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Abstract— We propose two multimodal deep learning architec-
tures that allow for cross-modal dataflow (XFlow) between
the feature extractors, thereby extracting more interpretable
features and obtaining a better representation than through
unimodal learning, for the same amount of training data. These
models can usefully exploit correlations between audio and
visual data, which have a different dimensionality and are there-
fore nontrivially exchangeable. Our work improves on existing
multimodal deep learning metholodogies in two essential ways:
(1) it presents a novel method for performing cross-modality
(before features are learned from individual modalities) and (2)
extends the previously proposed cross-connections [1], which
only transfer information between streams that process com-
patible data. Both cross-modal architectures outperformed their
baselines (by up to 7.5%) when evaluated on the AVletters
dataset.

I. INTRODUCTION

An interesting extension of unimodal learning consists of
deep models which “fuse” several modalities (for example,
sound, image or text) and thereby learn a shared representa-
tion, outperforming previous architectures on discriminative
tasks. However, the cross-modality in existing models only
occurs after the features are learned [2], [3], [4], thereby
preventing the unimodal feature extractors from exploiting
any information contained within the other modalities. The
work presented in this paper has focused on enabling infor-
mation about the modalities to be exchanged while extracting
more interpretable features, making it possible to exploit the
correlations between several types of data more directly.

This information exchange may occur between data of vary-
ing dimensionality (for example, 1D/2D for audiovisual data)
and thus poses a highly nontrivial problem. The idea behind
this method is to use the correlations between different kinds
of data to learn a better representation than the one which
would result from combining independent unimodal feature
extractors, given the same amount of training data.

II. CROSS-MODALITY FOR AUDIOVISUAL DATA

A. CNN × MLP

Illustrated in Figure 1, the first multimodal architecture
takes as input a tuple (x img, x mfcc) and outputs a
probability distribution over the possible classes that this
example belongs to. The first element represents a 2D visual
modality (the video frames for a person saying a letter) and
is processed by a convolutional neural network, whereas the
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second one consists of 1D audio data corresponding to the
same frames, in the form of mel-frequency cepstral coeffi-
cients (MFCCs), and is fed into a multi-layer perceptron.
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Fig. 1: CNN × MLP model with cross- and residual connec-
tions. The former are shown in blue and green, respectively,
while the latter are illustrated in grey.

This architecture can only process fixed-size inputs, so
we had to perform averaging over video frames and
corresponding MFCC sets for all examples in the dataset.
Since the length of a video in an example can vary
considerably from person to person, some examples had
to undergo averaging over a large window size. This
results in loss of information about the changes between
consecutive frames, so we expected that this would hurt
the performance of the model. Indeed, the architecture
described in Subsection II-B, which processes variable-
length examples, is capable of more accurate predictions.

The primary role of cross-connections is to perform
information exchange while the features from individual
modalities are being learned (that is, before the concatenation
operation). A fundamental incompatibility exists between
1D and 2D data—there is no trivially interpretable way of
transferring the feature maps resulting from a {conv×2,
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max-pool} block to the fully-connected layers processing
the audio data and vice versa. We therefore had to design
more complex types of cross-connections that would enable
the data to be exchanged in a sensible manner and allow
useful interpretations of these transfers.

The 2D↝1D cross-connections (shown in blue and green,
respectively, in Figure 1) have the following structure:
the output of a {conv×2, max-pool} block in the CNN is
passed through a convolutional layer. The result is then
flattened and processed by a fully-connected layer. Finally,
we concatenate the output of the latter with the output of
the corresponding fully-connected layer in the MLP (for
the first cross-connection) or directly with the outputs of
the CNN and MLP (for the second one). The 1D↝2D
cross-connections (shown in purple) perform the inverse
operation: the output of a fully-connected layer is passed
through another layer of the same type, such that the
number of features matches the dimensionality required
for the deconvolution operation. We apply the latter to the
reshaped data and concatenate the result with the output of
the corresponding {conv×2, max-pool} block.
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Fig. 2: Detailed view of the connections. (Upper left:)
2D↝1D cross-connection. (Upper right:) 2D↝1D residual
connection. (Bottom:) 1D↝2D cross-/residual connection.

Residual learning [5] has the purpose of making the internal
layers in a neural network represent the data more accurately.
Our cross-connection design allows for straightforwardly
including residual cross-modal connections that allow the
raw input of one modality to directly interact with another
modality’s intermediate representations. This effectively has
the potential to correct for any unwanted effects that one
stream’s intermediate transformations might have caused.
Figure 2 also illustrates residual connections, constructed in
a similar manner to cross-connections.

Mathematically, a 1D↝2D cross-connection with residuals
will add Reshape(Wresxin +bres) ∗Kres to the 2D stream at
depth d and concatenate Reshape(Wxconhd +bxcon) ∗Kxcon,
where W∗ and K∗ are learnable weights, b∗ are learnable
biases, xin are inputs and hd are intermediate layer outputs.

B. {CNN × MLP}–LSTM

The second architecture processes the same kind of data as
the CNN × MLP model, namely tuples of the form (x img,
x mfcc). However, the fundamental difference lies in the
fact that each video frame/MFCCs pair is being provided
separately as input to the pre-concatenation streams. This
brings forward the crucial advantage of not having to average
the data across more frames, keeping the temporal structure
intact and maintaining a richer source of features from both
modalities.

, , , 

Fig. 3: {CNN × MLP}–LSTM macro-scale: sequential pro-
cessing across time steps. The “CNN × MLP” rectangle
represents the micro-scale per-frame extractor, shown in
Figure 4. The two input modalities are denoted by x⃗img and
x⃗mfcc, while y⃗t is the output of the LSTM layer at time t.

Shown in Figure 4, the feature extractor for a single frame is
weight-shared across all frames, which allows it to process
input sequences of arbitrary lengths. After one set of features
is extracted from the two modalities for each frame, it gets
passed to an LSTM layer as an element h⃗i from the whole
sequence, as illustrated in Figure 3. This layer then produces
a set of 64 features for the entire example which is finally
classified by the softmax layer. Additionally, all cross- and
residual connections are designed in the same manner as
for the CNN × MLP architecture, but differ in the sense that
they only operate within the space of the single-frame feature
extractor.

While similar to the CNN × MLP model, this one differs in
that the second convolutional layer from each {conv×2, max-
pool} block has been removed and the number of kernels
from the remaining layers has been halved. The underlying
motivation for this choice arises from the features no longer
being extracted from an averaged block corresponding to an
entire video, but rather from an individual frame, thereby
heavily sparsifying the available information for a single
input.
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Fig. 4: CNN × MLP micro-scale: per-frame feature extractor
with cross- and residual connections.

III. MODEL ARCHITECTURES

Tables I and II summarise the two models in terms of the
number of parameters and cross-connections. For brevity,
we have excluded the descriptions of residual connections,
as they can be inferred from the shape of their target.

All convolutional and fully-connected layers in the
architectures have ReLU activations. In terms of
regularisation techniques for reducing overfitting in
the CNN × MLP model, batch normalisation is applied
after the input layer, each pair of convolutional layers,
the first fully-connected layer in the MLP stream and the
merge layer. We also applied dropout with p = 0.25 after
every max-pooling layer and with p = 0.5 after the first
fully-connected layer in the MLP stream, the merge layer
and the final fully-connected layer. We chose a larger
value for p in this case, due to the increased likelihood of
overfitting in fully-connected layers, where the number of
parameters is much larger than for convolutional layers.
The {CNN × MLP}–LSTM model only employs batch
normalisation after the input layer and merge layer, followed
in the latter case by dropout with p = 0.5.

One important aspect is that an XFlow model is
underregularised, compared to its baseline under the
same regularisation parameters. Due to the increase in input
size to the following layer, all merging points are passed
through a dropout layer with p = 0.5. Additionally, when
transmitting data across streams, we have taken steps to
ensure integrity of the information. This is where the ReLU
activation experiences a shortcoming—approximately half of

its outputs are zero upon Xavier [6] initialisation. To enable
the network to benefit from all transmitted data, we have
applied the more general PReLU activation function [7],
which allows for data to “leak” in the negative input space.

Output size CNN stream MLP stream

([80 × 60, 16], 128) [3 × 3,16] Conv × 2 Fully-connected 128-D
([40 × 30, 16], 128) 2 × 2 Max-Pool, stride 2

([40 × 30, 32], 192) [1 × 1,16] Conv Fully-connected 759-D
Fully-connected 64-D ¯ ¦ [8 × 8,16] Deconv

([40 × 30, 32], 128) [3 × 3,32] Conv × 2 Fully-connected 128-D
([20 × 15, 32], 128) 2 × 2 Max-Pool, stride 2

([20 × 15, 64], 256) [1 × 1,32] Conv Fully-connected 204-D
Fully-connected 128-D ¯ ¦ [4 × 4,32] Deconv

(256, 128) Fully-connected 256-D
512 Fully-connected 512-D

26-way softmax

TABLE I: Architecture for the CNN × MLP baseline and
model with cross-connections (whose parameters are de-
scribed in blue).

Output size CNN stream MLP stream

([80 × 60, 8], 32) [3 × 3,8] Conv Fully-connected 32-D
([40 × 30, 8], 32) 2 × 2 Max-Pool, stride 2

([40 × 30, 8], 64) [1 × 1,8] Conv Fully-connected 375-D
Fully-connected 32-D ¯ ¦ [16 × 16,8] Deconv

([40 × 30, 16], 32) [3 × 3,16] Conv Fully-connected 32-D
([20 × 15, 16], 32) 2 × 2 Max-Pool, stride 2

([20 × 15, 64], 96) [1 × 1,16] Conv Fully-connected 104-D
Fully-connected 64-D ¯ ¦ [8 × 8,16] Deconv

(64, 32) Fully-connected 64-D
64 LSTM

26-way softmax

TABLE II: Architecture for the {CNN × MLP}–LSTM base-
line and model with cross-connections (whose parameters are
described in blue).

IV. EVALUATION

We carried out a preliminary evaluation of the models using
the AVletters dataset [8]. Spanning 26 classes representing
the letters A-Z, AVletters contains 780 examples of 10 people
saying each letter three times. The data was split into k = 10
folds to assess the performance of each classifier. Each of
the folds corresponds to a different person in the dataset and
can be seen as an extension to the usual leave-one-out cross-
validation (LOOCV) approach, where each fold corresponds
to one example. This allowed us to examine how well the
models behave in a realistic audiovisual recognition setting—
if we train a classifier with data collected from a group of
people, we expect the model to be able to correctly identify
the same information when being exposed to a new person.

Both architectures were trained using the Adam SGD opti-
miser for 200 epochs, with hyperparameters as described by
Kingma and Ba [9] and a batch size of 128 for the CNN ×

MLP and 32 for the {CNN × MLP}–LSTM. The plots in
Figures 5 and 6 show how the validation accuracy and cross-
entropy loss, respectively, evolve as a function of the training
epoch, for the {CNN × MLP}–LSTM model. A significant
improvement over the baseline can be seen in both plots.
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Fig. 5: Plot of the accuracy of the {CNN × MLP}–LSTM
model on a single cross-validation fold. We have also used
a sliding averaging window of 5 epochs on the accuracy
values, to emphasise the model capabilities during training.
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Fig. 6: Plot of the cross-entropy loss of the {CNN × MLP}–
LSTM model on a single cross-validation fold.

As seen in Table III, the {CNN × MLP}–LSTM performed
significantly better, with an improvement of 7.5% over its
baseline. The resulting p-value was 0.02, which corresponds
to a 98% confidence interval. However, the CNN × MLP
only achieved a 0.9% edge over the model without cross-
connections, its p-value not showing statistical significance.
This illustrates the quality issues of AVletters—along with the
averaging that results in loss of information, the discrepancy
in visual and audio data pre-processing required us to average
MFCC sets and video frames over time windows of different
lengths, which likely resulted in misalignment of the visual
and audio information.

V. CONCLUSIONS

Using newly developed cross- and residual connections to
transform 1D to 2D representations and vice versa, we
have designed two novel deep learning architectures for
processing audiovisual data that could easily be applied

Baseline Cross-connected model p-value

CNN × MLP 73.1% 74.0% 0.65
{CNN × MLP}–LSTM 78.1% 85.6% 0.02

TABLE III: Classification accuracy on the AVletters dataset
for the two mentioned architectures. The p-values corre-
sponding to statistically significant results are underlined
here and in the following table.

to other kinds of information. Both residual and cross-
connections were previously only used to process modalities
that did not require intrinsic transformations. Consequently,
the main challenge in building a new variety of cross-modal
connections has lied in the fundamental incompatibility
between the data types that are being exchanged. The novel
cross-modality enabled both architectures to favourably
exploit the correlations between modalities, outperforming
their baselines on the AVletters dataset.

The research we have presented in this paper could
be extended to more modalities, potentially processing them
in a hierarchical manner. Future directions also include
investigating what representations are learned by the new
cross-modal connections and the construction of a higher-
quality dataset that would not suffer from over-processing
and alignment issues.
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