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Mapping the serum proteome to neurological
diseases using whole genome sequencing
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Despite the increasing global burden of neurological disorders, there is a lack of effective
diagnostic and therapeutic biomarkers. Proteins are often dysregulated in disease and have a
strong genetic component. Here, we carry out a protein quantitative trait locus analysis of
184 neurologically-relevant proteins, using whole genome sequencing data from two isolated
population-based cohorts (N =2893). In doing so, we elucidate the genetic landscape of the
circulating proteome and its connection to neurological disorders. We detect 214
independently-associated variants for 107 proteins, the majority of which (76%) are cis-
acting, including 114 variants that have not been previously identified. Using two-sample
Mendelian randomisation, we identify causal associations between serum CD33 and Alz-
heimer's disease, GPNMB and Parkinson's disease, and MSR1 and schizophrenia, describing
their clinical potential and highlighting drug repurposing opportunities.
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eurological disorders are the leading cause of disability

worldwide, accounting for 276 million disability-adjusted

life years (DALY) globally in 2016!. This burden is con-
tinuously increasing with growing and ageing populations?,
emphasising the need for better prevention and treatment stra-
tegies. Multiple genetics and genomics efforts have established
that these diseases have a substantial genetic component>*. Elu-
cidating their genetic architecture can, therefore, help to forward
our understanding of their aetiology by identifying causal disease
mechanisms, thus opening a path towards clinical translation.

Due to their heterogeneity and overlapping clinical features,
neuropsychiatric disorders such as schizophrenia and bipolar
disorder are often misdiagnosed®, while others with more distinct
symptoms, such as Alzheimer’s disease (AD), lack effective drugs
and accessible biomarkers that can detect early disease®. The
human serum proteome is an especially valuable resource of
potential biomarkers for these highly polygenic disorders. As
proteins are often dysregulated in disease, studying protein
quantitative trait loci (pQTLs), which are genetic variants asso-
ciated with protein expression levels, can help to bridge existing
knowledge gaps. Most pharmaceutical drugs also target proteins,
further increasing their actionability.

By implementing statistical methods that leverage relevant bio-
medical data, such as causal inference and colocalisation analysis,
PQTLs can be used to determine causality and to identify disease
pathways. For example, in a study focused on neurologically relevant
proteins’, a pQTL for serum PVR mapping to the PVR gene (cis-
pQTL), was found to be causally associated with AD through
Mendelian randomisation analysis. Through similar methods, a
recent brain proteome-wide association (PWAS) and pQTL study®
identified five genes causal for AD at high confidence, of which four
were novel. By validating known AD loci and identifying new causal
genes, these studies demonstrate proof-of-concept.

Here, we aimed to identify biomarkers of neurological traits
and enhance insight into disease pathways, by carrying out a
pQTL analysis of 184 neurologically relevant serum proteins. The
main advantage of serum proteins is that they are easily acces-
sible, both as drug targets and diagnostic biomarkers. We use
whole-genome sequencing (WGS) to capture the entire allele
frequency spectrum in 2,893 samples from two Greek population-
based cohorts, MANOLIS and Pomak. Association analysis was
first carried out individually for each cohort, followed by a meta-
analysis. Specifically, proteins were quantified using Olink’s
proximity extension assay (PEA) and comprised established or
potential markers of neurobiological processes. Using WGS, we
were able to detect both rare and common pQTL variants. We
then investigated the relevance of the discovered pQTLs to neu-
rological diseases and highlight biomarkers of high diagnostic or
prognostic potential, identify drug repositioning opportunities,
and describe pathways relevant to neurological traits.

Results

Protein QTL discovery. For the 184 neurologically relevant
proteins analysed, we detect 214 independently-associated pQTLs
(P<1.05 x 10719; ‘Methods’ section) for 107 proteins from the
meta-analysis, following conditional testing (Fig. 1 and Supple-
mentary Data 1). Loci were classified into cis and trans: cis-acting
pQTLs, which are defined as variants residing within 1 Mb
upstream or downstream of the protein-encoding gene, are likely
to regulate protein expression directly at the transcriptional level,
while trans-pQTLs are likely to act through intermediaries to
modulate protein levels. We observe 162 (75.7%) cis-acting
pQTLs for 91 proteins, and 52 (24.3%) trans-acting pQTLs for 38
proteins. A total of 22 proteins had both cis and trans-acting
pQTLs (Fig. 2b).

Sixteen proteins have only trans-pQTLs, 13 of which have
pQTLs only in pleiotropic loci. We find altogether 30 variants
arising at known pleiotropic loci, including those near or within
KLKBI, ABO, F12, VIN, and the HLA region on chromosome 6.
These are loci that influence the levels of multiple proteins; the
most pleiotropic being loci at KLKBI and ABO, affecting 11 and
12 proteins, respectively. These have been identified in published
pQTL studies and are not restricted to neurologically relevant
proteins?~12. ABO is the most extensively studied among these
pleiotropic loci, and is known for its role in blood coagulation
processes and determining the ABO blood types. In particular, we
detect the missense variant rs8176747 affecting ADAM15, IL3RA,
and KIRREL2 protein levels. rs8176747 is among the variants
routinely used to determine blood group phenotype!3, which has
been associated with multiple diseases, mainly of cardiovascular
relevance. As proteins such as ABO are connected to large
signalling networks, changes in their structure or expression levels
could influence multiple downstream substrates, hence explaining
their pleiotropy.

We identify 33 sequence variant-protein level independent
associations for 15 proteins that have not been investigated for
pQTLs before (Table 1). For the remaining 92 proteins, we
identify 72 novel cis-pQTL variants, and 15 novel trans-pQTL
variants, excluding those at known pleiotropic loci. We define
novelty if no variants within 2 Mb have been previously reported
in serum pQTL studies, or if associations remain significant after
conditioning on established pQTLs.

Eight of the proteins we studied here have also been investigated in
a pQTL study in cerebrospinal fluid (CSF)!4. We replicate six of these
cis-pQTLs in serum: for CD33, GPNMB, LEPR, NAAA, SIGLEC-9,
and TDGF1. Additionally, we find novel cis-pQTLs for CD33 and
GPNMB, and trans-pQTLs for NAAA and SIGLEC-9, which had
not been detected in CSF. The observed replication of CSF pQTLs
indicates that the expression of these proteins in serum and CSF are
governed by a shared genetic mechanism.

Of the identified independent pQTLs, 185 (86%) are common-
frequency variants (minor allele frequency [MAF]>5%), 25
(12%) are low-frequency (MAF 1-5%) and four (2%) are rare
(MAF < 1%) (Fig. 2a). Eight of the low-frequency or rare pQTLs
(all cis signals) have not been reported before, despite the proteins
having been analysed in past studies, demonstrating the
advantage of using whole-genome sequencing-based analysis to
capture the full MAF spectrum.

Gene expression QTL colocalisation. Colocalisation analysis is
used to test if independent association signals from two traits
share the same causal variant. When comparing protein with
gene expression levels, positive colocalisation is indicative of a
shared regulatory mechanism, thereby acting as orthogonal vali-
dation. Through testing for colocalisation of neurological pQTLs
with gene expression QTLs (eQTLs) from multiple tissues
(GTEx), our results also identify disease-relevant tissues where
gene expression correlates with serum protein expression. For cis-
acting pQTLs, analysis was carried out between protein expres-
sion and the expression of the encoding gene, in all available
tissues. Sixty-four (69%) cis-pQTLs colocalised strongly (coloca-
lisation posterior probability 4 [CLPP4] > 0.8; ‘Methods’ section)
with gene expression in at least one tissue, with 11 (12%) in whole
blood, and 21 (23%) in various parts of the brain (Supplementary
Data 4). This indicates that for these loci, the causal variant
influences both gene and protein expression, therefore supporting
transcriptional regulation as the mechanism underpinning var-
iation in protein expression levels.

For trans-pQTLs, positive colocalisation between a pQTL and an
eQTL at a distal gene increases the likelihood that the two gene
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Fig. 1 pQTL signals for 107 serum proteins from Olink neurology and neuro-exploratory panels. a 3D Manhattan plot of detected pQTLs. The x axis
represents each of the 107 proteins; the y axis represents the chromosome location of each signal; and the z axis represents the —log10 p-values of each
association signal. b Scatterplot of pQTL variant location against the location of the gene encoding the target protein. Each dot represents an independent
variant. Cis-pQTLs are coloured in teal, while trans-pQTLs are in orange.
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Fig. 2 Overall genetic architecture of 107 serum proteins of neurological relevance. a A total of 214 independent variants were detected. Cis-acting
variants were defined as variants lying within 1 Mb upstream and downstream of the gene encoding the target protein, while trans-acting variants are
variants that lie outside of this region. Most severe consequence was determined by Ensembl's variant effect predictor (VEP). Effects more than missense
included ‘stop_gained’, ‘frameshift_variant’, and ‘splice_acceptor_variant’ in our dataset; ‘Regulatory region’ variants include ‘[3/5]_primeUTR_variant’,
'TF_binding_site_variant’, 'splice_region_variant’, and ‘regulatory_region_variant’; while'Others’ comprises mostly intergenic and intronic variants. Novelty
was assessed by cross-referencing published summary statistics from other pQTL studies (Supplementary Data 2). Known pleiotropic loci were not
considered novel. Rare, low-frequency and common variants were defined as variants with minor allele frequency (MAF) < 1%, MAF 1-5%, and MAF > 5%,
respectively. b Number of proteins for which we detected only cis-pQTLs, trans-pQTLs, or both.

products map to the same regulatory pathway (Supplementary
Note 1 and Supplementary Fig. 2). Colocalisation analysis was
performed between protein traits and expression of genes within
2Mb of the trans-acting variant. We detect 36 (75%) signals that
colocalise with the expression of at least one gene in their vicinity,
with three (6%) in whole blood and 30 (62%) in the brain
(Supplementary Data 4). As proof-of-concept, we find known
receptor-ligand pairs such as a trans signal for the KIR2DL3 (killer
cell immunoglobulin-like receptor 2DL3) protein colocalising with
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the expression of HLA-C in multiple tissues (22 tissues; CLPP4 >
0.78). KIR2DL3 is an inhibitory receptor for HLA-C, and is
resp?;lsible for preventing natural killer cells from killing healthy
cells’.

The analysis also enabled the identification of new protein links.
For example, we observe a trans-pQTL for SMPD1 (sphingomyelin
phosphodiesterase; rs10745925; MAF =0.333; P=7.75 x 10723
BETA = —0.2805; SE =0.0285) that colocalises strongly with the
expression of GNPTAB in the liver (CLPP4: 0.89), and moderately in
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Table 1 Independent pQTL variants for proteins that are being analysed for the first time.

Protein Variant MAF BETA S.E. P-value rsiD
ADGRB3 chr6:68956792 0.1576 0.89 0.032 8.44E-170 rs1932618
ADGRB3 chr6:68962147 0.3461 0.4947 0.0262 2.31E-79 rs3798971
ADGRB3 chr6:68968025 0.3468 0.8342 0.0225 2.83E-301 rs1953613
CD302 chr2:159745359 0.1016 —0.4303 0.0436 5.34E-23 rs5002908
CD302 chr2:159773858 0.3098 0.3731 0.0281 3.64E—-40 rs1553790820
CDH17 chr9:133253728 0.0918 —0.6534 0.0462 1.70E—45 rs10793962
CDH17 chr9:133264504 0.3431 —0.3879 0.028 1.19E—-43 novel
CDH17 chr19:48703205 0.4516 —0.386 0.0264 2.25E-48 rs681343
CDH17 chr8:94194571 0.4782 —0.2672 0.0276 3.61E-22 rs56129387
CDH17 chr8:94130944 0.4847 0.2889 0.0267 3.21E-27 rs1051624
GGT5 chr22:24232046 0.0064 —2.3071 0.1696 3.75E—-42 rs200519116
GGT5 chr22:24235780 0.1923 —-0.3614 0.0326 1.52E-28 rs6004108
GGT5 chr22:24247481 0.2015 —0.3049 0.0317 7.33E-22 rs5760275
IFI30 chr19:18172691 0.2613 0.3604 0.0295 2.10E-34 rs273266
IMPA1 chr8:81652967 0.3331 0.3338 0.0278 3.41E-33 rs2142316
KIR2DL3 chr19:54744273 0.0665 0.8024 0.0574 2.11E-44 rs10414825
KIR2DL3 chr19:54743423 0.2167 0.6973 0.0299 5.70E-120 rs11667532
KIR2DL3 chr6:31272403 0.266 0.5934 0.0307 1.71E-83 rs2524093
KLB chr17:68883786 0.0268 —0.556 0.0849 5.79E-N rs34931250
KLB chr4:3943127 0.3249 —0.4173 0.0265 5.44E-56 rs2926042
KLB chr4:39447786 0.333 0.7642 0.025 1.17E—-205 rs12513342
LTBP3 chr11:65572664 0.0527 0.5989 0.058 5.49E-25 rs10896017
LTBP3 chr11:65575510 0.2504 0.253 0.0299 2.68E-17 rs67924081
NDRGI1 chr5:177412889 0.2384 0.2707 0.0318 1.67E-17 rs2731674
NDRG1 chr4:186235350 0.4738 0.2847 0.0263 2.23E-27 novel

PSGI1 chr19:42929524 0.02 0.7883 0.087 1.32E-19 rs146569565
PSG1 chr19:42872373 0.1525 —0.3243 0.033 7.79E-23 rs60887906
PSG1 chr19:42881078 0.192 0.8012 0.0267 5.72E-198 rs2005772
RBKS chr2:27858572 0.009 1.9199 0.1685 4.54E-30 rs140948699
SNCG chr10:86945549 0.2564 0.934 0.0217 3.24E—-403 rs3750822
TPPP3 chr16:67267204 0.0813 —0.3312 0.0483 6.86E—12 rs7200971
VSTM1 chr19:54062922 0.1819 —0.8967 0.0309 9.59E—-185 rs8111849
VSTM1 chr19:54042277 0.3968 0.8847 0.0218 4.71E-359 rs2433724

other tissues (CLPP4 = 0.58 [oesophagus mucosa]; 0.57 [stomach];
0.54 [adrenal gland]). SMPD1 is a lipid hydrolase involved in
multiple cell processes; whereas GNPTAB encodes subunits of
GlcNAc-1-phosphotransferase, which is involved in the synthesis of
mannose-6-phosphate (M6P). SMPD1 exists in two forms: secreted
and lysosomal. Its lysosomal form is transported via the M6P
receptor pathway, therefore supporting the observed SMPDI-
GNPTAB interaction. Moreover, we find that the minor allele is
associated with a decrease in circulating SMPD1 and an increase in
GNPTAB expression. This could be a result of increased M6P
tagging, which targets a disproportionate amount of the enzyme to
the lysosome rather than the secretory pathway. Secreted and
lysosomal SMPD1 are likely to play distinct roles in the body'®, and
abnormal levels of the secreted form have been implicated in age-
related neurodegenerative conditions!” including Alzheimer’s
disease!® and amyotrophic lateral sclerosis (ALS)!°. We, therefore,
identify a locus at GNPTAB that coregulates secreted SMPD1 levels
and GNPTAB expression, pinpointing a possible mechanism behind
SMPD1-related neuropathological disorders.

Heritability. To estimate the narrow-sense heritability of the
protein traits studied, the proportion of variance explained (PVE)
by all variants across the genome was calculated using GCTA
GREML? for each protein. Using a single-component approach,
WGS variants explained a median of 33.3% of variance in serum
protein levels, with the highest observed heritability observed for
CD33 (h? = 87.2%). Another three proteins had high heritability
of more than 80%: TDGF1 (85.4%), VSTM1 (82.8%), and LAIR2

(82.3%). Conversely, some proteins had very low heritability
estimates of h? < 5%: IKZF2 (4.9%), RNF31 (4.4%), and EPHA10
(0.001%).

We observe that for all four proteins with h? > 80%, the pQTLs
colocalised with gene expression QTLs in multiple tissues,
indicating regulation at the transcriptional level; therefore, the
high observed h? values are likely to mirror genuine high
heritability. There are, however, other non-mutually exclusive
reasons that can drive very high or low estimates: (1) Variants
that alter the binding specificity of the Olink antibody but not the
quantity of protein may produce inaccurate heritability estimates;
and (2) Known and unknown biases of single-component
GREML approach, which tends to overestimate 2 when causal
variants are common, and underestimate 4> when causal variants
are rare?! (Supplementary Fig. 1).

Link to disease outcomes. To explore the biological relevance of
the pQTLs, we carried out colocalisation analysis with neu-
ropsychiatric traits using data published by the Psychiatric
Genomics Consortium (PGC), as well as other neurodegenerative
traits, using publicly available summary statistics from recent
large GWAS meta-analyses (Supplementary Data 5b). We also
studied colocalisation with signals for pain-related traits that have
been proven to have a neuropathic component, such as chronic
back pain?? and osteoarthritis?3. A total of 15 protein—trait pairs
colocalised with human disease signals, suggesting a role for the
protein in mediating disease. These results are summarised in
Supplementary Data 5a.
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Panel_Protein Trait nSNP pBH Test Odds Ratio [95% CI]
NEU_CD200 Parkinson's disease || id:ieu-a-818 . 1 3.90e-05 Waldratio 1.01[1.00, 1.01]
NEU_CDH6 Spine osteoarthris || GO consortium, 2023 —a— 2 2.85e-02 VW 1.11[1.05, 1.17]
NEU_CTSS Bipolar disorder || id:ieu-a-808 - 1 1.42e-08  Waldratio  0.96[0.95, 0.97]

multiple sclerosis || id:ieu-b-18 - 1 5.02e-04  Waldratio  0.86 [0.81, 0.91]

NEU_FCRL2 Rheumatoid arthritis || id:ebi-a-GCST002318 ] 1 1.86e-03 Wald ratio  1.09 [1.05, 1.13]
- Rheumatoid arthritis || id:ieu-a-832 —a— 1 2.11e-02  Waldratio ~ 1.12[1.06, 1.18]
Rheumatoid arthritis || id:ieu-a-833 e 1 2.52e-02  Waldratio  1.09[1.05, 1.14]

NEU IL12 Ankylosing spondylitis || id:ebi-a-GCST005529 H 1 2.15e-04  Waldratio ~ 1.05[1.03, 1.07]
- Spine osteoarthris || GO consortium, 2024 .t 1 2.11e-02  Waldratio  0.91[0.87, 0.95]
NEU_KYNU Bipolar disorder || id:ieu-a-808 e 1 1.22e-03  Waldratio  0.95[0.93, 0.97]
NEU_MSR1 Schizophrenia || id:ieu-a-22 — 1 1.53e-02  Wald ratio  0.80[0.72, 0.89]

NEU_WFIKKN1 Schizophrenia || id:ieu-a-810 - 1 8.96e-43  Waldratio 0.92[0.90, 0.93]

NEX COL2T Feeling hurt || id:ebi-a-GCST006951 - 2 9.75e-03 VW 0.97[0.96, 0.99]

- Neuroticism || id:ebi-a-GCST005232 . 2 4.64e-02 VW 0.96 [0.95, 0.98]
Alzheimer's disease (late onset) || id:ebi-a-GCST002245 ] 1 1.69e-02 Wald ratio  1.06 [1.03, 1.09]

NEX CD33 Alzheimer's disease || id:ieu-a-297 - 1 1.69e-02  Waldratio  1.06 [1.03, 1.09]
- Alzheimer's disease || id:ieu-a-298 - 1 2.11e-02  Waldratio  1.05[1.02, 1.07]
Alzheimer's disease || PMID:30617256 " 2 3.91e-04 VW 1.01[1.01, 1.01]

All osteoarthris || GO consortium, 2021 - 2 6.08e-05 VW 1.03[1.02, 1.04]

Cognitive performance || id:ebi-a-GCST006572 " 3 1.86e-03 VW 0.99[0.98, 0.99]

NEX_DPEP1 Multisite chronic pain || PMID:31194737 " 3 1.12e-02 VW 1.01[1.01, 1.02]
Non-cancer illness code, self-reported: osteoarthritis || id:ukb-b-14486 . 2 2.82e-04 VW 1.00 [1.00, 1.00]

Snoring || id:ebi-a-GCST009761 . 3 2.11e-02 VW 1.00[0.99, 1.00]

NEX_FUT8 Sleep duration (undersleepers) || id:ebi-a-GCST006686 " 5 7.53e-03 VW 1.01[1.00, 1.01]
NEX KLB Alcohol consumption || id:ieu-a-1283 - 2 1.69e-02 VW 1.01[1.01,1.02]
- Diagnoses - main ICD10: R42 Dizziness and giddiness || id:ukb-b-5655 2 8.58e-03 Ivw 1.00 [1.00, 1.00]
*NEX_LTBP3 All osteoarthris || GO consortium, 2022 [ 2 1.22e-02 IVW 1.06 [1.03, 1.09]
NEX_VSTM1 Diagnoses - main ICD10: G47.3 Sleep apnoea || id:ukb-b-16781 2 2.11e-02 VW 1.00 [1.00, 1.00]
All osteoarthris || GO consortium, 2022 [ 2 1.22e-02 VW 1.06 [1.03, 1.09]

07 08 09 1 11 1.2

Odds ratio per standard deviation increase in exposure

Fig. 3 Causal protein-disease associations identified using two-sample Mendelian randomisation. \We investigated the causal effect of serum proteins
(exposure) on various neurological traits (outcome), indicated in the first two columns in the plot. PubMed IDs (PMIDs) are given where manually
downloaded summary statistics were used; other IDs are those as given in MRBase (https://gwas.mrcieu.ac.uk/). The number of variants used in the
analysis are given in the 'nSNP’ column. The ‘pBH’ column contains the FDR-adjusted (Benjamini-Hochberg) P-value for each test. Protein-trait pairs with
only one variant were analysed using the Wald ratio method, while those with more than one variant were analysed using the inverse variance-weighted
(IVW) method. Data are represented as mean odds ratio + SEM. *Additional signal arising from analysis using only cis-pQTLs as instrumental variables.

We applied two-sample Mendelian randomisation (MR) for the
107 proteins for which we detect pQTLs, and 206 neurologically
relevant and behavioural traits. In contrast to colocalisation, the
objective of MR is to look for causal effects of proteins on
neurological phenotypes. Using both cis and trans-acting pQTLs,
fifteen proteins were found to be causal for at least one trait, and
we detect significant causal effects for 25 unique protein-trait
pairs (Fig. 3 and Supplementary Data 6a).

We replicate multiple known associations between protein and
disease from the colocalisation and MR analyses. These include
LEPR (leptin receptor) and migraine“, LTBP3 (latent-transform-
ing growth factor beta-binding protein 3) and osteoarthritis®>,
FLRT?2 (leucine-rich repeat transmembrane protein) with bipolar
disorder?6, and PLXNB127 (plexin-B1) and PLA2G10%8 (group
10 secretory phospholipase A2) with schizophrenia.

The analysis also identified new protein-disease relationships.
Notably, the strongest causal association was found between
serum WFIKKN1 and schizophrenia (P,g=9.12 x 10~43);
WFIKKN1 (WAP, Kazal, immunoglobulin, Kunitz and NTR
domain-containing protein 1) has not been associated with any
neuropsychiatric disorder to date, but is highly expressed in the
brain (GTEx) and regulates the activity of several growth and
differentiation factors?®. Similarly, we find new evidence that
serum VSTMI is causally associated with sleep apnoea (P,g =
2.03 x 1072). VSTM1 (V-set and transmembrane domain-
containing protein 1) is a cytokine that promotes the differentia-
tion of helper T-cells (TH17), which are often implicated in
autoimmune disorders that may develop secondary to sleep
apnoea3031,

The overarching aim of this study was to identify protein
biomarkers that may be used in the prognosis, diagnosis, or
treatment of neurological diseases. Here, we highlight various
potential disease markers that are supported by multiple lines of
evidence.

GPNMB as a biomarker for Parkinson’s disease. We identified a
cis-pQTL that is associated with decreased levels of serum
GPNMB (transmembrane glycoprotein NMB; rs7797870;
MAF = 0.4286; P = 7.01 x 10~°%;, BETA = —0.2109; SE = 0.0247)
and colocalises with a known Parkinson’s disease (PD) locus3?
(CLPP4 =0.86) (Fig. 4b). GPNMB has been highlighted as a
susceptibility gene in large PD meta-analyses®? and has been
proven to be upregulated in the brains of PD patients and in mice
with induced lysosomal dysfunction®3. In addition to its con-
nection to PD, we present new evidence showing that serum
GPNMB shares a causal variant with GPNMB gene expression in
both whole blood (CLPP4 = 0.79) and brain tissue (basal ganglia
CLPP4 = 0.70; cortex CLPP4=0.74; anterior cingulate cortex
CLPP4 = 0.83). This not only implies that GPNMB expression is
regulated transcriptionally by the pQTL, but also that its
expression in the blood and brain are mediated via a shared
mechanism. This is supported by previous research showing that
tissue GPNMB is able to shed its ectodomain and enter
circulation®%. The lead variant rs75801644 explained 7% of var-
iance in antibody binding for serum GPNMB. Importantly, the
identification of serum GPNMB levels as a potential marker of
PD is significant as current diagnostic biomarkers are mostly
found in the CSF. As serum biomarkers are much less invasive to
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Fig. 4 Colocalisation plots. Each plot shows the association signal and the
—log10 P-values. The lead pQTL variant is represented by a black diamond,
while other points are variants that are coloured according to the extent of
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a Left: Protein QTL signal for serum CD33; right: GWAS signal for Alzheimer's
disease. b Left: Protein QTL signal for serum GPNMB; right: GWAS signal for
Parkinson's disease.

measure, they are generally preferred for routine testing or
monitoring disease progression. Clinical studies will be required
to evaluate translational utility.

CD33 as a biomarker for Alzheimer’s disease. Using two-sample
MR, we confirm a significant causal association between serum
CD33 (myeloid cell surface antigen CD33) and Alzheimer’s
disease3® (AD; BETA =0.0091; SE=0.0017; inverse variance-
weighted [IVW] P,g;=3.62 x 10~4) (Figs. 3 and 4a). The role of
CD33 in AD is further affirmed by positive colocalisation between
the cis-pQTL with the causal variant rs2455069 (MAF = 0.3967;
P=2.03 x 1071580, BETA = 1.2092; SE = 0.0142), and a known
AD-associated locus (CLPP4 = 0.82). CD33 is upregulated in the
AD brain and is positively correlated with disease severity, while
knockout mice have been shown to have reduced amyloid plaque

formation3°. Additionally, the cis-pQTL for CD33 colocalises with
an eQTL for the CD33 gene in whole blood (CLPP4 = 0.95) and in
the brain (cerebellar hemisphere CLPP4=0.62), indicating a
shared regulatory pathway for gene and protein expression.

Notably, our heritability analysis revealed a very high h2 value
(82.7%) for serum CD33, which is the highest proportion of
variance explained observed across all analysed traits, thus
reflecting high heritability. This has been similarly observed in
a study showing that the most strongly AD-associated variant in
CD33, rs3865444, explained more than 70% of variance in CD33
monocyte expression and was moreover unaffected by age®’. A
reverse Mendelian randomisation analysis (using AD as the
exposure and serum CD33 as the outcome) confirmed that AD is
causal for increased CD33. Together, these findings indicate that
serum CD33 levels are a promising diagnostic marker for early
AD (Supplementary Note 2).

MSR1 on the causal pathway to schizophrenia. We find that a
cis-pQTL (rs150158578) associated with decreased serum MSR1
(macrophage scavenger receptor types I and II) is causal for
schizophrenia, supported by evidence from colocalisation analysis
(CLPP4 =0.75) and two-sample MR (BETA = —0.2205; SE =
0.0522; Wald ratio P, = 1.44 x 10~2; Fig. 3). Variants in the
MSRI1-encoding gene have been nominally significantly asso-
ciated in a schizophrenia GWAS38, and have been robustly
associated with AD?® and PD38.

MSRI is an immune modulator expressed on the cell surface of
macrophages. The protein plays a critical role in the clearance of
infectious agents and toxic molecules, such as amyloid-beta
protein?, damage-associated molecular patterns (DAMPs)4!, and
modified lipids, such as oxidised low-density lipoprotein
(oxLDL)*2. MSR1-mediated phagocytosis activates both pro-
and anti-inflammatory responses, and has been shown to have a
protective effect against multiple diseases, including bacterial and
viral infections, AD, atherosclerosis and Barrett’s oesophagus
(BE)*. Accordingly, MSR1-deficient mice have been shown to
exhibit dysregulated immune response in the brain and
deteriorating working memory#4. MSR1 activation can also lead
to excessive inflammation linked to sepsis and worsening the
cardiac and cerebral injury. Here, we observe a causal association
between decreased MSR1 expression and increased risk of
schizophrenia, suggesting a protective role (Fig. 5b).

We also find colocalisation of the cis-pQTL for serum MSR1
with an eQTL for the MSRI gene in the nucleus accumbens of the
basal ganglia (CLPP4 = 0.90), aorta (CLPP4 = 0.94), tibial artery
(CLPP4 = 0.90), and oesophagus (CLPP4 =0.91) (Fig. 5c). The
nucleus accumbens is central to the brain’s reward system, and is
enriched in dopaminergic neurons that contribute to the
pathophysiology of schizophrenia?>4¢ and other neuropsychiatric
diseases?’:48. A large comorbidity study has shown that patients
with schizophrenia are more likely to suffer from coronary heart
disease, cerebrovascular disease, and congestive heart failure®’.
We observed no evidence of colocalisation or causality between
serum MSR1 and stroke or coronary artery disease (CAD).

To further investigate the mechanism through which the
pQTL regulates protein expression, we queried the ENCODE??
(https://www.encodeproject.org/) database for overlaps with cis
regulatory elements. We found that, in blood cells, three variants
in LD (r2>0.8) with rs15015857 (rs420931, rs433235, and
rs59251421) reside within regulatory elements with a proximal
enhancer-like signature (EH38E2612565), a promoter-like sig-
nature (EH38E2612567), and a distal enhancer-like signature
(EH38E2612573), respectively. All three variants, as well as
rs150158578, are also eQTLs for MSRI gene expression in whole
blood (GTEx). This suggests that the pQTL regulates MSR1 in
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[r2<0.2]).

blood cells at the transcriptional level, possibly by altering the
binding affinity of transcription factors to the promoter or an
enhancer. Additionally, we note two other cis-acting rare,
independent variants (rs182190568, MAF = 0.006, P=1.44 x
10721, BETA =—1.2568, SE=0.1317; rs41341748, MAF =
0.0148, P=3.18 x 10738, BETA = —1.3351, SE=0.1033), and
a rare deletion (chr8: 16090094-16150000(b38]; MAF = 0.006;
P=7.10x10723% BETA = —1.414, SE=0.1436) that are sig-
nificantly associated with serum MSR1 levels (Fig. 5a), illustrat-
ing the complexity of the genetic regulation of MSR1.

Drug target evaluation. Drug repositioning can dramatically
expedite translational applications of proteomics and genomics
into patient benefit. As over 95% of drugs target proteins®!, we
sought to identify proteins included in this study that are targets
of drugs that have been approved, or are in later stages of clinical
trials (see ‘Methods’ section). Twenty-three of the proteins we
studied in this work are targets of approved drugs. Of these, 17
proteins had pQTL signals (Supplementary Data 7).

Seven of these proteins have cis-acting pQTLs that colocalise
with or are causal for neurological diseases: DDRI1, IL12, NEP,
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CD33, DPEP1, GPNMB, and LEPR (Supplementary Note 3). Of
note is DPEP1 (dipeptidase 1), whose increased expression is
causal for osteoarthritis and multisite chronic pain (MCP) (Fig. 3).
DPEP1 is inhibited by the drug cilastatin, which is often used in
combination with the antibiotic imipenem as an embolic agent in
the treatment of serious infections. Given that DPEP1 is causally
associated with osteoarthritis, cilastatin could potentially be
repurposed to treat osteoarthritis. Indeed, the cilastatin/
imipenem combination has been investigated as a treatment
for knee osteoarthritis°2->3, and has been proven to provide
pain relief. Also notable is CD33, whose expression is
increased in AD (Figs. 3 and 4a). CD33 has proven to be a
safe target, demonstrated by the acute myeloid leukaemia
(AML) drugs, gemtuzumab ozogamicin and lintuzumab. In a
study investigating the repurposing of lintuzumab for redu-
cing AD risk, the anti-CD33 drug was shown to robustly
decrease cell surface expression of the protein®. We, there-
fore, provide further genetic evidence supporting reposition-
ing of lintuzumab for AD treatment.

Discussion

Biomarker discovery is a process central to precision medicine,
and is especially important for many neurological disorders that
remain challenging to diagnose and treat. Serum proteins make
ideal intermediate traits to study as they are druggable, measur-
able targets that are strongly linked to both causative genetic
variants and medical outcomes. Having knowledge of their
underlying genetic architecture and how that may correlate with
diseases can also enhance our understanding of disease aetiology.
We have carried out a pQTL analysis of 184 neurologically
relevant serum proteins using WGS data. Altogether, we find 214
pQTLs for 107 proteins, of which 33 were for proteins that are
being analysed for the first time. We detect novel pQTLs for
previously studied proteins and replicate established associations
of both blood and CSF pQTLs.

Through downstream analysis, we highlight disease-relevant,
translatable pQTLs by presenting new evidence supporting
protein-disease associations; most notably, CD33 and Alzheimer’s
disease, GPNMB and Parkinson’s disease, and MSR1 and schi-
zophrenia. Additionally, we observed that serum DPEP1 is causal
for both osteoarthritis and multisite chronic pain (MCP). Pain is
the main symptom of osteoarthritis, and osteoarthritis is the
leading cause of pain and disability worldwide>>. DPEP1 has been
implicated in osteoarthritis through a large genome-wide asso-
ciation study®®, and was additionally shown to be downregulated
in mouse models of osteoarthritis®”. These findings indicate that
serum DPEP1 may serve as a valuable candidate biomarker for
identifying patients with undiagnosed osteoarthritis and suffer
from MCP.

Consistent with previously published pQTL studies, the
majority (73.8%) of variants were intergenic and intronic; we also
observed 31 (14.4%) variants in regulatory regions and 25 (11.6%)
coding variants, either missense or with more severe con-
sequences. We note a limitation of epitope-based proteomic
assays, in that cis-acting protein structure-altering variants may
affect epitope-binding affinity and, in turn, measured protein
levels. We identified 21 proteins with cis-acting variants, which
were either highly correlated (r? > 0.8) with, or were missense or
more severe consequence variants themselves. Of these, 16 var-
iants were determined by Olink to be within a possible epitope-
binding site (Supplementary Data 3), including those for CD33,
GPNMB, and MSR1. Further errors may also be introduced due
to cross-reactivity and unspecific binding>8. For 20 of 21 proteins
with corresponding protein quantification using the SomaScan
technique (an aptamer-based proteomic technology binding to

varying protein sites), the correlation between Olink and
SomaScan®® plasma protein measurements was evaluated in 485
individuals from the Fenland cohort®, using Spearman’s rank-
based correlation (Supplementary Data 3). Notably, we observed
good correlation in protein abundance between the two mea-
surements for CD33 (p =0.60), GPNMB (p =0.51), and MSR1
(p =0.74). Explanations for a lack of correlation are manifold,
including missing specificity of the aptamer or antibody for the
selected target, the low affinity of the aptamer, targeting of dif-
ferent protein isoforms, a different dynamic range of the assays,
as well as other technical factors as recently summarised®!. Fur-
ther orthogonal validation using epitope-independent assays is
warranted.

We detect no pQTLs for 77 proteins and only trans-pQTLs for
16 proteins. This may be explained by other limitations including
those related to epitope-binding. Firstly, only proteins in the
serum were quantified. As serum contains multiple cell types
originating from different tissues, pQTL detection is volatile to
changes in serum composition. We note, for example, that the cis-
pQTL for CD33 is also a known blood cell QTL (rs3865444)3,
highlighting how different cell-type composition and therefore,
sample handling, can affect the serum proteome and drive
pleiotropic signals. Secondly, the individuals included in this
analysis are of European ancestry only, and variants that are
absent or present in extremely low frequencies in our cohorts
would not have been detected. Therefore, our findings—in both
the pQTL discovery and downstream causal inference analyses—
cannot be extrapolated to non-European populations. Finally, our
sample size may not be adequate for the detection of rare variants
of small effect sizes, again stressing the importance of larger,
ethnically diverse studies.

In conclusion, we present the results of the first WGS-based
pQTL analysis of neurologically relevant serum proteins to date.
In addition to exploring the genetic architecture of these proteins,
we show that pQTL analysis has the potential to identify disease-
relevant serum biomarkers for debilitating neurological condi-
tions. We identify opportunities for the repurposing of ther-
apeutic targets, and deliver deeper insight into disease pathways.
We recognise that an effective biomarker must be able to dif-
ferentiate similarly presenting disorders to avoid misdiagnoses;
hence, special attention must be given to further validation.
Finally, we provide a resource that may be utilised by future
studies to develop new hypotheses and advance our under-
standing of brain-related disorders.

Methods

Cohorts and samples. The two cohorts included in this analysis, MANOLIS and
Pomak, are part of the Hellenic Isolated Cohorts (HELIC; https://www.helmholtz-
muenchen.de/itg/projects-and-cohorts/helic/index.html). The HELIC study focuses
on the genetics of complex traits, making use of characteristics of founder popu-
lations, such as increased frequency of rare variants, extended linkage dis-
equilibrium, and reduced haplotype complexity. For MANOLIS, biological samples
were collected from the mountainous Mylopomatos villages in Crete, Greece;
whereas, Pomak refers to a set of mountainous villages in the North of Greece.
Further phenotypic and genetic characteristics have been described in detail in
previous publications®?-%4, The study was approved by the Harokopio University
Bioethics Committee, and informed consent was obtained from all human subjects.

Sequencing and variant calling. Both MANOLIS and Pomak followed the same
sequencing, alignment, and variant calling pipeline. Genomic DNA (500 ng) from
1482 MANOLIS samples and 1642 Pomak samples were sheared to a median size
of 500 bp and subjected to standard Illumina paired-end DNA library construction.
Adapter-ligated libraries were amplified by six cycles of PCR and subjected to DNA
sequencing using the HiSeqX platform (Illumina) according to the manufacturer’s
instructions. Basecall files for each lane were transformed into unmapped BAMs
using Illumina2BAM, marking adapter contamination and decoding barcodes for
removal into BAM tags. PhiX control reads were mapped using BWA Backtrack
and were used to remove spatial artefacts. Reads were converted to FASTQ and
aligned using BWA MEM 0.7.8 to the hg38 reference (GRCh38) with decoys
(HS38DH). The alignment was then merged into the master sample BAM file using

8 | (2021)12:7042 | https://doi.org/10.1038/s41467-021-27387-1 | www.nature.com/naturecommunications


https://www.helmholtz-muenchen.de/itg/projects-and-cohorts/helic/index.html
https://www.helmholtz-muenchen.de/itg/projects-and-cohorts/helic/index.html
www.nature.com/naturecommunications

ARTICLE

Mumina2BAM MergeAlign. PCR and optical duplicates are marked using bio-
bambam markduplicates and the files were archived in CRAM format. Per-lane
CRAMs were retrieved and reads pooled on a per-sample basis across all lanes to
produce library CRAMs; these were each divided into 200 chunks for parallelism.
GVCFs were generated using HaplotypeCaller v.3.5 from the Genome Analysis
Toolkit (GATK) for each chunk. All chunks were then merged at sample level,
samples were then further combined in batches of 150 samples using GATK
CombineGVCFs v.3.5. Variant calling was then performed on each batch using
GATK GenotypeGVCFs v.3.5. The resulting variant callsets were then merged
across all batches into a cohort-wide VCF file using bcftools concat.

Proteomics and QC. Proteins from Olink’s (https://www.olink.com) Neurology
and Neuro-exploratory panels were measured in the serum of 1457 MANOLIS and
1611 Pomak samples. The full list of 184 proteins is provided in Supplementary
Data 8. Protein expression was quantified using Olink’s Proximity Extension Assay
(PEA) technology. Briefly, each protein assay uses pairs of oligonucleotide-labelled
antibody probes; when these antibody pairs bind to the target antigen, the oligo-
nucleotides hybridise due to their proximity and are extended by DNA polymerase.
These DNA barcodes are amplified by PCR and quantified using microfluidic
qPCR. Protein expression levels are reported as Normalised Protein Expression
(NPX) values, Olink’s relative quantification unit, which is in the Log2 scale. NPX
values are derived by adjusting raw qPCR Ct values against several internal controls
—an extension control, inter-plate control, and a correction factor calculated using
a negative control. Additionally, the negative control determines the limit of
detection (LOD) for each assay, calculated as the negative control plus three
standard deviations. We included all proteins and all below-LOD NPX values in
our analysis. Fifty-two and 37 MANOLIS samples, and 68 and 60 Pomak samples
failed vendor QC for the Neurology and Neuro-exploratory panels, respectively,
and were excluded from the analysis. Reported NPX values were then rank-based
inverse normal transformed (INT) and used for the association analysis.

Association analysis and meta-analysis. A maximum of 1365 samples from
MANOLIS and 1537 samples from Pomak were analysed for the Neurology panel;
and for the Neuro-exploratory panel, a maximum of 1372 samples from MANOLIS
and 1545 samples from Pomak were analysed. For each cohort, whole genome-
wide association analysis with 184 proteins was performed using a linear mixed
model implemented in GEMMA v.0.94%, simultaneously adjusting for covariates
—age, sex, season of sample collection, plate number, plate row, and plate column.
An empirical relatedness matrix was also used for each cohort to account for
population structure; this was calculated on an LD-pruned set of low-frequency
and common variants (MAF > 1%) that passed the Hardy-Weinberg equilibrium
test (P> 1 x 10~°). Following per-cohort analysis, 12,392,022 variants common to
the two cohorts were meta-analysed using the fixed-effects inverse variance-based
method in METAL®. As no proteins displayed significant genomic inflation
(0.95 < 1 < 1.03), no genomic control was applied.

Conditional analysis to identify independent variants. Using the PeakPlotter
software (https://github.com/hmgu-itg/peakplotter), we detected 171 signals. We
observed several signals extending over large regions that were mistakenly broken
up into multiple signals; because of this, 12 signals were excluded to give 159 sig-
nals. Independent variants were identified using the approximate conditional and
joint stepwise model selection, implemented using the -slct option in GCTA-
COJO, using a collinearity cut-off of 0.9. Before that, however, variants were first
subjected to clumping in Plink 1.9 (www.cog-genomics.org/plink/1.9/), using a r2
threshold of 0.1 and a clumping window of 1 Mb; this reduces the number of
variants input to COJO to avoid overfitting of the model. We arrived at a final
number of 214 independent variants for 140 signals after filtering for minor allele
count (MAC) > 10, Hardy-Weinberg equilibrium P>1 x 10>, and replication
(meta-analysis P-value < per-cohort P-value) in both cohorts.

Significance thresholds

Single variant-based association and rare variant analysis. For single variant-based
association, the significance threshold was adjusted for multiple testing by cor-
recting for the effective number of protein traits (M.g) and variants (Neg) analysed.
The effective number of proteins was computed using the ratio of the eigenvalue
variance to its maximum®%70;

tr(2'x)
T

Mg =M1—-M-1V, /M)=1 (1)

where Vs the variance of the eigenvalues of the correlation matrix. For the M =
184 Olink proteins included in the study, M. = 93 in both cohorts. The effective
number of variants, or N, was determined by using the --indep and --maf
options offered in Plink 1.9 to prune these variants. Specifically, variants with a
minor allele count (MAC) of <10 were excluded; and parameters specified for
--indep were: window size of 50 kb, variant count of 5, and variance inflation factor
(VIF) of 2. This was performed separately for both the MANOLIS and Pomak
cohorts, with resulting N s of 5,078,182 and 4,144,062 in each respective cohort.
The more conservative N of 5,078,182 was considered for the calculation of the P-

value significance threshold for the meta-analysis to give a final P-value threshold
of 1.05 x 10710, The same threshold was used for the rare variant analysis.

Significance threshold for two-sample MR. P-values were adjusted for multiple
testing by controlling for false discovery rate (FDR) using the Benjamini-Hochberg
method. Results were considered significant if the FDR-adjusted P-values were
below 0.05.

Novelty. We assessed variants for novelty using a funnel approach, by first iden-
tifying (a) novel proteins, then (b) novel signals, and finally, (c) novel variants.
Novel proteins were defined as proteins that are being analysed for pQTLs for the
first time. This was determined by comparing our proteins against protein lists
from four large pQTL studies”-19-1271, querying GWAS Catalogue for known
signals, then confirmed by doing manual literature searches. Next, we determined
variants belonging to novel signals by checking against previously reported pQTLs
(Supplementary Data 2). Signals were considered novel if no variants had been
reported within 1 Mb upstream and downstream of our variants. All variants from
known loci were then assessed for novelty by matching their rsIDs against pre-
viously reported variants; where no match was found, variants were conditioned on
other known variants at the locus, and considered novel if the association P-value
remained significant after conditioning.

Heritability. Heritability analysis was performed using GCTA GREML?? (https://
cnsgenomics.com/software/gcta/index.html#GREML), using both the multi-
component LDMS and single-component approaches in two separate cohorts. The
final meta-analysis h% i, was calculated using the following formula (provided on
the GCTA website):

Wt = 2(H7 /SE})/X(1/SE]), SE = _/(1/5(1/SE})) @)

GREML-LDMS. For each cohort, the segment-based LD score was first calculated
using GCTA’s --ld-score-region with the default length segment of 200 Kb. Var-
iants were then stratified into four quartiles according to their LD scores in R, and a
genetic relatedness matrix (GRM) was calculated for each group. For each protein,
we then ran REML analysis with four GRMs using default settings. REML analysis
failed to converge for 45 proteins across the two cohorts, likely due to limitations
arising from a smaller sample size.

GREML-SC. As we were unable to obtain h2 estimates for all proteins using
GREML-LDMS, we also ran single-component GREML (GREML-SC) for all
protein traits using a single GRM (also computed using GCTA). Full results may be
found in Supplementary Data 9.

Variant consequences. We used Ensembl’s variant effect predictor’? (VEP; http://
www.ensembl.org/vep) to determine the most severe consequence of each variant.
To check for potential protein-altering effects, we also queried the most severe
consequence of variants in LD (12> 0.8) with reported cis-acting variants, which
were extracted using PLINK 1.9. Variants with, or in LD with variants with
potentially protein-altering consequences are reported in Supplementary Data 3.

eQTL colocalisation. Colocalisation analysis was performed using our pQTL
results and gene expression QTL (eQTL) data downloaded from the GTEx database
(https://www.gtexportal.org/), using the coloc.fast function from the gtx R package
(https://github.com/tobyjohnson/gtx/). The method is equivalent to coloc by
Giambartolomei et al.”> and assumes only one causal variant at each associated
locus. To satisfy this assumption in our pQTL data, for each independent variant,
we conditioned associations on all other independent variants at the locus. For cis-
pQTLs, we tested colocalisation with an expression of the encoding gene in all
available tissues. For trans-pQTLs, colocalisation was performed with all genes
within 2 Mb of the causal variant for all available tissues. For all analysed genes,
eQTL data within 1 Mb upstream and downstream of the causal variant was
extracted.

PheWAS colocalisation. Using the same conditioned pQTL data from the eQTL
colocalisation analysis, we performed colocalisation with psychiatric and neuro-
degenerative traits. For each analysed locus, GWAS data within 2 Mb of the causal
variant was extracted. We used only publicly available summary statistics, either
downloaded from the Psychiatric Genomics Consortium (PGC) website (https://
www.med.unc.edu/pgc/download-results/), or as mentioned in the respective
papers. A list of studies used can be found in Supplementary Data 5b. Additionally,
colocalisation analysis was carried out with PhenoScanner’47> traits of neurolo-
gical relevance. The results for this are included in Supplementary Data 5a. Five
different posterior probabilities are reported in the table (CLPP0-CLPP4), which
corresponds to the five tested hypotheses explained in Giambartolomei et al.”3. In
particular, CLPP4 indicates association with both tested traits with a shared causal
variant.
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Two-sample Mendelian randomisation. Two-sample MR was performed
between 107 protein traits and 206 neurologically relevant phenotypes, using the
TwoSampleMR R package’® (https://github.com/MRCIEU/TwoSampleMR). Traits
available in the MRBase’” platform were selected based on the following: (a) Self-
reported traits in UK Biobank with at least 1000 cases; (b) UK Biobank ICD10
primary and secondary traits of neurological relevance; (c) studies categorised as
‘Psychiatric/neurological’, ‘Personality’, and ‘Sleeping’; (d) other large neurologi-
cally relevant traits with more than 10,000 samples; (¢) manually downloaded
summary statistics (see ‘PheWAS colocalisation” section). Independent variants
with an association meta-analysis P< 5 x 10~8 were determined by GCTA-COJO
(see ‘Peak calling and independent variants’ section) and used as instrumental
variables (IV), including both cis and trans variants. All variants at pleiotropic loci,
including KLKBI, FUT2, ABO, ST3GALS6, and the HLA region, were excluded from
the analysis. For each protein—trait pair, pQTL summary statistics for all inde-
pendent variants and their variants in LD (r2 > 0.8) were first extracted, excluding
those without rsIDs. This was then harmonised with the available outcome data.
Where any independent variant was not available in the outcome data, an LD
variant (r2 > 0.8) was used as proxy instead. For protein traits with more than 1
causal variant (IV), we used the inverse variance-weighted method; otherwise,
Wald ratio estimates were used. Sensitivity analysis was carried out for
protein—trait pairs with more than one IV by assessing heterogeneity about the
IVW estimate using Cochran’s Q tests, with P <0.05 denoting significant hetero-
geneity. We find that none of the protein-trait pairs with an FDR-adjusted P < 0.05
had Cochran’s Q P <0.05. The analysis was also repeated using only cis-pQTLs
(Supplementary Data 6b). This resulted in an additional causal signal, LTBP3 with
osteoarthritis; and the loss of three signals: ADAM23 with neuroticism, NEP with
osteoarthritis, and SIGLEC1 with osteoarthritis. We note an important caveat of
our analysis, which is that when only one instrumental variable is available, a
higher risk of violating the two-sample MR assumptions exists. Results from Wald
ratio tests should, therefore, be interpreted cautiously and with orthogonal
validation.

Drug target evaluation. Drug target evaluation was done by querying the Open
Targets’® (https://www.targetvalidation.org/) and Drugbank”® (https://
go.drugbank.com/) databases (Supplementary Data 7).

Ethics statement. The study was approved by the Institutional Review Board of
Harokopio University and the Greek Ministry of Education, Lifelong Learning and
Religious Affairs. The MAN-OLIS and Pomak studies were approved by the
Harokopio University Bioethics Committee and informed consent was obtained
from every participant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The MANOLIS sequencing data used in this study are available at the European
Genome-Phenome Archive (EGA) under accession number EGAS00001001207. The
Pomak sequencing data have not been deposited to the EGA as the data and the
information derived from it are culturally and politically sensitive in the context of this
religiously isolated population. We will consider requests to access the data by
researchers when an alternative cohort cannot reasonably be used for their research, and
will respond to such requests within 6 months. Summary statistics generated in this study
are available for download in the GWAS Catalogue. Accession codes and the respective
hyperlinks are provided in Supplementary Data 10.

Code availability

Analysis was performed using publicly available software as described in the ‘Methods’
section. Additional scripts may be found in our GitHub repositories (https://github.com/
hmgu-itg).
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