we begin by transforming Lω to a form that has banded action on

the Chebyshev polynomial basis. We recall Lemma 5.3.5:
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Lemma 6.3.1 (Eqs. 22.7.4 & 22.8.3 in Abramowitz and Stegun (1965)). For all n ≥ Z:

xTn(x) =
1

2
Tn−1(x) +

1

2
Tn+1(x), and (1− x2)T′n(x) =

n

2
Tn−1(x)− n

2
Tn+1(x).

In particular, the actions of x, (1− x2)d/dx on {Tn}∞n=0 are both of bandwidth 3.

Thus let us consider the differential operator

L̃ω = (1− x2)Lω = (1− x2)
d

dx
+ iω(1− x2)g′(x).

The effect of replacing Lω by L̃ω in the collocation equations Eq. (6.5) is simply to multiply

every row of the linear system by a factor of (1 − c2
m), i.e. Ãmn = (1 − c2

m)Amn, m, n =

0, . . . , ν + 1, where Ãmn = L̃ωTn(cm). Thus the solution α of Eq. (6.5) must also satisfy

the (ν + 2)× (ν + 2) matrix system

Ãα = f̃ . (6.6)

By construction (since c0 = 1, cν+1 = −1) we have f0 = fν+1 = 0 and Ã0n = Ã(ν+1)n = 0 for

all 0 ≤ n ≤ ν + 1. Hence the linear system Eq. (6.6) is ill-posed. We can nevertheless work

with the system in the following way: Let Pν be projection onto the middle ν coordinates,

i.e. Pν : (x0, . . . , xν+1) 7→ (0, x1, . . . , xν , 0). Consider the linear system

PνÃPνα0 = Pν f̃ . (6.7)

This corresponds (up to multiplication of each row by a nonzero constant) to the interpo-

lation conditions

ν∑
n=1

(α0)nLωTn(cm) = f(cm), m = 1, . . . , ν.

Our central observation is that we can solve Eq. (6.7) very efficiently:

Lemma 6.3.2. For ω sufficiently large, the system Eq. (6.7) has a unique solution α0 ∈
{x ∈ Cν+2

∣∣x0 = xν+1 = 0}. Moreover, whenever such a solution exists, we can solve

Eq. (6.7) using O(ν log ν + d2ν) operations, by the application of one discrete cosine

transform (DCT-I) and the solution of a banded matrix system of bandwidth 2d+ 3.

Proof. We recall Ãmn = L̃ωTn(cm). By Lemma 6.3.1 the action of L̃ω on {Tn}∞n=0 is

represented by a banded (infinite) matrix B with bandwidth 2d+ 3 such that

L̃ωTn(x) =
n+d+1∑

k=max{0,n−(d+1)}

BknTk(x). (6.8)
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Therefore we can express the matrix Ã in the form

Ãmn =
n+d+1∑

k=max{0,n−(d+1)}

BknTk(cm), m, n = 0, . . . , ν + 1.

To simplify this further note that for 0 ≤ l,m ≤ ν + 1 we have

Tν+1+l(cm) = cos

(
(ν + 1 + l)m

ν + 1
π

)
= (−1)m cos

(
lm

ν + 1
π

)
= (−1)m cos

(
(−l)m
ν + 1

π

)
= Tν+1−l(cm).

Thus let us define B̃ as a (ν + 2)× (ν + 2) matrix by

B̃nm =

Bnm, 0 ≤ n < ν − d, n = ν + 1,

Bnm + B(2ν+2−n)m, ν − d ≤ n ≤ ν.

Then we have, since ν > d,

Ãmn =
n∑

k=max{0,n−(d+1)}

CmkB̃kn,

where Cmk = Tk(cm). We now observe that the action of C essentially represents a discrete

cosine transform (DCT-I): Let x ∈ Cν+2 then

(Cx)m =
ν+1∑
n=0

Cmnxn =
ν+1∑
n=0

cos

(
mnπ

ν + 1

)
xn =

ν+1∑′′

n=0

cos

(
mnπ

ν + 1

)
x̃n =: (Cν+1x̃) ,

where we denoted by Cν+1 the DCT-I on the space Cν+2. Here
∑′′ν+1

n=0
means that for

j = 0 and j = ν + 1 the terms in the sum are halved, and we defined

x̃n =

xn, 1 ≤ n ≤ ν,

2xn, n = 0, ν + 1.

The inverse of Cν+1 is again a DCT-I, C−1
ν+1 = 2/(ν + 1)Cν+1. It is well-known that the

application of Cν+1 can be computed efficiently in O(ν log ν) operations (Trefethen, 2008),

so we see that the action of C and C−1 can both be computed in O(ν log ν) operations.

Moreover, since we assumed ν to be even, we have the following convenient fact.

Claim 6.3.3. If x,y ∈ Cν+2 are such that (I − Pν)Cx = (I − Pν)Cy = 0, where I is the
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(ν + 2)× (ν + 2) identity matrix, then

Pνx = Pνy ⇐⇒ PνCx = PνCy.

Proof of Claim 6.3.3. We know that the first and final rows of C take the forms C0,n =

1, Cν+1,n = (−1)n, n = 0, . . . , ν + 1. Thus if (I− Pν)Cx = 0, then

x0 + xν+1 = −
ν∑

n=1

xn,

x0 − xν+1 = −
ν∑

n=1

(−1)nxn,

and so x0, xν+1 are uniquely determined by the remaining entries of x. Therefore we have

Pνx = Pνy =⇒ x = y =⇒ PνCx = PνCy.

The implication in the other direction follows, by recalling that (I− Pν)Cx = 0, thus:

PνCx = PνCy =⇒ Cx = PνCx = PνCy = Cy =⇒ x = y =⇒ Pνx = Pνy,

where the penultimate implication follows since C is invertible. �

First of all, by Claim 6.3.3, Eq. (6.7) has a solution for ω sufficiently large, because

the dominant part of the linear system (similar to Eq. (6.4)) can be written as

ν∑
n=1

αnTn(cm) =
f(cm)

iωg′(cm)
+O(ω−2), m = 0, . . . , ν + 1,

i.e. PνCPνα0 = Pνh +O(ω−2). Thus it is sufficient to prove that the equation

PνCy = Pνz, (6.9)

has a solution y ∈ {x ∈ Cν+2
∣∣x0 = xν+1 = 0} for all z ∈ Cν+2. We recall that C is (up to

rescaling of the first and final coordinates) a DCT-I, thus one can easily check that

y1 = (1/2, 1, 1, 1, . . . , 1, 1, 1/2), (6.10)

y2 = (1/2,−1, 1,−1, . . . ,−1, 1,−1/2), (6.11)

are such that PνCyj = 0, j = 1, 2. The final coordinate of y2 has negative sign because

ν is even. Therefore, whenever a solution y0 ∈ Cν+2 of Eq. (6.9) exists, we can find a

linear combination of y0,y1,y2 which is in z ∈ {x ∈ Cν+2
∣∣x0 = xν+1 = 0} and also solves

Eq. (6.9). By Claim 6.3.3 one such solution is y0 = C−1Pνz, thus completing the proof of
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the first part of the lemma.

Now let us show how we can solve Eq. (6.7) efficiently whenever a solution exists. By

Claim 6.3.3 the system Eq. (6.7) is equivalent to

PνB̃Pνα0 = PνC
−1f̃ . (6.12)

Now we note PνB̃Pνα is a banded matrix of bandwidth 2d+ 3, so a solution of Eq. (6.12)

can be found, using Gaussian elimination, in O(d2ν) operations. Thus to find α0, we

need to apply a single DCT-I and then solve Eq. (6.12), i.e. we incur an overall cost of

O(ν log ν + d2ν) operations.

Since Ãmn = (1− c2
m)Amn, m, n = 0, . . . , ν + 1, we therefore found α0 such that

PνAα0 = Pνf .

By construction Nullity(Ã) = Nullity(A) + 2, therefore, provided the collocation problem

Eq. (6.5) is soluble for all f , we know that there are two linearly independent vectors

v1,v2 ∈ Cν+2 such that

PνAvj = 0, j = 1, 2. (6.13)

We can construct those as follows: Let e0 = (1, 0, . . . , 0)T and eν+1 = (0, . . . , 0, 1)T then

by the same process as in Lemma 6.3.2 we can find ṽ1, ṽ2 ∈ {x ∈ Cν+2
∣∣x0 = xν+1 = 0}

with

PνAPνṽ1 = −PνAe0, PνAPνṽ2 = −PνAeν+1. (6.14)

We note that the first and last columns of A have at least one nonzero entry in a row with

index 1 ≤ m ≤ ν, so PνAe0,PνAeν+1 6= 0. The vectors v1 = e0 + ṽ1,v2 = eν+1 + ṽ2 are

then clearly linearly independent (since eT0 v2 = 0 6= eT0 v1), and they satisfy Eq. (6.13).

The computation of the vectors takes again O(ν log ν+d2ν) operations, as per Lemma 6.3.2.

We can finally find α, the solution to Eq. (6.5), by solving the remaining linear system:

δ1Av1 + δ2Av2 = f − Aα0. (6.15)

Recall that by construction of v1,v2,α0, the rows m = 1, . . . , ν in Eq. (6.15) are trivially

satisfied (0 = 0), and so this reduces to a 2× 2 linear system for the coefficients δ1, δ2:(
(Av1)0 (Av2)0

(Av1)ν+1 (Av2)ν+1

)(
δ1

δ2

)
=

(
f0 − (Aα0)0

fν+1 − (Aα0)ν+1

)
. (6.16)
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The coefficients in this system can be found in O(ν) operations (since for instance

(Av1)1 =
∑ν+1

n=0 A0n(v1)n). Furthermore, because A is invertible, Eq. (6.15) must have a

unique solution for δ1, δ2. This completes our construction of α, and hence the computation

of QL,[ν]
ω [f ].

6.3.1 Algorithm for the efficient construction of the Levin method

Before moving on to provide some numerical examples let us briefly summarise the above

algorithm for constructing the Levin method in O(ν log ν + d2ν) operations:

1. Solve Eq. (6.7) using the method described in Lemma 6.3.2, to find α0 ∈ {x ∈
Cν+2

∣∣x0 = xν+1 = 0} with

PνAα0 = Pνf .

2. Solve Eq. (6.14) using the method described in Lemma 6.3.2, to find two linearly

independent vectors v1,v2 with

PνAvj = 0, j = 1, 2.

3. Compute the coefficients in Eq. (6.16) and solve the resulting 2× 2 linear system for

δ1, δ2.

4. Finally, let α = α0 + δ1v1 + δ2v2, and compute

QL,[ν]
ω [f ] =

ν+1∑
n=0

αneiωg(1) −
ν+1∑
n=0

(−1)nαneiωg(−1). (6.17)

6.4 Numerical examples

To illustrate the performance of this method in practice let us consider two numerical

examples. In both cases the reference solution for the exact integral was computed using

Clenshaw–Curtis quadrature on the full oscillatory integrand using 107 points, which is a

very time-consuming but accurate way for computing the integrals numerically.

6.4.1 Linear phase function

In the first example, we consider the case g(x) = x, and f(x) = x/(x2 + 0.02), i.e. we wish

to approximate the integral

I(1)
ω [f ] =

∫ 1

−1

x

x2 + 0.02
eiωx dx.
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In this case the operator Lω takes the form Lω = d/dx+ iω and one can use Lemma 6.3.1

to check that L̃ω has the following banded matrix representation in the sense of Eq. (6.8):

B =



−iω/2 −1/2 iω/4 0

0 −iω/4 −1 iω/4 0

iω/2 1/2 −iω/2 −3/2 iω/4 0

0 iω/4 1 −iω/2 −2 iω/4 0
. . . . . . . . . . . . . . .


.

In Fig. 6.1 we see the error of the method, for a fixed number of collocation points ν, as

a function of the frequency ω. It is apparent that both the absolute error and the relative

error remain uniformly small for the whole range ω ≥ 0. In fact, both errors decay as the

frequency increases, meaning the method is even more accurate for larger frequencies.
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(a) Absolute error, |QL,[ν]
ω [f ]− I(1)

ω [f ]|.
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(b) Relative error, |QL,[ν]
ω [f ]− I(1)

ω [f ]|/|Iω[f ]|.

Figure 6.1: The error in the Levin–Clenshaw–Curtis method for I
(1)
ω [f ] as a function of ω

for fixed ν = 4, 64, 128.

In Fig. 6.2 we look at the error and timing of our method as we increase the number

of quadrature points ν for a fixed value of the frequency ω. In Fig. 6.2a we observe

spectral convergence in ν, which matches similar graphs for the Filon method shown in

§5.5 and is to be expected since the amplitude function f is analytic in an open complex

neighbourhood of [−1, 1] (Trefethen, 2019, Chapter 8). In Fig. 6.2b we compare the time

our method takes to compute the Levin approximation as described in §6.3 against the time

of a direct solution of the dense collocation system Eq. (6.3) using Gaussian elimination.

Both times were computed on a single core of an Intel Core i7-7660U CPU and the times

shown in the graph correspond to the average time over 50 identical computations. As we

predicted, the cost of our method appears to grow no faster than O(ν log ν), whereas the

direct inversion using Gaussian quadrature appears to grow in cost significantly faster,

and roughly like O(ν3).
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(a) Absolute error, |QL,[ν]
ω [f ]− I(1)

ω [f ]|.
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(b) Average time to solve Eq. (6.5), ω = 100.

Figure 6.2: The error and timing of the Levin–Clenshaw–Curtis method as a function of
the number of collocation points ν for fixed frequency ω.

6.4.2 Quadratic phase function

In our second example we consider a phase function of the form g(x) = 3x− x2 and an

amplitude of the form f(x) = 1/(1 + x4), i.e we aim to approximate the following integral

I(2)
ω [f ] =

∫ 1

−1

1

1 + x4
eiω(3x−x2) dx.

In this case Lω takes the form Lω = d
dx

+ iω(3− 2x) and one can check that L̃ω has the

following banded matrix representation when acting on {Tn}∞n=0:

B =



3iω/2 1/2− iω/4 −3iω/4 iω/4 0

−iω/2 3iω/4 1 −3iω/4 iω/4 0

−3iω/2 −1/2 3iω/2 3/2− iω/4 −3iω/4 iω/4 0

iω/2 −3iω/4 −1− iω/4 3iω/2 2− iω/4 −3iω/4 iω/4 0

0 iω/4 −3iω/4 −3/2− iω/4 3iω/2 5/2− iω/4 −3iω/4 iω/4 0

. . .
. . .

. . .
. . .

. . .
. . .


.

In Fig. 6.3 we show the error of the Levin–Clenshaw–Curtis method applied to I
(2)
ω [f ].

As in the previous example, we observe uniform convergence of the method across all

values ω ≥ 0 and spectral convergence with respect to the number of collocation points ν.

The timing of the method is comparable to the previous case and so we shall not repeat

the experiment in the interest of brevity.
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(a) Absolute error as a function of ω for fixed ν.
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Figure 6.3: The error in the Levin–Clenshaw–Curtis method for I
(2)
ω [f ].

6.5 Conclusions

In this chapter, we have seen how recursions for Chebyshev moments can be exploited to

construct a fast Levin–Clenshaw–Curtis method which computes a Levin approximation

to certain highly oscillatory integrals in O(ν log ν) operations. This presents a significant

speed-up compared to the O(ν3) operations required to solve the Levin collocation system

by direct Gaussian elimination. We provided a detailed description of this algorithm as

well as two numerical examples that demonstrate the favourable properties of the method

in practice. Indeed, the experiments confirmed that the method delivers the promised

speed, and, like Levin methods generally, converges uniformly for all values of ω as we

increase the number of collocation points ν. In fact, in our examples with locally analytic

amplitude functions, we observed spectral convergence with respect to ν.
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List of symbols

Symbol Description

Iω[f ] Highly oscillatory integral with amplitude function f .

Tn Chebyshev polynomial of the first kind of degree n.

α Unknown coefficients in the Levin collocation equations.

Cν+1 Discrete cosine transform DCT-I on the space Cν+2.

Lω Levin differential operator.

QL,[ν]
ω Levin quadrature rule using ν + 2 collocation points.

A Discretization matrix in the Levin collocation equations.

B Banded matrix representation of the action of L̃ω on Chebyshev polynomials.

Pν Projection onto the middle ν coordinates, x 7→ (0, x1, . . . , xν , 0)T .

ν + 2 Number of collocation points in the Levin method.

ω Frequency in the highly oscillatory integral.

L̃ω Modified Levin differential operator, L̃ω = (1− x2)Lω.

Ã Discretization matrix in the modified Levin collocation equations.

{cm}ν+1
m=0 Levin collocation points.

d Polynomial degree of the phase function g(x).

f(x) Amplitude function in the highly oscillatory integral.

g(x) Phase function in the highly oscillatory integral.

u1 Non-oscillatory solution to the adjoint equation.
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Chapter 7

Concluding remarks

In this thesis, we described a number of new results concerning a range of aspects in wave

scattering problems: Starting from analytical treatment using the Wiener–Hopf technique,

we covered some of the physics of acoustics in the presence of mean flow and vorticity,

looked more closely at numerical techniques for boundary element methods, and, finally,

examined highly oscillatory quadrature.

In a few summarising words our main contributions are the following: in Chapter 2 we

provided a new Wiener–Hopf solution to the scattering problem of vortical and acoustic

waves by an infinite arrangement of finite-length flat blades in uniform mean flow. Our

new approach removes the requirement of overlap in consecutive blades which was a crucial

limitation in previous solutions based on the Wiener–Hopf method. We used this solution

to study the balance of incoming and outgoing acoustic energy flux for acoustic waves

scattering by the cascade in Chapter 3. Based on this study we provided new analytical

insights, proving the existence of symmetries and points of zero acoustic reflections for

certain angles of propagation of the incident acoustic waves, as well as comprehensive

numerical results outlining the effects of mean flow on the scattered field. This was

followed by the study of numerical techniques relevant to computational wave scattering:

firstly, in Chapter 4 we provided a rigorous analysis of an oversampled collocation method

for Fredholm integral equations and showed that oversampling can be used to improve

robustness and convergence properties of the method. Motivated by the collocation

method and hybrid numerical-asymptotic bases for high-frequency wave scattering, we

then considered Filon methods for the efficient approximation of highly oscillatory integrals.

In Chapter 5 we addressed the moment-problem of Filon methods by providing a general

framework for constructing moment-recurrences that can be used to efficiently compute the

Filon moments in a number of relevant cases. We studied this methodology more closely in

several cases of practical interest, and specifically applied the resulting direct Filon method

in the context of high-frequency wave scattering on a finite screen in two dimensions.

Finally, in Chapter 6 we considered an alternative methodology for the approximation
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of highly oscillatory integrals, so-called Levin methods, and we provided a structured

design of such a method that can lead to significant speed-up in the computation of the

approximation. In fact, we showed that our Levin–Clenshaw–Curtis method is able to

compute the approximation to the integral in just O(ν log ν) rather than the usual O(ν3)

operations, where ν is the Levin analogue of quadrature points.

In conclusion, although wave scattering problems have been tackled by mathematicians

for centuries, we found that the field still possesses many challenging and open questions.

Perhaps one of the main messages we take away from this thesis is that, in the modern

treatment of wave scattering, numerical and analytical techniques often go hand-in-hand

to achieve optimal results. For instance, we saw how the numerical finite section method

provided the successful final step in the Wiener–Hopf treatment of waves scattering by a

cascade of blades (cf. Chapter 2), and how the detailed understanding of the asymptotic

behaviour, specifically the Poincaré series, of oscillatory integrals could be exploited to

construct very efficient quadrature techniques (cf. Chapters 5 & 6). We, therefore, expect

that the combination of computational and analytical research will continue to deliver

fruitful insights in this field in the near and distant future.

7.1 Future work by chapter

“Die Wissenschaft fängt eigentlich erst da an, interessant zu werden, wo sie aufhört.”1

–Justus von Liebig

One beautiful aspect of scientific research is that every solution to a problem raises a whole

new set of interesting questions. With definite excitement and the sincere hope to tackle

some of the following in times to come, we thus wish to conclude this thesis by offering a

few indications of how the ideas presented may be taken forward in future research.

Chapter 2

As we described in §2.6, the Wiener–Hopf solution presented in Chapter 2 is equivalent to

previous work by Peake (1993) and Glegg (1999) in the case of overlapping blades. These

previous analytical solutions were used as a basis to include more realistic effects to model

the features of fan components in turbomachinery in further detail, such as the inclusion

of blade camber and thickness (Baddoo and Ayton, 2020b) and the consideration of full

three-dimensional annular geometries (Posson et al., 2010). We expect that our solution

will be similarly suited for such extensions. In particular, the work by (Baddoo and Ayton,

2020b) is built on the Wiener–Hopf solution for overlapping cascades given by Glegg (1999)

and which is very similar in nature to our approach, hence suggesting that the velocity

1“Science really only begins to become interesting where it ends.”
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potential and streamfunction coordinate system exploited by Baddoo and Ayton (2020b)

could be used together with the Wiener–Hopf solution in Chapter 2 to account for realistic

airfoil shapes in the non-overlapping case.

A further assumption of our model that could potentially be weakened is the zero

angle of attack of the incident mean flow. Indeed Myers and Kerschen (1995) provided

an asymptotic analysis (for high frequencies and small incidence angles) which allows

the study of such effects for single blades. Peake and Kerschen (1997, 2004) pursued

a successful program to apply this type of asymptotic approach to cascades with mean

loading, albeit overlapping cascades are implicitly assumed in their analysis (by studying

duct modes present in the regions between consecutive cascade blades). Since the leading

order term of their asymptotic expansion is simply the case of uniform mean-flow, we

expect that it might be possible to study these perturbations in a similar way for a cascade

of non-overlapping blades based on our solution from Chapter 2 – the essential step in the

approach being again a change of coordinates to a velocity potential and streamfunction

coordinate system.

Finally, although our analytical solution has guaranteed convergence, as we proved

in Appendix 2.D, the convergence occurs at an algebraic rate in the number of modes

retained in the linear system, as opposed to the spectral convergence observed in previous

formulations for overlapping cascades. Therefore, it would be interesting to compare our

approach to alternative numerical solutions of the scattering problem and to understand

whether a similar slow-down in convergence rates occurs as the blade spacing is increased.

One possibility to do so is to construct a direct collocation method based on the integral

equation Eq. (3.4) similar to the work by Porter (2021).

Chapter 3

As discussed for Chapter 2 above, the effect of nonzero angles of attack of the mean flow

might also be studied in the context of the acoustic energy balance for waves scattering

by the cascade of blades. Indeed, we would expect to find a similar balance of incoming

and outgoing energy fluxes as described in Chapter 3, noting in particular that the mean

flow will become uniform far upstream and downstream of the cascade blades. Thus, in

those regions, the expressions for the acoustic energy flux will remain similar to the case

considered in Chapter 3. However, close to the trailing edges, the flow will take a much

more complicated shape. One might therefore use the balance of incoming acoustic power

against acoustic and hydrodynamic power radiated to the far-field, in order to determine

the sound power absorbed by the wake without having to know the exact form of the field

in the proximity of the cascade. This might provide useful insights into the process of

vortex shedding and the role of the Kutta condition in this case.

A further research direction is the study of the effect of including a small, nonzero

253



amount of viscosity in the body of the fluid (together with appropriately accounting for

viscous effects at the boundary of the blades), especially in relation to the stability of

the outgoing waves and the Kutta condition. Indeed, due to the possibility of acoustic

energy emission from the wake, which we observed in §3.4.3, the ‘activation energy’ (a

term coined by Benjamin (1963); cf. also later work by Cairns (1979)) of an acoustic mode

relative to the background flow and vortex sheets may be negative. Thus the stability of

acoustic and hydrodynamic modes remains a challenging problem in the presence of mean

flow and could provide the foundation for exciting future research.

Finally, we highlight that in our study we used the isentropic assumption for the fluid,

meaning we ignored the effects of temperature. It is possible to find an energy corollary

involving only quantities up to first order for perturbations to general steady flows as

well (cf. Myers, 1991), and it would be interesting to study whether the effects of sound

generation by cascades are cancelled if the effects of temperature are taken into account.

Chapter 4

In this chapter we saw that on a periodic domain with spline basis functions an optimal

choice of collocation points is readily available and given as equispaced points that match

the mesh of the basis functions. However, the relative simplicity of collocation methods

is especially useful in more complicated settings such as three-dimensional scattering

problems. In such settings, an optimal choice of collocation points may no longer be

obvious and we can regard our results in Chapter 4 as an initial analysis of the underlying

mechanism with the expectation that some properties will translate to more complicated

settings.

Thus we expect that future research on this topic will focus on exploring the properties

of oversampling for collocation methods in more general settings. This includes the

extension of the present results to three-dimensional boundary integral equations and more

complicated boundary conditions such as impedance or penetrable boundaries. Integral

equations for these boundaries can be constructed as combinations of single layer, double

layer, adjoint double layer and hypersingular operators (cf. Chandler-Wilde, Langdon

and Mokgolele, 2012, Groth et al., 2015) and the resulting integral equations can be

solved using oversampled collocation methods in precisely the same way as introduced in

Chapter 4. Therefore it would be interesting to study the convergence properties of the

oversampled collocation method applied in these settings. It would also be interesting to

study the effects of oversampling when there is redundancy in the trial spaces. Based on

recent results by Adcock and Huybrechs (2020) we expect that oversampling together with

suitable regularisation can act as a stabiliser towards redundancies in the basis spaces,

which might provide a framework for rigorous analysis of collocation methods involving

more general approximation spaces such as hybrid numerical-asymptotic basis functions
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as described by Chandler-Wilde, Graham, Langdon and Spence (2012) and Gibbs et al.

(2020).

We highlight that the results concerning optimal convergence with quadratic rates of

oversampling in Thms. 4.4.10, 4.F.1 & 4.G.1 were proved for integral operators arising

from the single and double layer formulations of Laplace’s equation on general smooth

domains and the single layer formulation of the Helmholtz equation on such domains. We

expect that a similar analysis can be performed for the double layer formulation of the

Helmholtz equation on smooth domains, but we note that further work is necessary to

accommodate this in the proof of Thm. 4.G.1. This work can be started by considering

the explicit expressions and properties of the double layer integral operator formulated

in terms of a parametrisation as can be found for instance in (Kress, 1991, Meier et al.,

2000).

A further direction for future research is the investigation of the merits of relating a

discrete sampling process to its continuous limit, and potentially the use of oversampling,

to understand the convergence rates of fully discrete schemes such as Nystöm methods

(Bremer and Gimbutas, 2012, Bruno et al., 2013, Hao et al., 2014).

Chapter 5

In the application to wave scattering problems (see §5.5) we found that, even when initial

Filon moments cannot be expressed explicitly in terms of simple functions, one may still

be able to provide an expression that is easy to evaluate numerically (for instance an

exponentially decaying integral). One may then compute the remaining moments efficiently

using the recurrences provided by Thm. 5.3.2. This idea of computing the initial conditions

through exponentially decaying integrals is closely related to the paradigm of numerical

steepest descent (NSD), where oscillatory integrals are written in terms of exponentially

decaying integrals by moving to the complex plane. However, a direct application of

NSD requires analyticity of the integrand at least in a neighbourhood of the domain

of integration, which may not be guaranteed in general. This is in contrast to Filon

methods which only require the weaker condition that the amplitude is well-approximable

by polynomials. Therefore, we believe future research could focus on combining the two

approaches, by providing a polynomial approximation to the amplitude function in an

oscillatory integral followed by the use of NSD to help evaluate the oscillatory integral

over the polynomial which is an entire function.

A further aspect that remains largely unstudied is a rigorous analysis of the stability

of the moment recurrences in regimes beyond N ∝ ω, where N is the number of moments

computed with the recurrence and ω is the frequency of the oscillatory integrand. As we

mentioned in Chapter 5, we performed a range of numerical experiments which indicated

that Oliver’s algorithm (Oliver, 1968) provides a satisfactory way to compute the tail in

255



this recurrence, but rigorous analysis would have to focus on understanding the extremal

singular values of variable-coefficient Toeplitz matrices. This is a fairly challenging topic:

although the distribution of the spectrum of such methods is well-studied (Garoni and

Serra-Capizzano, 2017), the extremal values for the variable Toeplitz case have so far

escaped rigorous treatment. There are some results available in the literature for constant-

coefficient Toeplitz matrices (Böttcher and Grudsky, 1998, Garoni, 2013), though these do

not easily generalise to the cases of relevance for recursive moment computations.

Chapter 6

In a similar way to the matrices appearing in Oliver’s algorithm mentioned above, the

matrices B in Chapter 6 also take the form of variable-coefficient Toeplitz matrices (with

low-rank degeneracies). Thus, to understand the stability of the Levin–Clenshaw–Curtis

method, especially for a large number of Levin collocation points ν, a study of the singular

values of variable coefficient Toeplitz matrices would be required.

Additionally, the ideas presented in Chapter 6 might be extended to more general

settings, for instance allowing for more complicated oscillatory integral kernels, which may

satisfy higher-order ordinary differential equations with polynomial coefficients, such as

Bessel or Hankel functions. The original work by Levin (1996) is able to allow for those

cases, essentially by presenting a vectorised form of the Levin method, and we believe that

an acceleration using our structured Levin–Clenshaw–Curtis approach might be applied

to this setting as well. A final possible extension involves the inclusion of derivative values

in the collocation equations, which would allow the Levin quadrature rule to match more

terms in the Poincaré series of the integral, thus leading to smaller asymptotic error. This

was done for general Levin methods by Olver (2008) and might be incorporated in the

fast Levin–Clenshaw–Curtis setting as well.

256



References

Abrahams, I. D. (1997), ‘On the solution of Wiener–Hopf problems involving noncommu-

tative matrix kernel decompositions’, SIAM Journal on Applied Mathematics 57(2), 541–

567. [Cited on page 16.]

Abrahams, I. D. and Aitken, M. G. (2019), ‘A Brief and Gentle Introduction to the

Wiener–Hopf Technique’. Lecture notes, Summer School “Bringing pure and applied

analysis together via the Wiener–Hopf technique”. [Cited on page 12.]

Abramowitz, M. and Stegun, I. (1965), Handbook of Mathematical Functions: With

Formulas, Graphs, and Mathematical Tables, Dover Publications. [Cited on pages 22,

28, 196, 197, 198, 208, 210, 223, 224, 227, 230, 231, and 240.]

Adcock, B. and Hansen, A. C. (2012), ‘Stable reconstructions in Hilbert spaces and the

resolution of the Gibbs phenomenon’, Applied and Computational Harmonic Analysis

32(3), 357–388. [Cited on pages 113 and 125.]

Adcock, B. and Huybrechs, D. (2019), ‘Frames and Numerical Approximation’, SIAM

Review 61(3), 443–473. [Cited on page 119.]

Adcock, B. and Huybrechs, D. (2020), ‘Frames and Numerical Approximation II: General-

ized Sampling’, Journal of Fourier Analysis and Applications 26(6), 87. [Cited on pages

113, 119, and 254.]

Adcock, B., Huybrechs, D. and Mart́ın-Vaquero, J. (2014), ‘On the Numerical Stability of

Fourier Extensions’, Foundations of Computational Mathematics 14(4), 635–687. [Cited

on page 113.]

Al Azah, M. (2017), Fast evaluation of special functions by the modified trapezium rule,

PhD thesis, University of Reading. [Cited on page 212.]

Al Azah, M. and Chandler-Wilde, S. N. (2021), ‘Computation of the complex error function

using modified trapezoidal rules’, SIAM Journal on Numerical Analysis 59(5), 2346–2367.

[Cited on page 212.]

257



Andrews, D. R. (2003), Ultrasonics and Acoustics, in R. A. Meyers, ed., ‘Encyclopedia

of Physical Science and Technology (Third Edition)’, third edn, Academic Press, New

York, pp. 269–287. [Cited on page 7.]

Anselone, P. M. (1971), Collectively Compact Operator Approximation Theory and Appli-

cations to Integral Equations, Prentice-Hall, Inc. [Cited on page 115.]
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Möhring, W. (1970), ‘Zum Energiesatz bei Schallausbreitung in stationär strömenden

Medien’, Zeitschrift für Angewandte Mathematik und Mechanik 50, 196–198. [Cited on

page 84.]
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