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Abstract

The 2013–2016 epidemic of Ebola virus disease was of unprecedented magnitude, duration and 

impact. Analysing 1610 Ebola virus genomes, representing over 5% of known cases, we 

reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region. We test 

the association of geography, climate and demography with viral movement among administrative 

regions, inferring a classic ‘gravity’ model, with intense dispersal between larger and closer 

populations. Despite attenuation of international dispersal after border closures, cross-border 

transmission had already set the seeds for an international epidemic, rendering these measures 

ineffective in curbing the epidemic. We address why the epidemic did not spread into 

neighbouring countries, showing they were susceptible to significant outbreaks but at lower risk of 

introductions. Finally, we reveal this large epidemic to be a heterogeneous and spatially 

dissociated collection of transmission clusters of varying size, duration and connectivity. These 

insights will help inform interventions in future epidemics.

At least 28,646 cases and 11,323 deaths1 have been attributed to the Makona variant of 

Ebola virus (EBOV)2 in the two and a half years it circulated in West Africa. The epidemic 

is thought to have begun in December 2013 in Guinea, but was not detected and reported 

until March 20143. Initial efforts to control the outbreak in Guinea were considered to be 

succeeding4, but in early 2014 the virus crossed international borders into neighbouring 

Liberia (first cases diagnosed in late March) and Sierra Leone (first documented case in late 

February5, 6, first diagnosed cases in May7). EBOV genomes sequenced from three patients 

in Guinea early in the epidemic3 demonstrated that the progenitor of the Makona variant 

originated in Middle Africa and arrived in West Africa within the last 15 years7, 8. Rapid 

sequencing from the first reported cases in Sierra Leone confirmed that EBOV had crossed 

the border from Guinea and were not the result of an independent zoonotic introduction7. 
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Subsequent studies analysed the genetic makeup of the Makona variant, focusing on 

Guinea9–11, Sierra Leone12, 13 or Liberia14, 15, identifying local viral lineages and 

transmission patterns within each country.

Although virus sequencing has covered considerable fractions of the epidemic in each 

affected country, individual studies focused on either limited geographical areas or time 

periods, so that the regional level patterns and drivers of the epidemic across its entire 

duration have remained uncertain. Using 1610 genome sequences collected throughout the 

epidemic, representing over 5% of recorded Ebola virus disease (EVD) cases (Figure 1), we 

reconstruct a detailed phylogenetic history of the movement of EBOV within and between 

the three most affected countries. Using a recently developed phylogeographic approach that 

integrates covariates of spatial spread16, we test which features of each region 

(administrative, economic, climatic, infrastructural and demographic) were important in 

shaping the spatial dynamics of EVD. We also examine the effectiveness of international 

border closures on controlling virus dissemination. Finally, we investigate why regions that 

immediately border the most affected countries did not develop protracted outbreaks similar 

to those that ravaged Sierra Leone, Guinea and Liberia.

Origin, ignition and trajectory of the epidemic

Molecular clock dating indicates that the most recent common ancestor of the epidemic 

existed between December 2013 and February 2014 (mean 2014.06, 95% credible interval, 

CI: 2013.96, 2014.14) and phylogeographic estimation assigns this ancestor to the 

Guéckédou Prefecture, Nzérékoré Region, Guinea, with high credibility (Figure 2). In 

addition, we find that initial EBOV lineages deriving from this common ancestor circulated 

among Guéckédou Prefecture and its neighbouring prefectures of Macenta and Kissidougou 

until late February 2014 (Figure 2). These results support the epidemiological evidence that 

the West African epidemic began in late 2013 in Guéckédou Prefecture3.

The first EBOV introduction from Guinea into another country that resulted in sustained 

transmission is estimated to have occurred in early April 2014 (Figure 2), when the virus 

spread to Kailahun District of Sierra Leone5, 6. This lineage was first detected in Kailahun at 

the end of May 2014, from where it spread across the region (Figures 4 & 3). From Kailahun 

EBOV spread extremely rapidly in May 2014 into several counties of Liberia (Lofa, 

Montserrado and Margibi)15 and Guinea (Conakry, back into Guéckédou)9, 11. The virus 

continued spreading westwards through Sierra Leone, and by July 2014 EBOV was present 

in the capital city, Freetown.

By mid-September 2014 Liberia was reporting >500 new EVD cases per week, mostly 

driven by a large outbreak in Montserrado County, which encompasses the capital city, 

Monrovia. Sierra Leone reported >700 new cases per week by mid-November, with large 

outbreaks in Port Loko, Western Urban (Freetown) and Western Rural districts (Freetown 

suburbs). December 2014 brought the first signs that efforts to control the epidemic in Sierra 

Leone were effective as EVD incidence began dropping. By March 2015 the epidemic was 

largely under control in Liberia and eastern Guinea, although sustained transmission 

continued in the border area of western Guinea and western Sierra Leone. By the following 
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month prevalence had declined such that only a handful of lineages persisted10, 12 (Figure 

4).

The last EBOV genome resulting from a conventionally-acquired infection was collected 

and sequenced in October 2015 in Forécariah Prefecture (Guinea)10. After this, only 

sporadic cases of EVD were detected: in Montserrado (Liberia) in November 2015, 

Tonkolili (Sierra Leone) in January and February 2016, and Nzérékoré (Guinea) in March 

2016. All these sporadic cases likely resulted from transmission from EVD survivors with 

established persistent infections12, 17, 18.

Factors associated with EBOV dispersal

To determine the factors that influenced the spread of EBOV among administrative regions 

at the district (Sierra Leone), prefecture (Guinea) and county (Liberia) levels we used a 

phylogeographic generalized linear model (GLM)16. Of the 25 factors assessed (see Table 3 

for a full list and description) five were included in the model with categorical support 

(Table 1). In summary, EBOV tends to disperse between geographically close regions (great 

circle distance: Bayes factor (BF) support for inclusion BF>50). Half of all virus dispersals 

occurred between locations <72 km apart and only 5% involved movement over 232 km 

(Figure 11a). Both origin and destination population sizes are very strongly (BF>50) 

positively correlated with viral dissemination, with a stronger effect for origin population 

size. The positive effect of population sizes combined with the inverse effect of geographic 

distance, implies that the epidemic’s spread followed a classic gravity-model dynamic. 

Gravity models, widely used in economic and geographic studies and a natural choice for 

modelling infectious disease transmission19–21, describe the movement of people between 

locations as a function of their population sizes and distance apart. Here we use viral 

genomes to provide empirical evidence that such a process drove viral dissemination during 

the EVD epidemic.

In addition to geographical distance, we found a significant propensity for virus dispersal to 

occur within each country, relative to internationally (Nat/Int effect, BF>50), suggesting that 

country borders acted to curb the geographic spread of EBOV. When international dispersals 

do take place, they are more intense between administrative regions that are adjacent at an 

international border (IntBoSh, BF>50).

We tested whether sharing of any of 17 vernacular languages explains virus spread, as 

common languages might reflect cultural links including between non-contiguous or 

international regions, but found no evidence that such linguistic links were correlated with 

EBOV spread. A variety of other possible predictors of EBOV transmission, such as aspects 

of urbanization (economic output, population density, travel times to large settlements) and 

climatic effects, were not significantly associated with virus dispersal. However, these 

factors may have contributed to the size and longevity of transmission chains after 

introduction to a region (see below).

Finally, to investigate the potential of ‘real-time’ viral genome sequencing, we considered 

the degree to which the findings could have been obtained at the height of the epidemic, had 
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sequences been available shortly after samples were taken (see Methods for details). For the 

factors associated with EBOV dispersal the results were extremely comparable with those 

for the full dataset with the same five factors being strongly supported and having similar 

effect sizes (Figure 5).

Factors associated with local EBOV proliferation

The analysis above identified predominantly geographical and administrative factors that 

predict the degree of importation risk, i.e. the likelihood that a viral lineage initiates at least 

one infection in a new region. However, the epidemiological consequences of each 

introduction—the size and duration of resulting transmission chains—may be affected by 

different factors. Thus we investigated which demographic, economic and climatic factors 

might predict cumulative case counts1 for each region (Bayesian GLM; see Methods) and 

found these were associated with factors related to urbanization (Table 2): primarily 

population sizes (PopSize, BF 29.6) and a significant inverse association with travel times to 

the nearest settlement with >50,000 inhabitants (tt50K, BF 32.4). These results confirm the 

common perception that, in contrast to previous EVD outbreaks, widespread transmission 

within urban regions in West Africa was a major contributing factor to the scale of the 

epidemic of the Makona variant.

As the epidemic in West Africa progressed there were fears that increased rainfall and 

humidity might prolong environmental persistence of EBOV particles, increasing the 

likelihood of transmission22. Although we found no evidence of an association between 

EBOV dispersal and any aspects of local climate, we find that regions with less seasonal 

variation in temperature, and more rainfall, tended to have larger EVD outbreaks (TempSS, 

BF >50 and Precip, BF 4.4 respectively).

Effect of international travel restrictions on EBOV dispersal

Porous borders between Liberia, Sierra Leone and Guinea may have allowed unimpeded 

EBOV spread during the 2013–2016 epidemic23–25. Our results indicate that international 

borders were associated with a decreased rate of transmission events compared to national 

borders (Figure 6), but that frequent international cross-border transmission events still 

occurred. These events were concentrated in Guéckédou Prefecture (Guinea), Kailahun 

District (Sierra Leone) and Lofa Country (Liberia) during the early phases of the epidemic 

(Figure 7a), and between Forécariah Prefecture (Guinea) and Kambia District (Sierra Leone) 

in the later stage (Figure 7b). These later EBOV movements significantly hindered efforts to 

interrupt the final chains of transmission in late 2015, with EBOV from such chains moving 

back and forth across this border10, 12, 26.

Sierra Leone announced border closures on 11 June 2014, followed by Liberia on 27 July 

2014, and Guinea on 9 August 2014, but little information is available about what these 

border closures actually entailed. Although we show that the relative contribution of 

international spread to overall viral migration was lower after country borders were closed 

(mean Nat/Int coefficient increasing from 1.15 to 2.83 between August and September 2014; 

80.0% posterior support; (Figure 4b), it is difficult to ascertain whether the border closures 
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themselves were responsible for the apparent reduction in cross-border transmissions, as 

opposed to concomitant control efforts or public information campaigns. However, even if 

border closures reduced international traffic, particularly over longer distances and between 

larger population centres, by the time Sierra Leone and Liberia closed their borders the 

epidemic had become firmly established in both countries (Figure 4).

Why did the epidemic not spread further?

A few EBOV exportations were documented from Guinea by road transport into Mali and 

Senegal27, 28 and by air from Liberia to Nigeria and USA29, 30. However, apart from these 

limited exceptions, the West African Ebola virus epidemic did not spread into the 

neighbouring regions of Côte d’Ivoire, Guinea-Bissau, Mali, and Senegal. By extending our 

GLM (the supported predictors and their estimated coefficients) to include these regions we 

were able to address whether they were spared EVD cases through good fortune, or because 

they were associated with an inherently lower risk of EBOV spread and transmission. We 

estimated the degree to which these, apparently EVD-free, regions had the potential to be 

exposed to viral introductions from affected regions (see Methods).

Overall, the contiguous regions in unaffected neighbouring countries were all predicted to 

have low numbers of EBOV introductions (Figures 8a and 9a) based on the phylogeographic 

history of the sampled cases. They were not, however, predicted to have particularly low 

levels of transmission if an outbreak had been seeded (Figures 8b and 9b). Thus, it is likely 

that some of these regions were at risk of becoming part of the EVD epidemic, but that their 

geographical distance from areas of active transmission and the attenuating effect of 

international borders prevented this from occurring. The Kati Cercle in Mali and Tonkpi 

Region in Côte d’Ivoire are to some extent exceptions to this general result, being more 

susceptible to EBOV introductions under the gravity model because of their large 

populations (1 million and 950,000, respectively), (Figure 8a) and predicted to have 

experienced many cases had EVD become established (Figure 8b).

Metapopulation structure and dynamics of the EVD epidemic

After the initial establishment of transmission in Sierra Leone and Liberia, Guinea 

experienced repeated reintroductions of viral lineages from disparate transmission chains 

from both countries (Figure 4). Our analysis reveals that there were at least 21 (95% CI: 16 – 

25) re-introductions into Guinea from April 2014 to February 2015. An early epidemic 

lineage was established around the Guinean capital, Conakry, and persisted for the duration 

of the epidemic (GN-1 in Figures 2 & 4). However, the continual ‘seeding’ of EBOV into 

Guinea without a clear peak in transmission suggests that elsewhere the virus may have been 

failing to maintain transmission. There were also numerous introductions into Sierra Leone 

over a similar time period (median: 9, 95% CI: 6 – 12) but the resulting transmission chains 

constituted a tiny proportion of the country’s EVD cases, with the bulk of transmission 

resulting from one early introduction (Figure 4a).

In all three countries, repeated seeding of administrative regions seems to have been a large 

factor in the longevity of the EVD epidemic (Figure 10). As such, regional case numbers 
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were generally the result of multiple overlapping introduction events followed by within-

region spread and occasional onward transmission to other regions. This suggests a 

metapopulation model in which the epidemic’s persistence was driven by introduction into 

novel contact networks rather than by mass-action susceptible-infectious-removed (SIR) 

dynamics31, 32. We found that, on average, EBOV migrates between administrative regions 

at a rate of 0.85 events per lineage per year (95% CI: 0.72, 0.97). Assuming a serial interval 

of 15.3 days33, this rate translates to a 3.6% chance (95% CI: 3.0%, 4.1%) that over the 

course of a single infection, the transmission chain moved between regions. Given the key 

role that virus dispersal played in sustaining the epidemic, the detection and isolation of 

these relatively low proportion of mobile cases may have a disproportionate effect on the 

control of an EVD epidemic.

From our spatial phylogenetic model we conclude that many regions experienced numerous 

independent EBOV introductions (Figure 11b). However, these introductions gave rise to 

clusters of cases that were generally small (a mean cluster size of 4.3 and only 5% larger 

than 17 in our sample; Figure 11c) and of limited duration (a mean persistence time of 41.3 

days with only 5% greater than 181 days; Figure 11d). Here, we define a ‘cluster’ as a group 

of sequenced cases in a region that derive from a single introduction event and define 

‘persistence’ as the time between the introduction event and the last sampled case in the 

cluster. These definitions are conservative regarding sampling intensity as we expect 

additional samples would have split clusters apart rather than join them. Furthermore, 

introductions that were not detected will be disproportionately smaller, and so the cluster 

size estimate will be biased upwards. Segregating these observations by country (Figure 12a) 

shows that districts of Sierra Leone had more introductions and Guinea generally had 

smaller clusters but persistence was similar between the three countries. Considering only 

introductions that occurred before October 2014 to those that occurred after, the number of 

introductions per location was comparable whereas those that occurred early generally 

resulted in larger and more persistent clusters (Figure 12b).

Thus, with 5.8% sampling, we arrive at a conservative estimate of approximately 75 regional 

cases per introduction event. Although larger population centres, in particular capital cities, 

generally experienced more introductions (Figure 13a), the cluster sizes are less strongly 

associated with population size (Figure 13b), further highlighting the role of virus movement 

into urban areas as major factor for the high case loads in large population centres. Frequent 

cluster extinction, despite a small fraction of individuals being infected, suggests that 

individual outbreaks were constrained by the degree of connectedness among contact 

networks. Thus, it appears that the West African EVD epidemic was sustained by frequent 

seeding that resulted in numerous small local clusters of cases, some of which went on to 

seed further local clusters.

Viral genomics as a tool for outbreak response

The 2013–2016 EVD epidemic in West Africa has unfortunately become a costly lesson in 

addressing an infectious disease outbreak in the absence of preparedness of both the exposed 

population and the international community. Our work demonstrates the value of pathogen 

genome sequencing in a public healthcare emergency and the value of timely pre-publication 
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data sharing to identify the origins of imported disease case clusters, to track pathogen 

transmission as the epidemic progresses, and to follow up on individual cases as the 

epidemic subsides.

It is inevitable that as sequencing costs decrease, accuracy increases, and sequencing 

instruments become more portable, real-time viral surveillance and molecular epidemiology 

will be routinely deployed on the front lines of infectious disease outbreaks10, 12, 14, 34–36. 

Although we have shown here that the broad pattern of EBOV spatial movement was 

discernible from virus genomes derived from samples collected only up until October 2014, 

there was a notable hiatus in sequencing at this time35 and the genomes in the present data 

set from that time were sequenced retrospectively from archived material. The West African 

EVD epidemic has demonstrated that a steady sequencing pace34–36, local sequencing 

capacity10, 12, 14 and rapid dissemination of data7 are key ingredients in generating 

actionable sequence data from an infectious disease outbreak. However, as viral genome 

sequencing is scaled up and approaches the time-scale of viral evolution, the analysis 

techniques will increasingly represent the bottleneck for timely communication of 

information for outbreak response.

The analysis of the comprehensive EBOV genome set collected during the 2013–2016 EVD 

epidemic, including the findings presented here and in other studies7, 9, 11–15, 37, 38 provides 

a framework for predicting the behaviour of future disease outbreaks caused by EBOV, other 

filoviruses, and perhaps other human pathogens. However, many open questions remain 

about the biology of EBOV. As sustained human-to-human transmission waned, West Africa 

experienced several instances of recrudescent transmission, often in regions that had not 

seen cases for many months as a result of persistent sub-clinical infections17, 18, 39. 

Although, in hindsight, such sequelae were not entirely unexpected40, the magnitude of the 

2013–2016 epidemic has put the region at ongoing risk of sporadic EVD re-emergence. 

Similarly, the nature of the reservoir of EBOV, and its geographic distribution, remain as 

fundamental gaps in our knowledge. Resolving these questions is critical to predicting the 

risk of zoonotic transmission and hence of future EVD outbreaks.

Methods

Sequence data

We compiled a data set of 1,610 publicly available full Ebola virus (EBOV) genomes 

sampled between 17 March 2014 and 24 October 2015 (see https://github/ebov/space-time/

data/ for full list and metadata). The number of sequences and the proportion of cases 

sequenced varies with country; our data set contains 209 sequences from Liberia (3.8% of 

known and suspected cases), 982 from Sierra Leone (8.0%) and 368 from Guinea (9.2%) 

(Supplementary Table 1). Most (N=1,100) genomes are of high quality, with ambiguous 

sites and gaps comprising less than 1% of total alignment length, followed by sequences 

with between 1% and 2% of sites comprised of ambiguous bases or gaps (N=266), 98 

sequences with 2–5%, 120 sequences with 5–10% and 26 sequences with more than 10% of 

sites that are ambiguous or are gaps. Sequences known to be associated with sexual 

transmission or latent infections were excluded, as these viruses often exhibit anomalous 

molecular clock signals17, 18. Sequences were aligned using MAFFT41 and edited manually. 
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The alignment was partitioned into coding regions and non-coding intergenic regions with a 

final alignment length of 18,992 nucleotides (available from https://github/ebov/space-time/

data/).

Masking putative ADAR edited sites

As noticed by Tong et al.38, Park et al.13 and other studies, some EBOV isolates contain 

clusters of T-to-C mutations within relatively short stretches of the genome. Interferon-

inducible adenosine deaminases acting on RNA (ADAR) are known to induce adenosine to 

inosine hypermutations in double-stranded RNA42. ADARs have been suggested to act on 

RNAs from numerous groups of viruses43. When negative sense single stranded RNA virus 

genomes are edited by ADARs, A-to-G hypermutations seem to preferentially occur on the 

negative strand, which results in U/T-to-C mutations on the positive strand44–46. Multiple T-

to-C mutations are introduced simultaneously via ADAR-mediated RNA editing which 

would interfere with molecular clock estimates and, by extension, the tree topology. We thus 

designate four or more T-to-C mutations within 300 nucleotides of each other as a putative 

hypermutation tract, whenever there is evidence that all T-to-C mutations within such 

stretches were introduced at the same time, i.e. every T-to-C mutation in a stretch occurred 

on a single branch. We detect a total of 15 hypermutation patterns with up to 13 T-to-C 

mutations within 35 to 145 nucleotides. Of these patterns, 11 are unique to a single genome 

and 4 are shared across multiple isolates, suggesting that occasionally viruses survive 

hypermutation are transmitted47. Putative tracts of T-to-C hypermutation almost exclusively 

occur within non-coding intergenic regions, where their effects on viral fitness are 

presumably minimal. In each case we mask out these sites as ambiguous nucleotides but 

leave the first T-to-C mutation unmasked to provide phylogenetic information on the 

relatedness of these sequences.

Phylogenetic inference

Molecular evolution was modelled according to a HKY+Γ4
48, 49 substitution model 

independently across four partitions (codon positions 1, 2, 3 and non-coding intergenic 

regions). Site-specific rates were scaled by relative rates in the four partitions. Evolutionary 

rates were allowed to vary across the tree according to a relaxed molecular clock that draws 

branch-specific rates from a log-normal distribution50. A non-parametric coalescent 

‘Skygrid’ model was used to act as a prior density across trees51. The overall evolutionary 

rate was given an uninformative continuous-time Markov chain (CTMC) reference prior52, 

while the rate multipliers for each partition were given an uninformative uniform prior over 

their bounds. All other priors used to infer the phylogenetic tree were left at their default 

values. BEAST XML files are available from https://github/ebov/space-time/data/. We ran 

an additional analysis with a subset of data (787 sequences collected up to November 2014 

— the peak of case numbers in Sierra Leone) to test the robustness of inference if they had 

been performed mid-epidemic.

Geographic history reconstruction

The level of administrative regions within each country was chosen so that population sizes 

between regions are comparable. For each country the appropriate administrative regions 

were: prefecture for Guinea (administrative subdivision level 2), county for Liberia (level 1) 
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and district for Sierra Leone (level 2). We refer to them as regions (63 in total but only 56 

are recorded to have had EVD cases) and each sequence, where available, was assigned the 

region where the patient was recorded to have been infected as a discrete trait. When the 

region within a country was unknown (N=223), we inferred the sequence location as a latent 

variable with equal prior probability over all available regions within that country. Most of 

the sequences with unknown regional origins were from Sierra Leone (N=151), followed by 

Liberia (N=69) and Guinea (N=3). In the absence of any geographic information (N=2) we 

inferred both the country and the region of a sequence.

We deploy an asymmetric continuous-time Markov chain (CTMC)53, 54 matrix to infer 

instantaneous transitions between regions. For 56 regions with recorded EVD cases, a total 

of 3080 independent transition rates would be challenging to infer from one realisation of 

the process, even when reduced to a sparse migration matrix using stochastic search variable 

selection (SSVS)53.

Thus, to infer the spatial phylogenetic diffusion history between the K = 56 locations, we 

adopt a sparse generalized linear model (GLM) formulation of continuous-time Markov 

chain (CTMC) diffusion16. This model parameterizes the instantaneous movement rate Λij 

from location i to location j as a log-linear function of P potential predictors Xij = (xij1, …, 
xijP)′ with unknown coefficients β = (β1, …, βP)′ and diagonal matrix δ with entries (δ1, 
…, δP). These latter unknown indicators δp ∈ {0, 1} determine predictor p’s inclusion in or 

exclusion from the model. We generalize this formulation here to include two-way random 

effects that allow for location origin- and destination-specific variability. Our two-way 

random effects GLM becomes

(1)

where ε = (ε1, …, εK) are the location-specific effects. These random effects account for 

unexplained variability in the diffusion process that may otherwise lead to spurious inclusion 

of predictors.

We follow16 in specifying that a priori all βp are independent and normally distributed with 

mean 0 and a relatively large variance of 4 and in assigning independent Bernoulli prior 

probability distributions on δp.

Let q be the inclusion probability and w be the probability of no predictors being included. 

Then, using the distribution function of a binomial random variable q = 1 − w1/P, where P is 

the number of predictors, as before. We use a small success probability on each predictor’s 

inclusion that reflects a 50% prior probability (w) on no predictors being included.

In our main analysis, we consider 25 individual predictors that can be classified as 

geographic, administrative, demographic, cultural and climatic covariates of spatial spread 
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(Table 3). Where measures are region-specific (rather than pairwise region measures), we 

specify both an origin and destination predictor. We also tested for sampling bias by 

including an additional origin and destination predictor based on the residuals for the 

regression of sample size against case count (cfr. Figure 1b), but these predictors did not 

receive any support (data not shown).

To draw posterior inference, we follow16 in integrating β and δ, and further employ a 

random-walk Metropolis transition kernel on ε and sample σ2 directly from its full 

conditional distribution using Gibbs sampling.

To obtain a joint posterior estimate from this joint genetic and phylogeographic model, an 

MCMC chain was run in BEAST 1.8.455 for 100 million states, sampling every 10 000 

states. The first 1000 samples in each chain were removed as burnin, and the remaining 9 

000 samples used to estimate a maximum clade credibility tree and to estimate posterior 

densities for individual parameters. A second independent run of 100 million states was 

performed to check convergence of the first.

To consider the feasibility of ‘real-time’ inference from virus genome data from the height 

of the EVD epidemic we took only those sequences derived from samples taken up until the 

end of October 2014 (N = 787). We undertook the same joint phylogenetic and spatial GLM 

analysis as for the full data set including the same set of 25 predictors. We ran this analysis 

for 200 million states, sampling every 20,000 states and removing the first 10% of samples.

To obtain realisations of the phylogenetic CTMC process, including both transitions 

(Markov jumps) between states and waiting times (Markov rewards) within states, we 

employ posterior inference of the complete Markov jump history through time16, 56. In 

addition to transitions ‘within’ the phylogeny, we also estimate the expected number of 

transitions ‘from’ origin location i in the phylogeographic tree to arbitrary ‘destination’ 

location j as follows:

(2)

where τi is the waiting time (or Markov reward) in ‘origin’ state i throughout the phylogeny, 

μ is the overall rate scalar of the location transition process, πi is the equilibrium frequency 

of ‘origin’ state i, and c is the normalising constant applied to the CTMC rate matrices in 

BEAST. To obtain the expected number of transitions to a particular destination location 

from any phylogeographic location (integrating over all possible locations across the 

phylogeny), we sum over all 56 origin locations included in the analysis. We note that the 

destination location can also be a location that was not included in the analysis because we 

only need to consider destination j in the instantaneous movement rates Λij; since the log of 

these rates are parameterized as a log linear function of the predictors, we can obtain these 

rates through the coefficient estimates from the analysis and the predictors extended to 

include these additional locations. Specifically, we use this to predict introductions in 

regions in Guinea, for which no cases were reported (n = 7) and for regions in neighbouring 

countries along the borders with Guinea or Liberia that remained disease free (n = 18). To 
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obtain such estimates under different predictors or predictor combinations, we perform a 

specific analysis under the GLM model including only the relevant predictors or predictor 

combinations without the two-way random effects. For computational expedience, we 

performed these analyses, as well as the time-inhomogeneous analyses below, by 

conditioning on a set of 1,000 trees from the posterior distribution of the main phylogenetic 

analysis16. We summarize mean posterior estimates for the transition expectations based on 

the samples obtained by our MCMC analysis; we note that also the value of c is sample-

specific.

Time-dependent spatial diffusion

To consider time-inhomogeneity in the spatial diffusion process, we start by borrowing 

epoch modelling concepts from Bielejec et al. (2014)57. The epoch GLM parameterizes the 

instantaneous movement rate Λijt from state i to state j within epoch t as a log-linear 

function of P epoch-specific predictors Xijt = (xijt1, …, xijtP)′ with constant-through-time, 

unknown coefficients β. We generalize this model to incorporate time-varying contribution 

of the predictors through time-varying coefficients β(t) using a series of change-point 

processes. Specifically, the time-varying epoch GLM models

(3)

where βB = (βB1, …, βBP)′ are the unknown coefficients before the change-points, βA = 

(βA1, …, βAP)′ are the unknown coefficients after the change-points, diagonal matrix ϕ(t) 
has entries (1t>t1(t), …, 1t>tP(t)), 1(·)(t) is the indicator function and T = (t1, …, tP) are the 

unknown change-point times. In this general form, the contribution of predictor p before its 

change-point time tp is βBp and its contribution after is βAp for p = 1, …, P. Fixing tp to be 

less than the time of the first epoch or greater than the time of the last epoch results in a 

time-invariant coefficient for that predictor.

Similar to the constant-through-time GLM, we specify that a priori all βBp and βAp are 

independent and normally distributed with mean 0 and a relatively large variance of 4. Under 

the prior, each tp is equally likely to lie before any epoch.

We employ random-walk Metropolis transition kernels on βB, βA and T.

In a first epoch GLM analysis, we keep the five predictors that are convincingly supported 

by the time-homogeneous analysis included in the model and estimate an independent 

change-point tp for their associated effect sizes: distance (tdis), within country effect (twco), 

shared international border (tsib) and origin and destination population size (tpopo and tpopd) 

change-points. To quantify the evidence in favour of each change-point, we calculate Bayes 

factor support based on the prior and posterior odds that tp is less than the time of the first 

epoch or greater than the time of the last epoch. Because we find only very strong support 

for a change-point in the within country effect, we subsequently estimate the effect sizes 

before and after twco, keeping the remaining four predictors homogeneous through time.
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Within-location generalized linear models

Ebola virus disease (EVD) case numbers are reported by the WHO for every country 

division (region) at the appropriate administrative level, split by epidemiological week. For 

every region and for each epidemiological week four numbers are reported: new cases in the 

patient and situation report databases as well as whether the new cases are confirmed or 

probable. At the height of the epidemic many cases went unconfirmed, even though they 

were likely to have been genuine EVD. As such, we treat probable EVD cases in WHO 

reports as confirmed and combine them with lab-confirmed EVD case numbers. Following 

this we take the higher combined case number of situation report and patient databases. The 

latest situation report in our data goes up to the epidemiological week spanning 8 to 14 

February 2016, with all case numbers being downloaded on 22 February 2016. There are 

apparent discrepancies between cumulative case numbers reported for each country over the 

entire epidemic and case numbers reported per administrative division over time, such that 

our estimate for the final size of the epidemic, based on case numbers over time reported by 

the WHO, is on the order of 22 000 confirmed and suspected cases of EVD compared to the 

official estimate of around 28 000 cases across the entire epidemic. This likely arose because 

case numbers are easier to track at the country level, but become more difficult to narrow 

down to administrative subdivision level, especially over time (only 86% of the genome 

sequence have known location of infection).

We studied the association between disease case counts using generalized linear models in a 

very similar fashion to the framework presented above. A list of the location-level predictors 

we used for these analyses can be found in Table 3. We also employed SSVS as described 

above, in order to compute Bayes factors (BF) for each predictor. In keeping with the genetic 

GLM analyses, we also set the prior inclusion probabilities such that there was a 50% 

probability of no predictors being included.

where r is the over-dispersion parameter, δi are the indicators as before. Prior distributions 

on model parameters for these analyses were the same as those used for the genetic analyses 

whenever possible. We then employed this model to predict how many cases the locations 

which reported zero EVD cases would have gathered, that is, the potential size of the 

epidemic in each location.

Computational details

To fit the models described above we took advantage of the routines already built in BEAST 

(https://github.com/beast-dev/beast-mcmc) but in a non-phylogenetic setting. Once again, 

posterior distributions for the parameters were explored using Markov chain Monte Carlo 

(MCMC). We ran each chain for 50 million iterations and discarded at least 10% of the 

samples as burn-in. Convergence was checked by visual inspection of the chains and 
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checking that all parameters had effective sample sizes (ESS) greater than 200. We ran 

multiple chains to ensure results were consistent. To make predictions, we used 50,000 

Monte Carlo samples from the posterior distribution of coefficients and the overdispersion 

parameter (r) to simulate case counts for all locations with zero recorded EVD cases.

Data availability

All collated data, genetic sequence alignments, phylogenetic trees, analysis scripts, and 

analysis output are available at https://github.com/ebov/space-time) and http://dx.doi.org/

10.7488/ds/1711. Individual virus genetic sequences are published in earlier works and are 

available from NCBI Genbank.
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Figure 1. Distribution and correlation of EVD cases and EBOV sequences
a) Administrative regions within Guinea (green), Sierra Leone (blue) and Liberia (red); 

shading is proportional to the cumulative number of known and suspected EVD cases in 

each region. Darkest shades represent 784 cases for Guinea (Macenta Prefecture), 3219 

cases for Sierra Leone (Western Area Urban District) and 2925 cases for Liberia 

(Montserrado County); hatching indicate regions without reported EVD cases. Circle 

diameters are proportional to the number of EBOV genomes available from that region over 

the entire EVD epidemic with the largest representing 152 sequences. Crosses mark regions 

for which no sequences are available. Circles and crosses are positioned at population 

centroids within each region. b) A plot of number of EBOV genomes sampled against the 

known and suspected cumulative EVD case numbers. Regions in Guinea are denoted in 

green, Sierra Leone in blue and Liberia in red. Spearman correlation coefficient: 0.93.
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Figure 2. Summary of early epidemic events
a) Temporal phylogeny of earliest sampled EBOV lineages in Guéckédou Prefecture, 

Guinea. 95% posterior densities of most recent common ancestor estimates for all lineages 

(grey) and lineages into Kailahun District, Sierra Leone (blue) and to Conakry Prefecture, 

Guinea (green) are shown at the bottom. Posterior probabilities > 0.5 are shown for lineages 

with >5 descendent sequences). b) Dispersal events marked by dashed lineages on the 

phylogeny projected on a map with directionality indicated by colour intensity (from white 

to red). Lineages that migrated to Conakry Prefecture and Kailahun District have led to the 

vast majority of EVD cases throughout the region.
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Figure 3. Dispersal of virus lineages over time
Virus dispersal between administrative regions estimated under the GLM phylogeography 

model (see Supplementary Methods). The arcs are between population centroids of each 

region, show directionality from thin end to thick end and are coloured in a scale denoting 

time from December 2013 in blue to October 2015 in yellow. Countries are coloured with 

Liberia in red, Guinea in green and Sierra Leone in blue.
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Figure 4. Transmission chains arising from independent international movements
a) EBOV lineages by country (Guinea, green; Sierra Leone, blue; Liberia, red), tracked until 

the sampling date of their last known descendants. Circles at the roots of each subtree denote 

the country of origin for the introduced lineage. b) Estimates of the change point probability 

(primary Y-axis) and log coefficient (mean and credible interval; secondary Y-axis) for the 

Nat/Int factor. Vertical lines represent dates of border closures by the respective countries.
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Figure 5. Inference of GLM predictors in a ‘real-time’ context
For the data set constructed from EBOV genome sequences derived from samples taken up 

until October 2014 (blue), the same 5 spatial EBOV movement predictors were given 

categorical support (inclusion probabilities = 1.0) as for the full data set (red). Likewise, the 

coefficients for these predictors are consistent in their sign and magnitude.

Dudas et al. Page 24

Nature. Author manuscript; available in PMC 2017 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. The effect of borders on EBOV migration rates between regions
Posterior densities of the migration rates between locations that share a geographical border 

(left) and those that do not (right) for international migrations and national migrations. 

Where two regions share a border, national migrations are only marginally more frequent 

than international migrations showing that both types of borders are porous to short local 

movement. Where the two regions are not adjacent, international migrations are much rarer 

than national migrations.

Dudas et al. Page 25

Nature. Author manuscript; available in PMC 2017 December 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Summarized epidemic international migration history
All viral movement events between countries (Guinea, green; Sierra Leone, blue; Liberia, 

red) are shown split by whether they are between a) geographically distant regions or b) 

regions that share the international border. Curved lines indicate median (intermediate colour 

intensity), and 95% highest posterior density intervals (lightest and darkest colour 

intensities) for the number of migrations that are inferred to have taken place between 

countries.
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Figure 8. Predicted destinations and consequences of viral dispersal
a) Predicted number of EBOV imports into each of 63 regions in Guinea, Sierra Leone and 

Liberia (including 7 without recorded cases in Guinea) and the surrounding 18 regions of the 

neighbouring countries of Guinea-Bissau, Senegal, Mali and Côte d’Ivoire. The expected 

number of EBOV exports from locations in the phylogeographic tree and imports to any 

location were calculated based on the phylogeographic GLM model estimates and associated 

predictors that were extended to apparently EVD-free locations (see Methods). b) Predicted 

EVD cluster sizes from the generalized linear model fitted to case data.
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Figure 9. Comparison of predicted and observed numbers of introductions (a) and case numbers 
(b)
Scatter plots on the left of both panels show inferred introduction numbers (a) or observed 

case numbers (b), coloured by region as in Figure 4. Administrative regions not reporting 

any cases are indicated with empty circles on the scatter plot. Administrative regions in the 

map on the right side of both panels are coloured by the residuals (as observed/predicted) of 

the scatter plot. Regions are coloured grey where 0.5<observed/predicted<2.0 and transition 

into red or blue colours for overestimation or underestimation, respectively.
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Figure 10. Region specific introductions, cluster sizes and persistence
Each row summarises independent introductions and the sizes (as numbers of sequences) of 

resulting outbreak clusters. Clusters are coloured by their inferred region of origin (colours 

same as Figure 4). The horizontal lines represent the persistence of each cluster from the 

time of introduction to the last sampled case (individual tips have persistence 0). The areas 

of the circles in the middle of the lines are proportional to the number of sequenced cases in 

the cluster. The areas of the circles next to the labels on the left represent the population 

sizes of each administrative region. Vertical lines within each cell indicate the dates of 
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declared border closures by each of the three countries: 11 June 2014 in Sierra Leone (blue), 

27 July 2014 in Liberia (red), and 09 August 2014 in Guinea (green).
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Figure 11. The metapopulation structure of the epidemic
a) Kernel density estimate (KDE) of distance for all inferred EBOV dispersals events: 50% 

occur over distances <72 km and <5% occur over distances >232 km. b) KDE of the number 

of independent EBOV introductions into each administrative region: 50% have fewer than 

4.8 and <5% greater than 21.3. c) KDE of the mean size of sampled cases resulting from 

each introduction with at least 2 sampled cases: 50% < 5.3, 95% <32. d) KDE of the 

persistence of clusters in days (from time of introduction to time of the last sampled case): 

50% < 36 days, 95% < 181 days.
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Figure 12. 
Kernel density estimates for inferred epidemiological statistics (from top to bottom): 

distance travelled (distance between population centroids, in kilometres), number of 

introductions that each location experienced, cluster size (number of sequences collected in 

a location as a result of a single introduction), cluster persistence (days from the common 

ancestor of a cluster to its last descendent, single tips have persistence of 0). Left hand side 

tracks these statistics for Sierra Leone (blue), Liberia (red) and Guinea (green), whilst the 

right hand side compares the statistics for before October 2014 (grey) and after (orange). 

Points with vertical lines connected to the x axis indicate the 50% and 95% quantiles of the 

parameter density estimates. Within Sierra Leone, Liberia and Guinea, 50% of all migrations 

occurred over distances of around 100km and persisted for around 25 days. Exceptions were 

Sierra Leone which experienced more introductions per location (around 12) than Guinea 

and Liberia (around 4) and Guinea, where migrations tended to occur over larger distances 

due to the size of the country and whose cluster sizes following introductions tended to be 

lower (3 sequences versus Liberia and Sierra Leone with 5 sequences each). Between the 

first (grey) and second (orange) years of the epidemic there were considerable reductions in 

cluster persistence, cluster sizes and distances travelled by viruses, whilst dispersal intensity 

remained largely the same.
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Figure 13. Relationship of cluster size, introductions and persistence to population size
a) The mean number of introductions into each location against (log) population sizes. The 

Western Area (in Sierra Leone) received the most introductions, whilst Conakry (in Guinea) 

and Montserrado (in Liberia) were closer to the average. The association between population 

sizes and number of introductions was not very strong (R2 = 0.28, pearson correlation = 

0.54, Spearman correlation = 0.57). b) The mean cluster size for each location plotted 

against (log) population sizes. The association here is weaker (R2 = 0.11, pearson correlation 

= 0.35, Spearman correlation = 0.57). c) The mean persistence times (per cluster, in days) 

against population sizes. A similarly weak association is observed (R2 = 0.12, pearson 
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correlation = 0.37, Spearman correlation = 0.36). All computations based on a sample of 

10,000 trees from the posterior distribution.
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Table 3

Predictors included in the time-homogenous GLM.

Predictor type Abbreviation Predictor description

Geographic Distances Great circle distances between the locations’ population centroids, log-transformed, standardized

Administrative Nat/Int The relative preference of transitioning between locations in the same country over transitioning 
between locations in two different countries

Administrative IntBoSh The relative preference of transitioning between location pairs that are in different countries and share 
a border

Administrative NatBoSh The relative preference of transitioning between location pairs that are in the same country and share a 
border

Administrative LibGinAsym Between Liberia-Guinea asymmetry

Administrative LibSLeAsym Between Liberia-Sierra Leone asymmetry

Administrative GinSLeAsym Between Guinea-Sierra Leone asymmetry

Demographic OrPop Origin population size, log-transformed, standardized

Demographic DestPop Destination population size, log-transformed, standardized

Demographic OrPopDens Origin population density, log-transformed, standardized

Demographic DestPopDens Destination population density, log-transformed, standardized

Demographic orTT100k Estimated mean travel time in minutes to reach the nearest major settlement of at least 100,000 people 
at origin, log-transformed, standardized

Demographic destinationTT100k estimated mean travel time in minutes to reach the nearest major settlement of at least 100,000 people 
at destination, log-transformed, standardized

Demographic OrGrEcon Origin Gridded economic output, log-transformed, standardized

Demographic DestGrEcon Destination Gridded economic output, log-transformed, standardized

Cultural IntLangShared The relative preference of transitioning between location pairs that are in different countries and share 
at least one of 17 vernacular languages

Cultural NatLangShared The relative preference of transitioning between location pairs that are in the same country and share 
at least one of 17 vernacular languages

Climatic OrTemp Temperature annual mean at origin, log-transformed, standardized

Climatic DestTemp Temperature annual mean at destination, log-transformed, standardized

Climatic OrTempSS Index of temperature seasonality at origin, log-transformed, standardized

Climatic DestTempSS Index of temperature seasonality at destination, log-transformed, standardized

Climatic OrPrecip Precipitation annual mean at origin, log-transformed, standardized

Climatic DestPrecip Precipitation annual mean at destination, log-transformed, standardized

Climatic OrPrecipSS Index of precipitation seasonality at origin, log-transformed, standardized

Climatic DestPrecipSS Index of precipitation seasonality at destination, log-transformed, standardized
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