
The Flashfm Approach for Fine-mapping Multiple Quantitative Traits

– Supplementary Information

N Hernandez, J Soenksen, P Newcombe, M Sandhu, I Barroso, C Wallace, JL Asimit

Supplementary Section 1: FLexible And Shared information Fine-

Mapping (flashfm) model description

1.1 The multiple traits joint ABF is a function of marginal ABFs

We first suppose that we observe N individuals, each with measurements for M quantitative traits that

are transformed to meet conditional normality and homogeneity assumptions, conditional on covariates.

Later, we relax this so that a subset of individuals may have missing measurements for some of the traits.

Here, we find expressions for the ABF of causal SNP models for joint and marginal models and show

that the information from single trait analyses could be used to evaluate the joint ABF.

To find expressions of the log(ABF) for each of the joint and marginal models we use the approxima-

tion based on the Bayesian information criterion (BIC) from the null and causal models (BIC0 and BIC1,

respectively)[6]. The log(ABF) approximation (BIC0−BIC1)/2, is expressed in terms of log likelihoods

as

log(ABF) .
= l1− l0− k log(N)/2, (1)

where k is the number of causal SNPs in the model and l1 and l0 are the log likelihoods of the causal

and null models, evaluated at the maximum likelihood estimates.

An expression for the log(ABF) of a causal SNP model for a single trait is found after finding the log

likelihoods for the relevant models in a Gaussian framework. Let y j, j = 1, . . . ,M denote the vector of N

measurements for trait j, γ j represent a particular model with k j SNPs for trait j and Xγ j be a N× k j
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matrix of genotypes scores for k j SNPs that are present in the model γ j for trait j. Under model γ j with

causal SNPs Xγ j , the log-likelihood of a single trait y j is given by

l1 = − 1
2V̂

(y j−Xγ j β̂ j)
T (y j−Xγ j β̂ j)−

N
2

log(2πV̂ )

= −N
2

(
1+ log(2π)+ log

(
(y j−Xγ j β̂ j)

T (y j−Xγ j β̂ j)

N

)
, (2)

where V̂ = 1
N (yi−Xγ j β̂)

T
j (yi−Xγ j β̂ j) is the MLE variance of the residuals from the fitted model.

Likewise, under the null model of no SNP associations and, without loss of generality, assuming mean

0 for the trait, the log likelihood is

l0 =−
N
2

(
1+ log(2π)+ log

(
yT

j y j)

N

))
. (3)

Then, using (2) and (3) in (1), the log(ABF) for a single trait j is

log(ABF j) = −N
2

log
(
(y j−Xγ j β̂ j)

T (y j−Xγ j β̂ j)

yT
j y j

)
−

k j

2
log(N)

= −N
2

log
(

V̂γ j

V̂j

)
−

k j

2
log(N), (4)

where Vj is the variance of trait j and V̂γ j is the residual variance from model γ j.

Next, consider M traits that each have a possible model with possibly overlapping causal SNPs Xγ j

for trait j. Let Y be the N×M matrix of phenotypes and denote its rows by yi· (M-vector of trait values

for individual i) and columns by y j (N-vector of trait j values). Under the null model for all traits, the

joint log likelihood for M traits is

lM
0 = −1

2

N

∑
i=1

yT
i· Σ̂
−1
0 yi·−

N
2

log((2π)M|Σ̂0|)

= −N
2
(M+M log(2π)+ log(|Σ̂0|), (5)

where Σ̂0 =
1
N ∑

N
i=1 yi·yT

i· is the MLE of the covariance matrix under the null model, having element (i, j)

given by 1
N yT

i y j (assuming mean 0 for all traits), and NM
2 is obtained by using properties of a scalar and
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the trace of a matrix.

Likewise, under model γ j with k j causal SNPs Xγ j for trait j the joint log likelihood is

lM
1 =−N

2
(M+M log(2π)+ log(|Σ̂1|), (6)

where Σ̂1 is the MLE of the covariance matrix under this model (covariance matrix of residuals) with

element (i, j) given by 1
N (yi−Xγiβ̂i)

T (y j−Xγ j β̂ j). Then it follows from (1) with (5) and (6) that the

log(ABF) of the joint model containing models γ j for trait j is

log(ABFM) = −N
2

log(|Σ̂1Σ̂
−1
0 |)−

K
2

log(N), (7)

where K = ∑
M
i=1 ki is the total number of SNP effects in the joint model. When there are two traits

|Σ̂1Σ̂
−1
0 | =

∣∣∣∣∣∣∣
(y1−Xγ1β̂1)

T (y1−Xγ1β̂1) (y1−Xγ1β̂1)
T (y2−Xγ2β̂2)

(y1−Xγ1β̂1)
T (y2−Xγ2β̂2) (y2−Xγ2β̂2)

T (y2−Xγ2β̂2)

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
yT

1 y1 yT
1 y2

yT
1 y2 yT

2 y2

∣∣∣∣∣∣∣
−1

=

∣∣∣∣∣∣∣
g1 h12

h12 g2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

V1 C12

C12 V2

∣∣∣∣∣∣∣
−1

where, gi =
1
N (yi−Xγiβ̂i)

T (yi−Xγiβ̂i) is the residual variance of trait i, h12 =
1
N (yi−Xγiβ̂i)

T (y j−Xγ j β̂ j)

is the residual covariance for traits i and j, and C12 is the sample (unbiased) covariance between traits 1

and 2. Using (4), we obtain an expression for gi that is a function of log(ABF), sample size N, and the

number of SNPs in model γ j, k j

g j = exp(− 2
N

(
log(ABF j)+

k j

2
log(N)

)
Vj. (8)
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Then, using (4), the sum of the log(ABF) for M single traits simplifies to

M

∑
j=1

log(ABF j) = −N
2

log
(

∏
M
j=1 g j

∏
M
j=1Vj

)
− K

2
log(N)

= −N
2

log



∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 0 · · · 0

0 g2 · · · 0
... 0

. . .
...

0 0 · · · gM

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

V1 0 · · · 0

0 V2 · · · 0
... 0

. . .
...

0 0 · · · VM

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1
and it follows that the difference between the joint log(ABF) and the sum of the marginals is

DM = log(ABFM)−
M

∑
j=1

log(ABF j)

= −N
2

log



∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 h12 · · · h1M

h12 g2 · · · h2M

... hi2
. . .

...

h1M h2M · · · gM

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

g1 0 · · · 0

0 g2 · · · 0
... 0

. . .
...

0 0 · · · gM

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

+
N
2

log



∣∣∣∣∣∣∣∣∣∣∣∣∣

V1 C12 · · · C1M

C12 V2 · · · C2M

... Ci2
. . .

...

C1M C2M · · · VM

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

V1 0 · · · 0

0 V2 · · · 0
... 0

. . .
...

0 0 · · · VM

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

= −N
2


log

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 h12
g2
· · · h1M

gM

h12
g1

1 · · · h2M
gM

... hi2
g2

. . .
...

h1M
g1

h2M
g2
· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
− log

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 C12
V2

· · · C1M
VM

C12
V1

1 · · · C2M
VM

... Ci2
V2

. . .
...

C1M
V1

C2M
V2

· · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣


. (9)

where the second determinant is a constant C with respect to the samples. Thus, the joint ABF

is proportional to the product of the the marginal BFs and a function of the sample sizes and residual

variances and covariances. Residual variances are approximated from the log(BF) for the coinciding model

and trait, and residual covariances hi j are approximated as described below. If traits are standardised to
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have mean 0 and variance 1 and trait summary statistics are unavailable, we may use an estimate of the

correlation matrix based on the GWAS summary statistics from the LD score regression approach[3].

We have hi j = yT
i y j− yT

i Xγ j β̂ j− yT
j Xγiβ̂i + β̂∗iT XT

γi∪γ j
Xγi∪γ j β̂

∗
j , where Xγi∪γ j is the genotype matrix

with the SNPs contained in models γi and/or γ j (i.e. union of model SNPs) and β̂∗i has the same

effect estimates as β̂i at the SNPs in γi and has 0 at SNPs that are only in in γ j. The term yT
i y j

may be estimated from trait summary statistics. Terms of the form yT
i Xγ j β̂ j = ∑k∈γ j Sx jyiβ̂ jk, where

Sx jyi = xT
j yi and β̂ jk is the trait j effect estimate for the kth SNP in γ j, and Sx jyi = ∑

N
k=1 x jkyik is

calculated from the the single-SNP effect estimates of the kth SNP from the trait j model for trait i (i.e.

Sx jyi = β̂x j(N−1)Vx jVyi +2∗RAFx j ∗ µ̂YiN, where RAFx j is the reference allele frequency of x j). The last

term β̂T
i XT Xβ̂ j relies on the effect estimates from the two trait models and XT X may be approximated

from either the genotype or a suitable reference panel, as element (i, j) of the matrix is

(XT X)i j
.
= N(Cov(Xi,X j)−E(Xi)E(X j))

Thus, all quantities in the final expression for DM could be obtained from marginal analyses of the traits

and summary information of the traits.

1.2 Traits not measured for all samples

It is common for only a subset of individuals to have measurements for all traits. For simplicity, consider

two traits that are both measured in N individuals and let Ni− j be the number of individuals with trait i

measured, but not trait j; the number of individuals with trait i measured is Ni = N +Ni− j. Using all Ni
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samples for trait i we obtain the marginal log(ABFi) as in (4), we then have

log(ABF1)+ log(ABF2) = −(N +N1−2)

2
log
(

V̂γ1

V1

)
− (N +N2−1)

2
log
(

V̂γ2

V2

)
−k1

2
log(N1)−

k2

2
log(N2)

= −N
2

log
(

V̂γ1V̂γ2

V1V2

)
+

N1−2

N1

(
log(ABF1)+

k1

2
log(N1)

)
+

N2−1

N2

(
log(ABF2)+

k2

2
log(N2)

)
−k1

2
log(N1)−

k2

2
log(N2) (10)

The joint ABF is obtained in a similar manner, where extra terms are needed to account for the

individuals with measurements for only one of the two traits. Let yi− j denote the trait i measurements

for individuals that do not have trait j measured. It follows that for the likelihood under the null, we

have

l0 = −N− N
2

log(V1V2− cov2(y1,y2))−N log(2π)

−N1−2

2
(1+ log(2π)+ log

(
yT

1−2y1−2

N1−2

)
)

−N2−1

2
(1+ log(2π)+ log

(
yT

2−1y2−1

N2−1

)
) (11)

and under the models γ1,γ2, for traits 1 and 2, where β̂i is based on all Ni samples with measurements

and β̂i− j is based on the Ni− j samples with trait i measured and not trait j , we have

l1 = −N−N log(2π)− N
2

log(V̂γ1V̂γ2−Ĉ2
γ1,γ2

)

−N1−2

2
(1+ log(2π)+ log

(
yT

1−2y1−2−yT
1−2Xγ1β̂1−2

N1−2

)
)

−N2−1

2
(1+ log(2π)+ log

(
yT

2−1y2−1−yT
2−1Xγ2β̂2−1

N2−1

)
), (12)
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From (11) and (12) we get

l1− l0 = −N
2

log
(

V̂γ1V̂γ2−Ĉ2
γ1,γ2

V1V2−C2
1,2

)
−N1−2

2
log
(
yT

1−2y1−2−yT
1−2Xγ1β̂1−2

yT
1−2y1−2

)
−N2−1

2
log
(
yT

2−1y2−1−yT
2−1Xγ2β̂2−1

yT
2−1y2−1

)
(13)

Notice that log
(

yT
1−2y1−2−yT

1−2Xγ1 β̂1−2

yT
1−2y1−2

)
is the same form as the log ratio in the marginal log(ABF1)

expression in (4) and is based on a subset of size N1−2 from the N1 samples. Treating this log ratio based

on the N1−2 samples as an approximation to that based on all N1 samples, we have

log
(
yT

1−2y1−2−yT
1−2Xγ1β̂1−2

yT
1−2y1−2

)
.
=− 2

N1
(log(ABF1)+

k1

2
log(N1))

Likewise for trait 2.

Now, using l1− l0 in (13), log(ABFM) = l1− l0− k1
2 log(N1)− k2

2 log(N2), where N j, j = 1,2 are used,

being the number of samples in the estimates for β̂ j. So,

log(ABFM) = −N
2

log
(

V̂γ1V̂γ2−Ĉ2
γ1,γ2

V1V2−C2
1,2

)
+

N1−2

N1
(log(ABF1)+

k1

2
log(N1))

+
N2−1

N2
(log(ABF2)+

k2

2
log(N2))

−k1

2
log(N1)−

k2

2
log(N2)

= −N
2

log


∣∣∣∣∣∣∣

g1 h12

h12 g2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

V1 C12

C12 V2

∣∣∣∣∣∣∣
−1

+
N1−2

N1
log(ABF1)+

N2−1

N2
log(ABF2)

−N1−N1−2

N1

k1

2
log(N1)−

N2−N2−1

N2

k2

2
log(N2) (14)

Then, when finding the difference between the joint ABF and sum of marginal ABFs in this setting,
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the additional terms accounting for missing measurements for one of the traits cancel out between the

joint and sum of marginal ABFs, giving a similar form to when all traits are measured.

DM = log(ABFM)−
2

∑
j=1

log(ABF j) (15)

= −N
2

log

∣∣∣∣∣∣∣
1

h12

g2
h12

g1
1

∣∣∣∣∣∣∣− log

∣∣∣∣∣∣∣
1

C12

V2
C12

V1
1

∣∣∣∣∣∣∣


.

In general, for M traits, the joint log(ABF) is expressed as

log(ABFM) =
M

∑
j=1

log(ABF j)+DM,

where DM for two traits is as in (16) and for M = 3,4,5, expressions follow.

When there are more than two traits and some have missing data, additional terms to account for

missing measurements are present in the expression for the log(ABFM). The derivations for 3-6 traits

generalise from the two trait scenario and we use the notation δi jk to represent the term given in (9) for

traits i, j,k and analogously for a larger number of traits. In addition, Ni jk is the number of individuals

with traits i, j and k all measured, Ni j−k denotes the number of individuals with both traits i, j measured

and not trait k, Ni− jk denotes the number of individuals with trait i measured, but neither of traits j and

k, and analogous notation is used for more/different combinations of traits.

3 traits:

DM = δ123 +
N12−3

N12
δ12 +

N13−2

N13
δ13 +

N23−1

N23
δ23,

where

N jk−l = N jk−N jkl;

N j−kl = N j−N jk−N jl +N123;
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4 traits, denote M = {1,2,3,4}:

DM = δ1234 +
4

∑
j=1;k,l,m∈M \{ j}

Nklm− j

Nklm
δklm +

4

∑
j=1;k 6= j;l,m∈M \{ j,k}

N jk−lm

N jk
δ jk,

where

N jkl−m = N jkl−N jklm;

N jk−lm = N jk−N jkl−N jkm +N1234;

5 traits, denote M = {1,2,3,4,5}:

DM = δ12345 +
5

∑
i=1; j,k,l,m∈M \{ j}

N jklm−i

N jklm
δ jklm−i +

5

∑
i=1; j 6=i;k,l,m∈M \{i, j}

Ni j−klm

Ni j
δi j

+
5

∑
i=1; j,k 6=i;l,m∈M \{i, j,k}

Ni jk−lm

Ni jk
δi jk

where

Ni jkl−m = Ni jkl−Ni jklm;

Ni jk−lm = Ni jk−Ni jkl−Ni jkm +N12345;

Ni j−klm = Ni j−Ni jk−Ni jl−Ni jm +Ni jkl +Ni jkm +Ni jlm−N12345;

In our flashfm software we include a “fastapprox" option that gives a quicker calculation by ignoring the

extra adjustment terms. This is recommended when there are not many missing trait measurements and

when a quicker answer is required; by default fastapprox=FALSE, but for 6 traits, only fastapprox=TRUE

is available.

The prior probability for the joint models includes a term that gives more weight to joint models that

have a shared causal variant between the traits; this term κ is derived in a combinatorial manner and is

identical to that used in MFM[1]. As in MFM, a correction term τ is also included to ensure that the

prior probability of a certain number of SNPs in a model is the same for any value of κ . When κ = 1,
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there is no weight for joint models with shared causal variants and the flashfm PP for each model for a

given trait is the same to what one would obtain from single-trait fine-mapping, which we also refer to

as independent fine-mapping, as it does not make use of data from other traits.

1.3 Implementation

There are two options for implementing flashfm. If single-trait fine-mapping results have not already

been obtained, they may be generated within flashfm using an extended version of JAM (Joint Analysis

of Marginal summary statistics[4] - this requires GWAS summary statistics and either a genotype matrix

or both a genotype covariance matrix and MAF vector from a reference panel or in-sample study. Al-

ternatively, any single-trait fine-mapping approach that output model PPs, such as FINEMAP[2] could

be used as input - this still requires GWAS summary statistics and either a genotype matrix or both a

genotype covariance matrix and MAF vector from a reference panel or in-sample study.

JAM assesses the joint effect of multiple SNPs on a trait in an integrated Bayesian penalized regression

framework, outputting the posterior probabilities (PP) for the multi-SNP models. This allows us to

identify the models with non-negligible evidence that should be the focus when assessing joint models

between multiple traits. As JAM operates on a set of tag SNPs due to colinearity issues, we have

extended it such that all models are expanded by their tag SNPs in the same manner as GUESSFM[5]

(https://github.com/chr1swallace/GUESSFM). This is done by substituting each tag SNP in a model by

each of the SNPs that it tags so that if SNPs 1 and 2 are in a model and they each tag t1 and t2 SNPS,

respectively, the model expands into (t1 + 1)(t2 + 1) models, for which ABFs are found using (4; β̂ for

multi-SNP models are obtained from the single-SNP β̂ and the genotype matrix (or reference panel) of

the SNPs in the model.

Using a binomial prior distribution we may then find PPs for all of the expanded (and original) models.

For ease of interpretation, we also construct SNP groups (using the snp.picker function of GUESSFM)

such that SNPs in the same group could be substituted for one another; SNPs in the same group are in

high LD and are rarely selected together in models. The results are then summarised in terms of SNP

group PPs by summing over SNP models that fall into each SNP group model; the PP for the SNP

group model A+B is the sum over PPs from all models with one SNP from A and one SNP from B.
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The posterior probability of model γ1 for trait 1 is proportional to a sum of the posterior probabilities

of all configurations C1, j, j = 1, . . . ,n. Let Ii, j be an indicator function, taking the value 1 if γi∩ γ j 6=∅

and 0 otherwise, and let δi j = expDi j Then

Pr(γi for trait 1|Data) ∝ ∑
j

pi p jABFiABF j×δi jκ
Ii, j τi j

= PPi

(
∑

j:Ii, j=0
δi jτi jPPj +κ ∑

j:Ii, j=i
τi jδi jPPj

)

= PPi

(
∑

j
δi jτi jPPj +(κ−1) ∑

j:Ii, j=i
δi jτi jPPj

)

= PPi

(
1+(κ−1)

∑ j:Ii, j=1 δi jτi jPPj

∑ j δi jτi jPPj

)

Rather than considering all model combinations, we reduce the model space by setting a cumulative

posterior probability threshold (e.g. cpp=0.99). For each trait, we use the single-trait fine-mapping

results to order the models by PP and retain those for which the sum of their PPs is below 0.99. As

these δi j terms depend on the SNPs that are included in each model, a loop over the model combinations

is required to make these small calculations.

1.4 Related Individuals Implementation

The above derivations are based on a sample of unrelated individuals. If the proportion of related

individuals is relatively large such that their removal would be a noticeable loss in data, rather than

excluding related samples, an alternative approach is considered. First, single-SNP mixed linear models

that account for relatedness are fit for each trait using GEMMA[7] (Genome-wide Efficient Mixed Model

Association). The output from GEMMA includes the relatedness-adjusted effect estimates β̂ of each

SNP for one trait, which may then be used as input to JAM[4] or FINEMAP[2], as above, to identify

the models with non-negligible evidence. As the single-SNP effect estimates are adjusted for relatedness,

they may be used together with the genotype matrix of unrelated samples (or reference panel) as above

to obtain β̂ for multi-SNP models, which are needed to get log(ABF) as in (4); as these effect estimates

are adjusted for relatedness, they may be treated as if obtained from an unrelated sample. The effective

sample size is used as N in the log(ABF) calculation.

11



Supplementary Section 2: Region construction for fine-mapping in

the Ugandan cohort

In order to obtain more precision in the construction of the fine mapping regions we consider the centi-

morgan (cM) genetic distance between SNPs. Approximately 80% of the SNPs (hg19/build 37) in the

Ugandan data set do not map to a cM (reference panel) position so missing values were imputed using

linear interpolation.

We then considered the GWAS for each of the 33 traits and selected the SNPs using a p-value

threshold of 1×10−6.

Next, we sorted the p-values of the selected SNPs from all trait GWAS in descending order and

removed any duplicated SNPs. Finally, regions were constructed using the following steps:

1. For the most significant SNP, construct a region ±0.05cM around the SNP

2. Block correlation check: for a block of 200 SNPs on each side of the region we compute the r2

(LD) between the 200 SNPs block and the lead SNP in the region. We extend the region until the

SNP of the block with highest r2 (considering a minimum of 0.4).

3. Repeat the procedure for subsequent SNPs, checking first if the SNP belongs to any previously

constructed region.

Applying this procedure to the Ugandan data set we obtained 56 regions detailed in Supplementary

Figure 5.
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Supplementary Section 3: Figures

Supplementary Figure 1: LD (r2) plot of IL2RA region, 10p-6030000-6220000. This region was
used in simulations comparing single-trait fine-mapping with flashfm and fastPAINTOR with flashfm. It
is based on the CEU from 1000 Genomes Project phase 3, build GRCh37/hg19.
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Supplementary Figure 2: Comparison of flashfm and single trait fine-mapping when there is a
shared causal variant. Causal variants were simulated for two traits: trait 1 has causal variants A+C,
while trait 2 has A+D causal variants, where βA = log(1.25) for both traits and βC = βD = log(1.4).
Both panels show the mean posterior probability throughout a variation of the sample size from 1000 to
5000, with no missing data. Source data are provided in Supplementary Data 1.4
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Supplementary Figure 3: LD (r2) plot of CTLA4 region, 2q-204446258-204816382. This region
was used in simulations comparing fastPAINTOR with flashfm and for testing robustness of flashfm to
mis-specification of trait correlation. Subsets of this region were used in assessing the running time of
flashfm. It is based on the CEU from 1000 Genomes Project phase 3, build GRCh37/hg19.
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Supplementary Figure 4: Correlation for the Ugandan cardiometabolic traits. There are three
distinct correlation blocks for anthropometric traits (height, weight, body mass index, etc.), mature red
blood cell traits (mchc, mch, hct, mcv, hgb, rbc), and for lipid traits ) lowdlipo, highdlipo, cholesterol
and triglycerides).
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Supplementary Figure 5: Distribution across chromosomes of number of signals per regions for
cardiometabolic traits in the Ugandan data. The legend shows the regions with 2-6 signals for the
quantitative traits (QT).
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