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Abstract:  The four genetically divergent dengue virus (DENV) types are traditionally classified 50 

as serotypes.  Antigenic and genetic differences among the DENV types influence disease 51 

outcome, vaccine-induced protection, epidemic magnitude, and viral evolution.  We 52 

characterized antigenic diversity in the DENV types by antigenic maps constructed from 53 

neutralizing antibody titers obtained from African green monkeys and after human vaccination 54 

and natural infections.  Genetically, geographically, and temporally, diverse DENV isolates 55 

clustered loosely by type, but we found many are as similar antigenically to a virus of a different 56 

type as to some viruses of the same type.  Primary infection antisera did not neutralize all viruses 57 

of the same DENV type any better than other types did up to two years after infection and did 58 

not show improved neutralization to homologous type isolates.  That the canonical DENV types 59 

are not antigenically homogenous has implications for vaccination and research on the dynamics 60 

of immunity, disease, and the evolution of DENV.!  61 
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Main text: Dengue virus (DENV) infects up to 390 million people each year, and of the 96 62 

million individuals who develop an acute systemic illness, approximately 500,000 experience 63 

potentially life-threatening complications, including hemorrhage and shock (1, 2).  The four 64 

genetic DENV types have long been thought to exist as four serotypes, and the antigenic 65 

differences between the types are believed to have a key role in the severity of disease, epidemic 66 

magnitude, viral evolution, and design of vaccines (3–5).  67 

 The description of DENV types as serotypes originated with the observation that the 68 

human immune response following primary DENV infection fully protected against challenge 69 

with viruses of the homologous type but only partially, and transiently, protected against 70 

challenge by viruses of a heterologous type (6).  This finding was supported by in vitro 71 

neutralization experiments in which each DENV type was on average better neutralized by 72 

homologous than heterologous DENV infection antisera (7).  The immune response immediately 73 

after a primary DENV infection varied from individual to individual, but generally was 74 

characterized by high levels of neutralizing antibody titers to multiple DENV types.  The 75 

neutralizing response was observed to become more DENV type-specific over time (8).  It was 76 

later shown that antibodies to a heterologous DENV type could enhance infection in vivo and 77 

were associated with increased risk of severe disease in nature (9, 10).  Although antigenic 78 

variability was observed within DENV types from the earliest studies, this variation is generally 79 

considered to be substantially less than the differences between types, and not thought to modify 80 

type-specific protection (11, 12).  Together, the DENV types clearly form an antigenic subgroup 81 

within the Flaviviridae (13, 14).  Analyses of envelope (E) proteins, and later full genomes, 82 

showed that the four types are as genetically divergent among themselves as sequences assigned 83 

to different viruses within the genus Flavivirus (15).  These deep evolutionary divergences 84 
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between DENV types were evident in the phylogenetic tree of the genetically diverse E-gene 85 

sequences of the viruses we investigated here (Fig. 1A; fig. S1; and table S1) (16).  Similarly, a 86 

map of amino acid differences between the E proteins revealed four compact, segregated types 87 

(Fig. 1B and fig. S2), as the number of amino acid substitutions between heterologous types far 88 

exceeded the maximum difference within a type.   89 

  However, investigations that rely on the classification of DENV into serotypes do not 90 

fully explain clinical and epidemiological phenomena.  Despite this, antigenic properties are still 91 

thought to play a critical role in the biology of DENV infections.  One hypothesis is that 92 

antigenic differences are critical, but that categorization by serotype alone is too coarse a 93 

measure.  For example, differences in epidemic magnitude might be determined not only by the 94 

serotype but also by the antigenic differences between the particular infecting viruses that 95 

populations experience during sequential epidemics.  Antigenic variation within and among the 96 

DENV types has also been hypothesized, in addition to intrinsic viral fitness and other factors, to 97 

explain phenomena including extinction and replacement of previously successful lineages and 98 

variation in disease outcome caused by genetically similar viruses (17–19).  Here, we empirically 99 

test the antigenic relationships among a panel of diverse DENV isolates and re-examine the 100 

serotype concept. 101 

Antigenic differences among viruses are caused by amino acid differences that lead to 102 

structural changes on viral proteins that modify antibody binding.  The structural effect of such 103 

amino acid substitutions is difficult to predict from genetic sequences alone.  In some instances 104 

substitutions have no antigenic effect, sometimes single substitutions cause substantial antigenic 105 

change, and other times it takes multiple substitutions (20, 21).  Thus today, antigenic differences 106 

must be determined by phenotype, including by an antibody neutralization assay (13).!!Most 107 
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often, viruses are measured against multiple sera to form a table of neutralization data from 108 

which antigenic relationships are inferred (22).!!However, such inferences are notoriously 109 

difficult to make, and this has hindered the reliable systematic antigenic characterization of 110 

DENV.  The difficulties are caused by random error, the use of diverse methods among 111 

laboratories, and the intrinsic variability among immune sera due to differences in hosts and 112 

infection histories (23, 24).  Moreover, neutralization data often contain apparent contradictions 113 

that are difficult to interpret, such as higher-than-homologous titers and sera that similarly 114 

neutralize multiple DENV types.!115 

Previous antigenic analyses of DENV have addressed such challenges by using 116 

monoclonal antibodies, averaging responses of many individuals, or excluding sera with unusual 117 

patterns of reactivity.  Despite careful work, these approaches have not produced a unified 118 

framework for understanding patterns across large neutralization data sets.  Antigenic 119 

cartography is a method that positions viruses and antisera as points in a map, such that the 120 

distance between each virus and antiserum is derived from the corresponding neutralization titer 121 

in the tabular data. This method exploits variation in host responses to better triangulate the map, 122 

reduces the effect of some measurement errors because each virus is measured against multiple 123 

antisera (and vice versa), and has been shown to accurately interpret apparent contradictions in 124 

the data (25). 125 

We formed the Dengue Antigenic Cartography Consortium, an open collaboration of 126 

international research laboratories, to establish empirically how DENV types relate to one 127 

another antigenically.  Thirty-six African green monkeys (Chlorocebus sabaeus, hereafter NHP) 128 

were experimentally inoculated with diverse DENV isolates, and their sera were tested for 129 

neutralizing antibody potency against the genetically (all known genotypes), temporally (1944-130 
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2012), and geographically (20 countries) diverse panel of DENV isolates shown in Fig. 1 (table 131 

S1).  Serum samples were taken three months post-inoculation, and titrations were conducted 132 

using an immunofocus reduction neutralization test on mosquito cells (C6/36, Aedes albopictus) 133 

(tables S2-S7 and fig. S3) (16, 26).  A conventional interpretation of the raw antibody 134 

neutralization titers was consistent with previous observations, both for DENV and for other 135 

flaviviruses: antisera were generally able to neutralize viruses of the infecting type better than 136 

heterologous types.   137 

The cartographic analyses fit these data with low error and were internally consistent 138 

(figs. S4, S6, and S7).  Only 1% of map distances differed by more than four-fold from the 139 

measured titer (table S8).  The positions of viruses and antisera were robust to different methods 140 

of calculating neutralization titers and to the exclusion of outliers (figs. S5, S8-S12 and table 141 

S10).  Maps made with random subsets of the data set could predict excluded titers within two-142 

fold error (r=0.90 for the relation between all measured and predicted titers) (table S9). 143 

Our analyses showed that the DENV isolates in our panel did group according to current 144 

serotype classification (Fig. 2), and the majority of viruses neighboring any given virus are of the 145 

same DENV type.  However, many of the viruses were positioned as close to a virus of another 146 

DENV type as to some viruses of their own type, and the distance within and between types was 147 

comparable.  Similarly, while neutralizing antisera responses clustered closely to viruses of the 148 

homologous type, almost all were at least as close to a heterologous-type isolate (table S11, table 149 

S12).  150 

To examine these findings in detail, we evaluated whether the observed antigenic 151 

diversity of the virus types was also observed with human antisera and over time, and whether 152 

the neutralizing responses of individual antisera became increasingly type-specific over time.   153 
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 We titrated human antisera derived from vaccination with a live-attenuated chimeric 154 

DENV vaccine against the genetically diverse DENV panel.  Individuals lacking detectable 155 

neutralizing antibodies against DENV or other flaviviruses were each inoculated with one 156 

monovalent component of the National Institutes of Health DENV vaccine (n=40 in total, 10 per 157 

DENV type).  Antisera drawn 42 days post-injection were titrated against the DENV panel 158 

(n=36) using the neutralization test on mosquito cells. The resulting antigenic map is consistent 159 

with the NHP map in that the distance between DENV types was equivalent to the spread within 160 

type, and the overall orientation of DENV1-4 was the same (Fig. 3A).   161 

We measured the antigenic relationships among the DENV panel as recognized by 162 

antisera drawn from naturally-infected individuals, who had neutralizing responses 163 

representative of the cohort study from which they were selected.  Serum samples drawn from 20 164 

Nicaraguan children in the year following their first DENV infection were titrated, using the 165 

neutralization test on mosquito cells, against 14 viruses that captured the breadth of variation 166 

seen in the DENV panel in Fig. 2.  Again, the antigenic distances among the DENV types were 167 

similar to those observed with NHP and human vaccine antisera, although the DENV4 cluster 168 

was positioned adjacent to DENV1 and DENV2 (Fig. 3B). 169 

We also analyzed neutralization data from other studies that had used antisera from 170 

monovalent vaccine recipients and naturally infected human travelers, as well as different 171 

neutralization assays (22, 27, 28). Again, the antisera from these studies also recognized the 172 

antigenic relationships among the DENV isolates similarly to the three-month NHP antisera 173 

(figs. S23-S25).  174 

The early antibody response is assumed to broadly neutralize all DENV types, but over 175 

time cross-type neutralization is thought to be lost so that the antibody response remaining in the 176 
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months to years after infection only potently neutralizes isolates of the infecting type (8, 29, 30).  177 

We compared how antisera taken at various time points after infection recognize antigenic 178 

relationships among the DENV panel.  The human antisera used to make the antigenic maps 179 

described above were taken at various times following infection, ranging from 42 days for the 180 

monovalent vaccine antisera to more than one year for the natural infection antisera.  We also 181 

made an antigenic map of a published neutralization data set of 44 DENV isolates titrated with 182 

one-year post-inoculation monkey antisera and found a similar range of antigenic variants among 183 

the four DENV types (fig. S26) (12).   Thus, in maps made with early (one month) as well as late 184 

convalescent (three months to one year) antisera, the antigenic relationships among diverse 185 

DENV isolates were similar to those observed with three-month NHP antisera. 186 

We tested if the patterns of antigenic recognition of the antisera from serially sampled 187 

individuals changed with time.  We titrated antisera from the experimentally inoculated NHPs 188 

one month (n=36) and five months (n=16) post-infection against the DENV panel.  As expected, 189 

the magnitude of the neutralizing titers generally dropped between one, three, and five months 190 

(table S14).  However, viruses on the one and five-month antigenic maps showed the same 191 

orientation of types as the three-month antisera.  At one month after infection, 55%, and at five 192 

months after infection, 41% of the viruses, respectively, clustered as closely to a virus in a 193 

heterologous type as to some viruses of the same type (Fig. 4A and B; table S11; table S13; and 194 

table S15).  The antigenic relationships among isolates were conserved across time-points (fig. 195 

S13).   We thus found that the antigenic relationships among the isolates in the DENV panel 196 

were recognized similarly by early and late convalescent antisera from the same individuals.  197 

  We measured changes in neutralizing type-specificity for each NHP by comparing the 198 

antiserum positions in the one, three, and five-month antigenic maps.  The antiserum positions 199 
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shifted (on average, greater than four-fold) between one month and three months, consistent with 200 

the period of somatic hypermutation and selection for affinity matured B cells (Fig. 4A and fig. 201 

S14).  However, few antisera showed improved neutralization of the infecting DENV type 202 

relative to heterologous types between one and three months.   The antiserum positions changed 203 

minimally between three months and five months, despite a significant decline in the magnitude 204 

of titers over that period, in some cases below the assay limit of detection (Fig. 4B and table 205 

S14).  Thus, we did not observe a systematic shift toward increasing neutralizing specificity to 206 

viruses of the infecting type nor decreasing specificity toward heterotypic viruses (fig. S15 and 207 

fig. S21).  208 

Published studies of neutralizing responses in the first year after experimental inoculation 209 

also reported stability of neutralization specificity.  In one study, the ratio between homologous 210 

and heterologous neutralizing titers for 16 Rhesus monkeys between 4-13 months after 211 

experimental inoculation was remarkably consistent.  NHPs that were initially type-specific 212 

remained so, while those that exhibited early cross-type titers maintained titers to those types to 213 

the end of the study period (fig. S28) (31).  A second study following the neutralizing responses 214 

of Aotus nancymae monkeys for 1-4 months to DENV1 and DENV2 isolates showed similarly 215 

stable neutralization specificity to the infecting type and heterologous types (fig. S29) (32). 216 

We further analyzed the neutralizing responses in the natural human infection data set to 217 

look at the type-specificity of antisera obtained during the first two years after infection.  The 218 

antisera in the map in Fig. 3B ranged in neutralizing type-specificity, with 55% of antisera 219 

responses clustering as closely to a heterologous isolate as some homologous isolates.   For each 220 

individual, the serum position in Fig. 3B, made with titrations conducted on mosquito cells, 221 

closely corresponded to the serum position in the map made with titrations using human cells 222 
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expressing the DENV attachment factor, DC-SIGN (Fig. 3B and fig. S16).   The position of the 223 

DENV4 cluster was between DENV1 and DENV2 on both maps (Fig. 3B and fig. S16).  We 224 

compared the antibody titrations after one and two years for each individual, and found that all 225 

maintained the pattern of neutralization, including cross-neutralization, observed in the first year 226 

after infection (fig. S17 and S18).  Thus, neutralizing antibody responses in natural human 227 

DENV infections did not show a trend toward increasing type-specificity even two years after 228 

infection. 229 

 Type-specific and cross-reactive neutralizing antibodies are thought to target distinct viral 230 

structures, and thus potentially may produce different antigenic maps (33).  We therefore tested 231 

whether cross-reactive neutralizing antisera recognized different antigenic relationships among 232 

the DENV panel than type-specific neutralizing responses, using the serum positions of the 233 

monovalent vaccine map (Fig. 3A).  Despite the fact that all ten individuals for each DENV type 234 

were inoculated with the same vaccine component, the antisera responses to the isolates varied.  235 

Collectively, the antisera provided a coherent description of antigenic patterns among the isolates 236 

(fig. S19).  The relationships among the DENV panel changed minimally between maps made 237 

with only the most central, cross-reactive 20 antisera or only the most peripheral, type-specific 238 

20 antisera (fig. S20 and fig. S22).  Thus, the DENV type-specific and cross-reactive neutralizing 239 

responses recognized the same antigenic relationships among the DENV panel. 240 

 The antigenic characterization of any pathogen relies on the biological relevance of the 241 

assay used to generate the data.  Both recent and historical studies have found significant 242 

associations between pre-infection neutralization titers and DENV viremia or infection outcome 243 

(34–37); however, other studies have been inconclusive (38, 39).  Thus, the identification of 244 

immune correlates of protection including, but not exclusively, potently neutralizing antibodies, 245 
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is an active area of research for DENV (40–42).  Notably, the antigenic patterns in our data are 246 

similar to those in antigenic maps we made of DENV antibody neutralization data from other 247 

published studies using different cell lines, virus preparations, methods for detecting infected 248 

cells, and plaque or immunofocus reduction end-points (figs. S23-S27) (12, 19, 22, 27, 28).  We 249 

also found that the human antisera from natural infections titrated on mosquito cells showed 250 

similar neutralization profiles to those titrated on human cells (fig. S16 and S18).  The antigenic 251 

variation we observed is thus not limited to the assay or samples that we used. 252 

 While overall, prior immunity to a heterologous DENV type still remains the strongest 253 

risk factor for disease, there is evidence that neutralizing responses to the particular DENV 254 

lineages circulating in a population modifies the magnitude and severity of epidemics caused by 255 

subsequent infecting lineages (17, 18).  In one study, cross-type neutralization provided by prior 256 

DENV1 immunity correlated with a mild epidemic caused by one lineage of DENV2, but 257 

showed no neutralization of other DENV2 lineages that in immunologically similar populations 258 

caused severe epidemics (fig. S27) (19).  These, and our, studies highlight the importance of 259 

studying the specific relationship between antigenic distances as measured with neutralizing 260 

antibody titers and protection.  The approach described here, in combination with global 261 

surveillance of the genetic, antigenic, and clinical features of DENVs as well as further detailed 262 

studies of natural infection and vaccination-derived protection, has the potential to inform 263 

whether vaccination protects against circulating isolates as well as recognize gaps in vaccine-264 

induced protection should they emerge over time.   265 

 The antigenic analyses shown here using one, three, and five-month NHP antisera, 266 

human monovalent vaccine antisera, late-convalescent human natural infection antisera, and 267 

published neutralization data show that the DENV types do not fall into order as distinct 268 
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serotypes.  We have found that while DENV isolates are usually located closer to other viruses 269 

of the same type, some viruses, both modern and historical, have greater antigenic resemblance 270 

to viruses of a different type than to some viruses of the same type.  We find that primary 271 

infection neutralizing antibody titers, although they drop in magnitude, do not systematically 272 

become more type-specific in the year after primary infection.  As expected, individuals infected 273 

with the same or different antigens have variable patterns of neutralization, but cross-neutralizing 274 

responses consistently recognize the same antigenic relationships within the DENV panel as do 275 

the neutralizing responses that are most type-specific.  These findings shift our understanding of 276 

the antigenic properties of DENV, enable more detailed study of the antigenic determinants of 277 

clinical severity, epidemic magnitude, and DENV evolution, and provide additional methods for 278 

the selection of future vaccine strains and global surveillance of the antigenic dynamics of 279 

dengue viruses.   280 
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Figure legends 281 

Fig. 1.  Genetic analyses of the DENV panel (n=47).  (A) Phylogenetic tree showing the 282 

evolutionary relationships of DENV E gene sequences. Sequences were aligned with MAFFT, 283 

and a maximum likelihood tree (ML) was estimated using a general time reversible model, 284 

accounting for both among site rate variation and invariant sites (GTR+G4+I).  Bootstrap support 285 

values of at least 75% are shown. (B) Amino acid map of dengue E protein sequences (493-495 286 

amino acids in length).  The total amino acid differences between pairs of E sequences 287 

correspond to distances between points on the geometric display.  288 

Fig. 2.  Antigenic map of the DENV panel (n=46) titrated against three-month post-infection 289 

African green monkey antisera (n=36).  Each unit of antigenic distance (length of one grid-290 

square side, measured in any direction) is equivalent to a two-fold dilution in the neutralization 291 

assay.  Each antiserum (open shape) and virus (closed shape) is colored according to the 292 

infecting genetic type (16). The size and shape of each point is the confidence area of its 293 

position.   294 

Fig. 3. Human primary infection antigenic maps.  (A) Antisera from individuals inoculated with 295 

each monovalent component of the NIH live vaccine (10 per group) were drawn 42 days post-296 

infection and titrated against 36 viruses in the DENV panel.  (B) Antisera from 20 Nicaraguan 297 

children drawn in the year after their first DENV infections were titrated against an antigenically 298 

diverse subset of the DENV panel (n=14).   299 

Fig. 4.  Antigenic maps of the DENV panel made with antisera drawn from NHPs one and five 300 

months post-infection.  (A) An antigenic map of 47 DENV isolates titrated against 36 NHP 301 

antisera drawn one month post-infection.  Colored arrows (DENV1=yellow, DENV2=blue, 302 
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DENV3=green, DENV4=red) show the change in antiserum positions between one and three 303 

months. The black arrows show the average shift in serum position for each DENV type.  The 304 

star denotes the antigenic center for each DENV type. (B) An antigenic map of 37 DENV 305 

isolates titrated against 16 NHP antisera drawn five months post-infection.  Arrows point from 306 

positions of antisera at three months to the corresponding five-month positions.    307 
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