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Abstract 

Molecular scale information about the structure of surfactants at 

interfaces underlies their application in consumer products. In this study 

the non-linear optical technique of Sum Frequency Generation (SFG) 

vibrational spectroscopy has been used to investigate the structure and 

temporal behaviour of two cationic surfactants used frequently in hair 

conditioners. SFG spectra of films of behenyltrimethylammonium 

methosulfate (BTMS) and behenyltrimethylammonium chloride (BTAC) 

were recorded at the air/water interface and on glass slides following 

Langmuir Blodgett (LB) deposition. The assignment of the BTMS and 

BTAC spectral features (resonances) to the C-H stretching modes of the 

surfactants was consolidated by comparison with the SFG spectrum of 

deuterated cetyltrimethylammonium bromide (d-CTAB) and by recording 

spectra on D2O as well as on water. The C-H resonances arise from the 

methylene and methyl groups of the tail and head-groups of the 

surfactants. A slow collapse mechanism was observed following film 

compression of both BTAC and BTMS. The change in molecular 

structure of the films undergoing this slow collapse was followed by 

recording sequential SFG spectra in the C-H region, and by monitoring 

the SFG intensity at specific wavenumbers over time. Additionally, LB 

deposition onto glass was used to capture the state of the film during the 

slow collapse, and these SFG spectra showed close similarity to the 

corresponding spectra on water. Complementary Atomic Force 

Microscopy (AFM) was used to elucidate the layering of the compressed 

and relaxed films deposited on mica by LB deposition. 

 

Keywords: Cationic surfactants; Non-linear spectroscopy; Interface 

structure; LB film collapse   
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Introduction 

Understanding the structure and dynamics of surfactant adsorption at 

the air/liquid and liquid/solid interfaces under different conditions is 

essential for determining their suitability in applications such as 

detergency and lubrication1. Quantitative information on their packing 

and ordering on surfaces and the dynamics of their assembly such as 

how they respond to changes in lateral pressure is fundamental for 

predicting their performance. The rapid advance in understanding the 

behaviour of surfactants at interfaces over the past two decades has 

come about due to the development of powerful surface analytical 

techniques for studying surfactant films. These include neutron 

reflection,2 the quartz crystal microbalance,3 ellipsometry,4 and atomic 

force microscopy5 that provide information on the quantity of surfactant 

adsorbed at the interface and the thickness of the adsorbed film. 

Specifically, in the case of neutron reflection, insight can be gained by 

modelling the contribution of different molecular components of the 

surfactant to the film thickness. On the other hand, complementary 

molecular structure information, namely conformation, orientation and 

order, can be gained using vibrational spectroscopy. Several types of 

vibrational spectroscopy have been developed to probe interface 

structure under ambient conditions such as attenuated total reflection,6,7 

reflection absorption infrared8,9 and surface enhanced Raman 

spectroscopies.10 However, they have the drawback that they are 

interface sensitive rather than interface specific. Therefore, an appealing 

technique is the non-linear vibrational spectroscopy used here, that is 

interface specific with sub monolayer sensitivity.11,12 

The favourable activity of cationic surfactants on solid surfaces has 

made them important in a wide variety of applications such as lubricating 
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textiles and hair.1,13 For example, in hair conditioners they are usually 

combined with fatty alcohols, silicones, fragrances and preservatives.14 

As a result, studies of the surface structure and physical chemistry of 

these cationic surfactants as pure compounds, are sparse.  

This article reports a spectroscopic study of the surface structure of the 

practically important cationic surfactants behenyltrimethylammonium 

methosulfate (BTMS) and behenyltrimethylammonium chloride (BTAC) 

two of the longest chain cationics used in practical applications, when 

compressed on a Langmuir Blodgett (LB) trough, and during the slow 

collapse of the film following compression. We investigated the surface 

structure of BTMS and BTAC films at the air/water and air/solid 

interfaces using the technique of Sum Frequency Generation (SFG) 

vibrational spectroscopy.11 SFG has been widely used to study the 

orientation and order of surfactant hydrocarbon chains at the air/water 

interface. In the present study, the aliphatic tails of both surfactants are 

SFG active. This appears to be the first time that a slow collapse of a 

monolayer has been observed using SFG, and confirms the utility of 

SFG in time dependant systems.15–17 The spectrum of per-deuterated 

cetyltrimethylammonium bromide (d-CTAB) has also been recorded in 

the present study to help separate the contributions of surfactant chain 

and head groups to the spectra. The chemical structure of BTMS, BTAC 

and d-CTAB are shown in scheme 1. 

SFG is a non-invasive optical technique that can determine the 

conformational order of a surfactant on planar surfaces or interfaces 

under ambient conditions.11,12,18 In SFG a fixed frequency pulsed visible 

laser beam and a tuneable pulsed infrared laser beam are combined 

spatially and temporally at the surface or interface to generate photons 

at the sum of the two input frequencies. The sum frequency light is 
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monitored as the infrared laser frequency is tuned, and changes in 

intensity when the infrared frequency coincides with a vibrational mode 

in molecules at the interface. This generates a vibrational spectrum of 

the interface that yields information on the conformational order of the 

molecules in the interfacial film. SFG is interface specific and, provided 

they are transparent to infrared and visible light, is unaffected by the bulk 

phases either side of the interface. However, it requires the molecules 

comprising the surface film to have a net polar orientation. Additionally, 

only vibrations that are simultaneously infrared and Raman active may 

give rise to SFG spectra. The SFG resonances from the C-H stretching 

modes of the aliphatic chain and head group of the surfactants, which 

satisfy all the selection rules of SFG, are the focus of this work. 

  

Experimental  

SFG spectra were recorded using a picosecond spectrometer (EKSPLA, 

Vilnius, Lithuania) described in detail elsewhere.19 The second harmonic 

of a mode locked Nd:YAG laser provided the visible beam at 532 nm 

(29 ps pulses at 50 Hz). A tuneable infrared beam in the 1100-4000 cm-1 

regions was produced in an optical parametric generator. 

Attenuated Total Reflectance (ATR) IR spectra were recorded on a FT-

IR spectrometer (Perkin-Elmer 100) fitted with a liquid-nitrogen cooled 

mercury−cadmium−telluride (MCT) detector, and using a diamond ATR 

accessory (Specac Heated Golden Gate™ Type IIIA). Complementary 

Raman spectra were recorded with a CNI fixed-frequency stabilised 

diode laser operating at 835 nm, coupled to a fibre optic Raman probe 
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(Inphotonics) and spectrophotometer (Ocean Optics QE65-Pro, 5 µm 

slit) equipped with a thermoelectrically cooled back-thinned diode array. 

AFM images were recorded on an Agilent 5500 microscope in tapping 

mode using a silicon cantilever (NSC15, MikroMasch, Russia) at 

325 kHz with a spring constant of 46 N/m. 

All experiments were conducted at room temperature (19 C). BTMS 

and BTAC are almost completely insoluble under these conditions – the 

solubility of these surfactants is less than their cmc (estimated to be ~ 

0.024 mM by extrapolation from the available cmc data for shorter chain 

trimethylammonium cationics20). For isotherm measurements BTMS and 

BTAC were spread from 4.2 mM chloroform solutions (Fisher HPLC 

grade) onto Millipore water (18.2 MΩcm resistivity) at pH 7, in a LB 

trough (Nima 611, Coventry, U.K.). For SFG spectroscopy at the 

air/water interface the same surfactant concentration in chloroform 

solution was spread on Millipore water in a bespoke Teflon trough 

(dimensions 2.2 cm by 9.5 cm). Compression of the surfactant layer on 

this trough was achieved by moving a Teflon barrier manually. The LB 

troughs were cleaned by repeatedly wiping them with Millipore water and 

chloroform soaked tissue until a surface area vs pressure measurement 

of the pure water surface produced a horizontal line.  

To record SFG spectra of BTMS films at the air/glass interface the 

surfactant was LB deposited onto a clean glass slide from the surface of 

Millipore water at pH 7. The dipper was raised at 20 mm/min while 

computer controlled barriers kept the surface pressure constant. The 

glass slides were cleaned by soaking in DECON 90 for 24 h, followed by 

thorough rinsing and UV-ozone treatment for 40 min per side. To record 

corresponding AFM images of BTMS at the air/solid interface, the 
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surfactant was LB deposited onto a freshly cleaved mica substrate from 

the surface of Millipore water at pH 7, as above. 

BTMS (Clariant) was ground to a powder in a pestle and mortar and 

placed in a vacuum desiccator for 72 h for facile removal of isopropanol 

(IPA) impurity. The removal of IPA was confirmed by Raman, IR, and 

mass spectrometry. Furthermore, NMR and mass spectrometry 

recordings showed no other significant impurities. BTAC (Clariant) 

contains ~30% dipropylene glycol (DPG), but was not purified. DPG is 

fully miscible in water, and since only very small amounts of BTAC were 

spread onto the surface, the result is an extremely low concentration of 

DPG in the sub-phase. d-CTAB (Sigma, 99.5%), and sodium methyl 

sulfate (Aldrich) were used as received. The linear IR spectra of BTMS 

and BTAC are shown in Supplementary Information, spectra S1 and S2. 

Results 

The monolayers of BTMS and BTAC are unstable at surface pressures 

above their equilibrium surface pressures, so that the film slowly 

collapses and the surface pressure gradually falls once compression is 

arrested. Figure 1 shows surface pressure-time (π-t) plots of BTMS and 

BTAC at the air/H2O interface for this process after compression to 

30 mN/m, below the pressure at which rapid film collapse occurs. This 

rapid collapse pressure is approximately 40 mN/m for both compounds, 

as shown by standard π-A isotherms which are given in the 

Supplementary Information, S3. SFG survey spectra in the SSP and 

PPP polarization combinations (sum frequency, visible, infrared) were 

recorded between 2750 cm-1 and 3200 cm-1 for uncompressed films of 

both BTMS and BTAC at the air/water interface (figure 2). The spectra of 

both compounds are similar to each other in most respects and also 
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similar to the SFG spectra of analogous shorter chain ‘quats’ like 

cetyltrimethylammonium bromide (CTAB).21 The assignment of the 

prominent C-H resonances in the two compounds are indicated, and 

occur at 2853 cm-1 (d+), 2878 cm-1 (r+), 2925 cm-1 (d+
FR) and 2960 cm-1 (r-

).12 The features in the 2800 – 3000 cm-1 C-H stretching region appear 

as peaks, except for the dips in the SSP spectra at 2945 cm-1 in BTAC 

and 2960 cm-1 in BTMS. These dips appear due to destructive 

interference between the C-H resonances of the surfactants and the 

broad O-H resonances of hydrogen bonded water that occur centred at 

~3200 cm-1 and ~3400 cm-1.22,23 Our assignment of the 2925 cm-1 SSP 

resonance of the cationic surfactants differs from a recent assignment in 

the literature,24 but the spectra on D2O (figure 4 and S4) make our 

assignments of the r+
FR and d+

FR unambiguous, and in agreement with 

other published assignments21 and with polarisation selection rules25,26. 

No sharp peak at 3700 cm-1, which would be assignable to a ‘free’ O-H 

bond at the pure H2O/air interface, was observed when either cationic 

surfactant was present at the interface. 

BTMS and BTAC contain three methyl groups in their cationic head 

groups. To identify any potential SFG resonances from these groups, 

spectra of partially deuterated cetyltrimethylammonium bromide (d-

CTAB, scheme 1), in which only the methyl groups of the head group 

are protonated, were recorded at the air/H2O and air/D2O interfaces. The 

resonance that is observable at ~3025 cm-1 in the PPP spectrum of d-

CTAB (figure 3) is typical of a methyl anti-symmetric stretch (r -) when 

adjacent to an electronegative atom,27 and given the selective 

deuteration of the d-CTAB, this feature can only arise from the head 

group. Similar features appear in approximately the same region of the 

infrared spectra of BTMS and BTAC; at 3034 cm-1 and 3022 cm-1 
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respectively (Supplementary Information, S1 and S2) and at ~ 3025 cm-1 

in the PPP SFG spectra of both molecules at the air/D2O interface 

(Supplementary Information, S4).  These resonances are assigned to 

the r - mode of the methyl head groups of both molecules. The 

methosulfate anion, the counterion in BTMS, could potentially be 

responsible for this SFG signal. However, solutions of sodium 

methosulfate at different concentrations showed no SFG resonances in 

the C-H or S-O regions. This suggests that the counterion does not 

contribute to the BTMS SFG spectrum.  

In order to eliminate the contribution of water resonances, the spectra of 

films of BTMS and BTAC were recorded at the air/D2O interface (these 

spectra, analogous to those in figure 2, are shown in the Supplementary 

Information, S4). The H2O resonances are now absent, as are the dips 

in the spectra, since the destructive interference between the C-H and 

H2O resonances is no longer present. One difference in the spectra of 

the two films at the air/ H2O interface can be seen in the SSP spectra at 

2946 cm-1 (figure 2), where there is a peak or shoulder in the spectrum 

of BTMS that is absent in the BTAC spectrum. The 2946 cm-1 feature in 

BTMS remains in the air/D2O spectrum, and it was found that slightly 

compressed films of BTAC also showed this feature (figure 4). The 2946 

cm-1 peak can be assigned to the C-H Fermi resonance, r+
FR in both 

surfactants. Its appearance in uncompressed films of BTMS and not in 

BTAC arises due to the different conformational order in the two freshly 

prepared films before compression. In this respect, it is also noteworthy 

that the r- resonance in the PPP spectra (figure 2) is much larger in 

BTMS than it is in BTAC.  

Compressing a monolayer film comprising a surfactant with a single 

aliphatic chain is expected to increase its packing density and reduce 
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the number of gauche defects in the chain i.e. increase its 

conformational order. Consequently, a decrease in the intensity of the 

methylene d resonances is expected on compression. Furthermore, the 

tilt angle with respect to the surface normal of a more densely packed 

chain is expected also to decrease. In the SSP polarisation only one 

component of the second order susceptibility, χyyz, contributes to the SFG 

signal which means that only vibrational modes with components of their 

transition moment parallel to the surface normal are active. Therefore, 

the decrease in the tilt angle expected upon compression should lead to 

an increase in the intensity of the r+ resonance of the terminal methyl 

group of the chain. The increased density of molecules due to the 

compression will also increase the overall SF intensity. 

In order to monitor the conformational order and packing density of the 

surfactant chains as a function of time, successive spectra were 

recorded following film compression. SFG spectra of BTMS at the 

air/H2O interface before and after compression of the film to 50% of its 

original area are shown in Supplementary Information, S5. Sequential 

spectra were recorded as the film relaxed - each new spectrum began 

immediately after completion of the previous spectrum, taking 12 min to 

acquire. The relative changes in the d and r resonance intensities as the 

film relaxes can be seen by inspection. As shown by the π-t behaviour in 

figure 1, the compressed film is unstable, relaxing to a lower equilibrium 

surface pressure. The lower surface pressure results in more gauche 

configurations and larger tilt angles, hence larger amplitude d 

resonances and smaller r resonances are observed as the film relaxes.  

Because of the absence of interferences with water resonances the C-H 

spectra become clearer in the analogous experiments at the air/D2O 

interface as shown in the SSP polarisation spectra in figure 5 for both 
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BTMS and BTAC (the corresponding PPP polarised spectra for BTMS 

are shown in Supplementary Information, spectrum S6). Hence a 

reduced number of acquisitions was used to acquire the data in figure 5 

(100 acquisitions per 2 cm-1 step) compared to the data in figure S5 (250 

acquisitions per 2 cm-1 step), each full spectrum taking 7 min to 

accumulate compared to 12 min. This means that the first scan reaches 

2880 cm-1 approximately 170 s after compression compared to 300 s, 

providing increased time resolution. Consequently, in the first spectrum 

after compression (the red trace in figure 5figure 6), the r+ intensity is 

seen to be greater than the d+ intensity, in contrast to the measurements 

on water (Supplementary Information S5). The change in the r+
FR 

intensity at 2946 cm-1 is clearer without interference from the H2O 

resonances, and it follows the same time dependence as the r+ intensity, 

confirming its assignment to r+
FR.  

Figure 6 presents the time dependence of the SFG intensity of the d+ 

and r+ resonances of BTMS and BTAC just before and for an hour 

following compression, showing the decrease in the r+ resonance 

intensity and the increase in the d+ intensity.  The r+ and d+ intensities of 

the films do not follow the same temporal dependence as each other. 

For BTMS, the r+ intensity falls immediately and continuously for 

~60 min, whereas the recovery of the d+ intensity is slower, but reaches 

a maximum after ~45 min. The scatter in the data for BTAC is much 

higher than for BTMS obscuring any detailed trends in the data other 

than confirming an increase in d+ and decrease in r+ intensities with time. 

The value to which the r+ intensity decreases is not necessarily the same 

as the pre-compression intensity. This is clear in experiments where 

smaller amounts of BTMS and BTAC was used to form a film at the 
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air/D2O interface (an example, where 1/10th of that used to obtain the 

data in figure 5, is shown in Supplementary Information, S7). 

Quantitative analysis of the shape of these lines is complicated by the 

multiple factors affecting their intensity. Both signals will weaken as the 

film relaxes and the number density of molecules in the area illuminated 

by the laser beams decreases (this may for instance be the reason that 

the growth of the d+ intensity is gradual, while the r+ intensity decreases 

immediately). Additionally, the SFG response of the methyl and 

methylene groups vary with their respective tilt angles to the surface 

normal,25,26 and the relationship between their tilt angles will change as 

the number of gauche defects increases.  

The adsorption of cationic surfactants like BTMS and BTAC on 

negatively charged surfaces provides the mechanism for lubricating and 

softening materials like hair.14 We have therefore investigated their 

deposition from aqueous solution on glass. Figure 7 shows the C-H 

region of the SFG spectra of BTMS films that have been deposited onto 

glass slides by drawing them vertically through the air/H2O interface at 

neutral pH at different times after compression, in the SSP polarization 

(equivalent PPP spectra are shown in Supplementary Information, S8). 

For the spectrum shown in the lower panel of figure 7, the BTMS film 

was deposited immediately after compression, whilst in the upper panel 

the film was deposited 1 h after stopping compression. The unsmoothed 

spectra at the air/D2O interface under the same conditions before 

depositing onto glass are overlaid for comparison. The air/glass spectra 
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are qualitatively similar to the analogous spectra at the air/D2O interface, 

especially in terms of the r+/d+ ratios. 

Complementary AFM images of the surfactant LB deposited on cleaved 

mica (for reduced surface roughness) were also obtained, and are 

shown in figure 8. When BTMS was deposited onto the mica 

immediately after being compressed on the water surface (lower panel 

of figure 8), there are many ‘plateaux’ which are approximately 0.7 nm 

above the surrounding surfactant monolayer (which corresponds to the 

baseline height in the line profile of the AFM images). Within some of 

these plateaux, are areas that are 2.5 to 3.5 nm above the plateaux. In 

contrast, when the surfactant was allowed to relax on the trough surface 

before deposition on to the mica surface (upper panel of figure 8), the 

plateaux are still ~0.7 nm high, but each has a larger surface area, and 

they are fewer in number. The peaks are now larger, rising 4 nm above 

the plateaux, with less variation in the peak heights.  

The fully extended chain length of BTMS is ~2.5 nm, and therefore the 

~0.7 nm difference between the plateaux and surrounding material is 

interpreted as a change in phase of the BTMS monolayer, rather than 

another layer of BTMS. It is considered unlikely that the BTMS is 

arranged with the charged head-group pointing upwards due to the lack 

of stabilizing interactions of the charge with air. Therefore, the peaks that 

rise above the plateaux are interpreted as due to a bilayer resting above 

the monolayer.  

Discussion 

The presence of d resonances arising from gauche defects in the 

aliphatic chains of surfactants and their relative magnitude with respect 

to the r resonances from chain terminating methyl groups has been 
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widely employed as a qualitative but reliable indication of the 

conformational order of the chain. Hence the more intense the d 

resonances the greater the conformational disorder in the chain. The 

spectra of both BTMS and BTAC show considerably larger d resonances 

than r resonances when they are first cast on water. However, the 

relative magnitude of d+ and r+ resonances are of the same order of 

magnitude as in much shorter chain cationic surfactants with tertiary 

methyl ammonium head groups like C14TAB21 and ammonium 

headgroups like dodecylammonium chloride.22 The d+ resonances are 

much more intense in the SSP polarisation than in the PPP (figure 2) 

which is in accordance with the polarisation selection rule for the d+ 

resonance.25 Conversely the d- resonance, at ~ 2920 cm-1 in the PPP 

spectra is absent in the SSP polarisation.  

The compressed monolayers of both surfactants are unstable as 

demonstrated by the drop in surface pressure (figure 1) and the SFG 

response (figures 5, 6, S5, S6) of the methyl groups following 

compression. Film instability and slow collapse at pressures below that 

at which the film fractures are well documented.28,29 Under the conditions 

used here, the monolayer is in equilibrium with a multilayer phase, and 

the drop in surface pressure after compression represents a growth of 

this multilayer phase. This interpretation is supported by the AFM 

images, which show a greater volume of material in multilayer phases 

after relaxation on the trough (Supplementary Information, S9), and also 

by the SFG data, which is sensitive to the rising number of gauche 

defects that occur as the area per molecule in the monolayer increases. 

The AFM images of the unrelaxed film also show larger variability in the 

height of the multilayer phases when LB deposition occurs immediately 



15 
 

after compression - evidence that the multilayer phases are growing at 

this stage. 

Figure 1 shows that the π-t isotherm of BTMS relaxes at a slower rate, 

and to a lower equilibrium pressure (12.2 mN/m) than BTAC (17.0 

mN/m). Given their otherwise identical structures, this must be due to 

their different counterions. The chloride ions are better solvated than the 

methyl sulfate counter-ions meaning that the latter is more tightly bound 

to the cation than the former30, resulting in better shielding of the 

positively charged headgroup in BTMS than in BTAC. The increased 

inter-headgroup repulsion experienced by the BTAC explains the 

differences observed in the π-t isotherm. Furthermore, this counterion 

effect also explains the spectroscopic differences in the spectra of the 

initially formed BTMS and BTAC films (figure 2) which reflect the 

molecular structure of the monolayers at equilibrium pressure. The 

increased inter-headgroup repulsion in BTAC compared to BTMS 

reduces the close-packing of the surfactants, and results in a more 

poorly ordered monolayer, as implied by the r/d ratios of figure 2. 

Although the resonance at 3025 cm-1 attributed to the methyl C-H stretch 

of the head group was definitely present, its low signal to noise ratio 

made it difficult to make temporal measurements of the same accuracy. 

However, to a good approximation its intensity and position remained 

constant with time, suggesting its orientation is independent of the 

surface concentration i.e. unlike that of the surfactant tail. A similar 

finding was reached by Johnson and Tyrode31 in their more detailed 
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investigation of the orientation of the head group of sodium 

dodecylsulphate (SDS) as the surfactant concentration changed.  

 

Conclusions 

In this work, we have monitored the relaxation of two long chain 

insoluble cationic surfactants in a Langmuir monolayer below their 

fracture collapse pressure. This type of relaxation follows a slow 

collapse mechanism, whereby islands of multilayer phases nucleate and 

grow, reducing the lateral pressure of the monolayer.28,32,33 SFG was 

employed to monitor the molecular structure of the surfactant in the 

monolayer phase, and AFM to observe the multilayer structures of the 

films at the onset and at the end of the collapse process. SFG spectra 

taken during the collapse process showed that the cationic surfactant 

orders upon compression (as expected),21 but that the relationship of the 

molecular structure to the surface pressure is not necessarily simple – 

the surface pressure took a longer time (greater than 24 hours) to reach 

equilibrium than the SFG intensities (approximately 2 hours). Although a 

weak SFG signal made temporal measurement difficult, the SFG 

response and position of the headgroup remained constant throughout 

compression and relaxation. This is in agreement with previous SFG 

studies of the headgroup of a negatively charged surfactant, sodium 

dodecylsulfate.31 Differences between the two surfactants in the sum 

frequency and surface pressure data are attributed to the counter-ion 

binding energies.30 The data showed that the better shielded surfactant 

has a lower equilibrium spreading pressure, and a more ordered 

monolayer. The reduced ordering of the monolayer phase, as shown by 

the SFG spectra, is associated with growth of the multilayer phases 
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observed in the AFM images. The AFM images also showed a greater 

number of multilayer sites at the onset of the slow collapse of the film 

than was observed at the end. This also implies that either the formation 

of the multilayer phase is reversible, such that one multilayer phase 

grows at the expense of others, or that the multilayer phases are mobile 

enough that they can combine on the water surface during the relaxation 

process. The SFG spectra of BTMS recorded on glass are similar to 

those recorded at the air/water interface, and it is reasonable to 

conclude that this validates the assumption that LB deposition can be 

used to capture the state of the film. SFG was found to be a useful 

method for following the order and packing density of the monolayer as it 

changed over time, and combining it with other techniques such as 

surface pressure measurement and AFM imaging provided valuable 

context to the interpretation of the spectra. 
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Figure Captions 

Scheme 1. Structures of the surfactants used: (a) Behenyl trimethyl ammonium 
methosulfate, (BTMS); (b) Behenyl trimethyl ammonium chloride (BTAC); (c) Per-
deuterated cetyltrimethyl ammonium bromide, (d-CTAB).  

Figure 1. Plot of surface pressure against time following compression. BTMS and 
BTAC films were compressed on the Langmuir trough at a rate of 50 cm2/min, the 
barrier arrested and the films allowed to relax over a period of 2 days. Note that the 
time scale changes from seconds to hours after the compression is arrested. 

Figure 2. SFG spectra in the SSP (top panel) and PPP (bottom panel) polarisations 
of uncompressed films of 4.2 mM chloroform solutions of BTMS (black line) and 
BTAC (red line) deposited onto an LB trough. The assignments indicated by dotted 
lines are described in the text. The asterisk (*) marks a power step in the infrared 
laser output, and does not represent any actual change in the SFG signal. 

Figure 3. SFG spectra in the PPP polarisation of d-CTAB at the air/H2O and air/ D2O 
interface. 

Figure 4. SFG spectra of an uncompressed film of BTMS (black) and a slightly 
compressed film of BTAC (red) in the SSP polarisation at the air/D2O interface. The 
spectrum of compressed BTAC is time dependant. In order to capture the spectrum 
as quickly as possible, a smaller wavenumber range is used.  

Figure 5. Successive SFG spectra recorded in the SSP polarisation at approximately 
7 min intervals following compression of BTMS and BTAC films at the air/D2O 
interface. 10 µl of 4.2 mM chloroform solution was deposited onto the D2O surface 
and compressed to ½ the original area. These spectra have been smoothed (5 point 
adjacent averaging). 

Figure 6. Time-resolved SFG intensities of the d+ and r+ resonances in the SSP 
polarisation (at 2856 cm-1 and 2880 cm-1 respectively) of BTMS (upper panel) and 
BTAC (lower panel) at the air/D2O interface before and for ~60 min following 
compression. 10 µl of 4.2 mM BTMS or BTAC in chloroform solution was deposited 
onto the surface and compressed to ½ its original area. During the compression the 
visible laser beam was blocked and no data was recorded during this time. 

Figure 7. SFG spectra of BTMS at the glass/air interface in the SSP polarisation. In 
the upper panel the deposition onto a glass slide was carried out one hour after 
compression of the monolayer on the Langmuir trough. In the lower panel, the film 
was deposited immediately after compression. Spectra recorded at the air/D2O 
surface at approximately the same time after compression are super-imposed for 
comparison. 

Figure 8. AFM images and cross sections of BTMS at the mica/air interface. The 

upper panel shows the structure when the surfactant was allowed to relax on the 
water surface for one hour after compression. The lower panel shows the structure 
of the surfactant when cast immediately following compression on the Langmuir 
trough. The 0 nm height corresponds to the top of the surfactant monolayer. 
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ToC Diagram / Graphical Abstract: 
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Supplementary Information

 

S1. IR spectrum of solid BTMS. 

 

 

S2. IR spectrum of solid BTAC. 
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S3. π-A isotherms of BTMS and BTAC (40 µl of 2 mg/ml chloroform solutions) 
compressed on the air/water interface at a rate of 50 cm2/min 

 

 

S4. SSP and PPP survey spectra of BTMS and BTAC at the air/D2O interface. 
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S9. Successive SFG spectra recorded in the SSP polarisation at approximately 12 
min intervals following compression of a BTMS film at the air/H2O interface. 10 µl of 
4.2 mM BTMS in chloroform solution was deposited onto the surface of Millipore 
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water and compressed to ½ the original area. These spectra have been smoothed 
(5 point adjacent averaging).  

 

 

 

S6. SFG spectra of BTMS, in the PPP polarisation, at the air/D2O interface before 
and after compression, recorded at 9 min intervals. Spectra have been smoothed 
(5 point adjacent averaging) for clarity and normalised on the d+ resonance. 
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S7. SFG spectra of BTMS (upper panel) and BTAC (lower panel), in the SSP 
polarisation, at the air/D2O interface before and after compression, recorded at 7 
minute intervals. Here 1/10th the amount of BTMS and BTAC solutions was used 



35 
 

compared to figure 5 (2 mg of 2.1 mM solution compared to 10 mg of 4.2 mM 
solution). Spectra have been smoothed (5 point adjacent averaging) for clarity. 

 

 

S8. SFG spectra of BTMS at the glass/air interface in the PPP polarisation. In the 
upper panel the casting onto a glass slide was done one hour after compression of 
the monolayer on the Langmuir trough. In the lower panel, the casting was done 
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immediately after compression. Spectra recorded at the air/D2O surface at 
approximately the same time after compression are superimposed for comparison. 

 

S9 - Histogram data extracted from AFM images. Upper panel – data 

from BTMS sample deposited on mica immediately following 

compression. Lower panel – deposited one hour after compression. 

Histograms show volume of peaks at each height (detected above 

threshold of 1.2 nm). Total volume of upper panel 6.0 x105 nm3 and of 

lower panel 26 x105 n 


