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SYMMETRIC STRUCTURES IN BANACH SPACES

W. T. Gowers

The backbone of the dissertation is a series of results to do with finding almost sym-
metric block bases of sequences which satisfy certain commonly occurring conditions. This
has been known to be possible for some years: in 1982 and 1985 Amir and Milman pub-
lished two important papers containing various results on the subject. My contribution
has been to find substantially larger block bases and to construct examples in many cases
to show that one cannot improve my new results further. Probabilistic methods play an
important part in calculating bounds in both directions.

These results were or'iginally motivated by a theorem of Krivine, which can be re-
garded as the finite-dimensional analogue of the well-known distortion problem. Also in
the dissertation is an analogue of the distortion problem in ¢y, which strengthens consid-
erably a result of James, and indicates that, contrary to what is generally believed, the
answer to the distortion problem itself could very well be positive.

There is also a counterexample to a fairly long-standing question about norm-attaining
operators. I show that ¢, does not have property Bif 1 < p < co. That is, I give an operator
into ¢, which cannot be approximated in norm by a norm-attaining operator.

In the last chapter, I give an unusual method of constructing the £,-spaces. By a very
natural geometric process, one can build up a symmetric polytope that approximates the
sphere to within v/2. The result generalizes to give polytopes that approximate the unit
31w

for some symmetric basis 21, 22, . . ., one can use the same process to give a natural example

balls of the other £,-spaces. Given any function \:N — R that satisfles A(k) =

of such a basis. Some elementary properties of this class of spaces are investigated.
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INTRODUCTION

In 1971 Milman [38] published a new proof of Dvoretzky’s theorem that was
to be the starting point of a great deal of research in the local theory of Banach
spaces. His proof was based on Lévy’s isoperimetric inequality on the sphere, and
it gave extremely sharp bounds. It was later realized that one could use results
about measure concentration in certain discrete metric spaces to obtain other in-
teresting results about Banach spaces. For the main theorems of this dissertation,
we shall use such techniques to find large almost symmetric block bases of bases
which satisfy various different natural conditions. The two conditions that will
principally concern us are, first, that the original basis should be equivalent to the

unit vector basis of £7, and, second, that it should satisfy a growth condition of

po
the following form: if the basis z1,...,z, is normalized, one asks that E||>_ €;z;]|
should be large, where the expectation is taken over all possible choices of signs

€1,-..,€n, distributed uniformly.

The first people to show that these conditions allow one to obtain estimates
using measure concentration that are significantly better than those obtainable
by Ramsey theoretical techniques were Amir and Milman. They published two
important papers [3, 4] in 1982 and 1985, giving a series of results in which they
obtained unconditional and symmetric block bases of bases with various natural
assumptions on them. They used some of these results to obtain local versions of

Krivine’s theorem and the Maurey-Pisier theorem.

The two results of Amir and Milman that concern us most are the following.
They showed that, for any 1 < p < oo and € > 0, a basis which is equivalent to

the unit vector basis of £; has a (1 + €)-symmetric block basis of cardinality of

order n!/3. This was the first step in the proof of their local version of Krivine’s




theorem. They also considered bases z1,...,z, that satisfy the condition

n

E €; T,

1

E > nl/p

)

where 1 < p < 2 and the expectation is taken over all choices of signs (¢;)?. They
showed that such a basis has a (1 4 €)-symmetric block basis of cardinality of
order n(2=P)*/37° | They used results due to Maurey and Schechtman concerning
concentration of measure in various discrete metric spaces. This result was the
first step in the proof of their local version of the Maurey-Pisier theorem.

Now, it seemed likely that these results were not best possible. Although the
bounds obtained by Amir and Milman in the local versions of Krivine’s theorem
and the Maurey-Pisier theorem are not significantly affected by improvements in
the first step, the problem of determining best possible bounds for the size of a
(1 + ¢)-symmetric basis when the original basis satisfies such natural conditions
as the ones above is an interesting one in its own right. The main results of this
dissertation give bounds in these two cases which are close to being best possible.
We show that, if 1 < p < 00, C > 1and e > 0, then any basis which is C-equivalent
to the unit vector basis of €, has a (1 + ¢)-symmetric block basis of cardinality at
least a(e, p, C)n/ log n, where a(e,p,C) > 0 depends on ¢, p and C only. Moreover,
any basis satisfying the growth condition above has a (14 ¢€)-symmetric block basis
of cardinality 3(e)n?/?=1/logn, where B(e) > 0 depends on € only. We also give
examples to show that these estimates are indeed close to the best possible.

We shall now give an overview of the results contained in each chapter of
the dissertation. The first chapter introduces the basic definitions and outlines
the probabilistic tools which lie at the heart of the later proofs, namely Azuma'’s
inequality, and a deviation inequality due to Hoeffding. The relevance of Azuma’s

inequality to Banach space theory was discovered by Maurey [35], and Maurey’s

method was developed by Schechtman [46]. The second chapter consists of results




which are of some interest on their own, but are mainly proved as tools for later
results. This chapter is quite long and in places technical. The reader may prefer
to read the proofs of the results in the chapter only after seeing the results used
later.

In the third chapter, we start on our main results, considering bases with large
average growth, and proving the result mentioned above concerning such bases.
In the fourth chapter, we show how the same method can be adapted to prove
the result we have stated above about bases equivalent to the standard basis of
an £p-space.

There follow three chapters of upper bounds. In Chapter 5, we construct a
basis with the growth condition above which does not have a (1 + €)-symmetric
block basis of cardinality greater than a(e)n?/P~1(logn)*/3. If 1 < p < 3/2, then
this basis can be chosen to satisfy a lower p-estimate. In Chapter 6 we construct,
for 1 < p < 00, a basis which is equivalent to the unit vector basis of £ which has
no (1 + €)-symmetric block basis of cardinality exceeding a(e, p)n loglogn/logn.
In Chapter 7, we construct a sequence which is C-equivalent to the unit vector
basis of £%, with no (1 + €)-symmetric block basis of cardinality n?(¢), where
tends to zero as log(1 + €)/log C tends to zero. This shows that the restriction
p < oo is necessary in the main result of Chapter 4. We also obtain an upper
bound of a rather different nature, since it concerns arbitrary subspaces and not
just those generated by a block basis. Specifically, we show that, for any absolute
constants 7 and M, and for n € N sufficiently large, there exists an n-dimensional
normed space X such that no n”-dimensional subspace of X has an M-symmetric
basis. Rather surprisingly, the proof of this result is an adaptation of the proof
of a similar result for block bases. The result itself gives a negative answer to a
question of Milman.

The remaining four chapters are different in character from Chapters 4 to



7, although they mostly concern symmetric sequences in one way or another. In
Chapter 8 we discuss the natural infinite-dimensional analogue of the main result
of Chapter 4. That is, if X is a Banach space that is isomorphic to {,, then must
X contain a (1 + €)-symmetric basic sequence? We do not solve this problem.
This is not too surprising, as we show that it is in fact equivalent to the distortion
problem, which it clearly resembles. We also give a positive answer to a “distortion
problem for ¢o”, showing that, for any € > 0 and any Lipschitz function F' on the
unit sphere of cg, there exists an infinite-dimensional subspace of ¢y on whose unit
sphere F' varies by at most e. We do this by constructing an ultrafilter with special
properties.

In Chapter 9 we discuss a problem which is quite well known and is related
to one of the results of the fourth chapter. It concerns the relationship between
the type constants of a space and the distance of that space from a Hilbert space
of the same dimension. In Chapter 10 we provide a simple counterexample to
a question about norm-attaining operators. In Chapter 11 we give an unusual
isomorphic construction of £ Whiéh arose out of a surprising observation about a
fairly natural geometric process. This suggested several natural questions, many
of which we answer. In particular, the result generalizes to give an isomorphic
construction of £7 for arbitrary 1 < p < co.

Most of the results of Chapters 2-5, Section 6.1 and Chapter 9 will appear in
two papers accepted for publication by the Israel Journal of Mathematics [22, 23].
All the results in the dissertation are original except where it is explicitly stated
otherwise.

Throughout the dissertation, except at the end of Section 11.5, all our scalars
will be assumed to be real. The results, however, carry over without any difficulty
to the complex case. We shall often assume that n, the dimension of the space

under consideration, is sufficiently large, without actually mentioning this. This




is of particular importance in Sections 2.2 and 2.3, and Chapters 6 and 7. Finally,
there are several places where it would be hopelessly cumbersome to make sure
that all integer quantities are actually given as integers, so in most cases we have
not done so. It is easy to modify the proofs so that they are rigorous in this
respect. We have not claimed any result that is not true when appropriate integer
parts are taken.

I am indebted to various people, but by far the most important is Dr B.
Bollobés, my research supervisor. He drew my attention to the papers of Amir
and Milman and suggested that some of their bounds might be improved. He then
gave me great encouragement and very valuable advice: I could not have asked
for a better supervisor. The presentation of the results in this dissertation has
benefited enormously from his criticisms. Any inadequacies that remain are, of
course, entirely my own responsibility.

I would also like to thank Yoshiharu Kohayakawa, Imre Leader and Jamie
Radcliffe for many stimulating conversations over the last three years. The atmo-
sphere they have provided has made my task much easier. In particular, they have
increased my general knowledge and sometimes provided me with key references.
I am grateful to Yoshiharu Kohayakawa for pointing out various minor errors in
earlier drafts of the dissertation.

Finally, I would like to thank my wife, Emily, for her support, and for putting
up with distracted and unsociable behaviour when I have been working on prob-
lems. I hope that one day I will be able to explain to her what she has helped me

to produce.
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PRELIMINARIES
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CHAPTER 1

BASIC DEFINITIONS AND STANDARD RESULTS

§1.1 Basic Definitions

The definitions which follow are almost all standard. The most important
for our purposes will be that of a symmetric basis. Given a sequence of vectors
z1,...,Tn in a normed space X, we say that it is 1-symmetric or simply symmetric
if, for any permutation © € S,, any choice of signs €1,..., €, and any sequence of

scalars aj,...,an,
n

E a;T;

1

Sn_: €i0iT (i) ’ =

1
If under the same conditions we have only

n n
Ze,-a,-x,,(,-) La Zail'i (1)
1 1
then we say that the basis z1,...,2, is a-symmetric. Sometimes, we shall say

that a basis is almost symmetric. This is not precisely defined, and means that it
is (1 4 €)-symmetric for a fairly small e.
If (1) holds whenever the permutation = is just the identity permutation, then
we say that the basis z1,...,z, is a-unconditional. We shall sometimes say that
a basis is almost unconditional if it is (1 4 €)-unconditional for a small value of e. ‘
The next definition is not standard, but it is a natural one for our purposes. |
During the course of the proofs, we shall often fix a choice of scalars. We shall say ‘
that a basis z1,...,2, is a-symmetric at a;,...,a, if (1) holds for the sequence ‘
ai,...,an. If a is the vector Z? a;r; we shall also say that z;,...,z, is a- ‘
symmetric at a. If the norm |.|| being considered is not clear from the context,
we shall sometimes say that z;,...,z, is a-symmetric at a;,...,a, or a under
||.Il. We shall also speak loosely of a basis being almost symmetric at a vector or

sequence.




e |

For the main body of the dissertation, our definition of a block basis is not
completely standard, but it follows that of Amir and Milman and is natural in a
fnite-dimensional context. Given a basis z1,...,%n, a block basis is a sequence
y1,.-.,ym where each element y; is a vector of the form ZjeA; Ajz; and the
sets A1,...,An are disjoint. The more common definition includes the additional
condition that if 7; < 73 and j; € 4;, and j; € A;, then j; < j2. In Chapter 8, it
will be convenient to revert to that definition.

The p-type constant of a Banach space X is the smallest constant C such

that, given any N and any sequence z1,...,z N of vectors in X,

< c(‘_/]_vj ||w,-u")1/p, ©)

where the expectation is taken over all choices of signs €1,...,en. We denote it

N

E €T

1

E

by Tp(X). The g-cotype constant is the smallest constant C' such that, for any

sequence as above,
N

wiy N 1/q
> e > (S lailr) Q
1 1

We denote this by Cy(X). The smallest constants for which (2) and (3) hold

E

whenever N < n are denoted by T,(X,n) and Cy(X,n) respectively. They are
known as the p-type constant and g¢-cotype constant on n vectors.

Instead of using sums of the form Ziv €;z; in the above definitions, it is often
convenient to look at sums of the form Eiv giz; where ¢1,...,9N 1s a sequence
of independent N(0,1) variables. The Gaussian p-type and g¢-cotype constants
a,(X) and B4(X) are defined to be the smallest constants such that for any se-
quence zj,...,zn in X, (2) and (3) respectively hold when Ziv €;r; is replaced
by ZIN giz;. Similarly, one defines the Gaussian p-type and g-cotype constants on
n vectors, ap(X,n) and Fy(X,n).

Given a normed space X with a specified 1-unconditional basis z1,...,z, and

given a vector a = ) " a;z; € X, then the vector |a| is defined by > I, |ai|z;,
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and, for 1 < p < oo, the vector |a|P is defined by >-iylaiPz;. The space X is

said to be p-convex if, for every choice of vectors aj,...,an X,

| <§:lail”>l/p < @ nafnp)l/p -

=1
There is also a natural notion of oco-convexity, but we shall not use this. If X

is p-convex for some 1 < p < oo, then the p-concavification of X is the space Y’

defined by

lally = lllalPllx -

The condition that X should be p-convex guarantees that Y is actually a normed
space.

Since the norm of a vector in a 1-symmetric space is unchanged if the coordi-
nates of the vector are permuted or changed in sign, it is often useful to look at the
so-called decreasing rearrangement of the vector. Given a vector a = (a;)} € R,
there exists a permutation 7 € S, and a sequence of signs €;,...,€, such that
€10r(1) 2 ... 2 €nlg(n) = 0. Given such a permutation and sequence of signs,
aj is defined to be €;ar(;). This is easily seen to be well-defined. The vector

a* = (a})} is the decreasing rearrangement of a. Given ¢ > 0 and a function from

the closed interval [0,1] to R, the decreasing rearrangement f* of f is defined by

@) =sup{s>0: [{y: f() > s}| > 2} .

We shall use some standard notation for various sets and set systems. In
particular, [n] will stand for the set {1,2,...,71}, and [n](™ will stand for the
collection of subsets of [r] of cardinality r. This should not be confused with [n]",
which stands for the set of r-tuples (i1,...,tr) of elements of [n].

We shall frequently talk about the standard basis or the unit vector basis
of certain normed spaces. The meaning of this is obvious. For example, given

a normed space X = (R",]|.||), the standard basis of X is the basis ej,...,e,,
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where e; is the vector with 1 in the M coordinate and zero everywhere else. Of
course, the identification of X with R™ must be explicit. If a = Son aie; € R™,

and A C [n] is a subset of [n], then the restriction of a to A, written a IA, is the

vector EieA a;e;.

§1.2 Standard Results

In this short section we shall state two deviation inequalities from probability
theory, a simple estimate for the size of nets in the unit ball of a finite-dimensional
normed space and some bounds for the hypergeometric distribution. Apart from

these results, which all have easy proofs, this dissertation is more or less self-

contained.
Suppose we choose a sequence ay,...,a, of real numbers and look at the sum
n . " - o
> €iai, where €1,...,€, is a randomly chosen sequence of signs. Khintchine’s

inequality tells us that the expected value of the modulus of this sum is about
Y a?)l/z. An inequality of Azuma [5] states that the probability of the sum
being substantially larger than this in modulus is extremely small. The proof of
this fact is very quick, but the consequences are far-reaching. It will be our main

tool for proving measure-concentration results.

Theorem 1-1. Let (d;)} be a martingale difference sequence, and let (c;)? be
non-negative real numbers such that ||d;|| ., < ¢; for every 1 < ¢ < n. Then, for

any A > 0,

Xn:di)Z)\] sexp<—)\2/2§njc?) ‘ O
i=1 i=1

p[__

In fact a similar inequality to Azuma’s was proved in 1963 by Hoeffding [26],

which can sometimes be used to prove stronger results. A “martingale version”

of this result was recently proved by McDiarmid [37]. We shall use the following

result of Hoeffding.




Theorem 1-2. (Hoeffding 1963) Let Xi,...,X, be a sequence of independent
random variables satisfying 0 < X; < 1 for each i, and set X =n13T X,

p:EfX—'andq:I——p. Then if 0 €t < g,

o< (GG e

The proof of this is very similar in style to the proof of Azuma’s inequality.

We shall use this theorem in a situation where p is much smaller than 1, where

Azuma’s inequality gives only weak results, if any.

A é-net of a metric space X is a subset A C X with the property that,
for every x € X, there exists ' € A such that d(z,z') < 6. We turn now to
a very standard estimate for the size of a §-net of the unit ball of an arbitrary

n-dimensional normed space. An easy proof may be found in [18] or [39].

Lemma 1-3. Let X be an n-dimensional normed space and let 0 < § < 1. Then

the unit ball of X contains a é-net of cardinality (1 + 2/6)". O

We end this chapter with useful estimates for the hypergeometric distribution

which can be found in [10].

Lemma 1-4. Let 0 < n < N and 0 < R < N be integers, and, for any integer

0 < k < min{n, R}, let g be defined by

w= () 70/ ) =G/ G)

Then, setting p= R/N and ¢ =1 — p, we have

(n) K k n—k\""* n\ k n-k(q k =la=b)
k ) \I" N S\ e N '

11



CHAPTER 2

TECHNICAL RESULTS

The results of this chapter are proved mainly because they will be needed later
in the dissertation. Some of them are quite interesting independently of their later
use, especially those in Section 2-1 and some of Section 2-5. The results of Sections
2.2 and 2-3 give sort of converses to the main result of Section 2-1, but the form
in which they are stated is very much dictated by their use later (in this case in

|
Chapter 6). {
\
§2.1 The Size of Nets in the Decreasing Part of the Unit Ball

Lemma 1.3 was an estimate for the size of a §-net of the unit ball of an n-
dimensional normed space. The main result of this section is not strictly about
nets, but it plays the role of estimates of the size of nets in similar proofs, and we

shall use Lemma 1.3 in its proof. The importance of a net in Banach space theory

is principally that if a norm is known on a sufficiently fine net of the unit ball of a 1

space, then it is essentially known everywhere. Clearly, therefore, if the space has

a 1-symmetric basis ey, ..., en, all one needs to know is the norm on a sufficiently i
fine net of the set of vectors Z? a;e; in the unit ball for whicha; > ... 2 a, 2 0.

We shall call this the decreasing part of the unit ball. It turns out that it is more |
convenient to control the norm using a set that is not actually a net. Our first !
few lemmas will show that there is a set of vectors {al, ... ,aN} of fairly small
cardinality with the property that any norm which is almost symmetric at each a;
must be almost symmetric on the whole space. We shall see that the norm on an
n-dimensional space with a symmetric basis is almost determined by its restriction
to a subspace of dimension roughly logn.

In the other direction, we shall need to find a largish collection of vectors in ,

12
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the decreasing part of the unit ball of £7 with the property that the norm of any
one of the vectors is not controlled by the norms of the others. This we shall do
in Sections 2-2 and 2-3. One can get some sort of estimate using a separated set

and well known estimates for the modulus of convexity of E;. Our approach will

be more direct and will give a better result.

The main result of this section is the following.

Proposition 2:1. Let 6 > 0, let (R™,||.||) be a normed space and set N =
m® "108(367Y) | There exist N vectorsay,...,ay such that if ||.|| is (1+6)-symmetric

at a; for every i, then the standard basis of R™ is (1 4+ §)(1 — 66) ™! -symmetric.

We shall prove Proposition 2-1 by splitting it into a number of further simple
lemmas, but first we need some notation. Let ¥ be the set {—1,1}™ x S;,, and,
for any a = Z;n:l a;ej € R™ and any (n,0) = (Mn1,...,7m,0) € ¥, let a, , stand
for the vector Z;n:l nja;j€q(j)- Let us also define two orders on R™ as follov.vs. We
shall say a <; b if a can be written as a convex combination of vectors of the
form b, s, and a <; b if Zle af < Zik=1 by for all 1 < k < n. It is easy to check
that both these orders are transitive, and indeed, that they are partial orders on
the set of positive decreasing vectors in R™. The order €; can be defined a little
more naturally, but with this definition it is immediate that if ||.|| is a 1-symmetric
norm on R™ then a <; b implies that ||a|| < ||b||. This is why we shall use the

order. The following easy fact, which was originally noted by Rado [44], is well

known.

Lemma 2-2. Let a = Y1 aie; and b =Y " bie; be vectors in R™. Thena<; b

if and only if a <2 b. O

For given § > 0, let us define a subspace U = U(§) of R™, as follows. Let

k

r = |log;,sm],and for1 < i <rset k; = |(1+6)'] and u; = ;=1 €j- Then our

13
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subspace U will be that generated by uy,...,u,. For technical reasons, we shall
define k,41 to be n+1. Note that for 1 < i < r, we have kip1—1 < (1+6)ki. In the
next lemma we show that any 1-symmetric norm is determined to within a factor
1+ & by its restriction to U. We shall eventually need to loosen the conditions on
the norm, and obtain a slightly weaker conclusion.

For the next three lemmas, let § > 0 and let U = U(é) be as defined above.

Lemma 2-3. Let ||.|| be a norm which is defined on U. Then there exists a
function f : R™ — Ry such that any l-symmetric norm ||.|| with the property
that ||z|| = ||z|| for every = € U satisfies also

f@) <zl < (1 +6)f(=)

for every z € R™.

Proof. Let a= Y "a;e; and let a; > ... > a,, > 0. Let us define two vectors a’
and a" in U by
kiy1—-1 kiy1—-1

T

]

a = E (ar; — ak;y,) E e; = E ak; E e;
i=1 .

and
= Z(aki -+1) g = Z ak; Z eF -
i=1 1

Our function f will be defined by f(a) = ||a”||. Note that a" is dominated
pointwise by a, which is itself dominated pointwise by a’. Thus [Ja"|| < |la| < [|a’[|.
We shall show that a' <, (1 + 6)a” and hence (by Lemma 2-2) that [|a'| <
(14 6)[la”|l, which will complete the proof. Let us write (a;)7* and (a} )" for the

coordinates of a’ and a" respectively. Then for any 1 < s < m

S T
Za'j = Z(ak‘. — ay,,, )min{s, kiyy — 1}
=1 =1

14




and

@
<

al = (ar; — a,),.,.+1)min{3,ki} .

But for each 7, as remarked above, k;y1—1 < (1+8)k;, so clearly min{s, kiy1 —1} <

(1 + &) min{s,k;}. Hence a' <3 (1 4+ 6)a" as stated. O

Lemma 2-4. Let &' > 0 and let ||.|| be any norm on R™ which is (1 — §')7!-

symmetric at every a € U(§). Then ||.|| is (1 + 8)(1 — 2§')~!-symmetric on R™.

Proof. Define a norm ||.]| on R™ by |la|| = max {||a,,¢|l:(n,0) € ¥}. Then, if
a € U, we have ||a|| < |la]| < (1 + 6) ||a]| by assumption. Now, given any a € R™,
define a" as in the proof of Lemma 2-3. We know that ||a|| < [|a]|. In the other
direction, since a" is dominated pointwise by a, 2a” — a is dominated pointwise
by a”, so ||2a" — a]| < ||a"||. But, since a" € U, we have
lall > 2la"[| - ||2a" — a]

>2(1-8&)la")l - la"|

= (1-28)]a"[ > (1 -26)(1 +6) " [all
where the last inequality follows from the proof of Lemma 2-3.

Hence ||.|| is (1 +6)(1 —2§")~1-equivalent to the 1-symmetric norm ||.||, which

proves the lemma. O

Lemma 2:5. Let ||.|| be a norm on R™, and define a 1-symmetric norm ||.|| on R™
by lla]l = max{||ay,s|| : (n,0) € ¥}. Suppose that the set of vectors {ai,...,an}
forms a 6-net in ||.|| of the ||.||-unit ball of U and that ||.|| is (1 + é)-symmetric at

every a;. Then ||.|| is (1 + é)(1 — 66)~!-symmetric on R™.

Proof. By hypothesis, given any 1 < ¢ < N and any (n,0) € ¥, we have
I(ai)n,o]l = (1 4+ 8)lai]l. Let us pick a € U with ||a]| = 1. We shall show that

II.]l is (1 — 38)~!-symmetric at a. So pick any (7,0) € ¥ and pick 7 such that

15




lla— aill < 6. Write b = a; , and b’ = (a;),0. Then we have
bl - (bl < Iib = b'll + L'l — [IB'lI] + [Ib" - b
S6+1-(1+8)1+6<36
But ||b]] = JlaJl = 1, so the norm |.|| is indeed (1 — 36)~'-symmetric at every
vector in U. But then, by Lemma 2-4, it is (1 + §)(1 — 66)~!-symmetric on R™,

as stated. O

Proof of Proposition 2:1. The dimension of U(§) is at most log, s m, so, by
Lemma 1.3, there is a é-net of the ||.||-unit ball of U of cardinality at most (1 +
2/6)1°81+s ™ When § < 1/11 one can easily check that this is at most 8™ 1083671

Proposition 2-1 now follows immediately from Lemma 2-5. O

Although it will not be strictly necessary for our purposes, it is of some interest
to estimate the size of a §-net of the decreasing part of the unit ball of an arbitrary
n-dimensional space with a 1-symmetric basis. We have not done this in general,
but when the space is £7, we obtain an estimate of n(e/8)108(c'/8) for some absolute
constants ¢ and ¢’. In other words, the size of a net can be about the same as the
size of the set obtained in Proposition 2.1. It seems very likely that the same is

true for any space with a 1-symmetric basis.

Proposition 2:6. Let 1 < p< oo, 0<§d <1 andlet K C £3 be the set
{aely: Jlall, <1, a1 2... > an > 0}.

Then K contains a é-net A of cardinality N, where

N < n(2/108(1+6/3))10g(15/5)

Proof. Let § = 6/3 and let a = (a;)} € K. Ifa = (a;)7 € €3 is any vector such

that a; < aj < (14 60)a; forall 1 < ¢ < n, then ||a— a'll, < 8(3 7 a?)/P £ 6. So,
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given a, let us define a' to be the vector with
a, =min{(1+6)"U:j>1,(1+6)"UV > a}.

Let a” € ( be defined by a = max{a;, (1 + 6)~*}, where k = 2 log; 4(n*/P).
Note that k > log; 4 4(671n?/?), s0 (14 6)~* < 6n~1/7. Tt follows easily that
la” —a'|l, < 8, and therefore that |[a" — al|, < 2. If, given any vector a, we can
find a vector b in A such that ||b —a"| < 6, then ||b — a|| < 30 = 6, so then A
will be a é-net. In other words, it is enough to approximate to within 8 vectors of
the form a = Zi a;u;, where u; = xy,, for some sequence of possibly empty sets
Us,..., U satisfying U;‘ Ui = [n], and k; < k; whenever i < 3, k; € U;, k; € U;.
Consider two vectors a = Ei‘ o;u; and a' = Z;‘ a;ul, where (u;)¥ and (ul)¥
are of the above form. Writing v; = Z;'=1 u;, v = Z§'=1 u;, we have a =
Y (@i—aipn)vi, a' = Y (e —ai)vianda—a' = 3, (@i —aipr)(vi— Vi)

Now since p 2 1, (a; — aiy1 + )P — z? is an increasing function of z (when

z > 0), so
j P
Z ;— @ig1)(Vi — V) E(az —aiy1)(Vi = v;)
- P

< (of - aj+1)lsupp(vj - v;)l :

Thus

Eod

la= 7 < 3% - o) fsuppt; = v5)]
=1

k k P
But |lallj = 375, aj|supp(uy)| = 3 (a5 — ofy,)|supp(v;)| < 1+ 26 and

||a’||£ = ij:l(af —a%, 1 )supp(v})| < 1426, so N is at most the size of a 7-net

of (14 26)B((%), i.e
N < (14201 +26)/67)F < (5/8)PF.
But, since k = 2 logn/p log(1 + 0),

N  n(2/108(1+6))10g(5/6) O
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§2.2 Well-Separated Classes of Vectors in the Unit Ball of £ (1 < p < o0)

In the last section we estimated from above the smallest possible size of a
set of vectors which controls an almost symmetric norm. Knowing an almost
symmetric norm everywhere on such a set tells us, to considerable accuracy, the
norm everywhere in the space. In Chapter 6, we shall construct, for 1 < p < oo, an
equivalent norm on {j with the property that no block basis of cardinality greater
than a(p, e)nloglogn/logn is (1 + €)-symmetric, for a constant a which depends
only on € and p. We shall do this by taking a large collection of subsets of the
unit sphere of {7, each of which is invariant under the symmetries of £ induced
by permutations and changes of sign of the standard basis, and then defining a

norm randomly in such a way that it is very unlikely to be symmetric at any given

vector in any one of the subsets.

It is important in our proof that our subsets should have two other properties.
The first is that any sufficiently large block basis of the standard basis should
generate at least one vector in each subset, and the second is that we should
be able to define our random norm independently on each subset. This second
property is the most important. We demand that the subsets should not interfere
with each other in the following sense. If we define a norm on R™ by taking
its unit ball to be the convex hull of all the subsets but one, then the norm of
a vector in the subset that we leave out should be greater than 1 + ¢ for some
€ which does not depend on n. Actually, for technical reasons, we will ask for
slightly more than this because of our particular method of proof in Chapter 6,
but this is the basic idea. This last property is what enables us to define a norm
randomly and independently on each subset. We shall then obtain an estimate for
the probability of a block basis being almost symmetric at any particular vector it

generates in one of the subsets. Since these probabilities are independent, we will
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be able to multiply them all together. If we have found a large number of classes,
then the resulting probability is very small indeed and enables us to show that,
with positive probability, no block basis of cardinality a(e,p)nloglogn/logn is
(1 + €)-symmetric. We shall speak loosely of the subsets being “well separated”.
In a way, finding as many well-separated vectors as possible is the opposite of

finding as few vectors as possible which control the norm.

The numbers used in the construction are those that we shall need when we
apply the result. As usual, ¢ is the conjugate index for p. In our application, the

order of magnitude of h will be log n/loglogn.

So, let n and h be given, let 0 < € < 1/3, let | = nl/2 k = pitrtee—rle
§ =h~9€Y/9 = (h/k)'/? and let t = log(I/2h)/logk > logn/2(1 + p + ¢)loglogn,
so that B 1 k¥ < L.

Then, for 1<i<¢, let A; be the set of norm-1 vectors in £ supported on at
most hk? points, whose coordinates are bounded above in modulus by k~i/?. Note

that all vectors in A4; are therefore supported on at least k* coordinates.

Now let F; be the set of support functionals for the vectors in A;. That is, F;
is the set of norm-1 vectors in £7 supported on at most hk' points, with all their
coordinates bounded above by k~"/9. So F; is the set of vectors {|a|?~!signa:a €

A:).

We also define a second set of functionals G; for each 1<7<¢t. It is the set of
vectors of norm 1 in £ supported on at most e? hk* points, whose coordinates are

bounded above in modulus by e~?/9k~%/9,

Now let B be a subset of [t]('/Q) such that whenever B, C arein B and B # C,
then |[BNC| < t/3, and let B have cardinality N = (23/20)*. (We shall show that

such a collection of sets exists in Lemma 2.13). For any B € B we define classes
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Apg, Fp and Gp as follows.

Ag = {@ai:aieAi VieB}

1€B

Fg = {@f, fi € F; ViEB}
i€EB

and ng{@gi:giEGiViEB}
1€EB

where @ denotes a sum with disjoint supports.

Note that if a € Ap, then there exists f € Fig such that f(a) = (¢/2)'/¢ llall,-
Indeed, let a = @, p ai, where a; € A; for each 7 € B, let f; = |a;[sign(a;) for
each such ¢ and let f = P, fi- Then f(a) = t/2 while |la|/, = (t/2)}/P. The

next lemma shows that the classes {Ap: B € B} are “well-separated”.

Lemma 2-7. Suppose B and C are distinct elements of B, and suppose f € Fg,

g € Gp anda € Ac. Then
f(a) +g(a) < (t/2)Y7all,, .

Proof. It is simple to show that if z and y are two vectors in R™, then (z¢,x, Ye,x')
is maximized when z, » and ye . are both non-negative decreasing vectors. We
shall therefore assume this of f, g and a. Let us write f = } . p fi with f; € F}
for each 7 and the f; being disjointly supported, and similarly write g = 3 ;. p gi
and a = } . -a;. In order to estimate (f + g)(a) we shall estimate fi(a) and

gi(a) in the cases : € BNC and : € B\ C.

First let us look at f; (Zjec aj> in the case 1 € BN C. Writing f/ for the

decreasing rearrangement of f; (i.e. for f; without the string of zeros at the front)
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we have (

<l Do asf| +1
jec, j<i M1
Now || ffllee = lIfille < *77/9, and ‘Zjec,j<i 31”1 = Yjec<illail;-

supp(a;) < hk’ and ||aj||p = 1, we must have ||a;||, < h1/9k3/4. Thus

i-1 ;

‘ hi/agi/e

Z la,l; < Zh1/qk1/q < 57—
j€C,i<i =1 B —1

and hence

hl/e )
: . e /91.—1/q
f,( E aJ)ékl/q_1+1<2h k +1.
JEC,j<1

Now suppose ¢ € B\ C. This time
M) <n( T w)+ s
jeC J€C,5<1
where k is minimal such that £ >, k € C.

We have already estimated the first term. Also
Filar) < FLll lar]ly, < RYVPE/P . p=CF1/P
< W/PEpmP = g,

SO

1 (Z aj> < 2h1/qk_l/q +6.

JEC

It follows from (1) and (2) that

(Z f,-)(z aj) <th'/1k~11 4+ |BNC|+6|B\ C|

1€B JEC

If B+# C then |BNC| < t/3,s0 f(a) is at most t/3 + 6t/2.
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The calculations for g(a) are very similar. When ¢ € B N C we obtain

g,-(Z aj) S e+ 20200
jEC

and when 7 € B\ C, then
gi(z a,) < 2R/ 9Pl 4 kTP
j€c

It follows that

(Z g;) <Z aj) < th?9e7P/1k719 4 | BN C|+ ek™V/?|B\ C| .
1€B

JEC

If B # C then this gives
g(a) < th?9e7P/9k=1/9 4 /3 + ek™1/7¢/6 .

Now |laf|, = (t/2)/7, so

/Y [l (f + 9)(a) = (2/t)(f + 9)(a)
<2/34 68+ 2h2 9Pk 4 2¢/3 + k1P /3,

But since e < 1/3 and § < h7Y, this is at most 1, as required. O

Before finishing this section, we remark that the functionals in the sets (Gp :

B € B) are needed only for technical reasons. It would not be necessary at all if we

were only interested in the dependence of our eventual estimate in Chapter 6 on n.

By using these extra functionals, we will, it turns out, be able to construct a basis

equivalent to the standard basis of £ whose largest (1 4+ €)-symmetric block basis
has cardinality at most e?c;(p)ca(n) = c3(e, p)nloglogn/logn, where ¢; depends
only on p, ¢; only on n and c3 only on p and e. The correct dependence on ¢ is
probably more like €??. In the next section, when p = 1 is an absolute constant,
we shall prove a similar result, but it will be slightly simpler since there will be

nothing to gain from an extra class of functionals.

[\
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§2.3 Well-Separated Classes of Vectors in the Unit Ball

of an Isomorph of {7

In the case when p = 1, Lemma 2-7 does not give any information, and a
careful examination of the proof shows that even if p > 1, while remaining close
enough to 1 for £7 to be C-equivalent to £7 for some fixed C, we do not obtain
N classes of vectors for some N which tends to infinity with n. However, using a
different construction, it is possible to find N “well-separated” classes of vectors
in the unit ball of an n-dimensional normed space which is C-equivalent to (7,
with N = (logn/loglogn)®, where a = a(C,¢e) > 0. It is to be expected that
we should obtain fewer classes in this case, because the unit ball of {7 cannot be
renormed to be uniformly convex. We can obtain a very small amount of convexity
by renorming, however: it will be just enough to enable us to construct a basis
which is C-equivalent to the unit vector basis of £7, such that no block basis of
cardinality exceeding B(e, C)n/loglogn is (1 + €)-symmetric. As before, we shall
define some classes of vectors and functionals, and then prove a lemma about
them. Let € > 0, C > 1 and h € N be given. In our application, h will be about
log logn.

First let us define four more parameters. Let r = —logC/log(1l — 4e), let
k= h% let A = |(log;n)/2r] and let N = (A\/2)7/2. Next, for 1 < i < r, let
Bi =C(1 —4e)'. Thus C > B >...> Br =1, and Biy1/B: < 1 — 4e for each i.

Now, forany 1 <¢<rand1l<j < A/2, let A;; be the class of vectors a € R
satisfying ||a|, = 87!, ||la|l, < A7 k(D27 and [supp(a)| < hk~DAHI. Note

that it follows from these conditions that if a € 4; ;, then |supp(a)| > k(i=DA+J,

We shall also define a class of functionals to go with A4; ;. It turns out in
this case, as we mentioned at the end of the last section, that only one class of

functionals is necessary. Let F;; be the set of functionals f on R™ such that
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|supp(f)| = hE(i=DA+i and each non-zero coordinate of f is £53;.
We shall now define, for any s = (s1,...,8-) € [A/2]". two classes A5 and F

as follows.

A = {éa,‘ ca; € Ais; i=1,...,7‘}

=1

and
Fs = {@fz > EF,',S'. i=1,...,T‘} .
i=1

The next lemma is the analogue of Lemma 2-7 for the classes Ag and Fs.

Lemma 2-8. Lets,s' € [\/2]" and suppose that there exists a subset K C [r] of
cardinality at least r/3 such that s; < s, for every 1 € K. Then, given any f € Fy

and a € Ag, we have

f(a) <r(l-e).
Proof. Let 7 be such that s; < s; and let f = @;zl fi with f; € Fj o for each
1 £ j < r. We shall first estimate (@;zl fj) (a;). Let us temporarily write X
and Y for supp (@;;11 f]) and supp(fi) respectively. We then have

< CB7YRE™2,

Iai lX”l

(JGE fj)(ai) < §fj ool

We also have

fi(ai) < Ifillo llai |y |, < RET?

Y

and

@ fill Nailly < Bis1B7t =1 —4e.

j=i+1

( 6; fj)(ai) £

Now let 7 be such that s; > s;. Then
f1
(@ fj)(ai) < OB Rk
j=1
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as before. We also have

(D)@ <|Bs
j=1 =t

Since s: < s; for at least r/3 values of ¢, we have

jaill, = 8:87 = 1.

o0

(@ fi) (EB a,-) < (r/3)(1 — 4e + ChE™? + RE™Y) + (2r/3)(1 + Chk™>/?)

=1

<r(l—e). O

§2-4 A Simple Consequence of Azuma’s Inequality

In this short section, we shall give one very standard application of Azuma’s
inquality. In fact, it is a special case of a general result of Schechtman [46] (cf.
also [39]). We shall use the set Q@ = {—1,1}" x S, a great deal in this dissertation,
since each element of this set corresponds in an obvious way to a symmetry of an
n-dimensional 1-symmetric normed space. (We shall be completely explicit about
this in the next chapter.) We consider this set as a metric space in various ways,
but in each case we use a weighted versions of a distance known as the Hamming
distance. Roughly speaking, given two elements of our set above, the Hamming
distance between them is the number of coordinates where they differ. To be
precise, given (e,7) and (¢',7') in the set, the distance d[(e,7),(¢',7')] between

them is given by
d[(e,7), (¢, 7)) = [{i:ei # €; or w(2) # 7' (1)} [e

A weighted version of the Hamming distance is defined as follows. Given a
positive sequence (b;)7, let the corresponding distance between (€, 7) and (€', 7")

be given by

d[(e,7), (¢ ,7")] = Z{bi: e # € or m(1) # 7' (i) }.

25




—

Thus, the ordinary Hamming distance is what one obtains when each b; takes the

value 1. For ease of notation, we shall assume for the rest of the section that the
particular choice (b;)? of weights has been fixed. Let (§2,d) be the corresponding

metric space. We turn (2, d) into a metric probability space (£2,d, P) by letting P |
be the normalized counting measure on §2. Our aim in this section is to show that,
if f is a Lipschitz function on (Q,d), then, if (¢, 7) is chosen at random from 2,
the probability of f((e, 7)) differing much from its expected value is small. That
is, (£2,d, P) exhibits the phenomenon of measure concentration.

Azuma’s inequality (Theorem 1.1) is useful in this context because there is a
natural sequence of sigma-fields on §2. With these, we can use a Lipschitz function
f on (,d) to define a martingale. We define equivalence relations ~q,...,~, on
Q by (e,7) ~i (¢',7') iff ¢ = ¢} and 7(j) = 7'(j) for 1 <j < 4. For 1 <7< nlet
Fi be the sigma-field whose atoms are the equivalence classes of ~;. Finally, let

f be a v-Lipschitz function on (2, and set f; = E(f I Fi) (1<i<n). Wehave |

the following corollary of Theorem 1.1.

Proposition 2-9. Let (Q,d,P) and fy,..., fn be defined as above. Then for all

s>tandé >0,

P[f — > ] < exp(~ ez

and

P[fs—ft<—5] <exp(—m>' j!

Proof. We shall prove the first inequality above. The second can be deduced
from it by looking at the function —f instead of f. We restrict our attention to
a single atom of F;.. It is then obvious that without loss of generality s = n and

r = 0. By Theorem 1.1, we need only show that, for 1 <i < n, fi — fi—1 < 27b;. |

Suppose A,B € F;, A,B C C € F;_1, and let (n,0) be an element of B.
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Then let ¢ be the bijection from A to B given by (e,7) — (¢, 7'), where

4={o 37

and 7' = p o 7, where p is the transposition (7 (i) o(7)).

Since b; > ... = b, > 0, and A and B are contained in the same atom of F,_1,
(e,7) and (€', 7') are equal except perhaps at i or 7' (0(7)), and br-1(5(s)) < bi.
Thus, for any (e, 7) in A4, d((e,w),qﬁ((e,rr))) < 2b,.

Since f is 5-Lipschitz, f; varies by at most 24b; in any atom of F,_;. It

follows easily that f; — fi—1 < 2vb; as was needed. O




§2-5 A Generalization of the Hypergeometric Distribution

This section concerns a weighted version of the hypergeometric distribution.
Specifically, we ask the following question. Suppose a = (a;)7 is a given positive
vector in R™ and B is a randomly chosen set in [n]*). Then, given t > 0, what
is the probability that ), pa; > t7 If a is just the characteristic function of a
set of size [ then this probability can be estimated from above and below by using
known bounds for the hypergeometric distribution. We shall need estimates in
both directions (in different contexts) but only weak ones. Our two main results
will be, roughly speaking, that if the maximum value of the a; i1s at most 1, and
>_1 @i is at most I, then the probability of 3, 5 a; deviating from its mean by a
given proportion of the mean is largest when a; = ... = a; = 1 and the rest of
the a; are zero, whereas if one restricts the size of the support of the sequence to
[ and tries to minimize this probability, one cannot do much better than to pick
the same sequence. In short, the probability, as one might expect, gets smaller
the more the sequence is spread out.

Our first lemma is a straightforward deduction from the theorem of Hoeffding
stated in the last chapter (Theorem 1.2). In fact, a slightly stronger result can be
found in Hoeffding’s paper [26] but since we shall not need the extra strength, and
the next argument is a simple one, we shall content ourselves with the following

statement.

Lemma 2-10. Let A > 2e, let k, | and n be positive integers, let a = (a;)} be a
non-negative vector in R™ satisfying ||al| ., < 1 and ||a||; < ! and let A € [n]®®) be

chosen at random. Then

P {Z a; > )\lcl/n] < 2(2e/ M)

i€A

Proof. Let Xi,...,X] be a sequence of independent Bernoulli random variables
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of mean 2k/n, and set X; = a;X| for each i. Let 7 C [n] be the (variable) set
{i P A= 1}.
Then

P{ixizmz]:ip zn:X»Akl Irl=2 P[ITI=J’]

j=0 Li=1 _

-
n n

>) P ZA}-;AM{ ml=1 P[lrl=j}

j=k Li=1 _

7| = k} P[ir] > k]

n

ZX,- > Mkl

=1

where the last inequality followed from the obvious fact that

P> Xi> Akl |7] =]}
i=1
is an increasing function of j.
However,
P> X; >Akl| 7| :k]
=1

is exactly the quantity we wish to estimate. We shall therefore show that P [ITI >
k] is at least 1/2 and P [Sr; X; > Akl is at most (2¢/A)**!/. This will prove
the lemma.

First, we have |7| = Y 7 X! and E|r| = 2k. By the second part of Theorem

1.2 we therefore have
Plir| < k| = P[Ir| - 2k < -]
oL n—k
< ok 1-2k/n
1—k/n

< 2Fe7* = (2/e)F

which is at most 1/2 when k is sufficiently large. The important estimate is of

course the upper bound for P [} | X; > Akl]. Setting I' = ||al|;, we apply the
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first part of Theorem 1.2, with p = 2kl'/n? and t = (Akl'/n?) — p, obtaining

" 9\ MUm 2 opp\ A
3 [Z-’if > /\"”} = (X) | (m)

i=1
< (2/A))\k1/n . e)\kl/n. — (26/)\)Ak1/n ) 0

Our estimate from below will be needed in Chapter 6. The situation that will
interest us is when the size of the support of the vector a is around logn and k is
proportional to n. The statement of the next lemma is slightly unnatural because
of the appearance of the parameter ¢. This is to give us a little elbow-room when

we come to apply it.

Lemma 2-11. Let r = en, h < r and let a = (a;)} € R™ be a vector such that
ap = ...2ap 2 apt1 =...=a, =0and ) ;a; =1 Thenift <r/4 and K is

chosen randomly from [n — )" we have

P !Z ai > 26] > (1/16)%2¢h . (1 — 2¢)"

€K

and

P[Z%':O] 2(1—26)".

1€EK
Proof. Note that E (ZieK a,~) = ¢. Clearly P [ZieK ag = O] > (";r)/(”;t) =

h
("_T_h) > (1 — 2¢)", as stated.

n—h—t

For the first estimate, we use the lower bounds for the hypergeometric distri-

bution given by Lemma 1.4. For [ < /2, 0 < a < 1 we obtain

(30 () (=) (mspmaty™
_ (alz> (n—rr——t(—l ila)l) <n—r—n(1 ——a)l)

> (1/a)*(e/2)*'(1 = 2¢)' = (¢/2a)*'(1 — 2¢)".
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Now let By C By C...C By C{1,...,h} be defined by By =0 and B; =
{i €[n)iai 2 ~I} (1<j<s), where s = log,(2h).

Suppose |Bj N | > 8¢|Bj| for 1<j<s. In this case

> aiz Z S {ai:ie(B;\Bj-1)NK} > S 279|(B; N K)\ (Bj-1 N K))
=1 j=1

iEK
8

>3 B NK]| (z—i - 2—<J'+1>) >4¢> 277|B,|

j=1 j=1
:4€Z<2—(j—1)_ >|B|>4€Z’7 G=D|B; \ Bj41| = 2
=1 =1

since Y {aira; <27°} < 1/2.

But
> ( | B;] )( n—r >/<n—t>
8¢|B;|/ \(1 — 8¢)|B;jl/ " \ |B;l
= (1/16)8Bil(1 — 2¢)! 5] (1< <)
and
P ['Bs N -K| Z SGIBSIJ > (1/16)85|Be|(1 _ 2€)|B,|'
Hence

P [|Bj N K| > 8¢|Bj| Vlgjgs] > (1/16)862i 1Bil. (1 - ge)Zi |Bj|
But |B;| < 27, so Y] |Bj| < 4h, and so

P[Zai>2} > (1/16)°2¢" - (1 — 2¢)*". O

iEK

Note that, in the proof of Lemma 2-11, we actually gave a lower estimate for
the smaller event [|BJ- N K| > 8¢|B,| for every 1 < j < s]. This gives us the next

corollary.
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Corollary 2-12. Let r = en, h < r and let a = (a;)} € R™ be a vector such that
a1 2...2ap2aps1 =...=a, =0and > a; =1 Ift,r/4 and K is chosen
randomly from [n — t)("=?, then, with probability at least (1/16)32¢7(1 — 2¢)2",

there exists a subset A C [h] N K such that |A| < 8eh and ) ;¢ 4 a; > 2e. O

As our next result of this kind, we show that there exists a large collection
of sets B C [t](*/?), such that if B, C € B are distinct sets in the collection, then |

|BNC| < t/3. Instead of using the theorem of Hoeffding, however, we shall prove

the result directly from Lemma 1.4. This gives us the set B that we used in our

|
construction just before Lemma 2.7. J
Lemma 2-13. There is a subset B C [t]*/?) of cardinality (23/20)! such that

given any two distinct sets B, C € B, |[ BN C| < t/3.

Proof. For any B € [t](*/?), the number of C € [t](*/?) such that |[BNC| > t/3 is at |
most Z:/zﬁo (i/tﬁ/zr) (t/t.?./-zi-r) £ 3(:52) (:%) Hence, by picking sets one at a time, each I

one disjoint from the previous ones, we can find B with |B| > %(t;Q)/(:ﬁ) (:ﬁ)

But, by Lemma 1.4,

(15) (10)/(a) < () csmrasotrcarars |
= (17) a2 ey
< (31272112 (3/4)° = (3/2) |

so |B| > 1(4/3)!/% > (23/20)". O

Our final result of the section is, in a sense, a generalization of Lemma 2.13.

In conjunction with Lemma 2.8, it gives a lower estimate for the size of a well-

separated collection of subsets of the unit ball of an isomorph of (}.

Lemma 2-14. Let n,k € N and let k be an even number. There exists a subset }
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S C [n])* of cardinality N = (n/3e)¥/1? such that, whenever s #s' € 5,

|{i € [k]:si < st} = k/3.

Proof. Let us pick s and s’ randomly from [n]¥/? and estimate
Pll{ie[k/2]:s:= st} > k/6].

Now {i € [k/2]): s = si}[ is simply a sum of k/2 independent Bernoulli variables i

of mean 1/n. By standard estimates for the binomial distribution [10], or by a |
simple application of Theorem 1.2, we obtain that the above probability is at most |
(3¢/n)*/®. Let us picka set S’ C [n]* /2 of cardinality N randomly. The probability ‘
that any two elements of S coincide in more than k/6 coordinates is certainly at |
most (12\7)(36/71)k/6. This is less than one, since N < (n/3¢)*/12. Thus there exists
S' C [n]¥/? such that, for any s # s’ € &', [{i € [k/2] : si = si}| < k/6. Given
s € §', define ¢(s) € [n]* by

5 1< k/2

Let S = {#(s):s € S'}. Thenif s #s' € S, we clearly have that ‘

|{i€[k]:s,-<5',—}|=|{i€[k]:s§<si}| I

and the sum of the two sides is at least 2k/3. It follows that S has the desired |

properties. O
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PART II

THE SIZE OF SYMMETRIC BLOCK BASES:

LOWER BOUNDS




CHAPTER 3

BASES WITH LARGE AVERAGE GROWTH

The main theorem of this chapter asserts that if z1,...,Zn is a sequence of
unit vectors in a normed space, and if E |31, €;z;|| is large, then zy,. .., 7, must
have a large almost symmetric block basis. Here the expectation is taken over all
possible choices of signs €1, ..., €n, distributed uniformly. Before proving anything,
we shall point out a few simple facts to show why one considers this particular
problem.

There are important results, such as a well known result of Elton [16], which
show that sequences of vectors in a normed space satisfying certain conditions must
have subsequences of large cardinality satisfying stronger conditions. One might
ask whether, if a sequence satisfies a growth condition such as the one we are about
to consider, it must have a large almost symmetric subsequence. However, simple
examples show that this is certainly not the case. For example, given 1 < p < 2,

one can take the space X = (R™,||.]|), where the norm is given by

b

Then the standard basis ei,...,e, has large average growth, but, given any ¢

n

>a

1

Jall = max{nan,, |

and j, we have |le; + ;|| = 2, while |le; —ej| = 21/P. If a normed space X
has a natural basis and one wants to find an almost symmetric basic sequence
in the space (as one does when proving local versions of Krivine’s theorem and
the Maurey-Pisier theorem), it is sensible anyway to try a block basis, and even
a block basis with +1-coefficients and blocks of equal length. For example, any
such block basis can be transformed into any other by the linear map induced by
a permutation and change of signs of the original basis, and second, if the original

basis is 1-symmetric, then such a block basis will be as well. Furthermore, if a basis
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then a normalized block basis of it will

is equivalent to the standard basis of (7,

be equivalent to the standard basis of the {,-space of the appropriate dimension.

Theorem 3-1. Let 1 < p <2, 0<e< 1, and let (z;)7 be a sequence of unit
vectors in a Banach space X. Suppose that E||3 7 e:zil| 2 nl/P. Then there is
a block basis of (z;)? with blocks of +1 coefficients and equal length, which is

(1 4+ €)-symmetric and has cardinality

m 2 v(e)(log n)_ln%-l

where v(€) = (¢ /3,000,000)(log(33/€)) ™.

The dependence on n in this theorem improves on the previously known de-
pendence of n(2=P)’/37® ohtained by Amir and Milman in [4, Section 5.2]. They
have also shown that, if X has p-type constant C, one can obtain a bound of
v(e, p, C)n(2=P)/32(2+3p) [3 Theorem 2.4]. Our exponent of n of 2/p — 1 therefore
improves both these results, with or without an assumption about type-conditions.
We shall say a little about the effect of type conditions at the end of this chapter
and more at the end of the next one.

We shall begin with some notation.

Let ¥ be the group {—1,1}™ x S, with multiplication given by ((n:)1*,0)°
()™, ¢") = ((nin})*,0 0¢"), acting on R™ as follows. If a = >1 aie; € R™, and

(n,0) € ¥, n = (n)7", then
m
(7,0):a = o(a) = ape = ) Miies():
1

Let Q be the group {—1,1}" x S, acting on X as follows. If b € X, b =
So7 bizi, and (e,7) € Q, then

(6,m):b > we x(b) =ber = Z €:biT (i)
1
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We shall sometimes relabel the indices of (z;)}. Let i = T(i—nn+; (1 =
1,...,m, j = 1,...,h), where hm = n, and similarly let €;; = €(i—1)n+; and

Toa

1J

=7((: —1)h +j) for (e,7) € S2.
We shall regard a block basis of (z;) as a random embedding of R™ into X.
Let ¢:R™ — X be the embedding defined by

m
d):Zaiei —
=1

1=

ai.’l-'i]'

h
=1

m

1

1

% h s P .
and write u; = Y. z;j, for i = 1,...,m. Then let ¢¢ » = we,x 00, L€

m m h
Ger: E a;e; — E E €ij 0 Tm; -
1

= i=1 j=1
When 1 < 7 < m we shall write (u;)e,» for ¢ r(ei). The sequence ((u;)e,)7" Wwill
be our random block basis.

Like Amir and Milman, we shall rely heavily on measure-concentration tech-
niques when we prove Theorem 3.1. The additional strength in our proof comes

from considering, for an arbitrary vector a € R™, the whole class

{an,a : (n,0) € ‘I’}

at once, and estimating the probability that the norms of the images of all the
vectors in the class are about the same. One might expect that some sort of result
about sub-Gaussian processes would be useful here: in fact, the only probabilistic
tool we need is Azuma’s inequality (Theorem 1.1).

The proof of Theorem 3.1 is based on two statements. The first is Proposition

2.1, and the second is the following.

Lemma 3-2. (i) Let the sequence z1,...,z, € X satisfy the conditions of The-
orem 3.1, let ¢ be the conjugate index of p and let ¢ »:R™ +— X be as defined

above. Then, for any a € R™,

Ea ll¢ex(2)ll > n~ /7 |lall, k.
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(ii) Let € and m be as in the statement of Theorem 3.1, let h = n/m and let

§ =¢/11. For any a € R™, let E(a) stand for Eq ¢ ~(a)||. Then

6

Pa |31,0) sit. [l|6en(ane)l = B(@)| > 5n7"/7 flafl h| <m”

6§~ log(36~1)

The main step in the argument is the second part of Lemma 3.2. This states,
roughly, that for any vector a € R™, the deviation of any vector of the form
ée x(an.o) from their common average is, with large probability, small. The first
part provides a lower bound for the average itself, so that the deviation is in fact
proportionately small. Let us see why Proposition 2.1 and Lemma 3.2 are enough
to prove Theorem 3.1.

If they are both true, then we can choose vectors aj,...,an that satisfy
the conclusion of Proposition 2.1. Having done this, let us consider a single vector
a = a;. Taking § = ¢/11, we have § < 1/11, so certainly (1+6/3)(1-6/3)7! < 1+6.

Hence, by the two parts of Lemma 3.2,
Pa [mgx | den(ane)ll /mjn [der(ano)l > 14 8] <m= 718057 = =

It follows that there exists some (e,7) € Q such that if we define a norm on
R™ by ||a]| = ||¢ex(a)]], then this norm is (1 + §)-symmetric at each of the vectors
ai,...,an. But then, by Proposition 2.1, this norm is (1+6)(1 —66)~!-symmetric
on R™. Since § = ¢/11 < 1/11, we have (1 + 6)(1 — 66)7! < 1 +¢, so the block
basis ((0;)e,x)" is (1 + €)-symmetric. Thus Theorem 3.1 does indeed follow from

Proposition 2.1 and Lemma 3.2.

Proof of Lemma 3.2(i). This part is a simple observation. Let [|a] stand
for Eq ||é¢ ~(a)]]. Then |.|| is a 1-symmetric norm on R™, and by hypothesis

I S°7 eill = n'/P. Now let a =Y 1" aie; be a vector in R™ with a; > 0 for every 1.
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For 1 < k < m let a'®) be the vector E;n a;e;+k (where 1 + k is reduced modulo

m). Then, by the triangle inequality,

i=1 \j=1

llall = m~! =m! =m~! llall; nl/P = n=1/4 llal|; h.

Proofof Lemma 3.2 (ii) Without loss of generality we may assume that ||al|; =1
and that the coordinates of a satisfy a; > ... > a,, = 0. This is for ease of
notation. Let By,..., Brt+1 C [m] be defined by
Bj:{{ie[m]: 27 <a; <270V} 1<j<k
{ie[m]: ai<27%} j=k+1
where k = log,(200mnt/9/e).

Let by,...,by be given by b; = a|p;, (1<j<k). Given (,0) € ¥, let us
define b%,a to be (bj)p,o. Clearly b{;’d = a5,0|0(B;), and the absolute values of
the coefficients of b{;,a lie between 277 and 27U~ when j < k, and are at most
€/200mn/? when j = k + 1.

Foreach 1 < r < k and (n,0) € ¥, let the function f; ,: 2 — R be defined

by
fra(&;m) =E[llgem(anolll | fem(bi o) = ben(bh)si = 1,-..07]
Now, for any fixed (7, o), the sequence of functions £ , (= E(||¢¢,x(an,o)|])),
,ia,...,f,f’a is a martingale. Note also that f¥ (e, 7) = ||¢¢ x(ay,0)|, although

the expectation is not taken over a singleton subset of Q. This is because if

@'ffy,r/(b{')’a) == éf’ﬂ(b{%,g) for j = 1,...,k then ¢o r(aps) = ¢ex(anes). As it
happens the fact that fJ ,..., ,’7‘,0 is a martingale will not concern us. Instead

we are interested in upper bounds for the following two quantities:
(a) the number of distinct functions fr.o for any given r;

(b) the probability, for given r and (7, o), that [ o((e, 7)) differs substantially

|

from f;~

((e,m)), if (¢, 7) is chosen randomly from §2.
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The estimate for (a) is simple. If (7,0),(n’,0") € ¥ are such that b o = bf.,,’g,

for j7= 1,...,r, then it is easy to see that f7 , = fp .. But the number of

distinct choices of b; ,...,b] ; is certainly at most m(m—1)... (7”“‘Z;=1 |B;|)-

22;='1 IBil, So, writing 8; = |Bj| (j=1,...,k) and v; = 2?21 B:, we obtain that
there are at most (2m )7 distinct functions f; .

We shall obtain an estimate for (b) by using Proposition 2.9. Indeed, let us ;
define our weights b1,...,bn by bj = af )] for each ¢ € [n] and set s = y.h and
t = yr—1h. Let f be the function given by f((e,7)) = ||¢c,n(ag,0)||. We have
27T L b; €271 for Yr—1h £ 1 € ¥,-h.

Since

(6,7) ~s (€,7") = den(bl ) = per,m (b3 )

when 1 <7 <r, and

(6,m) ~i (¢, 7") = en(b] ;) = der,w (b))

when 1 < j <r—1, and f is 1-Lipschitz, we obtain from Proposition 2.9 that

62h2n2/9
Plfr . ((e,m) = fr5t ((e,m)) > 6,hn™ 9| < exp | — .
7,0 ((6 T)) fn,o (E ﬂ.)) n :| exp 8(’)’r — Tr_1 )h .9—2(r-1)

22(r—1)63h
= exp <— 8”2/qﬁr >

Similarly, we obtain

22112,
8n2/1f, )

Plfro((e,m)) — f;;l ((e,m)) < —-5rhn_1/q] < exp (—
Note that the above probabilities are both zero in the case §, = 0.

Because of the bound given earlier for ”bk'*'

o Hoo we also have, for any (e, ), | ‘
Nl

that ‘
2 (e, m) — £2 ((e,m)) < (€/200)hn =21 = (e/200)hn "4 ||a]|, |

40




Recall that E(a) stands for Eq(||¢¢.~(a)||), and note that this is the same as

Eq(ll6cx(ano)l) for any (n.0) € T.

Now suppose that for some (e,7) € Q it is true that there exists some (17,0)
for which

. . i
I¢en(ano)ll = E(a) > 52 lla]l; hn=2/9,
that is, for which

€

i (em) = £2 o (7)) > o= lally n=He.

Then

f:,a((e’ 7")) - f,(,),a((fﬂr)) > Z% ||a||1 hn_l/q 5

so, if 8; + ...+ 6 < €/40, there will be some 1 < r < k such that

T ((e6,m) = fi51((e,m)) > 6¢ |lall, An~ /2.

However, by the estimates for (a) and (b) and the normalization ||a||, = 1,
the probability of such r and (n, o) existing is at most
k 92(r—1) g2,
2\ exn [ — r
22 ekp( 8r2/9, )
where s is the smallest value of r for which 4, > 0. This is therefore an upper
bound for the probability we wish to estimate.

It remains for us to choose appropriate 61,...,6; and to verify that this
probability is at most %-m_é_l 10g(36™")  Since the inequality in the other direction
is exactly similar, we will then be done.

Choosing 6, = Q—Tﬁ,l-/zfyi/z - €/66 will do.

First, using the Cauchy-Schwarz inequality and the fact that ZfQ'rﬂ,. £
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Yl ai=1andy, = Z;=1 3;, we obtain

Second,

k

22(r=1) 62, e2h
Z(Qm ‘Yre>_p< Shmils ) = Zexp (fyr(log(Qm) ~ ITx 8 x 662712/9)

r=s

e2h
< k eEXp (log(Zm) = W)

since v, > 0 for every r 2> s.
But since k > (20/€) - (log(33/€)) - (150,000/€?) - n%/9 log n, we have

e2h .
k exp (10g(2m) - W) <k exp((l —(20/¢) log(33/e)) log n)

exp (—(11/6) log(33/€)log n)

7n—(11/f)log(33/e)

N

N
NN N =

_ -1
=8 log(3671)

which is what we needed. This completes the proof of Lemma 3.2 (ii), and with

it the proof of Theorem 3.1. O

Let us finish this chapter with two simple corollaries.
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Corollary 3-3. Let z;,...,x, be a sequence of vectors in a normed space C-
equivalent to the unit vector basis of {;. Then there is a (1 + €)-symmetric block

basis (u;)T* of (z;)} with blocks of =1 coefficients and equal length, of cardinality

m > v(e)C™*(log n)"ln,%_1 ,

where y(¢e) = (¢2/3,000,000)(log(33/¢)) 1.

Proof. Without loss of generality, the norm of each z; is at most 1 and

n

E €T,

=1

E > Cipt/r

If p' is chosen so that nl/?" = C~1nl/P then n?/?" = C~2n2/?. Corollary 3.3 is

thus an immediate consequence of Theorem 3.1. O

It turns out, however, that one can do much better than Corollary 3.3 when
p > 1. In this chapter, we have used the fact that, for an appropriate distance
on 2, the function ||ac x| is a Lipschitz function on 2. If the norm concerned is
equivalent to the £,-norm, there are stonger continuity properties available. We
shall show how to use these in the Chapter 4.

As our final result in this chapter, we show that if the original sequence
in Theorem 3.1 is contained in a space with a type condition, then the almost

symmetric block basis obtained satisfies a stronger growth condition.

Corollary 3-4. Let 1 < p< 2,0 < e <1, and let (z;)} be a sequence of unit
vectors in a Banach space X. Suppose that E |37 €;z;]| > n!/? and suppose that
the p-type constant of X is C. Then there is a block basis (u;)* of (z;)? with
blocks of +1 coefficients and equal length, which is (1 + €)-symmetric and has
cardinality

m 2= y(e€)(log n)—lrz%_1
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where v(€e) = (€*/3,000,000)(log(33/¢))~1. Moreover, ifh =n/m, 1< k < m and

A C [m] is any subset of [m] of cardinality k, then

Su

€A

(10C) ™! (hk)'/% < 2C(RE)YP .

Proof. The first part of the result is just a restatement of Theorem 3.1, so all we
need to do is prove the second. For the right-hand inequality, observe that, with
the help of Lemma 3.2(ii), we have proved the existence of a block basis such that
the norm of any vector is not merely invariant under changes of sign and order
of its coefficients, but is also close to its expected norm. Now, if the block basis
ug,..., U, is chosen randomly as in the proof of Theorem 3.1, then it is clear that

Su

€A

E < C(hE)Y/P

because of the type condition on X. The inequality now> follows from the fact that

C>1lande< 1.

| To obtain the second inequality, let us set { = |n/k] and partition [n] into !
sets Ay,..., A; of size k and one set Ay of size less than k. Then it follows easily
from the type condition on X and the fact that uy,...,u,, is a 2-symmetric block

basis that

m I+1 P\ 1/p
| >u <20(X] T )
i=1 j=1llica;
~ <4C(I+1)VP|> " u,
| ieA
\ The result follows now from the growth assumption on the original basis. O
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CHAPTER 4

BASES EQUIVALENT TO

THE STANDARD BASIS OF (}

In the last chapter, we showed that a normalized basis for which the average
of all +1-sums is at least n!/P must have an almost symmetric block basis of
cardinality proportional to n2/P=1/logn. In this chapter, we shall show that, if
we assume the stronger condition that the basis is equivalent to the unit vector
basis of an £,-space, for some p < oo, then we get a much stronger result. In fact,
there is an almost symmetric block basis of cardinality proportional to n /logn.
Note that, in the case p = 1, we have already proved this result under a weaker
assumption. The extra strength when p > 1 comes from the fact that we can define
a natural metric on the set of rearrangements of a vector in £y in such a way that
any equivalent norm on £} is Holder continuous with respect to this metric, with
exponent 1/p < 1. In the previous chapter, we only used a Lipschitz condition.

Let us now state our main result.

Theorem 4-1. Let 1 <p < 00,0 < e < 1/2,C > 1 and let (z;)] be a basis for a

normed space X. Suppose that, for any a =) | a;e; € R",

n
E a;T;
1

Then (z;)} has a block basis with blocks of +1 coefficients and equal length, which

llall, < < Cllall,-

is (1 + €)-symmetric and has cardinality
m = (1/64)(¢/66C)?P - (¢/20) - (log(33/¢)) ™" n/logn.
This improves on the known bound of a(e,‘z),C)nl/3 due to Amir and Mil-

man [4]. The result is useful as the first step in the proof of a local version of

Krivine’s theorem.




As in the last chapter, we must begin with some notation. This time 1t is a

little more complicated. Let ¥ and © and their actions on R™ and X respectively
be defined as in the last chapter. Relabelling the indices of (z;)] as before, let us
also define an action of ¥ on Q as follows. Given (n,0) € ¥, let it send (¢,7) to
.o ((e,7)) = (¢',7'), where

€ij = Ti€a(i) j

i=1,....,m, j=1,...,h.
Tij = To(i)j
The proof of Theorem 4.1 will be similar to that of Theorem 3.1, but it is

not possible to work directly with the norm. Instead, for a fixed a € (7', such
that [lall, =1 and a1 > ... > am > 0, we define, for each (n,0) € ¥, a function

gn,0: 8 — R as follows.

Let ') » € € be the set

{(e, 7 | den(ano)l <M nm',ﬂf(an,a)n}-

(The symbol M denotes here and for the rest of the chapter the median taken over
Q)
Let d,,o be a metric on 2 defined by

m

dn,a((ET' (6 7!‘) :Zla1|p {.7 60(,)17560(1)] or WU()]#TU()J}|

Then
gn,o((e:7)) = dn,o((6,7), Tnyo)-

Thus ¢, measures how far (¢, 7) is from some (¢, 7') for which ||@¢r,x (ay,s)||
is below the median. Moreover, the distance is weighted according to a; ..
When (,0) = 1y, let us write g for gy o, d for dy o and T for ' 5. Recalling

that 1, » represents the action of (n,0) on 2, we have

dy,o ((€,7),( Z @il [{7: €oti) i # €ogiyj OF Toti) 5 # Ta(iy ;]
( n,o(€,7), ¢, (e, ))
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Also

= ”(f)u’n,a(f,’f)(a)u

16¢x(an0)ll =

m  h
E ,E :fa(i)j”iaix”a(«')i
=1 j=1

and thus
Lo = {(&7): 80,0 (@] < Mlidem (I}
= {¥75(em): [ex(@)ll SMle ()]}
= Y50 (L)-
Hence
gn.o(6,7) = doa((€,7),Tra) = d(Yn,0(& ) Y00 (To)

= d($n,0(e,7),T) = g($n.0(e,7)) -
Now thc main reason ¢n,q 1S useful is that

18e,x(an,0 )l = |$er,x (an,0)ll|
< ||de,x(an,0) = der,x (an,o)ll
= H¢'¢'n,a(fa7")(a) - ¢¢q,a(€',7f')(a)ll

m 1/p
<20 (Z |ai|?|{J: €ai)j # €o(i)j OF To(i)j F To(i)s ) l)
i=1
1/p
= 2C (d,,,,,((e, ™), (e',w'))) :
Hence, if g, o(€,7) < &, then
18e,x(an,0)ll = Mllge ()] < 2061/,

We are now ready to state the main lemma on which the proof of Theorem

4.1 is based. It corresponds to the second part of Lemma 3.2. We shall also need

Proposition 2.1, as we did in the previous chapter.

47




Lemma 4.2. Let e, m and C be as in the statement of Theorem 4.1, let § = ¢/11

and let h =n/m. Let a € R™ be a given vector with “aHp =1, and for (n,0) € ¥

let gy.6:Q — RT be as defined above. Then
Pq|3(n,0) s.t. gn0((e,7)) > (6/6C)Ph| < (1/2)771_6~1]°g(35—1).

Let us first see how we may deduce Theorem 4.1 essentially from Proposition
2.1 and Lemma 4.2. Suppose both of these are true, and pick vectors aj, ... ,an
which satisfy the conclusion of Proposition 2.1. Now apply Lemma 4.2 to each of
the vectors a;. Since N = 7n.5_11°5(36_1), we have, with probability greater than
1/2 if we pick (e,7) at random from , that g, ,((e,7)) < (6/6C)Ph for every
(7,0) € ¥ and every 1 < ¢ < N. (The dependence on i is via Jn,o, Which is
defined in terms of a;.) By the remarks preceding the statement of Lemma 4.2,
we have, with probability 1/2, that

I$e,x((ai)n,0)l = M| ger,m ((@i)n,0 )l < (6/3)R/7

for every : € [N] and (n,0) € 0.

Lemma 4.2 is not quite sufficient for our purposes because it only gives a
bound for the probability of some ||¢¢,»(ay,»)|| being significantly larger than its
median. However, one can prove a bound in the other direction with an almost

identical proof. One obtains that, with probability greater than 1/2,

19e,7((2i),0)ll = Mllder,m ((i)g,0)ll > —(6/3)h17

for every ¢ € [N] and (n,0) € V.
Now the median above is certainly at least h!/?, and, since 6 < 1/11, we also
have (1+6/3)(1—6/3)71 < 14 6. With these two facts and the estimates above,

we obtain that there exists (¢,7) € Q such that

max [|¢e,«((a:)y, 0l /n}gn ex((ai)g. o)l S1+6
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7
AN

for every i € [N].

, we find that this

Hence, if we define a norm |.|" on R™ by lla]l' = ||¢e,x(a)
norm is (1 4+ §)-symmetric at aj,...,an. It follows from Proposition 2.1 that it 1s
(1 + ¢)-symmetric. This tells us that ¢ x(e1),...,¢e,n(em) is a (1 + €)-symmetric

block basis of z1,...,Tx.

It therefore remains for us to prove Lemma 4.2. Before doing this, we shall
prove one other lemma, which we shall then use in the proof of Lemma 4.2. It is

a technicality which is found in the proofs of many results of this kind.

Lemma 4-3. Let 6, p, C, m, h, a and g, , be as in Lemma 4.2. Then
Eagno((e,7)) < 1/4(8/6C)"h.

Proof. This lemma states that the expectation and median of ||¢¢ »(ays,0)| are
close. It follows easily from Proposition 2.9. Indeed, let us set ® to be 2, and
define our weights by b; = |af(i/n)]|? for each ¢ € [n]. Then the function f = gy 0

is 1-Lipschitz. Applying Proposition 2.9 with s =n and t = 0 we obtain

821
P[f —Ef < —6h] < exp ———%2— )
8 a:?

1 1

Hence

P[f=0] <exp (—%)

o Lo (L)

= Ef < (8h log?2)'/?

< (1/4)- (6/6C) h. O

Proof of Lemma 4-2. The proof is similar to that of Lemma 3.2 (ii). We fix a

vector a with [[al|, =1 and a; > ... > an > 0, and define
B {ie[m]:277 <al €270} 1K<k
’ {i € [m]:af < 27F} j=k+1
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where k = log,(4 - (6C/6)Pm).
As before, let b; = a|p, (1<j<k), and b = (b;)y0.

Then for 1 <r < k+1and (n,0) € ¥, we set

.
e =e€ij,m; =mi;Vi € | Jo(Bs),j=1,...,h

1]

71;,0 ((67 77)) = Eq ,:gn,a ((5,, 77[))

s=1

Note that if €;; = €;; and 7}; = m;; for all 1 € Uie,0(Bs), 7 =1,...,h, then
Sen(by o) = 0c a (b3 ;) for s =1,...,r, but more is true, since for example there
cannot be some 7 and some 7 € S}, such that 7r§j = 7;,(j)- This is purely for the
sake of convenience.

Note also that for any (e, 7),

() - frollem) <2 () b
no & 7,0 \&T))S 7\ 5O

We would like to prove two facts, which correspond to the estimates (a) and
(b) in the last chapter. These are

(a) If ni =nj and o(d) = o'(7) for all i in | J;_, Bs, then f; , = fr, ..

(b) For all (n,0)in ¥, 1< r<kandé, >0,

§292(r—1)
Pa ;,a((e, W)) - f;,;l ((67 77)) > 5rh] < exp (—“2—11)

80-

(where B, = |B,| as before). Let us set C, = JI_, B, for each 1 < r < k.

To prove (a)’, we use the fact that g,,,,((e’, 7r')) = g(w,,,,,(e', 7r’)), and hence
f;,a ((65 ﬂ-)) =
= EQ [g((fl, 7T,)) l 771'6’0.—1(1')]' = 61']', 7(-(,7—1(1')]' = TTij VZEO'(CT),jZI, e ’h:|

= Eq [g((e',ﬂl))

6:] = 77i60(‘i)j,77'£j = Wa(i)j VZECT,J:]_”h] .

(a)" follows immediately, and, with v, = |Cy| = Y 7_, Bs, the number of

distinct fy , is at most (2m)?, as before.
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To prove (b)', we once again apply Proposition 2.9. Set b; = a‘?(i/h” for

1<i< n sets=nh,t=n-1hand f((e7)) = ggo((e,7)). Then [ is
1-Lipschitz, fo = f; , and fi = f77 !, We obtain (b)' immediately.

Again, just as before, we may conclude that

1
Pa|3(n,0) € Us.t. fr,((em) = fro((em) > 5(55)"h

3 2212,
< Z(?nz)7’exp(—T) (1)

where 61, ..., 6, is any sequence satisfying Z;“ 8- < (1/2)-(6/6C)P. We shall choose
6, to be (1/4) -2~ rﬂl/z ? - (6/6C)P-. Then, just as before, Ef 6, is indeed at
most (1/2) - (6/6C)?, and the right hand side of (1) is at most

kexp <1og(2m) - ((%)”6%)
But if
Fro((e) - fol(em) < 2 (mg) h
and, by Tiesrms 48,
2. () < 3 (e5)
and, as we remarked earlier,

A (e - oem <1 () b

then
5 \P
k+1 =
fq,g ((6’ 7T)) < (66v> h'

Hence
6§ \2r h
Pa|3(n,0) s.t. gy,0((6,7)) > (6/6C)Ph| < kexp| log2m — (6—C—> 1)

o1

!

—




But since h > 64 - (6C/6)* - (20/¢) - log(33/¢)logn, this is at most

k exp <log n (1 - (‘20/5)10g(33/6)) >

< n-—-(ll/f)log(BS/e)
< (1/2)Tn—(11/£)108(33/6) - (1/2)”1—5_1 10g(35'1)'

This proves Lemma 4.2, and hence Theorem 4.1. O

One result of Amir and Milman [3] gives an estimate for the size of a (1 4 ¢)-
symmetric block basis when the original basis not only has large average growth,
but is the basis of a space with p-type constant v, and has an average growth that is
within a constant of being the greatest possible consistent with this type condition.
As it happens, they use the type condition to find a subsequence of the original
sequence which satisfies an average lower p-estimate. That is, if z1,...,z5 is the
original sequence, they find a subsequence y1,...,ym and a constant ¢ such that
S ¥ ey

their bound over the one they obtain without a type-condition, yields a growth

E

‘ > cenl!/? for every k < m. This, as well as enabling them to improve

condition on their symmetric block basis (c¢f. Corollary 3.4). In Chapter 5, we shall
exhibit, for 1 < p < 3/2, a sequence which satisfies a lower p-estimate, but which
does not have an almost symmetric block sequence of cardinality significantly
greater than that guaranteed by Theorem 3.1. However, it turns out that a type
condition on the space containing the original sequence can sometimes enable one
to find larger almost symmetric block bases. This is a corollary of Theorem 4.1: if
p is sufficiently close to 2 and the p-type constant of a space is sufficiently close to
1, then one can obtain information about the distance of that space from a Hilbert
space of the same dimension. We shall do this, and then apply Theorem 4.1.
First, let us consider the case p = 2. Here, any result at all that gives a power

of n is interesting, since no such bound follows from Theorem 3.1 or from results
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of Amir and Milman. We shall obtain a block sequence that is (1 + €)-symmetric
and whose cardinality is a power of n that depends on the precise type constant,
tending to 1/2 as the constant tends to 1. We shall of course insist that the original
basis is independent, since the 1-dimensional Banach space has 2-type constant 1.
This in fact shows that a purely probabilistic method cannot possibly work. In
the next simple lemma, we show how to replace the original basis by a block basis
that looks much nicer. Lemma 4.5 shows that a space with a good 2-type constant
cannot have too large a 2-cotype constant. The proof of Lemma 4.5 uses a fairly

standard technique.

Lemma 4-4. Let z1,...,z, be a linearly independent sequence of vectors in {,.
Then there is an orthonormal block sequence yi, ... ,ym of z1,...,x, of cardinality
m = /2n.

Proof. Set y; = z;/|z1||. Now there is at least one unit vector in the space
spanned by =3 and z3 which is orthogonal to ;. Let y, be such a vector. There is
at least one unit vector in the space spanned by z4, z5 and zg which is orthogonal
to both y; and y». Let ys3 be such a vector. Continuing this process gives an

orthonormal block basis of cardinality m, where m is the greatest integer such

that %m(m — 1) < n. In particular, m > /2n. O

Lemma 4-5. There exists an absolute constant y with the following property. Let
0 < e<1andlet X be any n-dimensional Banach space satisfying T(X)<1l+e.

Then Co(X) < ynlos(i+/1o82 o0 < yn¢/1o82 og py,

Proof. In fact, we use a rather weaker hypothesis. For any z;, 2 € X we have

%(”-731 + 2ol + fler = 22ll?) < (L + (]| + [|22I%)

By a simple substitution this implies that, for any y;, y € X

%(Hyl +v2ll” + v = 92ll”) = 1+ )72l l* + w2l (%)
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K6nig and Tzafriri [29] have shown that there is an absolute constant yo such

that for any n-dimensional space Y,
C2(1) < 70C2(Y,n)(log n)' /.

Let N = 2% be the smallest power of 2 that is greater than n, so k < 14logn/log2,

and suppose we have a sequence of vectors z1,...,zny € X. By repeated applica-

)

tions of (%) we find that

2 N/2
i = (14¢€)” (

E €;T; E €, T4

N/2+1

+E

N
> 1+ |l
1

We therefore have C(X,n) < C2(X,N) < (1+¢€)* < (14¢€)-(1+e)lo8n/los2 = I
(1 4 e)nlos(1+)/log2  ope/log2  Thus, if we set v = 2vq, we have that Ca(X) <

772‘/103 2(log 77)1/2.

a

spanning a Banach space X with 2-type constant 1 + e. Then there is a (1 + ¢)-

Theorem 4-6. Suppose z,... ,:cn is a linearly independent sequence of vectors
symmetric block sequence y1,...,Ym of z1,...,T, of cardinality at least m = i

anf(9 /(logn)?, where f(e) = 3 —4e/log?2 and a = a(e). Il |

Proof. By Lemma 4.5, X has 2-cotype constant at most C' = yn¢/1°82Jogn. A

well known result of Kwapien [31] states that, for any k-dimensional Banach space

\
|
M
Y, |
d(Y, %) < To(Y)Co(Y). I
Hence, X is actually C' = (1 + €)C'-equivalent to 3. Let T: X — (} be a map

such that [|T|| =1 and |T~!|| < C. By Lemma 4.4 we can pick a block sequence
Z1,.-.,2m with m = +/2n such that Tz,...,Tz,, is an orthonormal sequence.
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This implies that z1,. ..,z is C-equivalent to the unit vector basis of (7'. Hence,

by Theorem 4.1 with p = 2 and C as above, we can find a (1 + €)-symmetric

block basis of z1,..., zm of cardinality at least a(e)C~*m/logm, that is, at least

1 a(e)nf(© /(logn)®. O

We shall now look at what happens when p < 2. It turns out that the proof of
Theorem 4.6 can be adapted easily to give a result here, provided p is sufficiently
close to 2 and C is sufficiently close to 1. Let X be an n-dimensional space with

p-type constant C' = Tp,(X). Then we have
1 2 2 2 P P\2/p
sUler +z2l” + flex = 22017) < C7(lall” + llz2ll")

< 2277102 (|| |2 + ||z2)1)

Hence, for any y;1, y2 € X, we have

| %(Hyl +yal” + Il = v2l?) = 227202 (||| + Nl ll®) (**)

| Theorem 4:7. Let 0 < € < 1/2,1<p<2,C > 1 and let z1,...,z, be any
sequence of vectors spanning an n-dimensional Banach space X which satisfies
Tp(X) < C. Then (zi){ has a (1 + €)-symmetric block basis of cardinality at least
a(e)nf(CP) [(logn)> where f(C,p) = (1/2) — 4((log C/log2) + (2/p — 1)).

Proof. By using the inequality (**) in place of (¥) in the proof of Lemma 4.5
we obtain that C2(X) < ')/71105(21/p—1/20)/1052log n. Now a result of Tomczak-
Jaegermann [48] states that for any n-dimensional space X, and any p < 2 and
q22,
d(X,€3) < 4ap(X)Be(X).
Moreover, it is well known that a,(X) and T,(X) are the same, up to a constant,
and also that 3,(X) < Cp(X). So in this case we have
d(X,00) < C,)/nlog(Zl/"_I/zC)/log‘Z+l/p—1/2 logn

= Cyn1°8C/1oe)+(2/P=1) |55 1y,
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Just as in the proof of Theorem 4.6, we may now apply Lemma 4.4 and Theorem
4.1 to obtain that if z;,...,z, is any linearly independent sequence of vectors
in a space X with T,(X) = C, then it has a (1 + ¢)-symmetric block basis of
cardinality at least a(e)nf(©P) /(logn)°, as stated. This improves on the bound of

n2/P=1 obtained in Chapter 3 if 5(2/p— 1) + 4 logC/log2 < 1/2. O

There is in fact an elementary proof that if X is an n-dimensional space, then
C2(X) < 7C2(X,n)log n, using well-known results about the duality between type
and cotype and a result of Tomczak-Jaegermann about the relationship between
ap(X) and a,(X,n). It is known (cf. [39] Chapters 9 and 14) that for any
n-dimensional normed space X, Co(X,n) > (logn) !T3(X*,n), and Tomczak-
Jaegermann’s result [48] states that ap,(X,n) and a,(X) are the same, to within
an absolute constant. We obtain

Ca(X,n) = (log n) ' To(X*,n) > (log n) tay(X*,n)
> m(log n) " aa(X™) > ya(log n) T T(X™)
> 73(log n) 7' Cx(X)

where the remaining steps are standard (see e.g. [39 Chapter 9]).

It seems likely that if the sequence in Theorem 4.7 satisfies E||> 7 €izi|| >

en'/? for some constant ¢, then Lemma 4.4 is too weak. However, we have not

found a way of exploiting the growth in this case to obtain a better bound.

There are various other questions suggested by the results of this chapter. One
is to what extent Theorem 4.1 is best possible. There is a strong analogy between
Theorem 4.1 and results of Figiel, Lindenstrauss and Milman [18] connected with
Dvoretzky’s theorem. One of their results (cf. also [39]) is that if X is an n-
dimensional normed space that is C-equivalent to £, then it has a subspace of
dimension k = a(e,C)n that is (1 + €)-equivalent to £5. One can restate this as

follows. Suppose ||.|| is a norm on R™ such that ||z|| < C

|Az|| for any = € R"
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and A € O(n). Then there is a k-dimensional subspace Y* C R" such that for any
y € Y and any A4 € O(n) that leaves ¥ invariant, |Jy|| < (1+4¢) ||dy|. Theorem 4.1 il
is very similar, but is concerned with the symmetry group {—1,1}" x S, instead
of O(n). This suggests two possibilities. One is that one might be able to obtain
a bound in Theorem 4.1 that is actually proportional to n. The other is that one |
might be able to relax the condition on the original basis from being C-equivalent Il
to the unit vector basis of { to being C-symmetric.

It turns out that neither of these works. In Chapter 6, we shall show that
* Theorem 4.1 as stated is best possible, up to a factor of loglogn, and in Chapter
7, we shall exhibit a basis that is C-equivalent to the unit vector basis of {7 which |
has no almost symmetric block basis of cardinality nf(¢©) where (e, C') depends

on € and C only, and tends to zero as log(1 + €)/log C tends to zero. i
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PART III

THE SIZE OF SYMMETRIC BLOCK BASES:

UPPER BOUNDS




CHAPTER 5

BASES WITH LARGE AVERAGE GROWTH

In Chapter 3 we showed that any sequence zi,...,r, of unit vectors in a
normed space which satisfies the condition that E || £a;]| is at least n'/? must
have an almost symmetric block basis of cardinality at least y(e)n?/?=1/logn.
Discussion of an upper bound for the size of an almost symmetric block basis that
1s guaranteed by these conditions is somewhat complicated by the fact that there
can often be block bases which are almost symmetric but which do not satisfy
certain other very natural conditions. The following example shows that in one
sense the result of Chapter 3 is best possible.

Let 1 < p<2 1/g+1/p =1, m = 2n%/P~1 and h = n?/9/2. Then let

e1,...,em be the standard basis of £1*. For 1 < i < n we set z; = ey(;), where

)

k(i) = [i/h]. Then

h

Z €(h—1)i+j

Jj=1
1

E

n
§ €Ty
1

:E(g

1
h

=mE €;

J
> 2-1/2mp1/2 = pl/p

It is immediate by linear algebra that the sequence (z;)} has no almost symmetric
block basis of cardinality greater than m.

Unfortunately, however, this sequence is not linearly independent. The nat-
ural way of dealing with this ought to be simply to embed £7* into any Banach
space of dimension n and perturb the sequence very slightly, but this does not
necessarily work. Suppose, for example, that we were to embed (]* into £} in the

natural way and then perturb the unit vector basis of £J* by adding multiples of

vectors from the unit vector basis of (7. We would then be able to construct a




pfdportional—sized block basis that was 1-symmetric by taking blocks of the form
z; — zip1 (where 7 should not be a multiple of h) and normalizing. Although this
is a contrived example, it illustrates the point that to find a linearly independent
sequence with average growth as given in the main theorem, but with no almost
symmetric block sequence, either one must use a completely different example,
or one must solve the rather different problem of constructing some independent
sequence with more or less no almost symmetric block sequence of any size. As
p approaches 2, these become the same problem, which we shall discuss later in

Chapter 7.

The 1-symmetric block basis given in the example above is, however, an un-
interesting one. The reason is that the normalization can involve multiplying by
an arbitrarily large number, so that the block basis bears very little relation to
the original basis. If we pick any real number M and stipulate first that the coeffi-
cients appearing in the vectors in the block basis should be bounded above by M,
and second that the block basis should be normalized, then any sufficiently small
perturbation of the linearly dependent sequence given above will clearly do. This

is obviously a natural constraint to impose on the block basis we find.

We shall present a randomly constructed space which gives a bound close
to that achieved in the other direction in Chapter 3, even without this extra
condition, when 1 < p < 3/2. In fact, our example satisfies a lower p-estimate. ik
When p > 3/2 our construction fails because the basis it gives has a large block

basis that is close to the unit vector basis of an appropriate £X_.

Theorem 5-1. There exists an absolute constant C such that forany 1 < p < 3/2

and any n € N, there is a norm ||.|| on R™ satisfying the following three conditions:

(1) the standard basis is normalized;

(ii) for any a € R™, [lal| > [lal;




(iii) if k > Cn?/P=1(logn)*/® then no block basis uy, ..., u; of the standard

basis is 2-symmetric.

Let us begin by setting m = (C/2)n?/?~1(logn)'/?, h = (2/C)n?/9(logn)=*/3,
N = 600h%*/Plogn and M = (5n?)™*. We shall pick N functionals fi,..., fy
independently at random from the set of all functionals on R™ with +1-coordinates,
where this set is endowed with the uniform probability measure. Given a vector

a € R", we define a random norm by setting

lall = max{llall,,|f1(a)],...,|fn(2)]} -

Our aim is to show that there exists a choice of f1,..., fx such that no block
basis of the standard basis of R” is 2-symmetric under the corresponding norm.
In fact, it is easy to deduce from our proof that, with high probability, a random
choice will do. The other two conditions of Theorem 5.1 are trivially satisfied by
any norm of this kind.

As in the previous two chapters, we shall make one or two definitions and
then state two lemmas which will be enough to prove our main theorem.

Suppose we have a block basis uy,. .., u,, of the standard basis, and suppose

that we can find some 1 < j < m and some sequence of signs 71, ..., 7, such that

Zn,—ui > max{SO logn ||uj||, ,6 Z'l]iui } (*)
1 1 P

is-greaterstharrizzMzZ%, In this case we shall say that the block basis (u;)P
satisfies condition (x).

We shall say that it satisfies condition (%) if there exist j € [m] and a sequence

1 ()

of signs n1,...,1, such that

m

> i

1

n

3 e

1

2 max{64 logn ||u;||, ,4
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The next definition enables us to restrict our attention to block bases that

are slightly more regular than an arbitrary block basis. Suppose ko > k and
Vi,...,Vk, is a block basis of the standard basis. Since the supports of the v; are
disjoint, we can certainly find k/2 of them such that each one is supported on at
most h coordinates. Passing to a subsequence again, and relabelling, we can use
the pigeonhole principle to find a subbasis uy,...,u, and A > 0 such that, for
each 1 <7< m, A < ||vi|l, < 2A. By multiplying each element of the basis by A7}
we obtain a block basis uy,...,u,, such that, foreach 1 <7< m, 1< ”Ui||p <2
Let us call such a block basis proper. We have shown that any block basis of
cardinality at least k has a subbasis, a multiple of which is proper. Note that if
the proper block basis obtained this way fails to be 2-symmetric, then the original
block basis also fails.

Our lemmas are as follows.

Lemma 5-2. (i) Let m, M be as above and let uy,...,u,, be any proper block
basis. Then the probability that uy,...,u,, satisfies condition (*) is greater than
1—M™1,

(ii) Let uy,...,un be any proper block basis which satisfies condition (*%).

Then uy,...,u,, is not 2-symmetric.

Lemma 5-3. There exist M proper block bases with the following property. If
each one of these block bases satisfies condition (), then every proper block basis

satisfles condition (%).

Lemmas 5.2 and 5.3 imply Theorem 5.1 as follows. Pick M proper block
bases to satisfy the conclusion of Lemma 5.3. By Lemma 5.2(i), the probability
that every one of them satisfies condition (*) is greater than zero. In other words,
for some choice of fi,..., fn, each of these block bases satisfies condition (). By

Lemma 5.3, it follows that every proper block basis satisfies condition (**). Hence,
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by Lemma 5.2(ii) it follows that no proper block basis is 2-symmetric. However, by
the remarks preceding the statement of Lemma 5.2, every block basis of cardinality
at least k has a subbasis, a multiple of which is proper. Thus, with the choice of

fi,..., fn above, no block basis of cardinality k or greater is 2-symmetric.

Proof of Lemma 5-2. (i) Let us fix a particular j € [N] and a particular proper
block basis uy,...,un, and examine the effect of the functional f on the space
generated by uj,...,un.

There certainly exist signs 71, ...,7m such that f (37 niui) = > 1" [f(ui)l.
Further, it is well known (and a straightforward application of Theorem 1.1) that

there exists an absolute constant ¢ such that for each u;, we have

PIf(w)] = clluill,) >1/2.

We can therefore define some independent random variables 71,...,7m in such
a way that, for each 7, v; is dominated by |f(u;)|, and takes the values c|[uil|,
or 0, each with probability 1/2. Then E(3> 7" v) = £>.7 lluill,- By an easy
appplication of Theorem 1.1 and the fact that each u; is supported on at most h

coordinates, we have

P[Z Znuzug <exp (anu) / > llill3

[
-e\p< (anu) /Znuznz
(
(-
(-

< exp ——éhl 2/p (Z Hqu) /leuz'llf,

é £ p1-2/p . A2m?
16 402m

c 1-2/p
64mh ) .

< exp

= exp
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Let us set 8 = exp (—6%771111‘2/7’).

Now, since the support of each u; is at most h, and since the ||u;||, differ by

a factor of at most 2, we have

m m
S fuilly > B2 Y i,
1 1

> %111/2—1/;;7711—1/;} 3w
2 - ,
01/2 m
O g[S
2 : ,

Using these facts again, and also that p < 3/2, and picking the index j for

which [lu;][, is minimal, we have

> luill, = BT fuill,
1 1
> mh! 2P |y,
> mh™? |,

> (C/2)**logn |lujll; -

It follows that, if (c/4) - (C/2)%/% > 80, that is, if C' > 2- (320/c)?/3, then

}’::ui }] <0.

Moreover, since the functionals f1,...,fn were chosen independently, the

P[Z |f(u:)] < max{SO logn ||ujl|; ,6
1

probability that, for every j and every choice of signs 71,...,Mm,
m m
Z niu;l| < ma.x{SOlogn luj|l, ,6 Z u; }
1 1 P
is at most 8V = exp (—émhl_z/ T’N). In other words, we have shown that a

given proper block basis satisfies condition (*) with probability at least 1 — 6V,
It is easy to check that 8~ < M ™!, which completes the proof of the first part of

Lemma 5.1.
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Proof of Lemma 5-2. (ii) We must show that a proper block basis (u;)"
which satisfies condition (*#) cannot be 2-symmetric. So let us suppose that it 1s

2-symmetric. Then for all choices of sign (n:)7" and any j € [m], we certainly have

Zﬁiui } .
1 P

It follows that the support functional at each vector of the form ST i is

m

Z niyv;

1

= max{16 log n |Jujl]; , 2

one of fi....,fn. We shall show that, on the contrary, no given fj can support
as many as N~12™ of these vectors. Let us fix 1 < j < N and set f=1f; Ifthe
block basis (u;)T* is 2-symmetric, then there exists some p > 0 such that for every

choice of signs (n;)T",

pllull < < 2p|wll,

m
Z niu;
1

from which it follows that 307" | f(u:)| < 24 |lus||. We know also that x> 16 logn
and that, for each 7, |f(u;)] < 2]jui]|. Let Q be the probability space of all
sequences of signs (7;)T uniformly distributed. A final application of Theorem 1.1

gives

Pa|

> p nuln} < 2exp (—;ﬁ lwl® /2 !f(uﬂlz)
1

< 2exp —i (ZIf(m)l) /22|f(uz')|2

But if Y7 |f(ui)] > e flwsl] > 16 logn [lul, then 7" |£(us)] > 8 lognlf(u;)| for

f(i 77iui>

1

each j. It follows that the above expression is at most 2exp(—logn) < N-1 as

stated. This completes the proof of Lemma 5.2. O

* and

Proof of Lemma 5-3. Given § > 0, let us define two block bases (u;)7
(uh)I* to be 6-close if they are related in the following way. First, for any ¢ 7= Fs

supp(u;) Nsupp(u}) = @, and second, for each ¢, ||u; — uj||, < 6. Let us estimate,
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for gi\'en §. the size required of a set of block bases for every proper block basis of
cardiﬁality I to be é-close to at least one block basis in the set. Since the number
of ways of choosing m disjoint sets of size h is certainly less than n™ h and, by
Lemma 1.3, the number of vectors in a §-net of the 2-ball of Cf, is at most (14+4/8)",
we find that the size needed is certainly no greater than (5n/8)™" = M.

Now fix § to be n—1, let (u;)!" be a proper block basis, let (vi)]" be é-close
to (u;)7* and suppose that (v;)]* satisfies condition (*). Since (u;){" is a proper

block basis, ||>_7" niuil| = m1/? for every choice of signs (n;)*. We therefore have,

for some 7,

> — ntagmi/p

Z iUy
1

Emvi
1

> 80 logn ||v;|l; — n'/96m1/?

> 80 log n(||u;l|, — 641/7) — n/96m*/?

> 64 logn||uj|| .

In a similar way, using the fact that for every choice of signs, (n)7 1221 muin 2
m1/P, one can show that ™| = 4137 niuil|,, and hence that (u;)7" satis-
1 1 Mitidl, 1

fies condition (**). ]

We have left open the following problem. If 3/2 < p < 2 and #1,:+:3%n
is a normalized basis satisfying a lower p-estimate, then how large an almost
symmetric block basis of z1,...,2z, must there be? Theorems 3.1 and 5.1 show
that the answer lies between about n2/?~! and about n!/3. In Chapter 7 we shall
give a partial answer to this. In particular, when p = 2, which is perhaps the most
interesting case, we shall show that, for every o > 0, if n1s sufficiently large then
there exists a normalized basis 1, ..., T, satisfying a lower 2-estimate such that

no block basis of cardinality n® is 2-symmetric. This will justify the rough idea

that one ought not to be able to deduce very much merely from the fact that a
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Indeed, it can

basis satisfies a lower 2-estimate, as this is a very weak property.

e shown that any n-dimensional space contains a basis of cardinality n/2 which

satisfies such an estimate up to some absolute constant.
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CHAPTER 6

BASES EQUIVALENT TO

THE STANDARD BASIS OF £y

In Chapter 4, we showed that, if 1 < p < 00, € >0 and C > 1, then every
basis C-equivalent to the unit vector basis of {; has a (1 + €)-symmetric block
basis of cardinality a(e, p,C)n/logn, where a(e,p,C) >0 depends on €, p and C
only. In this chapter, we shall show that this result, at least when p > 1, is close
to being best possible. When p = 1, we shall obtain an upper bound which shows
that one cannot always find an almost symmetric block basis of proportional size.

The two cases will be dealt with separately.

§6:1 The Case 1 <p< o0

The aim of this section is to construct, for given 0<e< 1/2 and 1<p<c0, a
l-unconditional norm ||.|| on R™ which is 2-equivalent to [|.||,, such that no block
basis of the standard basis of R™ with cardinality exceeding mo = 1000(1 +p +
q)ePn loglogn/logn is (1 +471/P¢/3)-symmetric (where 1/p+ 1/q =1). Of great
importance in our construction is Lemma 2.7, since we shall use the sets Ap, F
and Gp which were defined in Section 9.3. We shall collect together the salient
properties of these sets in Lemma 6.1, but first, as we did in order to prove Theorem
5.1, we must show that a sufficiently large block basis has a large subbasis that is
slightly easier to handle. That is, we will be able to restrict our attention to block
bases which we shall call proper block bases. However, the definition of a proper
block basis will be different in this section from the definition in the last chapter.

For the rest of the chapter, we shall mean by a block basis a block basis of the
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standard basis of R™. Also, by the word «normalized”, we shall mean normalized

in (7.

Suppose then that ||.|| is a norm on R™ which is 2-equivalent to [[.]|,, let mo
be as above, suppose mj > Mg, and let uy, ..., Um, be a 2-symmetric block basis.
Then there exists A > 0 such that 1 < H/\u,-Hp < 4 for each 7. For such a A,
set ul = Auj, for each 7. By a simple and standard averaging argument there
exists a subset 4 C [mi] with [4] = n7/8 such that u; is supported on at most
h = 25n/16mo = logn/640(1 + p + g)e? loglogn coordinates, for every ¢ € A.
(The averaging argument gives more than this, of course, but we shall not need
the extra precision.) By applying the pigeonhole principle, we can find p € [1,4]
and A’ C A such that |A'| = n3/* and p < ||ui]| < p + 3n~1/8 for every 1 € A'. If

we set u? = p~!u} for each 7 € A', we certainly have
1< |[u)]| €1+3n7Y8

for every 1 € A'.
3/4

We shall say that a block basis vi,...,Vm is proper if m = n*/%, and
|supp(vi)] < hand 1 < lvil| € 1+ n=1/8 for each 1 < i < m. We have just
shown that every block basis of cardinality at least mo has a subbasis, a multiple
of which is proper. We shall construct a norm in such a way that no proper block
basis is (1 4+ 4~1/7¢/3)-symmetric. It will follow that no block basis of cardinality
mg or greater is (1 4+ 47/P¢/3)-symmetric under that norm.

The next lemma gives, as promised, the main properties that we shall use of
the sets Ap, Fp and Gp. The third part of the lemma is simply a repetition of
Lemma 2.7.

Lemma 6-1. (i) For any set B € [t]*/?) and any normalized proper block basis

. m
ui,..., U, there exists a sequence of scalars ai,...,am such that Y, a;u; € Ap.

(ii) Let B € [t]*/?, let uy,...,un be a normalized proper block basis and let
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a,...,am be a sequence for which 37" aiu; € Ap. Then, for any permutation

x € S,, and any sequence €i,...,€m of signs,

m

Z €iQn(i)Wi € Ap .

1

(iii) Suppose B,C € B, B # C and suppose f € Fp, G € Gp and a € Ac.

Then f(a) + 9(a) < (t/2)"/7 |lall,

Proof. Note that, for any X; C [m] with |X;| = k7, the vector || Yiex; Wi
is an element of A4;. Hence, if the sets X; (j € B) are all disjoint, and we set
&y = (®jEB ‘le_l/pXX,)i» we have a = @] aiu; € AB. This proves the first
part of the lemma. The second part is trivial and the third part was proved in

Section 2.1. O

Let us now define the norm which we shall use. Let B be a set of the kind
guaranteed to exist by Lemma 2.13, that is, a subset of [t](t/z) of cardinality
(23/20)" with the property that, whenever B,C € B are distinct elements of B,
we have |[BNC| < t/3. Set r = ¢Pn and let v = (Kp: B € B) be an element of

I'= ([n](r))s. Then we can define a norm ||.||., on R™ as follows:
lell, = llell, v mas [(2/8)!/0 max{f(z) + g(a): f € Fi, g € G, suppl9) € K5}]

There is one very important fact about the norm |||, namely, that if C € B
and a € A¢, then the maximum above is attained at C. That is, for such an a we

have
lall, = llall, v (2/t)}/9 max{f(a) +g(a): f € Fc, 9 € Ge, supp(g) C Ke} (1)

This follows from Lemma 6.1 (iii). Indeed, if B £C,feFpandge€ Gp,
then, by Lemma 6.1 (iii), 2/t)V(f(a) +g(a)) < (t/2)}/?. On the other hand, if

a € Ac, then f = |a|P~!sign(a) € Fc, and 2/t f(a) = (t/2)V/7.
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Let P be the uniform probability measure on I'. We shall show that ifyel

is chosen randomly, then there is a high probability that no normalized proper
block basis is (1 4+ 471/P¢)-symmetric under |[. ||

We shall introduce one further definition to simplify the statement of the
next lemma and later discussion. Suppose u is a unit vector in R™ such that
|supp(u)| < h, and suppose that K € [n]("). We shall say that u is Jarge on K if
it can be restricted to a vector u’ with |supp(u)| < r = €’h, supp(u’) C K and

o |l > 47

Lemma 6-2. Let v = (Kp:B € B) € T, and let (u;)7* be a normalized proper
block basis. Suppose that there exist two sequences t1,...,1; and ji,...,J1 and a
set B € B such that u;,,...,u;, are all large on K, while supp(u;,) N Kp = {

for every 1< s< 1. Then (u;)" is not (1 + 47/P¢)-symmetric under I1-1l-

Proof. By Lemma 6.1 (i) there exists a sequence ay,...,am such that Z;n a;u; €
Ap. We shall show that (u;)]* is not (1 +4~1/?)-symmetric at (a;)7* under ||.||...
Note that, because Z;=1 kJ < 1, the construction in Lemma 6.1 (1) gives a sequence
(a;)T, all but at most [ of whose terms are zero. By Lemma 6.1 (ii), we may assume
that aj4+1 = ... = a;, = 0. Let usset a’' = Zi___l asu;, and a" = Zi=1 asu;,. We
shall then estimate ||a'||, and [|a"][,.

First, let us calculate max {g (Zsex,- asu,-,) :g€Gj,supp(g) C KB} when
Jj € B. Write b; = Ese}\’,— asu;,. Then b; € A; and since u;,,...,u; are
large on I 5 and disjointly supported, we can restrict b; to a vector b} satisfying
supp(b’) C Kp, |supp(b})| < e?hk? and Hb;-”p >4~ 1/Pe Ibjll, = 4=1/Pe, We can
therefore find g € G; such that g(b;) > 4-1/P¢. Since j € B was arbitrary, it
follows that we can find ¢ € Gp such that g(a') > 471/Pet/2. It is obvious that

we can find f € Fp such that f(a') > t/2, so [|a'||, > (¢/2)1/P(1 4 47 V/Pe).

Now [la"]|, = (t/2)/?, and supp(a”) N Kp = 0. But, for any f € Fp,
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71l = (¢/2)!/9, so, by (1), lla"|l, < (¢/2)1/7. Hence (u;)[" fails to be (1 +471/P¢)-
O

symmetric at a, which proves the lemma.

We shall show that the sequences needed in the conditions of Lemma 6.2 exist

with very high probability. For this we shall use Corollary 2.12.

Lemma 6-3. Let (u;)7 be a normalized proper block basis and let B € B. Then
the probability that we can find indices 11,...,1; such that u;,,...,u; are large

on K g is at least

1 (”;) (1 —(1/16)*"h(1 - eP/4)2h)m_'

and the probability that we can find indices ji,...,j; such that the restrictions of

uj,,...,Uu; to K'p are zero is at least
1- (";) 1-(—er/ay™ .
Proof. We would like to estimate

p1 = P[u; is large on K for at most [ values of ],

when K is chosen randomly from [n](") and r = €Pn.

Setting a = |u;|? and taking € /8 instead of € in Corollary 2.12, we obtain
P [u,- is large on K ’ supp(u; )N K =W, for 1<5< z]
is at least (1/16)"% . (1 — €7 /4)*", and so
m 4¢P h P 2y m—l1
po< ()@ - @10 - ey

Similarly,

pa =P [”ui IK”p = 0 for at most [ values of z]

<(T)a-a-emp -

2
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Corollary 6-4. Let (u;)7" be a normalized proper block basis. Then the proba-

bility that (u;)7" is (1 + 4~1/P¢)-symmetric under ||.||, is at most

[2 (T) (1 —(1/16)*" (1 - 6,,/4_)2h>m_,] N

Proof. For each B € B, construct ap € Ap generated by ui,...,Um as in the

proof of Lemma 6.1(i). By (1), |lagl|, depends only on Kp, (where v = (Kp:B€

B)). Let pp be the probability that ||.||, is (1 4 4~1/P¢)-symmetric at ap. Then,

by Lemmas 6.2 and 6.3,

pB < (”;’) (1 —(1/16)*""(1 - eP/4)2h>m'l + (”l’“) (1-(1- e /4™ w

< 2(”;) (1 —(1/16)4" R (1 — ¢ /4)2h)

and if B # C then pp and p¢ are independent. The result follows immediately.

m—1

O
The next lemma resembles Lemma 5.3. We shall prove it at the end of the
section. First, however, we shall assume it and use it to prove the main theorem

of the section.

Lemma 6:5. Let 1 < p < 00,0 <n < 1andlet M = (20n/n)™". Then there
exists a collection of M normalized proper block bases (uj ), . . ,(uM)™ | of the

standard basis of R™ such that any norm 2-equivalent to ||.||, which fails to be

(1 + n)-symmetric on any of (u})y,... ,(uM)™ | fails to be (14 1/3)-symmetric

on any proper block basis.
The proof of our main theorem is now a simple matter of verification.

Theorem 6-6. Let 0 < € < 1/2, let 1 < p < oo, let n € N and let mo =

1000(1 + p + g)e’nloglogn/logn. Then there exists a norm ||.|| on R™ such that |
for any z € R", ||z||, < ||le|| < 2|lz]l,, but no block basis of cardinality exceeding

my is (1 + &)-symmetric for any 6 < 4=1/Pe/3.
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Proof. By Corollary 6.4 and Lemma 6.5 (with n = 4~1/P¢) it remains only to

o(7) -anora e ™) < (F)

From this it will follow that there is at least one y € I’ such that no block basis of

show that

cardinality exceeding my is symmetric under |||

Now

N
m m=1]"
B) _ 4¢P h _ P h
[ﬁ(J (1- a0 -4 ) ]
< 2VmWNexp (—(m — DN(1/16)*" " (1 — €? /4)")
= exp (N (10g2 +1llogm —(m — l)(1/16)4eph‘(1 — ep/4)h>)
But since h < logn/80€P, this is at most

exp (—(1 [2)N(m — 1)(1/16)*"F(1 — ¢ /4)”)
< exp (—(1/2).7\7(171 — Dexp(—€’h(log 16 + 1/4)))

Now it is easy to check that h < log N/40€?, so this is at most exp(—N1?(m—1))

which is certainly at most (20n/4~1/P¢)~™". This completes the proof of Theorem

6.6, assuming Lemma 6.5. O

It remains to prove Lemma 6.5.

Proof of Lemma 6-5. Let us call two proper block bases (u;)i* and (vi)" a-
close if they satisfy supp(u;) Nsupp(v;) = @ whenever i # j and if [u; — vill, < a
for each i. Suppose also, without loss of generality, that for any = € R™, ”l”p <
z]l < 2|z|,. Now, if (u;)7* and (v;)7* are a-close, then, given any sequence

(a;)* € R™,

m

E a;u;

1

m

E a;v;

1

m

E a;u;

1

m 1/p m
=2 <Z |ailp||ui — V1”£> < 20’(2 |aiip>
1 1

m

§ a;Vvi

1

- <2 — <2

Z a;(u; — v;)

1/p

p P p
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m

Since 0 <n <1, it follows that if (u;)7* and (v;){" are n/8-close and (u;)7" is
not (1 4 n)-symmetric under ||.||, then (vi)J" is not (1 + 21/5)-symmetric under
I
Similarly, if (v;)7* and (w;)]" are 3n~1/8_close and (v;)T is not (1 4+ 21/5)-
symmetric under ||.||, then (w;)* is not (1 +7/3)-symmetric under ||.||. |
Now the number of ways of choosing m disjoint sets of size h from [n] is |
certainly no more than n™" and there is an 7/6-net of the unit sphere of [; of
cardinality at most (15/n)". It is thus easy to see that with M = (20m/n)™", there
are normalized proper block bases (u})™, ..., (u}M)™, such that any proper block

basis is 1/8-close to (ul)™; for some 1< <M. This proves the lemma. O

§6-2 The Case p=1

We now turn to the case p = 1. The proof given in the case p > 1 breaks

down when p = 1 and one does not obtain any result even by approximating £7
by £ for p sufficiently close to 1 for £} to be uniformly equivalent to {}. Roughly

speaking, this is because the unit ball of £] is not sufficiently convex to allow many

classes of “well-separated” vectors. However, using the construction of Section 2.3
and Lemma 2.8, we shall obtain a basis which is C-equivalent to the unit vector
basis of {7 such that no block basis of cardinality exceeding a(e,C)n/loglogn is
(1+¢)-symmetric. The proof is similar to the proof of Theorem 6.6: we shall prove
a sequence of lemmas resembling Lemmas 6.1 to 6.4.

First, we need a definition of a proper block basis appropriate for this context.
Let mo = (240¢/log C)n/loglogn and let h = (log C/200¢)loglogn. We shall
say that a block basis uy,...,u, is proper if m = n3/4, |supp(u;)| < h and
1< ||uil| 1430718 for each 1 € ¢ < m. As in the last section, one can easily

show that any 2-symmetric block basis of cardinality exceeding mg has a subbasis,
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a multiple of which is proper.

We shall begin by defining a random norm on R". Recall from Section 2.3
that we set r = —log C/log(1 — 4¢), k = h*, A = |log; n/2r] and N = [Af2yie,
Let < be the usual partial order on [A/2]", that 1s (81,--,8r) < (t1,...,tr) Hf
s; < t; for each 1 < 7 < r. Let S be a subset of [A\/2]" of the kind which is
guaranteed to exist by Lemma 2.14. That is, S has cardinality N = (\/6e)/12,
and if 5,8’ € S are distinct then there are at least r/3 values of 1 € [r] for which
s; < st and vice versa. In other words, S is an antichain in a very strong sense.
Now let T' = ([n]("/?)5. For any element v = (Ks : s € §) € T, define a norm

Il on R" by
Jell, = el V msxmax{ () + efa(e) : s f2 € Farsuppl(fa) € K.

The next lemma collects together the useful properties of the sets As and Fg.
Lemma 6-7. (i) For any s € [A\/2]" and any normalized proper block basis
Ui, ..., U, there exists a sequence of scalars ai,...,am such that YT aiu; € As.

(i) Let s € [A\/2]", let uy,...,Um be a normalized proper block basis and
let ay,...,am be a sequence of scalars for which > 7" a;u; € As. Then, for any
permutation ™ € Sy, and any sequence €1,. .., €m of signs,

m

Z €iailz;) € As .
1
(iii) Suppose i # j and suppose that fi,f2 € F; and a € As;. Then fi(a) +
ef2(a) <.
Proof. If X; C [m] has cardinality EG-DA+si then ,Bi_lk_("_])A—s" ZjeX; u; €

A o;. If we pick disjoint sets Xi,..., X each satisfying the above, and if we set

a; = (@ 13171 k—(i—l)m—SjXXj)
j=1

i
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then a = Y. v aiu; € As. The second part is trivial, and the third follows
O

immediately from Lemma 2.8.

\ There is an important fact about ||.]|, analogous to the fact mentioned after
\J the proof of Lemma 6.1, namely that if s € S and a € As, then the outer maximum

in the definition of ||a|| is attained at s. That is, for such an a, we have

lall, = llall; v max{ fi(a) + ef2(a) : f1, f2 € Fs,supp(f2) C s }. (2)

This follows from Lemma 6.7 and the fact that S is an antichain in the strong
sense of Lemma 2.14. Indeed, suppose s and s’ are distinct members of § and
suppose that fi, fo € Fu and a € As. Then, by Lemma 6.7 (iii), fi(a)+ f2(a) <.
On the other hand, if a = ) | aje; = @;=1 a; with a; € Aj,; foreach 1 <j <,
then one can define a functional f on R™ by

[ = {ﬁjsign(a,-) i € supp(a;)

0 otherwise

It is easy to see that f € Fy and f(a) > r.

Given u € R™ and K € [n](™/?) let us define u to be large on K if supp(u) C

| K. Suppose that u;,...,u; is a sequence of disjointly supported vectors such

that Y |supp(u;)| < /6, and suppose that K is chosen randomly from [n](»/2),
Provided that 7 < \/n, the following two estimates are easy, whatever the sets W;

which appear might be.

P [supp(u,-) C K |supp(u; )N K =W, for1 <5< i] >3h (3)

| and

P [supp(u,-) NK =0 |supp(u;) N K =W, for1 <j< z} = 5", (4)

| The next two lemmas are analogous to Lemmas 6.2 and 6.3.
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Lemma 6-8. Let vy = (K : s € §), let | = nl/? and let uy,...,u, be a
normalized proper block basis. Suppose that there exist two sequences iy, ...,1
and j1,...,J1 and s € S such that u;,,...,u; areall large on K, while supp(u;, )N

K, =0 for every 1 <t < [. Then uy,...,u, is not (1 + €)-symmetric under HH7

Proof. By Lemma 6.7 (i) there exists a sequence ai, ..., am such that E;” a;u; €
A.. We shall show that uy,..., U, is not (1 + €)-symmetric at ai,...,am under

|Il,- The construction of Lemma 6.7 (i) gives a sequence ai, ..., d, such that all

but at most [ of the a; are zero, so without loss of generality aj+1 = ... = an = 0.
Let us set a' = Zi:l a;u;, and a"” = Zi:l a;uj,, and estimate |[a’||, and [[a"|[,.
We have already seen that if a € Ag for some s, then there is a functional
\ f € F; such that f(a) = r. Now a' has the additional property of being supported
inside K, so we can of course find f € F such that supp(f) C K and f(a) = r.
By the definition of the norm it follows that [|a'[|, > 7(1 +¢€). On the other hand, |
a"” ¢ Ag and supp(a”) N K = §. By the remarks following the proof of Lemma

6.7, it follows that ||a”||, < r. The result follows. d

Lemma 6-9. Let uj,...,u,, be a normalized proper block basis and let K €

[]("/2), Then the probability that we can find iy, ...,% such that u;,...,u; are

| large on K 1is at least

| 1 = (77;)(1 gy

and the probability that we can find ji,...,j; such that supp(uj,) N K = 0 for

every 1 <t <1 is also at least

| 1- (’7)(1—3"‘)”’—’.

|
’\‘ _Proof. Let

p1 = P [u; is large on K for at most ! values of 1]
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where K is chosen randomly from [n]("/?). From (3) we can deduce that

p(7)a-sm

Similarly, using (4), we obtain

p2 = P [supp(u;) N K = @ for fewer than ! values of 1]
< (’?)(1 — g RymT, 0

Corollary 6:10. Let uy,...,u,, be a normalized proper block basis and let v be

chosen randomly fromT". Then the probability that uy,..., U is (1+¢€)-symmetric

[2 (’7)(1 - 3—")’“—’] "

Proof. Given any s € S, let as be the vector constructed in Lemma 6.7 (1).

under ||.||, is at most

Then, by (2), the norm of any rearrangement of as depends only on Ky, (where
v = (Ks :s €S8)). Let ps be the probability that u;,...,u,, is (1 + €)-symmetric

at as under |.||. By Lemmas 6.8 and 6.9,

P < 2(77;) (1- 3—h)m—l

and if s # s’ then ps and pe are independent. The result follows. O

We are left, as in the proof of Theorem 6.6, with some numerical verification.

Theorem 6.11. Let € > 0 and C > 1, let n be a sufficiently large positive integer
and let my = (240¢/log C)n/loglogn. There exists a norm ||.|| on R™ such that,
for any = € R™, ||z||; < ||z|| < C||z||,, but no block basis of the standard basis of

cardinality exceeding mg is (1 + €)-symmetric.

Proof. It is easily seen that ||z||; < llzll, < Cllz||; for any = € R™ and v € I".

Indeed, |||, is defined as a supremum of functionals, each of which is of £-norm
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at most (1 + €)3; < C. Recall that the cardinality of the “strong antichain”

S is N = (\/6e)/1?, where r = —logC/log(1l — 4¢) and A = |(logxn)/2r].
In particular, N > M8 C/60¢ Recall also that h = (logC/200¢)loglogn. By
Corollary 6.10 and Lemma 6.5, it remains only to show that

[2 (";) (1- 3—")’“—’} N < (20n/e) ™"

Now

b AT
[2 (T) (1- 3"’)”"_1} < 2¥mWNexp(=37"(m — DN)

= exp(N (log 2 + llogm — 37" (m —1)))

Since h < logs(n!/?), this is at most
exp(—(1/2)3"hN(m - 1))

Now h is certainly less than logy(N1/2/4), so this is at most exp(—N/2m). This

is easily checked to be less than (20n/e)~™". O

This, then, completes the proof of our upper bounds in this section. However,
we have left open one or two interesting questions. For example, we have no
information about the case p = oo, and in the case p = 1, there is quite a gap
between the lower bound obtained in Theorem 4.1 and the upper bound given by
Theorem 6.11. We shall discuss the case p = co in detail in the next chapter. The
gap when p = 1 suggests the following question. Suppose z1i,...,ZTn is a basis
which is C-equivalent to the unit vector basis of £, and suppose a,...,an is any
sequence of scalars. Then how large a block basis must there be which is (1 + €)-
symmetric at ay,...,a,? The results of Chapter 4 and this section show only that,
up to a constant depending on €, p and C, the answer is between n/logn and n.

If the answer were n/log n, we would be able to prove Theorem 6.6 without using
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Lemma 2.7, and the result would be valid when p = 1. It is not hard to find a
sequence of scalars ay, ..., a, and a norm such that the probability of a random
block basis of cardinality significantly larger than n/logn being almost symmetric
at ai,...,am is very small. However, my hope is that this is an interesting case of
an event with a small but necessarily positive probability. Probabilistic methods
proving the existence of rare events have been used in combinatorics ever since a
simple but powerful result of Erdés and Lovéasz [17] (cf. [1], [10]).

I think the dependence on € in Theorem 6.6 can be improved from € to e??
by a slight adaptation of the definition of the norm. On the other hand, the
correct dependence on C in Theorem 4.1 is far from clear. It is not hard to see
that the norm constructed in this section is actually (1 + 2¢)-equivalent to .|| .
Again, if we had an upper bound for the size of a block basis almost symmetric
at a single vector a then this sitﬁation would probably be clarified. An almost
negligible dependence on C can be obtained by choosing p’ so close to p that the
standard basis of £}, is (1 + 2¢)7!C-equivalent to the standard basis of £}. One
then uses the construction of this section with p replaced by p', thereby improving
the dependence on € from €? to e?'. The dependence on C in Theorem 6.11 is also
a very weak one. For large enough values of C (depending on n), Theorem 5.1

gives a better bound.
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CHAPTER 7

GENERAL 1-UNCONDITIONAL BASES

Let us begin by recalling the main result of Chapter 4, namely Theorem 4-1.
This states that,if n € N, 1 < p< 00, C > 1 and € > 0, then any basis z1,...,7,
which is C-equivalent to the standard basis of £ has a block basis of cardinality ‘
at least m = a(e,p,C)n/logn which is (1 4 €)-symmetric. Moreover, the blocks
have #1-coefficients and they are of equal length. We did not state this as part ‘
of the theorem, but the proof gives blocks of length » = n/m. In other words, we |
did not discard any of the vectors in the original basis. |
The results of this chapter were motivated by the question of what one could
say about the size of almost symmetric block bases of sequences which were equiv- ‘
alent to the unit vector basis of £2. A natural approach to this question is to
approximate (7, by {} for some suitably large p (possibly depending on n) and to
apply Theorem 4.1. However, this fails, because either p or C has to be so large |
that a(e, p, C) turns out to be less than n~!. Moreover, there is a good reason for
this failure. Consider the standard basis of R™ with the norm on R™ given by
n

E a;€;

=1

= max{Clas|, asl,as], - lanl} -

It is clear that no block basis with +1-coefficients of cardinality 2 or more which
uses all the vectors in the original basis can be C'-symmetric for any C' < C.
In general it seems that, given any natural class of block bases of the standard

basis of R™ with a natural probability measure on that class, it is easy to construct

a norm on R™ so that the standard basis of R™ is equivalent to the standard basis
of £, and so that the probability of a random block basis being almost symmetric

is very small. This suggests that a purely probabilistic method is unlikely to give

82




an interesting result here.

Our main result concerning this question is, not surprisingly then. a negative
one. Given C > 1 and e > 0, we shall construct a basis which is C-equivalent to the
standard basis of {7, and has no (1+e¢)-symmetric block basis of cardinality nPle0),
where (e, C) is a function of € and C only which tends to zero as log(1+¢€)/log C
tends to zero. The number log(1 + €)/log C will crop up throughout the section
and we will denote it by a = a(e, C'). Again, it is not possible to obtain this result
by approximating (3, by £; for some large p and applying earlier results. One

would like to apply Theorem 6.6 with p about logn, but the implicit condition
that n should be sufficiently large turns out not to be satisfied if n < e?.

Our result is, in a weak sense, best possible, since a very simple technique, due
essentially to James [27] (cf. e.g. [36] for a finite-dimensional version), shows that
any basis which is C-equivalent to the unit vector basis of £Z, has a block basis
of cardinality k = n®/2, where a = log(1 + €)/log C, which is (1 + €)-equivalent
to the unit vector basis of £¥, and which is a fortiori (1 + €)-symmetric. On the
other hand, our function B(e, C) is considerably larger than a(e, C'), and it would
be of interest to determine the best possible function. We obtain 8 = ¢/log(a™!)
for some absolute constant c.

In our result, C may actually depend on n. If we take C = C(n) tending
to infinity with n, however slowly, then we obtain the first example of a sequence
E,,E,,... of bases with the cardinality of E, being n, such that, for any v > 0
there exists ngy such that for every n greater than ng, the basis E, does not have
a (14 €)-symmetric block basis of cardinality n?. To put this loosely, we obtain a
basis of length n such that the size of its largest almost symmetric block basis is
bounded above by a function which grows more slowly than any positive power of
n. In particular, if we have no condition on C at all, then a may be proportional to

(logn)™!, and the function is n®/1°81°8 ® where ¢ is again some absolute constant.

83




—_—_'ﬂ

It turns out that, with very little further work, one can show that, when C is

indeed a power of n, the space generated by the basis E,, above does not contain

. . . . . ; 1 1
any subspace with a 2-symmetric basis of dimension greater than nc/loglogn T

particular, for any v > 0, there exists no € N such that for every n = ng there
is a normed space of dimension n containing no n”-dimensional subspace with a

2-symmetric basis. One can, of course, replace 2 by any absolute constant.

Milman has asked (private communication) whether every normed space of di-
mension n contains a subspace of dimension proportional to y/n with a 2-symmetric
basis. Our result therefore gives a negative answer to this question. It is also re-
lated to a well known problem concerning the dependence on € in Dvoretzky’s

theorem. This well known result states that, for given & € N and € > 0, there

exists n = n(k, €) such that, if X is any n-dimensional normed space, then X has a “
k-dimensional subspace which is (1 + €)-isomorphic to £5. It is not known whether
n is bounded above by a polynomial function of e~! when k is fixed. Bourgain
and Lindenstrauss [13] have shown that it is bounded above polynomially if the
space X has a 1-symmetric basis, and Lindenstrauss has told me that this is also
the case if X has a 2-symmetric basis. Hence, if there were some fixed v > 0
and ¢ > 0 such that any n-dimensional normed space contained a 2-symmetric ba-
sic sequence of cardinality at least cn?, then the dependence on € in Dvoretzky’s

theorem would indeed be polynomial. Although our construction shows that this

premise is false, it does not give an example of non-polynomial dependence for

Dvoretzky’s theorem.

It is worth mentioning that, given a basis which is equivalent to the standard

basis of €2, we do not know anything about how large a (1 + €)-unconditional

oo

block basis it must have, except, of course, for the lower bound of n®/2 mentioned

above. Our examples are all in fact 1-unconditional sequences. It is possible that

some technique involving the Sauer-Shelah lemma might produce a significant
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lower bound. This would be interesting in view of the fact that there is no obvious 1
measure-concentration argument. However, it is at present nothing more than
speculation.

There are some similarities between our methods in this chapter and those
of Chapter 5. For example, we will tend to fix a k and show that if a block basis
up,...,u, is large enough, then not all sums of the form Ziel{ +u;, where I

is a set of cardinality k, can have approximately the same norm. However, in

order to show that there are sets K for which the norm of } ;- £u; is large, we
shall use simple deductions from the pigeonhole principle rather than probabilistic
methods. On the other hand, we do use probabilistic methods to show that there
are combinations of the form ), c i Tui whose norms are small.

Unlike the norms defined in Chapters 5 and 6, the norms in this chapter have
simple explicit definitions. In fact, they are all built up using iterated £,-direct
sums. Given any normed space X = (RF¥,|.||) such that the standard basis of ‘

|

R* is 1-unconditional, let (X); denote the p-direct sum of r copies of X. This is

sometimes written £3(X), or else (X &...®X), with the number of copies specified.
We shall regard R™ as the underlying vector space of X in the natural way, and 1
by the standard basis of X, we shall mean the concatenation of r copies of the
standard basis of R¥. In other words, denoting the standard basis by ey, ..., e,
the j** copy of X is generated by €(j—1)k+1;- - - »€jk. All the spaces we consider
in this chapter will be of the form (... (£ )72 .. .);’},k for some pi,...,pk in the
closed interval [1, o0] and integers my, ..., mg. We shall call such spaces compound
Cp-spaces.

We shall not prove our main theorem immediately, since its proof is rather

|
|
\
|
complicated and should be easier to understand after a weaker result. We consider H
|
first the space X = (£;*)Z and show that, for a suitable choice of p, the standard !

basis of X is C-equivalent to the standard basis of €2, and its largest almost
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symmetric block basis has cardinality not much greater than /n. We shall make
use of Lemma 2.10 here and several times later in the chapter. Just before we
begin, we emphasize here that most of the results of this chapter are valid only

when n is sufficiently large, and that we shall often assume this in our calculations.

Theorem 7-1. Let n = m?, let p = logn/2logC, let X = ({7')% and let
e1,...,en be the standard basis of X. Let us set a = log(l 4 ¢)/logC and
s =n1+t2)/2(log,n)?. Thene,..., e, is C-equivalent to the standard basis of {2,

and no block basis uy,...,u, of e1,...,e, of cardinality s is (1 + €)-symmetric.

Proof. It is easy to check that ej,...,e, is C-equivalent to the standard basis
of £%. So let us suppose that uj,...,us is a (1 + €)-symmetric block basis of
cardinality s. For 1 < j < m, let us write 4; for the set {(j —1)m+1,...,jm}. By
the pigeonhole principle, there is a subset A C [s] of cardinality s/log, n and some

h > 0such that b < |Ju;||}; < 2hforeveryi € A. Lett =s/logyn = mn®/? log,m.

Without loss of generality, A = [t] and h = 1.
Recall (from Chapter 1) that, given any vector a € R™, we denote by a | 5 the

restriction of a to the subspace generated by {ei 1€ K } By definition, then,

llall% = maxigjgm HalA,- Hﬁ for any vector a € R™. By the pigeonhole principle,

there is a set B C [t] of cardinality ¢t/m and j € [m] such that, for every ¢ € B,

laillfe = [luila; [I7-

Since the u; are disjointly supported, we therefore have

D ui

1€B

p
>t/m.
X

Let us set 6 = (14+ €)™ = n"°/?2 and [ = t/m. Because uy,...,u; is (1 + €)-

symmetric, we must have
P
6l < u;

1€B’

X
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for any set B' € [t](D. Tt follows that there exists j € [m] such that if B is chosen

randomly from [}V, then

p

P > 61} >1/m.

> i
Aj

1€B’

P

We shall use Lemma 2.10 to show that this cannot be the case. For such a j,

set a; = ||uilx; ”g, for each i € [t]. Then 0 < a; < 2 for every 7, and Y_;_; a; < 2m;

By Lemma 2.10 it follows that, if B’ is chosen randomly from ],

P[ 3w !A,.

1€EB/
However, t > mlog, m/6, sol = t/m > 6§ 1log,m. It follows easily that the

p

> 51:! < 2(46777/615)61.

p

probability above is less than 1/m. This contradiction establishes the result. [J

We note here that if one picks n®/? vectors from each set of the form {e,— :
1 € Aj}, then the subbasis consisting of those vectors is (1 + €)-equivalent to the
unit vector basis of £% and has cardinality n(1+®)/2,

We shall now turn to the main theorem of this chapter. For given 1 < p < oo

and k,m € N, we shall set n = m* and consider the n-dimensional normed space

X = e (BT Vo sy 2o |

We shall obtain an upper bound for the size of the largest almost symmetric block
basis of X, and we will later use our result to obtain an upper bound for a different
compound £p-space Y whose standard basis is C-equivalent to the standard basis
of (7. ‘
In order to avoid an excessively bulky proof, we shall develop some notation ;
before stating and proving the theorem. To begin with, let [n] be identified with

[m]* in the natural way, i.e.

k-1
(1,02, ., ik) = Y _(i; = )m* T +ix
J=1
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for 1 <4y,...,ix < m. Then, given 1 < j < k,andi= (11,...,%5) € [m)7, let

k.t _ o e
Tl = U,y —z.]}.

A= Aiy g = (i) €

The collection of sets {A;:i¢€ [m])?} is a partition P; of [n]. Although it will not

be relevant, let us note that the partitions Py = {[n]}, P1,..., Pk form a filtration

of [n]. The point about this filtration is that if we restrict X' to the subspace

generated by {ey : ' € A;} for any i € [m]*, then we obtain a copy of (",

and similarly, if we restrict to the subspace generated by {ezv 1€ Ai} for any
m

1<j < kandié€[m), we obtain a copy of (... (({f")7" )z - - -)pk-i-

Now, given 1 € j < k — 1, let us define a space X; by

X;=((. ((f,,, 1 I b = - < e

and let us set X} = €%, . Note that X; = X.

If u is a vector in X, we define a sequence u(*), u®, ..., u® of associated
vectors as follows. Given 1 € j < k and i € [m]*~7, let rop = min(supp(u) N 4;)
and let the restriction of u(¥) to 4; be given by

(u(j))r _ { “11 lAi” r=rp

0 otherwise
Thus u?) is a vector such that lsupp(u(j)) N Aii < land “u(j) |A;” = ”u IA;“
for every i € [m]*~7. We have insisted that supp(u’?) N 4; = min(supp(u) N 4;)
(or 0) solely in order to define u?) explicitly.
Note the following two easy facts, which will be assumed in the proof of

Theorem 7.2. If u is any vector in X, then, first,

o] =
X

and, secondly,

: (7711/"7711/”2 S

lully < [u?|
o ]
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In the proof that follows, we shall, not surprisingly, use induction on j. Our
inductive hypothesis will be divided into two parts which we shall call Steps )

and j'. We shall show that Step j implies Step j', and then that Steps j and j'

imply Step j + 1. Some of the numbers, particularly exponents of m, can clearly |

be chosen to be smaller than we have chosen them, giving a better result than we

of the proof again later for Theorem 7-6. ‘

in fact obtain. We have chosen the larger values in order to be able to use most i
k . . ‘
Theorem 7-2. Let n = m*, let X = ((...(({7");" )p2 -+ -)pk-2)% andlet ey, ... e,

k

be the standard basis of X. Let M > 1 be such that (M log n)Pk < m!~%/P, Then
there is no M-symmetric block basis of e1,. .., e, of cardinality s = m?®(log, n)
\

Proof. The structure of the proof is as follows. We begin by assuming that
ui,..., U, is an M-symmetric block basis of ej,...,e,. We then use an induction |
argument to deduce from this assumption a statement which is easily seen to be
false. This contradiction shows that there cannot have been an M-symmetric
block basis of cardinality s in the first place. }

So let us assume, then, that uj,...,us is an M-symmetric block basis of
€1,...,en. We must standardize our basis a little, as we did in the proof of
Theorem 7-1. Since the proof is easy and we have more or less given it in the ‘
proof of Theorem 7-1, we shall merely state the conclusion.

8

Claim. There exists a set A C [s] of cardinality ¢t = s/(logyn)¥ = m® and

positive real numbers hy, ..., hi such that, for every i’ € A and every 1 < j <k,
|

Pl |

< by ‘

hj/2 < max
i€[m]k-i

u,
A;

pi=t

We shall assume, without loss of generality, that the set A guaranteed to exist

by our claim is actually the set [t]. Throughout the rest of the proof, let ¢ be the

conjugate index of p. We may now state our inductive hypothesis.
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Inductive Hypothesis.

Step j If B is chosen randomly from [t](™), then

E uy

i'eB

P < (2(logn)'/9)~%7

il

i'€B

X; X
where 8 =0ifj=1,andp~ 1 +... + p~ =1 otherwise.

Step j' For any i € [m]¥=7,

|

Pt

< mshj .

t .
S
A;

I=1

pJ

Note that if j = 1 then Step j is trivial, and Step j' follows, with room to

spare, from the fact that |4;] = m when i € [m]*~!, the supports of the ug,l) are

< h. Let us now show how to deduce from our inductive

disjoint and ’ ug,l) lAaI
hypothesis the corresponding pair of statements with j replaced by 7+ 1. As we
said earlier, we shall in fact show that Step j implies Step j' and that Steps j and
7' imply Step 7 + 1.
Proof that Step j implies Step j'. Suppose then that Step j is false and let
i=(41,...,1k—;) € [m]*~7 be such that
Pl

> m®h; .

pi-1

t .
S
i'=1 A

Then there is certainly a set C of cardinality m?/2 such that

P2
i—1) _4/pp1
uE,J “4' > (2m) 4/”h]-/p

by ey "k—j"‘k-j+1

‘max
1Sik—j41SmMm

pi=?

for every ¢ € C, since otherwise we would have

j—1
P

t
Z ug,J) " < mPhj/2 + (2m) " 'mhjt

=1

pi1!
< m5h]~ .
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By the pigeonhole principle, there exists a subset B C C' of cardinality m/2

and 1x—j+1 € [m] such that

l

for every i’ € B. It follows that

Pl
‘o, \—4/p11/P
> (2m) /2]-

_4|1

(10l mjrt—j 41 pi—2

pim
> (777/’2)(2777.)—4/‘"/1;/]’

S|

: L R e — 5
i'€B 1 Tk—j+1

and therefore that
i-2

p
> (m/2)(2m)~/PR}/?

D ur

"EB

X
Since uj,...,u; is a l-unconditional and M-symmetric block basis, we may
deduce that, for every B € [t](™),

e
> M7 (m/2)(2m) P R}7

E u;

i'€B

X

g2

However, we know that cannot possibly be greater than

(5)
E:ﬂeB‘%f ‘
Ay )
h}/p(vnl/f’?nl/”z...) < h;/pmz/l’. The condition that m > me/”(]\{logn)f”J_2
guarantees that this contradicts Step ;.

Proofthat Steps j and j' imply Step j+1. First, let usfixi = (¢1,...,0k—j) €

[m]*=J and consider the behaviour of the sequence ugj), ce ugj) in the space Xj;

restricted to the set A;. The restriction of the space X; to A4; is a copy of é;’}’_l,

(7) B

and [supp(u; for each

)N A4;| < 1forevery ¢’ € [t]. Let us set a; = Hug,]) |_4i

i' € [t]. Then, for any B C [t], we have

pt
Su Ll = e (1)
i'€B X; i'€B
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and also -
o

’ = (Z af,)l/p . (2)

i'€B

S ul |,

i'€B

Xj+1
Let A C [t] be the set {i' : ay > m’zhj}. Then, by (1) and Step j', the
cardinality of A is at most m’. If B is chosen randomly from [¢](™), then, by

Lemma 2.10, or else by a direct estimate of the hypergeometric distribution from
Lemma 1.4,

)

P {[-1 N B| > log n] < 2(4e/logn)*8™ < n77 .

Therefore, with probability at least n~2, we can partition B into two sets By U Bs
p

such that

1/
Z a; < (logn)l/q<z af) ’

1€B; 1€B,

and

Z a; < m_lhj .

1€B,
Hence, with probability at least 1 — n~™!, we can find such a partition for every
ie[m]ka.
Suppose B € [t](™ is one of the sets for which such a partition does indeed

exist for every i € [m]¥~J. In that case, for every i, we can set

and

where of course the partition B = B; U B, depends on i.

Now
j—1

. pJ

-

i’j 1 < (log 77’)1/q

™ uf)

i'€B

[vi

i

Xj+1




and

and

”Wi g\’j

S - %

! —1
< m h]

v; + E Wi .

i'€B 16[171]" J €[m]*—J
It follows that
Pt »
< (logn)t/e E uE,]
€[m]* X; i'€B X 41
and that ‘
pJ
Z Wi <mhj(mPm P ) < hj
. k=3
i€[m]*-J X;
But , ‘
Pt
e u| =] ug
'€B X; 41 i'€B X;41
Therefore .
pj-l pJ"l
Z u(’) < 2(log n)/ Z uE,J_H)
i'eB X; i'eB X; 41

It follows that this is the case with probability at least 1 —n~

1. Combining this

fact with Step j we can clearly deduce Step j + 1.

Proof that Step (k —1)' is false.

o

However, by the pigeonhole principle, there exists a set C

least t/m, and some i € [m] such that

ll

K

p

Step (k — 1)’ states that, for any i € [m],

p

5
<mhr_1 .

k-2

C [t] of cardinality at




for every i’ € C. This shows that

>m'hr—1/2,

k=2

zt: NSy
y

=1

!

contradicting Step (k — 1)'. However, by induction, Step (k — 1)’ must be true

A;
p

if ug,...,us was an M-symmetric block basis. The contradiction therefore shows

that no block basis of cardinality s can be M-symmetric, completing the proof of

O

Theorem 7.2.

As a corollary of Theorem 7-2, we can now deduce that there exists a basis
C-equivalent to the standard basis of {7, whose largest (1 + €)-symmetric block
basis is of cardinality a power of n which tends to zero as log(1 + €)/log C tends

to zero.

Corollary 7-3. Let € > 0, C > 1, let n € N and set a = log(1 + €)/log C and
k = log,,(1/8a). Then there exists a basis C-equivalent to the unit vector basis

of (% with no (1 + €)-symmetric block basis of cardinality n8/*(log, n)*.

Proof. Let p =12, let m =n'/* and let r = 2logn/klogC. We shall show that

the standard basis of
Y = (N Vs )

has the required properties.

First, this basis is C'-equivalent to the unit vector basis of £, where

s -1 -1 -2 —(k—2)
C'  mik/Dlog Cllogm)™ (1+p™ +p™"+..4p ) < o8C = C .

Let us suppose that ug,...,u, is a (1 + €)-symmetric block basis of this basis. We

shall consider the r-concavification of V. Indeed, let

b (R (- i< DO
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and let v; = |u;|” for each 1 < ¢ < s. Then X is the r-concavification of Y, since,

for any sequence Ap,..., A; of scalars,
K] t &
S| =[5
=1 X =1
It follows that uy,...,u, is (1 + €)-symmetric if and only if vy,...,vs 1s M-

symmetric, where M = (1 +¢€)" = n2e/k  However, by Theorem 7-4, vi,...,V, is

not M-symmetric if
k-1pk k _ :
n2ek”lr (logn)? < m!~8/P = nl/2F
and s = m8(log, n)¥. We have assumed the second condition, and, since k =
log,,(1/8a), we have

o=l k k g.=1_k =1 -
n_ak P (IOg’Il)p < n4cxk p :n4ok /8a :nl/ZL )

This proves the corollary. O

The next corollary we deduce directly from Theorem 7-2, since this is more

natural than checking that the proof of Corollary 7.3 is valid when C' = n.

Corollary 7-4. There exists an absolute constant ¢ such that, for every n € N,
there is a 1-unconditional basis ey, ..., e, such that its largest 2-symmetric block

basis has cardinality at most n°/1°8108 ™,

Proof. Let k =loglogn/2logl2, let p =12 and let m = nl/¥. Then
(2log n)pk = (2logn)V logn  plog12/loglogn _ ,1-6/p

Let X be as in Theorem 7-2 and let e,...,e, be its standard basis. By Theo-
rem 7-2, the largest 2-symmetric block basis of ey, ..., e, has cardinality at most
m®(log, n)¥, which is at most n?%/1°81°8 " provided n is large enough. The condi-

tion loglogn > 40 is certainly enough to guarantee this. U
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It is reasonable to ask whether there is any easy improvement of Corollary
7.4. One could, for example, consider a different compound {p-space, and it 1s not
even obvious whether the proof of Theorem 7-2 gives the correct bound for the
space we did consider. We shall therefore give a simple argument which shows

that an improved estimate in Corollary 7-4 would have to come from a different

construction altogether.

Proposition 7-5. Let k € N, let my,...,m; be integers and let py,...,pr be
numbers in the closed interval [1,00]. Let X be the space (... ({p})p2 - )p," s let
¥ = Hle m; and let € > 0. Then the standard basis of X has a (1 + ¢)-symmetric

block basis of cardinality 6;(e)nc/%2()¥loglogn where ¢ is an absolute constant,

and 61 (€) and 02(e) depend only on e.

Proof. Let I = [log;/, (logn/log(1+¢€))]+1= c'loglogn + 0 for some absolute
constant ¢’ and some constant 8; = 6;(e) which depends only on e. For 1 < j <1,
let I; be the real interval given by

I = { [(3/2)71,(3/2)) 1<j<I
T B2 e =1

Then, by our choice of [, U;=1 I; = [1,00].

By an obvious averaging argument, we can find a subset A C [k] and j € [[]
such that p; € I; for every ¢ € A and such that [[;c,mi 2 nl/t, Let A =
{i1,... i}, let Y = (... (Lp; Jpit .. Jper and set m = dim(Y) = [[;c 4 mi 2 i,
The standard basis of Y is 1-equivalent to a subbasis of the standard basis of X
If j = I, then we know in addition that this basis is (1 4 €)-equivalent to the unit
vector basis of (™ in which case we are done. If 1 < j < [, then the space Y is

o0

(3/2)i"1-convex. Let ¥ be the (3/2)'~!-concavification of ¥ and let e1,...,em

be the standard basis of ¥Y'. Note that ¥ is isometric to (... (ﬁg::‘ ;’:;2 I s

‘where ¢;, = (3/2)"U"Vp;, for1 <s <.
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As in the proof of Corollary 7-3, there exists a (1+ e)(3/2)j_1-symmetric block ‘ih
basis of e;,...,em of a given cardinality if and only if there exists a (1 + €)- |
symmetric block basis of the standard basis of Y of the same cardinality. It will I
therefore certainly be enough for us to find a reasonably large (1 + €)-symmetric |
block basis of the standard basis of Y'. But 1 < ¢;, < 3/2forevery 1 < s <,
from which it follows that ||S 7, ex]| = m?/®. By Theorem 3.1, it follows that Iif
e1,...,em has a (1 + €)-symmetric block basis of cardinality 6;m/%/logm > }H;
6;m1/* = §;n'/*! where 6; = 6;(¢€) depends only on e. This proves the proposition. |

O Ht

The next result is a strengthening of Corollary 7-4. In that corollary, we
constructed a basis with no almost symmetric block basis of size any fixed power
of n. We shall now show that a space of the kind we have been considering actually
contains no subspace with a uniformly symmetric basis of dimension a fixed power
of n. The proof of this result is very similar to the proof of Theorem 7-2. In fact,
we shall prove two steps, and obtain a basis which satisfles Steps 1 and 1" in the \‘
proof of Theorem 7-2, with a slightly different value of M. The rest of the proof i‘
will then be a corollary of the proof of Theorem 7-2. Even the method used to get
to Steps 1 and 1’ will resemble our previous arguments. Note that the dependence
of our estimate on M in the next result is via the condition that n should be

sufficiently large. ;

Theorem 7-6. Let M > 1 and p = 12. Let n € N, k = loglogn/2log12 and

m = n!/*. Then the space

K= (( (€5 ) o )

has no subspace of dimension s = m8(log, n)* < n40/loglogn with an M-symmetric

basis.
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Proof. Suppose that uy,...,us is an M-symmetric basic sequence, and, for each
1 < i < s, let the coordinates of u; (with respect to the standard basis of X') be

Uity .-+ Uin. Let us define a correspondence between [m]* x [s] and [sn] by setting

k
.. .o | ; } .
(1958855 senipslagn) = 8 E (i; —1)m" ™7 4+
=1

for 1 <iq,...,0r <Kmand 1 <iry; <. Givenl < j < k,andi€ [m]7, let A4;
be defined as before. That is, 4; is the set of sequences in [m]* x [s] that begin
with i. Let [m]* be identified with [n] as it was in the proof of Theorem 7-4. No
ambiguity will arise between these two correspondences.

Let us define a new sequence of vectors vy, ..., Vv, in the sn-dimensional space

X' =((---((€2)3p)2p2 - - J3pk—2)o0

as follows. If i = (1,...,ix) € [m]*, then (i1,...,5k,ix+1)"" coordinate of v is
the (¢1,...,4 )™ coordinate of u; if ix+; = ¢', and zero otherwise. The sequence
Vi,...,Vs is a sort of disjointification of uj,...,u,. The main idea of the proof
is to replace uy,...,u, by vi,...,vs and then use the technique of Theorem 7-4.
This will be carried out in two steps. First, as ever, we need to standardize our
basis: in this case we standardize the sequence vi,...,vs. We will not prove the
next statement, since it is very simple and we have seen several similar statements
already.

Claim. There exists a subset A C [s] of cardinality ¢t = s/(log, n)¥ = m?® and
a sequence of positive real numbers hg, hy, ..., hi such that, for every ' € A and

every 1 < j <k,
2pj_1

< h; .
2pi—1

hj/2 < max
i€[m]*—

Vi
A

As usual, we shall assume, without loss of generality, that A = [t]. We shall

also assume, for the sake of convenience, that hy = 1.
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Step A. Let \;,...,)\; be any sequence of scalars. Then

2 2 2

<E < 20logn

X!

t
E AiVi
=1

i :i:)\iu,‘
1=1

t
E Aivi
=1

where the expectation is taken over all possible choices of signs, each with equal

X Xt

probability.

Sketch Proof of Step A. Since we have had many similar arguments already,
our sketch of this will be extremely rudimentary. Let us fix & € [n] and, for
1 <1<t let a; be the k*® coordinate of u;. Then, if (¢;)} € {—1,1}" is chosen
at random, we have, by an easy application of Azuma’s inequality (Theorem 1.1),
that
t t 1/2
P [Z eidia; = 10(log 71)1/2 (Z A?a?) } <n7?.
=1 7=1
From this it follows easily that

9

&

2

i
Z )\,‘Vz‘

=1

E < 200logn

X

t
g €xAili;
=1

X!

The other inequality is an easy consequence of Jensen’s inequality.

Step B. For any i € [m]F,

’ 2
Z Vi < m> .
i'=1 i 2
o k t .
Proof of Step B. Suppose not, and let i € [m]*) be such that ”Ei‘,zl \' { " H >
Aill,

S5 i °

m®. Then, by the definition of vi,..., vy, wehave 3, _; |uik|? > m®, where k =1i.
. : t

Since hg = 1, we know that |u; x| < 1 for each ¢'. It follows that Zi,zl luing| > m®,

from which we may deduce that

>m5.

t
Z sign(ttik)u,'
=1
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Since uy,...,u; is an M-symmetric sequence, we obtain that

t
E €; U,
i=1

However, we also know that I

t
2V

=1

E > M7im® .

t

Z sign(wik ) Vi

=1

< $1/22/P — pAt+2/p

Since (20M logn) < m!~2/?_ this is a contradiction of Step A.

Let us now see why this theorem follows from the proof of Theorem 7-2. Let

X" be the 2-concavification of X', and let w; = |v;|?, for each 1 < ¢ < t. Then
X" o= ((-.. ()7 )52 - - -)pe-1)2% and, for any sequence of scalars Ap,..., A, we ‘
have 2 |

t i
E /\?W,' E )\,'V,'
i=1 =1

Using Steps A and B where necessary, the following facts are now obvious:

XII ‘YI

(i) wi,...,w; is a 40011%(log n)?-symmetric block basis of the standard ba-
sis of X"; |

ii) forevery 0 < j<k—-1land 1< <t
J y

Pl
h;j/2 < max |lwy < hj;

ig[m]k-J Ai||pi-1
|
(iii) for every i € [m]¥), |

t
Z Wi | <m® =m’hg .

=1 Ai 1 ‘

Strictly speaking, we are in a slightly different situation from the beginning
of the inductive process in the proof of Theorem 7-2 because X" is a direct sum ‘
of spaces of the form (§ rather than £7*. However, the only place where the \

restriction on the dimension was used was in proving Step 1’. This is the reason
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we proved Step B above. The rest of the proof can now be used word for word,

with 400M?(logn)? replacing M, to contradict the fact (i) above, provided that
a2 1/2k
(400]\42(1og 77.)2) <mll? = pl/?k

By our choice of k, the left hand side is equal to (400012 (log 77)2) VIE™ nd the

right hand side is equal to 12!°8 n/loglogn which is clearly larger. O

It seems unlikely that Theorem 7:6 is best possible. In the light of Proposition |
7-5, the best way to obtain an improved bound might be to construct a space using “
iterated direct sums as before, but in such a way as to avoid large-dimensional
subspaces which are p-convex for some large p.

The best bound in the opposite direction is due to Alon and Milman [2].
They showed that every n-dimensional space has a k-dimensional subspace which
is (1 + €)-isomorphic to either €5 or £%_, where k is proportional to exp(v/logn).

Theorem 7-2 is, of course, even less likely to be best possible. Given an }
arbitrary basis, or even a 1-unconditional basis, the only known result which gives i
an almost symmetric block basis seems to be Krivine’s theorem. The proof of i

Krivine’s theorem requires a condition that the basis be slightly “spread out”.

One could use a result of Amir and Milman [3] for this. They have shown that an

|
arbitrary basis has an almost-unconditional block basis of cardinality proportional
to v/logn. Since the proof of Krivine’s theorem uses Ramsey’s theorem, the lower H
bound one obtains is extremely small and not unduly affected by dropping down
to v/Iogn as a first step. It is very hard to believe that this bound could not be 1
improved dramatically, in which case it would be more sensible to “spread the
vectors out” by using Lemma 4.4 or something similar, with respect to the Fritz

John ellipsoid of the space generated by the basis. |

It seems likely that the construction of Theorem 7.6 can be modified to yield ‘
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a number of corollaries of some interest. We shall give two simple ones. First, we

solve a problem mentioned at the end of Chapter 5.

Corollary 7-7. Let M > 1 and let n be a power of 2. Then there there exists
a normalized basis 71, . ..,Tn satisfying a lower 2-estimate with no M -symmetric

block basis of cardinality n*0/1oglogn

Proof. Let p =12, k =loglogn/2logl2 and m = nl/k andlet e;,...,e, be the
standard basis of the space X = ((...({3})5p2 -- .)g;k_l);’; used in Theorem 7.6.

Let A = (ai;)?;=; be the n x n-Walsh matrix (this is defined in Chapter 9) and,
fori=1,...,n,let 2l = Y 7_, a;je; and let z; = i/ ||zi||. It is easy to check that
the basis z1,...,z, is normalized and satisfies a lower 2-estimate.

However, by Theorem 7.6, X contains no M-symmetric basic sequence of

cardinality n%/1°8l°8 » The corollary follows trivially from this. O

Let us remark here that one can get a partial result about bases with a lower p-

estimate, for p < 2, by defining a norm ||.|| on R™ as follows. Ifa = >, a;e; € R",

one sets |la|| = |X i, aizillx V |all,- Then one uses the fact that the standard
basis of R™ under this norm is n!/?~1/2-equivalent to the basis z1,..., 2. Setting
8 =1/p—1/2, one can obtain this way a basis satisfying a lower p-estimate with
no 2-symmetric block basis of cardinality nc/log(ﬁ_l), for some absolute constant
c. However, compared with the known lower bound of n?8 obtained in Theorem
3.1, this is very large, and it gives no information at all unless p is rather close to
.

The next corollary is very simple. To prove it, one simply considers the space

(- (€35)5p2 - - -)gpi as & subspace of X, for [ = [log2 ¢].

Corollary 7-8. There exist absolute constants c,c’ such that, for every q > €€

and M > 1, and for n sufficiently large, there exists an n-dimensional space with
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with no subspace of dimension nc/1°8 9 with an M-

O

q-cotype constant at most &,

symmetric basis.

Note also that this space has uniformly bounded 2-type constant, so we have
a partial converse to Theorem 4.6.

The results of this chapter suggest that the key problem concerning upper
estimates for the sizes of almost symmetric block bases is to obtain a best possible
improvement of Theorem 7.6. From this it is likely that one would be able to
obtain best possible results to do with bases close to the standard basis of (7,
bases with lower p-estimates, spaces with type or cotype conditions and probably
spaces with other natural properties as well.

This concludes Chapter 7, and indeed the part of this dissertation which
deals with symmetric sequences in finite-dimensional normed spaces. In the next
chapter, we shall look a little at infinite symmetric sequences, but before that we

shall summarize the results of Chapters 3 to 7.
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SUMMARY OF RESULTS

AND SOME OPEN PROBLEMS

In Chapters 3 to 7 we have considered various properties that a basis can
have. For each property P, we have asked the following question. If a basis of
cardinality n satisfies property P, then what is the largest (1+ €)-symmetric block
basis that it is guaranteed to have? That is, if a sequence satisfies P, what 1s the
smallest possible size of its largest (1 + €)-symmetric block basis? We have been
interested in both lower bounds and upper bounds for this quantity. We shall
now summarize what is known about various such problems, and also about some
of the similar problems obtained by replacing “(1 + €)-symmetric” with “(1 + ¢€)-
unconditional” in the question above. The open questions we discuss are those
particularly related to our work: there are several others which are natural and
interesting in the light of the work of Amir and Milman.

Given a property P, then, and given n € N and € > 0, let Ps(n, €) (respectively
Py(n, €)) be the smallest possible size of the largest (1+¢)-symmetric (respectively
(14¢)-unconditional) block basis of a basis satisfying P. We shall deal with various
properties in turn. For the whole of this summary, we shall assume that z1,...,%xa

is the basis under discussion.

1. Let us begin by taking AG to be the property that z1,..., 7, is a sequence of
unit vectors and

> nl/p

E

i +x;
i=1

where 1 < p < 2 and the expectation is over all possible choices of signs, each

with equal probability. Also, let I be the property that z1,...,z, is a linearly

independent sequence.
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Then, by the results of Chapters 3 and 5, we have

c(e)nz/p—l/log n < AGs(n,e) < AGy(n,€) < 2?71

If 1 < p<3/2, then
c(e)nz/”_l/log n < (AGNI)g(n,e) < (AGNIy(n, €) < c'(e)nz/p—l(log 71.)4/3 .

Although we have not done this, it is possible to use Theorem 7.2 to construct
an independent sequence which shows that, when 3/2 < p < 2, we still have that
(AGNI)s < n?/P~1+o(n) This suggests the problem of estimating (AG NIy (n,¢)
from above. We cannot improve on c¢(e)n!/3(logn)*/3. Another problem suggested
by the results of Chapter 3 is the following. Suppose that 3/2 < p < 2 and LE is
the property that z;,...,, is a sequence of unit vectors, and, for any sequence

of scalars ay,...,an,
n

E a;T;

=1

B /
> (Z|ail"’>l "

=1

Then what are LEs(n,€) and LEy(n,e)? The results of Chapters 3 and 5 show
only that the exponent of n lies between n2/P=1 and n1/3. In Chapter 7, a partial
answer is obtained for LEg(n,¢€). In particular, it is shown that LlZ;.(n,e) is

bounded above by n¢/1°81°8 " for an absolute constant ¢, when p = 2.

2. Let LP be the property that z1,...,z, is C-equivalent to the unit vector basis

of £, where 1 < p < co. We showed in Chapter 4 that
c(e,p,C)n/logn < LPs(e,n) < LPy(n,¢)

and in Chapter 6 that

c'(e,p)nloglogn/logn ifp>1

LPS(n, 6) <
c'(e)n/loglogn fp=1.
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We have not checked the details, but it seems that Theorems 6.6 and 6.11 could

be modified fairly easily to show that the upper bound for LPs(n, €) is also an
upper bound for LPy(n,¢). Therefore, the main question still open is what the
correct bound is when p = 1. Less interesting is the question of whether the
log log n-factor is necessary in the upper bound when p > 1. It was needed for
technical reasons, and can be dropped if one only wants to rule out large bases
with £1-coefficients. It seems almost certain that the lower bound is best possible
when p > 1, up to the constant c(e, p,C). One final question which is relevant to
the case p = 1 is the following. Suppose we fix a sequence a = (ay,...,am) € R™.
Then how large must n be so that any basis satisfying LP must have a block basis
of cardinality m which is (1+ ¢)-symmetric at a? Our methods show only that, up

to a constant depending on €, p and C, the answer lies between m and mlogm.

3. Let LI be the property that z1,...,z, is C-equivalent to the standard basis of
(".. Let us fix € > 0 and set a = log(1 + €¢)/log C. Then it follows from the well
known finite-dimensional version of a result of James that LIy (n,e) = LIs(n,e) >
n®/2. We have shown in Chapter 7 that LIs(n,¢) < n?, where 8 = ¢/log(a™!) for

some absolute constant c. We have no interesting information about LIy(n, €).

If we let U be the property that zi,...,z, is a l-unconditional sequence,
then we have Us(n,e) < n¢/loglog n fo some absolute constant ¢. We have no
interesting lower bound in this case. By Krivine’s theorem, Us(n, €) does at least
tend to infinity with n, but this result uses Ramsey’s theorem and therefore almost
certainly gives a very poor estimate. It is quite likely that results of Amir and
Milman could be used to obtain a better bound without too much further work,

but we have not investigated this.

A related question is the following. Suppose X is an n-dimensional normed

space. Then how large a subspace must it contain with a 2-symmetric basis? We
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e absolute constant c, there exists

have shown, again in Chapter 7, that, for som

. . . 1 . .
for every n an n-dimensional space with no subspace of nc/loglog ™ dimensions

with a 2-symmetric basis. The best known lower bound was obtained by Alon
and Milman, who showed that every n-dimensional space contains a subspace of
k dimensions, where k is about exp(+/logn), which is (1 + ¢)-isomorphic to either
(% or €%,. Just because this would be tidy, my guess is that this is best possible,
that Us(n, €) is also about exp(y/logn) and that LIs(n, €) is about nve,

Finally, we do not know much about Iy(n, €), where I, as before, is simply
the property that z1,...,zn is linearly independent. Amir and Milman [3 showed

that it is at least c(e)y/Iogn, and in Chapter 5 we showed that it is at most

c(€)n*/3(logn)*/®. This is a ridiculously large gap which we hope to make narrower

in the future.
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CHAPTER 8

INFINITE ALMOST SYMMETRIC SEQUENCES

In Chapter 4 we proved that if 1 < p < oo then any basis equivalent to the
unit vector basis of £7 has a block basis of cardinality proportional to n/logn that
is almost symmetric. There is a natural infinite-dimensional analogue of this state-
ment, namely that any infinite-dimensional Banach space that is isomorphic to £,
contains an infinite almost symmetric basic sequence. Now, a famous question in
Banach space theory, known as the distortion problem, is the question of whether
any space which is isomorphic to £, has an infinite-dimensional subspace that is
almost isometric to £,. A positive answer to this would trivially imply that such
a space contained an infinite almost symmetric basic sequence. The object of this
chapter is to show that the reverse implication also holds. Specifically, we show
that if every Banach space isomorphic to £, contains an infinite (1 + §)-symmetric
basic sequence for every § > 0 then every Banach space isomorphic to £, contains,
for every € > 0, an infinite-dimensional subspace which is (1 + €)-isomorphic to £,.

The proof will be divided into two parts. The first is an adaptation of one
of the standard proofs of Hindman’s theorem, which we shall discuss later in the
chapter. The second is a corollary of the standard proof of Krivine’s theorem in
the case when the original basis is 1-symmetric and equivalent to the unit vector
basis of £,. The first part of the proof is perhaps interesting on its own, but to
explain it we shall need some notation and a standard lemma which reformulates

the distortion problem. We shall give the lemma first.

Lemma 8-1. The following are equivalent, for 1 < p < oo.
(i) Any Banach space isomorphic to £, contains, for every € > 0, an infinite-

dimensional subspace which is (1 4 €)-isomorphic to €.
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(ii) Let ||.|| be any norm equivalent to the standard norm of £,. For every

¢ > 0 there exists an {,-normalized block basis of the unit vector basis of
¢, which is (1 + €)-equivalent, under |.||, to the unit vector basis of (.

(iii) Let C C S(£p) be any subset of the unit sphere of £,. For any € > 0 let
C. denote

{z € S(L): |lz — yl|, < efor somey € &}

Then for any € > 0 there is an infinite normalized block basis of the
unit vector basis of £, which generates a subspace Y such that either

SY)cCcor S(Y)NC=0.

Proof. Trivially (ii) implies (i). It is also easy to see that (iii) implies (ii). Indeed,
let ||.|| be an equivalent norm on £,. Without loss of generality there exists C' > 1
such that ||z||, < ||lz|| < C'||z]|, for every z € £;. Let C = {z € S(L): |||l < VC}.
Then given any § > 0 we certainly have Cs C {z € S(£p) : ||z]| < VC +8C}. Let
e1,€s, ... be the unit vector basis of £,. If (iii) holds, then we can find a normalized
block basis uj,us,... of e, es,... which generates a subspace Z of £, such that
either 1 < ||z|| € V/C + 6C for every z € S(Z) or VC < ||z|| € C for every
z € S(Z). By an easy iteration of this argument, we can obtain (ii). We shall
complete the proof by showing that (i) implies (ii) and then that (ii) implies (iii).

Suppose then that (i) is true and let ||.|| be an equivalent norm on £,. Let X
be £, with the equivalent norm, let ¢ > 0 and let § > 0 be such that (1+6)® < 1+e.
By (i), there is a sequence y1,¥2,... in £, which is (1 + é)-equivalent to the unit
vector basis of £,. We now make use of the following standard lemma (cf. [34
Proposition 1.a.12]) which is a slight extension of an observation of Bessaga and

Pelczynski [8].

Lemma 8:2. Let § > 0 and let x1,x2,... be a basis of a Banach space X, and let
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g = Z;O:I aijz; for i =1,2,... be such that inf; ||yi| > 0 and limj— o a;; = 0 for
every 1. Then there is a subsequence (yi, )i of (yi)iZ1 which is (1+ é)-equivalent

to a block basis of x1,x2,. ... U

It is easy to check that, if X and y1,y2,... are as above and we set z; = e;
for each i, then the conditions of Lemma 8.2 are satisfied. We therefore obtain a
block basis of z1,z2,... which is (1 4+ §)?-equivalent under ||.|| to the unit vector
basis of £,. By passing to a subsequence and using the pigeonhole principle, we
can find A > 0 and a block basis v, Vs,... which is (1 + §)*-equivalent under ||.|
to the unit vector basis of £, and which in addition satisfies A < [|vi||, < A(1 +6)
for each i. It is easy to check that, setting u; = v;/||vi|| for each 7, we obtain a
block basis uj,us,... which is £p-normalized and (1 + §)3-equivalent to the unit
vector basis of £, under the norm ||.||.

Finally, let us suppose that (ii) is true, let € > 0 and let C C S(¢;) be a subset
of the unit sphere of £,. We define an equivalent norm on £, as follows. Given any

vector y € S(£,), let f, stand for the support functional at y. Then set

]l = sup{|fy(2)] : y € C} v (1/2) |I=]l,, -

Now, since 1 < p < oo, the space £, is uniformly convex. We can therefore
find § = 8(e) > 0 such that, whenever z,y € S({,) and ||z —y|| > ¢, we have

I(z +y)/2]| <1—6. Now suppose ¢ ¢ Cc and y € C and let a = f,(z). Suppose

that & > 0. Then certainly ™! f,(££%) > 1. But || Y < (1-6) and || fy]l = 1,
from which it follows that @« < 1 — § and hence that ||z|| < 1 — ¢ whenever
z € S(L,) \ Cc. However, by (ii) we can find a normalized block basis of the unit
vector basis of £, which is (1 + §)-equivalent under ||.|| to the unit vector basis
of €,. Let ¥ be the subspace generated by this normalized block basis. If (iii)
is false then we can find z,y € S(Y) such that z ¢ C. and y € C. The above

argument shows that ||z]| < 1 — 6, and clearly ||y|| = 1. This contradiction proves
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the result.

Note that the third form of the equivalence is no longer easy when [, is
replaced by co. Later in the chapter we shall show that this question has a positive
answer.

We shall now introduce a fair amount of notation and terminology that
will greatly shorten several statements, and will emphasize the formal similar-
ity with Hindman’s theorem. First, given two vectors z, y € (p, we shall write
z < y if  and y have disjoint finite supports on the standard basis of £, and
max(supp(z)) < min(supp(y)). We shall use the word “subspace” to mean “unit
sphere of subspace” throughout the paper from now on. If a subspace of £, is
generated by a basis (z;)§° which satisfles z; < z;41 for every ¢, that is, by a block
basis, we shall call it a block subspace. If (z;)} or (z;)$° is a block basis of the
standard basis, then (z1,...,zn) or (z1,%2,...) will stand for the block subspace it
' generates. We shall say z < Y if Y is a block subspace andz < y foreveryy €Y.
If z <Y, then (z,Y) will stand for the subspace generated by = and Y. Letters
such as A and B will be used to stand for finite-dimensional block subspaces. We
shallsay A < Y if z < y for every z € A and y € Y, and then write (A,Y) for the

subspace generated by A and Y.

We shall use the following partial order on the infinite-dimensional block sub-
spaces of {,, similar to a partial order used in Baumgartner’s simplified proof [6]
of Hindman’s theorem [25] (cf. also [24]). If X = (z1,22,...) and ¥ = (y1,¥2,.. ),
then we say X < Y if (z;)$° is a block basis of (y;)§°. Also inspired by Baumgart-
ner’s proof of Hindman’s theorem, we say that a subset C of the unit sphere of £,
is large on a block subspace X if CNY # @ whenever ¥ < X. Given a subset C of
the unit sphere of ¢,, we shall write C, as before for the set of z in the unit sphere

of ¢, for which there exists y € C such that ||z — y||, < e. Using these definitions,
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we can formulate the distortion problem in the following way. If 1 < p < oo,

is there a subset C of the unit sphere of £, and € > 0 such that both C and the
complement of C, are large on (,? Let us now state the result which, together with
the proof of Krivine’s theorem in the symmetric case, will imply the equivalence
of the infinite-dimensional analogue of Theorem 4.1 and a positive answer to this

question.

Theorem 8:3. Let 1 < p < co. Suppose there exist € > 0 and a subset C of the
unit sphere of £, such that C and the complement of C. are both large on £,. Then
there exist § > 0 and a subset D of the unit sphere of £, such that D is large on
¢,, but, given any two dimensional block subspace A = (z1,x9) of ([, there exists

y € A such that d(y,D) > 6.

For the proof of this theorem, we shall need some simple lemmas, which are
similar to lemmas used by Baumgartner. First, let us introduce one more piece
of shorthand. If m, n € NU {oo} and € > 0, we shall write P(m,n,e¢) for the
following statement:

Given any set C € £, either there exists an m-dimensional block subspace X
of £, such that X C C. or there exists an n-dimensional block subspace ¥ with
Yync=0.

We shall write “P(m,n)” for the statement “P(m,n,¢) for all e > 0”. Theo-

rem 8.3 states that P(2,00) implies P(o0, c0).

Lemma 8-4. Suppose X < £, and C is large on X. Suppose also that C = L5 €

Then there exist 1 <t < n and Y < X such that C; is large on Y.

Proof. We use induction. If C, is not large on X then there exists X' < X such
that X' NC, = 0. Since C is large on X', it follows that U?_l C; is large on X'.

By induction we can find 1 <7 < n—1 and Y < X such that C; is large on Y.
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The case n = 1 is trivial.

Lemma 8-5. Suppose X < £, ¢ > 0andC islargeon X. Suppose also P(2, 00, €).
Then there exist a finite-dimensional block subspace A C X andY < X such that
A <Y and

{y € Y:(z,y) CC. for some z € A}

is large on Y.

Proof. Let X = (r;,22,...). Set y1 = z; and ¥7 = (z2,%3,...). Then either
{y € Y1: (y1,y) C Cc} is large on Y7 or there exists X1 < Y} such that whenever
y € X1, (z1,9)N(Ce)¢ # 0. In the first case we may set A = A; = (y1) andY =Y1.
In the second case, let X; = (z1,1,212,...) and set y2 = T1,1, Y2 = (z12,%1,3,.-.)
and As = (y1,y2). Then either {y € Y5:(z,y) C Ccfor some z € A} is large
on Y, or there exists X, < Y, such that whenever z € Az and y € Y3, we have
(z,y) N (C)® # 0. Continue this process. Either it terminates at some stage,
in which case we are done, or we generate a block subspace Y = (y1,y2,.. 2
such that for any n, any z € (y1,...,Yn) and any y € (Yn+1,Yn+2,-- .), we have
(z,y) N (Cc)® # 0. In the second case, we therefore have (z,y) N(Ce)® # () whenever
z,y € Y, z < y. But then, by P(2,00,¢), there exists Z < Y such that Z C
((Ce)®)e, that is, Z N C = §. This contradicts the assumption that C was large on

X. U
Lemma 8:6. Suppose X < {,, ¢ >0, § > 0 and C is large on X. Suppose also
P(2,00,€). Then there exist t € X and Y < X such that ¢ <Y and

{y € Y:(z,y) CCeys}
is large on Y.

Proof. By Lemma 8.5 there exist A C X and Y' < X such that A <Y and

{y € Y':(z,y) C C, for some z € A} is large on Y'. Now A is finite-dimensional,
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and therefore is totally bounded. Let z1,...,zn be a §-net of A. It is easy to
verify that if ||z — .7:1-||p < 6 and (z,y) C Cc then (zi,y) C Ceys. Thus
N
J{y € Y': (zi.y) CCers}
=1
is large on Y. By Lemma 2, there is some 7 and some ¥ < Y’ such that
{y € Y': (zi,y) CCess}

is large on Y. O
Proof of Theorem &8-3. We shall use Lemma 8.6 repeatedly. Assume then that
P(2,00) is true and that C is large on £,. We shall find some X < £, such that
X C C.. This will show that (C¢)¢ is not large on £, thus proving Theorem 8.3.

By Lemma 8.6, we can find z; and ¥; < £, such that z; < Y7 and
C1 = {y € Y1: (z1,y) CCe/2}
is large on Y;. By Lemma 8.6 again, we can find and Y, < Y7 such that
Cy = {y € Ya: (22,y) C (C1)e/a}
is large on Y5. In general, if we have constructed z;, C; and Y;, let z;41 and Yi4;
be such that z;1; < Yiy1, Yig1 < Y; and
Cit1 = {y € Yig1: (Tit1,¥) C (Ci)a-G+n)}

is large on Y;y1. It is easily checked that X = (z1,x2,...) satisfies the condition

X ccC.. O

Theorem 8-7. Suppose that, whenever 1 < p < oo and ¢ > 0, every space
isomorphic to {, contains an infinite (1 + €)-symmetric basic sequence. Then every

space isomorphic to €, also contains a subspace (1 + €)-isomorphic to (.

We shall need a simple lemma. We shall not give a proof as it is very similar

to the proof of Lemma 8.1.
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Lemma 8-8. The following are equivalent, for any 1< p<oo.

(i) Any Banach space isomorphic to [, contains, for every € > 0, an infinite

(1 + ¢)-symmetric basic sequence.

(ii) Let ||.|| be any norm on ¢, equivalent to the standard norm. Then there
exists an {,-normalized block basis of the standard basis of £, which is
(1 + ¢)-symmetric under |[.||.

(iii) Let e > 0 and let C C S({p) be any subset of the unit sphere of {,. Then
there exists a normalized block basis ui,us,... of the standard basis of
L, such that, for any sequence of scalars (A\;)$°, any sequence of signs
(&;)$° and any permutation m of N,

1
d(i e,-)\,-u,,(i) 3 C> == d(i )\iui 3 C)
1=1

=1

<e€. (]

Proof of Theorem 8-7. By Theorem 8.3, it is enough to prove P(2, c0) under our
assumptions. By Lemma 8.8, we may assume that the third of the three equivalent
statements is true. Given e > 0 and C C £,, let § = ¢/3 and let X < £, be the
subspace of £, generated by the block basis given by the third part of Lemma
8.8, with e replaced by §. Without loss of generality X = £,. It was observed
by Rosenthal [45] that for any 7 > 0 and k € N there exists a vector z € S(£p)
of finite support such that, if z1,...,zk are disjointly supported copies of z and
Z;‘ |a;|P = 1, then there is a rearrangement y of Z;‘ a;z; with supp(y) C supp(z)
such that ||z — yl[, < 7. (An upper bound for the number of non-zero coordinates
needed for z was given in [3]). Let us take k =2, 7 =6, and let = be the vector
we obtain. Let z; < 2 < ... be disjoint copies of z and set ¥ = fog ,855004)s
Suppose now that C is large on £p. It follows that there exists z € Y of finite
support with ¢ € Cs. Suppose that z = ST Aizi and let 2’ > = be a disjointly

supported copy of z, with z’ = S 1 Aizh. Now let @ and b be any two real numbers
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such that |a|? + [b|f = 1 and let y = az 4 bz'. For each 1 <1 < nlet zi be a

rearrangement of az; + bz} cuch that supp(z:i) C supp(zi) and ||z; — zil| < 6 and
let z = .1 Aizi- A quick calculation, using the fact that the supports of z; — i
are disjoint, gives that |z — =), <6 It follows that z € Cos and hence, by Lemma
8.8, that az + bz' € Ce. We have therefore shown that (z,z") C C. which proves
P(2,00,€). Since € > 0 was arbitrary, we have in fact proved P(2,00) and hence

P(o0,00). O

In 1975, Hindman, as we have mentioned, proved a famous and important
theorem. It states that, given any finite colouring of N, there exists an infinite
sequence 1j,nz, - .- such that, for any finite set A C N, the colour of D icamils
the same. This theorem has an equivalent formulation in terms of colourings of
N(<%) | the set of finite subsets of N. Given any finite colouring of N(<¢) | there
exists an infinite sequence X1 < X2 < ... of elements of N(<%) such that, for any
A € N(<)  the colour of |J;¢ 4 Xi is the same. In a sense, Hindman'’s theorem in

this form is a natural discrete analogue of the distortion problem.

The “finite unions version” can be regarded as a theorem about finite words in
an alphabet consisting of the two letters 0 and 1, and as such has been generalized
by Carlson and Simpson [14a] and Furstenberg and Katznelson [21] to theorems
concerning larger alphabets. The theorem of Carlson and Simpson is an infinite
version of the Hales-Jewett theorem while that of Furstenberg and Katznelson isa
refinement of the Carlson-Simpson theorem. In both these theorems, the alphabet
concerned is a finite set with no order (although for Furstenberg and Katznelson
it has preferred elements). In this paper we prove another natural generalization
of Hindman’s theorem, this time using a totally ordered alphabet and proving a
result which respects the order. Our proof has certain obvious similarities with the

methods of [14] and [21], and generalizes Glazer’s remarkable proof of Hindman’s
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theorem [cf. 24]. In particular, the induction step of our Lemma 8.11 is essentially

contained in [21, Theorem 1.3]. Since our proof is quite short, we give it in full,
except for Lemma 8.10, which is well known, and a number of elementary facts
that need to be checked, and have been checked elsewhere [cf. 14,21].

As a consequence, we shall be able to deduce easily that a Lipschitz function
on the unit sphere of co which does not depend on the signs of the coordinates
of any vector can be restricted to an infinite-dimensional subspace on which 1t
‘s almost constant. The corresponding theorem for general Lipschitz functions 1s
a little harder. We prove an “approximate Ramsey result” which states, roughly
speaking, that if a certain discrete structure is coloured with finitely many colours,
then it has an infinite substructure all of whose points are close to a point of one
particular colour.

Before stating our next theorem, we shall introduce some notation. For any

k € N, let the shift T : NF — N* be defined by
T :(ni,na,...,nk) (0,n1,... ,Mk—1)

and let Xp = NF\ TNk = {(nl,...,nk) tny # 0}. Given a subset A = {n; : 1 €
I} C X indexed by a set I, we shall say that the subspace generated by A is the

set of elements of X of the form
k
> 5
j=11€B;
where Bi,. .., By are disjoint subsets of I and B is (necessarily) non-empty. The

use of the word “subspace” will be justified later.

Theorem 8:9. Let k,r € N and let Xj =c1U...Ucr be a colouring of X with
~ colours. Then there exists a monochromatic subspace of X generated by an

infinite set.
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The case k = 1 of Theorem 8.9 is simply Hindman’s theorem. In order to

prove the result in general, we rely heavily on the following lemma, which was also

used by Glazer.

Lemma 8-10. Let (S, +) be a compact semigroup such that the functiony — y+

on S is continuous for every z € S. Then there exists an idempotent, that is, an

element z € S such that ¢ +z = . O

The following notation will be very useful when we deal with ultrafilters.
Given a set X and an ultrafilter @ on X, we shall define a quantifier A, as fol-
lows. If P(z) is any proposition involving the elements of X, then when we write
(Aoz) P(z) we shall mean {zeX: P(z)} € a. (This can be read “for a lotq
of z, P(z)”.) If X is a semigroup, then the set U(X) of ultrafilters on X can be

turned into a compact semigroup by setting
at+f={ACX:(Aaz)(Npy) T+YE A} .

Tt is not hard to verify that this operation on U(X) is right-continuous. By Lemma
8.10, it follows that U(X) contains an idempotent.
Given k > 2 let a “shift” operator S : U(Xx) — U(Xk-1) be defined as

follows. For any « € U(X}) we define S(a) € Xj—1 to be the set
{A C Xio1 : (Agz) Tz € A} .

It is not hard to check that the operator S is continuous.

Given any j < k € N there is an obvious identification between X; and

T*=3X,. We may therefore define a map + : (X;,Xk) = Xi by
(may...,mj)+ (n1,...,nk) = (R1y. -y Mk—j, M1 + Rkl TG+ nk) .

We also define the map + : (X, X;) — Xi in a similar way. We can de-

fine corresponding maps on the spaces of ultrafilters. For example, the map
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+ : (U(Xk), U(X;)) — U(Xk) 1s defined by setting

a—!—ﬁ = {A c Xy (;’\C,LI? € .Xk>(1\5y € -Yj) T+yE€ 4} .

It is not hard to verify that these maps are all right-continuous. It is also not hard

to verify that, if j, k > 2, then S(a+pB)=Sa+58 for any a € U(X;), B € U(Xk),
and,if 1 =j <k, then Sla+p8)= S(B+a)=SpBforany a € U(X;), B € U(Xk)

We may now state and prove the main lemma upon which Theorem 8.9 de-

pends.

Lemma 8-11. For every k € N there exists an ultrafilter a € U(X) such that

Sja—i-a:a—i—sja:aforeachOéjék—-l.

Proof. We use induction on k. The case k = 1 follows from Lemma 8.10 and
the remarks just after it. Suppose then that there exists 3 € U(Xk—1) such that
Sig+B=p+ Sig = forevery 0 < J < k — 2. Then, since S is continuous and
U(X&) is compact, S—18 is a compact subset of U(X). Since addition is right-
continuous, the set S™'f 4+ is also compact. It is closed under addition, since, if
Syi = Sya = f, then S(v1 +B+72) = Syi+SB+S12=B+SA+B=B+0F= B.
Therefore, by Lemma 8.10, there exists v € S~13 such that (y+B)+(v+8) = v+5.

To complete the proof, set a = B+~ + B. Then, if 1<j<k—1, wehave
ot Sia=B+y+Pp+SB+STIp+SB=B+rth=0a.
Similarly, S7a + a = a. Furthermore,
ata=ftrtBrBrrHB=A+(+AH T HH=FT A=

a

Therefore, a will do.

Proof of Theorem 8-9. Given a finite sequence 1y, . ... ,n, of elements of Xy, let

(ny,...,n,) denote the subspace generated by {ni,..., n,}. Let a € U(Xy) be an
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ultrafilter of the kind guaranteed to exist by Lemma 8.11 and let us write A for

Ag. It follows immediately from Lemma 8.11 that, given any subset A C X, we
have (Az) z € Aiff (Az)(Ay) (z,y) C 4. Given an r-colouring of Xy, let ¢y be
the unique colour for which (Aqz) = € ¢ and set A4; = ¢,. By the above remarks,
we have (Az)(Ay) (z,y) C A1. Pick 21 € X} such that (Ay) (z1,y) C 41 and
set A2 = AN {y : (z1,y) C Al}. Then, since « is a filter, (Az) = € A4,, and
this implies that (Az)(Ay) (z,y) C As. Pick 2 such that (Ay) (z2,y) C A
and note that this implies that (Ay) (z1,72,y) C A;. Continuing this process,
we produce an infinite sequence x1,2,... such that the subspace it generates is

contained in A4, that is, is monochromatic of colour c,. O

We come now to a “finite unions version” of Theorem 8.9. Let us set Y} to
be the set of functions f : N — {0,1,...,k} which are finitely supported and
take the value k at least once. Define a shift operator T : Y — Yr_; by setting
(Tf)(n) = (f(n) = 1)V 0. Given a subset A = {f; : ¢ € I} C Yi of disjointly
supported functions, the subspace generated by A is the collection of functions
of .the form Zz‘e ;T7 f; where r; = k in all but finitely many cases and r; = 0
at least once. There is an obvious isomorphism between any infinitely generated

subspace and Y} itself. Indeed, Yi is the subspace generated by the functions

(k,0,0,...),(0,%,0,...),....

Theorem 8:12. Let k,n € N, and let Y} be coloured with r colours cy,...,c;,.

Then Y). contains a monochromatic subspace generated by an infinite set.

Proof. Let ¢ :N — N(<%) be the usual binary correspondence and let ¢ : X —

Y. be defined by

¢:(nyy...,ng) max{kdz(n]), (k — 1)(5(712), cee (nk)}

where this is of course a pointwise maximum of functions.
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Now it is easy to show that, given any infinite sequence nj, ng, ... C X and

any integer m, there exists a finite subset A C N such that each coordinate of
Y icallils divisible by m. It follows easily that, given such an infinite sequence,
there exists a sequence of subsets A; < Az < ... such that the images of the
vectors ¢(Zi€_4j ni> are disjointly supported.

Let us therefore colour X by setting the colour of n to be the colour of o(n)
in Y%. By Theorem 8.9, X} contains a monochromatic subspace generated by an
infinite sequence np,ny, ..., and, by the above remark, the infinite sequence can
be chosen so that ¢(n;), ¢(n2),... are disjointly supported. It is also easy to see
that the image of the subspace of X generated by nj,ng,... is the subspace of

Yi generated by ¢(n), #(nsz),.... The result follows. O

We come now to the first of our results about Lipschitz functions on ¢g. Given
any normed space X, let S(X) denote its unit sphere. Let us say that a real-valued

Lipschitz function F on S(co) is unconditional if F(z) = F(|z|) for every « € S(co).

Theorem 813. Let F be an unconditional Lipschitz function on S(co). Then,
for any € > 0, there exists an infinite-dimensional subspace X of co such that F

varies by at most € on X.

Proof. Without loss of generality, F' has Lipschitz constant 1. Let § = €/2.
There is a natural §-net of |S(co)|, namely, the collection of functions f : N —
{1,0+6)7",...,1+ &)=~} which are finitely supported and take the value 1
at least once, where k is chosen so that (1+8)~(*=1) < §. Let us write A for this
collection of functions.

Since F is Lipschitz, there exists an interval [a,b) C R such that F(S(c)) C
[a,b). Let r be such that a + ré > b and let the intervals Ii,...,I. be defined

by I; = [a+ (j — 1)8,a + jé) for each 1 < j < r. Given f € A, let us colour f




according to the interval I; in which F(f) falls.
Now there is an obvious bijection between A and Yj. Indeed, let us define a
map ¢ : A — Yi by
k +logy4s f(1) f(n) #0
0 f(n)=0

The colouring on A induces a colouring on Y. By Theorem 8.12, Y} contains

(Y f)(n) = {

a monochromatic subspace in this colouring, generated by an infinite set. This
set corresponds to a block basis of ¢, and it is not hard to see that the subspace
generated by the set corresponds to a §-net of the positive part of the unit sphere of
the subspace generated by the block basis in ¢o. Therefore, since F'is unconditional
and varies by at most § on this set, it can vary by at most 26 = € on the whole of

the unit sphere of the subspace. This completes the proof of Theorem 8.13. [

We shall now extend Theorem 8.13 to arbitrary Lipschitz functions. The proof
of this is harder, because the most obvious combinatorial approach does not work,
and must be replaced with an “approximate Ramsey result”, as we mentioned
earlier.

Giveﬁ L € N let Zr be the set of functions f:N—= {-—k,—(k — 1),...,k}
which are finitely supported and take one of the values £k at least once. Let the

shift T be defined by

(Tf)(n) = sign(F()((1f ()] -1V O) -

If the functions {f,' €1 } are disjointly supported, then let the subspace generated

by {fz € I} be defined to be the set of functions of the form

k

k
S TiR- Y Y T
j=14i€A,; j=14i€B;

where A;,...,Ax, B1,..., By are all disjoint, and at least one of A; and Bj 1is

non-empty.
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If every colouring of Zi yielded an infinite monochromatic subspace, then we
would be done, by imitating the deduction of Theorem 8.13 from Theorem 8.12.
However, it does not take long to see that this is not the case. For example,
one can colour each function f by the sign of its first non-zero coordinate, or by
whether or not the first and last non-zero coordinates have the same sign. This
second colouring shows that we cannot get anywhere by restricting our attention
to colourings for which the colour of f is always the same as the colour of —f.

These colourings, however, cannot be adapted to give counterexamples to the

next result, which will be sufficient for our purposes.

Theorem 8-14. Let Z) be finitely coloured. Then there exists a colour A C Zy

and an infinite subspace W C Zj such that W C A', where
A={fez:EgeDfI<IghIf — 9l <1}

In other words, given any finite colouring of Zy, there exists a colour A and
an infinite subspace every point of which is close to a point in A and dominated
by it.

" The next lemma is in a sense the finite-dimensional version of what we want.
It is perhaps surprising that the finite-dimensional version should be useful for

proving the infinite-dimensional version, but this seems to be the case.

Lemma 815. Let n e Nande > 0. If N = N(n,e€) is sufficiently large, then,
given any decomposition S(tY) = AU B, there exists a block subspace X C T

such that dim(X) = n and either X C A or X C Be.

Proof. Let S(co) = AU B and let a Lipschitz fuction F' be defined on S(co) by
F(z) = d(z, A). By an obvious adaptation from norms to Lipschitz functions of the
methods of [3], one can find, for any M € N, a block subspace X = (T1,.--,%M)

of ¢g such that, whenever ¢ = Z:\il aiTi, Yy = Zi\il b;z; are in S(X) and |a;| = |bi|
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for each 1, we have |F(z) — F(y)| < €/2. Let us pick such a subspace X and let G

be the unconditional Lipschitz function defined on S(£M) by

M
G(a) = max{F(Z ai-.r,) . |a;| = |ai| for each i} .

1=1

By the finite version of Theorem 8.13, which follows from the well-known
compactness principle (cf. e.g. [24]), if M was large enough then (M has an
n-dimensional block subspace on whose unit sphere G varies by at most e/2. Tt
follows easily that X has a block subspace on which F' varies by at most e. Hence,
we must either have Y C A, or ¥ C A° C B. By the compactness principle once

more we obtain the result. O

Let us say that a subset A C S(co) is n-large if, for every n-dimensional block
subspace X of ¢g, AN X # (. A subset that is n-large for some n, we shall call

finitely large.

Corollary 8-16. Let 8 = {4, C S(co) : € > 0, A is finitely large}. Then f is a

filter-base.

Proof. We must show that if A and B are finitely large and ¢ > 0, then there
exist C C S(co) and § > 0 such that C is finitely large and C<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>