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Background & objective: Percent whole brain volume change (PBVC) measured from serial MRI scans is widely
accepted as a sensitive marker of disease progression in Alzheimer3s disease (AD). However, the utility of PBVC
in the differential diagnosis of dementia remains to be established. We compared PBVC in AD and dementia
with Lewy bodies (DLB), and investigated associations with clinical measures.
Methods: 72 participants (14 DLBs, 25 ADs, and 33 healthy controls (HCs)) underwent clinical assessment and
3 Tesla T1-weighted MRI at baseline and repeated at 12 months. We used FSL-SIENA to estimate PBVC for each
subject. Voxelwise analyses and ANCOVA compared PBVC between DLB and AD, while correlational tests exam-
ined associations of PBVC with clinical measures.
Results: AD had significantly greater atrophy over 1 year (1.8%) compared to DLB (1.0%; p = 0.01) and HC (0.9%;
p b 0.01) in widespread regions of the brain including periventricular areas. PBVC was not significantly different
betweenDLB andHC (p=0.95). Therewere nodifferences in cognitive decline betweenDLB andAD. In the com-

bined dementia group (AD and DLB), younger age was associated with higher atrophy rates (r = 0.49, p b 0.01).
Conclusions: AD showed a faster rate of global brain atrophy compared to DLB, which had similar rates of atrophy
to HC. Among dementia subjects, younger age was associated with accelerated atrophy, reflecting more aggres-
sive disease in younger people. PBVC could aid in differentiating between DLB and AD, however its utility as an
outcome marker in DLB is limited.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dementia with Lewy bodies (DLB) is the second leading cause of de-
generative dementia in older people after Alzheimer3s disease (AD), ac-
counting for up to 15% of cases confirmed at autopsy (McKeith et al.,
1996). DLB shares common clinical, neuropsychological and pathologi-
cal features with other dementia subtypes such as AD and Parkinson3s
disease with dementia, making differentiation between these disorders
challenging. Despite the development of consensus diagnostic criteria,
the sensitivity for differential diagnosis of DLB in clinical practice re-
mains low and many DLB patients could be misdiagnosed. In light of
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this uncertainty, and with important implications for subsequent pa-
tient management, there is growing emphasis on the development of
reliable imaging markers to help distinguish DLB from other subtypes
of dementia.

The majority of imaging studies in AD and DLB have been cross-
sectional, while there has been a paucity of longitudinal studies in DLB
(O3Brien et al., 2001;Whitwell et al., 2007), whichmight bemore sensi-
tive to detect early pathological changes thanmeasurements at a single
time point (Smith et al., 2007). Furthermore, a longitudinal design can
reduce the confounding effect of inter-individual morphological vari-
ability as each subject serves as his or her own control. The rate of
whole brain atrophy on serial MRI is increasingly recognized as a sensi-
tive and objective marker of disease progression in neurodegenerative
diseases (Fox and Freeborough, 1997). Reported whole brain atrophy
rates in AD range from 1% to 4% per year (Cover et al., 2011), while atro-
phy rates in similarly aged non-demented people range from 0.3% to
0.7% per year (Cover et al., 2011; Henneman et al., 2009; Sluimer
et al., 2008). As such, longitudinal assessment of brain atrophy in
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different subtypes of dementia andhealthy controlsmay allowus to dis-
tinguish pathological rates of brain atrophy from normal age-related
changes. The clinical relevance of atrophy rates has been supported by
previous studies showing the relationship with cognitive dysfunctions
(Sluimer et al., 2008). In light of this evidence, global atrophy rates are
used as a secondary outcome marker in phase III trials of potentially
disease-modifying interventions in AD (Frisoni et al., 2010).

Previous studies using serial MRI to investigate atrophy rates in DLB
have yielded conflicting findings, with some studies showing similar
rates in subjectswith DLB and AD (O3Brien et al., 2001), while slower at-
rophy rates in DLB have been reported (Whitwell et al., 2007). Thus, the
clinical implications of whole brain atrophy rates in DLB remain poorly
understood, and further studies are warranted.

The aims of the present study were to use serial MRI to investigate
whole brain atrophy rates over a 12-month period in clinically diag-
nosed subjects with AD and DLB, and similarly aged HC, as well as to in-
vestigate the associations between percent brain volume change
(PBVC) and clinical measures. Based on earlier cross-sectional findings
of reduced whole brain atrophy and relative structural preservation of
the medial temporal lobes (Mak et al., 2014; R. Watson et al., 2012a),
we hypothesized that subjects with DLB would have significantly
lower rates of whole brain atrophy compared to AD.

2. Methods

2.1. Subjects, assessment and diagnosis

At baseline, seventy one subjects with dementia over the age of 60
(36 subjectswith probable AD (McKhannet al., 1984) and 35with prob-
able DLB (McKeith et al., 2005)) were recruited from a community
dwelling population of patients referred to local Old Age Psychiatry, Ge-
riatric Medicine or Neurology Services in the North East of England, UK,
as previously described (R. Watson et al., 2012a). Consensus on diagno-
sis wasmade with 3 experienced clinicians. Subjects underwent clinical
and neuropsychological evaluations at baseline and follow-up at 1 year.
Thirty-five similarly aged control subjects were recruited from relatives
and friends of subjects with dementia or volunteered via advertise-
ments in local community newsletters.

For the purpose of the present study, we included only subjects with
MRI assessments from both baseline and 1-year follow-up. Of the 36 AD
subjects, 25 were included after 11 were unable to participate in the
follow-up assessment. Of the 35 DLB subjects, 14 were included after
12 declined to participate as they or their carers felt they were too un-
well and 9 subjects had died. Half the DLB subjects (n = 7) had abnor-
mal dopamine transporter scans as part of the clinical work-up before
entering the study. Of the 35 HC subjects, 33 were included in the pres-
ent analyses after 2 declined to participate due to other reasons. The re-
search was approved by the local ethics committee. All subjects or,
where appropriate, their nearest relative, provided written informed
consent. Assessment of global cognitive measures at both baseline and
follow-up assessments, included the Cambridge Cognitive Examination
(CAMCOG) (Huppert et al., 1995), which incorporates the Mini-Mental
State Examination (MMSE) (Folstein et al., 1975). Motor parkinsonism
was evaluated with the Unified Parkinson3s Disease Rating Scale Part
III (UPDRS-III) (Movement Disorder Society Task Force on Rating
Scales for Parkinson3s Disease, 2003). For subjects with dementia, neu-
ropsychiatric featureswere examinedwith the Neuropsychiatric Inven-
tory (Cummings et al., 1994), and cognitive fluctuations were assessed
with the cognitive fluctuation scale (Walker et al., 2000).

2.2. MRI acquisition

Subjects underwent both baseline and repeatMR imagingwith a 12-
month interval. At each time point, subjects underwent T1 weighted
MR scanning on the same 3 T MRI system using an 8 channel head
coil (Intera Achieva scanner, Philips Medical Systems, Eindhoven,
Netherlands) within 2 months of the clinical assessments as previously
described (R. Watson et al., 2012a). The sequence was a standard
T1 weighted volumetric sequence covering the whole brain (3D
MPRAGE, sagittal acquisition, 1 mm isotropic resolution and matrix
size of 240 (anterior–posterior) × 240 (superior–inferior) × 180
(right–left); repetition time (TR) = 9.6 ms; echo time (TE) = 4.6 ms;
flip angle= 8°; SENSE factor= 2). The acquired volumewas angulated
such that the axial slice orientation was standardized to align with the
AC–PC line.
2.3. Image analysis

2.3.1. Estimation of whole brain atrophy rate
Whole brain atrophy rate was estimated with SIENA (Smith et al.,

2001), part of the FSL software package (http://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/). Firstly, brain extraction was performed in acquired images at
both of the two time points (Smith et al., 2002). For each individual sub-
ject, the baseline and follow-up brain imageswere aligned to each other
(Jenkinson and Smith, 2001) using the skull images to constrain the reg-
istration scaling, and both brain images were then resampled into the
space halfway. Next, tissue-type segmentation was carried out (Zhang
et al., 2001) in order to find brain/non-brain edge points, and then per-
pendicular edge displacement (between the two time points) was esti-
mated at these edge points. Finally, the mean edge displacement across
the whole brain was converted into a global estimate of PBVC between
the two time-points.
2.3.2. Voxel-wise assessment of atrophy over time
Next, we performed a voxelwise statistical analysis of atrophy across

subjects using SIENAr, an extension of SIENA from the FSL package
(Bartsch et al., 2004). Built upon the result of the previous SIENA analy-
sis, the edge displacement image was dilated for each subject, trans-
formed into MNI152 space, and masked by a standard MNI152-space
brain edge image. In this way the edge displacement values were
warped onto the standard brain edge. Next, voxelwise statistical analy-
sis was performed on the resulting images from all subjects to test for
significant differences in atrophy over time among the AD, DLB and
HC groups. In all voxelwise comparisons, age and gender were included
as covariates in the General Linear Model (GLM). The threshold free
cluster enhancement (TCFE) algorithm (Nichols and Holmes, 2002)
was used to correct for multiple comparisons across the whole brain
at p b 0.05 based on permutation testing (5000 permutations for each
contrast in order to build an empirically derived null distribution
against which to compare observed effects). The anatomical locations
of the significant cortical GM clusters were determined by using the
standard Harvard–Oxford cortical structural atlas (see http://www.
fmrib.ox.ac.uk/fsl/) containing 48 regions for each hemisphere.
2.4. Statistical analysis

Statistical analyseswere performedwith the STATA13 (http://www.
stata.com) software. The distribution of continuous variables was tested
for normality using the Skewness–Kurtosis test and visual inspection of
histograms. Parametric data were assessed using either t-tests or analy-
sis of variance (ANOVA) for continuous variables. For non-parametric
data, Kruskal–Wallis was used. χ2 tests were used to examine differ-
ences between categorical measures. Group effects in PBVCwere tested
with analysis of covariance (ANCOVA) controlling for age and gender,
followed by post-hoc comparisons using the Tukey–Kramer tests.
Associations of PBVC with clinical measures were evaluated with
Spearman3s rank order correlation coefficient or Pearson3s correlations
depending on the distribution of the data. These correlational tests
were further adjusted by applying Bonferroni correction for multiple
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Table 1
Demographics, clinical variables and PBVC.

HC DLB AD p value

n 33 14 25
Gender (m:f) 20:13 13:1 15:10 χ2 = 5.37, 0.07a

Age (years) 76.7 ± 5.3 77.2 ± 8.0 76.8 ± 5.5 F2,69 = 0.04,
p = 0.96b

Education (years) 11.8 ± 2.6 10.5 ± 1.9 11.4 ± 3.7 p = 0.14c

UPDRS 1.9 ± 1.8 27.2 ± 7.9 4.8 ± 4.0 p b 0.01c

NPI Total 21.5 ± 16.1 19.0 ± 11.9 p = 1.00d

CogFluct 8.4 ± 3.4 2.6 ± 3.5 p b 0.01d

MMSE
Baseline 29.2 ± 0.9 21.2 ± 6.0 20.6 ± 3.9 p = 0.70e

Follow-up 29.2 ± 0.9 19.7 ± 5.6 18.7 ± 4.0 p = 0.54e

Change +0.1 ± 1.0 −2.5 ± 2.8 −1.9 ± 3.1 p = 0.58e

CAMCOG
Baseline 97.8 ± 3.3 69.9 ± 17.3 69.5 ± 11.1 p = 0.93e

Follow-up 98.6 ± 2.8 66.5 ± 17.1 63.0 ± 14.0 p = 0.49e

Change +0.8 ± 2.5 −5.8 ± 10.3 −6.6 ± 9.9 p = 0.84e

Interscan interval (days) 370.9 ± 13.3 379.1 ± 18.8 379.6 ± 17.8 p = 0.21 c

PBVC −0.9 ± 0.8 −1.0 ± 0.9 −1.8 ± 0.9

F2,66 = 8.85
p b 0.01f

p = 0.01g

p b 0.00h

p = 0.95d

Values expressed as Mean ± 1SD.
Abbreviations: DLB, dementia with Lewy bodies; AD, Alzheimer3s disease; HC, healthy control; UPDRS III, Unified Parkinson3s Disease Rating Scale, Part III; NPI Total, Neuropsychiatry In-
ventory; CogFluct, cognitive fluctuation scale; MMSE, Mini-Mental State Examination; CAMCOG, Cambridge Cognitive Examination; PBVC, percent whole brain volume change.

a χ2 — DLB, AD, and controls.
b ANOVA — HC, DLB, and AD.
c Kruskal–Wallis test.
d Wilcoxon rank-sum test — AD and DLB.
e Student3s t-test — AD and DLB.
f ANCOVA with age, gender and inter-scan interval as covariates— HC, DLB, and AD.
g Post-hoc Tukey–Kramer test — AD and DLB.
h Post-hoc Tukey–Kramer test — AD and HC; DLB and HC.
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comparisons, where a probability value of p b 0.003 (0.05/15) was
regarded as significant.
3. Results

3.1. Subject characteristics

The demographic and clinical data for patients and control subjects
are summarized in Table 1. Subject groups were well matched for age
and educational level, and there was no difference in inter-scan inter-
vals among all subject groups (p = 0.21). There were more men in
the DLB group and as expected, the DLB group had significantly higher
UPDRS III scores than the AD and HC groups. There was no significant
difference in age, gender, educational level, UPDRS III, NPI, or cognitive
scores between the 21 DLB subjects who dropped out and the 14 DLB
subjects who were included in the present study (Supplementary
Table 1). AD and DLB did not differ on cognitive measures at baseline,
follow-up, or annualized change scores.
Fig. 1. Box-and-whisker plots showing rates of whole brain atrophy for all diagnostic
groups. Negative rates represent a decrease inwhole brain volume over time. Thehorizon-
tal lines in the boxes represent the 25th, 50th (median) and 75th percentiles of the distri-
butions. The vertical lines extending from the boxes stop at the most extreme data points
within 1.5 interquartile ranges of the boxes. Differences between groupswere assessed by
using ANCOVA controlling for age, gender and inter-scan interval, with post-hoc Tukey–
Kramer tests. * = p b 0.05, ** = p b 0.01. Abbreviations: ANCOVA, analysis of covariance;
DLB, dementia with Lewy bodies; AD, Alzheimer3s disease; HC, healthy control.
3.2. Comparisons of PBVC

Global atrophy between baseline and follow-up was expressed as
a negative PBVC. Mean (±SD) PBVC over 1 year was as follows: HC,
−0.9% ± 0.8; DLB, −1.0% ± 0.9; and AD, −1.8% ± 0.9. ANCOVA re-
vealed that PBVC over 1 year was significantly different between
groups [F(2,66) = 8.85, p b 0.01] (Table 1). Post-hoc Tukey–Kramer
tests revealed significantly greater PBVC over 1 year in AD compared
to the DLB (p = 0.01) and HC (p b 0.01) groups, but the DLB group
did not differ from HC (p = 0.95) (Fig. 1).
3.3. Voxelwise comparison of atrophy rate: AD vs. HC

The areas showing significantly accelerated atrophy in AD compared
to HC are represented in Fig. 2A, p b 0.05, Family Wise Error (FWE)
corrected. They include regions of the temporal, occipital and parietal



Fig. 2. Longitudinal voxelwise results. Areas of significant differences in atrophy rates between (A) AD and HC, (B) AD and DLB, and (C) correlation between atrophy rate and age in com-
bined dementia group overlaid on the MNI152 standard template. Blue represents all the standard space brain edge voxels used for testing group differences in atrophy rates and asso-
ciations with clinical measures. Red and yellow represent significant voxels, i.e. p values, FWE corrected. Abbreviations: DLB, dementia with Lewy bodies; AD, Alzheimer3s disease; HC,
healthy control; FWE, family wise error.
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lobes. Significantly accelerated atrophy was also found around the
periventricular regions. As expected, there was no region in the brain
that showed significantly faster atrophy in HC compared with AD.

3.4. Voxelwise comparison of atrophy rate: AD vs. DLB

The areas of accelerated atrophy in AD compared to DLB are repre-
sented in Fig. 2B, p b 0.05, FWE corrected. They include regions of the
temporal, frontal and parietal lobes, with atrophy also around the
periventricular regions. We did not find any regions showing signifi-
cantly faster atrophy in DLB compared to AD.

3.5. Voxelwise comparison of atrophy rate: DLB vs. HC

There was no significant difference in regional atrophy rates be-
tween DLB and HC after correction for multiple comparisons.
3.6. Association between PBVC and cognitive decline

To investigate the relationship between PBVC and cognitive decline,
we assessed associations with global indices of cognition at baseline,
follow-up, and annualized change scores. Across the whole sample,
PBVC was significantly correlated with MMSE (baseline) (r = 0.41,
p b 0.01), MMSE (follow-up) (r = 0.37, p b 0.01), CAMCOG (baseline) (r =
0.40, p b 0.01), and CAMCOG (follow-up) (r = 0.44, p b 0.01). However,
when examined separately within a) the combined dementia group
(AD andDLB) and b)HCs, PBVCwas not associated eitherwith anymea-
sures of global cognition at each time point, or with annualized change
scores.

3.7. Association between PBVC and age

Amixedmodel ANOVA, with age as a within subject factor, diagnos-
tic group (dementia vs. HC) as a between subject factor and gender as
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covariate, showed that there was a significant main effect of group on
PBVC, [F(1,67) = 12.35, p b 0.01], no significant main effect of age
[F(1,67) = 1.00, p = 0.32] and a significant group × age interaction
[F(1,67)=10.82, p b 0.01]. To further investigate the association between
age and PBVC, we performed an additional correlation analysis. Within
the combined dementia group, PBVC was significantly correlated with
age at baseline (r = 0.49, p b 0.01), suggesting that younger age at base-
line is associatedwithhigher rates of atrophy (Fig. 3). Extended voxelwise
correlational tests further revealed significant positive correlations be-
tween age and atrophy rates in the periventricular region, p b 0.05, FWE
corrected (Fig. 2D). No significant correlation between PBVC and age at
baseline was found within the HC group (r = –0.25, p = 0.16).

4. Discussion

In this longitudinal study, we examined brain atrophy rates (at
whole brain and regional levels) over 1 year in DLB and AD compared
against similarly agedHC.We further investigated associations of atrophy
rateswith clinical and cognitivemeasures. As hypothesized, the rate of at-
rophy in the AD group was significantly higher in comparison to the DLB
group, which showed a similar atrophy rate relative to HC. Furthermore,
among dementia (AD and DLB) subjects, we found that earlier age at
baseline was associated with a more aggressive rate of atrophy.

Our results confirm those of previous studies that showed increased
whole brain atrophy rates in AD compared to HC (O3Brien et al., 2001;
Sluimer et al., 2008; Whitwell et al., 2007). Our HC subjects had a
PBVC of−0.9%, while the PBVC in AD subjectswas−1.8%, approximate-
ly twice that of the controls. These rates of atrophy over 1 year are com-
parable with previous studies that have investigated clinical cohorts of
subjects with AD (Cover et al., 2011; Henneman et al., 2009; O3Brien
et al., 2001; Sluimer et al., 2008) with various methodologies. Although
the majority of studies assessing atrophy rates in AD have done so over
periods of 1 year or more, increased rates of atrophy in AD compared to
HC have also been demonstrated at intervals as short as three to six
months (Bradley et al., 2002; Schott et al., 2005), and accelerated atro-
phy is demonstrable several years prior to diagnosis in AD (Fox et al.,
2001). Collectively, these findings support a growing body of evidence
that rates of atrophy are good discriminators of AD fromHC. In contrast,
DLB showed a much slower rate of atrophy (−1%) relative to the AD
Legend

HC

DLB

AD

Fig. 3. Scatterplots of age at baselin
group. Our result, corroborated by a similar finding from a previous
study (Whitwell et al., 2007), suggests that whole brain atrophy rates
may be useful in distinguishing DLB from AD. However, a previous
study using boundary shift integral to assess whole brain atrophy
found no difference in rates between AD and DLB (O3Brien et al.,
2001), as although the numerical values were lower in DLB (1.4%)
than AD (2%), the relatively small sample size of that study (10 DLBs
and 9 ADs) might have reduced the statistical power to detect a
between-group difference.

Despite evidence of cognitive decline in theDLB group, atrophy rates
were in similar in the DLB and HC groups over 12 months. Our findings
are thus consistent with those from an earlier study with pathological
verification (Whitwell et al., 2007). Furthermore, the rate of atrophy
in non-demented Parkinson3s disease has also been reported to be
similar to that of HC (Burton et al., 2005). Thus, these convergent
findings support the view that alpha-synuclein pathology – a major
constituent of Lewy bodies – has limited involvement in neuronal loss
(Whitwell et al., 2007). This notion is also consistent with evidence
demonstrating a strong correlation between hippocampal atrophy and
β-amyloid plaques and neurofibrillary tangles but not synuclein pathol-
ogy (Burton et al., 2009). It is also interesting to note that cognitive de-
cline was present in DLB compared to HC in the relative absence of
atrophic changes over time. More studies will be needed to elucidate
the temporal relationships between the onset of cognitive symptoms
and structural changes in Lewy body diseases. Furthermore, increasing
in vitro evidence also suggests that alpha-synuclein is not a direct caus-
ative factor of neurodegeneration. Rather, it triggers a series of second-
ary molecular processes that eventually leads to a host of processes
including neuroinflammation, disruption of neurotransmitters, and
eventually cell loss (Lashuel et al., 2013; Wolozin and Behl, 2000).

We also extended previous studies by performing a voxelwise anal-
ysis of atrophy rates in different brain regions. Compared to HC, acceler-
ated atrophywas found predominantly in the temporal, parietal, and to
a lesser degree, occipital lobes in AD. Our longitudinal findings thus pro-
vide further support to the characteristic pattern of atrophy in the me-
dial temporal lobe and temporo-parietal cortices at the cross-sectional
level (Whitwell et al., 2007).

Our voxelwise analysis did not reveal significantly higher atrophy
rate in the DLB group when compared to the AD group in any brain
e by whole-brain atrophy rate.
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region, while the reverse contrast (AD b DLB) showed accelerated
atrophy affecting widespread areas including the temporal, frontal and
parietal regions in the AD group. These longitudinal results are in keeping
with a growing literature – albeitmostly cross-sectional – suggesting that
DLB is typically characterized by less pronounced global atrophy than AD
while the relative preservation of the medial temporal lobe in DLB has
been the most consistent structural MRI finding (Mak et al., 2014). Simi-
larly, we did not find atrophy of the temporal lobe in DLB compared toHC
despite applying a relatively liberal threshold of p b 0.001 at an uncorrect-
ed level (data not shown). Although the mechanisms underlying cogni-
tive decline in DLB and AD remain poorly understood, our finding of
differential patterns of temporal lobe atrophymay also have implications
for cognitive abnormalities associated with AD and DLB, such as the
marked impairment of episodic memory in AD compared to DLB.

The involvement of frontal lobe deficits in DLB remains to be
established. Ballmaier and colleagues have reported greater atrophy of
the frontal areas in AD compared to DLB (Ballmaier et al., 2004), but
other studies have reported no difference in frontal volumes between
DLB and AD (Burton et al., 2002). Moreover, the relative preservation
of the temporal lobe has led researchers to hypothesize that the frontal
lobe could be less susceptible in DLB as the reciprocal connections with
temporal regions would be affected to a lower degree (Ballmaier et al.,
2004). Compared to DLB, our finding of accelerated atrophy in the fron-
tal lobe in AD supports this hypothesis, and corroborates with baseline
evidence of lesser white matter tract changes in frontal areas in DLB
(Rosie Watson et al., 2012b).

Age is the strongest risk factor for dementia, yet the extent to which
atrophy rates change with age in dementia remains to be clarified. We
found that the effect of age on atrophy rates could bemodulated by neu-
rodegenerative pathologies, as evidenced by a significant group × age
interaction. Consistent with a previous study in AD (Whitwell et al.,
2007), we demonstrated that atrophy rates in the combined dementia
group acceleratedwith younger baseline age. Furthermore, our voxelwise
analysis extends previousfindings by showing that the age–atrophy asso-
ciationwas primarily driven by ventricular expansion over 1 year. Anoth-
er cross-sectional study also demonstrated increased cortical thinning in
younger AD patients (aged 60–75 years) compared to older AD patients
(aged 80–91 years) despite similar degrees of global cognitive impair-
ment (Stricker et al., 2011). Considered together, these findings corrobo-
rate previous research suggesting less severe pathological burden in late-
onset AD, and would support the notion that the extent of pathological
changes required to manifest cognitive deficits is markedly lower as
people age (Marshall et al., 2007). Although we found a negative but
non-significant correlation between age at baseline and PBVC for HC (in-
creased atrophy rate with advancing years), a previous study in HC re-
ported that the strongest negative correlations between age and percent
annual change in regional volumes were found in the entorhinal cortex
and the hippocampus — both of which are particularly vulnerable in the
early stages of AD (Fjell et al., 2009).

Despite evidence suggesting thatwhole brain atrophy rates are asso-
ciated with cognitive decline among AD subjects (Sluimer et al., 2008),
we did not find any significant correlation of global atrophy rates with
global cognitive measures in both AD and DLB. There are few possible
reasons for this observation. As discussed, alpha-synuclein pathology
in DLBmight bemore closely associatedwith synaptic dysfunction rather
than cell loss (PBVC), which was reported to beminimal and comparable
to HC. Another possible reason for a lack of correlation is the within-
subject variability of such neuropsychological measurements. Further-
more, it is likely that capacities involved in the performance of MMSE
and MOCA are underpinned by anatomically distinct brain regions.

The major strengths of the study include a well-characterized group
of probable DLB and AD patients. In addition, all the groups were
matched for age and educational level. Some potential limitations of
this study include the lack of neuropathological verification of AD and
DLB, as subject groups were based on clinical diagnosis, though this is
an inherent limitation of all ante-mortem imaging studies. Furthermore,
wehave previously demonstrated good agreement between clinical and
pathological diagnoses using the consensus clinical diagnostic method
adopted here (McKeith et al., 2000). However, we cannot exclude the
possibility that, given their age, a proportion of HC subjects will also
have preclinical disease, which would potentially reduce the sensitivity
of between-group differences in atrophy rates. The high rate of attrition
in the DLB group should also be considered when interpreting our find-
ings. Less than half (n = 14) of the originally recruited DLB subjects
(n = 35) returned for a follow-up assessment due to disease progres-
sion. While it is possible that differences in gender and mortality rates
might have influenced our results, these observations are in keeping
with previously established differences in gender ratios (Nelson et al.,
2010) and mortality rates between AD and DLB (Williams et al.,
2006). Although the present study found similar rates of atrophy in
DLB and HC, it is worth noting that a previous voxel-based morphome-
try study of the same cohort at baseline demonstrated both cortical and
subcortical atrophy in DLB compared to HC (R. Watson et al., 2012a).
This raises the question as to whether the DLB subjects in the present
study represent a more resilient sub-group of DLB. However, they did
not differ from those who were unable to complete the 12 month as-
sessment (n= 21) in age ormeasures of global cognition, neuropsychi-
atric features or motor parkinsonism. Lastly, our finding of a significant
correlation between age and rate of atrophy in the periventricular re-
gions should be considered with the caveat that the FSL-SIENAr tech-
nique might be more sensitive along ventricular boundaries that are
smooth and well defined as opposed to the sulci.

5. Conclusions

Our results indicate a higher rate of global brain atrophy in AD com-
pared to DLB, reflecting pathophysiological differences between Lewy
body and AD and highlight the potential utility of longitudinal imaging
to improve differential diagnosis. Our results also suggest that, unlike
AD, whole brain atrophy rate over 1 year may not be useful as a poten-
tial outcome marker for putative disease modifying therapies in DLB,
and other markers are needed.

Supplementarymaterial for this article can be found online at http://
dx.doi.org/10.1016/j.nicl.2015.01.017.
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