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Cost-sharing in Directed Networks: 

Experimental Study of Equilibrium Choice and System Dynamics 

Abstract 

This study reports the results of an experiment on directed networks with positive externalities 

induced by cost-sharing. Subjects participated in a network game in which they had to choose 

between private and public transportations. If a player chose public transportation, then she 

shared the travel cost equally with other players making the same choice, whereas if she chose 

private transportation, then her travel cost was fixed. Travel costs on the private route were 

manipulated across the two experimental conditions. In one condition, these costs were 

homogeneous among players; in the other condition, they were heterogeneous among players 

and only privately known. We found that half (none) of the player groups in the homogeneous 

(heterogeneous) condition converged towards the efficient equilibrium. Examination of the 

system dynamics shows that convergence towards efficiency was facilitated by: (1) the existence 

of an intermediate equilibrium choice; and (2) strategic teaching by which a farsighted player 

chooses strategies with poor short-term payoff in order to shift group decisions to the efficient 

equilibrium and thereby increase her own long-term benefit. 
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1. Introduction 

Transportation networks provide the foundation for the movement of people and goods across space and 

time, and are essential to the functioning of modern societies. The design and control of such networks 

requires thorough understanding of fundamental physical, behavioral, and social issues that are major 

research topics in the management, transportation research, economics, and computer sciences. Focusing 

on cost-sharing in directed networks, our study is positioned at the intersection of these disciplines.  

In many settings in transportation networks, the overall behavior of the system is a complex product of 

the actions of multiple independent agents (e.g. drivers, commuters …) who can generally be labelled as 

network users. These agents typically attempt to optimize their objective functions with no regard for the 

welfare of others. The externalities resulting from the decisions of each user are negative if individual 

benefits are a decreasing function of the number of other group members making similar choices. 

Examples include choice of routes in congestible networks (Cominetti, Correa, & Stier-Moses 2006, 2009; 

Correa & Stier-Moses 2011; Rapoport et al. 2009; Rapoport, Gisches, & Mak 2014; Mak, Gisches, & 

Rapoport 2014), and choice of time of departure in directed traffic networks with multiple bottlenecks 

(Daniel, Gisches, & Rapoport 2009). In many other settings, the externalities are positive, as when the 

benefit of a choice of route is an increasing function of the number of other users making the same choice. 

This could happen, for example, when users of the same mode of transportation share the travel cost, as 

could happen with carpool and shuttle taxi. Previous experimental research on interactive decision 

behavior in networks (e.g., Daniel et al. 2009; Gisches & Rapoport 2012; Mak et al. 2014; Morgan, Orzen, 

& Sefton 2009; Rapoport, Mak, & Zwick 2006; Rapoport et al. 2009, 2014; Selten et al. 2007) has 

focused on network games with negative externalities. In contrast, ours is the first experimental study of 

cost-sharing in traffic network games with positive externalities. 

Our study is particularly concerned with whether – and if so, how – network users might achieve 

collectively the efficient (socially optimal) Nash equilibrium through repeated play of a cost-sharing 

network game when the stage game has Pareto rankable equilibria. The socially optimal equilibrium may 

naturally be viewed as the optimal outcome subject to the constraint that the solution is “stable” in the 

sense that no agent has an incentive to unilaterally deviate from it once it is proposed (e.g., by a network 

designer) or, alternatively, reached by some process of adaptive learning. Our findings show that the 

likelihood of subjects converging towards the efficient equilibrium depends crucially on whether the 

payoff functions are common knowledge. In Condition Homogeneous, where travel costs were the same 

and commonly known among users, half of the groups converged towards the socially efficient 

equilibrium. In Condition Heterogeneous, where the variable travel cost of private transportation was only 
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privately known, nine of the ten groups converged towards the inefficient equilibrium. We further suggest 

that convergence towards efficiency was facilitated by: (1) the existence of an intermediate equilibrium 

choice, and; (2) strategic teaching by which farsighted (sophisticated) players made route choices that 

significantly decreased their short-run payoff in order to signal their willingness to join public 

transportation and thereby achieve long-run benefits. These signals could facilitate the migration of the 

route choices of other group members over iterations of the stage game towards the efficient equilibrium. 

We place special emphasis on the dynamics of play, in particular dynamics that converge to socially 

optimal outcomes (see, e.g., Balcan, Blum, & Mansour 2013; Charikar et al. 2008). We note that when 

experimental games are iterated in time, players may change their behavior over iterations, exhibiting 

behavior that simultaneously depends on their growing understanding of the structure of game and on 

revisions of their beliefs about future behavior of other players in the system. Most of the previous 

literature attempted to explain the dynamics of play in experimental games in terms of reinforcement 

learning, belief learning, regret minimization, and best-response behavior (cf. Balcan 2011; Balcan et al. 

2013; Camerer 2003, Chapter 6; Erev, Ert, & Roth 2010; Nisan et al. 2007, among other examples). As 

noted by Balcan et al. (2013), these learning models are myopic and therefore do not fully capture the 

information that the players may have prior to the game or possibly acquire during the game about its 

overall structure, or the farsighted behavior of the users when the stage game is iterated in time. Balcan et 

al. mention two barriers to simple dynamics performing well in accounting for decision behavior. The 

first is computational; we do not know how convergence to some outcome, if reached at all, depends on 

the particular parameters of the experiment. The second barrier is incentive-based. Even if an efficient 

solution is known by the players, there is the issue of whether the players would individually be willing to 

play it. This may depend on the beliefs that the players acquired in previous periods about the rationality 

of the other players, the strategies that other players may be expected to employ in the future, and the 

degree that other players may be trusted to adhere to tacit agreements if, indeed, they have been reached. 

Moreover, to gain tractability, existing models often assume homogenous agents, whereas the 

experimental literature on repeated interactive behavior in large groups presents ample evidence for 

considerable individual differences (e.g., Gisches & Rapoport 2012; Selten et al. 2007). Our perspective 

is that if a network game has multiple equilibria that are Pareto rankable, as in our study, then players 

have the option of sending signals, frequently at a high short-term cost to themselves, about their 

intention to shift group behavior from an inferior equilibrium to a more efficient equilibrium. We later 

refer to such behavior as strategic teaching. Some players may intrinsically be more inclined to send such 

signals than others. Depending on their number, these players may be critical in the convergence of the 

group towards an efficient outcome. We shall be reporting evidence in support of this kind of dynamics. 
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The rest of the paper is organized as follows. Section 2 outlines the theoretical background of fair cost-

sharing allocation mechanism that we employed in our experiment and the general design of our 

experiment. Section 3 reviews recent relevant literature on route choice. Section 4 describes the 

experiment. Sections 5 and 6 report the results of the experiment, including basic data analysis followed 

by in-depth analysis of the dynamics of play. We conclude the paper with Section 7, which includes 

further discussion of our findings and proposes ideas for future research.  

2. Theoretical Background and General Experimental Design 

2.1. Fair Cost-sharing Allocation Mechanisms  

A cost-sharing allocation mechanism may be viewed as the underlying protocol of play that determines 

how much a network that serves multiple users will cost to each of them. Theoretical research in this area 

has been mostly conducted by computer scientists interested in communication networks (e.g., 

Anshelevich et al. 2003, 2008; Balcan et al. 2013; Harks & Miller 2011). In the simplest protocol, each 

user i, i=1, 2,.. , k, has a pair of nodes (Oi, Di) in a directed graph that she wishes to connect. She does so 

by choosing a path Si that originates at Oi and terminates at Di. The cost-sharing allocation mechanism 

then charges user i a cost of Ci(S1, S2, … , Sk), implying that the cost of user i may depend on the choice of 

paths by the other users. In our experiment, we focus on a very natural allocation mechanism where the 

cost of each edge is shared equally by all the users whose paths contain it. That is: 

∑
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where ce is the cost associated with traversing edge e and x is the number of elements in set x. This 

equal (“fair”) cost-sharing allocation mechanism can be rationalized by economic theorizing in the 

following ways: (1) it can be derived from the Shapley value, possibly the best known solution concept 

for cooperative games (cf. the theoretical discussion in Moulin & Shenker 2001 and Chen & 

Roughgarden 2009); and (2) it can be shown to be the unique cost-sharing scheme that satisfies a set of 

different axioms (see Feigenbaum, Papadimitriou, & Shenker 2001, and Herzog, Shenker, & Estrin 1997). 

The sum of the costs in the union of all paths Si, is completely paid for by the users under this mechanism: 
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In our experimental setup, we take the fair cost-sharing allocation mechanism as given, and study 

behavioral route choices in anticipation of the fact that travelers on the same route would end up sharing 

costs equally. The cost-sharing stage, in the context of our experimental setup, may therefore be seen as a 
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sequential game’s final stage that was not actually played by the subjects, while the cooperative-solution-

based outcome of that stage determines the functional forms of the game payoffs. 

Example. Following examples in Anshelevich et al. (2008) and Roughgarden and Tardos (2007), consider 

a directed network with k players. All the players share the same destination D, but each player i starts 

from her specific origin Oi. Each player may choose a private path (Oi→D) and incur the cost of travel 1/i. 

This choice and its outcome are not affected by the choices of other group members. Alternatively, player 

i may choose the public path (Oi→V→D) and incur the endogenously determined cost (1+ε)/m, where ε > 

0 is arbitrarily small, and m (1≤m≤k) is the number of players choosing this path. We assume that 

decisions are made in the order 1, 2, … , k, and that each player is fully informed of the decisions made 

by the players who precede her in the sequence. It is to the benefit of all the k players to choose the public 

path (Oi→V→D), whose cost 1+ε is then divided equally among them. However, this solution is not a 

Nash equilibrium, as player k can reduce her cost from (1+ε)/k to 1/k by unilaterally switching from the 

public to the private path (Ok→D). Arguing inductively for players k-1, k-2. … , 1 shows that the unique 

Nash equilibrium of this cost-sharing game is the outcome in which each player chooses the private path 

Oi→D. The cost of this outcome is H(k) = 1 + 1/2 + 1/3 + …  + 1/k, which is roughly equal to ln(k).  

Models like the above example are often characterized by the ratio of the solution quality at the best Nash 

equilibrium relative to the quality of the solution maximizing social welfare (a number equal to or larger 

than 1); this ratio has been termed the price of stability (PoS) as it captures the problem of optimization 

subject to the equilibrium constraint. It can be compared to the older and larger line of theoretical research 

in algorithmic game theory on the price of anarchy (PoA), which is the ratio of the solution quality of the 

worst Nash equilibrium relative to the quality of the solution maximizing social welfare. It is easy to 

verify that PoA ≥ PoS ≥ 1 (see Mak & Rapoport 2013 for a discussion of potential applications of these 

concepts in social dilemma research). In the above example, the two indices of inefficiency coincide: 

PoA=PoS=H(k)/(1+ε); for example, if k =10, then PoS=2.93/(1+ε). 

2.2. General Experimental Design  

The design of our experiment incorporates the fair cost-sharing allocation mechanism in an iterated 

transportation network game, where the choice of each user is between alternative modes of 

transportation. Specifically, on each round of the game, each user in our experiment had to choose 

independently among three alternative modes of transportation: a private route connecting a common 

origin and common destination (Oi→D), a two-edge public route (Oi →SH→D) in which the cost of the 

edge (SH→D) had to be shared by all the users who made the same choice, and yet another two-edge 

public route (Oi→CP→D) in which the cost of the edge (CP→D) also had to be shared by the users who 
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traversed it (the symbols Oi, D, SH, and CP stand for origin of player i, destination, shuttle, and carpool, 

respectively). The costs associated with traversing edges (Oi→SH) and (Oi→CP) were commonly known.  

Our two experimental conditions differ from one another in the cost associated with the choice of the 

private mode of transportation. In Condition Homogeneous, the cost of link (Oi →D) was homogeneous 

among the users, that is, it was a constant with the same value for all the n users. In Condition 

Heterogeneous, this cost was heterogeneous among the users; specifically, it was a real-valued number 

drawn randomly from a distribution f(Oi →D). The cost of user i traversing link (Oi →D) was private 

knowledge to her, but the distribution f(Oi →D), was common knowledge.  

3.  Relevant Literature 

3.1. Experiments on Congestible Networks 

The paradoxical discovery of Braess (1968) that expansion of a congestible network by adding another 

connecting link may under certain circumstances result in degradation of performance of all users, 

together with the growing interest in other paradoxes of congestible transportation networks (e.g., the 

Down-Thompson paradox), have instigated a large body of research. Theoretical research on route choice 

in network games, which may or may not be susceptible to the Braess Paradox (BP), has been pursued 

mostly in computer science (see e.g., Cominetti et al. 2006, 2009; Fotakis, Kontogiannis, & Spirakis 2005; 

Roughgarden 2005; Roughgarden & Tardos 2007).  

More directly pertinent to the present paper is the experimental investigation of route choice in 

congestible networks. These experiments simulate and test models of route choice in the computer-

controlled environment of the laboratory, where financially motivated subjects are recruited to participate 

with payoff contingent on their performance. A major advantage of this approach, which we pursue in the 

present paper, is that the parameters of the cost-sharing games under investigation (e.g., link cost 

functions, information structure)  may be systematically manipulated for model testing. 

Previous experiments in the literature have investigated network games with finite user populations in 

which multiple participants independently chose single (O→D) paths. Selten et al. (2007) studied day-to-

day route choice in a stylized network with two parallel routes. They reported aggregate route choices that 

are accounted for quite accurately by the equilibrium solution, and fluctuations around the mean observed 

choice frequencies that do not seem to diminish with experience. Helbing (2004) repeated the same 

experiment with more iterations of the stage network game and additional experimental conditions to 

better understand the reasons for the large period-to-period fluctuations in route choice. Rapoport et al. 

(2009) conducted an experiment on route choice that, like in the game originated by Braess, included two 
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parallel routes each consisting of two connected links, one with a fixed cost and the other with a variable 

cost (basic network). They also constructed and experimentally studied an augmented network by adding 

a single cost-free link that connected the two links with the variable costs. Rapoport et al. reported that the 

mean route choices in the basic network converged very quickly to equilibrium. However, it took their 

subjects all 40 iterations to choose the new route in the augmented network that connects the two 

variable-cost links and, consequently, abandon the two “old” parallel routes in the basic network. In doing 

so, the route choices of their subjects provided strong support to the BP. Additional experiments on the 

Braess Paradox on directed networks with a richer topology have been reported by Gisches and Rapoport 

(2012), Morgan et al. (2009), and Rapoport et al. (2006, 2009). 

Directed network experiments have been designed to study the undesirable effects of congestion on route 

choice. In these cases, individual costs associated with choosing a route increase as more players choose 

the same route. Pursuing a radically different approach, our study focuses on transportation networks in 

which the aggregate cost associated with any given route is fixed regardless of the number of users 

traversing this route. With users given the option of sharing the joint cost of public transportation, 

endogenously determined costs of individual users decrease as more of them choose to traverse the same 

route. Therefore, the issue of congestion and its impact on route choice is not addressed in the present 

study. The objective of each network user is the same as in previous studies, namely, minimization of 

expected cost of travel. However, this objective is best achieved by joining other users who choose 

traveling on the same mode of public transportation rather than choosing their own private route. 

3.2. Directed Network Experiments in Transportation Science  

Experimental studies of the effects of travel information on route choices have a longer history in 

transportation science. Much of the research may be traced back to the pioneering work of Mahmassani 

and his collaborators (e.g., Jou & Mahmassani 1997; Srinivasan & Mahmassani 1999). This body of 

research is too extensive to be reviewed here; instead, we only describe representative experiments that 

have been conducted in the last ten years or so. Among others, these include Avineri and Prashker (2006), 

Ben-Elia, Erev, and Shiftan (2008), Ben-Elia and Shiftan (2010), Ben-Elia et al. (2010), Razo and Gao 

(2010), and Lu, Gao, and Ben-Elia (2011). Avineri and Prashker (2006) compared reference state 

information, where network users updated their knowledge through reinforcement learning, to ex-ante 

information about expected travel time. They reported that users exposed to ex-ante information made 

better choices in comparison to users who only acquired experiential information. Ben-Elia et al. (2008) 

provided their subjects with en-route information about the variability of travel time, and reported that the 

informed travelers learned faster but also exhibited risk-prone behavior in the short run compared to non-

informed subjects. Focusing on attitude towards risk, Ben-Elia and Shiftan (2010) reported risk-prone 
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behavior in the short run but risk aversion in the long run with reinforcement learning behavior. Noting 

that route choice may well be sensitive to the accuracy of the information, Ben-Elia et al. (2010) 

conducted yet another route choice experiment in which they compared three levels of information 

accuracy based on the discrepancy between estimated and post choice actual travel time. Their results 

show that as the accuracy of the information decreased, compliance with prescriptive information 

decreased and choices shifted from short and riskier routes to more reliable routes. 

Razo and Gao (2010) have shifted the emphasis from reinforcement learning and risk attitude to the 

incoming traffic information that a traveler expects to receive in the future. Their results suggest that a 

proper route choice model under real-time information about travel conditions should consider both 

myopic travelers, who exhibit no evidence for basing their route choice on future information about road 

conditions, and farsighted travelers who consider such information. Lu et al. (2011) compared en-route 

real-time information about the occurrence of traffic accidents and ex-post information about foregone 

payoffs in congested networks under exogenous disruptions. Their analysis suggests that en-route 

information reduced travel time and increased reliability under the specific setting of the experiment, and 

that ex-post information encouraged route switching without real-time information but suppressed it when 

real-time information was provided. 

Jointly considered, these recent transportation experiments display considerable sensitivity to different 

types of travel information, access to this information, and the utility that drivers assign to travel 

information. The experiments are mostly descriptive in nature and, in general, not predicated on theory; 

variants of expected utility theory, reinforcement learning theory, and prospect theory are frequently 

invoked in an ad-hoc fashion to account for the experimental findings. A major drawback of these 

experiments is that they are individually based, ignoring congestion due to strategic interaction. Travel 

time in all of them is modeled by probability distributions that are assumed to be fixed over iterations of 

the trip and not affected by the travelers’ previous choices. A possible reason for this omission is that the 

purpose of experimental research in transportation science might have been perceived to explain route 

choice in non-atomic populations, where the effect of a single traveler may, therefore, be safely ignored. 

3.3. Network Externality Studies in Economic Research  

Network externalities refer to the effect that a user of a product has on the utility of that product for other 

users in the same network. The classic example is the telephone; the more agents owning a telephone, the 

more valuable the telephone is to them. Online social networks like Twitter and Facebook also have 

positive externalities. Negative externalities are best illustrated by congestible networks, where delay in 

travel (and its consequent cost) increases as more agents choose the same route. Previous experimental 
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studies on congestible networks, as reviewed earlier, are mostly about negative externalities, whereas the 

present study on cost-sharing focuses on positive externalities in directed networks. 

The economic theory of network externalities was advanced significantly by the pioneering work of Katz 

and Shapiro (1985) and Farrell and Saloner (1985, 1986). Katz and Shapiro developed a static model of 

oligopoly to analyze markets with positive externalities, and studied two basic issues: the effect of such 

externalities on competition, and the incentives needed to produce compatible goods. Farrell and Saloner 

(1986) proposed another model, where identical firms decide sequentially whether to change to a new 

technology. In the context of our study, changing technology may be likened to switching to a new mode 

of transportation, in particular, switching from driving one’s private car, where the cost of travel is 

constant, to some form of public transportation, where the cost of travel is shared by all the users. Farrell 

and Saloner showed that if all the firms would benefit from the change, then all would switch to the new 

technology. However, complete information of the payoff functions is typically assumed in these studies, 

as opposed to incomplete information scenarios as in Condition Heterogeneous of the present study. 

Empirical (rather than experimental) studies designed to test the effects of network externalities have been 

reported by Gandal (1994), Brynjolfsson and Kemerer (1996) and many others.  

Experimental studies on network externalities have been rare. Examples include Devetag (2003), Mak 

and Zwick (2010), and Ruffle, Weiss, and Etziony (2010). These studies are typically concerned with 

critical mass effects and complete information about the payoff matrix among the agents. They 

complement our study, which involves manipulating the transparency of players’ private costs to each 

other with a special focus on the dynamics of play. Consistent with the findings reported by Steiger and 

Zultan (2011), transparency in costs had significant impact on behavior in our experiment, while our 

analysis of dynamics sheds important light on how players might achieve collective efficiency. 

4. Description of the Experiment and Equilibrium Benchmarks 

In this section, we offer a description of the setup and implementation of the two conditions in our 

experiment. We also present the game-theoretic equilibria in the respective conditions, which serve as 

benchmarks for our data analysis. 

One hundred subjects in approximately equal proportions of males and females participated in the 

experiment. They were primarily undergraduate students who volunteered to participate in a decision 

making experiment for payoff contingent on their performance. The subjects were recruited via email 

from a pool of students who had previously registered interest in participating in experimental studies. 

Fifty subjects were randomly assigned to each of the two conditions in a between-subjects design in 
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which the homogeneity/heterogeneity of the players’ private costs was manipulated across conditions (cf. 

Bachrach & Bendoly 2011 for an overall reference on experimentation as a methodology). Throughout 

the experimental sessions, subjects made decisions independently through networked computers. 

Although they submitted their choices in a pre-specified order, since they received no information about 

the decisions of other subjects preceding them in the sequence the situation was effectively that of 

simultaneous play. 

4.1. Condition Homogeneous: Cost-sharing with Fixed Private Cost  

Design. Figure 1 displays the cost structure and interface of the computer program for Condition 

Homogeneous. Under a fixed-group arrangement, five groups of n=10 subjects played 50 identical rounds 

of the stage game. Each player i was required to choose independently one of three modes of 

transportation (routes) from a fixed origin (Oi) to a fixed destination (D). Because players in Condition 

Homogeneous were symmetric, we omit the subscript i associated with the origin. The cost functions 

were as follow: 

• Cost of the private route (O→D) was fixed at $20 for each agent. 

• Cost of the public route (O→CP→D) was fixed at $10 for segment (O→CP) and at a variable cost 

of $70/m(CP→D) for segment (C→PD), where m(C→PD) denotes the number of agents (out of 10) 

choosing this segment. 

• Cost of the public route (O→SH→D) was fixed at $0 for segment (O→SH) and at a variable cost of 

$150/m(SH→D) for segment (SH→D), where m(S→HD) denotes the number of agents choosing 

this segment. 

– Insert Figure 1 around here –  

The instructions are very similar to those for Condition Heterogeneous (see Appendix A) except that the 

cost of the private route in Condition Homogeneous was kept constant at $20. In each round, subjects 

chose one of the three routes by clicking on one of the options in the window “Please make Your Choice”. 

Complete information about the distribution of choice and the individual payoff associated with the 

choice was provided at the end of each round. Individual payoff (rather than cost of travel) per round was 

computed by the function Payoff=$60/cost. Subjects were paid in cash their payoffs in five randomly 

chosen rounds (see Appendix A) and then dismissed from the laboratory; this type of payment mechanism 

is quite common in the experimental literature (e.g., as can often be found in the studies cited in Camerer 

2003). If subjects were paid for all the played games, then their decisions could be affected by their 
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cumulative wealth effects as the session progressed (see, e.g., Cox, Sadiraj, & Schmidt 2014), while, at 

the same time, the specific payoff of each round would be perceived as bearing little marginal impact to 

the total payment. Paying subjects for their performance in a small number of randomly chosen rounds – 

but not so small as to make the role of chance too prominent in determining payoffs – could prevent 

wealth effects and instill the perception that every round “could matter”.  

Including a show-up fee of $5, the mean individual payoff in Condition Homogeneous was $20.44. The 

decision problem was framed in terms of costs rather than payoffs because the numerical differences 

between different scenarios are more pronounced if expressed as losses rather than gains.  

Equilibria. The cost-sharing allocation game in Condition Homogeneous has three pure-strategy 

equilibria: 

• A “bad” inefficient equilibrium, where all n subjects choose route (O→D) at a cost of $20, resulting 

in a payoff of $3 per player. 

• An “intermediate” equilibrium, where all n subjects choose route (O→CP→D) at a cost of $17, 

resulting in a payoff of $3.53 per player. 

• A “good” efficient equilibrium, where all n subjects choose the route (O→SH→D) at a cost of $15, 

resulting in a payoff of $4 per player. 

Consequently, PoS=1 and PoA=4/3. The major hypothesis is that with experience players converge 

towards one of the three equilibria. Another objective is to account for the evolution of play over 

iterations of the stage game. 

A major difference between the two public routes is in the costs associated with out-of-equilibrium 

behavior that might lead to interesting dynamics as the stage game is iterated in time. Consider, for 

example, the case where all ten players chose the private route (O→D) and each incurred the cost of $20. 

If player i contemplated switching from the private to the public route (O→CP→D), possibly with the 

intention of inducing most or all other nine players to do the same, then her cost of travel would increase 

fourfold from $20 to $80. If she contemplated switching to the other public route (O→SH→D), then her 

cost would increase by a higher factor of 7.5 from $20 to $150. Similarly, if two players simultaneously 

switch from (O→D) to (O→CP→D), then each would incur a cost of $45 (rather than $20), whereas if 

both switch simultaneously to route (O→SH→D), then each of them would incur a higher cost of $75. 

Switching from the private route to either of the two public routes pays off only if at least eight out of the 

ten players switch to the same route. If all ten players switch from the private route to either the carpool 
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or shuttle, then clearly the latter is the preferred option. Realizing that unilateral switching to the shuttle 

was considerably more costly than switching to the carpool, a farsighted player might switch to the 

carpool, and if successful in inducing other players to do so without incurring a relatively high cost for 

herself, wait for some other group member to incur the cost of a subsequent switch to the shuttle. This is 

just one of several possible dynamics that might result in the switching patterns that we propose to study 

below. 

4.2. Condition Heterogeneous: Cost-sharing with Randomly Determined Private Costs 

Design. The network game in Condition Heterogeneous (see Appendix A for the instructions) was 

identical to that in Condition Homogeneous with one major difference: the cost of choosing the private 

route was heterogeneous among the players; specifically, it was variable rather than fixed and privately 

rather than commonly known among the ten group members. 

•   Cost of the private route (Oi→D) was drawn randomly and independently for each subject from the 

uniform distribution on the interval [16, 24]. Note that the mean of the distribution of individual travel 

costs is equal to the fixed cost ($20) for choosing the private route in Condition Homogeneous. 

• Cost of the public route (Oi →CP→D) was fixed at $10 for segment (Oi →CP) and at a variable cost 

of $70/m(CP→D) for segment (C→PD). 

• Cost of the public route (Oi →SH→D) was fixed at $0 for segment (Oi →SH) and at a variable cost of 

$150/m(SH→D) for segment (SH→D). 

Including a show-up fee of $5, the mean individual payment to subjects in Condition Heterogeneous was 

$19.15. 

Equilibria. The cost-sharing network game in Condition Heterogeneous has three pure-strategy equilibria: 

• A “bad” inefficient equilibrium, where all n players choose route (Oi →D) resulting in mean payoff 

per player: 

04.3$/
1624

60$ 24

16
=

−
∫ xdx . 

• An “intermediate” equilibrium, where a player chooses route (Oi→D) if her private cost of choosing 

this route is smaller than c* = $17.1, and route (Oi→SH→D), otherwise; the critical cost c* is the 

unique solution to the following equation: 
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Under this equilibrium, on average 13.8% [= 100·(17.1-16)/(24-16)] of the choices would be the 

private route, and 86.3% of the choices would be shuttle. The expected payoff of each player, 

conditioned on her choosing (Oi→SH→D), would be $60/c* = $3.51. The expected payoff of a player 

conditioned on her choosing route (Oi→D) would be 

63.3$/
161.17

60$ 1.17

16
=

−
∫ xdx . 

Further calculations show that the overall mean payoff would be $3.53 under this equilibrium. 

• A “good” efficient equilibrium, where all n subjects choose the route (Oi →SH→D) at a cost of $15, 

resulting in an average payoff of $4 per player. 

Unlike Condition Homogeneous, unanimous choice of the carpool was no longer in equilibrium; in fact, 

we have found no pure-strategy equilibrium with a positive expected number of players choosing the 

carpool. As such, PoS=1 and PoA = 4/3.04 = 1.32. 

Each of the cost-sharing games in the two experimental conditions has three pure-strategy equilibria 

which are Pareto rankable. The two games differ from previous route choice experiments with multiple 

equilibria (typically in the millions) which are Pareto unrankable. The basic choice of each player in the 

present study was between private or public transportation. The cost associated with private transportation 

was determined solely by the player; it did not depend on the choices made by other group members. In 

order to incur a smaller cost associated with public transportation, players had to develop some sort of 

signaling system through their decisions in order to move collectively across rounds to a better 

equilibrium. Signals might easily be misread, misinterpreted, or simply ignored particularly if there was 

no way for players to associate a given signal with a specific player. Equally important is that unilateral 

deviations from choice of the private route carried with them costs that, depending on the number of 

players responding to the signal and how quickly they responded, might be substantial. Under the present 

design, with subject position in the sequence of choosing routes differing from one round to another, and 
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cost functions associated with the choice of carpool or shuttle that are rather steep, convergence to the 

choice of public transportation seems highly unlikely. 

5. Basic Analysis of the Results 

We begin by reporting a series of basic data analyses for our two experimental conditions. We shall often 

compare equilibrium solutions with the observed patterns of choices in our data. There is no a priori 

assurance that route choices in any particular group would converge to equilibrium upon repeated play, or 

converge to any steady outcome at all. Nevertheless, as we shall report later, choices in almost every 

group did, in fact, converge to one of the equilibria upon repeated play. 

5.1. Overall Observations 

— Insert Figure 2 around here — 

As an illustration, Figure 2 exhibits route choices of all the ten members of Group 4 in Condition 

Homogeneous. The rows correspond to the 50 rounds of play, and the columns to the ten group members. 

Group 4 was chosen randomly; Figure 2 is by no means typical as the dynamics of play varied 

considerably between groups. It illustrates the rate of individual switches in route choice and the 

subsequent challenge of choosing statistics that capture the forward looking behavior, if at all, of some 

subjects. For example, Subject 7 chose the shuttle on round 1 and never switched her decision for the 

entire 50-round session. Contrast her behavior with Subject 3, who switched her route choices, alternating 

between the private route, shuttle, and carpool, until finally converging on round 35 to the private route. 

Once nine of the ten subjects in Group 4 converged on round 31 towards the shuttle, with one exception 

we observe no switching from the shuttle to the carpool or private route.. 

— Insert Figures 3 and 4 around here — 

Aggregating the data across the subjects in each group, Figures 3 and 4 portray the evolution of route 

choices in each group of the two experimental conditions by plotting the number of subjects choosing 

each of the three routes in each round. Two major observations warrant mentioning: 

(1) Almost all the groups converged towards one of the three equilibria in the later part of the session. 

Specifically, Groups 4, 5, 7, 9, and 10 in Condition Homogeneous (Figure 3) converged towards the 

“good” (O→SH→D) equilibrium, which was also the efficient outcome, whereas Groups 1, 2, 3, 6, 8 

converged towards the “bad” (O→D) equilibrium, which was the least efficient outcome. With a 

single exception, nine of the ten groups in Condition Heterogeneous (Figure 4) converged towards the 

“bad” equilibrium, but the distribution of route choices typically exhibited more instability than in 
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Condition Homogeneous. Group 8 in Condition Heterogeneous exhibited significant instability even 

towards the end of the session and did not converge distinctly to any equilibrium.  

(2) The dynamics of play changed considerably from group to group. The evolution of route choices was 

hardly monotonic across rounds, especially with those groups in Condition Homogeneous that 

eventually converged towards the efficient equilibrium. We report more in-depth analysis of the 

dynamics in Section 6. 

— Insert Table 1 around here — 

5.2. Route Choice Distributions in the Initial and Final Rounds 

In the following discussion, we examine a number specific issues related to these overall observations. 

Table 1 presents the distributions of choices of the private route, carpool, and shuttle in round 1 by group 

and condition; the cells for the groups that eventually converged towards the shuttle equilibrium are 

shaded in grey. Chi-square tests for every group could not reject the null hypothesis that the three modes 

of transportation were chosen randomly with equal probability in round 1 (p > 0.2 in all tests). Random 

choice of route in round 1 most likely reflects the novelty of the fair cost-sharing allocation mechanism, 

inexperience, a “wait and see” attitude, or some combination of the above.  

We also conducted a logistic regression with group as the unit of analysis in which the dependent variable 

is 1, if the group converged towards the shuttle equilibrium, and 0, otherwise, while the two independent 

variables are the number of subjects choosing private route in round 1 and the number of subjects 

choosing shuttle in round 1, respectively. The regression did not yield an estimated coefficient for any of 

the two independent variables that is significantly different from zero (p > 0.4 for both coefficients). This 

corroborates our finding above that the initial choice distribution was not a good predictor of equilibrium 

convergence. 

Table 2 presents the percentages of choice in the final ten rounds of the session by group in both 

experimental conditions; as with Table 1, the cells for the five groups that eventually converged towards 

the shuttle equilibrium are shaded in grey. Consistent with Figure 3, Table 2 shows that five of the ten 

groups in Condition Homogeneous converged towards the inefficient private route equilibrium and five 

other groups to the efficient shuttle equilibrium. In contrast, consistent with Figure 4, nine of the ten 

groups in Condition Heterogeneous converged towards the inefficient equilibrium, with at least 80% of 

choices being the private route in the final ten rounds. Only Group 8 did not converge to any equilibrium 

with choices of its members being split evenly between the private route and carpool in the final ten 

rounds.  
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— Insert Table 2 around here — 

6. Analysis of Dynamics 

In this section, we report the results of an analysis of the dynamics of play in our two experimental 

conditions. We first highlight differences in system dynamics across conditions and types of equilibrium 

convergence in terms of evolution of route choice distributions (Section 6.1) and switching behavior 

(Section 6.2). Then, we focus on analyzing players’ choices with respect to whether they were best 

responses to other players’ previous choices (Section 6.3), and use our results to explain why some 

groups in Condition Homogeneous converged towards the shuttle equilibrium while others converged 

towards the private route equilibrium. Although typically not very successful, strategic teaching was used 

by some of the subjects in order to lead the group to convergence to the efficient equilibrium. A detailed 

analysis of the role of strategic teaching in the dynamics of play is presented in Section 6.4. Based on this 

analysis, and more speculative in nature, Section 6.5 outlines a conceptual model to capture the 

behavioral patterns observed in the study. 

— Insert Table 3 around here — 

6.1. Evolution of Route Choice Distributions  

We divided the 50 rounds into five blocks of ten rounds each and then computed the percentage of 

choices by block. In the process, we aggregated the results over all groups for Condition Heterogeneous 

but made a distinction between groups that converged towards either the good or bad equilibria in 

Condition Homogeneous.  

Table 3 presents the results. It displays systematic patterns of dynamic behavior. The percentage of 

rounds in which the bad (private route) equilibrium was chosen by Groups 4, 5, 7, 9, and 10 (set 1) 

declined sharply over blocks from 45.0 in block 1 to 2.2 in block 5. In contrast, the same percentage 

increased from 45.8 to 96.4 in Groups 1, 2, 3, 6, and 8 (set 2) in Condition Homogeneous and from 53.6 

to 89.9 over all ten groups in Condition Heterogeneous. In each case, the trend over blocks is monotonic. 

The percentage of rounds in which the good equilibrium (shuttle) was chosen exhibits the opposite 

patterns: a monotonic increase over blocks from 23.8 to 97.8 percent in set 1, a monotonic decrease from 

32.4 to 0.6 (practically zero) in set 2, and a monotonic decline from 14.8 to 0.9 in Condition 

Heterogeneous. Chi-square tests for the distributions in Table 3 show that, for every block, the groups that 

converged towards the shuttle equilibrium had significantly different choice percentages from the 

corresponding percentages among other groups in Condition Homogeneous as well as those in Condition 

Heterogeneous (p < 0.01 in all tests). Moreover, groups that converged towards the bad equilibrium had 
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significantly different route choice distributions in every block compared with the groups in Condition 

Heterogeneous (p < 0.01 in all tests). This suggests that the dynamics were different between the two 

experimental conditions, and were different among groups that converged towards the two different 

equilibria in Condition Homogeneous.  

— Insert Table 4 around here — 

On average, convergence to equilibrium took place at about the same rate across different types of 

convergence and experimental conditions. Table 4 lists the mean round-to-round change in number of 

subjects choosing each route averaged within every block among the groups converging towards each 

type of equilibrium and in each condition, respectively. Note that round-to-round changes in these 

numbers were generally just one or two, and often varied between increase (positive change) and decrease 

(negative change), so that the entries in the table do not exceed one. The average convergence rate 

towards equilibrium (shuttle for five groups in Condition Homogeneous, and otherwise the private route) 

was around 0.13 regardless of type of group. Further t-tests show that these average rates do not differ 

significantly among any pair of the three classes of groups in Table 3 (p > 0.4 in all tests). However, a 

closer inspection of Table 4 shows that convergence took place most quickly early in the session, if the 

equilibrium reached was the inefficient equilibrium, while the convergence took place most quickly in the 

middle of the session, if the equilibrium reached was the efficient equilibrium. This is consistent with 

Figures 3 and 4 and Table 3, which show that groups that converged towards the efficient equilibrium did 

so typically after 20 rounds or so of significant instability; on the other hand, groups that converged 

towards the inefficient equilibrium typically had around half of their choices being the private route early 

in the session. 

6.2. Switching Behavior 

— Insert Figure 5 around here — 

Given the initial route choice distributions, convergence could not have been achieved without subjects 

switching their decisions from round to round. Figure 5 displays the evolution of the percentage of 

switches, with a distinction between types of equilibrium convergence in Condition Homogeneous. The 

figure shows that, as expected from the convergence findings in Table 1, the frequency of switches in 

both conditions markedly decreased across rounds. It also shows that: (1) the evolution of switching 

frequencies did not differ by the type of equilibrium convergence in Condition Homogeneous; and (2) 

subjects in Condition Heterogeneous switched their decisions more frequently (almost twice as much) 

than in Condition Homogeneous, and remained relatively frequent switchers towards the end of the 

session thereby rendering the dynamics unstable.  
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In Appendix B, we report further analysis that makes a distinction between switches towards more versus 

less efficient equilibria. The analysis shows that groups that converged towards the inefficient equilibrium 

tended to switch more towards less efficient equilibria (e.g., switching from carpool to private or from 

shuttle to private) than the other way round, while we have the opposite observation for the groups that 

converged towards the efficient equilibrium. 

Individual switching patterns. Previous results of route choice experiments by Selten et al. (2007), 

Helbing (2004), Rapoport et al. (2008, 2009), and Gisches and Rapoport (2012) suggest substantive 

between-subject variability in the frequency of switches. In Condition Homogeneous, the individual 

number of switches (maximum 49) varied from 0 (Subject 8 in Group 3) to 26 (Subject 2 in Group 7), 

whereas in Condition Heterogeneous it varied from 2 (Subject 5 in Group 4) to 35 (Subject 4 in Group 

10). In Condition Homogeneous, the mean number of switches among players in groups that converged 

towards the shuttle equilibrium was 5.64, while the corresponding mean was 5.76 among players in the 

other five groups. These two means are not significantly different from each other by t-test (where group 

is the unit of analysis to ensure independence of data points), p > 0.9. A Kolmogorov-Smirnov test cannot 

reject the hypothesis that the distributions of switch frequencies are significantly different between groups 

that converged towards the two different equilibria, p > 0.3. This suggests that switching frequencies 

alone, or individual player characteristics that might have led to differences in switching frequencies, 

could not explain the different types of equilibrium convergence in Condition Homogeneous.  

Meanwhile, the mean number of switches among players in Condition Heterogeneous was 10.7, which is 

significantly larger than the corresponding mean of 5.7 in Condition Homogeneous by t-test with group as 

the unit of analysis (t(18) = 3.85, p < 0.01). This difference aggregated upwards to create the difference in 

overall switching frequencies observed in Figure 5. We conclude that uncertainty about cost of the private 

route resulted in subjects in Condition Heterogeneous switching their routes more frequently than in 

Condition Homogeneous. Consistent with Figure 5, further statistical examination confirms that 

individual switching frequencies tended to decrease across the session; this conclusion applies to both 

switches towards efficient and inefficient equilibria.  

6.3. Best Response Analysis 

The analysis reported in the previous two sections focused on route choice distributions and frequency of 

switches. An in-depth look at the dynamics requires an investigation into how players’ choices might 

have been affected by the choices of other players. An approach along this direction is to investigate 

whether the decisions in the experiment best responded to other players’ decisions in the previous round.  

— Insert Tables 5 and 6 around here — 
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To begin with, we recorded for every player her ex post best response in every round, given the realized 

decisions of all other players.1 Table 5 lists the percentages of these best responses by block, condition, 

and type of equilibrium convergence. We also rank order the three routes according to the efficiency of 

the associated equilibrium, such that the shuttle is ranked higher than the carpool, which, in turn, is 

ranked higher than the private route. We then examine, for every round t > 1, if the player’s choice in 

round t was the same as her ex post best response in round t-1, or if not, whether the choice was ranked 

higher or lower than the ex post best response.2 The results of the analysis are reported in Table 6, which 

lists the percentage frequencies of route choices relative to the ex post best response for the previous 

round (note that block 1 in Table 6 begins from round 2 rather than round 1). Further analysis leads to the 

following findings, which we summarize under three categories of route choices: 

(1) Choosing a lower-ranked route than the ex post best response to the previous round. These choices 

seem to happen rarely according to Table 6. However, a low proportion could be partly due to there 

being many observations in which the private route was the ex post best response – there were no 

lower-ranked route to choose in those observations, but they still contributed towards the base count. 

This was especially the case among groups that converged towards the inefficient equilibrium. If we 

make an adjustment by limiting the base counts to only observations where the ex post best response 

was not the private route, subjects chose a lower-ranked route choice in 4.13% (out of 1696 

observations), 19.7% (out of 76 observations), and 22.8% (out of 136 observations) of the times 

across all blocks among the three types of groups from left to right in Table 6, respectively. The 

adjusted proportion is especially low with groups that converged towards the efficient equilibrium. 

Pairwise t-tests, with group as the unit of analysis, confirm that the proportion is significantly lower 

among groups that converged towards the efficient equilibrium than among the groups in Condition 

Heterogeneous, at p < 0.01. 3 

(2) Choosing the ex post best response to the previous round. Table 6 suggests that subjects most often 

best responded to the previous round, especially from block 2 onwards. Further t-tests with group as 

the unit of analysis shows that, across all blocks, the proportion of times when subjects best 

responded to the previous round is higher than 65% at p < 0.05 in every one of the three types of 

                                                           
1 There were 51 observations in Condition Homogeneous and two observations in Condition Heterogeneous, out of a 
total of 2000, where a player would have two equally preferable ex post best responses in a round. In those cases, 
the tie was always between private route and carpool. We always broke the tie in favor of private route; breaking the 
tie otherwise has no impact on our major conclusions. 
2 When defining round t best response to round t-1 (which then includes strategic teaching behavior; see later) in 
Condition Heterogeneous, we make the following adjustment: a player’s round t best response to round t -1 would 
be her optimal choice given her private route cost in round t, and the choices of other players in round t-1. 
3 A similar t-test involving the groups in Condition Homogeneous that converged towards the inefficient equilibrium 
cannot be conducted because in only one group among them the ex post response was not the private route. 
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groups in Table 6. Moreover, pairwise t-tests show that this proportion is not significantly different 

among the three types of groups (p > 0.1 in all relevant tests).   

(3) Choosing a higher-ranked route than the ex post best response to the previous round. According to 

Table 6, these happen around 13% to 17% of the times across all blocks among each of the three 

types of groups. Even among groups that converged towards the efficient equilibrium – where the ex 

post best responses in later rounds were mostly shuttle, so that subjects did not have any higher-

ranked route choice to choose – the proportion remains similarly high as with the other groups due to 

frequent choice of this kind in the early rounds. If we limit the base counts to only observations where 

the ex post best response was not the shuttle, subjects chose a higher-ranked route choice in 38.0% 

(out of 989 observations), 13.7% (out of 2374 observations), and 17.0% (out of 4899 observations) of 

the times across all blocks among the three types of groups from left to right in Table 6, respectively. 

The adjusted proportion is especially high with groups that converged towards the efficient 

equilibrium; pairwise t-tests, with group as the unit of analysis, confirm that this proportion is 

significantly higher among groups that converged towards the efficient equilibrium than among either 

of the two other types of groups, at p < 0.01.  

Overall, the analysis in the present section suggests that groups that converged towards the efficient 

equilibrium differed from other groups by: (1) a lower tendency to choose routes that were lower-ranked 

than the ex post best response to the previous round; and (2) a higher tendency to choose routes that were 

higher-ranked than the ex post best response to the previous round. The latter tendency is especially 

interesting, as the relevant route choices helped migrating the groups to a more efficient equilibrium. We 

say that those decisions exhibited “strategic teaching,” in connection with related findings from previous 

literature for which we offer further discussion in the next section. 

6.4. Strategic Teaching: Short-term vs. Long-term Payoffs 

In this section, we focus on the crucial question of why some groups in Condition Homogeneous 

converged towards the efficient equilibrium while others converged towards the inefficient equilibrium. 

We suggest that the answer lies in two main facilitating factors:  

(1) The use of carpool as a signal to induce other players to eventually choose the efficient equilibrium 

choice. As shown in Table 3, the groups in Condition Homogeneous that converged towards the 

inefficient equilibrium had more players switching from the shuttle to private route as the session 

proceeded, with low interest in the carpool as an “intermediate” choice. But for groups that converged 

towards the efficient equilibrium, the choice of carpool was important in facilitating convergence to 

efficiency in the first three blocks of the session. The choice of carpool could be perceived as a safer 
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substitute for shuttle for players who tried to induce (or “teach”) other players to depart from 

choosing the private route. This intuition is supported by our best response analysis: Table 5 shows 

that carpool was often an ex post best response in the first three blocks for groups that eventually 

converged towards the shuttle equilibrium. Pairwise t-tests with group as the unit of analysis confirm 

that, over the first three blocks, there were significantly more observations where carpool was the ex 

post best response among groups that converged towards the efficient equilibrium, compared with 

either of the other two types of groups, at p < 0.05. This is corroborated by an examination of Figure 

3, which shows that in Groups 5, 7, and 9 in Condition Homogeneous – which converged towards the 

efficient equilibrium – carpool was the predominant choice in early rounds. In fact, the players in 

Groups 5 and 7 even temporarily reached the “intermediate” carpool equilibrium in some rounds. By 

stark contrast, carpool was hardly an ex post best response with all other groups. 

(2) Strategic teaching. Although carpool and shuttle were often ex post best responses in the initial 

rounds among groups that converged towards the efficient equilibrium, the private route was the 

predominant ex post best response in those rounds (Table 5). A member of those groups would 

consider carpool as no less preferable ex post than the private route only if at least six other subjects 

chose the carpool; the corresponding number would be eight for the shuttle. But Table 1 shows that in 

most groups that converged towards the efficient equilibrium neither of these thresholds was reached 

in round 1. Thus, for convergence to the efficient equilibrium to happen subsequently, it was 

important for some subjects to choose carpool or even shuttle when those were not ex post best 

responses to the previous round. This leads to our analysis of strategic teaching, by which a player 

makes a more efficient equilibrium choice than the best response to other players’ choices in previous 

rounds. In doing so, she attempts transmitting signals to other players about her willingness to 

coordinate to achieve efficiency in the long run, even if her choice may lead to suboptimal payoffs in 

the short run. Strategic teaching could thus be seen as a player’s rationally motivated short-term 

investment for long-run payoffs that would be higher than if the same player continued to follow an 

inefficient equilibrium.  

Strategic teaching was introduced by Fudenberg and Levine (1998) in their seminal book on learning 

in games. Ellison (1997) provided a theoretical treatment regarding how a single rational player could 

manipulate the choices of myopic players towards an efficient equilibrium in a coordination game. 

Camerer, Ho, and Chong (2002) noted that sophisticated players, who are matched with the same 

players repeatedly as in our two experimental conditions, might have an incentive to “teach” other 

players “by choosing strategies with poor short-term payoffs which will change what adaptive players 

do in a way that benefits the sophisticated player in the long run” (Camerer et al. 2002, p.139). 
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Brandts and Cooper (2006) and Brandts, Cooper, and Fatas (2007) provided experimental evidence 

that endogenously emerging “leaders” among the players, fulfilling the function of a strategic teacher, 

could pull other players out of an inefficient equilibrium towards an efficient one in a coordination 

game with multiple Pareto rankable equilibria. Further experimental results on strategic teaching in 

similar games, with more investigation into how the form of the payoff matrix could affect strategic 

teaching, as well as successful versus unsuccessful teaching, could be found in Hyndman, Terracol, 

and Vaksmann (2009) and Hyndman et al. (2012), among others. Of particular interest is the finding 

reported by Hyndman et al. that strategic teaching is much more difficult when players have limited 

information about each other’s payoffs. This is consistent with our findings that Condition 

Heterogeneous yielded less efficient outcomes than Condition Homogeneous. Note also that our 

experimental design offers additional evidence about strategic teaching in the case where reputation 

building is not possible, because individual players in our setup could not be identified. 

To assess the effectiveness of strategic teaching, we say that strategic teaching behavior of degree r > 

0 occurred in round t > r with player i, if and only if, in round t-k for every k = 0,1,2…r-1, i chose a 

route that was ranked higher than the ex post best response route to round t-k-1 (with the ranks 

defined as in the previous section). For a simple example, consider r = 1. According to our definition, 

strategic teaching behavior of degree 1 occurred in round t > 1 with player i if and only if i chose 

carpool or shuttle in round t while the ex post best response to t –1 was the private route, or if i chose 

shuttle in round t while the ex post best response to t – 1 was carpool.4 Lastly, to abuse notation, 

define as strategic teaching behavior of degree 0 an observation in which a player’s ex post best 

response to the previous round was private route or carpool, but the player’s choice was ranked the 

same or lower than the ex post best response. That is, strategic teaching of degree 0 occurred when a 

player could have exhibited strategic teaching behavior but did not do so. 

Note that a player might exhibit strategic teaching of a positive degree in round t if she believed that a 

sufficient number of other players would have switched decisions to make a higher ranked choice 

optimal in round t. However, regardless of the player’s motivation or belief, the effect of her decision 

on other players would have made a similar impact, all else being equal. Thus, we shall not examine 

such a distinction in our analysis. 

— Insert Table 7 around here — 

                                                           
4 Other definitions are possible, such as restricting strategic teaching behavior to be choosing the shuttle when the ex 
post best response to the previous round was otherwise; or restricting that the ex post best response to the previous 
round had to be the private route. The qualitative insights from the analysis remain similar with these alternative 
definitions. 
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Table 7 presents the percentages of strategic teaching decisions of different degrees by condition and 

type of equilibrium convergence. First, observe that the number of observations with which strategic 

teaching was definable is smaller among the five groups that converged towards the efficient 

equilibrium than the other five groups in Condition Homogeneous (989 vs. 2374). This is because the 

ex post best responses to previous rounds were much more often the shuttle among the former groups, 

when strategic teaching would be undefinable. But whenever strategic teaching could be exhibited, it 

was not uncommon; in each of the three types of groups in Table 7 there were nine or more instances 

of strategic teaching of at least 15 degrees. Nevertheless, when comparing among types of groups, it 

is evident that strategic teaching of a positive degree occurred considerably more frequently among 

groups that converged towards the efficient equilibrium than either of the other two types of groups 

(38% vs. 13.7% and 17% for the other two types of groups). Pairwise t-tests with group as the unit of 

analysis confirm this statistically (p < 0.01 in both relevant tests). Hence, whenever a player could 

exhibit strategic teaching, a player within the groups that eventually converged towards the efficient 

equilibrium was significantly more likely to do so in comparison with other groups.  

Further analyses lead to the following findings: 

(a) Strategic teaching was typically not successful. To illustrate this point, define a player’s strategic 

teaching in a round as successful whenever the ex post best response of that player in the next 

round turned out to be ranked higher than that in the current round. Given this definition, we find 

that, conditioned on strategic teaching behavior having occurred, it would be successful 19.7% of 

the times in Condition Homogeneous among groups that converged towards the efficient 

equilibrium; this percentage decreased sharply to only 2.2% with the other groups in Condition 

Homogeneous and 4.6% among all groups in Condition Heterogeneous. Pairwise t-tests with 

group as the unit of analysis confirm that this success rate variable was significantly higher 

among the groups that converged towards the efficient equilibrium than either of the other two 

types of group (p < 0.05 in both tests). To further highlight these differences, among the five 

groups that converged towards the efficient equilibrium in Condition Homogeneous, the success 

rate of strategic teaching in a group was at least 6.4% and could be as high as 61.8%. On the other 

hand, in four of the groups that converged towards the inefficient equilibrium in Condition 

Homogeneous, and in three of the groups in Condition Heterogeneous, no instance of strategic 

teaching was successful by our definition. 

(b) Strategic teaching behavior adversely affected a player’s payoff. We find that the number of 

times a player exhibited strategic teaching was significantly and positively correlated with her 



23 
 

mean per round transportation cost, with correlation coefficients of 0.77, 0.89, and 0.85, 

respectively (p < 0.01 in all three correlation analysis) for the three types of groups in Table 7 

from left to right. 

(c) Analysis of strategic teaching by blocks of ten rounds shows that groups that converged towards 

the efficient equilibrium exhibited strategic teaching significantly more often than either of the 

other two types of groups in block 3, but not in blocks 1 and 2 (using t-tests with group as the unit 

of analysis and significance criterion p < 0.05). It appears that groups converged towards 

efficiency because of persistent strategic teaching behavior during the first 30 rounds or so, after 

which all players’ choices were successfully migrated towards the shuttle. 

6.5. A Conceptual Model of Route Choice in the Experiment 

Our analysis of the dynamics of play offers a wealth of information about behavioral patterns in the 

experiment. In general, as the session progressed, route choice distribution stabilized with a decrease in 

switching frequencies. Meanwhile, convergence was relatively more “noisy” or unstable in Condition 

Heterogeneous than in Condition Homogeneous, resulting in switching occurring about twice more 

frequently overall in the former condition.  

Subjects seemed to choose routes randomly in round 1 (Table 1), and then often made choices as if they 

were best responding to other players’ choices in the previous round (Table 6). In addition, in Condition 

Heterogeneous they were more likely to use the private route the lower their cost of traversing that route. 

A minor proportion of choices were not best responses to the previous round, but were instead the routes 

of more efficient equilibria. In relation to previous related literature, we call such behavior strategic 

teaching, as it could lead the group towards the most efficient equilibrium; in particular, the carpool was 

often used as a transitional choice in strategic teaching. Strategic teaching was in general not successful, 

but nevertheless in Condition Homogeneous it helped half of the groups to finally converge towards the 

efficient equilibrium. The ten groups in Condition Heterogeneous had not benefitted from the strategic 

teaching behavior among them to the same extent as in Condition Homogeneous; this result is consistent 

with previous findings that strategic teaching was much more difficult when players had limited 

information about each other’s payoffs.  

Summarizing our findings, we outline a conceptual model of route choice in the cost-sharing experiment, 

whereby a player’s route choice in round t (t > 1) is primarily influenced by two classes of factors: 

(1) The “hypothetical cost” of each route in round t had the player chosen that route while all other 

players made the same choices as they had in round t-1. This is, in fact, the cost that determines 
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the player’s ex post best response to the previous round. We propose that the lower the 

hypothetical cost of a route, the more attractive the route is to the player. This influence is 

consistent with our observations that subjects tended to best respond to the previous round.  

(2) The “strategic teaching” utilities of routes that are higher-ranked than the best response to the 

previous round, over and above their hypothetical costs. We propose that, the higher the strategic 

teaching utility of a route, the more attractive the route is to the player. The utility could be 

affected by the player’s beliefs in the future payoffs that a choice of the associated route can yield 

through influencing others to migrate towards the efficient equilibrium. Thus, we conjecture that 

the strategic teaching utilities could be functions of t (since future payoffs generally decrease with 

t) and some summary statistics of the history of route choice distributions in the experiment, both 

of which might impact on the player’s belief. We also conjecture that those utilities are far more 

sensitive to individual differences than the impact of hypothetical costs; as a result, subjects in 

our experiment seemed to often best respond to the previous round in general (Section 6.3), but 

varied sufficiently in their tendency to exhibit strategic teaching that the groups in Condition 

Homogeneous differed dramatically in equilibrium convergence. 

A third class of factors may be considered, which denote the utilities of routes that are lower-ranked than 

the best response to the previous round, over and above their hypothetical costs. These factors can be seen 

as proxies for players’ tendency to choose “safer” routes than the best response to the previous round. 

They would have a major impact on observed data only among groups for which the best response to 

previous round was often the carpool or shuttle, i.e., groups that converged towards the efficient 

equilibrium. But, as discussed earlier in Section 6.3, those groups would be expected to have particularly 

low values for these utilities. Thus, for the sake of parsimony, a third class of factors may not be 

necessary for a descriptive model of subjects’ decision making in our context. 

Previous experimental studies of congestible network games have employed stochastic learning models 

that involve hypothetical costs and a stationary presence of noises in decision making (e.g. Mak et al. 

2014). However, the noises in decision making often decreased rapidly at the end of the session in 

Condition Homogeneous, suggesting that previous models may need to be adjusted for the present context 

with positive externalities. Modelling the strategic teaching utilities poses another level of challenge, as 

an in-depth understanding probably needs data about subjects’ belief regarding the future impact of route 

choices. Further research is required to clarify these issues. 

7. Conclusions 
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Our study makes a threefold contribution to the understanding of dynamic systems in which groups of 

agents repeatedly interact through their decisions. To our best knowledge, this is the first experimental 

study on directed transportation networks with positive externalities induced by cost-sharing. As our 

results clearly demonstrate, it is important to examine how human subjects interact with one another in 

such scenarios, and how the interactions might evolve with time. On the other hand, previous 

experimental research on directed networks focused on negative externalities induced by congestion. Our 

research complements that stream of studies and initiates new directions with potential applications that 

cut across management science, transportation science, and economics.  

Secondly, our findings shed light on the factors that drive convergence to social efficiency in systems 

with positive network externalities in which reputation building is not possible. Specifically, we highlight 

the crucial role of an “intermediate” equilibrium choice in the form of carpool, as well as strategic 

teaching behavior by which a player makes a more efficient equilibrium choice than her best response to 

other players in the previous round. These results are in full agreement with those reported by Murphy et 

al (2006), where the binary choice that each group member has to make in real time is whether to let her 

group payoff increasing over time or be the first to defect and thereby rip a considerably higher payoff.  

Thirdly, the fact that nine of the ten groups in Condition Heterogeneous converged towards the inefficient 

equilibrium, and that the dynamics were more unstable compared with Condition Homogeneous, points to 

the behaviorally adverse effect of non-transparent cost functions among players (see Steiger & Zultan 

2013 on comparison of different degrees of transparency). Note that the “poor” performance in Condition 

Heterogeneous could not be due to heterogeneous costs per se; as Ruffle et al. (2010) find out, 

heterogeneous payoff functions might actually lead to higher efficiency if they were transparent common 

knowledge. It appears to be incomplete cost information among players that contributed towards 

inefficiency and instability in Condition Heterogeneous. This conclusion is consistent with Hyndman et al. 

(2012)’s findings that strategic teaching was more difficult when players had limited information about 

each other’s payoffs. 

Future Directions. A limitation of the current study is the lack of direct evidence on the cognitive 

processes of subjects, especially regarding strategic teaching. Hence, a potential direction of future 

research is to elicit beliefs of subjects after each round and then analyze them in conjunction with their 

choices (see, e.g., Hyndman et al. 2009, 2012); nevertheless, a note of caution is that belief elicitation 

may itself have an effect on subjects’ behavior in the experimental game (Ruström & Wilcox 2009). A 

further possibility is to carry out in-depth surveys or interviews with subjects at the end of the session to 

obtain more process data. A second major direction is to investigate behavior in the context of other 
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modes of cost-sharing in transportation networks. One possibility is to render the protocol of play 

sequential (rather than simultaneous) by letting players choose routes one after another within the same 

game, with some degree of observability over predecessors’ choices. Thirdly, experimental investigations 

might reach out to networks with richer architecture where link costs exhibit a combination of congestion-

induced negative externalities and cost-sharing-induced positive externalities. It would be fruitful to 

examine how these two types of common externalities might interact with each other in their impact on 

efficiency. Finally, success or failure by strategic teachers depends critically on group size, possibility of 

reputation building, and cost structure. This is also evident in research on the volunteer’s dilemma 

(Diekmann 1985; Otsubo & Rapoport 2008), where only a single player (“volunteer”) is required to 

drastically change the group outcome. Additional research that systematically manipulates one or more of 

these parameters is warranted. 
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Table 1. Number of subjects choosing each route in round 1 by group and condition.*  

 Condition Homogeneous  Condition Heterogeneous 

Group Private Carpool Shuttle  Private Carpool Shuttle 

1 3 3 4  5 2 3 

2 4 5 1  3 5 2 

3 4 4 2  2 6 2 

4 0 4 6  4 4 2 

5 3 4 3  2 5 3 

6 6 0 4  3 3 4 

7 4 3 3  2 3 5 

8 3 3 4  5 1 4 

9 5 4 1  3 7 0 

10 2 4 4  4 4 2 

Total 34 34 32  33 40 27 

*Shaded cells indicate the five groups that eventually converged towards the shuttle equilibrium. 

 

Table 2. Choice percentages in rounds 41-50 by group and condition.*  

 Condition Homogeneous  Condition Heterogeneous 

Group Private Carpool Shuttle  Private Carpool Shuttle 

1 96 3 1  95 0 5 

2 99 0 1  98 1 1 

3 100 0 0  99 1 0 

4 10 0 90  85 14 1 

5 0 0 100  91 9 0 

6 98 2 0  99 1 0 

7 1 0 99  99 0 1 

8 89 10 1  54 45 1 

9 0 0 100  94 6 0 

10 0 0 100  80 19 1 

*Shaded cells indicate the five groups that converged towards the shuttle equilibrium. 
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Table 3. Choice percentages by block and condition.*  

 
Condition Homogeneous  

(Group 4, 5, 7, 9, 10) 

Condition Homogeneous  

(Group 1, 2, 3, 6, 8)  

Condition Heterogeneous  

(All ten groups) 

Round Private Carpool Shuttle Private Carpool Shuttle Private Carpool Shuttle 

1-10 45.0 31.2 23.8 48.8 18.8 32.4 53.6 31.6 14.8 

11-20 32.8 24.0 43.2 81.4 7.2 11.4 78.7 16.2 5.1 

21-30 12.0 16.8 71.2 93.2 2.8 4.0 88.0 9.0 3.0 

31-40 2.8 1.0 96.2 95.8 3.0 1.2 90.7 7.5 1.8 

41-50 2.2 0.0 97.8 96.4 3.0 0.6 89.9 9.2 0.9 

Overall 19.0 14.6 66.4 83.1 7.0 9.9 80.2 14.7 5.1 

* The entries for Condition Homogeneous were listed separately for the five groups that converged towards the shuttle equilibrium (shaded cells) 
and the five groups that converged towards the private route equilibrium. 
 
Table 4. Mean round-to-round change in number of subjects choosing each route by block and condition,* with similar distinction for the groups 
as in Table 3. 

 
Condition Homogeneous  

(Group 4, 5, 7, 9, 10) 

Condition Homogeneous  

(Group 1, 2, 3, 6, 8)  

Condition Heterogeneous  

(All ten groups) 

Round Private Carpool Shuttle Private Carpool Shuttle Private Carpool Shuttle 

1-10 0.13 -0.13 0 0.24 -0.2 -0.04 0.44 -0.21 -0.23 

11-20 -0.22 0.08 0.14 0.22 -0.04 -0.18 0.11 -0.11 0 

21-30 -0.08 -0.34 0.42 0.1 -0.04 -0.06 0.06 -0.01 -0.05 

31-40 -0.08 0 0.08 0.04 -0.02 -0.02 0.01 -0.01 0 

41-50 0 0 0 -0.02 0 0.02 0.01 -0.02 0.01 

Overall -0.05 -0.08 0.13 0.12 -0.06 -0.06 0.13 -0.07 -0.05 

* The entries for Round 1-10 aggregate changes from round 1 to 2, 2 to 3 … up to 9 to 10. The entries for Round 11-20 aggregate changes from 
round 10 to 11, 11 to 12 … up to 19 to 20. The entries for the other three blocks are similarly aggregated as for Round 11-20. 
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Table 5. Percentage frequencies of ex post best responses by block and condition, with similar distinction for the groups as in Table 3. 

 
Condition Homogeneous  

(Group 4, 5, 7, 9, 10) 

Condition Homogeneous  

(Group 1, 2, 3, 6, 8)  

Condition Heterogeneous  

(All ten groups) 

Round Private Carpool Shuttle Private Carpool Shuttle Private Carpool Shuttle 

1-10 82.8 14.6 2.6 87.4 0 12.6 89.3 10.5 0.2 

11-20 45.0 17.8 37.2 97.4 0 2.6 99.3 0.7 0 

21-30 23.0 14.6 62.4 100 0 0 100 0 0 

31-40 0 0 100 100 0 0 100 0 0 

41-50 0 0 100 100 0 0 98.3 1.7 0 

Overall 30.2 9.4 60.4 97.0 0 3.0 97.4 2.6 0.0 

 

Table 6. Percentage frequencies of route choices relative to ex post best response by block and condition, with similar distinction for the groups as 
in Table 3.* 

 
Condition Homogeneous  

(Group 4, 5, 7, 9, 10) 

Condition Homogeneous  

(Group 1, 2, 3, 6, 8)  

Condition Heterogeneous  

(All ten groups) 

Round Lower Equal Higher Lower Equal Higher Lower Equal Higher 

2-10 0.4 59.1 40.4 1.8 58.7 39.6 1.8 62.7 35.6 

11-20 2.2 80.0 17.8 1.4 83.8 14.8 0.6 78.4 21.0 

21-30 5.4 73.6 21.0 0.0 93.2 6.8 0.0 88.0 12.0 

31-40 3.8 96.2 0.0 0.0 95.8 4.2 0.1 90.6 9.3 

41-50 2.2 97.8 0.0 0.0 96.4 3.6 0.8 90.1 9.1 

Overall 2.9 81.8 15.4 0.6 86.1 13.3 0.6 82.4 17.0 

* A choice being “lower” (“higher”) means that it is ranked lower (higher) than the ex post best response; in other words, its associated 
equilibrium is less (more) efficient than that of the best response. Note also that the proportions in the “Lower” (“Higher”) columns could be partly 
affected by whether there were many observations with private route (shuttle) as ex post best response – there were  no lower (higher)-ranked 
route to choose in those observations, but they still contributed towards the base count. See Section 6.3 for more details. 
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Table 7. Percentage frequencies of strategic teaching decisions by degree and condition, with similar 

distinction for the groups as in Table 3. The “no. of obs” entry denotes the number of observations with 

which strategic teaching was definable, which forms the base for the calculation of corresponding 

percentage frequencies. 

Degree 

Condition Homogeneous 

(Group 4, 5, 7, 9, 10) 

No. of Obs = 989 

Condition Homogeneous 

(Group 1, 2, 3, 6, 8) 

No. of Obs = 2374 

Condition Heterogeneous 

(All groups) 

No. of Obs = 4899 

0 62.0 86.3 83.0 

1 15.3 5.5 10.1 

2 8.1 2.6 3.2 

3 4.4 1.4 1.3 

4 2.6 0.9 0.8 

5 1.8 0.5 0.5 

6 1.2 0.4 0.3 

7 0.9 0.4 0.2 

8 0.7 0.3 0.1 

9 0.6 0.2 0.1 

10 0.3 0.2 0.1 

11 0.2 0.1 0.0 

12 0.1 0.1 0.0 

13 0.1 0.1 0.0 

14 0.1 0.1 0.0 

≥ 15 1.5 0.8 0.2 
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Figure 1. The decision screen in Condition Homogeneous. 
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Figure 2. Route choices of the ten subjects in Group 4 of Condition Homogeneous by round and player. 

Each of columns 2 to 11 registers the choices of one subject.  d – private; c – carpool; s – shuttle 

Round sbj_01 sbj_02 sbj_03 sbj_04 sbj_05 sbj_06 sbj_07 sbj_08 sbj_09 sbj_10 

1 c s c s c s s s c s 

2 c s d c c s s s s s 

3 s s d c s s s s c c 

4 s d c s s s s s d s 

5 d s s c s s s d s d 

6 s s d s d s s d c s 

7 d s c d d s s d d s 

8 d d d d d s s d d s 

9 d d d c d s s d d c 

10 d d c d d s s d d c 

11 d d c d d d s d d d 

12 d d c c d d s d d s 

13 c d d d d c s d d s 

14 d d d d s d s d d c 

15 d d d d d d s d d c 

16 d d d c d d s d d c 

17 d d c d d d s d d d 

18 d d d d d d s d d d 

19 d d d d d d s d d d 

20 d d s d d s s d s d 

21 d d d d s s s s d d 

22 s d d c s s s d d d 

23 s d c d s s s d d d 

24 s d d s s s s s d s 

25 s d d s s s s s d s 

26 s d d s s s s s d s 

27 s d d d s s s s d s 

28 s d d d s s s s d s 

29 s s d d s s s d d s 

30 s d d s s s s s s s 

31 s s d s s s s s s s 

32 s s d s s s s s s s 

33 s s d s s s s s s s 

34 s d c s s s s s s s 

35 s s d s s s s s s s 

36 s s d s s s s s s s 

37 s s d s s s s s c s 

38 s s d s s s s s s s 

39 s s d s s s s s s s 

40 s s d s s s s s s s 

41 s s d s s s s s s s 

42 s s d s s s s s s s 

43 s s d s s s s s s s 

44 s s d s s s s s s s 

45 s s d s s s s s s s 

46 s s d s s s s s s s 

47 s s d s s s s s s s 

48 s s d s s s s s s s 

49 s s d s s s s s s s 

50 s s d s s s s s s s 
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Figure 3. Number of subjects choosing each route by group and round: Condition Homogeneous.  
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Figure 4. Number of subjects choosing each route by group and round: Condition Heterogeneous.  
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Figure 5. Percentage of subjects who switched routes by round, type of convergence (for groups in 

Condition Homogeneous), and condition. 

 

 

 

 
               Condition Homogeneous, groups that converged towards the shuttle equilibrium 

  Condition Homogeneous, groups that converged towards the private route equilibrium  

  Condition Heterogeneous, all groups            
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Appendix A: Instructions for Condition Heterogeneous 

Instructions 

Welcome to an experiment on cost sharing. During the present experimental session, you will be asked to 

make a large number of decisions and so will the other participants. Your decisions, as well as the 

decisions of the other participants, will determine your monetary payoff according to a procedure that will 

be explained below. 

Please read the instructions carefully. If at any time during the session you have questions, please raise 

your hand and one of the experimenters will come to assist you. You may refer to the instructions during 

any time in the session. 

Please note that from now on all communication between the participants is prohibited. If the participants 

communicate with one another in any shape or form, the session will be terminated. Please note, too, that 

the experiment is self-paced. Therefore, you may anticipate short delays while other participants in your 

group determine and then type in their decisions. 

Description of the Task 

Consider yourself to be one of 10 commuters, each owning a car. In this experiment, you will be asked to 

participate in a task that simulates the decisions commuters often face in choosing among alternative 

modes of transportation between a given origin (say, a convention center) and a given destination (say, a 

restaurant for the conference dinner).The game consists of many identical rounds. Each round is described 

as follows. 

The commuters (hereafter called “players”) will be asked to make their decisions one by one following 

an order which is pre-determined randomly by the computer. Each player has to choose one of three 

alternatives: 

● O→D:  Drive your car by yourself from the origin (denoted by the letter O) to the destination (denoted 

by the letter D). The cost of traveling by yourself in your own car (called the OD cost) is randomly drawn 

from the interval [16,24], i.e., it can take any value from 16 to 24 with equal probabilities. The other 

players’ OD costs are also randomly drawn from the interval [16,24]. At the beginning of each round, 

every player’s OD cost is independently determined in this way, and each player is informed of her own 

cost only. You don’t know the exact value of other players’ OD cost and they don’t know yours as well. 

The OD costs are re-determined by random draws from the interval [16,24] at the beginning of each 

round, and so may be the same or different from round to round. 
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● O→CP→D: Drive your car from the origin to a nearby carpool lot, park your car, and then travel with 

the carpool to your destination. You pay $10.00 for parking your car. In addition, the cost charged by the 

carpool is $70.00, which is divided equally by the number of players who choose the carpool. The 

capacity of the carpool is 10.  In other words, you share equally the cost of public transportation. Thus, 

your travel cost from O to D through route O→CP→D is 

 , 

where m(CP→D) is the number of players who share the carpool. 

● O→SH→D: Drive your car from the origin to a shuttle station, park your car, and travel with the 

shuttle to your destination. There is no charge for parking your car in the shuttle station. The total cost of 

the shuttle is $150.00, which is divided equally by the number of players riding the shuttle. The capacity 

of the shuttle is 10. Thus, your travel cost from O to D through route O→SH→D is             

, 

where m(SH→D) is the number of players who share the ride by the shuttle. 

This is a sequential game in which players make their decisions one by one. Each player will be assigned 

a different position in the sequence (from 1 to 10) at the beginning of each round. Then, each player will 

be asked to type in her decision when it is her turn to play. Moreover, when a player makes her choice, 

she has no information about the choices of the players who preceded her in the sequence.  The game will 

be iterated for 50 rounds; they only differ from each other in the assignment of the positions. 

Experiment Procedure 

At the beginning of each round, each of the 10 players will be presented with the following diagram. A 

message window will pop up to indicate the round number and your position in the sequence of choosing 

the mode of transportation. The position of each player will be randomly assigned by the computer, and in 

general will change from one round to another. During the experiment, each player will be assigned any 

given position the same number of times. 
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Please study the main screen above. The upper part of the screen is a sketch map of the traffic system. 

There are 10 cars parked in the origin; each is exhibited as a solid circle. When it is her turn to play, each 

player can either drive to the destination D (up arrow) and pay  her private OD cost, (for example as 

shown in the diagram, the OD cost is 18.6 in this round), drive to the carpool station CP (right arrow), 

park her car, and then take the carpool for a total cost of $10+$70/m(CP→D), or drive to the shuttle 

station SH (left arrow), park her car (for free), and then take the shuttle for a total cost of 

$150/m(SH→D). In the diagram, the number shown on the upper arrow is the OD cost for the current 

round. Each player has her own OD cost. In general, this cost will change across different rounds. 

On the screen, grey solid circles represent players who are waiting to be called to make their decision. 

Green solid circles represent players who have already made their decisions. And the single red solid 

circle represents each player’s current position. After each player makes her decision, her red solid circle 

will turn to green. The middle of the screen shows a status bar (in yellow) that indicates the progress of 

the experiment. It tells you how many rounds have been completed and the total number of rounds. 



44 
 

In the lower part of the screen there are two tables. The top table on the right, labeled infor, shows the 

group size (which is 10) and your position in the sequence. The bottom table is where you make your 

decision. Use the mouse to choose one of the three options. If you change your mind, please choose 

another option. Your decision will not register until you press the Confirm button (lower right). The left 

part of the lower screen, labeled Condition, tells you if you have any information about the decisions of 

other players. Here it says No Information, meaning that the decisions of the other players are not 

displayed. 

Once all the ten players type in their decisions and confirm them, a new screen will pop up to display the 

outcome of the round. This screen shows the number of players who have chosen each of three routes, the 

cost associated with each decision, your decision, your cost for the round, and your payoff in points. See 

an example in screen below.  

Please study the outcome screen below. 

 

After clicking the “Click here to play the next round” at the bottom of this screen, a window will pop 

up instructing the player to wait for all the players to review the outcome of the round. Then, a new round 

will start. The game will be repeated in this way for 50 rounds. The only difference from one round to 

another is in the order of the players that are assigned randomly by the computer. 

How will you be paid? 

When all the 50 rounds have been completed, the computer will choose randomly 5 payoff rounds for 

each player.  Payoff of each round will then be converted into US dollars at the rate: 
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For example, if your cost in a chosen round is $15, your payoff in that round will be $(60/15) = $4. Your 

final payoff will be the sum of the payoffs from the 5 randomly selected rounds. In addition, you will be 

paid $5.00 for your participation in the experiment. The experimenter will come up to your cubicle and 

write your total payoff on your receipt. You’ll complete the receipt, sign it up, and then be paid cash by 

one of the experimenters. 

Please place the instructions on the table in front of you to indicate that you have completed reading them. 

The experiment will begin shortly. Please remember that no communication is allowed during the 

experiment. If you encounter any difficulties please raise your hand and you will be responded to by the 

experimenter. 

Thank you! 
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Appendix B: Further Analysis on Switching Frequencies 

The following table lists the group average of the number of switches in different directions, by condition and the type of equilibrium convergence: 

  Switches towards a more efficient equilibrium Switches towards a less efficient equilibrium 

Condition Convergence p to c p to s c to s Total c to p s to p s to c Total 

Homogeneous Private 12 10.8 2.8 25.6 15.6 12.8 3.6 32 

Homogeneous Shuttle 11.4 10.4 9.6 31.4 11.4 7.8 5.8 25 

Heterogeneous Private (mostly) 38.2 7.9 4.3 50.4 41.9 10.1 4.6 56.6 

 

Note: The “Convergence” entry indicates the type of equilibrium which the groups converged towards, where “Private” denotes the inefficient 

equilibrium with all players choosing Private and “Shuttle” denotes the efficient equilibrium with all players choosing Shuttle. For the labeling of 

the switches, d denotes private, c denotes carpool, s denotes shuttle. 

 

We further analyze whether the total number of switches towards a more versus less efficient equilibrium (i.e., columns 6 and 10) differs by the 

type of equilibrium convergence and the experimental condition. Paired t-tests with group as the unit of analysis show that: 

1. Among the groups in Condition Homogeneous that converged towards the inefficient equilibrium, as well as among the groups in Condition 

Heterogeneous, there were significantly more switches towards a less efficient than towards a more efficient equilibrium (p < 0.01 in both t-

tests). This confirms the intuition that in those groups, switches by subjects brought about convergence to inefficiency. 

 

2. Among the groups in Condition Homogeneous that converged towards the efficient equilibrium, there is no significant difference between the 

switches towards a less efficient and towards a more efficient equilibrium (p = 0.07). As discussed in the main text, switches occurred more 

frequently in the early part of the session. This result is consistent with the high instability in the early rounds among groups that eventually 

converged towards the efficient equilibrium: there could be a tug of war between the tendency towards the efficient and inefficient equilibria, 

until a tip of the balance in the middle of the session. 
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Further t-tests, however, show that the frequency of neither type of switches differs significantly between groups with different types of 

convergence in Condition Homogeneous (p > 0.3 for both types of switches). That is, equilibrium convergence was characterized more by the 

difference between the types of switches than by the absolute number of the switches. 

 

 


