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Abstract 

Objective Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used as anti-diabetic 

drugs and are approved for obesity treatment. However, GLP-1RAs also affect heart rate (HR) 

and arterial blood pressure (ABP) in rodents and humans. While activation of GLP-1 

receptors (GLP-1R) is known to increase HR, the circuits recruited are unclear, and in 

particular it is unknown whether GLP-1RAs activate preproglucagon (PPG) neurons, the 

brain source of GLP-1, to elicit these effects.  

Methods We investigated the effect of GLP-1RAs on heart rate in anaesthetized adult mice. 

In a separate study, we manipulated the activity of nucleus tractus solitarius (NTS) PPG 

neurons (PPGNTS) in awake, freely behaving transgenic Glu-Cre mice implanted with 

biotelemetry probes and injected with AAV-DIO-hM3Dq:mCherry or AAV-mCherry-FLEX-

DTA. Results Systemic administration of the GLP-1RA Ex-4 increased resting HR in 

anaesthetized or conscious mice, but had no effect on ABP in conscious mice. This effect 

was abolished by 

-adrenoceptor blockade with atenolol, but unaffected by the muscarinic antagonist atropine.

Furthermore, Ex-4-induced tachycardia persisted when PPGNTS neurons were ablated, and Ex-

4 did not induce expression of the neuronal activity marker cFos in PPGNTS neurons. PPGNTS 

ablation or acute chemogenetic inhibition of these neurons via hM4Di receptors had no effect 

on resting HR. In contrast, chemogenetic activation of PPGNTS neurons increased resting 

HR. Furthermore, application of GLP-1 within the subarachnoid space of the middle thoracic 

spinal cord, a major projection target of PPG neurons, increased HR. 

Conclusions These results demonstrate that both systemic application of Ex-4 or GLP-1 and 

chemogenetic activation of PPGNTS neurons increases HR. Ex-4 increases the activity of 

cardiac sympathetic preganglionic neurons of the spinal cord without recruitment of PPGNTS 

neurons, and thus likely recapitulates the physiological effects of PPG neuron activation. These 

neurons thus do not play a significant role in controlling resting HR and ABP, but are capable 

of inducing tachycardia, and so are likely involved in cardiovascular responses to acute stress. 
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1. Introduction

Glucagon-like peptide-1 (GLP-1) is best known as an incretin, that is released from the gut into 

the bloodstream postprandially and enhances insulin secretion. Based on that function GLP-1 

receptor agonists (GLP-1RAs), such as exendin-4 (Ex-4), are in clinical use to treat type 2 

diabetes mellitus. However, both animal studies and clinical observations have established that 

GLP-1RAs have cardiovascular effects, including an increase in heart rate (HR)[1-7]. Despite 

the magnitude of these effects being typically modest, the high incidence of cardiovascular 

disease as comorbidity of type 2 diabetes makes this observation pertinent and analysis of 

the underlying mechanisms worthwhile.  

Arguably, it seems counterintuitive that a gut peptide involved in blood glucose control 

should be involved in cardiovascular control. However, GLP-1 is also produced within the 

brain, and there it is involved primarily in the regulation of food intake, but also in stress 

responses [8-16]. In fact, food intake, anxiety-like behaviour, corticosterone levels, and 

sympathetic activity are all modulated in response to challenges to survival, including 

acute stress [17-19] with GLP-1 being implicated in the modulation of all these functions. 

Within the brain, GLP-1 suppresses food and water consumption, decreases reward, 

drives anxiety-like behaviour, activates the hypothalamic-pituitary-adrenal (HPA) axis, and 

increases HR and arterial blood pressure (ABP) [20-24].  

This raises numerous questions. Firstly, where are the relevant populations of GLP-1 receptors 

(GLP-1Rs) for cardiovascular control located? Are these targets for brain-derived, rather than 

gut-derived, GLP-1? And if so, does that have consequences for the clinical use of current 

GLP-1RAs, or for the use of future drugs designed to potentiate the activity of GLP-1-

producing neurons in the brain? While it is now well established that both systemically and 

centrally applied GLP-1RAs can increase HR, the neural circuits involved remain controversial 

[5, 6, 22, 24-28]. The parasympathetic [2, 3, 5, 25] and sympathetic [1, 13, 24, 29] nervous 

systems have both been implicated in these effects, but the contribution of endogenous brain-

derived GLP-1 to the modulation of HR and ABP remains inconclusive. The only observation 

related to endogenous GLP-1 stems from Barragan et al. (1999), who found no effect of 

intracerebroventricular (i.c.v.) infusion of the GLP-1R antagonist, Ex-9, on HR and ABP [3]. 

More recently, Ghosal et al. demonstrated that the cardiovascular response to restraint stress 

was reduced in mice lacking GLP-1R in Sim1 neurons in the paraventricular nucleus of the 

hypothalamus (PVN) [13], adding to a wealth of evidence pointing to a role for brain GLP-1 

in central responses to stressful stimuli [8-13, 20, 30-34]. 



The main source of GLP-1 within the brain are preproglucagon (PPG) neurons of the lower 

brainstem [8]. The effect induced by i.c.v. delivery of GLP-1RAs likely recapitulates a 

physiological role of PPG neurons in cardiovascular control. In support of this, PPG neurons 

have been found to project to the presympathetic nuclei of the PVN and the rostral ventrolateral 

medulla (RVLM) [35, 36] as well as directly to sympathetic preganglionic neurons (SPN) 

located in the intermediolateral cell column (IML) and central autonomic area (CAA) of the 

spinal cord [37]. GLP-1Rs have been identified on both sympathetic neurons in the PVN, 

RVLM, and lamina X of the spinal cord, as well as in cardiac vagal preganglionic neurons of 

the nucleus ambiguous and dorsal motor nucleus of the vagus [38-40].  

We recently showed that selective activation of PPGNTS neurons with chemogenetic methods 

produces a suppression of food consumption, and that their activity is necessary for stress-

induced suppression of feeding [8]. Here we build on those findings by investigating the effect 

of systemic GLP-1R activation on HR, the involvement of PPGNTS neurons in these effects, 

and the physiological role of PPGNTS neurons in cardiovascular control. We demonstrate that, 

in the mouse, GLP-1R activation has no effect on resting ABP, but elicits significant 

tachycardia, which is mediated by an increase in sympathetic outflow. Direct application of 

GLP-1 onto the thoracic spinal cord was sufficient to elicit robust increases in HR, and ablation 

of PPGNTS neurons did not prevent tachycardia following systemic administration of GLP-1. 

Finally, we show through chemogenetic activation that PPGNTS neurons have the capacity to 

increase HR, but also demonstrate through both chemogenetic inhibition and ablation that 

PPGNTS neuronal activity do not provide tonic control of cardiac chronotropy under resting 

conditions. 

2. Materials and Methods

2.1. Animals 

We used adult Glu-Cre [41-43] and Glu-YFP [44] mice of either sex on a C57Bl6 

background. Mice were usually group-housed and kept on a 12 h dark/light cycle with 

water and chow available ad libitum. Experiments were conducted in accordance with 

the U.K. Animals (Scientific Procedures) Act, 1986, with appropriate ethical approval. 

2.2. Anaesthetized preparations 

Naïve 13-26-week-old Glu-YFP (or Glu-Cre, where they underwent previous stereotaxic 

viral transduction) mice were anaesthetized with urethane (1.3g/kg, intraperitoneally (i.p), 

following 



4% isoflurane induction) or urethane (650mg/kg) + alpha-chloralose (50mg/kg) intravenously. 

The trachea was cannulated with a plastic tube and core body temperature was kept at 37 °C 

throughout the experiment with a servo-controlled heating pad. The femoral vein was 

cannulated for the infusion of drugs. The depth of anaesthesia was monitored using stability of 

HR, corneal reflexes and absence of flexor responses to paw‐ pinch. 

2.2.1. Stereotaxic injections 

All stereotaxic injections were performed on 9-22-week-old Glu-Cre mice. Animals were 

anaesthetized with a mixture of ketamine hydrochloride (50mg/kg; intramuscular (i.m.)) and 

medetomidine (1mg/kg; i.m.) or 1.5-2.5% isoflurane and the skull was fixed in a stereotaxic 

frame. A core temperature of 37°C was maintained throughout the procedure using a heating 

mat. The nose of the mouse was pushed downwards, creating a right angle between the nose 

and the neck to expose part of the brainstem normally covered by the cerebellum. A 

longitudinal incision was made from the occipital bone to the first vertebra. Obex was exposed 

by parting overlying muscle layers and the atlanto-occipital membrane was pierced using a 

30G needle. Adeno-associated viral vectors (AAV; Table 1) were injected bilaterally (250 nl) 

using the following coordinates from obex: 0.50 mm lateral; 0.10 mm rostral; 0.35 mm ventral. 

Anaesthesia was reversed with Antisedan (2.5 mg/kg; i.m.) and mice received buprenorphine 

(0.5 mg/kg; subcutaneous (s.c.)) for pain relief and 100 μl sterile saline (s.c.) for fluid support. 

Animals were left to recover in a 34°C chamber until fully awake and experiments commenced 

2-4 weeks after viral gene transfer.

2.2.2. ECG recordings in anaesthetized mice 

Needle electrodes were inserted subcutaneously in a lead II configuration (bilaterally at the 

anterior axillary lines with the ground electrode inserted in the left or right lower limb) to record 

surface electrocardiogram (ECG). The signal was recorded through a high impedance 

headstage (NL 100, Neurolog; Digitimer Ltd, UK), sampled at 2 kHz, amplified × 50–100, and 

filtered to a bandwidth between 5 and 100 Hz with 50 Hz notch filtering). ECG traces were 

recorded in Spike2 software (CED) and HR was derived from the R-R interval of the ECG. 

The frequency of the R wave was averaged over 5 seconds and plotted as a graph in beats per 

minute. 

HR data were exported from Spike2 into Microsoft Excel. Baseline HR was defined as the 

mean HR over a 10-minute dataset prior to the start of the experiment. At each timepoint mean 

HR was extracted by averaging the HR at timepoint ± 30s to remove the effect of any possible 



interference in the trace. Drug‐ induced changes in mean level of activity were normalized 

with respect to the baseline level (ΔHR).  

Drugs were delivered via i.v. or i.p. injections, or directly onto the exposed thoracic spinal 

cord. For application directly onto the spinal cord, the middle thoracic vertebrae were exposed 

and the T8 lateral processes were bilaterally clamped and fixed to a stereotaxic spinal unit. The 

ligamentum flavum was removed between T7 and T8 and the dura mater was incised with a 21 

G needle. Cerebrospinal fluid outflow was used as indicator of access to the subarachnoid space 

and correct exposure of the dorsal surface of the thoracic spinal cord.  

2.3. Awake preparations 

2.3.1 Tail-cuff blood pressure measurements 

ABP and HR of ten 7-10-week-old male Glu-YFP mice were measured using the CODA high 

throughput volume-pressure recording (VPR) tail-cuff system (Kent Scientific). Mice were 

placed in a perforated plexiglass tube, fixed tightly in place, and placed on a 32°C heat pad. 

An occlusion cuff and a VPR cuff were placed over the tail and 25 measurement cycles were 

taken. Average HR and ABP were calculated from a minimum of ten successful 

measurements.  

2.3.2 Biotelemetry probe implantation and stereotaxic injections 

Biotelemetry was used to monitor ABP and HR in conscious, freely-moving animals. Male 

7-10-week-old Glu-Cre mice were anaesthetized with 1.5-2.5% isoflurane and the left 

common carotid artery was exposed. A gel-filled catheter connected to a pressure 

transmitter (TA11-PA-C10, Data Science International) was inserted and secured with 

sutures. The transmitter was placed subcutaneously on the abdominal wall and the 

incision was closed using 6-0 absorbable suture. The animals received buprenorphine (0.05 

mg/ kg per day, subcutaneous) and were allowed to recover for at least seven days before 

ABP recordings started. All mice were kept in individual cages after implantation. 2-4 weeks 

after telemetry implantation mice were subjected to stereotaxic injection of AAVs, as 

described under 2.2.1. 

2.3.3. Biotelemetry recordings 

ABP and activity was recorded continuously for 24 h in conscious freely-moving mice. Data 

were acquired at a sampling rate of 500-1000 Hz and these raw data were pre-processed using 

a proprietary algorithm (embedded in Dataquest ART software; Data Science International) to 

calculate HR and mean arterial blood pressure (MAP) in 10s time bins. These data were 



subsequently exported to Microsoft Excel and The R Project for Statistical Computing, R 3.3.1 

(R Core Team 2016) for further analysis.  

Continuous traces displaying HR or MAP from a single representative mouse over extended 

periods of time were smoothed using a running average to be able to recognise trends. Each 

data point (every 10s) is the average of the preceding period of data points. The length of this 

period is given in the individual figure legend. 

Plotting the distribution of HR values for individual mice (Fig. S1B,C) revealed that HR 

values (and MAP; not shown) are not normally distributed, but rather form a bimodal 

distribution comprising of two unimodal, non-normal distributions which can be separated 

based on activity levels (Fig S1B,C). Consequently, the median, rather than the mean, for 

each mouse is used as a measure of resting or active HR or MAP. For population data the 

mean±sem of these median values is calculated and displayed. One individual factor that 

strongly correlates with HR is activity (Fig. S1C). As a result, HR and MAP were analysed 

separately during rest and during activity. To determine resting values for HR and MAP, 

Dataquest ART datasets from across the 24-hour recording period were screened for periods 

of inactivity of at least 10 mins. Since HR and MAP do not return to baseline immediately 

following periods of locomotor activity, the first three minutes of every 10 min period of 

inactivity were disregarded in order to avoid any contamination of HR and MAP from 

recent activity. HR and MAP values from the last seven minutes of these inactive periods 

were combined and the median determined as a measure of resting heart rate for each 

mouse.  

2.3.3.1 Cardiovascular effects of Ex-4 in freely-moving mice 

Four hours into the light phase mice received an i.p injection of either GLP-1 (100 μg/kg), 

Ex-4 (10 μg/kg) or saline. For studies using sympathetic blockade, mice were injected with 

the β1-adrenoreceptor antagonist atenolol (2 mg/kg, i.p.) three hours and 45 mins into the 

light phase followed 15 mins later by an injection of Ex-4 or vehicle (saline). All injections 

were delivered in a volume of 100 μl and experiments were performed using a within-

subjects counterbalanced design, with a minimum 48-hour washout period between 

experiments. The doses of GLP-1 (100 µg/kg) and Ex-4 (10 µg/kg) were chosen based on 

previous studies reporting significant effects on food intake [45-49].  

2.3.3.2 Pharmacogenetic activation of PPGNTS neurons 



EGFP- or hM3Dq-expressing male Glu-cre mice were injected 7.5 hours into the light phase 

with clozapine-N-oxide (CNO, 2 mg/kg in 5 ml/kg saline; i.p.) or with saline only in a within-

subjects counterbalanced design. HR, MAP and level of activity were recorded over the 

following 24 hours, with a minimum 48-hour washout period between experiments.  

2.3.3.3 Cardiovascular effects of PPGNTS neuron ablation 

For this longitudinal study, baseline HR, MAP and level of activity were recorded and two 

weeks later male Glu-Cre mice were stereotaxically injected into the NTS with either AAV8-

mCherry-FLEX-DTA or AAV1/2-FLEX-Perceval as control. HR and MAP were recorded 

again four and six weeks after viral gene delivery. At nine weeks, DTA and control animals 

received i.p. injections of saline and 10 µg/kg Ex-4 as described above.  

2.4. Histological reconstruction 

At the end of the experiments, mice were transcardially perfused with 0.1 M phosphate 

buffered saline (PB) followed by 4% formaldehyde in 0.1 M PBS and coronal brainstem 

sections (30 μm) were immunostained for the fluorescent reporters mCherry, EGFP, or 

Perceval as markers for successful targeting of the PPGNTS neurons, as described previously 

[8, 42]. Details of antisera used are given in Table 1. All mice were found to be expressing the 

expected transgene. DTA ablation of PPG neurons was confirmed by absence of GCaMP3 

immunoreactive cell bodies in the NTS, together with widespread mCherry expression, 

signifying viral spread. Transduction with hM3Dq and hM4Di was confirmed by mCherry 

expression. Selective Cre-dependent expression of all viruses in PPGNTS neurons used in the 

present study was demonstrated previously [8] and confirmed by examination of co-

expression of virally-encoded mCherry and the transgenic label GCaMP3. 

2.5. cFos expression in PPG neurons 

12-16-week-old Glu-YFP mice of either sex received an i.p. injection of saline or Ex-4 (10 

µg/kg) four hours into the light phase and 90 min later were transcardially perfused with 0.1 

M phosphate buffered saline followed by 4% formaldehyde in 0.1 M phosphate buffer. 

Brainstem tissue was processed and stained for cFOS and YFP as described before [8]. Details 

of antisera and dilutions are given in Table 1.  

2.6. Statistics 

Data were analysed for statistical significance as detailed in figure legends using Student’s t-

test, one-way within-subjects or two-way within-subjects / mixed-model ANOVA (with the 



Greenhouse-Geisser correction applied where necessary), or non-parametric equivalents as 

appropriate. Significant one-way ANOVA tests were followed by pairwise comparisons with 

Tukey’s or Dunnet’s correction for multiple comparisons. For two-way ANOVA, simple main 

effects were reported, or significant treatment x time interactions were followed by analysis of 

treatment effects at each time point with Sidak’s correction for multiple comparisons. 

3. Results

3.1.  Systemic exendin-4 increases heart rate in freely behaving and anaesthetized mice 

HR, MAP, and activity level were measured in awake, freely behaving male mice using 

implantable biotelemetry probes (Fig S1A). Conscious mice had resting HR of 505±12 bpm, 

and resting MAP of 103±1 mmHg. 

Injection of 100 µl saline i.p. led to a rapid increase in HR (Fig. 1A,B) and MAP (Fig 1C) as 

expected due to handling of the mouse and noxious stimulation induced by the injection. Both 

HR and MAP returned to baseline over 30 min and continued to fluctuate as normal with more 

frequent returns to high values during the dark phase when the mice are more active (Fig 1A-

C, S1A,C). Similarly, i.p. injection of 100 µg/kg GLP-1 caused a transient increase in HR, 

which returned to baseline within 30 mins (Fig 1A). In contrast, i.p. injection of the long-acting 

GLP-1 analogue Ex-4 (10 µg/kg) led to a sustained increase in HR over the remainder of the 

light phase (Fig 1A,B), whereas MAP was unaffected by systemic GLP-1R activation (Fig 1C). 

Ex-4 increased the minimum level of HR, whilst peak rates remained unchanged, suggesting 

the effect was mainly on resting HR (Fig. 1A). Consequently, resting HRs were calculated over 

1h before (Zeitgeber 2-3 h) and after (Zeitgeber 5-6 h) drug treatments. Ex-4 (10 µg/kg, i.p.) 

significantly increased resting HR (Fig 1D,E), corroborating previous findings that GLP-1R 

activation increases mean HR [24, 25, 50], without affecting activity levels (Fig S1D-F). There 

was no effect of saline or GLP-1 on resting HR during the time window analysed.  

Given that Ex-4 significantly increased resting HR and since the effects of GLP-1 were 

potentially masked by the cardiovascular stress response, we explored the effects of systemic 

GLP-1R activation under anaesthesia, when stress is not a confounding factor. Infusion of 

GLP-1 (100 μg/kg; i.v.) and two doses of Ex-4 (10 and 100 μg/kg; i.p.) significantly increased 

HR with comparable amplitudes (Fig 1F,G). Interestingly, the effect of 10 μg/kg Ex-4 was 

substantially smaller under anaesthesia than in conscious mice (Fig 1E,G). We reasoned that 



urethane anaesthesia might increase sympathetic tone [51] and thus reduce the scope for 

GLP-1R activation to increase HR via an increase in sympathetic outflow. This hypothesis 

was tested by applying Ex-4 (i.p.; 10 μg/kg) in mice anaesthetized with urethane (650 mg/kg) 

+ -chloralose (50 mg/kg), an anaesthetic regime which maintains a lower sympathetic tone 

[51]. Resting HR under these conditions was significantly lower than under urethane alone 

and close to the resting HRs recorded with biotelemetry in conscious mice (Fig S2A) and i.p. 

injection of Ex-4 (10 μg/kg) triggered HR responses that were almost three times greater than 

under urethane alone (Fig. 1H and 1G, respectively). 

3.2. Systemic GLP-1R activation increases heart rate via the sympathetic nervous system 

To determine if the increase in HR by Ex-4 is due to increased sympathetic outflow or 

decreased vagal tone, anaesthetized mice were injected (i.p.) with either the β-adrenoceptor 

antagonist atenolol (2 mg/kg) or the muscarinic receptor antagonist atropine (2 mg/kg) [52] 30 

minutes before Ex-4 (10 μg/kg) or saline. In contrast, atropine failed to significantly alter HR 

(Fig 2A), suggesting that parasympathetic activity has no contribution to chronotropic control 

of the heart under these experimental conditions. Atenolol decreased HR (Fig 2A), however 

there was no significant difference in baseline HR between Atenolol/Saline- and Atenolol/

Ex-4-treated mice at the time of injections (Fig S2B). The tachycardic response to Ex-4 was 

abolished by systemic β-adrenoceptor blockade (Fig 2B), but not affected by pretreatment 

with atropine (Fig 2B), suggesting that the Ex-4-induced HR increase is due to sympathetic 

activation.  

We subsequently confirmed those findings in freely-behaving, awake mice. Injection of 10 

µg/kg Ex-4 alone induced a sustained increase in resting HR over several hours (Fig 2C,E). 

Pre-treatment with 2 mg/kg atenolol reduced the effect of handling stress on resting HR 

consistent with a decrease in sympathetic outflow to the heart (Fig 2D). Ex-4 failed to 

increase resting HR in conditions of systemic β-adrenoceptor blockade (Fig 2D,E).  

3.3. Chemogenetic activation of PPGNTS neurons 

Within the brain, PPGNTS neurons are the main source of endogenous GLP-1 [8]. To study 

their role in the modulation of HR, male Glu-Cre/GCaMP3 mice were injected with AAV8-

DIO-hM3Dq:mCherry into the NTS (Fig 3A), and once hM3Dq was expressed, HR was 

monitored under urethane/α-chloralose anaesthesia. Baseline HR did not differ between mice 

transduced to express GFP and those transduced to express hM3Dq (Fig. 3B). Activation of 

PPGNTS 



neurons with CNO (2 mg/kg; i.p.) led to a significant increase in HR in hM3Dq-expressing 

mice, but not GFP-expressing mice (Fig 3C).  

Next, we confirmed that PPGNTS neuron activation is sufficient to increase HR in freely 

behaving mice. Male Glu-Cre mice were injected with AAV8-DIO-hM3Dq:mCherry and 

biotelemetry blood pressure probes were implanted. As a positive control for successful 

transduction, food intake was measured following CNO or saline only as previously described 

[8]. Injection of CNO significantly suppressed feeding in the first two hours after dark onset as 

compared to injection of saline only (Fig S2D).  

Injection of CNO (2 mg/kg) led to a sustained increase in HR compared to injection of saline 

only (Fig 3D) and resulted in a shift in the distribution of resting HR values towards higher HR 

values (Fig 3E). This was reflected in the resting HR of hM3Dq-epxressing mice, which 

increased significantly following injection of CNO compared to saline only (Fig 3F). Although 

a reduction in locomotor activity was observed in two hM3Dq-expressing mice following 2 

mg/kg CNO as compared to saline, this decrease did not occur in the third hM3Dq-expressing 

mouse (Fig 3G). 

3.4 Ex-4 elicits tachycardia when applied directly to the spinal cord 

Given that a subset of PPG neurons projects to the spinal cord and form close appositions with 

sympathetic preganglionic neurons [37], and GLP-1R expression has been reported by in situ 

hybridisation within the spinal cord [40], we tested whether GLP-1 signalling in the cord can 

modulate HR. GLP-1 (0.4 g in 2.5 l saline) was applied directly to the exposed spinal cord 

in anaesthetized mice, which significantly increased HR as compared to application of saline 

alone (Fig 3H). Local application of the GLP-1R antagonist exendin(9-39) (18.75 g in 2.5 l 

saline) did not affect HR, indicating that there is no tonic GLP-1 activity in the spinal cord, but 

it strongly reduced the effect of subsequent application of GLP-1 (0.4 g) on HR (Fig 3I,J). 

3.5. Resting HR is not affected by either acute inhibition or ablation of PPGNTS neurons 

Although chemogenetic activation of PPGNTS neurons induced tachycardia in mice, this does 

not prove these neurons play a physiological role in cardiovascular control. We therefore 

acutely inhibited PPGNTS neurons in hM4Di-expressing mice anaesthetized with urethane and 

α-chloralose. Male Glu-Cre/GCaMP3 mice stereotaxically injected with AAV2-DIO-

hM4Di:mCherry or with AAV8-FLEX-EGFP (Fig 4A) had similar HRs prior to injection of 

CNO (2 mg/kg i.p.; Fig 4B), and CNO had no effect on HR (Fig 4C).  



We next tested whether ablation of these cells has a significant effect on cardiovascular 

variables in a longitudinal study. Male Glu-Cre mice implanted with biotelemetry probes were 

stereotaxically injected with AAV8-mCherry-FLEX-DTA (PPGNTS-DTA mice) to selectively 

ablate PPGNTS neurons as previously described [8] or AAV1/2-FLEX-Perceval as control. We 

have demonstrated that ablation of PPGNTS neurons in this manner results in an 80% reduction 

in GLP-1 within the spinal cord [8].  

Prior to PPGNTS neuron ablation, there was no difference in HR and MAP recorded over 24 

hours between the two cohorts (Fig 4D). Similarly, when tested four and six weeks after 

PPGNTS neuron ablation, no significant difference was seen between control and PPGNTS-DTA 

mice at either timepoint (Fig 4D). 

Because GLP-1R activation by Ex-4 and PPGNTS chemogenetic activation were found to 

increase HR at times of rest, we conducted a further analysis to determine whether ablation of 

PPGNTS neurons affected resting HR in these mice (Fig 4E). Prior to ablation, there was no 

difference in resting HR between control and PPGNTS-DTA mice (Fig 4E). Moreover, there 

was little change in resting HR and MAP over time and no difference was found between 

control and PPGNTS-DTA mice at any timepoint (Fig 4E).  

To investigate whether ablation of PPGNTS neurons affects HR and MAP whilst ambulatory, 

biotelemetry data were extracted specifically during periods of activity. As expected, HR 

during activity was higher than resting HR (Fig 4Fi ‘control baseline’ and Fig 4Ei ‘control 

baseline’, respectively p<0.0001, Student’s paired t-test). HR during activity remained similar 

from baseline to six weeks and there was no difference between control and PPGNTS-DTA mice 

six weeks after surgery (Fig 4Fi). Similarly, there was no effect of ablation of PPGNTS neurons 

on active MAP during activity (Fig 4Fii).  

We next assessed the effects of PPGNTS neuron ablation on locomotor activity. Fig 5A shows 

plots of activity over 24 hours from representative control and PPGNTS-DTA mice before and 

six weeks after surgery. Ablation of PPGNTS neurons did not affect activity levels and six weeks 

post-surgery there was no difference in the time that control and PPGNTS-DTA mice spent 

inactive during light phase (Fig 5B) or dark phase (Fig 5C), suggesting that loss of PPGNTS 

neurons does not affect locomotor activity. 

Taken together these data suggest that PPGNTS neurons are not necessary for modulation of HR 

or ABP under resting conditions. They also do not influence locomotor activity levels. 



3.6 Ex-4-induced tachycardia is independent of PPGNTS neuron activity 

To investigate whether systemic injection of Ex-4 requires PPG neurons for its full effect on 

HR, we injected freely-behaving control and PPGNTS-DTA mice with 10 µg/kg Ex-4 i.p. nine 

weeks post-surgery. 

As seen previously, i.p. injection with 10 µg/kg Ex-4 led to an increase in HR (Fig 6A). The 

response was similar in control and PPGNTS ablated animals (Fig 6A) and there was no 

difference in the change in resting HR in response to both saline and 10 µg/kg Ex-4 between 

control and PPGNTS-DTA mice (Fig 6B, S2E). In support of these findings, i.p. injection of Ex-

4 (10 μg/kg), failed to elicit cFos expression in PPG neurons (Fig. 6C), whilst increasing cFos 

in the area postrema (Fig S2F,G), suggesting PPG neurons are not necessary for effects of 

systemic Ex-4 on HR in mice. 

4. Discussion

In this study we demonstrate for the first time that activation of PPGNTS neurons induces robust 

increases in HR. We also confirm previous reports that systemic administration of GLP-1RAs 

increases HR via stimulation of sympathoexcitatory mechanisms in mice [1]. We demonstrate 

that GLP-1R activation in the spinal cord is sufficient to elicit tachycardic responses and we 

also found that PPGNTS neurons are capable of increasing resting HR, but not ABP. 

Interestingly, we failed to observe a tonic drive of PPGNTS neurons on HR in either 

anaesthetized or freely behaving mice. Our findings provide evidence that PPGNTS neurons 

have the capacity to affect central cardiovascular control and sympathetic activity but suggest 

they do not provide a tonic input to cardiac chronotropic function.  

This study was performed primarily on mixed sex cohorts, although the telemetry cohorts 

were made up of male mice only. The study did not reveal any sex differences in any 

parameters tested, but was also not specifically designed nor powered for that purpose.  

4.1 Mechanisms underlying GLP-1R-mediated tachycardia 

Although the tachycardic effects of GLP-1R stimulation have proven robust and 

reproducible, particularly in rodents, the underlying neurocircuits remain unclear. 

GLP-1R-mediated cardiovascular effects may involve a combination of peripheral and central 

pathways involving GLP-1Rs both in the brain and on the heart [1, 3, 22, 50, 53]. 

Furthermore, both the 



parasympathetic [2, 3, 5, 25] and sympathetic nervous system [1, 13, 24, 29] have been 

implicated in the tachycardic response to GLP-1R stimulation. 

The most commonly proposed scenario for GLP-1R-mediated tachycardia involves both 

peripheral and central mechanisms [1, 3, 24]. GLP-1Rs are found in subsets of cardiac 

myocytes, cardiac blood vessels, as well as the sinoatrial node, of mice and humans [39, 54, 

55], and mice lacking cardiac GLP-1Rs have reduced HR responses to the GLP-1R agonist, 

liraglutide [1]. However, no direct effect of GLP-1R agonism on isolated hearts has been found 

[1, 50], leaving the role of cardiac GLP-1R-mediated tachycardia elusive. 

Findings presented here support a role for the sympathetic nervous system in mediating Ex-4-

induced tachycardia. I.p. Ex-4 failed to increase HR in the absence of sympathetic input to the 

heart in both anaesthetized and freely behaving mice. Moreover, the tachycardic response to 

i.p. Ex-4 persists in the presence of the muscarinic acetylcholine receptor antagonist atropine,

demonstrating that parasympathetic input is not necessary for cardiovascular effects of 

systemic GLP-1R stimulation. These findings correspond with earlier reports that GLP-1R 

stimulation activates sympathetic preganglionic neurons [24, 29] and that propranolol, a non-

selective β-blocker, abolishes the tachycardic response to liraglutide in mice [1]. 

4.2 Peripheral and central contributions to GLP-1R-mediated tachycardia 

Cardiac sympathetic nervous activity is initiated within the central nervous system, involving 

presympathetic neurons in hypothalamus and brainstem, which in turn innervate sympathetic 

preganglionic neurons in the thoracic spinal cord. These project to the postganglionic neurons 

located in the ganglia of the paravertebral chain, which innervate the sinoatrial node as well as 

the ventricles of the heart. GLP-1Rs are potentially present at all levels. Consequently, Ex-4-

induced tachycardia could arise from all these levels, whilst PPG neurons only innervate 

presympathetic areas of hypothalamus and brainstem, as well as preganglionic sympathetic 

neurons in the IML and CAA of the spinal cord [36, 37]. Here we demonstrate that direct 

application of Ex-4 to the thoracic spinal cord elicits tachycardia, supporting the notion that 

activation of spinal GLP-1R is sufficient to drive increases in HR [37, 40]. 

Whilst Ex-4 increased HR in both anaesthetized and conscious mice, GLP-1 only produced 

obvious tachycardia in anaesthetized mice. This is most likely because conscious mice show a 

strong stress response to handling and i.p. injection, and HR only returns to resting levels more 



than 30 min after the injection. Presumably, GLP-1 is inactivated by that time so that no lasting 

response is recorded [4, 24, 56, 57]. In contrast, in anaesthetized mice Ex-4 and GLP-1 

produced responses of similar magnitude, suggesting that both substances reach the relevant 

receptors with similar efficiency. 

4.3. GLP-1R effects on blood pressure 

While we found clear effects of GLP-1R stimulation of HR, freely behaving mice showed no 

change in ABP in response to 10 µg/kg Ex-4. In accordance, one study found no effect of 

liraglutide on systolic and diastolic blood pressure in mice, although the same study reported 

antihypertensive effects of liraglutide in mice with pharmacologically elevated ABP (Kim et 

al 2013). Some studies have reported robust hypertensive effects of GLP-1 analogues in rats 

[24, 25], whereas others found little evidence for an effect on ABP [27], suggesting there could 

be relevant species differences or that differences in experimental conditions affect ABP 

responses to GLP-1R stimulation. 

4.4 PPGNTS neurons have the ability to induce tachycardia 

We demonstrate here that chemogenetic activation of PPGNTS neurons increases HR. 

Activation of PPG neurons is expected to lead to release of GLP-1 and glutamate [58, 59] in 

CNS areas involved in cardiovascular control, such as the PVN, arcuate nucleus, RVLM, CAA, 

and IML [38, 40, 60]. The dense innervation of the spinal cord IML/CAA by PPG neurons [37] 

and the robust effects of direct application of Ex-4 to the thoracic spinal cord reported here, 

strongly implicate PPGNTS→IML/CAA projections in PPG-mediated tachycardia. Selective viral 

targeting of these projections in future studies are thus warranted to interrogate their specific 

role in the modulation of cardiovascular function by GLP-1. 

Interestingly, we found that the tachycardic effects of both Ex-4 and PPGNTS neuron activation 

were mainly on resting HR. This may reflect a ceiling effect, whereby GLP-1R-mediated 

activation of the sympathetic nervous system has no additional effect on HR at times of 

increased ambulatory activity and/or stress. In support of this, under urethane anaesthesia, 

which is known to increase sympathetic outflow, Ex-4-induced tachycardia was attenuated. 

These data also suggest that common mechanisms underlie the cardiovascular effects of 

PPGNTS activation and GLP-1R stimulation. Importantly, we cannot rule out that the relatively 

large dose of Ex-4 used in this study (10 g/kg) may lead to higher levels of GLP-1R 

engagement than chemogenetic activation of PPGNTS neurons, and additionally, Ex-4 would 



potentially reach GLP-1Rs on cells that are not innervated by PPG neurons, such as 

postganglionic sympathetic neurons or cardiac myocytes, and thus replicating the effects of 

gut-derived GLP-1.  

4.5 Endogenous, central GLP-1 in cardiovascular control 

Whilst exogenous GLP-1 and its analogues are clearly capable of eliciting a tachycardic 

response, it is less clear whether endogenous GLP-1 released from either the brain or the gut 

plays a role in day-to-day HR regulation. This question has been addressed in two ways. Firstly, 

Barragan et al. infused the GLP-1R antagonist, Ex-9 either i.v. or intracerebroventricular and 

found no effect on HR and ABP [3, 4]. As an alternative approach we inhibited or ablated the 

PPGNTS neurons and thereby the native source of GLP-1 within the CNS [8]. In support of the 

results obtained with Ex-9, the current study revealed no effect of the loss of PPGNTS neuron 

activity on HR or ABP under typical physiological conditions. Our findings corroborate 

previous reports that HR is unaffected by both genetic disruption of GLP-1R [53] as well as 

lack of hypothalamic GLP-1R [13].  

4.6 Relationship between exogenous GLP-1R agonists and PPG neurons 

Here we have shown that both activation of PPGNTS neurons and systemic application of Ex-4 

increase HR via stimulation of the sympathetic nervous system. We have also shown that 

peripherally-administered Ex-4 does not activate PPG neurons. This suggests that either 

PPGNTS neurons and Ex-4 both have access to the same neuronal GLP-1R population(s) or that 

they activate sympathetic inputs to the heart via different pathways. The action of PPGNTS 

neurons is limited to receptors within areas of the CNS, which receive input from PPG neurons 

[35-38]. On the other hand, systemic Ex-4 may reach GLP-1R in both the periphery and in the 

CNS, although it is becoming increasingly evident that GLP-1RAs and antagonists may not 

readily cross the blood brain barrier to access all CNS GLP-1R populations [61-63]. In fact, 

assuming that access to the CNS is similar for peripherally administered Ex-4 as it is for 

fluorescently labelled liraglutide [62, 63], we would expect that Ex-4 acts in either PVN, 

AP/NTS or on spinal preganglionic sympathetic neurons to affect HR. This is supported by a 

previous finding that peripheral Ex-4 leads to robust activation of tyrosine hydroxylase-

containing cells within the AP [29].  

4.7 GLP-1 and stress 



Inhibition of PPGNTS neurons did not reduce HR in anaesthetized mice, indicating that there is 

no tonic effect of PPGNTS neurons on sympathetic outflow to the heart under these conditions. 

We have recently shown that PPGNTS neurons are not involved in the day-to-day regulation of 

food intake, but are recruited to terminate unusually large meals, and mediate stress-induced 

hypophagia [8, 9]. Assuming that this hypophagic effects of PPGNTS neurons comprises part of 

a wider GLP-1-mediated physiological response to acute stress [10, 12], it is plausible that the 

tachycardic action of PPGNTS neurons also specifically occurs under conditions of stress [10]. 

When an animal meets a stressor, rises in HR and blood pressure are induced in order to provide 

enough oxygen, in preparation for the fight and flight response [64, 65]. Therefore, the 

tachycardia induced by activation of the PPGNTS neurons could represent the role of the PPG 

neurons during a stress response and would explain why inhibition of the neurons does not 

reduce HR under resting conditions. In support of this, Ghosal et al (2017) demonstrated that 

hypothalamic GLP-1Rs contribute to stress-induced tachycardia [13] and the recent whole-

brain mapping of monosynaptic inputs to PPGNTS neurons revealed dense innervation from 

stress-responsive brain regions involved in autonomic control [66]. Future investigations 

should focus on the necessity for PPG neuron activity, and in particular the 

PPGNTS→CAA/IML pathway, in the cardiovascular and hypophagic responses to stress. 

Conclusion 

In this study, we confirm the sympathoexcitatory effects of GLP-1R stimulation and show for 

the first time that direct application of GLP-1 to the spinal cord is sufficient to elicit tachycardic 

responses. We also demonstrate that, while GLP-1-producing PPGNTS neurons do not provide 

a tonic sympathetic drive to the heart and are not necessary for the tachycardic effects of 

systemic Ex-4, they do have the ability to increase HR in mice. This suggests that under certain 

physiological conditions, PPG neurons may lead to sympathoexcitation, potentially by 

triggering release of GLP-1 in the spinal cord, resulting in an increase in chronotropic 

sympathetic drive to the heart. These physiological conditions are likely to include stress, 

which is known to increase sympathetic nervous system activity and have been shown to 

activate PPG neurons [8, 9, 21]. Our findings reveal a potential novel role for GLP-1 and PPG 

neurons in cardiovascular control through activation of spinal cord neurons. 
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Table 1. Sources of virus and antibody preparations used. 

Virus/Antibody Application Source References 

AAV8-DIO-

hM3Dq:mCherry 

Activation of Cre-

expressing PPG 

neurons  

VVF, ZNZ, Zurich pAAV-hSyn-DIO-

hM3D(Gq)-mCherry was a 

gift from Bryan Roth [67] 

AAV8-mCherry-

FLEX-DTA 

Ablation of Cre-

expressing PPG 

neurons 

UNC Vectorcore pAAV-mCherry-flex-dtA was 

a gift from Naoshige Uchida. 

AAV2-DIO-

hM4Di:mCherry 

Inhibition of Cre-

expressing PPG 

neurons 

VVF, ZNZ, Zurich pAAV-hSyn-DIO-hM4D(Gi)-

mCherry was a gift from Bryan 

Roth [67] 

AAV1/2-FLEX-

Perceval 

Control for viral 

transduction 

Made in house. pAAV-FLEX-empty was a gift 

from Bill Wisden [68] 



pShuttleCMV-Perceval was a 

gift from Guy Rutter [69] 

AAV8-DIO-EGFP Control for viral 

transduction 

VVF, ZNZ, Zurich pAAV-hSyn-DIO-EGFP was 

a gift from Bryan Roth 

Chicken anti-GFP; 

Alexa488 goat anti- 

chicken; 1:1000 
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Figure 1: Systemic activation of GLP-1Rs induces tachycardia without affecting ABP 

A) Representative HR recording from a conscious, freely-moving mouse injected i.p. with

either saline (black, top), 100 µg/kg GLP-1(7-36) (GLP-1, green, middle), or 10 µg/kg Ex-4

(red, bottom) recorded over 24 hours as indicated by zeitgeber time at the bottom. Arrows

indicate times of injection and the bar at the bottom indicates light (white bar) and dark (black

bar) phases with a brief period of half-light indicated by a white to black gradient. Traces are

running averages over 200 s. B) HR and C) MAP of mice (n=4) injected i.p. with saline (black)

and 10 µg/kg Ex-4 (red) four hours into light phase (arrow). Shown here are mean±SEM of

four mice taken every 30 mins over 24 hours as indicated by Zeitgeber time. Bars at the bottom

indicate light (white bar) and dark (black bar) phases with a brief period of half-light indicated

by a white to black gradient. D) Mice implanted with biotelemetry probes were injected i.p.

with saline (black), 100 µg/kg GLP-1 (green), and 10 µg/kg Ex-4 (red) four hours into light

phase. Resting HRs of individual mice were determined before (hours 2-3) and after (hours 5-

6) i.p. injections. Paired data from individual mice are plotted as well as mean±SEM values

(n=4). Drug x time: F(1, 3) = 22.35, p=0.018. ****p<0.0001, n.s.: not significant, Sidak’s



matched pairs multiple comparisons test. E) Change in resting HR from baseline determined 

from D) following injections of saline (black), GLP-1 (green), and Ex-4 (red). Data from 

individual mice are shown as well as mean±SEM for each treatment (n=4). **p<0.01, n.s.: not 

significant, Dunnett’s multiple comparisons test. F) Change in HR from baseline in urethane-

anaesthetized mice injected i.v. at timepoint 0 (arrow) with either saline (n=5) or GLP-1 (100 

µg/kg, n=5), Two-way mixed-model ANOVA:  Drug x time F(5, 40) = 4.824, p=0.0015, followed 

by post-hoc Dunnett’s test (*p<0.05). G) Change in HR from baseline in urethane-

anaesthetized mice injected i.p. with either saline (n=3) Ex-4 (10 µg/kg, n=3) or Ex-4 (100 

µg/kg, n=3) at timepoint 0 (arrow). Two-way mixed model ANOVA: Drug x time F(8, 28) = 

2.53, p=0.0329, followed by post-hoc Dunnett’s test (*p<0.05, **p<0.01 vs saline). H) Change 

in HR from baseline in urethane/-chloralose-anaesthetized mice injected i.p. with either saline 

(n=3) or Ex-4 (10 µg/kg, n=3) at timepoint 0 (arrow). Two-way mixed-model ANOVA:  Drug 

x time F(6, 36) = 7.459, p<0.0001, followed by Sidak’s multiple comparisons test (*p<0.05, 

**p<0.01, ***p<0.001). 



Figure 2: Systemic GLP-1R activation induces tachycardia via the sympathetic nervous 

system in anaesthetized and freely behaving mice 

A) Change in HR in urethane/-chloralose-anaesthetized mice 25 min after i.p. injection of

saline (n=8), atropine (2 mg/kg, n=8) or atenolol (2 mg/kg, n=8). One-way ANOVA F(2,21) =

8,808, p=0.0017, followed by post-hoc Dunnett’s test (*p<0.05) B) Change in HR from

baseline in anaesthetized mice following i.p. injection of Ex-4 (10 µg/kg; arrow) in the absence

(n=4, Sal-Ex-4) or presence (n=4, Aten-Ex-4) of atenolol (2 mg/kg, i.p.) injected 30 mins

earlier. Two-way mixed model ANOVA: drug x time F(12, 54) = 3.562, p=0.0006, followed by

post-hoc Dunnet’s test (**p<0.01, ***p<0.001 vs Sal-Ex4). C, D) Mice implanted with

biotelemetry probes (n=7) were injected i.p. with saline or Ex-4 (10 µg/kg, arrow) four hours

into light phase in the absence (C) or presence (D) of atenolol (2 mg/kg) injected 15 mins

earlier. Shown here are mean±SEM taken every 30 mins over 24 hours as indicated by zeitgeber

time on the x-axis. Arrows indicate time of injection and the bars at the bottom indicate light

(white bar) and dark (black bar) phases with a period of half-light indicated by a white to black

gradient. E) Change in HR (1-2 hours post-injection) from baseline (1-2 hours before injection)

in biotelemetry probe-implanted mice in response to saline or Ex-4 (10 µg/kg) in the absence

or presence of atenolol (2 mg/kg, n=7). Pre-treatment x drug: F(1, 6) = 13.84, p=0.0099,

**p>0.01, ***p<0.001 and n.s.: not significant, Sidak’s multiple comparisons test.



Figure 3: Chemogenetic activation of PPGNTS neurons and direct application of GLP-1 to 

the spinal cord increases HR in mice 

A) Representative images of immunofluorescence double-labelling of GCaMP3 (green,

indicating PPGNTS neurons) and hM3Dq:mCherry (magenta) in the caudal NTS. Scale bar: 200

m B) Baseline HR prior to injection of CNO from urethane/α-chloralose-anaesthetized mice

expressing either GFP or hM3Dq in PPGNTS neurons (unpaired t-test). C) Change in HR from

baseline in response to CNO (2 mg/kg) injected after 10 mins baseline recording (arrow) from

urethane/α-chloralose-anaesthetized mice expressing either GFP or hM3Dq in PPGNTS

neurons. Two-way ANOVA: Virus x time F(9, 72) = 5.477, p<0.0001; followed by Sidak’s

multiple comparisons test (**p<0.01, ***p<0.001). D) Representative 24 hour HR (top) and

locomotor activity (bottom) recording of a freely behaving mouse expressing hM3Dq in

PPGNTS neurons injected i.p. with either saline (left) or 2 mg/kg CNO (right). Dotted lines

indicate times of injection and the bar at the bottom indicates light (white bar) and dark (black



bar) phases with a brief period of half-light indicated by a white to black gradient. Traces are 

running averages over 30 mins. E) Representative histogram showing densities of resting HR 

values following i.p. injections of either saline (black) or 2 mg/kg CNO (magenta). Resting HR 

values after saline and CNO, respectively, were taken from hours 8.5-10.5 (1-2 hours post-

injection) to avoid contamination of resting HRs with HR values during handling stress. Total 

density areas of individual histograms are 100. F, G) Change in resting HR (F) and percent of 

time spent active (G) of hM3Dq-expressing mice (n=3) in response to saline (black circles) and 

2 mg/ kg CNO (magenta circles). *p<0.05, paired t-test. H) Change in HR (mean±SEM) from 

baseline of urethane/α-chloralose-anaesthetized mice in response to application of saline (n=7) 

or GLP-1 (0.4 g, n=7) directly onto the thoracic spinal cord. Two-way ANOVA: Drug x time 

F(5, 55) = 7.18, p<0.0001, followed by Sidak’s post-hoc multiple comparisons test (**p<0.01, 

***p<0.001 vs saline). I) Change in HR (mean±SEM) from baseline of urethane/α-chloralose-

anaesthetized mice in response to application of Ex-9 (18.75 g, n=5), or by GLP-1 (0.4 g, 

n=5) 25 min after Ex-9, directly onto the thoracic spinal cord. Two-way ANOVA: Drug x time 

F(5, 40) = 3.971, p=0.0051, followed by Sidak’s post-hoc multiple comparisons test (**p<0.01 

vs Ex-9). J) Change in HR 10 min after application of each drug. Ex-9 applied to the thoracic 

cord did not significantly change HR, but significantly reduced the effect of subsequently 

applied GLP-1. Two-way mixed model ANOVA: GLP-1 x Ex-9 F(1,10) = 5.525, p=0.0406, 

followed by Sidak’s post-hoc multiple comparisons test (*p<0.05). 



Figure 4: Ablation of PPGNTS neurons does not affect HR or MAP under resting 

conditions 

A) Representative images of immunofluorescence double-labelling of GCaMP3 (green,

indicating PPGNTS neurons) and hM4Di:mCherry (magenta) in the caudal NTS. Scale bar: 200

m B) HR at baseline for control (GFP) and hM4Di expressing mice prior to CNO

administration. C) Change in HR from baseline of anaesthetized mice expressing either GFP

(n=5) or hM4Di (n=3) in PPGNTS neurons selectively in response to CNO (2 mg/kg) injected

at 0 mins (arrow). Virus x time: F(8, 48) = 0.196, p=0.9902. D) HR (panels on left) and MAP

(panels on right) were recorded before DTA ablation of PPGNTS neurons (Baseline, top panel)

and at four (middle panel) and six weeks (bottom panel) after surgery. Traces display

mean±SEM HR and ABP every 30 mins for control (black squares; n=6) and DTA mice (red

circles; n=6). Light (white bar), half light (gradient bar) and dark phase (black bar) are indicated

at the bottom along with Zeitgeber time. E, F) Resting (E) and active (F) HR and MAP of

control and PPGNTS-DTA  (DTA) mice at baseline, four weeks, and six weeks after surgery.

n.s.: no significant interaction or main effects according to two-way mixed model ANOVA:

Resting HR: Virus x time: F(2, 20) = 2.178, p=0.14; main effects of virus (p=0.78) and time

(p=0.74). Resting MAP: Virus x time: F(2, 20) = 1.522, p=0.2426; main effects of virus (p=0.77)

and time (p=0.14). Active HR: Virus x time: F(2, 20) = 0.0835, p=0.9202; main effects of virus

(p=0.36) and time (p=0.37). Active MAP: Virus x time: F(2, 20) = 0.1653, p=0.85; main effect

of virus (p=0.43) and time (p=0.65).



Figure 5: Ablation of PPGNTS neurons does not affect locomotor activity or changes in 

HR in response to increased activity 

A) Activity plots from representative control (top panels) and PPGNTS-DTA (DTA, bottom

panels) mice prior to viral injection (Baseline, left) and six weeks post-injection (6 weeks,

right). B, C) Percent of time spent inactive of control (black squares) or PPGNTS-DTA mice

(DTA, red circles) during the light (B) and dark phase (C). Virus x time (light phase): F(2, 20) =

0.9748, p=0.39; main effect of virus (p=0.25) and time (p=0.71). Virus x time (dark phase):

F(2, 20) = 0.006161, p=0.9939); main effect of virus (p=0.65) and time (p=0.44).



Figure 6: PPGNTS neurons are not necessary for the tachycardic response to systemic 

GLP-1R activation 

A) HR of control (black squares, n=4) and PPGNTS-DTA  mice (DTA, red circles, n=5) injected

i.p. with 10 µg/kg Ex-4 (red) four hours into light phase (arrow). Shown here are mean±SEM

every 30 mins over 24 hours as indicated by zeitgeber time on the x-axis. The bar at the bottom

indicate light (white bar) and dark (black bar) phases with a brief period of half-light indicated

by a white to black gradient. B) Change in resting HR of control (black squares) and PPGNTS-

DTA mice (red circles) in response to saline (open symbols) and 10 µg/kg Ex-4 (filled

symbols). Drug x virus: F(1, 7) = 0.3287, p=0.5844); no significant main effect of transgene

expression (p=0.7610), but a significant main effect of treatment (p=0.0008). C) Representative

images and quantification of immunofluorescence labelling of cFos (red) in the caudal NTS

(top panels) and IRT (bottom panels) following i.p. injection of saline or Ex-4 (10 µg/kg).

Green indicates native YFP immunofluorescence signal in PPG neurons. Scale bars: 100 m.

Quantification plots show mean ± s.e.m of % cFos-IR positive PPG neurons in NTS and

intermediate reticular nucleus (IRT) for 4 mice under each condition. Unpaired t-tests revealed

no significant differences between saline- and Ex-4-treated mice.



Figure S1: PPGNTS neurons are not necessary for the tachycardic response to systemic 

GLP-1R activation 

A) MAP (blue, top), HR (black, middle) and locomotor activity (red, bottom) measured from

a single, naïve mouse over 24 hours as indicated in zeitgeber time. Dark phase is indicated with

a grey box with the gradient indicating a half hour “twilight” period in which lights were

dimmed. Traces are running averages over 20 mins. B) Histogram displaying the bimodal

distribution of HR values in 10 bpm bins recorded from a single mouse over 24 hours.

Overlayed in red are the mean activity counts at the HR levels indicated on the x-axis. At

activity level 0, HR ranged between 390 and 570 bpm. At higher mean activity levels higher

HR was associated with higher activity. C) The distribution of HR values from B) split into

two histograms according to activity levels with the distribution of HR values at inactivity

(when activity=0) displayed in light red, and the distribution of HR values during active times



in dark red. Importantly, neither distribution was normal with inactive HR values skewed 

to the right and active HR values skewed to the left. For this reason, estimates of resting and 

active HR and MAP values for individual mice implanted with biotelemetry probes are all 

based on the median. D) Activity levels of naïve mice (n=4) implanted with biotelemetry 

probes and injected i.p. with saline (left) or 10 µg/kg Ex-4 (right) four hours into light 

phase. Activity levels were monitored over 12 hours during light (white bar) and twilight 

phase (gradient bar). Zeitgeber time is indicated at the bottom. Times of i.p. injections with 

either saline or Ex-4 are indicated with dotted lines. E) Percentage time spent active before 

(Baseline, hours 1-4, open circles) and after (Saline/Ex-4, hours 5-8, filled circles) i.p. 

injection of saline (black) or 10 µg/kg Ex-4 (red) four hours into light phase. Drug x time: 

F(1, 3) = 0.034, p=0.87; main effect of time (p=0.29) and drug (p=0.39). F) Percentage time 

spent active during light (open circles, hours 8-11) and dark phase (filled circles, hours 

12-15) following injection of Ex-4 (10 µg/kg) four hours into light phase. Drug x time: F(1, 3) = 

0.096, p=0.78; no main effect of drug (p=0.83), but a significant main effect of time 
(**p=0.0058).



Figure S2: 

A) Resting HR under two types of anaesthesia and in awake animals using either tail-cuff

measurements with restraint or biotelemetry blood pressure probes in freely behaving mice.

One way ANOVA: F(3, 31) = 5.812, p=0.0028 followed by Tukey’s post-hoc tests (*p<0.05,

**p<0.01) B) HR in mice injected i.p. with saline, atropine (2 mg/kg), or atenolol (2 mg/kg)

prior to injection with either saline or Ex-4 as indicated. Unpaired t-test revealed no significant

differences as indicated by n.s. C) HR in freely behaving mice injected i.p. with Ex-4 (10

µg/kg) or saline in the absence or presence of atenolol (2 mg/kg). n=7. D) Cumulative food

intake of mice expressing hM3Dq in PPGNTS neurons selectively during the dark phase

following i.p. injection of CNO (2 mg/kg, n=3). Drug x time: F(3, 6) = 5.702, p=0.034; *p<0.05

according to Sidak’s multiple comparisons test. E) Change in resting HR of control (black

squares) and PPGNTS-DTA mice (red circles) in response to saline (open symbols) and 10 µg/kg

Ex-4 (filled symbols). Treatment x virus F(1, 7) = 0.3287, p=0.5844; no main effect of virus

(p=0.7610), but a significant main effect of treatment (p=0.0008). F, G) Intraperitoneal

injection of Ex-4 (10g/kg; F), but not saline (G) induced C-Fos-IR in the area postrema. Scale

bars: 100µm.




