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Abstract15

Pharmaceutical tablets are typically manufactured by the uni-axial compaction of16

powder that is confined radially by a rigid die. The directional nature of the compaction17

process yields not only anisotropic mechanical properties (e.g. tensile strength) but18

also directional properties of the pore structure in the porous compact. This study19

derives a new quantitative parameter, Sa, to describe the anisotropy in pore structure20

of pharmaceutical tablets based on terahertz time-domain spectroscopy measurements.21

The Sa parameter analysis was applied to three different data sets including tablets22

with only one excipient (functionalised calcium carbonate), samples with one excipient23

(microcrystalline cellulose) and one drug (indomethacin), and a complex formulation24

(granulated product comprising several excipients and one drug). The overall porosity,25

tablet thickness, initial particle size distribution as well as the granule density were all26

found to affect the significant structural anisotropies that were observed in all investigated27

tablets. The Sa parameter provides new insights into the microstructure of a tablet and28

its potential was particularly demonstrated for the analysis of formulations comprising29

several components. The results clearly indicate that material attributes, such as particle30

size and granule density, cause a change of the pore structure, which, therefore, directly31

impacts the liquid imbibition that is part of the disintegration process. We show, for the32

first time, how the granule density impacts the pore structure, which will also affect the33

1



performance of the tablet. It is thus of great importance to gain a better understanding34

of the relationship of the physical properties of material attributes (e.g. intragranular35

porosity, particle shape), the compaction process and the microstructure of the finished36

product.37

Keywords: Pharmaceutical tablet, terahertz, pore structure, microstructure,38

anisotropy, disintegration39

1. Introduction40

Powder compaction is a central process in pharmaceutical tablet manufacturing. Dur-41

ing compaction, force is applied on an aggregate of mixed particles of excipient and active42

pharmaceutical ingredient (API) to transform the powder bed into a porous compact of43

a well-defined shape. The compaction process involves the rearrangement, plastic and44

elastic deformation, as well as fragmentation of particles. As a result, individual par-45

ticles come into sufficiently close proximity with one other to establish interparticulate46

attractive forces or bonds (Nyström et al., 2008). The magnitude of the particle-particle47

bonding forces depends on the underlying physical mechanism of bonding between the48

individual particles as well as on the surface areas of interparticulate contacts. The49

resulting interparticulate bonds do not only govern the tensile strength of the powder50

compact, but they play a key role in the tablet disintegration process. A tablet only51

disintegrates when sufficiently many interparticulate bonds are broken. This process52

is typically achieved or facilitated by the stress that is generated from the swelling of53

specifically designated excipient particles (Markl and Zeitler, 2017). A wide range of54

pharmaceutical excipient particles begin to swell when they come in contact with water55

or physiological fluids in the body. The swelling and subsequent disintegration of the56

powder compact is thus driven by the rate at which liquid penetrates into the porous57

tablet. The liquid uptake rate is directly affected by the pore space in the tablet, which58

is formed during powder compaction (Yassin et al., 2015a,b). It is well-established in59

other fields that the liquid imbibition process is quite complex and cannot be described60

accurately only by the overall total porosity (Berg, 2014) but that it is considerably61

∗Corresponding author’s electronic address: dm733@cam.ac.uk
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impacted by other characteristic properties of the pore structure, such as their pore con-62

nectivity, constrictivity and tortuosity as well as pore wall roughness Schoelkopf (2000);63

Liu et al. (2014). It is these properties that are particularly affected by anisotropy in64

pore structure as they are defined by the compaction process.65

Powder compaction is inherently anisotropic in nature as the powder particles are66

confined radially by a rigid die whilst they are compressed axially by the moving punch67

(Moe and Rippie, 1997). Unsurprisingly, this yields directionally dependent mechanical68

properties of the finished tablet. It is well-known that the tensile strength varies signifi-69

cantly between the axial and radial direction (Mullarney and Hancock, 2006) as well as70

that the punch geometry affects the density distribution within a tablet Eiliazadeh et al.71

(2003, 2004). Such anisotropic mechanical properties explain common failure modes72

that are encountered during tablet manufacturing such as capping and delamination.73

Besides the impact on the mechanical properties, uni-axial compression also affects the74

pore structure within a tablet. Thus far there is a much better understanding of the75

directional mechanical properties in tablets and much less is known with regard to the76

anisotropy of the void space. This is not too surprising given that it is much harder77

to measure and quantify. The most common methods for pore characterisation, namely78

mercury porosimetry and helium pycnometry, cannot resolve the directionality of the79

pores.80

One method that can provide such information is X-ray computed microtomography81

(XµCT). It was recently demonstrated that XµCT can be used to analyse the orientation82

of pores by representing individual pores by their eigenvectors (Markl et al., 2017b). The83

first eigenvector is defined in the direction of the main axis of a pore and its angle relative84

to the global coordinate system of the macroscopic tablet provides a measure of the85

orientation of the pore. Another very promising method to study the pore structure of86

pharmaceutical tablets is terahertz time-domain spectroscopy (THz-TDS). THz-TDS can87

be employed to measure the effective refractive index of a sample in a non-destructive88

manner (Bawuah et al., 2016b; Markl et al., 2017a,b). The effective refractive index89

is a function of the fill fractions of each constituent as well as of the total porosity.90

It can therefore be used to determine the porosity of a tablet within seconds. The91

measurement speed is clearly an advantage of THz-TDS (seconds) compared to XµCT92
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(hours). Although the terahertz method cannot provide information about individual93

pores, by using polarised terahertz radiation, it is possible to analyse the directional94

properties of the pore structure as introduced recently (Bawuah et al., 2016a).95

This study presents a rigorous development of a new structural parameter, Sa, to96

characterise anisotropic pore structures using THz-TDS based on the method originally97

developed by Bawuah et al. (2016a). The Sa parameter is derived for a two-phase98

system (air filled pores and one solid material) and then extended to multi-phase porous99

media (air filled pores and several different components). This parameter is applied100

to characterise a simple formulation, a three-phase system and eventually a complex101

commercial formulation.102

2. Theory103

Using THz-TDS it is possible to measure the effective refractive index, neff, of a porous104

medium, which is related to the effective permittivity by εeff = n2
eff. Effective medium105

theory or zero-porosity approximation (ZPA) can be applied to calculate the porosity106

from εeff or neff (Markl et al., 2017b). Besides determining the total porosity, it is107

possible to gain insight into the directionality of the pores by exploiting the polarisation108

of the terahertz wave. The terahertz plane wave’s electric field vector, E, is in the109

direction perpendicular to the propagation direction, k, of the terahertz pulse. The110

specific direction of the terahertz electric field can thus be used to analyse anisotropic111

characteristics of the pores or the material of the probed medium. We begin with deriving112

the lower and upper limits of εeff on the basis of a theoretical model of the porous113

medium that was first introduced by Wiener (1912). This model is then combined with114

the experimental terahertz data to define a new characteristic parameter, Sa, that is a115

measure of the degree of anisotropy of a pore structure. Initially, this concept is derived116

for a two-phase system (one solid material and air voids) and then generalised for multi-117

phase systems. Throughout this study we assume that scattering and dispersion effects118

are negligible as well as that the fill fraction(s), i.e. porosity and fractions of each119

constituent, are known.120
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Figure 1: Schematic of the equivalent electric circuits for the propagation of a terahertz pulse in the

z-direction through a two-phase porous compact composed of air and solid phase. The extreme cases are

represented by the arrangement in series (left, lower Wiener bound) and in parallel (right, upper Wiener

bound). The permittivity of air is ε0 = 1 and that of the solid material is εs. The effective permittivity,

εeff, for an actual sample always falls between the lower, εL, and the upper, εU , limits defined by the

Wiener bounds. Its equivalent circuit is a combination of series and parallel capacitors. The dimensions

of the capacitors, which are not provided in the schematic, are all set to unity.

2.1. Extreme Cases of the Pore Structure: Wiener Bounds121

The permittivity of a porous medium can be calculated by considering a unit cell122

in which a repeating layered structure is used to reflect the pore structure. In this123

representation the pore space is described as air layers that are separated by solid matrix124

layers. The dimensions of the layers are much smaller than the wavelength of the terahertz125

waves, which are propagating parallel to the plane of the unit cell. Two extreme cases126

define the minimum and maximum of εeff: a serial and a parallel arrangement of the127

solid material, εs, and the air, ε0, respectively (Figure 1). The direction of the terahertz128

electric field defines the type of arrangement (e.g. the material and air are in series129

when they are arranged along E). The description of εeff can be performed analogous130

to electrical circuitry using capacitors to represent the material and air (Kadlec et al.,131

2008).132

The relative capacitance of the serial (CL) and parallel (CU ) configuration can thus
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be calculated by

1

CL
=

1

C0,L
+

1

CS,L

CL =
C0,LCS,L
C0,L + CS,L

(1)

CU = C0,U + CS,U . (2)

In general a capacitance is defined as C = εAw with ε, A, w as the permittivity of the

dielectric medium between the two plates, the area of the conductive plates and the

distance between the two plates, respectively. Figure 1 depicts only the dimensions that

deviate from unity and therefore either the area of the conductive plates or the distance

between the two plates is assumed to be unity. A unit length represents the amplitude

of the E vector. Furthermore, the influence of the x − y geometry of the tablet on the

terahertz measurement is negligible as the cross-section of the beam is much smaller

than the dimensions of the tablet (i.e. the diameter of the tablet). In other words, the

electric field decays in a distance much less than the radius of the tablet so that the

dependence on the lateral geometry is negligible. The capacitance in the Eqs. 1 and 2 as

well as in Figure 1 can thus be defined as C0,L = ε0
1
f , Cs,L = εs

1
(1−f) , C0,U = ε0f and

Cs,L = εs (1− f). The intrinsic permittivity εs is a material property and it refers to the

skeletal material of the particle, i.e. the permittivity of the material in the absence of

any intraparticle pores. ε0 = 1 is taken to approximate the permittivity of ambient air

(ε = 1.0006). The extreme cases, Eqs. 1 and 2, can now be expressed in terms of their

permittivities as

εL =
εs

f (εs − 1) + 1
(3)

εU = f + (1− f) εs = f (1− εs) + εs. (4)

with εL = CL and εU = CU . Eqs. 3 and 4 are well known as the lower and upper limits133

of the Wiener bounds for a two-phase porous medium (Tuononen et al., 2010; Bawuah134

et al., 2016a). The true value of the effective permittivity must always fall within the135

Wiener bounds (εL ≤ εeff ≤ εU ) for arbitrary shapes of the pores and the solid material.136

As outlined above, the Wiener bounds represent the extreme cases of either a fully

parallel or in series arrangement of the solid material and the pores. However, in reality
6
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Figure 2: Representation of the two cases as electric circuits. The ideal permittivity, εideal, is given

by the underlying model (e.g. effective medium theory, ZPA) used to relate neff from the terahertz

measurements to the porosity. xL and xU are fractional dimensions to express Cidela, CL and CU as a

function of their respective permittivities.

the pore architecture in a pharmaceutical tablet forms a complex structure that can be

approximated by a combination of parallel and serial circuits (Figure 1). Bawuah et al.

(2016a) used the concept of Wiener bounds and adapted a model from effective heat

conductivity (Krischer and Kast, 1978) to study the structure of pharmaceutical tablets.

The effective permittivity was used in conjunction with both the upper and the lower

bound permittivities of the Wiener limits model to derive a structure parameter (S) for

porous pharmaceutical tablets:

1

εeff
=

S

εL
+

1− S
εU

S =
1

εU − εL

(
εUεL
εeff

− εL
)

. (5)

2.2. Alternative Definition of Structural Parameter137

The S parameter as defined in Eq. 5 strongly depends on the porosity and it is thus138

limited to study structural changes of samples of the same porosity. We therefore propose139

an alternative definition, the Sa parameter, which enables the comparison of structural140

changes for samples with different porosities.141

This reused structural parameter Sa is defined to be 0.5 for the case of a completely142

random arrangement of solid material and pores. This means that the measured εeff is143

equal to the theoretical/ideal permittivity, εideal. εideal can be calculated from the known144

porosity, f , and the intrinsic permittivity, εs, of the material using either an effective145
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medium approximate (EMA) or ZPA. The proposed Sa model considers two cases: i)146

εeff < εideal, and ii) εeff ≥ εideal (Figure 2).147

The effective permittivity is represented by the ideal permittivity in conjunction with

either a serial (Case I) or a parallel (Case II) arrangement as the boundary of each

extreme case (Figure 1). In Case I this leads to

1

εeff
=
xL
εL

+
1− xL
εideal

xL =
εL (εideal − εeff)

εeff (εideal − εL)
. (6)

Case II can be expressed as

εeff = xUεU + (1− xU ) εideal

xU =
εeff − εideal

εU − εideal
. (7)

xL and xU are the fractional dimension of the representative capacitors. These fractional

dimensions range from 0 to 1, where 0 yields εeff = εideal and 1 corresponds to the extreme

case. The Sa parameter combines these two cases by

Sa =

0.5 (1− xL) for εeff < εideal

0.5 (1 + xU ) for εeff ≥ εideal

. (8)

Consequently, Sa ranges from 0 to 1 and it indicates the degree of parallel and serial148

arrangements of pore/solid material structures in a sample.149

Rather than in transmission, the Sa as well as the S parameter can also be applied to150

study the tablet structure on the basis of terahertz reflection measurements. A reflection151

setting could be beneficial for imaging applications or in-process control of the tablet152

quality where a transmission setup is not feasible. The change of the measurement153

configuration only affects the calculation of neff from the reflected terahertz waveform154

(Jepsen et al., 2007), but it does not require a modification of the definitions of the155

structural parameters or the Wiener bounds.156

2.3. Multi-Phase Systems157

The Sa and S parameters, as defined above, can be applied to reflect the arrangement

of the pores in more complex tablet matrices. For a formulation of J constituents in the
8



powder compact, J solid materials are considered in the calculation of the Wiener bounds

using the general definition:

εL =
1

f +
∑J
j=1

xj

εj

(9)

εU = f +

J∑
j=1

xjεj (10)

with xj as the fill fraction of component j. Using Eqs. 9 and 10 to determine the Sa pa-158

rameter allows to study the arrangement and structure of all components including pores.159

This, however, does not enable the dissociation of the pore/solid material arrangement160

from that of the different components to each other and to the pores.161

In order to study only the arrangement of the pores with respect to the solid phase,

we propose to consider all solid constituents as one solid material, which is described

by the lumped intrinsic permittivity, εs,lumped. The lower and upper bounds are thus

defined as

εL =
1

f +
∑J
j=1

xj

εj

=
1

f + xrest

εs,lumped

=
1

f + 1−f
εs,lumped

(11)

εU = f +

J∑
j=1

xjεj

= f + xrestεs,lumped = f + (1− f) εs,lumped (12)

with xrest = 1 − f . The multi-phase system can now be treated like a two-phase sys-162

tem where the pores are embedded in an effective medium. The theories developed for163

two-phase systems, such as the Sa parameter (Eq. 8), can be applied to porous media164

consisting of several components using Eqs. 11 and 12.165

2.4. Extreme Values of the Wiener Bounds166

As discussed above, the Wiener bounds are used to gain insights into the anisotropic

structure of pharmaceutical tablets. The Sa and S parameter depend on how close the

upper and lower bounds of the Wiener limits are to each other and how they are related
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to the porosity. The maximum separation of the Wiener bounds for two-phase compacts

is studied on the basis of the function

F (f) = εU (f)− εL(f). (13)

Combining Eqs. 3, 4 and 13 gives

F (f) = f (1− εs) + εs −
εs

f (εs − 1) + 1
. (14)

The maximum separation condition for the Wiener bounds can be determined by

forming the derivative with respect to the porosity:

F ′(f) = (1− εs) +
(εs − 1) εs

[f (εs − 1) + 1]
2 . (15)

The porosity maximising the separation of the Wiener bounds, fmax, can be calculated

by setting F ′(fmax) = 0, which yields

(εs − 1) εs

[fmax (εs − 1) + 1]
2 = (εs − 1)

fmax =

√
εs − 1

εs − 1
. (16)

We can now replace the permittivity by the refractive index (ns =
√
εs) in Eq. 16

and fmax can then be expressed as

fmax =
ns − 1

n2
s − 1

=
1

ns + 1
. (17)

Eq. 17 gives the porosity which maximises the separations of the Wiener bounds for a

two-phase system and also for a multi-phase system as described by Eqs. 11 and 12. This

can be confirmed by forming the second derivative F ′′(f):

F ′′ (f) = −2 [f((εs − 1) + 1] (εs − 1)
2
εs

[f (εs − 1) + 1]
4

F ′′ (fmax) = − 2 (εs − 1)
2
εs

[fmax (εs − 1) + 1]
3 < 0 (18)

This inequality is always true as εs > 1, which confirms that Eq. 17 yields a maximum.167
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3. Materials and Methods168

3.1. Materials169

In the following we present data from several different formulations ranging from a170

simple one with only one excipient to a complex formulation consisting of several excip-171

ients and an API. The terahertz transmission data of these formulations were already172

reported previously as indicated below, but we use these datasets to demonstrate how the173

concept of Sa can be applied to better understand the microstructure of pharmaceutical174

tablets in general and the anisotropic pore structure in particular.175

The porosity was calculated by relating the bulk density, %b, to the known true density,

%t, of the used materials:

f = 1− %b
%t

. (19)

The bulk density of flat-faced tablets (first two sets of samples, M01 and M02) was176

determined by %b = W/(π
(
D
2

)2
H) with W , D and H as the weight, diameter and177

thickness of the tablet. The third set of samples (M03) were tablets compacted by dual178

radius punches and the bulk density was thus calculated by %b = W/(0.25HfillπD2+Vcup
),179

where Hfill and Vcup are the fill depth and the tablet cup volume, respectively.180

The first set of samples (henceforth referred to as M01) consisted of pure func-181

tionalised calcium carbonate (FCC, Omyapharm R©, Omya International AG, Oftringen,182

Table 1: Summary of the M01 samples, namely pure FCC tablets with target porosities from 45% to

67%. More details about these tablets were reported previously in Markl et al. (2017b). Each batch

consisted of 15 tablets and the properties listed are averaged values for each batch. The porosity was

calculated using Eq. 19 with a true density of 2.96 g cm-3.

Batch ID Thickness Weight Porosity

H W f

(mm) (mg) (-)

B01 1.67 217 0.45

B02 1.64 190 0.50

B03 1.63 168 0.55

B04 1.62 147 0.61

B05 1.61 122 0.67
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Switzerland) particles. Details about this set of samples are provided in Markl et al.183

(2017b) and a summary is given in Table 1. The FCC powder was compacted to flat-184

faced tablets with a target diameter of 10 mm using a compaction simulator (PuuMan185

Ltd, Kuopio, Finland). The highly-porous nature of FCC allowed the compaction of186

tablets with porosities ranging from 45% – 67%.187

The second set of samples consisted of microcrystalline cellulose (MCC, Avicel PH101,188

FMC BioPolymer, Philadelphia, USA) and indomethacin (Hangzhou Dayangchem Co.189

Ltd, Hangzhou, China), as reported in Bawuah et al. (2016b) and Ridgway et al. (2017).190

These samples were varied in terms of API/MCC concentrations, tablet thickness and191

porosity (Table 2). Several different subsets were produced by a compaction simulator192

(PuuMan Ltd, Kuopio, Finland), where each flat-faced tablet had a diameter of 13 mm.193

Another set of samples consists of 18 batches from a production-scale design of ex-194

periments (DoE) (Table 3). The tablet formulation was kept constant throughout all195

batches. Each tablet consisted of a micronised poorly water soluble drug substance196

which was combined with lactose monohydrate, MCC, hypromellose and croscarmellose197

sodium by a high shear wet granulator. A fluid-bed dryer was employed to dry the gran-198

ules prior to blending them with extra-granular croscarmellose sodium and magnesium199

stearate. This blend was then compacted by a Fette 2090 tablet press (Fette Compact-200

ing GmbH, Schwarzenberg, Germany, fitted with 43 stations) to curved-face tablets using201

dual radius punches with a diameter of 10.5 mm. A split-plot DoE was used to study202

the effect of three process variables (water amount, wet massing time and water addition203

rate) of the granulation and one compaction factor (tablet breaking force) on the disin-204

tegration and dissolution performance of the tablets. More details about these samples205

are provided in Markl et al. (2017a) and van den Ban and Goodwin (2017).206

3.2. Terahertz Time-Domain Spectroscopy207

The effective refractive index of each sample was determined from terahertz transmis-208

sion measurements. A Terapulse 4000 spectrometer (TeraView Ltd, Cambridge, UK) was209

used for the samples M01 and M03. The measurements were performed in a transmission210

chamber, which was purged with dry nitrogen gas. 60 waveforms were co-averaged and211

the total measurement time was about 1.5 min for M01 and M03. neff was determined212

for every tablet by analysing the frequency-dependent refractive index and selecting the213
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refractive index at 1 THz. More details about the measurement procedure are provided214

Table 2: Properties of the M02 samples. The concentration of indomethacin, φ, was varied from 0% to

15% and the fraction of MCC was adjusted accordingly. Each subset (labelled with S01-S08) consisted of

5 tablets. The porosity, f , was calculated using Eq. 19 with a true density of 1.56 g cm-3 and 1.37 g cm-3

for MCC and indomethacin, respectively.

Batch ID API Thickness Weight Porosity

φ H W f

(wt%) (mm) (mg) (-)

B01-S01 10.00 3.03 342 0.46

B01-S02 10.00 3.03 357 0.43

B01-S03 10.00 3.02 371 0.41

B01-S04 10.00 3.01 385 0.38

B01-S05 10.00 3.01 400 0.36

B02-S01 10.00 2.74 361 0.36

B02-S02 10.00 3.33 439 0.36

B02-S03 10.00 3.63 476 0.36

B02-S04 10.00 3.93 515 0.36

B03-S01 0.00 3.03 411 0.36

B03-S02 3.75 3.02 403 0.36

B03-S03 7.50 3.03 403 0.36

B03-S04 8.75 3.00 402 0.36

B03-S05 10.00 3.02 401 0.36

B03-S06 11.25 3.04 401 0.36

B03-S07 12.50 3.03 400 0.36

B03-S08 15.00 3.04 400 0.36

B04-S01 9.00 2.74 406 0.28

B04-S02 9.50 2.96 405 0.34

B04-S03 10.00 3.28 406 0.40

B04-S04 10.50 3.65 403 0.47

B04-S05 11.00 3.95 404 0.51
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Table 3: Summary of properties of M03 samples. This set consisted of 18 different batches from a

production-scale DoE. The porosity was calculated from the ratio between the bulk density and the true

density (%t = 1.51 g cm-3) of the formulation following Eq. 19. The granule density was computed by

%g = W/(0.25HfillπD
2 + Vcup), where Hfill is the fill depth, D = 10.5 mm is the tablet diameter and

Vcup is the tablet cup volume. More details about these batches are provided in Markl et al. (2017a)

and van den Ban and Goodwin (2017).

Batch

ID

Thickness Weight Porosity Granule

density

H W f %granule

(mm) (mg) (-) (g cm-3)

B01 5.27 399.6 0.17 0.60

B02 5.10 401.0 0.13 0.60

B03 5.31 400.2 0.18 0.59

B04 5.21 399.5 0.15 0.63

B05 5.06 398.8 0.11 0.59

B06 5.15 399.0 0.14 0.64

B07 4.97 399.3 0.08 0.63

B08 4.94 400.8 0.09 0.63

B09 5.13 399.4 0.13 0.64

B10 4.85 399.7 0.07 0.69

B11 4.86 399.1 0.06 0.59

B12 4.84 400.3 0.06 0.60

B13 4.87 402.3 0.07 0.69

B14 4.82 399.3 0.05 0.64

B15 4.86 401.5 0.07 0.69

B16 4.88 400.9 0.07 0.64

B17 4.67 399.4 0.01 0.64

B18 4.73 401.6 0.02 0.64

in Markl et al. (2017b) and Markl et al. (2017a) for M01 and M03, respectively. The215

samples M02 were measured using a custom-built terahertz spectrometer as described in216

Parrott et al. (2009) and Li et al. (2010). neff is retrieved from the terahertz pulse delay217
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Figure 3: Simulation of the Sa parameter for (a) FCC (M01) and (b) MCC (M02). The intrinsic

refractive indices are given in Table 4. The solid black line indicates the Sa parameter at the porosity

that maximises the Wiener bounds (Eq. 17).

difference between the sample and the reference pulse. Bawuah et al. (2016b) reported218

more details about the measurement procedure of these samples.219

.220

4. Results221

4.1. Simulations of the Extreme Cases and the Sa Parameter222

The Sa parameter was calculated for a range of neff covering porosities of the porous223

medium from 0–1 and using the intrinsic refractive indices of FCC and MCC (Figure 3).224

The discontinuity at Sa = 0.5 is by definition the transition point between the two cases,225

i.e. serial and parallel arrangement of the constituents. The values of Sa must always226

be a real number between zero and one. Thus, for the two extremes of Sa, Sa = 1227

represents a porous medium with all its components purely arranged in parallel, whereas228

Sa = 0 depicts a porous medium with components displaying ideal serial arrangement.229
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Figure 4: Intrinsic refractive index, ns, as a function of porosity, f . (a) Lower Wiener bound (nL, Eq. 3).

(b) Upper Wiener bound (nU , Eq. 4). (c) Separation function (F , Eq. 13). The red solid line indicates

the maximum separation of the Wiener bounds as given by Eq. 17.

Sa > 0.5 is linear due to the linear nature of Eqs. 4 and 7, whereas Sa exhibits a non-230

linear relationship with neff for Sa < 0.5 as evident in Eqs. 3 and 6. The non-linear231

relationship between Sa and neff is particularly pronounced for medium range porosities232

and this strongly depends on the upper and lower Wiener bounds.233

It is therefore important to understand the dependence of the porosity, f , and the in-234

trinsic refractive index, ns, on these limits (Figure 4). The bounds are clearly very close235

to each other for very small porosities (neff approaches ns) and for very high porosi-236

ties (neff approaches n0 = 1). The porosity maximising the separation of the Wiener237

bounds, fmax, is of particular importance as it provides the highest resolution for the Sa238

parameter. The fact that fmax is < 0.5 for all ns renders the proposed method highly239

sensitive for the study of pharmaceutical tablets as these powder compacts have typically240

porosities < 0.5.241

The assumption of low terahertz absorption by the tablet samples for the derivation242

of Eq. 8 holds for the M01 and M02 samples. The definition of Sa, however, is broader243

and also allows for high absorption. The only adjustment required is the introduction244

of an effective refractive index that has a real (dispersion of terahertz waves) and imagi-245

nary (absorption of terahertz waves) part instead of the effective refractive index being246

confined to a real number (Peiponen and Gornov, 2006). The definition is, therefore,247

not limited to low absorption only. This fact is particularly important for the analysis of248

the M03 samples, where significant absorption of terahertz radiation by the formulation249

takes place.250
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Table 4: Summary of the models used to determine the intrinsic refractive indices, ns. More details

about these models are provided in Markl et al. (2017b). The listed ns for M03 is the lumped intrinsic

refractive index for the solid material. L is the depolarisation factor used to describe the pore shape in

the AB-EMA model. The references provide further details about the materials.

Set ns Model Ref

M01 FCC 2.97
AB-EMA

Markl et al. (2017b)
L = 0.21

M02
MCC 1.86

ZPA
Bawuah et al. (2016b)

API 1.73 Ridgway et al. (2017)

M03
Complex

formulation
1.74

AB-EMA
Markl et al. (2017a)

L = 0.35
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Figure 5: Refractive index, n, as a function of porosity, f , for (a) M01 (FCC tablets), (b) M02 (MCC

and API tablets), and (c) M03 (complex formulation). The solid red line indicates the ideal refractive

index for each material, which was calculated using the AB-EMA for (a,c) and ZPA for (b). (b) Shows

only the neff from B01 as these tablets have the same intrinsic refractive index of 1.85 (10% API) and

varied only in porosity.

4.2. Sa Parameter of the Different Materials251

The effective permittivity, εeff, and thus the effective refractive index, neff, always lie252

within the upper and lower limit of the Wiener bounds (Figure 5). The ideal refractive253

index was calculated from the model used to relate neff and f as well as to determine ns.254

Here, we employ two different models for this purpose: the anisotropic Bruggeman EMA255

(AB-EMA) and the ZPA. The used models as well as the intrinsic refractive index values256

are summarised in Table 4 for the three different sets. Besides the use of these models257

to determine the intrinsic refractive indices and to predict the porosity from terahertz258

measurements, they were utilised to calculate the ideal refractive index required for the259
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calculation of the Sa parameter.260

The AB-EMA was applied for M01 and M03 as it outperformed other EMA models261

as well as ZPA due to the fact that it accounts for a non-spherical shape of the inclusions262

and solid material by a depolarisation factor (Markl et al., 2017b). This depolarisation263

factor was estimated to be L = 0.21 for M01, which can be related to a needle-like264

shape of the pores with an aspect ratio of 1.7 (ratio between the dimensions in x- and265

z-direction). This means that the pores have a preferred orientation perpendicular to266

the compaction direction, and thus parallel to the E vector. The AB-EMA exhibits a267

non-linear dependence of the refractive index and the porosity (Figure 5a and c), which268

is not the case for the ZPA (Figure 5b). The depolarisation factor of M03 was L = 0.35,269

which is very close to that of spherical shaped pores (L = 1/3) and the performance of270

the AB-EMA model was only slightly better than when using ZPA.271

The M02 set consisted of several batches with varying porosity, thickness and API

concentration. Since these samples are three-phase systems, the MCC and API particles

were considered as one solid material. The lumped intrinsic refractive index, ns,lumped,

is not a constant for these samples as they vary in their composition (batches B03 and

B04). The dependence of ns,lumped on the API concentration, φ, is accounted for by

ns,lumped (φ) = (ns,API − ns,MCC)φ+ ns,MCC. (20)

ns,API and ns,MCC are given in Table 4 and they were determined by the ZPA for a272

three-phase system following the approach presented in Bawuah et al. (2016b).273

Figure 5b only depicts the data of M02-B01, which has a constant composition (90%274

MCC and 10% API) and only varies in terms of its porosity. The ideal refractive in-275

dex changes with the composition leading to varying intersection points with the y-axis276

ranging from 1.73 (100% API) to 1.86 (100% MCC).277

On the contrary, the M03 samples differed only in their microstructure and there were278

no changes in their composition. The lumped intrinsic refractive index (ns,lumped = 1.74)279

was thus constant across all 18 batches.280

The Sa parameter of the M01 samples reveals that the structure changes with in-281

creasing porosity (Figure 6). A parallel arrangement of the FCC material and the pores282

becomes emphasised for a larger pore space, which is fully in line with the results in283
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Figure 7: Sa as a function of (a,d) the porosity, f , (b,e) the tablet thickness, H, and (c,f) the API

concentration, φ, for set M02 (MCC/API tablets). Only one variable at a time was varied for results of

the batches in the top row (a,b,c). The bottom row (d,e,f) shows the results from batch M02-B04, where

all three variables were changed simultaneously. Eq. 20 was applied to calculate the intrinsic refractive

index, ns,lumped (φ), as a function of φ.

Markl et al. (2017b). Although the FCC particles have a very large intraparticle poros-284

ity the anisotropic pore structure is primarily attributed to the interparticle voids that285

are formed during the compaction of the powder, as the FCC particles are known to be286

mechanically stable under compaction.287

The results of a three-phase system (M02 samples) are depicted in Figure 7. Only288
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Figure 8: Results from terahertz measurements and analysis of the M03 set (complex formulation). (a)

Porosity predicted from the terahertz measurements, fTHz, as a function of the porosity determined

by Eq. 19, (b) and (c) depict the Sa parameter depending on the porosity and the granule density,

respectively. AB-EMA was used to determine the intrinsic refractive index of the lumped solid material

(ns,lumped = 1.74). AB-EMA, adopting ns,lumped was also applied to calculate fTHz and Sa.

one parameter was varied at a time for the batches M02-B01 (porosity, Figure 7a),289

M02-B02 (tablet thickness, Figure 7b) and M02-B03 (API concentration, Figure 7c),290
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whereas all three variables were modified for batch M02-B04 (Figure 7d-f). Surprisingly,291

the porosity does not considerably affect the arrangement of the solid material/pores292

construct (Figure 7a), although the overall configuration is a serial connection of the293

two phases. On the contrary, tablet thickness causes a change of the structure as a294

thinner tablet yields a more pronounced serial arrangement of solid material and pores295

(Figure 7b). The thicker the tablet the more randomly arranged the pores are. An296

increase of API particles in the powder compact has an opposite effect on the structure:297

the higher the API concentration, the more pronounced is a serial arrangement of solid298

material and air inclusions (Figure 7c). This is mostly attributed to the significantly299

different particle size of indomethacin (≈13µm) compared to that of MCC (≈50 µm).300

The increase in the API concentration thus causes a bimodal particle size distribution. It301

is well-known that in the majority of cases a smaller size of particles yields a higher tablet302

strength as the smaller particles provide a larger total surface area for bonding than the303

larger particles (Sun and Grant, 2001). However, a multimodal particle size distribution304

also affects the pore structure as smaller particles fit within the pores between larger305

particles, which eventually affects the arrangement of the solid phase and the pores.306

Moreover, the most significant changes in the pore structure were observed when307

altering porosity, tablet thickness and API concentration simultaneously (Figure 7d-f).308

This yields a serial arrangement of solid material and pores for the highest values of each309

factor. This particularly highlights the interrelationship between these factors and the310

microstructure of the powder compact. The orientation and shape of the pores cannot311

be controlled by one single variable and it is the result of the initial particle properties312

as well as the process settings.313

The M03 batches were produced for a production-scale DoE with its main objective314

to study the impact of three granulation states and one compaction factor on the dis-315

integration as well as the dissolution performance of the tablets. Markl et al. (2017a)316

recently demonstrated how the terahertz measurements of the M03 batches can be used317

to determine the disintegration time and the API dissolved after a certain time period.318

This study also revealed that there is a good correlation between the terahertz effective319

refractive index, neff, and the solid fraction, i.e. porosity calculated from the true density320

values of each constituent and the bulk density (Eq. 19). The anisotropic Bruggeman321
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model was used in this study to compute the porosity from the terahertz measurements,322

fTHz (Figure 8a). Even though the range of porosities between samples is very small323

(< 0.18) and the formulation is highly complex (four excipients and one API), the cor-324

relation between fTHz and f is excellent (R2 = 0.97). The very small porosities of these325

samples render the Sa parameter very sensitive to minor deviations of the neff from326

the ideal refractive index. This is also reflected by Figure 5c, where the span between327

the upper and lower limits of the Wiener bounds is narrow compared to that around328

fmax = 0.37 (porosity maximising the Wiener bounds as denoted in Eq. 17). The Sa329

parameter ranges from 0.39 – 0.88 and there are four outliers around Sa = 0.8 (Fig-330

ure 8b). These outliers correspond to the batches with the most dense granules except331

for M03-B16 which is a batch with a slightly smaller granule density. We show here,332

for the first time, how the granule density impacts the pore structure that affects the333

disintegration process. The structure of the tablets thus clearly depend on the density334

of the granules (Figure 8c). The effect of the granule density on the compaction process335

is three-fold: i) initial granules rearrangement, ii) deformation potential, and iii) degree336

of fragmentation of the granules.337

The data suggest that the degree of fragmentation of the granules increases with338

decreasing granule density and low dense granules are, therefore, acting as a more friable339

material. Fragmentation of the granules results in smaller particles, which leads to a340

larger total surface area for the formation of stronger bonds. In addition, the small341

particles fill the larger pore spaces between larger particles/granules, which has a similar342

effect on the pore structure as the increase of the API concentration for the M02 samples343

(Figure 7c). The very low granule density yields a serial arrangement of the solid phase344

and pores, whereas more dense granules cause a highly parallel arrangement of the two345

phases. The highly dense granules have a preference to deform rather than fragment and346

thus keep their integrity to some extent during compaction. Consequently, the tablet347

can be described as a large aggregate of the original granules.348

The total pore space is therefore constructed by the structure between and within349

granules. The breakdown or collapse of the granules thus may also result in a less open350

pore structure in the tablet and it will impact the tablet permeability (Wikberg and351

Alderborn, 1990) and eventually the disintegration as well as dissolution performance.352
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However, the disintegration time and also the API dissolved after a certain period of353

time is a function of the intragranular and intergranular pore structure as well as of the354

surface area of agglomerated particles that are formed when the compact breaks apart355

during disintegration (Markl et al., 2017a; van den Ban and Goodwin, 2017).356

5. Conclusions357

This study presents a new parameter to quantify anisotropy of porous media on the358

basis of terahertz transmission measurements. The developed concept is not only limited359

to the analysis of terahertz measurements, it can also be applied to data from other360

techniques, such as ultrasound and dielectric spectroscopy. The validity and importance361

of the proposed Sa parameter was demonstrated for three different data sets ranging362

from a simple formulation to a complex tablet composition that is highly relevant for the363

industry. The results of the simple formulation (set M01) confirmed the observations from364

a previous study, which revealed that the pores are preferably orientated perpendicular365

to the compaction direction and that this phenomenon becomes more pronounced with366

increasing porosity.367

The results of the second set of samples (set M02) revealed that a change in the368

particle size distribution of the initial powder impacted the structure of the finished tablet369

as the smaller particles filled the pores between larger particles. This could be observed370

by increasing the API concentration (smaller particles), which caused an increase of the371

serial arrangement of the solid phase and the pores.372

The analysis of the pore structure of the complex formulation (set M03) indicated that373

a high granule density causes a significant change in the pore structure, i.e. the pores and374

solid material structure exhibits a parallel arrangement for granules with high density.375

This strong correlation between the pore structure and the granule density supports the376

conclusion from the formulation M02 that material properties considerably impact the377

pore architecture. This study clearly demonstrates that the particle size and granule378

density are of particular importance for the configuration of the pores in the finished379

product. However, we want to stress here that the pore structure cannot be controlled380

by one single variable. It is the result of a complex interrelationship between raw material381

attributes (e.g. particle size and shape) and process settings (e.g. compression pressure382
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and speed) as well as process configuration (e.g. punch geometry and die size). The383

geometry and die size particularly influence the microstructure at the edges of the tablet,384

which would result in a change of the Sa parameter at the edge compared to that in the385

tablet centre (as performed in this study). In future, transmitted terahertz waveforms386

could be acquired via a raster-scan to form an image of the entire tablet, which facilitates387

the investigation of structural variations within a tablet.388

We have shown how terahertz transmission measurements of pharmaceutical powder389

compacts coupled with the Sa parameter provide an approach to gain new insights into390

the pore structure. This will eventually lead to a better understanding of the relationship391

between the structure and the disintegration as well as the dissolution performance of392

pharmaceutical tablets.393
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Klasse der Königlich-Sächsischen Gesellschaft der Wissenschaften 32, 509–604.452

Wikberg, M., Alderborn, G., 1990. Compression characteristics of granulated materials II. Evaluation453

of granule fragmentation during compression by tablet permeability and porosity measurements. Int.454

J. Pharm. 62, 229–241.455

Yassin, S., Goodwin, D.J., Anderson, A., Sibik, J., Wilson, D.I., Gladden, L.F., Zeitler, J.A., 2015a. The456

25



Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature,457

Porosity and Superdisintegrants. J. Pharm. Sci. 104, 3440–3450.458

Yassin, S., Su, K., Lin, H., Gladden, L.F., Zeitler, J.A., 2015b. Diffusion and Swelling Measurements in459

Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging. J. Pharm. Sci. 104, 1658–1667.460

26


