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The relative energies of the low-pressure rutile, anatase, and brookite polymorphs and the high-
pressure columbite polymorph of TiO2 have been calculated as a function of temperature using
the diffusion quantum Monte Carlo (DMC) method and density functional theory (DFT). The
vibrational energies are found to be important on the scale of interest and significant quartic an-
harmonicity is found in the rutile phase. Static-lattice DFT calculations predict that anatase is
lower in energy than rutile, in disagreement with experiment. The accurate description of electronic
correlations afforded by DMC calculations and the inclusion of anharmonic vibrational effects con-
tribute to stabilizing rutile with respect to anatase. Our calculations predict a phase transition from
anatase to rutile TiO2 at 630± 210 K.

PACS numbers: 02.70.Ss, 63.20.Ry, 91.60.Ed

Titanium dioxide (TiO2) finds many applications in
photocatalysis [1, 2] and as a catalyst support [3]. It
exhibits high chemical and optical stability, long-term
durability, corrosion resistance, low cost and non-toxicity.
Two main polymorphs of TiO2 occur in nature, rutile and
anatase [4], and a third polymorph, brookite, also exists
at ambient conditions [5]. Several high-pressure forms
of TiO2 have also been synthesized, the most stable of
which is columbite (TiO2-II) [6].

Experiment and extrapolations from experimental
data suggest that rutile is the most stable phase from
0 to above 1300 K [7]. Anatase and brookite are ob-
served to undergo irreversible phase transitions to the
rutile form at high temperatures [7, 8], indicating the
presence of high energetic barriers between different poly-
morphs. Although this could suggest that anatase and
brookite are metastable at all temperatures, the high en-
ergetic barriers make it difficult to determine phase tran-
sition temperatures between polymorphs. This suggests
that accurate computations of the relative stabilities of
the polymorphs could provide valuable insights into the
phase stability of the TiO2 system.

Relative energies of TiO2 polymorphs have been cal-
culated in numerous first-principles density-functional-
theory (DFT) electronic structure studies [9–17], which
suggest that the three low-pressure polymorphs, rutile,
anatase, and brookite, are close in energy under ambient
conditions, although the results obtained depend signifi-
cantly on the density functional used, and are therefore
inconclusive.

The main goal of the present work is to estimate
the relative energies of rutile, anatase, brookite and
columbite TiO2 with as high an accuracy as possible.
We calculate the relative electronic energies of TiO2 poly-
morphs using the diffusion quantum Monte Carlo (DMC)

method [18, 19], which is the most accurate method
known for calculating the energy of a large system of
quantum particles. Furthermore, we find that the ener-
getic contribution arising from thermal nuclear motion,
which we have calculated using DFT, is crucial in de-
termining the phase stability of TiO2 polymorphs, and
that anharmonic terms are important in dynamically sta-
bilizing the rutile polymorph. A very recent study has
reported similar results, although anharmonic vibrations
were not considered [20].

The quantum Monte Carlo calculations were per-
formed using the casino code [21]. The cost of a DMC
calculation scales approximately as the cube of the num-
ber of particles N for fermionic systems, which allows
applications to large systems. The central approxima-
tion in a DMC calculation is the “fixed-node constraint”
[22]. The nodal surface is the (3N − 1)-dimensional sur-
face on which the wave function is zero and across which
it changes sign. A trial wave function is optimized using
the variational quantum Monte Carlo (VMC) method,
and the nodal surface of the DMC wave function is
constrained to equal that of the trial wave function.
An importance-sampling transformation is employed in
DMC which ensures that the important parts of the wave
function are sampled most often, and reduces the fluc-
tuations in the energy. In DMC the imaginary-time
Schrödinger equation is used to evolve an ensemble of
electronic configurations towards the ground state dis-
tribution. VMC and DMC are variational techniques in
the sense that they give an energy that is higher than or
equal to the exact energy, subject to a small statistical
error that can be systematically reduced by running the
simulations for longer. The variational property of VMC
and DMC aids cancellation of errors in energy differences.
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We used a trial wave function of Slater-Jastrow form

ΨSJ(R)= exp[J(R)] det
[
ψn(r↑i )

]
det
[
ψn(r↓j )

]
, (1)

where R denotes the positions of all of the electrons, r↑i is

the position of the ith spin-up electron, r↓j is the position
of the jth spin-down electron, exp[J(R)] is a Jastrow cor-

relation factor [23, 24], and det
[
ψn(r↑i )

]
and det

[
ψn(r↓i )

]
are determinants of up- and down-spin single-particle or-
bitals. The DMC calculations were performed using the
T-moves scheme which ensures that the energy remains
greater than the ground-state energy when pseudopoten-
tials are used [25–27].

Single-particle orbitals for the TiO2 structures were
calculated using the castep plane-wave DFT code [28],
the PBEsol functional [29] and a large basis-set energy
cutoff of 160 Ry (' 2177 eV), which provided DFT en-
ergy differences between structures converged to within
0.0036 eV/[TiO2] of the large basis set limit. The orbitals
were transformed into a “blip” polynomial basis for effi-
cient evaluation in the calculations [30]. We used Jastrow
factors consisting of an electron-nucleus term represented
by a polynomial of order 8, an electron-electron term rep-
resented by a polynomial of order 8, and a cosine expan-
sion with 4 inequivalent parameters per spin-pair type,
giving a total of 43 optimizable parameters. The wave-
function parameters were optimized using VMC, with the
variance of the energy minimized first [31], followed by
minimization of the variational energy [32, 33].

We used correlated-electron pseudopotentials (CEPPs)
for O [34] and Ti [35] generated from ab initio multi-
configurational Hartree-Fock (MCHF) atomic calcula-
tions [36, 37]. The CEPPs give significantly more accu-
rate results than Hartree-Fock pseudopotentials [38, 39].
CEPPs contain two-body operators that describe core
polarization [40] and their high accuracy has been ver-
ified in tests using coupled cluster calculations includ-
ing single, double, and perturbative triple excitations
[CCSD(T)] [41] with the molpro code [42]. The O
CEPP has a He core and the d channel was chosen as
local. A projector was generated from the ground state
orbitals for both the s and p channels. The Ti pseudopo-
tential has a Ne core and the f channel was chosen as
local. The semi-core nature of the Ti CEPP was cap-
tured using five projectors. We use the highest angu-
lar momentum channel available as the local potential,
which helps to reduce the errors associated with using
pseudopotentials in DMC [27].

The thermodynamic limit was approached in our cal-
culations by using large simulation cells containing 768
electrons (32 formula units) subject to periodic bound-
ary conditions. We used experimental cell parameters
and atomic positions at 300 K from Refs. 43 (rutile), 44
(anatase), 5 (brookite), and 45 (columbite). Cell dimen-
sions, and the number of formula units contained within
each of them, are given in Table I. We chose simulation

cells that maximize the distance between periodic images
[46], which mitigates finite-size errors [47, 48].

DMC calculations were performed for each structure at
a single wavevector which was chosen from the wavevec-
tors that yield a real-valued wave function so as to mini-
mize the difference between the DFT energy at the single
wavevector and the converged DFT energy. We used the
finite-size correction scheme of Kwee et al. [49] in which
an alternative local density approximation (LDA) func-
tional (the “KZK” functional, constructed from DMC
data for homogeneous electron gases) provides reference
DFT energies that include finite-size effects, which can
then be used to construct a finite-size correction for the
DMC energies.

Our main results were obtained using a DMC time step
τ of 0.004 a.u. and a target population of 10,240 config-
urations. While explicit time-step extrapolation is com-
mon practice [50], test DMC calculations with time steps
of τ = 0.001, 0.0025 and 0.004 a.u. using simulation cells
containing 192 electrons (8 formula units) showed that
time-step errors in energy differences were negligible at
τ = 0.004 a.u., validating the use of a single time step.
More details of the finite-size corrections and extrapola-
tions are provided in the Supplemental Material [51].

Figure 1 shows the energies of the four polymorphs
obtained in DMC and for DFT calculations using the
same set of functionals used to assess the accuracy of
the DMC finite-size corrections [29, 52–56]. Energies are
given relative to that of anatase for each method. Calcu-
lations with “on-the-fly” castep DFT pseudopotentials
[28] produced similar results to those shown in Fig. 1.
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FIG. 1. Static-lattice energies relative to that of anatase
from DMC and DFT calculations using the experimental lat-
tice constants. The statistical errors in the DMC results are
represented by translucent rectangles.

Given the relatively large variation of structural ener-
gies with the choice of functional and the estimated errors
for DMC results, these data show that the DFT level of
theory provides an inadequate description of the relative
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Unit-cell lattice constants (Å) formula F (300 K) (eV/[TiO2])
Polymorph a b c units DMC DFT

Rutile [43] 4.5922 4.5922 2.9574 2 −2476.228(8) −2470.2631
Anatase [44] 3.7845 3.7845 9.5143 4 −2476.246(6) −2470.3091
Brookite [5] 9.174 5.449 5.138 8 −2476.24(1) −2470.2826
Columbite [45] 4.61 5.43 4.87 4 −2476.15(1) −2470.2254

TABLE I. Experimental orthorhombic unit cells used for the four TiO2 polymorphs. The Helmholtz free energies at 300 K,
F (300 K), estimated as the sum of electronic energy and the anharmonic vibrational free energy at 300 K are also shown.
The anharmonic vibrational free energy is calculated using the PBEsol functional and VSCF equations, whereas the electronic
energy is evaluated with both DMC and DFT using the PBEsol functional.

energies of the four structures. The generalized gradient
approximation (GGA) functionals were found to provide
the same energetic ordering of the phases as DMC, but
most, with the notable exception of the PBEsol and WC
functionals, tend to overestimate the energy differences,
while the LDA functional significantly underestimates
the static-lattice energy of columbite. The relative DFT
energies are expected to show significant self-interaction
errors which give rise to unphysical delocalization of the
3d electrons.

The inclusion of nuclear vibrational motion provides
significant corrections to the static-lattice energies of
TiO2 polymorphs. We have performed vibrational cal-
culations for the four polymorphs at the anharmonic
vibrational level using a vibrational self-consistent-field
(VSCF) method [57] and the PBEsol density functional.
The vibrational calculations were performed using the ef-
ficient “nondiagonal supercells” method [58] which allows
us to fully converge the results with respect to system
size.

The inclusion of anharmonic contributions in our lat-
tice dynamics calculations is motivated by the presence
of unstable vibrational modes in rutile TiO2 when de-
scribed within the harmonic approximation [59–61]. Us-
ing the experimental volume, we find unstable modes
within various regions of the vibrational Brillouin zone
(BZ), mostly around the Γ point and the

(
1
2 ,

1
2 ,

1
4

)
point.

The presence of unstable modes is independent of the
density functional used to perform the calculations (see
Supplemental Material [51]). Instead of directly includ-
ing anharmonic effects, first-principles DFT calculations
for TiO2 have mostly been performed using structures
that are relaxed to volumes which are smaller than the
experimental volume, an approach that tends to remove
the dynamical instabilities but leads to a substantial bias
in the energy differences between structures.

Figure 2 shows a slice through the Born-Oppenheimer
(BO) energy surface of rutile TiO2. The atomic configu-
rations at which we have evaluated the BO energies are
along a line spanned by one of the two soft modes at the
Γ point. Our VSCF calculations show that the inclusion
of anharmonicity leads to dynamical stability throughout
the BZ, arising primarily from quartic terms in the BO
potential. Figure 2 illustrates the quartic anharmonicity

of the BO energy surface and the resulting vibrational
density. The explicit inclusion of anharmonicity plays
a significant role in the energetics of rutile TiO2, with
the anharmonic free energy differing from harmonic esti-
mates of the free energy by up to 0.035 eV/[TiO2] (see
Supplemental Material [51]).
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FIG. 2. A slice through the Born-Oppenheimer energy sur-
face at the Γ point of the Brillouin Zone. The red shaded
area shows the vibrational density for a mode that is unsta-
ble at the harmonic level but is stabilized by anharmonicity.
The horizontal red line shows the energy of the mode. The
normal coordinate is measured in units of 1/

√
2|ω|, where ω

is the imaginary harmonic frequency of the mode.

We take the Helmholtz free energy to be the sum of
the static-lattice electronic energy and the anharmonic
vibrational free energy at 300 K, which is a valid approx-
imation due to the large band gap of TiO2 polymorphs
relative to the thermal energy. Figure 3 shows the to-
tal static-lattice energies and the Helmholtz free ener-
gies at 300 K using electronic energies evaluated with
DMC and DFT using the PBEsol functional. The DMC
Helmholtz free energies of anatase, brookite, and rutile
are indistinguishable within our target accuracy of 0.01
eV/[TiO2]. Our final DFT and DMC Helmholtz free en-
ergies at 300 K including the effects of anharmonic vi-
brations are summarized in Table I.

We also evaluate the Helmholtz free energy at a range
of temperatures, using the 300 K experimental unit cells.
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FIG. 3. Left: static-lattice energies relative to that of
anatase from DMC and DFT-PBEsol calculations, and right:
Helmholtz free energies at 300 K evaluated by adding DFT-
based vibrational corrections to the DMC and DFT-PBEsol
energies. The statistical error in the DMC results is repre-
sented by translucent rectangles. The DFT data were gener-
ated using a k-point grid spacing of 0.060 Å−1 with an error
estimated to be less than 0.004 eV/[TiO2].

The resulting Helmholtz free energies, relative to anatase,
are shown in Fig. 4, suggesting a phase transition from
anatase to rutile at 630 ± 210 K. We estimate the error
incurred by neglecting thermal expansion in our calcula-
tions to be less than 0.003 eV/[TiO2] over the tempera-
ture range 300–575 K by comparing the PBEsol harmonic
free energies of anatase and rutile TiO2 at the fixed-
volume geometries with those at the variable-volume ex-
perimental unit cell geometries provided by Hummer et
al. [62].

Our results using the experimental geometries at 300 K
for all temperatures predict the stability of anatase at low
temperatures. However, the experimentally observed ru-
tile polymorph is energetically very close to being stable,
which strongly suggests that reproducing the experimen-
tal results requires both an accurate description of elec-
tronic correlation and anharmonic vibrations.

There are several sources of error in our calcula-
tions. The DMC energies are affected by time-step and
population-control bias, although we have verified that
these effects are negligible compared with our target ac-
curacy of 0.01 eV/[TiO2]. We have made every effort to
minimize the fixed-node errors, which we expect to be
small, although they are difficult to quantify. We have
employed finite-size corrections using methods that have
been demonstrated to be accurate and consistent with di-
rect extrapolation [46]. Similarly, while pseudopotentials
are inherently approximate, our tests have shown that
CEPPs provide very accurate representations of the Ti
and O atoms. The use of pseudopotentials in DMC in-
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FIG. 4. Helmholtz free energies relative to that of anatase as
a function of temperature. These are estimated as the sum of
the DMC electronic energy and the DFT anharmonic vibra-
tional free energy at each temperature. Both the electronic
energies and the anharmonic vibrational free energies are eval-
uated for 300 K experimental unit cells at all temperatures.
Statistical errors are represented by translucent regions. De-
tails of the DFT anharmonic vibrational energy calculations
are as in Fig. 3.

curs an additional bias, but the T-moves scheme ensures
that this bias is positive, which promotes cancellation of
errors in energy differences.

The harmonic vibrational energies of anatase at fixed
volume depend only weakly on the density functional.
The differences between the vibrational energies obtained
from the LDA, PBEsol, and PBE functionals increase ap-
proximately linearly with temperature (see Supplemen-
tal Material [51]). We suggest that the disagreement with
experiment may arise mainly from the DFT evaluation of
vibrational properties. DFT calculations with both the
LDA and PBE density functionals have been reported
to underestimate harmonic frequencies in diamond [63],
and the size of this underestimation is of the order of
magnitude of the difference between the Helmholtz free
energies of anatase and rutile TiO2 at low temperatures
reported in our work.

In summary, we have obtained accurate estimates of
the relative energies of rutile, anatase, brookite, and
columbite TiO2 using DMC methods, and of the relative
Helmholtz free energies by combining static-lattice DMC
methods and anharmonic vibrational methods. The main
calculations were performed using DMC static-lattice cal-
culations, and finite-size corrections were obtained from
the KZK scheme. Our results confirm that columbite
TiO2 is significantly higher in energy than the three low-
pressure phases. The lowest (anatase) and highest (ru-
tile) Helmholtz free energies of the low-pressure phases
at 300 K differ by only about 0.02 eV/[TiO2], which is
close to our target accuracy of 0.01 eV/[TiO2]. We have
shown that an accurate description of both electronic cor-
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relation and vibrational energies are required to provide
accurate energetics for the TiO2 polymorphs considered.
Our VSCF calculations show that the rutile structure
of TiO2 is stabilized by quartic anharmonic vibrational
motion. Our results are consistent with the experimen-
tally observed irreversible phase transitions of anatase
and brookite to the rutile form at high temperatures, but
do not explain the stability of rutile at low temperatures
[7, 8].
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