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Meta-analysis of genome-wide association studies
provides insights into genetic control of tomato
flavor
Jiantao Zhao 1, Christopher Sauvage1,6, Jinghua Zhao2,7, Frédérique Bitton1, Guillaume Bauchet1,8, Dan Liu3,

Sanwen Huang3,4, Denise M. Tieman5, Harry J. Klee5 & Mathilde Causse 1

Tomato flavor has changed over the course of long-term domestication and intensive

breeding. To understand the genetic control of flavor, we report the meta-analysis of

genome-wide association studies (GWAS) using 775 tomato accessions and 2,316,117 SNPs

from three GWAS panels. We discover 305 significant associations for the contents of

sugars, acids, amino acids, and flavor-related volatiles. We demonstrate that fruit citrate and

malate contents have been impacted by selection during domestication and improvement,

while sugar content has undergone less stringent selection. We suggest that it may be

possible to significantly increase volatiles that positively contribute to consumer preferences

while reducing unpleasant volatiles, by selection of the relevant allele combinations. Our

results provide genetic insights into the influence of human selection on tomato flavor and

demonstrate the benefits obtained from meta-analysis.
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The deterioration of tomato flavor has been a source of
complaint from consumers for decades1. During long-term
domestication and breeding history, flavor has not been a

priority, in contrast to yield, disease resistance, and postharvest
shelf life1,2. However, flavor is one of the most important traits
for improving tomato sensory quality and consumer accept-
ability3. Flavor is centrally influenced by sugars, acids, amino
acids and a diverse set of volatiles4–6. Most of these compounds
are quantitatively inherited as shown by many QTL studies but
only a few QTLs have been positionally cloned7. Genome-wide
association studies (GWAS) have detected many significant
associated loci for tomato flavor related traits6,8–12 However,
reducing a QTL to a causative gene is difficult and only a few
candidate genes have been functionally validated7. The under-
lying genetic control of tomato flavor is still incomplete and
remains an important breeding target.

Meta-analysis of genome-wide associations is powerful in
dissecting complex human diseases13,14. A recent meta-analysis
in cattle stature also demonstrated its power in non-human
species15. However, to the best of our knowledge, no GWAS
meta-analysis has been reported in major crops, despite the
increasing number of GWAS studies in major crops, such
as rice. To date, the genomes of over 500 tomato accessions
have been fully sequenced6,12,16–19, making it possible to

perform genotype imputation20,21 and subsequent meta-
analysis of GWAS using summary data14 to decipher the
polygenic architecture of agronomic traits. In this study, we
perform a meta-GWAS on 775 tomato accessions and 2,316,117
SNPs and discover 305 significant associations for diverse
flavor-related traits. Our results provide genetic insights into
tomato flavor.

Results
Meta-analysis. Here we report the first meta-analysis of GWAS in
tomato using results of three publicly available GWAS panels: 163
tomato accessions from panel S8, 291 accessions from panel B11,
and 402 accessions from panel T6 (Fig. 1). We analyzed a large set
of tomato flavor-related quality chemicals, including sugars,
organic acids, amino acids, and volatiles measured in each of
these panels.

First, we used IMPUTE2 software22 to increase the genome-
wide SNP densities of panel S8 and panel B11, which were
genotyped using SNP arrays (Online methods). After quality
control (Supplementary Figs. 1–3, Supplementary Tables 1 and 2,
Supplementary Data 1–3), a total of 209,152 and 252,414 SNPs
was retained for panel S and B, respectively. Imputation greatly
increased the density of genomic coverage (Supplementary Fig. 4)
and revealed a similar genetic population structure compared

Panel S
N = 163 with 28 S.L, 119 S.C and 16 S.P

Panel B
N = 291 with 95 S.L, 145 S.C and 51 S.P

(further divided into six groups)

Panel T
N = 402 with 48 modern, 46 transitional, 27

S.C, 27 S.P and 236 heirloom varieties

Genotype Phenotype

Whole-genome
sequencing

SOLCAP & CBSG
genotyping array

9013 SNPs

SOLCAP
genotyping array

5995 SNPs

Genotype imputation in IMPUTE2
Filer with HWE ≥0.000001, missing rate ≤

0.10 and missing call rate ≤0.10
Imputation quality threshold ≥0.60

GWAS panel S
EMMAX BN kinship + DAPC

GWAS panel B
EMMAX BN kinship + DAPC

Meta-analysis
Metal for all SNPs &

Metasoft for SNPs with heterogeneity I2 >25%

305 significant associated loci
211 of which were new

24 were eQTLs from TWAS

Gene ontology analysis
agriGO for singular enrichment

analysis

GWAS panel T
EMMAX BN kinship + DAPC

2 sugars
2 organic acids

2 sugars
2 organic acids

2 sugars
2 organic acids

NA

NA 17 volatiles

10 amino acids10 amino acids
Missing rate
<10%

2,014,488 SNPs
MAF >0.05

327,436 SNPs
MAF ≥0.021

224,097 SNPs
MAF ≥0.037 17 volatiles

Candidate gene annotations
LocusZoom for local zoom in plot

TomExpress and tomato express atlas for
expression patterns

37 novel candidate genes
worthy functional validation

Allelic combinations
Possibilities to significantly increase sugars,
a moderate content of organic acids, high
intensity of volatiles contributing to liking
while reducing those unpleasant volatiles

Fig. 1 Overview of study design. N, the number of individuals; S.L, S. lycopersicum; S.C, S. lycopersicum var cerasiforme; S.P, S. pimpinellifolium; Genotyping
arrays: SOLCAP, Solanaceae Coordinated Agricultural Project; CBSG, Centre of Biosystems Genomics consortium; HWE, Hardy–Weinberg equilibrium;
MAF, minor allele frequency; GWAS, genome-wide association study; EMMAX, Efficient Mixed-Model Association eXpedited; DAPC, Discriminant
Analysis of Principal Components; eQTL, expression quantitative trait locus; TWAS, transcriptome-wide association study
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with genotyped SNPs for both panels (Supplementary Figs. 5–12
and Supplementary Data 4–5). We used the Efficient Mixed-
Model Association eXpedited (EMMAX) software for association
tests for panel S and B23, as reported for panel T6 (Online
methods, Supplementary Fig. 13). After imputation, we observed
a similar or slight statistical increase in terms of the significance
and the number of associated loci compared with MLMM24

(Supplementary Figs. 14–44) and no genomic inflation (λ < 1) was
detected for most (83.3%) of the traits (Supplementary Data 6).
For panel T, which was characterized by 2,040,403 SNPs, the
association tests had also been performed using EMMAX6.

By combining the three separate studies, a total of 775 unique
tomato accessions were used for the final meta-analysis of 31
flavor-related traits (2 sugars, 2 organic acids, 10 amino acids, and
17 flavor-related volatiles). We performed the meta-analysis
with two software: METAL25 using a fixed effect model
and METASOFT26 for those SNPs where heterogeneity occurred
(I2 > 25) using a random effect model. Manhattan plots and
quantile–quantile (Q-Q) plots for all traits are shown in
Supplementary Figs. 45–75. Meta-analysis identified a total
of 305 significant loci (P < 4 × 10−7 for sugars, acids, and
volatiles; P < 2.99 × 10−6 for amino acids), among which 211
were new (Supplementary Data 7). A total of 87 strong effect
meta-QTLs were identified with high probability (P < 10−9). Most
of these loci passed the suggestive thresholds in at least one panel
(Supplementary Figs. 14–75). Among the identified loci, 35 had a
moderate to strong heterogeneity (I2 > 25). We generated a local
SQLite dataset for tomato (Online methods) and provided the

LocusZoom plots for all the genome-wide significant associated
loci (Supplementary Figs. 76–123). Among the 305 loci, 24 loci
exhibited cis-eQTLs in a previous transcriptome-wide association
study12 in fruit tissue (Supplementary Data 7). Among the
211 associated loci, we identified 37 promising candidate genes
(7 with significant cis-eQTLs12) with functional annotations
related to the pathways of flavor chemicals (Table 1).

We performed a singular enrichment analysis for all associa-
tions using agriGO27 (http://bioinfo.cau.edu.cn/agriGO/index.
php). Up to 10 biological processes were significantly enriched
(P < 0.005) (Supplementary Data 8). All these enriched processes
or groups were closely involved in flavor-related metabolites (in
terms of sugars, organic acids, amino acids, and volatiles), such as
UDP-glycosyltransferase activity, transferase activity, oxidoreduc-
tase activity, and carbohydrate metabolic processes.

Previously reported flavor-related loci in the three panels were
all strongly associated in the meta-analysis at a higher significance
level, such as Lin5 (Solyc09g010080, fructose, P= 6.16 × 10−10;
glucose, P= 4.30 × 10−10), TFM6 (Solyc06g072920, malate, P=
2.26 × 10−37), and Phytoene synthase 1 (Solyc03g031860, geranyl
acetone, P= 6.73 × 10−26)6,28. In meta-analysis of GWAS,
heterogeneity represents the genetic variations observed across
combined studies13. In this study, strong heterogeneity occurred
even for those loci with major effects, such as Lin5 (fructose, I2=
95.6, P= 1.05 × 10−10; glucose, I2= 95.3, P= 5.85 × 10−10). This
could be due to population structure, linkage disequilibrium,
phenotyping platforms, G × E interactions, etc.13. We then
focused on loci in regions showing low LD, where one or a few

Table 1 Summary of 37 candidate genes associated with main flavor-related traits in tomato fruita

Trait Chr BP Ref Alt P I2 Locus name Candidate gene

Citrate 1 1749084 c g 3.62 × 10−13 0 Solyc01g007090 Aluminum-activated malate transporter
Citrate 2 47904426 a g 4.30 × 10−13 97.9 Solyc02g084820 Glycosyl transferase group 1
Citrate 3 52998165 a c 1.84 × 10−15 0 Solyc03g083090 Glycogen synthase
Citrate 6 44955568 a c 7.46 × 10−27 98.4 Solyc06g072920 Aluminum-activated malate transporter
Citrate 7 63601724 t g 4.70 × 10−12 0 Solyc07g055840 Citrate synthase
Fructose 1 3327330 a g 6.37 × 10−11 0 Solyc01g009150 Glycosyl hydrolase
Fructose 5 63485334 c g 4.68 × 10−10 0 Solyc05g053400a Glucosyltransferase
Fructose 7 63757414 a c 4.28 × 10−09 0 Solyc07g055840 Citrate synthase
Fructose 8 64470216 a g 2.33 × 10−10 96.2 Solyc08g081420 Glycosyltransferase-like protein
Fructose 10 422707 a t 6.27 × 10−10 0 Solyc10g005510a Glyceraldehyde-3-phosphate dehydrogenase
Fructose 10 65465775 t c 6.84 × 10−09 0 Solyc10g086720 Fructose-1 6-bisphosphatase class 1
Glucose 1 1998383 a g 2.36 × 10−10 0 Solyc01g007910 Succinyl-CoA ligase
Glucose 2 43844073 t c 2.87 × 10−09 96.7 Solyc02g079220 Solute carrier family facilitated glucose transporter member 8
Glucose 4 911809 a g 6.62 × 10−09 0 Solyc04g007160 Alpha-glucosidase
Glucose 8 58158082 a g 4.99 × 10−08 0 Solyc08g069060 Beta-1 3-galactosyltransferase 6
Glucose 10 332069 t g 1.20 × 10−09 0 Solyc10g005510a Glyceraldehyde-3-phosphate dehydrogenase
Malate 1 2650772 t c 2.08 × 10−15 0 Solyc01g008550 Cinnamoyl CoA reductase-like protein
Malate 9 72364359 a t 1.34 × 10−15 0 Solyc09g098590 Sucrose synthase
Malate 11 55879120 a c 7.14 × 10−16 0 Solyc11g072700 Glycosyltransferase-like protein
Malate 12 1824226 t g 1.75 × 10−19 0 Solyc12g008430 Malic enzyme
Asparagine 2 54365596 a g 3.72 × 10−10 94 Solyc02g093550a Methyltransferase type 11
Asparagine 5 62468569 a g 8.92 × 10−09 0 Solyc05g052170 Acetyltransferase GNAT family protein
Asparagine 12 64463407 t c 1.13 × 10−09 0 Solyc12g089350 GDSL esterase/lipase
Aspartate 8 60307917 t c 6.35 × 10−09 0 Solyc08g076350 Abhydrolase domain-containing protein
Aspartate 11 4008385 t g 7.24 × 10−11 0 Solyc11g010960 Alcohol dehydrogenase
Aspartate 12 37536492 a t 9.16 × 10−08 0 Solyc12g044940a Short-chain dehydrogenase/reductase
Phenylalanine 11 4002767 t c 9.57 × 10−09 0 Solyc11g010960 Alcohol dehydrogenase
Proline 3 66798980 t g 2.39 × 10−09 0 Solyc03g117770a Serine incorporator 1
Serine 3 69913055 a g 3.06 × 10−14 0 Solyc03g121910 Threonine synthase
Geranyl acetone 2 40883244 a g 6.00 × 10−15 0 Solyc02g081330 Phytoene synthase 2
Hexenal 1 1083181 c g 1.45 × 10−10 0 Solyc01g006540 Lipoxygenase
Methyl salicylate 9 69293875 a g 2.34 × 10−19 0 Solyc09g089580 1-aminocyclopropane-1-carboxylate oxidase-like protein
1-penten-3-one 5 3036212 a g 7.07 × 10−09 0 Solyc05g008800b Lipid phosphate phosphatase 3
2-methyl-1-butanol 6 37782796 a g 5.50 × 10−09 0 Solyc06g059850 3-methyl-2-oxobutanoate dehydrogenase
6-methyl-5-hepten-2-one 3 3212583 t c 6.76 × 10−26 0 Solyc03g025720 Long-chain-fatty-acid--CoA ligase
6-methyl-5-hepten-2-one 4 60345897 a t 3.00 × 10−11 0 Solyc04g074360 UDP-glucuronosyltransferase
6-methyl-5-hepten-2-one 10 61007386 a g 9.28 × 10−09 0 Solyc10g079470 L-galactono--lactone dehydrogenase

aA total of 305 loci for main tomato flavor-related quality traits were identified by meta-analysis of 775 tomato accessions and 2,316,117 SNPs. For each association, associated traits, chromosome (Chr),
reference allele (Ref), alternative allele (Alt), the marker-trait association P value (P), heterogeneity I square (I2), locus name (International Tomato Annotation Group 2.4) and candidate genes are
shown. All SNP positions were aligned on the tomato reference genome version 2.50. The P-value is reported from the random-effect model performed using the inverse variance-weighted fixed-effect
model in METAL25. For those SNPs where heterogeneity occurs (I2 > 25, indicating moderate heterogeneity), we used the Han and Eskin random-effects model (RE2) implemented in METASOFT26. We
also treated those candidate genes as new if previous GWAS did not report them though the association might be significant
bSignificant cis expression quantitative trait loci (cis-eQTLs) from a previous transcriptome-wide association study (TWAS)12 mainly based on panel T
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candidate genes could be identified and regions with medium LD
but with candidate genes near the peak SNPs.

Meta-analysis for sugar content. We looked into six candidate
genes that were significantly associated both with fructose and
glucose. In addition to Lin5 and SSC11.1, we found four loci
from the meta-analysis that were significantly associated both
with fructose (Fig. 2a) and glucose content (Fig. 2b). These
associations are in strong linkage disequilibrium with four
candidate genes: alpha-L-fucosidase 1 (FUCA; chr3: 1,506,106;
fructose, P= 3.39 × 10−8; glucose, P= 1.46 × 10−8), fatty acid

elongase 3-ketoacyl-CoA synthase (KCS; chr5: 3,403,706, fruc-
tose, P= 2.57 × 10−8; chr5: 3,406,424, glucose, P= 1.49 ×
10−8), glucosyltransferase (GTF; chr5: 63,485,334; fructose, P=
4.68 × 10−10; glucose, P= 8.36 × 10−10), and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH; chr10:422,707, fructose,
P= 6.27 × 10−10; chr10:332,069, glucose, P= 1.20 × 10−9).
Notably, near the region of FUCA (up to ten genes), there
are two candidate genes (Solyc03g006870, phosphoglucomutase
and Solyc03g006860, fructokinase), which are also promising
candidate genes for association with fructose and glucose
content. Notably, GTF (P= 7.55 × 10−34) and GAPDH
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Fig. 2 Combinations of fructose and glucose alleles for the improvement of tomato sugar content. Only alleles that were significantly associated both with
fructose and glucose were analyzed. a, b Manhattan plot for meta-analysis of genome-wide association analysis of fructose (a) and glucose (b) content.
Candidates and previously identified genes were labeled in blue and red, respectively. FUCA, alpha-L-fucosidase 1; KCS, fatty acid elongase 3-ketoacyl-CoA
synthase; GTF, glucosyltransferase; GADPH, glyceraldehyde-3-phosphate dehydrogenase. c Allele distribution of fructose/glucose content at positions:
chr3:1,506,106, chr5:3,403,706, chr5:63,485,334, chr9:3,477,979, and chr10:422,707 that were both significantly associated with fructose and glucose in
S. lycopersicum var cerasiforme (cerasiforme), heirloom+ transitional (heir_trans), heir+modern (heir_mod), and the closest wild species S. pimpinellifolium
(pimpinellifolium) tomato accessions (see detailed information about groups in online methods). d Comparison of sugar content (fructose+ glucose)
between different tomato types in cerasiforme, heir_trans, heir_mod, and pimpinellifolium tomato accessions. eMean (±SE) content of fructose (black) and
glucose (brown) at different allele combinations in cerasiforme, heir_trans, heir_mod, and pimpinellifolium tomato accessions. Significant t-test P values are
also provided. f Correlation between the number of alternative alleles and sugar content. Fructose, glucose, and the sum of fructose+ glucose were colored
in brown4, cyan4, and purple. g Comparison of sugar content (fructose+ glucose) between all alternative and reference allele combinations at position
chr3: 1,506,106, chr5: 3,403,706, chr5: 63,485,334, chr9: 3,477,979, and chr10: 422,707. Center line and limits of box were the mean and interquartile
ranges. Error bars represent the maximum and minimum values. Whiskers indicate variability outside the upper and lower quartiles. Significant t-test
P values are also provided. Source data of Fig. 2c–g are provided in a Source Data file

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09462-w

4 NATURE COMMUNICATIONS |         (2019) 10:1534 | https://doi.org/10.1038/s41467-019-09462-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


(P= 7.84 × 10−17) also showed significant cis-eQTL in a related
transcriptome-wide association study12.

Interestingly, all these loci, except Lin5 (which falls in the
domestication sweep DW14919), were not associated with any
domestication or improvement sweep19. We compared the
frequencies of different combinations of alleles of these
candidate genes in relation to sugar content in wild, transitional,
heirloom and modern accessions (more detailed explanations
about group definition in Online Methods). All modern,
heirloom, and transitional accessions lost most of the diversity
of allele combinations that is present in the wild species group
(Fig. 2c). The sugar content of heirloom+ transitional (heir_-
trans) and heirloom+modern (heir_mod) groups were both
significantly lower than that of the wild species (Fig. 2d). Fruit
sugar content increased gradually as the number of alternative
alleles increased (Fig. 2e). We observed significant positive
correlations between the number of alternative alleles within
allele combinations and sugar content (Fig. 2f). In addition,
total sugar content (glucose+ fructose) of all alternative
allele combinations was significantly higher (P= 0.024) than
that of all reference allele combinations (Fig. 2g). Together,
these results provide insights into possibilities for tomato sugar
improvement.

Meta-analysis for organic acids. The meta-analysis also provided
several candidate genes for tomato fruit acid content. A strong
association (P= 2.26 × 10−37 was detected for malate at an
aluminum-activated malate transporter-like gene on chromo-
some 6, which has been reported to have a major effect on malate
content6,8,11, and was further validated as Al-Activated Malate
Transporter 9 (Sl-ALMT9)28. We found a strong significant
association for citrate (chr6: 44,955,568, P= 7.46 × 10−27),
which was 1.54 kb away from Sl-ALTM9 (Supplementary Fig. 45
and Table 1). We also identified a significant association with
another aluminum-activated malate transporter on chromosome
1 (chr1:1,749,084, P= 3.62 × 10−13; Supplementary Fig. 45 and
Table 1). The strong linkage with both citrate and malate indi-
cated that Al-Activated Malate Transporter also plays an impor-
tant role in regulating citrate content in tomato fruit.

Candidate genes directly involved in the biosynthesis of
citrate and malate were also identified. For example, we
identified an association with citrate on chromosome 7, 150 kb
away from a gene coding a citrate synthase (Solyc07g055840,
P= 4.70 × 10−12). This candidate gene was also significantly
associated with fructose (P= 4.28 × 10−09). For malate content,
we found one association on chromosome 12 (chr12: 1,824,226,
P= 1.75 × 10−19) close (36 kb) to a gene coding a malic enzyme
(Solyc12g008430, four genes away from the peak SNP). We then
took six candidate genes to analyze the relationships between
different allele combinations and citrate and malate content,
respectively (Fig. 3). The six candidate genes for citrate were
AIMT (Aluminum-activated malate transporter, chr1: 1,749,084,
P= 3.62 × 10−13), GTF (Glycosyl transferase group 1, chr2:
47,904,426, P= 4.30 × 10−13), GS (Glycogen synthase, chr3:
52,998,165, P= 1.84 × 10−15), AIMT (Aluminum-activated
malate transporter, chr6: 44,955,568, P= 7.46 × 10−27), CS
(Citrate synthase, chr7: 63,601,724, P= 4.70 × 10−12), and
Rubisco (Ribulose-1 5-bisphosphate carboxylase/oxygenase acti-
vase 1, chr10: 65,378,714, P= 5.35 × 10−09). The six candidate
genes for malate were GTF (UDP-glucosyltransferase, chr2:
48,509,791, P= 3.47 × 10−28), PDHB (Pyruvate dehydrogenase
E1 component subunit beta, chr4: 2,156,747, P= 4.45 × 10−17),
AIMT (Aluminum-activated malate transporter, chr6:
44,999,916, P= 2.26 × 10−37), SS (Sucrose synthase, chr9:
72,364,359, P= 1.34 × 10−15), ME (Malic enzyme, chr12:

1,824,226, P= 1.75 × 10−19), and GAPB (Glyceraldehyde-3-
phosphate dehydrogenase B, chr12: 64,816,056, P= 5.99 × 10−16).

Among the selected candidates, GTF on chromosome 2 and
AIMT on chromosome 6 were associated with both citrate and
malate (Fig. 3a, b). Both GTF and GS are located within
improvement sweeps (IS031 and IS044, respectively)19

and domestication sweeps (DS050 and DS175)19 were observed
for malate on PDHB and ME. For citrate and malate, the
modern tomato accessions presented very different allele
combinations than those in wild species and cherry tomatoes
(Fig. 3c, d). In comparison, the total number of allele
combinations for malate was approximately three times that
of citrate. The citrate content was significantly different
between some allele combinations (Fig. 3e). With the increase
in the total number of alternative alleles in different allele
combinations, the citrate content first increased gradually, with
a peak at n= 2, and then steadily decreased (Fig. 3f). The
malate content also showed a wide range of variation among
alleles (Fig. 3g and Supplementary Data 9). We observed a weak
but significant (P= 0.02) positive linear correlation (r= 0.16)
between the number of alternative alleles and malate content
(Fig. 3h).

These results demonstrated that citrate content was more
influenced by improvement sweeps while malate was more
influenced by domestication sweeps in the long-term breeding
history. In addition, citrate has much less allele diversity than
malate and a distinct pattern of relationships between the number
of alternative alleles and its content.

Meta-analysis for amino acids and volatiles. Many candidate
genes associated with amino acid and volatile contents were
identified. For example, we found a significant association for
serine on chromosome 3 (P= 3.06 × 10−14) (Supplementary
Fig. 57 and Table 1), which was only significant in panel B (P=
2.13 × 10−9) (Supplementary Fig. 26). The candidate gene is
annotated as a threonine synthase, an enzyme involved in the
serine biosynthesis pathway. For proline, we found one associated
locus (Solyc03g117770, P= 2.39 × 10−9), which was also reported
as a significant eQTL (P= 1.04 × 10−35)12. This gene is a serine
incorporator, and directly regulates serine content. One locus
corresponding to GDSL esterase/lipase (Solyc12g089350) was also
significantly associated with four amino acids (asparagine, GABA,
glutamine and threonine). For hexanal, we found the strongest
association corresponding to the lipoxygenase gene LoxC
(Solyc01g006540, P= 1.45 × 10−10), which encodes an enzyme
that is essential for synthesis of C6 and C5 fatty acid-derived
volatiles29,30. This candidate gene was also significantly associated
with (Z)-3-hexen-1-ol (P= 3.94 × 10−07). For 2-methyl-1-buta-
nol, the strongest association corresponded to a 3-methyl-2-
oxobutanoate dehydrogenase gene (Solyc06g059850, P= 5.50 ×
10−09), an enzyme associated with branched chain amino acid
metabolism.

We then looked at the possibility that significantly increasing
the overall intensity of volatiles contributed to consumer liking as
well as significantly reducing the overall content of unpleasant
volatiles by combining the strongest loci associated with the
contents of six volatiles (Fig. 4). The four volatiles positively
contributing to liking included geranyl acetone (chr3: 4,328,514,
P= 6.73 × 10−26), hexanal (chr1: 1,083,181, P= 1.45 × 10−10),
phenylacetaldehyde (chr4: 55,635,636, P= 5.59 × 10−22), and
6-methyl-5-hepten-2-one (chr3: 3,212,583, P= 6.76 × 10−26).
The two unpleasant (or negative) volatiles were guaiacol
(chr9: 69,299,940, P= 5.90 × 10−18) and methyl salicylate
(chr9: 69,293,875, P= 2.34 × 10−19) (Fig. 4a–f). Modern and
heirloom+ transitional accessions had the lowest allele diversity,
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especially compared with S. pimpinellifolium and cherry tomato
accessions (S. l. cerasiforme). Interestingly, we also found that
cherry tomatoes had the greatest diversity of allele combinations
and some of them only appeared in this group (Fig. 4g).

The highest total content of the four positive volatiles was
observed in allele combinations of cherry tomato accessions,
which were significantly higher than the allele combinations of all
modern tomato accessions (Fig. 4h). In contrast, modern
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accessions have, on average, a significantly higher content of
unpleasant volatiles, compared with the cherry accessions (Fig. 4i).
These results revealed the combinations of alleles that have the
potential to significantly enhance the total contents of volatiles
associated with consumer liking.

Discussion
With the development of next-generation sequencing technology,
GWAS has become a classical genetic approach to identify QTLs
and causal genes in crops31. We herein demonstrate the potential
of meta-analysis of GWAS following the detailed protocols first
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proposed in human genetics32,33, which can be easily applied in
other crops. Meta-analysis of GWAS is used when pooling raw
data of separate panels (mega-analysis) is not possible. It has been
shown both theoretically and numerically that meta-analysis is
statistically as efficient as mega-analysis34,35. Even when possible,
it is thus not necessary to re-analyze the raw data to perform
meta-analysis. Only summary data (beta, standard error and p-
values of associations at each SNP) from each panel is needed and
should be provided with each GWAS result. For mega-analysis,
genotypes and phenotypes from all panels should be first com-
bined and then analyzed, which requires proper management of
phenotypic structure (data coming from different studies with
different plant growth conditions, different harvesting and sam-
pling procedures, different metabolic analysis protocols etc.) and
genotypic structure (such as population structure and kinship).
Compared to mega-analysis, meta-analysis can assess the het-
erogeneity (consistency) of studies, which can be caused by many
factors, such as phenotypic structure, genetic structure, linkage
disequilibrium, imputation accuracies or G × E interactions13,34.

Flavor remains a major breeding challenge in tomato1,6. Here,
we used imputation-driven meta-analysis of genome-wide asso-
ciation studies to greatly increase the number of SNPs linked to
chemicals associated with flavor. Among the 305 significantly
associated loci, 41% of the SNPs had a low frequency (MAF <
0.1). Very low-frequency (0.01 <MAF < 0.05) SNPs were also
detected (3 significant associated loci) (Supplementary Fig. 124).
These results demonstrated that a sufficiently large sample size is
needed to uncover these low-frequency and less common variants
and to account for missing heritability36–38. Although hundreds
of tomato genome sequences have been published6,12,16–19, a high
sequence depth reference panel is needed, such as the 1000
Genomes Project39 in humans or the 1135 Arabidopsis gen-
omes40 in Arabidopsis, to perform genotype imputation20,21,
heritability estimation36,41–43 and meta-analysis13,14 with higher
accuracy. Also, an imputation server could greatly enhance the
integration of genetic resources44.

In this study, we identified 37 promising candidate genes with
functional annotations consistent with their involvement in bio-
synthesis of flavor chemicals. With the advancement of genome
editing technologies, their functional analysis could greatly pro-
mote our knowledge of the genetic architecture of tomato flavor,
provide fully linked markers for breeding and ensure consumer
satisfaction45–48. It is also possible now to introduce desirable
traits into wild stress-tolerant tomato accessions by genome
editing49,50. However, tomato flavor can only be significantly
improved when multiple genes are modified.

Many consumers are more attracted by small and medium size
tomatoes with superior taste51, as higher sugar content is usually
associated with smaller fruit size6. In the meta-analysis, we found
that modern cultivars have lost the majority of high-sugar alleles
that were present in transitional, cherry tomato varieties and wild
species. All these loci did not seem to have been influenced by any
domestication or improvement sweeps, with the exception of
Lin5, but some were loosely linked to fruit weight QTLs due to
large LD in tomato. These results reflect the fact that sugar
content has not been a breeding priority, in contrast to fruit size,

yield, biotic, and abiotic resistances1,6. Strong positive correla-
tions between the number of alternative alleles and sugar content
provide clues on how to select higher sugar content tomato cul-
tivars. However, sugar content can only be significantly improved
when almost all the alternative alleles are selected, and will
probably be accompanied by reduced fruit size6 except if precise
recombination or genetic modifications limits the linkage drag
effect.

Malate and citrate are the main organic acids in most ripe
fruits52. In tomato, citrate has a stronger impact on consumer
preferences. In this study, candidate genes potentially impacting
both citrate and malate contents were identified. We also
demonstrated that citrate has been more influenced by
improvement sweeps and malate by domestication sweeps. These
results show that citrate was probably selected for improving
tomato flavor.

Flavor-related volatiles are strongly influenced by the
environment53,54. Nevertheless this meta-analysis illustrates that
it should be possible to significantly enhance the content of
favorable aromas via replacement of undesirable alleles. However,
unlike sugars, the undesirable alleles should be carefully chosen6.
Cherry tomato varieties have been introduced to the market since
the 1990s. Their genomes are an admixture of those of big-fruited
tomatoes and S. pimpinellifolium species19,55 and may still con-
tain a large number of favorable alleles. Thus they may serve as
the most promising allele reservoir for breeding of high-flavor
tomatoes.

In conclusion, we performed the first meta-analysis of genome-
wide association analyses in a major vegetable and identified
numerous loci involved in tomato flavor that were not identified
in the three independent studies. A strong positive correlation
between allele combinations and sugar content provides clues for
breeding for higher sugar content. Modern cultivars have lost
most of the allelic diversity for sugars, acids, and volatiles that is
present within the species. Significant improvements should be
achieved by replacing undesirable alleles. Taken together, our
meta-analysis provides genetic insights into the genetic control of
tomato flavor and gives a roadmap for flavor improvement.

Methods
Three GWAS panels. The meta-GWASs approach is based on three different
GWAS panels already published and genotyped using different technologies. Our
approach consisted in imputing SNP data for panels S8 and B11 from a reference
panel, then conducting separate GWAS using the same mixed linear model (MLM)
as described in6 and collecting the summary statistics to run a meta-GWAS.

Panel S consists of 163 accessions8, including 28S. lycopersicum (large tomato),
119S. lycopersicum var cerasiforme (cherry tomato), and 16S. pimpinellifolium
(closest wild species). This panel was genotyped using the Solanaceae Coordinated
Agricultural Project (SOLCAP) genotyping array56,57, generating 5995 high quality
SNPs. The minimal success genotyping rate per accession was fixed at 90%. The
minor allele frequency of SNPs ranged from 0.037 to 0.45. Tomato accessions in
Panel S were grown in Avignon, France, following a randomized complete block
design, in a greenhouse during the summers of 2007 and 20088,58.

Panel B consists of 300 accessions with 62S. pimpinellifolium, 48S. lycopersicum,
and 190S. l. cerasiforme accessions11. This panel was genotyped both with the
SOLCAP56,57 and CBSG arrays59. After quality control, 9013 SNPs (minor allele
frequency, MAF > 0.1) and 291 accessions were kept. Accessions in Panel B were
grown in Agadir, Morocco, France, under passive greenhouse irrigated conditions
in 2011 and 201211. Each trial followed a randomized complete block design, with
three and two blocks, in 2011 and 2012, respectively.

Fig. 4 Combinations of six volatile alleles for the improvement of tomato volatile content. a–fManhattan plot for meta-analysis of genome-wide association
analysis of geranyl acetone (a), guaiacol (b), hexanal (c), methyl salicylate (d), phenylacetaldehyde (e), and 6-methyl-5-hepten-2-one (f) content. g Allele
distribution of six volatiles content at positions: chr3: 4,328,514 (geranyl acetone), chr9: 69,299,940 (guaiacol), chr1: 1,083,181 (hexanal), chr9:
69,293,875 (methyl salicylate), chr4: 55,635,636 (phenylacetaldehyde), and chr3: 3,212,583 (6-methyl-5-hepten-2-one) in cerasiforme, heir_trans,
heir_mod, and pimpinellifolium tomato accessions. h, i Mean (±SE, standard error) content of total content of the four positive volatiles (geranyl acetone,
hexanal, phenylacetaldehyde and 6-methyl-5-hepten-2-one) (h) and two unpleasant volatiles (lower panel, guaiacol and methyl salicylate) (i) at different
allele combinations in cerasiforme, heir_trans, heir_mod and pimpinellifolium tomato accessions. Source data of Fig. 4g–i are provided in a Source Data file
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Panel T consists of 402 tomato accessions from two separate panels6. Panel T
was genotyped by whole genome resequencing technology, generating a number of
2,014,488 SNPs passing quality control (MAF > 0.05, missing rate < 10%). This
panel includes five tomato types, including modern (51), transitional (50), cherry
(27), heirloom (243), and wild species (27)6.

Phenotypes. A total of 31 flavor-related quality traits in tomato were analyzed for
meta-analysis, including two sugars (fructose and glucose), two organic acids
(citrate and malate), 10 amino acids, and 17 flavor-related volatiles. The 10 amino
acids were asparagine, aspartate, GABA, glutamine, lysine, methionine, phenyla-
lanine, proline, serine, and threonine. The 17 volatiles were (E)-2-heptenal
(E2HEP), (E)-2-hexenal (E2HEX), (E)-2-pentenal (E2PEN), (E,E)-2,4-decadienal
(EE24D), (Z)-3-hexen-1-ol (Z3H1X), (Z)-3-hexenal (Z3HEX), 1-octen-3-one
(X1O3ON), 1-penten-3-one (X1P3ON), 2-methyl-1-butanol (X2M1BU), 3-
methyl-1-butanol (X3M1BU), 6-methyl-5-hepten-2-one (X6MHON), beta-ionone
(BIONO), geranylacetone (GRACE), guaiacol (GUAIA), hexanal (XEXAN), phe-
nylacetaldehyde (PHEAC), and methylsalicylate (METHY).

Sugars and organic acids were measured in all three panels. Amino acids were
measured both in panel S and B, while flavor-related volatiles were measured both
in panel B and T. Briefly, fructose and glucose in panel S were measured using the
micro-method. Citrate and malate were measured by gas chromatography-mass
spectrometry (GC-MS)8. Data distribution was tested using the Shapiro–Wilk test
and data with a non-normal distribution were Log10 transformed. In panel B, these
metabolites were measured within the Product Metabolism and Analytical Sciences
Endogenous Metabolite Profiling Platform at Syngenta Jealott’s Hill International
Research Center, Bracknell, UK. Fructose and glucose were analyzed by high pH
ion-exchange chromatography. Citrate and malate were analyzed using
electrospray ionization-liquid chromatography (ESI-LC-MS/MS). Fructose and
malate were transformed using the Boxcox method. Citrate was transformed using
the Log10 method. In panel T, citrate and malate were measured using the citrate
and malate analysis kits (R-Biopharm, Marshall, MI), according to the
manufacturer’s instructions60. Measurements of amino acids and volatiles in panel
S was measured using GC-MS by comparing with a database of authentic
standards. Small organic acids and amino acids in panel B were analyzed using
electrospray ionization-liquid chromatography (ESI-LC-MS/MS).Volatiles in panel
T were first captured by headspace solid phase micro extraction (HS-SPME)
coupled GC-MS.

Reference panel for SNP imputation. A reference panel was selected from the 360
re-sequenced tomato accessions19 to perform SNP imputation in panels S and B.
Among this panel, only accessions with genome coverage ≥90% and mean
sequencing depth ≥4.0 were kept. Wild tomato species were also removed, gen-
erating a total reference set of 221 accessions genotyped with 3,809,156 SNPs
(Supplementary Table 1).

Recombination map. A high-density recombination map is required for imputa-
tion and computing genomic partitions. However, the available tomato genetic
maps EXPIM 2012 and EXPEN 201257 have a limited genomic coverage (~3500
mapped SNPs). In order to use a much denser genetic map, we developed a Python
script to infer the corresponding genetic positions of the 3,809,156 SNPs in the
reference panel. Before calculating the recombination rate, we first compared the
physical vs genetic distribution patterns for each chromosome (Supplementary
Fig. 1). Comparing with EXPIM 2012, this newly built genetic map had the same
distribution pattern (Supplementary Fig. 1). This comparison indicated the inferred
genetic positions were accurate and were then used for estimating the recombi-
nation rate, as required for imputation. Minor adjustments were also done for
some SNPs in order to follow an overall increasing positional order. Extreme
recombination rate values were also removed (>2000 cM/Mb).

Genotype imputation. One unphased reference panel from IMPUTE2 (https://
mathgen.stats.ox.ac.uk/impute/impute_v2.html#home)22 was adopted for imputa-
tion of panel S and B independently. The 221 filtered sequenced accessions passing
quality control were used as the reference panel. The newly built recombination
map was used instead of EXPIM 2012. The whole genome was then divided into
genomic intervals of 5 Mb for imputation and the effective size of population (Ne)
was set at 2000.

Quality control. After imputation, the minimum MAF for panel S and B was set at
0.037 and 0.021, respectively, according to the formula: [Number of chromosomes/
(2 ×Number of individuals)]61. After combining all the imputed data, basic statistic
summaries were obtained in QCTOOL v2 (http://www.well.ox.ac.uk/~gav/qctool_v2/)
with the following command:./qctool -g GWAS.gen -snp-stats. We then filtered all
imputed SNPs with Hardy-Weinberg equilibrium (HWE) ≥ 0.000001, MAF ≥ 0.037
(0.021 for panel B), missing rate ≤ 0.10 and missing call rate≤ 0.10. After these pri-
mary control steps, a total of 224,097 and 327,436 SNPs were retained for panel S and
B, respectively.

In order to determine the optimal threshold of imputation quality (Info criteria),
we compared the imputed and sequenced genotype data of the nine overlapping
accessions in panel S that have been genotyped by SNP arrays and whole-genome

sequencing. If the maximum of the three probabilities at a locus was higher than 0.9,
we treated it as a certainty. This was done by converting the imputed data to ped/map
format via GTOOL (http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html).
We then compared the imputed and genotyped values of the nine accessions
(Supplementary Fig. 2). Total numbers of corrected SNPs at different MAF and Info
thresholds were obtained to validate the optimal threshold of MAF and Info. The
average value of Info was 0.882 (with no filtering of MAF). With the increase of Info,
the number of correctly genotyped SNPs increased from less than 200 to about 50,000
for panel S (Supplementary Fig. 2a, Supplementary Table 2). On average, 51.45% of
the SNPs have been correctly imputed for all Info values. There was no significant
difference between the numbers of corrected imputed SNPs for different Info values
of the three tomato groups (Supplementary Fig. 2b). The majority of imputed SNPs
had a MAF value ranging from 0.037 to 0.25, with a mean value of 0.172 ± 0.103 (with
no filtering of Info). The percentage of successfully genotyped SNPs averaged at 57.3%
and a higher percentage of corrected imputed SNPs decreased gradually with the
increase of MAF (Supplementary Fig. 2c). Similarly, no significant difference was
found between the numbers of corrected imputed SNPs for different MAF values of
three tomato genetic groups (Supplementary Fig. 2d). Details of the number and
percentage of corrected imputed SNPs at different MAF bins among the nine
accessions are listed in Supplementary Data 1. We than compared the relationship
between MAF and Info. The average value of Info was 0.912 for all values of MAF
(Supplementary Fig. 2e). We found that the lowest mean value of Info (0.622) was
observed on less common SNPs (0.037 <MAF < 0.05) (Supplementary Fig. 2e,
Supplementary Data 2). However, this value is still higher than the proper imputation
quality threshold (0.4) in common quality control of meta-analysis of genome-wide
association studies33. So, we decided to set the Info threshold at 0.60 as the threshold
of high imputation quality.

After filtering with imputation quality threshold (Info) ≥ 0.60, total of 209,152
and 252,414 SNPs were retained for panel S and B, respectively. The mean Info
value at different MAF values for panel S and B were 0.929 and 0.922, respectively
(Supplementary Data 3). The lowest mean value of Info at different MAF value was
0.810 and 0.783, respectively (Supplementary Fig. 2f, Supplementary Fig. 3). These
SNPs offered a much denser genomic coverage for both panel S and B (35-fold and
28-fold, respectively) (Supplementary Fig. 4). Only some large genomic gaps still
remained where there were few genotyped SNPs over a long genomic region
(Supplementary Fig. 4). These results indicated that all the retained SNPs had a
high imputation quality and were used for further analyses.

Linkage disequilibrium analysis. For population structure and kinship analyses,
only independent SNPs (r2 < 0.2) were used. This was done in PLINK (https://
www.cog-genomics.org/plink2) with: --indep-pairwise 50 5 0.2 (windows, step, r2)
–maf 0.05, generating a total of 3,602 and 4,294 independent SNPs for panel S and
B, respectively.

Principal component analysis. In order to compare the genetic structure revealed
before and after imputation, we performed a principal component analysis (PCA)
for panels S and B, using all genotyped SNPs and independent imputed SNPs (r2 <
0.2) in PLINK: --pca. Principal component analysis showed that genotype impu-
tation did not lead to significant differences in genetic group composition and
pairwise individual distances, for all three accession classes of panel S (S.C., S.L.,
S.P.) (Supplementary Fig. 5a–c). For the first principal component (PC1), there
were strong positive correlations (0.93, 0.82, and 0.93 for S.C, S.L., and S.P.
respectively) between genotyped and imputed SNPs (only imputed SNPs) (Sup-
plementary Fig. 5d). By combining genotyped and imputed SNPs together (here-
after called ‘All’ dataset), a similar strong positive correlation (0.94, 0.82, and 0.94
for S.C, S.L., and S.P. respectively) was also found (Supplementary Fig. 5e). Cor-
relation between imputed and all SNPs was also strong for all tomato classes
(Supplementary Fig. 5f). For the panel B, a previous study revealed a population
structure composed of six groups62. After imputation, we found they had a similar
distribution pattern (Supplementary Fig. 6). PC1 between genotyped SNPs and all
(genotyped and imputed) SNPs had a strong positive correlation (higher than 0.7
for all six groups) (Supplementary Fig. 6c). In contrast, the second principal
component (PC2) had strong negative correlations for all six groups (lower than
−0.6 for all six groups) (Supplementary Fig. 6d).

Population structure. In a previous study, the population structure of panel S was
evaluated by Structure v2.3.463 (https://web.stanford.edu/group/pritchardlab/
structure_software/release_versions/v2.3.4/html/structure.html). So we first com-
pared the structure following the same parameters, with 1 × 106 burn-in period and
5 × 106 MCMC steps. Based on the Evanno method63, the optimal number of
ancestral populations was two. Only minor population assignment differences were
found for both subpopulations, compared with structure from genotyped SNPs
(Supplementary Fig. 7).

We further used discriminant analysis of principal components (DAPC)64

(http://adegenet.r-forge.r-project.org/files/tutorial-dapc.pdf) using the independent
3,602 and 4,294 SNPs (r2 < 0.2) to infer the optimal population structure for panels
S and B. This method partitioned the variance within and among groups without
assumptions on LD or Hardy–Weinberg equilibrium65, which has shown a better
performance in clustering individuals11. The optimal number of clusters was
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determined by Bayesian Information Criteria (BIC) with a minor increase or
decrease. All PCs and all discriminant functions were retained to find the optimal
number of clusters. In the following DAPC analyses, all discriminant functions and
the first 50 PCs were retained in order to achieve 80% of cumulative variance for
both panel S and B.

For panel S, the optimal number of clusters was six (Supplementary Fig. 8) and
DAPC revealed a clear structure of all the accessions (Supplementary Fig. 9). For
panel B, the optimal number of cluster was six, which was the same as that revealed
by using genotyped SNPs (Supplementary Fig. 10). Membership of each cluster was
also quite similar (Supplementary Fig. 11), compared with that of genotyped SNPs
(Supplementary Fig. 12). Detailed information of the membership of each cluster
revealed by all independent SNPs for panels S and B is listed in Supplementary
Data 4 and Supplementary Data 5, respectively. These results indicated that
imputation did not cause significant differences in the genetic structure for both
panels S and B. For panel T, the optimal number of clusters was five from DAPC
with the first 20 PCs retained and a cross validation run of 100 times6.

Genome-wide association analysis. Though SNPTEST v2.5.4 (https://mathgen.
stats.ox.ac.uk/genetics_software/snptest/snptest.html#introduction) can use the
imputed data from IMPUTE2 to detect associations directly, it cannot however
handle too many cofactors in the model. For accessions from each panel used in
this study, there is strong genetic structure. We first took one trait (malate) in panel
S as an example to choose the optimal association software to perform the asso-
ciation tests.

In order to add kinship as a cofactor in SNPTEST, we performed a principal
component analysis of the kinship calculated in SPAGeDi (http://ebe.ulb.ac.be/ebe/
SPAGeDi.html) and structure in Structure v2.3.4. We then added the first 20 PCs
as cofactors in the frequentist association test model in SNPTEST. In the next step,
we used EMMAX (http://genetics.cs.ucla.edu/emmax/index.html) with the BN
kinship matrix and DAPC results to conduct association analyses. For BN kinship
calculation, the default command was used: emmax-kin -v -h -d 10. A uniform
threshold (P= 1/n, n is the effective number of independent SNPs) was used as the
genome-wide significance threshold for all three panels. The effective number of
independent SNPs was calculated in Genetic type 1 Error Calculator (GEC)66

(http://grass.cgs.hku.hk/gec/download.php). The suggestive p-value for the 224,097
SNPs of panel S was 9.63 × 10−5 and the significant p-value was 4.82 × 10−6. For
the 327,436 SNPs of panel B, the suggestive and significant p-value was 5.99 × 10−5

and 2.99 × 10−6, respectively.
After comparing the association results for malate of panel S, we found the

strongest p-value in SNPTEST was still quite low, compared with other approaches
(Supplementary Fig. 13). Results from MLMM (https://github.com/Gregor-
Mendel-Institute/MultLocMixMod) and EMMAX were quite similar. So, in the
following analyses, we only used SNPTEST to compute summary statistics, not for
finding associations. For MLMM, this model adds the marker as co-factor using a
window of 10. If too many markers are in full LD, the genetic variance calculation
may be biased24. So, we used EMMAX for association analyses for all traits with the
BN kinship matrix and DAPC results as covariance.

Meta-analysis. A total of 788 tomato accessions and 2,316,117 SNPs from three
GWAS panels were used for the final meta-analysis. Since each panel was stratified
and a small number of individuals overlapped between panels (38 between panel B
and S, 18 between panel S and T, 17 between panel B and T), genomic inflation
factor (λ) was corrected before meta-analysis using GenABEL61 (http://www.
genabel.org/packages/GenABEL) in R. Genomic inflation can be caused by popu-
lation structure, cryptic relatedness, genotyping errors, sample size, LD, trait her-
itability, number of causal variants and other technical artefacts67. Though no
adjustment is necessary when λ is lower or equal to one, we still corrected the
standard errors of beta coefficients by applying the formula SE ×

ffiffiffi

λ
p

in general for
each individual studies to get the chi-squares to its optimal values68.

METAL25 (fixed-effect model) (https://genome.sph.umich.edu/wiki/
METAL_Documentation) and METASOFT26 (random-effect model) (http://
genetics.cs.ucla.edu/meta/) are two most commonly used meta-analysis software13.
Meta-analysis was first performed using the inverse variance-weighted fixed-effect
model in METAL25. The genome-wide significant p-value for meta-analysis was set
as 4.0 × 10−7, except for SNPs that only appeared between panel S and B (the
significant p-value was set at 2.99 × 10−6). For those SNPs where heterogeneity
occurs (I2 > 25, indicating moderate heterogeneity), we used the Han and Eskin
random-effects model (RE2) in METASOFT26. This model assumes no
heterogeneity under the null hypothesis and offers greater power under
heterogeneity, compared with conventional random-effect models26.

Local SQLite database for LocusZoom. In order to obtain a regional zoom plot of
the candidate SNPs in LocusZoom69 (https://genome.sph.umich.edu/wiki/
LocusZoom_Standalone), a local SQLite database of tomato was required. We thus
created a custom SQLite database in LocusZoom with the following steps. SNP
positions in the 221 accessions of the reference panel were inserted by: dbmeister.py
--db my_database.db --snp_pos my_snp_pos_file. For the gene information, we first
downloaded the gene annotation file from Solgenomics (ftp://ftp.solgenomics.net/
genomes/Solanum_lycopersicum/annotation/ITAG2.4_release/). We then converted

it to genePred file format by gff3ToGenePred (http://hgdownload.cse.ucsc.edu/
admin/exe/). Gene names were replaced with short codes instead of providing full
names to avoid long names and overlapping. We then inserted the gene information
by the following command line: dbmeister.py --db my_database.db --refflat my_r-
efflat_file. For the recombination file, we used the recombination map previously
inferred and inserted the data into our database by: dbmeister.py --db my_database.
db --snp_set my_snpset_file. We used the 221 reference panel to calculate the linkage
disequilibrium (LD) in PLINK by the following parameter: --ld-snp my.snp --ld-
window-kb 100000 --ld-window 1000 --r2 --ld-window-r2 0 (windows, step, r2).

LD in candidate gene regions. In order to define the window size of the candidate
genes, we first calculated the LD around the significant associated SNP with the
window size of 5Mb in PLINK with the following command line: --ld-window-kb
500000 --ld-window 1000 --r2 --ld-window-r2 0 (windows, step, r2). We then
chose LD higher than 0.5 as the threshold of LD decay for the candidate gene
region sizes. Within the regions, we chose the candidate genes based on both the
distance of the peak SNP as well as the closest genes with known functions related
to the trait. If no gene fell in the candidate regions, we provided the closest gene.
We further crosschecked the candidate gene expression patterns using the Tomato
Expression Atlas70 (http://tea.solgenomics.net/expression_viewer/input).

Group re-definition of panel T. The relationship between allele combinations and
flavor-related metabolites (sugars, organic acids and volatiles) was only based on
panel T. For the accessions in panel T, they were previously defined as five clusters,
namely S. lycopersicum var cerasiforme, heirloom, transitional, modern and the
closest wild species S. pimpinellifolium tomato accessions6. However, there were up
to 11 accessions with duplicated individual IDs (Supplementary Data 10) and we
cross-checked these duplicated lines and only kept one. In addition, some acces-
sions in the group of heirloom, modern and transitional were labeled inappro-
priately based on the DAPC analysis. In order to correct for this, we generated the
principal component analysis (PCA) based on independent SNPs (LD= 0.1)
(Supplementary Fig. 125). Based on PCA, some heirloom accessions are mixed
with modern accessions and were labeled as heir_mod (heirloom and modern). For
the remaining heirloom accessions, they were combined with transitional acces-
sions and labeled as heir_trans (heirloom and transitional) (Supplementary
Fig. 126). The accessions of panel T were thus re-defined as four clusters, namely S.
lycopersicum var cerasiforme, (cerasiforme, 26 members), heirloom and modern
(heir_mod, 196 members), heirloom and transitional (heir_trans, 138 members),
and S. pimpinellifolium (27 members) (Supplementary Data 10–11). These rede-
fined groups were then used for allelic combination analyses. Statistical tests were
only performed for those allele combinations with at least two observations (either
labeled with letters or with p-values).

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this work are available within the paper and its
Supplementary Information files. All new meta-analysis data associated with the paper
are available in a repository [https://doi.org/10.15454/TWFDYW]. The source data
underlying Figs. 2c–g, 3c–h, and 4g–i and Supplementary Figs. 5a–f, 6a–d, and 124–126
are provided as a Source Data file. Additional datasets generated and analyzed during the
current study are available from the corresponding author on reasonable request.
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