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Abstract

Combustion noise is central to several efforts to curb aircraft emissions. Indeed, acoustic
waves originating in the combustor are a major contributor to aircraft noise. Moreover, they
can act as a trigger for thermoacoustic instabilities, the consequences of whichmay range from
decreased efficiency to outright failure. Modern engines designed to lower NOx emissions are
particularly susceptible to this phenomenon.

Unsteady combustion generates acoustic waves — direct noise — as well as convected flow
disturbances, such as entropic, vortical or compositional inhomogeneities. These disturbances
generate additional acoustic waves— indirect noise— if they are accelerated. Themain objec-
tives of this thesis are to examine the validity of current theoretical models for indirect noise,
and to propose new ones where needed.

First, a one-dimensional theoretical framework for the direct and indirect noise produced
in a reflective environment is presented. The direct noise produced by the addition of mass,
momentum and energy to a flow is determined analytically. A model for the entropic and
compositional noise generated at a compact nozzle is then derived, accounting for nozzleswith
non-uniform entropy. Finally, the effect of reverberation (i.e. repeated acoustic reflections) is
determined analytically. This enables direct and indirect acoustic sources to be identified and
separated within experimental data, while eliminating the effect of acoustic reflections.

The framework is applied to a model experiment — the Cambridge Wave Generator —
in which direct, entropic and compositional noise are generated. Direct and indirect noise
models are validated using experimental measurements of the sound field resulting from air
injection and extraction, heat addition and helium injection. For the first time, direct, entropic
and compositional noise are clearly identified in the experimental data, and shown to be in
line with theoretical predictions.

The results provide the first experimental demonstration of the compositional noise mech-
anism, and show that isentropic nozzle models are inadequate in predicting the indirect noise
generated at nozzles with substantial losses.
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g s−1 and (b) case A8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VII.7 Direct acoustic wave π+
d extracted from experimental data ( ), com-

puted theoretically ( ) and normalised experimental acoustic pressure
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Introduction

In 1858, Leconte famously recountedhis attendance of a tea party atwhich several of Beethoven’s
grand trios were performed49. He noticed something peculiar about one of the burning gas
lights near the piano. As the music was playing, the burner was pulsating in rhythm with the
music; each note was accompanied by a synchronous flare in the flame. This is a thermoa-
coustic effect — an interaction between heat and sound. Leconte was right: the flame was
responding to the sound created by the musical instruments. In his own words, ‘a deaf man
might have seen the harmony’.

Thermoacoustic effects are more than mere scientific curiosities; they are relevant in many
modern technologies. In particular, heat-sound interactions are known to occur in combus-
tion devices such as aircraft and rocket engines. While the response of a small flame to a
Beethoven trio might be harmonious, the same erratic behaviour observed in a 7,000 kilonew-
ton rocket engine is more worrying. Nevertheless, this is precisely what occurs if an engine is
subject to a thermoacoustic instability.

Thermoacoustic instabilities

Thermoacoustic instabilities result from a resonant coupling between heat and sound. They
arise in combustion chambers because flames generate acoustic waves (pressure fluctuations).
These waves can be reflected at the boundaries of the system, return to the flame location and
affect its heat release, in turn producing yet more acoustic waves. In certain conditions, this
amounts to a positive feedback loop, whereby acoustic waves are amplified, leading to violent
pressure oscillations at specific frequencies. The consequences of these instabilities can be
extremely serious.

An example of this is the chaotic development of the F-1 engine destined to equip the Sat-
urn V rocket. During a performance test in 1962, the engine exploded less than half a second
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after ignition; this was attributed to a combustion instability6. These instabilities would occur
repeatedly during tests, at frequencies determined by the geometry of the injector and of the
combustion chamber. Low frequency instabilities would affect overall performance and cause
explosions, while high frequency instabilities could prevent cooling and cause the engine to
melt87. Examples of such damage are shown in figure 1. These instabilities were eventually
eliminated at great expense through trial and error, by building hundreds of chamber geome-
tries and injector designs6. The Saturn V rocket would go on to fly astronauts to the moon.

(a) (b)

Figure 1: Examples of damage sustained on the Rocketdyne F-1 engine due to combustion
instabilities in (a) 1958 and (b) 196365.

Clearly, avoiding thermoacoustic instabilities using trial and error is neither economical
nor practical. Ideally, one would like to predict the onset of a thermoacoustic instability dur-
ing the early phases of design. This requires a detailed understanding of the phenomenon,
explaining why and how such instabilities occur. In his seminal 1877 treatise, ‘A Theory of
Sound’, Rayleigh 81 proposed such an explanation:

If heat be periodically communicated to, and abstracted from, a mass of air vi-
brating (for example) in a cylinder bounded by a piston, the effect produced will
depend upon the phase of the vibration at which the transfer of heat takes place.
If heat be given to the air at the moment of greatest condensation, or be taken
from it at themoment of greatest rarefaction, the vibration is encouraged. On the
other hand, if heat be given at the moment of greatest rarefaction, or abstracted
at the moment of greatest condensation, the vibration is discouraged.

In other words, the growth of a thermoacoustic instability depends on the relative phase of
the heat release and pressure oscillations. If both are in phase, an amplification effect occurs,
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and an instability will arise (notwithstanding losses in the system).
In combustion systems, severalmechanisms can lead to a coupling of heat release and acous-

tic pressure fluctuations. Generally speaking, changes in heat release generate acoustic waves
which can affect the flow upstream of the flame (local flow rate, equivalence ratio, mixing,
flow structures, thermodynamic properties etc.). As these perturbations are convected into
the flame, they provoke a further heat release fluctuation23,11. If these processes occur with
the appropriate time delays and overcome the acoustic losses in the system, an unstable feed-
back loop may be formed, leading to a self-sustained thermoacoustic instability12,78. In each
case, the noise generated by the combustion process plays an essential role in the development
of an instability.

Combustion noise in aeroengines

While combustion noise and thermoacoustic effects are present in many combustion devices,
they are of particular concern in aero engines. This is because they play an important role
in two forms of aircraft pollution. The first is the emission of gases such as carbon dioxide
(CO2) and nitrogen oxides (NOx), which deteriorate local air quality, and contribute to climate
change50. The other is noise pollution, which is particularly pronounced in zones surrounding
airports, with health effects ranging frommild hearing loss to increased cardiovascular risk34.

Several steps have been taken to mitigate these harmful emissions, and modern aircraft are
drastically less polluting than their predecessors14. Despite this, technological advances are
being outpaced by the growth in global air traffic, which has risen continuously in the past
decade. This trend shows no sign of stopping — according to the International Civil Aviation
Organization, global air traffic is likely to double over the next 20 years43. This realisation has
made reducing aircraft emissions a matter of urgency; technological innovations are desper-
ately needed.

One such innovation has come in the form of new aircraft engine designs. Specifically, the
necessity of reducing NOx emissions has encouraged the development of lean-premixed gas
turbines. These engines can run at unprecedentedly low temperatures, which in turn reduces
NOx production14. These improvements have come at a cost however, as lean-premixed com-
bustors are particularly prone to thermoacoustic instabilities22. To predict and avoid these
instabilities, we must first understand how the combustion process generates acoustic waves
(i.e. combustion noise).
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Combustion noise is also relevant in the context of aircraft noise pollution. Prompted by
increasingly stringent noise-emission regulations, significant progress has been made in the
areas of jet noise and fan noise. As a result, the noise stemming from the gas turbine combustor
now represents an important contribution to the overall aircraft noise. For both of the reasons
outlined above, furthering our understanding of combustion noise is a crucial step in view of
reducing aircraft pollutant emissions.

The noise generated by the combustion process is generally divided into two categories –
direct and indirect combustion noise, in reference to their generation mechanism. Direct
combustion noise refers to the acoustic waves generated in the reactive region. These are the
result of the volumetric expansion and contraction brought about by the flame’s unsteady heat
release8. Flames can also act as a source of non-acoustic perturbations in the flow. For exam-
ple, they may generate entropic waves — pockets of gas with a different temperature than
their surroundings. Similarly, they may produce small local changes in chemical composition
(compositional waves), or in the velocity field (vortical waves). These disturbances are con-
vected downstream with the flow, generating no acoustic waves in general13. If the flow is
accelerated or decelerated however— as is often the case in practice — these convected waves
generate acoustic waves, referred to as indirect noise28,67,18,58. Indirect noise is further cate-
gorised as entropic, compositional or vortical, depending on the type of flow perturbation it
arises from.

In a gas turbine combustor the flow is accelerated downstream of the flame, first at the
nozzle guide vanes at the outlet of the combustor, as well as further downstream as the flow
passes through several turbine stages. As such, a gas turbine generates both direct and indirect
combustion noise, as shown in figure 2.

The term ‘combustion noise’ is sometimes used to refer exclusively to the downstream noise
radiated through the turbine stages to the engine exhaust, which contributes to overall air-
craft noise. In this thesis we also use the term in reference to the upstream propagating noise,
which is reflected into the combustor where it may lead to the onset of a thermoacoustic insta-
bility33,79. Specifically, several studies have shown that reflected indirect noise may trigger or
sustain an instability9,33,36,70, and it is considered to be one of the key feedback mechanisms
for very low frequency instabilities62,93.

The relative importance of direct and indirect noise has long been a topic of debate86. In-
deed, while direct combustion noise is now relatively well understood10, several aspects of the
indirect noise mechanism remain nebulous68. This is due in large part to the scarcity of ex-
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Entropic 
perturbations

Compositional 
perturbations

Vortical 
perturbations

Indirect noiseDirect noise 

Nozzle 

Figure 2: Direct and indirect noise mechanisms in a typical gas turbine combustor. Inspired
by Dowling & Mahmoudi 21 and Magri et al. 59 .

perimental data, which are required to validate, refute or inform current theoretical models21.
In fact, while there is some experimental evidence supporting the existence of entropic and
vortical noise, no such data exist for compositional noise.

The indirect noise generation process can be thought of as a chain of three successive events,
each of which must be well understood for the same to be said about the overall mechanism.
First, entropic, compositional and vortical waves are generated by a flame or otherwise. Sec-
ond, these waves are convected through the combustor, diffusing and dispersing along the
way. Thirdly, the waves are accelerated at the outlet of the combustor, producing indirect
noise. This final step has garnered considerable interest from researchers in recent years, and
is the focus of the present work.

Thesis outline

The objective of this thesis is to shed a light on the validity of current theoretical models for
the generation of entropic and compositional noise, and to propose new ones where needed.
Emphasis is laid on low-frequency noise in the infra-sound range, for which analytical and
experimental results can be most readily obtained. A one-dimensional analytical framework
for direct and indirect noise generation and reflection is developed, building on existing the-
oretical models. This framework is then directly compared to experimental data obtained
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with the Cambridge Wave Generator, in which acoustic, entropic and compositional waves
are generated and accelerated, leading to direct and indirect noise.

In chapter I, the literature concerning the generation of indirect combustion noise is pre-
sented. The main analytical, numerical and experimental efforts to gain insights into indirect
noise are reviewed, identifying gaps in our current understanding of the phenomenon.

A one-dimensional analytical model for the generation of waves at a flow discontinuity
is derived in chapter II. It enables the production of acoustic waves (direct noise), as well
as entropic and compositional waves to be computed quantitatively in a variety of scenarios,
including heat addition (as is the case for a flame or a heater), or mass, momentum, energy
and species addition (the general case).

The theoretical response of compact nozzles to acoustic, entropic and compositional waves
is derived in chapter III. The common assumption of an isentropic nozzle is relaxed, offering
analytical predictions in situations in which entropy is not conserved, as is often the case in
real systems.

Chapter IV presents an analytical approach to account for the effect of repeated acoustic
reflections (reverberation) on acoustic sources in a one-dimensional system. The results of
these analyses lead to the definition of reverberation and transmission transfer functions for
unicameral and bicameral systems. These transfer functions provide a two-way link between
the acoustic pressure one can measure in a system and the acoustic sources within it.

The models in chapters II–IV are combined to form a complete theoretical framework
for the generation of direct, entropic and compositional noise, which is presented in chap-
ter V. Reverberation and transmission transfer functions are implemented to show how di-
rect and indirect acoustic sources can be recovered from simple pressure measurements (de-
reverberation).

A new experimental facility to study direct and indirect noise, the CambridgeWave Gener-
ator, is described in chapter VI. The experimental set-up and wave generation methods used
to obtain the results in chapters VII–IX are presented.

In chapter VII, experimental results concerning the generation of direct noise by air injec-
tion and extraction are shown. These are compared to the theoretical framework developed
in chapters II–IV. This provides a simple test case for the reverberation and de-reverberation
models, and enables the validity of the direct noise model to be examined.

The detection andmeasurement of entropic noise produced by convected temperature fluc-
tuations is reported in chapter VIII. The upstream-propagating entropic noise generated at
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isentropic and anisentropic nozzles is measured for the first time. Finally, the response of
nozzles to impinging entropic waves is characterised and compared to analytical predictions.

In chapter IX, compositional noise is introduced as an additional source of indirect noise.
This is achieved by accelerating a helium-airmixture thoughnozzles of varying levels of anisen-
tropicity. The resulting entropic and compositional noise is once again measured and com-
pared to the theoretical framework, this time measuring both upstream- and downstream-
propagating components.
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I
State of the art

This chapter serves as a summary of current research on indirect combustion noise and its rel-
evance in modern combustion systems. The governing equations for reacting flows are briefly
presented, highlighting the mechanisms driving the generation of direct and indirect noise.
The literature concerning the indirect mechanism is explored, covering the main theoretical,
numerical and experimental results. Particular attention is given to the sound generated by
the interaction of flow inhomogeneities with nozzles, which is the focus of this thesis.

I.1 Acoustics of combustion

I.1.1 Governing equations

To understand how the combustion process gives rise to acoustic waves, one can start from the
equations of motion of a reacting multicomponent gas. For a viscous compressible flow with
no external forces, the conservation of mass and momentum are given by the Navier-Stokes
equations:

Dρ

Dt
+ ρ∇ · u = 0, (I.1)

ρ
Du

Dt
= −∇p+∇ · τ , (I.2)

where ρ is the density, p is the pressure, u is the velocity and τ is the viscous stress tensor. The
material derivative isD/Dt = ∂/∂t+u · ∇. These equations are complemented by the ideal
gas law, which relates the pressure to the gas density and temperature T :

p = ρRT, (I.3)
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where R is the gas constant, which is a function of the mixture composition. Since we are
dealing with a flame which generates heat, we must also consider the balance of energy:

ρ
Dh

Dt
=

Dp

Dt
+ q +∇ · (k∇T ) + τ : ∇u, (I.4)

where h is the specific enthalpy, q is the heat release rate per unit volume and k is the thermal
conductivity. We must also account for the conservation of chemical species:

ρ
DY

Dt
= ρω̇ −∇ · j, (I.5)

where Y is the vector of the mass fractions Yi of theN species composing the gas (such that∑N
i=1 Yi = 1), ω̇ is the vector of species production rates, and j is the vector of diffusive mass

fluxes.

These equations are closed with Gibbs’ relation for a multicomponent gas:

dh = Tds+ (1/ρ)dp+

N∑
i=1

µi

Wi
dYi, (I.6)

where s is the entropy andWi is the molar mass of one ofN species. The chemical potential
of each species is defined as µi = Wi

∂h
∂Yi

. This enables us recast equation (I.4) as:

ρT
Ds

Dt
= q +∇ · (k∇T ) + τ : ∇u− ρ

N∑
i=1

µi

Wi

DYi
Dt

, (I.7)

which shows that the production of entropy is driven by heat addition q, as well as thermal
gradients, viscous heating, compositional gradients, and chemical reactions.

Together, equations (I.1)-(I.7) can be used to fully describe the flow. Nevertheless, we are
interested mainly in the acoustic component of the flow, which appears physically as small
fluctuations in the variables p, ρ, T and u. As such, we decompose flow variables into their
mean and fluctuating components, denoted with an over-bar and a prime respectively (e.g.
β(x, t) = β̄(x) + β′(x, t)). Furthermore, we consider linear fluctuations; their amplitude is
small relative to the mean quantity (e.g. β′ ≪ β̄). If we consider small perturbations to the
inviscid flow of a non-reacting perfect gas, we can derive linearised governing equations:

D̄ρ′

Dt
= −ρ̄∇ · u′, (I.8)

10
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D̄u′

Dt
= −1

ρ̄
∇p′, (I.9)

D̄s′

Dt
=

q′

ρ̄T̄
, (I.10)

D̄Ω′

Dt
= 0, (I.11)

D̄Y ′

Dt
= 0, (I.12)

whereΩ = ∇× u is the vorticity, and D̄/Dt = ∂/∂t+ ū · ∇.

Combining (I.8)-(I.11) and making use of the ideal gas law leads to the inhomogeneous
acoustic wave equation:

1

c̄2
D̄2p′

Dt2
−∇2p′ =

γ − 1

c̄2
D̄q′

Dt
, (I.13)

where c =
√
γRT is the speed of sound, and γ is the heat capacity ratio. The equation above

shows that heat release fluctuations q′ directly drive the generation of acoustic waves, here
manifested as pressure perturbations p′. This reveals one way in which combustion noise may
be generated. Additional insight can be obtained by separating acoustic fluctuations from
other types of disturbances.

I.1.2 Flow decomposition

Considering equations (I.8)-(I.12), we see that any linear perturbation can be described as
the sum of four canonical disturbances: acoustic, entropic, vortical and compositional13,54,57.
Assuming a uniform mean flow with no unsteady heat input (q′ = 0), these disturbances are
independent from each other, and do not interact57.

The acoustic disturbance is isentropic and irrotational. Setting s′ = 0 and Ω′ = 0 in
equations (I.8)-(I.11) leads to the acoustic wave equation:

1

c̄2
D̄2p′

Dt2
−∇2p′ = 0. (I.14)

For a one-dimensional flow, the solution to this equation corresponds to the superposition
of forward and backward travelling acoustic waves. These waves travel at the speed of sound
c̄ relative to the mean flow speed ū.
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Similarly, the entropic disturbance is incompressible and irrotational:

D̄s′

Dt
= 0, (I.15)

which shows that entropic fluctuations are simply convectedwith the flow. This can be thought
of as an entropic wave propagating at the mean flow speed ū.

The vorticity perturbation is incompressible and isentropic, and we have:

D̄Ω′

Dt
= 0, (I.16)

showing that the vortical disturbance manifests itself as a vortical wave convected with the
mean flow.

Finally, the compositional perturbation is incompressible, isentropic, irrotational and is
also convected with the flow:

D̄Y ′

Dt
= 0. (I.17)

Each one of these canonical waves (or modes) manifests itself physically as a set of fluctua-
tions in the flow variables, as shown in table I.1. For example, an entropic wave is observable
as a fluctuation of both temperature and density.

Acoustic Entropic Vortical Compositional
wave wave wave wave

Pressure p • - - -

Velocity u • - • -

Density ρ • • - -

Temperature T • • - -

VorticityΩ - - • -

Entropy s - • - •
Composition Y - - - •

Table I.1: Flow variables affected (•) and unaffected (-) by the four canonical wave types.
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I.1.3 Mode conversion

For a uniformmean flow, Chu & Kovásznay 13 showed that the interactions between acoustic,
vortical and entropic waves only have a second order effect (i.e. O

(
p′2
)
). Magri 57 showed

compositional waves are also uncoupled in the first-order equations. However, these pertur-
bations can be coupled in the presence of a gradient in the mean flow, where different types
of waves may interact. Example of these interactions are shown in figure I.1, and include (a)
acoustic waves impinging on an orifice plate generating vortical waves73, (b) entropic waves
impinging on an aerofoil cascade generating acoustic waves17 and (c) compositional waves im-
pinging on a nozzle generating acoustic waves44,58. These couplings are sometimes described
as mode conversion mechanisms76.

Figure I.1: Examples of mode conversion mechanisms between acoustic (p′), vortical (Ω′),
entropic (s′) and compositional (Y ′) perturbations.

As we have shown in (I.10), unsteady heat release can be a source of entropic waves, which
if convected through a nozzle may then lead to the generation of acoustic waves. In that sense,
mode conversion consists of an indirect link through which unsteady heat release (character-
istic of combustion) may generate acoustic waves. This is in addition to the direct link shown
in (I.13).

Indirect noise generation can be thought of as a set of three mode conversion mechanisms,
whereby accelerated or decelerated entropic, vortical or compositional waves produce acoustic
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waves40,61,58. Vortical noise is often considered to be less prevalent than entropic noise in gas
turbines. Indeed, high gas temperatures result in an elevated viscosity, which tends to dissipate
turbulent vortical structures before they reach the nozzle68. For this reason, the entropic and
compositional mechanisms have garnered the most attention from researchers.

I.2 Analytical models for entropic noise

Entropic noise has been the topic of numerous studies since it was theorised in the sixties15.
One of the first investigations on the topic was carried out in 1973 by Morfey 67 , who refined
Lighthill’s theory for jet noise55 to account for the ‘excess jet noise’ generated by density inho-
mogeneities. He showed that this excess noise could be understood by considering the excess
density ρe, defined as:

ρe = ρ′ − 1

c̄2
p′. (I.18)

This excess density corresponds to the density fluctuation not related to isentropic acoustic
fluctuations. In fact, for an ideal gas, the excess density is directly related to the entropic
fluctuation:

ρe
ρ̄

=
ρ′

ρ̄
− p′

γp̄
= − s′

c̄p
. (I.19)

where cp is the specific heat capacity at constant pressure.

This extension of Lighthill’s theorywas further developed byHowe 38,37 andFfowcs-Williams28,
who usedGreen’s functions approaches to determine the entropic noise generated in lowMach
number flows. Bailly et al. 1 derived several acoustic analogies for reacting flowswith reference
to entropic noise.

In parallel to these developments, Marble & Candel 61 developed a different approach to
examine the coupling between entropic and acoustic fluctuations. They considered the quasi
one-dimensional flow through an isentropic nozzle, assuming that (1) the flow is adiabatic,
(2) composed of a homogeneous gas, (3) thermodynamically perfect (γ is constant) and (4)
viscous effects are negligible. In this scenario, the linearised Euler equations are:

D̄

Dt

(
p′

γp̄

)
+ ū

∂

∂x

(
u′

ū

)
= 0, (I.20)

D̄

Dt

(
u′

ū

)
+

c̄2

ū

∂

∂x

(
p′

γp̄

)
+

[
2
u′

ū
+ (1− γ)

p′

γp̄

]
dū

dx
=

s′

c̄p

dū

dx
, (I.21)
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D̄

Dt

(
s′

c̄p

)
= 0. (I.22)

If the mean flow gradient is zero (dū/dx = 0), then combining equations (I.20) and (I.21)
enables one to recover (I.14), which simply describes acoustic propagation. The presence of
a mean flow gradient (dū/dx ̸= 0) has two effects. First, terms representing refraction and
reflection appear (third termof (I.21)). Secondly, entropic fluctuations s′/c̄p appear as a dipole
source term in the wave equation (on the right hand side of (I.21), revealing the entropic noise
generation mechanism.

I.2.1 Compact models

Marble&Candel 61 examined the case of a compact nozzle, meaning that the length of the noz-
zle is negligible compared to the wavelength of acoustic and entropic disturbances. This limits
the analysis to low frequency acoustic and entropic waves, which are assumed to propagate
quasi-steadily through an abrupt area change. Under these conditions, the normalised fluc-
tuations in mass flow ṁ′/ ¯̇m, total temperature T ′

t/T̄t and entropy s′/c̄p are matched across
the area change. This can be formulated as a jump condition for the acoustic and entropic
waves on either side of the nozzle. This enabled them to determine transfer functions for the
waves generated at a subsonic or supersonic nozzle (shown in §III.1). These transfer functions
enable one to calculate the amplitude of acoustic waves generated in response to impinging
entropic or acoustic waves.

Marble &Candel 61 also considered the interaction of an entropic wavewith a normal shock
downstream of the nozzle. Moase et al. 66 extended their approach to a more general case: by
applying the Rankine-Hugoniot conditions across the shock, they were able to derive acoustic-
acoustic and entropic-acoustic transfer functions for compact nozzles with a shock.

Cumpsty & Marble 17 applied the concept of the compact nozzle to the case of an entropic
fluctuation convected through a series of compact turbine blade rows, showing that the gen-
erated entropic noise could be calculated analytically.

I.2.2 Non-linear models

Most indirect noise models assume a linear flow regime in which flow perturbations are small
relative to the mean. In practical situations, perturbations may not always be linear. In the
presence of a combustion instability for example – during which flow perturbations are un-
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usually large – entropic fluctuations generated at the flamemay fall outside of the linear range
(e.g. above 100 K for a 1000 K average temperature). In this scenario, nonlinear effects must
be considered.

Huet &Giauque 42 modelled the response of subsonic and supersonic nozzles to impinging
nonlinear acoustic and nonlinear entropic perturbations. This was later extended by Huet 41

to nozzles with shocks, producing both second-order and fully nonlinearmodels. Their results
show that the nozzle response to nonlinear acoustic fluctuations is identical to the first-order
solution. In other words, the nonlinear acoustic-acoustic nozzle transfer functions are identi-
cal to the linear ones derived by Marble & Candel 61 .

In contrast, the response of nozzles to nonlinear entropic fluctuations shows that additional
noise is generated compared to the first-order (linear) model. In most cases, the nonlinear
solution can be well approximated (to within 1%) by the second-order model42. For subsonic
diverging nozzles where both the inlet and outletMach numbers are high, the discrepancy can
be substantial (up to 70%), although this is not representative of a gas turbine combustor, in
which the outlet Mach number is high but the inlet Mach number is typically low.

I.2.3 Non-compact models

Compact nozzle models are valid in the limit of low Helmholtz numbersHe = ωL/c (where
ω is the perturbation frequency, L is the characteristic length of the nozzle and c is the speed
of sound). In this sense, a strictly compact nozzle is a nozzle with zero-length, or subjected to
zero-frequency perturbations. If the perturbation frequency and nozzle length are larger than
zero, the actual response of the nozzle is no longer predicted by the compact model. Themost
important difference between compact and non-compact nozzles is that in the former, there
is no phase shift between the inlet and outlet. For the latter, a phase shift occurs, modifying
the nozzle response as a function of frequency both in terms of amplitude and phase.

Leyko et al. 53 investigated the importance of non-compactness by solving the quasi one-
dimensional Euler equations ((I.20)-(I.22)) numerically, and comparing the result to the com-
pact nozzle models. Their results show that the compact assumption remains accurate up to
He ≈ 0.2, but that non-compactness becomes important at higher Helmholtz numbers. In
that case, the finite length of the nozzle must be taken into account. Similarly, Leyko et al. 51

showed that compact blade row models are unsuitable beyondHe ≈ 0.1.
In their original study, Marble & Candel 61 also considered the response of finite-length

nozzles with a linear mean velocity profile. Their work was extended to account for more
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complex nozzle geometries with piece-wise linear velocity distributions by Moase et al. 66 and
Giauque et al. 29 . These analytical results were validated with numerical simulations of the
Euler equations.

A different approach was taken by Stow et al. 85 , who accounted for finite-length nozzles
by introducing a phase-correction to the boundary conditions established in the compact
case. This work was continued by Goh & Morgans 32 , who introduced the concept of effec-
tive lengths as a way to determine phase predictions of the nozzle response. These effective
lengths are dependent on the type of disturbance and on the nozzle geometry.

Finally, Duran & Moreau 24 derived analytical expressions for the acoustic and entropic
transfer functions of subsonic and choked finite-length nozzles of arbitrary geometries. They
solved the linearised Euler equations ((I.20)-(I.22)) using the Magnus expansion. Their re-
sults apply to subsonic and supersonic nozzles of arbitrary geometries for any perturbation
frequency. Their solution can be used to predict the response of nozzles to impinging acoustic
or entropic waves. Their predictions of the acoustic response is in excellent agreement with
experimental measurements of acoustic-acoustic response by Zinn et al. 96 for converging-
diverging choked nozzles over a large range of frequencies. Such a validation has not yet been
carried out for the entropic-acoustic response due to a lack of experimental data. In general,
their numerical results suggest that amplitude of the entropic noise generated at a choked noz-
zle decreases as the Helmholtz number increases. There seems to be no such general rule for a
subsonic nozzle, which may produce more or less entropic noise than the compact equivalent
depending on the Helmholtz number.

I.3 Analytical models for compositional noise

Much of the literature on indirect noise assumes a homogeneous gas with uniform composi-
tion. In reality, the flow in a combustor is comprised of a range of chemical species, which
may result in compositional inhomogeneities (due to imperfect mixing or dilution for exam-
ple). Ihme 44 and Magri et al. 58 examined compositional heterogeneities as a contributor to
indirect noise. They assumed a chemically frozen multi-component gas, uniquely describing
compositional variations using themixture fractionZ , such thatY = Y (Z). In this scenario,
Magri 57 showed that the excess density can be expressed as:

ρe
ρ̄

= − s′

c̄p
−ΨZ ′, (I.23)
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whereΨ is the chemical potential function:

Ψ =
1

c̄pT̄

N∑
i=1

µi

Wi

dYi
dZ

. (I.24)

Comparing (I.19) and (I.23) reveals that in a multi-component gas, fluctuations in composi-
tion Z ′ act as a contributor to the excess density in addition to entropic fluctuations s′/c̄p.
This suggests that convected compositional fluctuations also generate indirect noise.

Linearising the Euler equations as in (I.20)-(I.22) without assuming a homogeneous gas,
one obtains57:

D̄

Dt

(
u′

ū

)
+

c̄2

ū

∂

∂x

(
p′

γp̄

)
+

[
2
u′

ū
+ (1− γ)

p′

γp̄

]
dū

dx
=

(
s′

c̄p
+ΨZ ′

)
dū

dx
, (I.25)

which shows that compositional fluctuationsZ ′ appear as a dipole acoustic source in the pres-
ence of a mean flow gradient.

I.3.1 Compact model

Ihme 44 and Magri et al. 58 extended the compact nozzle approach developed by Marble &
Candel 61 to include the effect of impinging compositional waves. In addition to the jump
conditions assumed in the original study (conservation of fluctuating mass, total temperature
and entropy), they considered that the compositional fluctuationZ ′ was conserved across the
nozzle.

They obtained the analytical response of subsonic and supersonic nozzles to impinging
acoustic, entropic and compositional fluctuations. Their study also accounts for the presence
of a shock wave downstream of the supersonic nozzle. Their derivation (shown in §III) en-
ables one to recover the acoustic-acoustic and entropic-acoustic transfer functions previously
obtained by Marble & Candel 61 , with the addition of compositional-acoustic transfer func-
tions.

I.3.2 Non-compact model

As with the entropic noise models, the assumption of nozzle compactness must be relaxed
to obtain realistic solutions for nozzles of finite lengths and non-zero frequency impinging
waves.
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Magri et al. 60 performed a numerical integration of the linearised Euler equations account-
ing for compositional fluctuations ((I.20), (I.22) and (I.25)). They considered several subsonic
and supersonic nozzles geometries, showing that the response of a nozzle to compositional
waves is frequency-dependent. Magri 57 solved these equations analytically using asymptotic
expansions. Generally speaking, the compositional noise produced at a choked nozzle de-
creases monotonically as the Helmholtz number increases. In other words, a choked nozzle
of finite length produces less compositional noise than the equivalent compact nozzle. This
trend is similar but not strictly identical to that of entropic noise.

I.4 Indirect noise in combustion systems

The analytical indirect noise models in §I.2-I.3 enable one to compute the acoustic waves gen-
erated by entropic or compositional waves impinging on a nozzle or turbine blade row. Nev-
ertheless, this is not enough to gain an in-depth understanding of indirect noise in real com-
bustion systems. Specifically, the importance of indirect noise compared to direct noise and
its effect on the thermoacoustic stability of a combustor are of immediate practical interest.
To obtain such a level of insight, one must rely either on experimental data, or on studies in
which theoretical and numerical models are applied to realistic configurations.

I.4.1 Experimental investigations of indirect noise generation

In 1977, Cumpsty & Marble 16 used their compact stator row model to predict the indirect
noise produced by a gas turbine. Their predictions were in good agreement with acoustic
power measurements carried out for three commercial jet engines (Rolls Royce Olympus 593,
Rolls Royce Olympus 512 and Pratt and Whitney FT8D-9). This comparison provided some
circumstantial evidence for the validity of the compact indirect noise model. In spite of this,
the authors admitted that the data did not provide conclusive evidence on the predominance of
either direct or indirect noise, and that definite validation could only be achieved by separating
direct and indirect noise sources in the experimental data16. In practice, this is difficult: since
both direct and indirect noise arise from the same heat release fluctuations at the flame, they
tend to be highly correlated.

Such a separation was attempted byMuthukrishnan et al. 72 in 1978 using partial coherence
analysis. They measured combustion noise using several pressure transducers located inside
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and outside a combustor taken from a Boeing 502-7D gas turbine unit. When the combustor
was operated without an outlet nozzle, the radiated noise was found to be due to the direct
noise mechanism. Conversely, when the combustor was fitted with a choked outlet nozzle,
entropic noise was found to be the dominant sound source. The results also suggested that
other sound sources were present in the combustor – potentially vortical noise (as suggested
by the authors), or compositional noise.

Another approach used to distinguish direct and indirect noise in experimental conditions
is a timedelay analysis. One of the distinctions betweendirect and indirect noise is the location
at which they are generated. Since direct noise is generated at the flame and indirect noise is
generated at the outlet nozzle, they are separated by a convective time delay of L/ū where
L is the length of the combustor and ū is the mean flow speed. This approach was favoured
by Miles 62 , who developed a source location technique based on adjusting an effective time
delay to maximise the coherence between interior and far-field pressure measurements. By
applying this technique to measurements from a Honeywell TECH977 turbofan engine, he
showed that the indirect noise mechanism was the dominant sound source in the range 0-200
Hz while direct noise dominated at higher frequencies62,64,63.

Schemel et al. 84 and Bake et al.3,2 used yet another method to identify the indirect noise
produced in a laboratory combustor fitted with an outlet nozzle. They excited the flame with
a fuel pulse to produce direct noise, followed by indirect noise after a convective time delay.
The resulting pressure measurements could be phase averaged over several pulses and anal-
ysed in the time domain. The results were consistent with the generation of direct and indi-
rect noise separated by a convective time delay. Nevertheless, the relative amplitudes of these
noise sources could not bemeasured directly, and the results were not compared to theoretical
models.

Finally, Tam et al. 88 investigated the indirect noise produced by a Honeywell RE220 aux-
iliary power unit. They performed a theoretical study to analyse the frequency ranges over
which indirect noise was most likely to be generated, and attempted to find corresponding
peaks in the acoustic spectra measured experimentally. Their comparison suggested that indi-
rect noise may be a contributor to the overall measured noise,though by their own admission
the supporting evidence was not very strong.
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I.4.2 Theoretical investigations of indirect noise generation

Given the difficulty of separating and evaluating direct and indirect noise in an experimental
context, several studies have attempted to do so by applying theoretical models to realistic
combustor configurations.

Leyko et al. 53 estimated the direct and entropic noise produced in a combustor terminated
with a nozzle. They assumed a cold flame (generating only fluctuations in heat release with no
mean heat addition), and used compact direct and indirect noise models derived by Cump-
sty 18 andMarble & Candel 61 respectively. They showed that the direct to entropic noise ratio
depends on theMach number in the combustor and in the outlet nozzle. They concluded that
direct noise would be the main sound source in laboratory combustors (where the nozzle is
usually subsonic), but that entropic noise could be an order of magnitude larger than direct
noise in aeroengines (where the outlet nozzle is typically choked).

Leyko et al. 53 also considered the effect of the Helmholtz number on direct and entropic
noise by integrating the Euler equations numerically. Their results also show that the ratio of
direct to entropic noise increases with the Helmholtz number; in other words entropic noise
is most relevant at low frequencies. This was confirmed by an analytical study of the same case
by Duran & Moreau 24 .

Indirect noise corresponds to entropic noise, vortical noise and compositional noise. Most
studies have focused on the relative amplitude of entropic and direct noise, usually overlook-
ing vortical and compositional contributions. Vortical noise is often considered to be less
important than entropic and compositional noise in combustion flows, since it is suspected
that large vortical structures generated at the flame location dissipate before reaching the out-
let of the combustor68. The relative importance of compositional and entropic noise is not
clear; they cannot be separated experimentally given that they typically arise from the same
flow structures. For the time being, insight into the relative importance of entropic and com-
positional mechanisms can only be reached through theoretical considerations.

Estimating the relative importance of compositional and entropic noise is difficult, since the
compositional mechanism depends on the chemical composition of combustion products75.
Magri et al. 58 estimated the compositional noise generated by the convection of combustion
products through a compact subsonic or supersonic nozzle. The combustion products corre-
sponded to those resulting from a series of one-dimensional strained diffusion flames using
a kerosene surrogate (n-Dodecane C12H26) as a fuel. They found that compositional noise
could be comparable, and even exceed direct and entropic noise for supersonic nozzles and
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leanmixtures. This suggests that compositional noise is particularly relevant for low-emissions
gas turbine combustors, in which the mixture is lean and the outlet is choked.

I.4.3 Influence of indirect noise on thermoacoustics

Indirect noise generated at the outlet of a combustor is transmitted downstream towards the
engine exhaust, as well as reflected upstream back into the combustor. The reflected com-
ponent of indirect noise is thought to be a potential source of thermoacoustic instabilities.
Specifically, entropic noise is often considered to be responsible for ‘rumble’ – low frequency
instabilities in the range of 50 to 150Hz21. This has been the topic of several experimental30,36

and numerical studies45,95,79,22,33,70.
Goh & Morgans 33 carried out an analytical study to examine the effect of entropic noise

on the thermoacoustic stability of a set of model combustors. They found that entropic noise
could (1) stabilise previously unstable modes, (2) destabilise previously stable modes or (3)
change which mode was the most unstable. Their study showed that one of the determining
factors concerning the influence of entropic noise was the convection of entropic waves across
the combustor. Indeed, entropic waves are generated at the flame, and are convected with the
main flow towards the outlet nozzle, dissipating, dispersing and diffusing along the way. The
amplitude of the upstream propagating entropic noise depends as much on this convection
process as it does on the nozzle transfer function. The same is true of compositional noise.

Sattelmayer 83 proposed an analytical model for the dispersion of equivalence ratio and en-
tropic waves across a combustor. Their model is based on a distribution of residence times
from the flame to the outlet, which can be obtained from a flow field simulation or experi-
mental data. They used experimental data from a laboratory burner, showing that while dis-
persion of equivalence ratio waves was modest, entropic waves were strongly dispersed even
at low frequencies. These findings were corroborated by Eckstein & Sattelmayer 27 , who found
that entropic waves were likely to disperse before reaching the outlet of the combustor.

Morgans et al. 69 revisited the topic of entropic wave transport. Modelling the transport pro-
cess as in (I.7), they performed a direct numerical simulation of an entropic wave propagating
in a turbulent channel flow. They found that dissipation was negligible, and that dispersion
was driven by shear mixing due to the mean velocity profile rather than turbulent mixing.
They produced an analytical transport model for entropic waves in good agreement with their
numerical data for channel flow. By applying this model to a turbulent velocity profile typical
of a gas turbine combustor, they concluded that low-frequency entropic waves could survive
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to the outlet of the combustor, and thus generate entropic noise. This is in contrast to the
findings of Sattelmayer 83 and Eckstein & Sattelmayer 27 .

Wassmer et al. 92 also modelled the transport of entropic waves, showing that shear disper-
sion due to the velocity profile could be modelled as an effective diffusivity (i.e. Taylor dis-
persion91). They validated their model using experimental measurements of entropic waves
propagating downstream of a premixed flame.

I.5 Model experiments on indirect noise

Notwithstanding the findings described in §I.4.1, quantitative experimental measurements of
indirect noise have been difficult to obtain. Specifically, separating the contributions of direct
and indirect noise has proven to be particularly arduous, as these tend to be highly correlated
and hard to distinguish89. Tomakematters worse, precisemeasurements are particularly hard
to obtain in the harsh environment of a combustor. This is problematic: robust experimental
data is the only way by which theoretical models can be confirmed or refuted.

One way to circumvent these difficulties is to carry out a model experiment, in which indi-
rect noise is generated artificially rather than by a flame. The aim of such an experiment is not
tomeasure combustion noise per se (which in itself is a complex phenomenon involving flame
dynamics, turbulence, directionality etc.), but rather to measure indirect noise in simplified
conditions.

Early experiments carried out in the 1970s by Zukoski &Auerbach 97 and Bohn 7 attempted
to generate entropic waves artificially using electrical heaters. However, the amplitude of the
temperature fluctuation generated by the heaters (T ′ ≈ 1 K) was very low, making it difficult
for entropic noise to be clearly identified. In addition, data processing capabilities available at
the time were insufficient to draw meaningful conclusions from the data7.

I.5.1 Entropy and Vorticity Wave Generators

The Entropy Wave Generator (EWG) rig developed at the Deutsches Zentrum für Luft- und
Raumfahrt (DLR) overcame these limitations4. Entropic waves were generated in a duct using
an electric heater consisting of 6 rings gridded with 25 μm platinum wire, acting as a 200 W
time-dependent heat source. The heater could be operated at low frequencies (of the order of 1
Hz), achieving temperature fluctuations upT ′ ≈ 11K (corresponding to entropic fluctuations
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of s′/c̄p ≈ 0.035). The entropic waves thus generated were accelerated through a subsonic or
supersonic nozzle, and the resulting acoustic pressure measured further downstream4. The
duct downstream of the nozzle was fitted with an anechoic outlet designed to prevent any
additional acoustic reflections. The upstream-propagating entropic noise (which may play a
role in thermoacoustic instabilities) was not measured.

The temperature fluctuation generated by the electric heater was found to generate direct
noise, meaning that the pressure measurements were actually a combination of direct and in-
direct noise29. Due to the small convective time delay, the individual contributions of direct
and entropic noise to the total acoustic signal could not be determined. Furthermore, the ane-
choic outlet was found to be reflective in the frequency range of the experiment, meaning that
a portion of the measured pressure signal was a result of acoustic reflections. This made con-
clusive interpretation of the experimental results even more challenging: to this day there it is
still unclear to which extent the EWGmeasurements correspond to direct or indirect noise56.
The overall noise produced by the EWG was found to increase in line with the induced tem-
perature fluctuation T ′, which is consistent with both the direct and indirect noise models18.

Computational simulations of the EWG experiment were carried out both for the subsonic
and supersonic cases71,52,25. They showed that the acoustic reflections at the boundaries of the
system had a very large influence on the measured pressure. The simulations could be made
to match the experimental data only if a fitted acoustic reflection coefficient was employed for
the anechoic termination, effectively acting as a low-pass filter.

The transfer-function of the pressure transducers used in the experiments (G.R.A.S., type
40BP) does not appear to have been taken into account. De Domenico et al. 20 showed that
the response of these transducers corresponds to a high-pass filter, producing a non-physical
ringing similar to the one present in the EWG data. This effect is important in the low fre-
quency range of the EWG experiment. This suggests that the experimental data is affected
both by acoustic reflections and the response of the pressure transducer, making it difficult to
draw definite conclusions from the measured pressure signal.

Simulations carried out for the EWG based on compact nozzle models showed good agree-
mentwith experimental results (provided the effects described abovewere taken into account)52,25.
While direct and indirect noise sources could not be identified experimentally, these contri-
butions could be computed separately using analytical models and compared. In the subsonic
case, Duran et al. 25 found that the majority of the noise measured in the experiment was ac-
tually direct noise and that entropic noise was negligible. In this sense, the subsonic EWG
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experiment cannot be used a validation for entropic noise models.

A similar approach was taken by Kings & Bake 46 to study the vortical noise mechanism
experimentally. They developed a Vorticity Wave Generator (VWG), in which vortical waves
were produced by injecting air into a flow duct at an angle (at a frequency of the order of 1 Hz).
Vortical noise was successfully measured, though once again the results were not compared
to theoretical models. Once more, the transfer function of the pressure transducers (G.R.A.S.,
type 40BP) was not taken into account, meaning that the amplitude and shape of themeasured
signal may not be due solely to acoustics.

I.5.2 Hot Acoustic Test rig

Following these efforts, the Hot Acoustic Test rig (HAT) was developed at DLR to investigate
entropic noise48. The HAT consists of a duct fitted with a choked nozzle and terminated with
an anechoic end. Entropic waves were generated at low frequencies (of the order of 1 Hz)
upstream of the nozzle by injecting cold air into a flow of heated air (i.e. cold spots). Us-
ing this method, temperature fluctuations of up to T ′ ≈ −20 K (corresponding to entropic
fluctuations of s′/c̄p ≈ −0.025) could be achieved at the nozzle.

The injection of cold air into the hot air flow was found to generate direct noise. By vary-
ing the distance between the injector and the nozzle, Knobloch et al. 48 showed using a time
delay analysis that entropic noise was produced at the nozzle as the cold spots were convected
through the nozzle. The entropic noise was found to increase in line with the temperature
fluctuation associated to the cold spots being convected through the nozzle. As with the origi-
nal EWG experiment however, the results were not directly compared to analytical models for
entropic noise, meaning that the validity of theoretical entropic noisemodels is still unverified.
As with the other DLR experiments, the effect of the pressure transducer transfer functions
does not appear to have been taken into account.

I.5.3 High-pressure turbine stage

In an effort to build amodel experiment closer to the real operating conditions of a gas turbine,
a model high-pressure turbine stage rig was built in Politecnico di Milano47. The rig consists
of a single-stage high-pressure turbine, which can be operated in subsonic and transonic con-
ditions with static pressures ranging from 1.3 to 1.9 bar. Acoustic, entropic and vortical waves
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can be generated and convected through the rotor stage. The resulting noise is is measured
using large arrays of microphones placed upstream and downstream of the rotor.

Entropic waves are generated by alternately injecting hot and cold air at frequencies of up
to 100 Hz, achieving temperature fluctuations up T ′ ≈ 30 K (corresponding to entropic fluc-
tuations of s′/c̄p ≈ 0.1)77. Vortical waves can be generated at the same frequency by pulse
injecting ambient air into the rig with a high momentum.

In order to identify the effect of air injection associated to the entropic wave generation
method, the rig was operated in two configurations: (A) injection of hot/cold air to produce
entropic waves and injection noise, and (B) injection of ambient air to produce only injec-
tion noise. By comparing the acoustic power measured in these these two configurations,
Knobloch et al. 47 found that upstream of the rotor, configuration (B) generated more noise
than configuration (A), while the opposite was true downstream of the rotor. No explanation
was offered for this result in the original study47. One hypothesis is that this result is due
to a combination of constructive and destructive interference between injection noise and
entropic noise. However, since only the acoustic power was measured, it is not possible to
validate this hypothesis using experimental data alone. The experimental measurements have
not been compared to theoretical results.

I.5.4 Temperature and Acoustic Fluctuation Generator

One of the shortcomings of the model experiments presented above is that the results they
produce cannot be directly compared to theoretical models. Indeed, these rigs typically pro-
duce a combination of direct and indirect noise, but it is not usually known what proportion
of the signal corresponds to one or the other.

Tao et al. 90 attempted to address this issue by building the Temperature and Acoustic Fluc-
tuation Generator (TAFG). The TAGF consists of a tube fitted with a converging nozzle. En-
tropic waves are generated by injecting hot air into the tube. The injection process is driven
by a loudspeaker generating acoustic waves, meaning acoustic and entropic waves are gen-
erated simultaneously and at the same frequency (from 20 to 100 Hz). Using this method,
temperature fluctuations of up to T ′ ≈ 10 K can be achieved, corresponding to entropic fluc-
tuations of s′/c̄p ≈ 0.033. The entropic waves are accelerated through the nozzle, meaning
that the overall acoustic signal is a combination of direct and indirect noise. The fluctuating
pressure and temperature are measured just upstream of the nozzle using microphones and a
two-thermocouple sensor.
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Tao et al. 90 derived an analytical method to extract the acoustic-acoustic and entropic-
acoustic nozzle transfer functions from the experimental data. The acoustic reflection coef-
ficient was recovered from the pressure measurements, and found to be in good agreement
with the compact nozzle model of Marble & Candel 61 . Due to the poor signal to noise ra-
tio and the low amount of entropic noise produced in the experiment, the entropic reflection
coefficient of the nozzle could not be recovered.

I.6 Conclusion

Indirect noise arises from the acceleration of entropic, vortical or compositional perturbations.
In gas turbines, indirect noise is produced at the nozzle guide vane and turbine rows. It is
thought to contribute to the onset or sustenance of low-frequency thermoacoustic instabilities.

Several theoretical models have been produced for the generation of indirect noise at noz-
zles and turbine stages. In general, these are formulated as nozzle transfer functions, relating
the amplitudes of acoustic, entropic and compositional waves impinging and generated at a
subsonic or supersonic nozzle. The compact nozzle models produced by Marble & Candel 61

and Magri et al. 58 have been extended to the more general case of a finite length nozzle24,60.
Several experimental studies have been carried out in order to measure indirect noise in

combustion systems. Broadly speaking, the results of these experiments have been difficult
to interpret. One major difficulty is the separation of direct and indirect noise within the
measured acoustic signal.

To circumvent these complications, simplified experiments were set up to generate and
measure entropic and vortical noise in model conditions. These experiments have demon-
strated the existence of entropic and vortical noise. As with combustion experiments however,
the separation of direct and indirect noise remains an issue. In addition, acoustic reflections
have been shown to have a determining effect on the measured signals. For these reasons, no
experimental study has provided a quantitative measurement of indirect noise which could
be directly compared to theoretical models. As a result, the analytical models for entropic and
vortical noise have not been validated. Finally, the compositional noise mechanism has yet to
be demonstrated experimentally.

For both entropic and compositional noise, there is a need for unambiguous experimental
measurements to confirm or refute theoretical predictions. These are the main objectives of
this thesis.
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In this work, the difficulties associated to measuring indirect noise are overcome by car-
rying out careful experiments on a specially designed modular rig – the Cambridge Wave
Generator. The dimensions, boundary conditions and type of waves generated inside the rig
can be modified from one test to the next. In one set of tests, air is injected at ambient tem-
peratures to generate direct noise only. This is used as a baseline for further tests using heat
addition (generating direct noise and entropic noise) and helium injection (generating direct,
entropic and compositional noise). The resulting measurements are compared to reveal the
effect of these changes on the measured pressure signal. The data are then analysed using a
one-dimensional theoretical framework, which is used to (1) eliminate the effect of repeated
acoustic reflections inside the rig and (2) separate the contributions of direct and direct acous-
tic sources.
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perturbations

A flame generates direct noise, as well as vortical, entropic and compositional flow perturba-
tions. Direct noise is conventionally defined as the acoustic waves produced by an unsteady
heat flux. Here, we define direct noise more generally as the noise generated by a ‘wave source’,
which produces unsteady perturbations in the flow’s mass, momentum, and energy fluxes, as
well as mixture fraction. This enables us to examine the effect of heat addition, but also of gas
injection, which is of particular interest for the experiments presented in this thesis, as well as
a realistic model for the effect of cooling or secondary air in combustors.

In this section, we present a one-dimensional model for the acoustic, entropic and compo-
sitional waves generated by a compact wave source. Vortical waves are not considered.

II.1 Wave field

We consider the one-dimensional flow of a gas mixture in a duct. Themixture can be assumed
to be a perfect gas, so that the heat capacity cp changes only with the mixture composition.
The gas is composed of N species, each with a mass fraction Yi such that

∑N
i=1 Yi = 1. The

mixture is characterised by its pressure p, density ρ, temperature T , sensible enthalpy h =∑N
i=1 hiYi and specific entropy s =

∑N
i=1 siYi. The flow is non-reacting and we assume

that the mixture composition is uniquely described with a mixture fraction Z such that Y =

Y (Z). This is the case for a mixture of two species, which is of primary interest for this thesis.

Flow variables can be separated into their mean and fluctuating components (denoted with
an over-bar and a prime respectively: β(x, t) = β̄(x)+β′(t). Furthermore, we assume linear
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fluctuations; their amplitude is small relative to the mean quantity (i.e. β′ ≪ β̄).

In this scenario, flow perturbations can be decomposed as the combination of acoustic,
entropic, and compositional waves57. The forward- and backward-propagating acousticwaves
propagate at the speed of sound relative to the flow speed (c̄+ ū and c̄− ū) respectively, while
compositional and entropic waves are convected with the flow speed ū. The amplitudes of the
forward- and backward-propagating acoustic waves π+ and π− are given by:

π+ =
1

2

(
p′

γp̄
+

u′

c̄

)
, π− =

1

2

(
p′

γp̄
− u′

c̄

)
. (II.1)

The amplitude of the compositional wave ξ is given by the mixture fraction fluctuation:

ξ = Z ′, (II.2)

and the entropic wave amplitude σ is given by:

σ =
s′

c̄p
. (II.3)

To express the entropic wave amplitude in terms of other flow variables, we start with Gibbs’
relation for a multicomponent gas:

dh = Tds+
dp

ρ
+

N∑
i=1

µi

Wi
dYi, (II.4)

Combining the above with the definition of the entropic wave gives us:

σ =
T ′

T̄
+

c′p
c̄p

+ (γ − 1)
p′

γp̄
− 1

c̄pT̄

N∑
i=1

µi

Wi

dYi
dZ

Z ′, (II.5)

whereWi is themolecular weight of each chemical species, andµi is the chemical potential de-
fined as µi = Wi∂hi/∂Yi|p,T , and we have taken advantage of the fact that Y ′

i = (dYi/dZ)Z ′.
Combining (II.5) with the linearised ideal gas law (p′/p̄ = ρ′/ρ̄+R′/R̄+ T ′/T̄ ) and noting
thatR′/R̄ = c′p/c̄p (since γ is constant) yields a new definition of the entropic wave:

σ =
p′

γp̄
− ρ′

ρ̄
−ΨZ ′, (II.6)

where Ψ is the chemical potential function as defined in (I.24). This reveals that the entropic
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Figure II.1: Flow variables upstream [0] and downstream [1] of a wave source with changes
in mass (ϕm), momentum (ϕM ), energy (ϕe) and composition (ϕZ).

wave amplitude depends on the local compositional fluctuation, since the specific entropy is
tied to the local gas composition.

II.2 Jump conditions at a compact wave source

We consider the case of a compact wave source, meaning that its length is negligible compared
to the wavelength of the disturbances of interest. This is equivalent to assuming that we are
dealing with the limit of zero-frequency waves. In this scenario, the wave source is essentially
a discontinuity; there is no delay or distortion between the inlet and outlet.

In order to capture the effect of the wave source on the flow variables, jump conditions may
be applied, wherebymass, momentum and energy fluxes (ϕm, ϕM andϕe respectively), as well
as a change in mixture fraction (ϕZ) are added to the flow at a discontinuity. This situation is
depicted in figure II.1.

To satisfy the conservation of mass, momentum, energy and species, the flow variables
directly upstream and downstream of the wave source must satisfy:

[ρu]10 = ϕm,[
p+ ρu2

]1
0

= ϕM ,

[ρuh]10 = ϕe,

[Z]10 = ϕZ ,


(II.7)

where the notation [β]10 denotes the difference between the flow variables immediately up-
stream [0] and downstream [1] of the discontinuity, such that [β]10 = β1 − β0.

We assume that the added fluxes are small, and that their mean component is negligible
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(ϕ̄ = 0, ϕ = ϕ′), so that mean flow properties are conserved across the discontinuity. The
flow perturbations on either side of the discontinuity can be related to the added fluxes ϕ′

m,
ϕ′
M , ϕ′

e and ϕ′
Z :

[
ρ′ū+ ρ̄u′

]1
0

= ϕ′
m,[

p′ + ρ′ū2 + 2ρ̄ūu′
]1
0

= ϕ′
M ,[

c̄pT̄ (ρ′ū+ ρ̄u′) + ρ̄ū
(
c̄pT

′ + c′pT̄ + ūu′
)]1

0
= ϕ′

e,

[Z ′]10 = ϕ′
Z .


(II.8)

Normalising (II.8) gives:

[(
ρ′

ρ̄

)
+

1

M̄

(
u′

c̄

)]1
0

= φ′
m,[

1

M̄2

(
p′

γp̄

)
+

(
ρ′

ρ̄

)
+

2

M̄

(
u′

c̄

)]1
0

= φ′
M ,[

γ

(
p′

γp̄

)
+

(
1

M̄
+ (γ − 1)M̄

)(
u′

c̄

)]1
0

= φ′
e,

[Z ′]10 = φ′
Z ,


(II.9)

where φ′
m, φ′

M , φ′
e and φ′

Z are the normalised changes in mass, momentum, energy, and
mixture fraction:

φ′
m =

ϕ′
m

ρ̄ū
, φ′

M =
ϕ′
M

ρ̄ū2
, φ′

e =
ϕ′
e

ρ̄ūc̄pT̄
, φ′

Z = ϕ′
Z . (II.10)

Theflowvariables upstream and downstreamof the discontinuity can be decomposed into a
combination of forward- and backward-propagating acoustic waves (π+ and π−), an entropic
wave σ, and a compositional wave ξ as shown in figure II.2. Decomposing (II.9) in terms of
wave amplitudes gives us a jump condition for the waves just upstream and downstream of
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Figure II.2: Forward and backward acoustic (π+, π−), entropic σ and compositional waves ξ
upstream [0] and downstream [1] of a wave source .

the wave source:[(
1 +

1

M̄

)
π+ +

(
1− 1

M̄

)
π− − σ −Ψξ

]1
0

= φ′
m[(

1 +
1

M̄

)2

π+ +

(
1− 1

M̄

)2

π− − σ −Ψξ

]1
0

= φ′
M[(

(γ − 1)M̄ + γ +
1

M̄

)
π+ +

(
−(γ − 1)M̄ + γ − 1

M̄

)
π−
]1
0

= φ′
e

[ξ]10 = φ′
Z ,



(II.11)

II.3 Waves generated at a compact source

If the flow is subsonic, the ingoing waves (propagating towards the wave source ) are π+
0 , π

−
1 ,

σ0 and ξ0 and the outgoing waves are π+
1 , π

−
0 , σ1 and ξ1. Ingoing waves can be imposed,

while outgoing waves are transmitted or generated at the wave source. Equation (II.11) may
be pivoted and inverted to obtain the outgoing waves:

π+
1

π−
0

σ1

ξ1


=



π+
0

π−
1

σ0

ξ0


+



1

2

(γ − 1)M̄3 − M̄2

M̄ + 1

1

2

(1− γ)M̄3 + M̄2

M̄ + 1

1

2

M̄

1 + M̄
0

1

2

(1− γ)M̄3 − M̄2

M̄ − 1

1

2

(γ − 1)M̄3 + M̄2

M̄ − 1

1

2

M̄

1− M̄
0

(γ − 1)M̄2 − 1 (1− γ)M̄2 1 −Ψ

0 0 0 1





φ′
m

φ′
M

φ′
e

φ′
Z


(II.12)
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Equation (II.12) enables the amplitude of acoustic, entropic and compositional waves gen-
erated at the jump location to be computed directly based on the added mass, momentum,
energy and compositional fluxes φ′

m, φ′
M , φ′

e and φ′
Z .

If there are no added fluxes (φ′
m = φ′

M = φ′
e = φ′

Z = 0), then we recover the trivial case
of flow in a one-dimensional duct, and waves simply propagate across the wave source with
no change in their amplitude.

In the scenario where there are no incoming waves (π+
0 = π−

1 = σ0 = ξ0 = 0), the wave
source produces forward- and backward-propagating acoustic waves π+

d = π+
1 and π−

d = π−
0

(direct noise), as well as forward-propagating entropic and compositional waves σ = σ1 and
ξ = ξ1.

π−
d

π+
d

σ

ξ
[0] [1]

ϕm

ϕM

ϕe

ϕZ

Wave generator

Figure II.3: Forward and backward acoustic (π+, π−), entropic σ and compositional waves ξ
generated by a wave source.

An overall measure of the sound generated at the discontinuity is the acoustic pressure p′d,
which is the pressure fluctuation corresponding to the passage of the direct acoustic waves π+

d

and π−
d :

p′d
γp̄

= π+
d + π−

d =
γM̄3

1− M̄2
(φ′

m − φ′
M ) +

M̄

1− M̄2
φ′
e, (II.13)

which reveals that the generation of direct noise can be driven by an energy perturbation φ′
e,

but also by a mismatch in the normalised mass and momentum perturbations (if φ′
m ̸= φ′

M ).
The energy mechanism is dominant at low Mach numbers (M̄ ≪ 1). If the higher order
terms M̄2 and M̄

3 are neglected, then the forward and backward waves are related such that
π+
d /π

−
d = (1−M̄)/(1+M̄). The acoustic pressure fluctuation can then be expressed simply

as:
p′d =

γ − 1

c̄
ϕ′
e, (II.14)

which shows that the generated acoustic pressure fluctuation is directly proportional to the
energy flux perturbation ϕ′

e. Notably, p′d is completely independent of the pressure and Mach
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number. This suggests that even if there is no flow (M̄ = 0), an energy perturbation still
generates acoustic waves in the duct.

The entropic wave σ generated at the discontinuity can be expressed as:

σ = (φ′
e − φ′

m) + (γ − 1)M̄2(φ′
m − φ′

M )−Ψφ′
Z , (II.15)

which reveals that the production of an entropic wave is driven by three mechanisms. First,
entropy is generated if there is a mismatch between the energy and mass perturbations (if
φ′
e ̸= φ′

m). This is physically intuitive: if energy is added with no mass to carry it, the local
specific entropy increases. Second, if a mass perturbation φ′

m is imposed without a matching
momentum perturbation φ′

M , entropy is generated. Third, changes in the flow composition
φ′
Z can modify the entropy: this is because the gases composing the mixture may have differ-

ent entropies.
Finally, the generated compositional wave is simply:

ξ = φ′
Z . (II.16)

II.4 Special cases

The general wave source considered in §II.1-II.3 can be simplified to recover three special
cases: heat addition, air injection and helium injection. These special cases correspond to
wave generation methods employed in previous wave generators (see §I.5), as well as in the
Cambridge Wave Generator described in §VI.

II.4.1 Unsteady heat source

In the Entropy Wave Generator developed at the DLR, entropic waves were induced using
electric heaters immersed in the flow4. Theheaters can bemodelled as an unsteady heat source.
This also corresponds to the ‘cold flame’ with no mean heat release considered by Cumpsty 18

and Leyko et al. 51 in their theoretical predictions of direct and indirect noise.
Unsteady heat release can bemodelled as an added energy fluxϕ′

e = Q′. In practice, heaters
immersed in the flow can be expected to lead to a loss of momentum due to drag. If the heater
is sufficiently small the effect of drag on themean flowproperties will be small. Here we simply
assume that the mean component of drag is negligible. The fluctuating component of the drag
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Figure II.4: Direct acoustic waves π+
d and π−

d and entropic wave σ generated by a compact
heat source.

could be considered as a fluctuating momentum flux term φM ̸= 0. This term is assumed to
be negligible here for simplicity. Therefore, the added mass, momentum and compositional
fluxes can be considered to be zero, and we have:

φm = 0, φM = 0, φe = q′, φZ = 0, (II.17)

where q′ = Q′/ρ̄ūc̄pT̄ is the normalised heat release rate. From (II.12), the waves generated
by unsteady heat addition are:

π+
d =

1

2

M̄

1 + M̄
q′, π−

d =
1

2

M̄

1− M̄
q′, σ = q′. (II.18)

These results are identical to those obtained by Cumpsty 18 and Leyko et al. 51 .

II.4.2 Unsteady air injection

In certain configurations of the high-pressure turbine stage developed by Knobloch et al. 47 ,
air is injected into a tube at ambient temperatures. This case can be modelled by considering
an unsteady injection of air with a mass flow rate ṁ′

i, as shown in figure II.5.

Since we are considering a one-dimensional flow, if the injection is carried out perpendic-
ular to the flow then the added momentum flux can be considered to be zero, and we have:

φm =
ṁ′

i
¯̇m
, φM = 0, φe =

ṁ′
i

¯̇m
, φZ = 0. (II.19)

From (II.12), an unsteady air injection generates direct noise, as well as an entropic wave.
For lowMach flows (M̄ ≪ 1), the direct noise is associated to energy addition, and negligible
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Figure II.5: Direct acoustic waves π+
d and π−

d generated by a compact ambient temperature
air injection.

entropy is generated:

π+
d =

1

2

M̄

1 + M̄

ṁ′
i

¯̇m
, π−

d =
1

2

M̄

1− M̄

ṁ′
i

¯̇m
, σ = 0. (II.20)

In the HAT rig48 and turbine-stage model experiment77, entropic waves are generated by
injecting air at a temperature T̄i higher or lower than the mean flow temperature T̄ . This can
be modelled as:

φm =
ṁ′

i
¯̇m
, φM = 0, φe =

ṁ′
i

¯̇m

T̄i

T̄
, φZ = 0. (II.21)

For low Mach flows, the injection of hot or cold air generates direct noise as well as an
entropic wave:

π+
d =

1

2

M̄

1 + M̄

ṁ′
i

¯̇m

T̄i

T̄
, π−

d =
1

2

M̄

1− M̄

ṁ′
i

¯̇m

T̄i

T̄
, σ =

ṁ′
i

¯̇m

T̄i − T̄

T̄
. (II.22)

The amplitude of the entropic wave is driven by the temperature difference T̄i − T̄ . If hot
air is injected (T̄i > T̄ ), more direct noise is generated than for the ambient air injection (the
opposite is true for cold air) .

II.4.3 Helium injection

In the Cambridge Wave Generator described in §VI, entropic and compositional waves can
be induced induced in a flow by carrying out unsteady injection of helium (with a mass flow
rate ṁ′

He) at ambient temperatures. Since we have only two species (helium and air), we can
simply define the mixture fractionZ as the mass fraction of helium generated by the injection
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Figure II.6: Direct acoustic waves π+
d and π−

d , entropic wave σ and compositional wave ξ
generated by a helium injection.

YHe:
Z = YHe =

ṁHe
¯̇m

, (II.23)

and the mass fraction of air is Yair = 1− YHe = 1−Z . The unsteady helium injection can be
modelled as:

φm =
ṁ′

He
¯̇m

, φM = 0, φe =
ṁ′

He
¯̇m

c̄p,He
c̄p

, φZ =
ṁ′

He
¯̇m

, (II.24)

where c̄p,He is the specific heat capacity of helium. The resulting acoustic waves are:

π+
d =

1

2

M̄

1 + M̄

ṁ′
He
¯̇m

c̄p,He
c̄p

, π−
d =

1

2

M̄

1− M̄

ṁ′
He
¯̇m

c̄p,He
c̄p

, (II.25)

and the entropic and compositional waves are:

σ =

(
c̄p,He − c̄p

c̄p
−Ψ

)
ṁ′

He
¯̇m

, ξ =
ṁ′

He
¯̇m

. (II.26)

To recover a more familiar expression for the entropic wave amplitude, we start by ex-
pressing the chemical potential function Ψ in terms of species’ heat capacities and specific
entropies:

Ψ =
1

c̄pT̄

N∑
i=1

ḡi
dYi
dZ

=
1

c̄p

N∑
i=1

(
c̄pi − s̄i

) dYi
dZ

, (II.27)

where gi = hi − Tsi is the specific Gibbs energy of a species. Combining (II.26) and (II.27),
we can express the entropic and compositional wave amplitudes as:

σ =

(
s̄air − s̄He

c̄p

)
Y ′
He, ξ = Y ′

He, (II.28)
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which reveals that the entropic wave is simply driven by the difference in the entropies of pure
helium and pure air, multiplied by the proportion of helium in the flow.

It should be noted that the acoustic model described here does not take into account all
noise sources associated to the injection of helium in a duct. Indeed, while the effects of mass,
momentum and energy addition are taken into account, other aspects of the injection (for-
mation of a jet, vorticity generation) are not considered since the model is one dimensional.
Furthermore, depending on the operating conditions, the velocity and pressure of the helium
may change as it is injected into the system and adjusts to the mean flow in the duct. This may
lead to a change in the chemical potential function Ψ and Mach number, which drives the
generation of entropic and compositional noise (see §III). As such, the noise generated at the
injection location is likely to be a sum of several types of noise not accounted for here.
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III
Transfer functions of compact nozzles

The entropic and compositional noise generated by the corresponding convected waves is typ-
ically computed using nozzle transfer functions. These transfer functions relate impinging
acoustic, entropic and compositional waves to outgoing ones. The transfer functions of sub-
sonic compact isentropic nozzles originally obtained by Marble & Candel 61 , Magri et al. 58

and Ihme 44 are rederived here for reference. The derivation for the supersonic case is shown
in Appendix A.The assumption of isentropicity is then relaxed to consider nozzles with losses
(including the limit case of a jet). Much of this work is based on results obtained by Francesca
de Domenico19, who derived acoustic and entropic transfer functions for subsonic anisen-
tropic nozzles based on an orifice platemodel byDurrieu et al. 26 . Here, these results are recast
in a non-dimensional form comparable to other models in the literature, and extended to in-
clude the effects of impinging compositional fluctuations. The theoretical transfer functions
of isentropic and anisentropic nozzles are then compared for a range of operating conditions.

III.1 Isentropic nozzle

The response of a compact nozzle to compositional perturbations can be derived with the
method presented byMarble & Candel 61 andMagri et al. 58 . The assumptions are identical to
those in §II, except that the flow is now quasi-one dimensional to allow for a change in cross
sectional area.

Here, the compactness assumption means that the length of the nozzle is negligible com-
pared to the disturbance wavelengths. Acoustic, entropic and compositional are assumed to
propagate quasi-steadily through the nozzle. The nozzle is essentially a discontinuity; there is
no delay or distortion between the inlet and outlet.

41



III. Transfer functions of compact nozzles

The flow can be described in terms of the fluctuating pressure p′, velocity u′, density ρ′ and
mixture fraction Z ′ upstream and downstream of the nozzle, denoted with the subscripts 1
and 2 respectively. This is shown in figure III.1.

u′
1

p′1

ρ′1

Z ′
1

u′
2

p′2

ρ′2

Z ′
2[1] [2]

compact nozzle

Figure III.1: Flow fluctuations upstream [1] and downstream [2] of a compact nozzle.

III.1.1 Jump conditions

Fluctuations in mass flow rate (ṁ), total temperature (Tt), entropy (s) and species (Z) are
conserved across the nozzle. This can be formulated as a set of jump conditions, relating the
flow variables upstream and downstream of the nozzle discontinuity58:

[ρuA]21 = 0,[
T

(
1 +

γ − 1

2
M2

)]2
1

= 0,

[s]21 = 0,

[Z]21 = 0,


(III.1)

which can be linearised and normalised to obtain:

[
ṁ′

¯̇m

]2
1

=

[
1

M̄

u′

c̄
+

ρ′

ρ̄

]2
1

= 0,[
T ′
t

T̄t

]2
1

=

[
1

1 + γ−1
2 M̄2

(
T ′

T̄
+ (γ − 1)M̄

u′

c̄
+

1

c̄p

dc̄p
dZ̄

Z ′
)]2

1

= 0,[
s′

c̄p

]2
1

=

[
T ′

T̄
− (γ − 1)

p′

γp̄
+

(
1

c̄p

dc̄p
dZ̄

−Ψ

)
Z ′
]2
1

= 0,

[Z ′]21 = [Z ′]21 = 0.


(III.2)

Flow perturbations in (III.2) can be decomposed as a combination of acoustic, entropic and
compositional waves defined in §II.1. This enables us to derive jump conditions for the wave
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amplitudes on either side of the nozzle:

[(
1 +

1

M̄

)
π+ +

(
1− 1

M̄

)
π− − σ −Ψξ

]2
1

= 0,[
γ − 1

1 + γ−1
2 M̄2

(
(1 + M̄)π+ + (1− M̄)π− +

σ

γ − 1
+

Ψξ

γ − 1

)]2
1

= 0,

[σ]21 = 0,

[ξ]21 = 0.


(III.3)

Equation (III.3) can be recast in matrix form as:

[Xw]21 = 0, (III.4)

wherew is the vector of wave amplitudes:

w =


π+

π−

σ

ξ

 , (III.5)

andX is a transfer matrix:

X =



1 +
1

M̄
1− 1

M̄
−1 −Ψ

(γ − 1)
(
1 + M̄

)
1 + γ−1

2 M̄2

(γ − 1)
(
1− M̄

)
1 + γ−1

2 M̄2

1

1 + γ−1
2 M̄2

Ψ

1 + γ−1
2 M̄2

0 0 1 0

0 0 0 1


. (III.6)

III.1.2 Transfer functions

The jump condition in (III.4) relates the acoustic, entropic and compositional waves immedi-
ately upstream and downstream of the nozzle, shown in figure III.2.

To solve the system, it is practical to recast the problem in terms of known and unknown
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π+
1

π−
1

σ1

ξ1

π+
2

π−
2

σ2

ξ2
[1] [2]

M̄1 < 1 M̄2 < 1

compact nozzle

Figure III.2: Forward and backward acoustic (π+, π−), entropic (σ) and compositional waves
(ξ) upstream [1] and downstream [2] of a subsonic compact nozzle. Ingoing waves (solid
arrows), outgoing waves (dashed arrows).

waves. Since we are interested in the response of the nozzle to incoming perturbations, we
can recast (III.4) in terms of incoming waves (subscript i) and outgoing waves (subscript o) to
solve for the latter:

Xiwi = Xowo, (III.7)

wherewi andwo are the ingoing and outgoing waves for a subsonic nozzle:

wi =


π+
1

π−
2

σ1

ξ1

 , wo =


π+
2

π−
1

σ2

ξ2

 , (III.8)

andXi andXo are permutations of the upstream and downstream transfer matricesX1 and
X2 described in Appendix A. Equation (III.4) can be inverted to yield the outgoing waveswo

generated by acoustic and entropic waves propagating towards the compact nozzle:

wo = X−1
o Xiwi = Twi. (III.9)

Here, T is the matrix of subsonic nozzle transfer functions, which relate incoming waves to
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outgoing ones:

T =



π+
2

π+
1

π+
2

π−
2

π+
2

σ1

π+
2

ξ1

π−
1

π+
1

π−
1

π−
2

π−
1

σ1

π−
1

ξ1

σ2

π+
1

σ2

π−
2

σ2
σ1

σ2
ξ1

ξ2

π+
1

ξ2

π−
2

ξ2
σ1

ξ2
ξ1


. (III.10)

The coefficients of the matrix are reflection and transmission coefficients. For example,
π+
2 /π

+
1 is the acoustic-acoustic transmission coefficient of the nozzle. It enables one to com-

pute the amplitude of the acoustic wave π+
2 generated downstream of the nozzle due to an

impinging upstream wave π+
1 :

π+
2

π+
1

=

(
2M̄2

1 + M̄2

)(
1 + M̄1

M̄1 + M̄2

)
1 + γ−1

2 M̄2
2

1 + γ−1
2 M̄1M̄2

. (III.11)

Similarly, π−
1 /π

+
1 is the acoustic-acoustic reflection coefficient which gives the reflected

upstream wave π−
1 :

π−
1

π+
1

=

(
M̄2 − M̄1

1− M̄1

)(
1 + M̄1

M̄1 + M̄2

)
1− γ−1

2 M̄1M̄2

1 + γ−1
2 M̄1M̄2

. (III.12)

The matrix also contains the acoustic responses to an incoming entropic wave σ1. These
transfer functions π+

2 /σ1 and π−
1 /σ1 describe the entropic-acoustic interaction responsible

for reflected and transmitted entropic noise. The entropic-acoustic transmission coefficient is:

π+
2

σ1
=

1

2

(
M̄2 − M̄1

1 + M̄2

)
M̄2

1 + γ−1
2 M̄1M̄2

, (III.13)

and the entropic-acoustic reflection coefficient is:

π−
1

σ1
= −1

2

(
M̄2 − M̄1

1− M̄1

)
M̄1

1 + γ−1
2 M̄1M̄2

. (III.14)

These coefficients show that the generation of entropic noise is driven by the change in
Mach number from M̄1 to M̄2. In theory, if a compact nozzle has the same Mach number at
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the inlet and outlet (M̄1 = M̄2), then no entropic noise is generated regardless of the changes
in Mach number within the nozzle.

Finally, we have σ2/π
+
1 = σ2/π

−
2 = 0 meaning that incoming acoustic waves do not

generate entropic fluctuations downstream of the nozzle.

The expressions for the acoustic-acoustic, entropic-acoustic and acoustic-entropic transfer
functions are the same as those derived by Marble & Candel 61 . The elements new to the
analysis by Magri et al. 58 are those describing the effect of an impinging compositional wave
on the acoustic waves upstream and downstream of the nozzle. The compositional-acoustic
transmission coefficient is:

π+
2

ξ1
=

(Ψ1 −Ψ2)
(
M̄2 − (γ − 1) M̄2

2

)(
1 + M̄2

)
(γ − 1)

(
M̄1 + M̄2

)
−

M̄2

(
M̄1 − M̄2

) (
Ψ1

(
1 + 1

2M̄2

)
−Ψ2

(
1− 1

2M̄1

))(
1 + M̄2

) (
M̄1 + M̄2

) (
1 + γ−1

2 M̄1M̄2

) . (III.15)

and the compositional-acoustic reflection coefficient is:

π−
1

ξ1
=

(Ψ1 −Ψ2)
(
M̄1 + (γ − 1) M̄2

1

)(
M̄1 − 1

)
(γ − 1)

(
M̄1 + M̄2

)
−

M̄1

(
M̄1 − M̄2

) (
Ψ1

(
1 + 1

2M̄2

)
−Ψ2

(
1− 1

2M̄1

))(
M̄1 − 1

) (
M̄1 + M̄2

) (
1 + γ−1

2 M̄1M̄2

) . (III.16)

These coefficients show that the generation of compositional noise is driven by the change in
the chemical potential function fromΨ1 = f(T̄1, p̄1) toΨ2 = f(T̄2, p̄2) as the compositional
wave is convected through the nozzle, as well as the change in Mach number from M̄1 to M̄2.

There are no acoustic-compositional and entropic-compositional interactions since com-
positional waves cannot be generated at the nozzle: ξ2/π+

1 = ξ2/π
−
2 = ξ2/σ1 = 0.

The nozzle transfer functions can be thought of as the set of possible mode transfer mech-
anisms. The non-zero mode transfer mechanisms of a subsonic isentropic nozzle are shown
diagrammatically in figure III.3.
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Figure III.3: Non-zero mode transfer mechanisms between acoustic (π), entropic (σ) and
compositional waves (ξ) at the inlet and outlet of a subsonic isentropic compact nozzle.

III.2 Anisentropic nozzle

One of the assumptions usually made for the derivation of nozzle transfer functions is that the
flow inside the nozzle is isentropic, i.e. reversible and adiabatic (apart from an eventual shock,
see §I.2-I.3). In real systems, entropy is not necessarily conserved across the nozzle.

For example, diabatic systems where heat exchange occurs are anisentropic (i.e. not isen-
tropic). In a gas turbine, significant heat is transferred from the flow to the cooled nozzle and
turbine blades. Similarly, irreversible processes such as wall friction or flow separation will
lead to an anisentropic flow. While nozzle guide vanes are designed to avoid large irreversibil-
ities, some losses can be expected to occur. This source of anisentropicity can be modelled as
a drop in the stagnation pressure.

The acoustic reflection and transmission of anisentropic flow elements were considered by
Durrieu et al. 26 (orifice plate in a duct), as well as Howe 39 and Bechert 5 (converging nozzle
terminating a duct). Nevertheless, the entropic-acoustic and compositional-acoustic transfer
functions of an anisentropic nozzle have not yet been examined.

In this section, the acoustic, entropic and compositional transfer functions of a compact
adiabatic anisentropic nozzle are derived. These are obtained by introducing a loss parameter
Λ to capture the full range of nozzle behaviours, ranging between the limit cases of a fully
isentropic expansion (Λ=0) to a fully dissipative jet mixing region (Λ=1). The formulation of
this parametric approach for the acoustic and entropic transfer functions was carried out by
Francesca De Domenico19. Here, her approach is extended to include the effect of impinging
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compositional fluctuations.

III.2.1 Anisentropic subsonic nozzle

The anisentropic nozzle model considered here is shown in figure III.4. It is defined by the
cross sections at the inlet A1, throat At and outlet A2. Since we are considering a compact
nozzle (i.e. low frequency perturbations), the nozzle shape between these areas has no effect
on the model. It should be noted that the throat area At refers to the area at which the flow
is most narrow, which does not necessarily correspond to the smallest geometrical area of the
nozzleAg . Indeed, if flow separation occurs at the nozzle throat, the narrowest flow area is at
the vena contracta some distance downstream of the throat. These two areas are related by a
vena contracta factor Γ such that At = ΓAg .

Generally speaking, the accelerating flow upstream of the throat area can be considered to
be isentropic, regardless of the shape of the convergent section26,22.

A1 A2AjAt

[1] [t] [j] [2]

Figure III.4: Diagram of flow areas at the inlet (A1), throat (At), jet mixing location (Aj) and
outlet (A2) of an anisentropic nozzle, with streamlines for illustration.

In the divergent section, we can consider that the flow is somewhere between isentropic
and anisentropic depending on the nozzle and flow characteristics. This can be modelled by
defining an effective jetmixing areaAj , assuming that the flow is isentropic fromAt toAj , and
that an anisentropic jet is formed thereafter (from Aj to A2). Physically, the jet mixing area
Aj can be thought of as the area at which flow separation occurs within the diverging nozzle.
Nevertheless, Aj can be also be used conceptually to represent other types of anisentropic
behaviours, since it enables us to model the full range between an isentropic divergent section
(Aj = A2), and a fully anisentropic divergent section (Aj = At). In that sense, Aj is an
measure of the level of anisentropicity within the divergent nozzle, rather than a physical area.

48



III. Transfer functions of compact nozzles

We can define an anisentropicity parameter Λ:

Λ =
A2 −Aj

A2 −At
, (III.17)

whereΛ = 0means that the nozzle is fully isentropic,Λ = 1means that the divergent section
is fully anisotropic, and 0 < Λ < 1 describes a nozzle somewhere between these limit cases.

As such, anisentropic nozzles can be defined as a succession of two jumps. The location at
which this jump transition occurs determines the type of nozzle being considered, as shown
in figure III.5.

isen-
tropic jet mixing

(c) Converging nozzle

isentropic jet
mixing

(d) Nozzle with losses

isen-
tropic jet mixing

(b) Orifice plate

isentropic

(a) Isentropic nozzle

Figure III.5: Jump locations for (a) an isentropic nozzle with Λ = 0 , (b) an orifice plate with
Λ = 1 (c) a converging nozzle with Λ = 1 and A2 → ∞ and (d) a nozzle with partial losses
with 0 < Λ < 1.

The case of an isentropic nozzle considered by Marble & Candel 61 , Magri et al. 58 and
Ihme 44 is recovered for Aj = A2 (i.e. there is no jet mixing). For the orifice plate in a duct
considered by Durrieu et al. 26 , we can defineAj = At since the jet is formed at the throat. A
converging nozzle terminating a duct (as studied Howe 39 and Bechert 5) can be modelled as
Aj = At with A2 → ∞. Finally, a nozzle with partial losses can be defined with an area Aj

such that At < Aj < A2.

In general, the effective jet mixing area Aj and the anisentropicity parameter Λ are not
known a priori. They can be retrieved if the mean flow properties upstream and downstream
of a given nozzle are known (e.g. if they are measured experimentally). In that case, the mean
components of (III.1) and (III.19) can be solved numerically to extract the values of Aj and
Λ corresponding to the known mean flow properties.
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III.2.2 Jump conditions

The flow properties upstream and downstream of the nozzle can be related using jump con-
ditions as in §III.1. For the isentropic section (from A1 to Aj) the jump conditions are those
describing mass, total temperature, entropy and species as in (III.1).

For the section of the nozzle in which a jet is formed (from Aj to A2), instead of entropy
conservation we can consider the change in momentum, which is increased by the axial force
on the walls:

A2p2 +A2ρ2u
2
2 = A2pj +Ajρju

2
j , (III.18)

which results in the following jump conditions:

[ρuA]2j = 0,[
T

(
1 +

γ − 1

2
M2

)]2
j

= 0,[
A(p+ ρu2)

]2
j

= (A2 −Aj)pj ,

[Z]2j = 0.


(III.19)

The nozzle can be thought of as two successive jumps, as shown in figure III.6.
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Figure III.6: Flow fluctuations upstream [1], at the jet mixing location [j] and downstream
[2] of a compact anisentropic nozzle.

Linearising the momentum jump condition between the jet mixing transition location and
the outlet in (III.20) gives:

A2

Aj

c̄j
M̄j

(
p′j
γp̄j

)
− M̄j c̄j

(
ρ′j
ρ̄j

)
+ 2c̄j

(
u′j
c̄j

)
=

c2
M̄2

(
p′2
γp̄2

)
− M̄2c̄2

(
ρ′2
ρ̄2

)
+ 2c̄2

(
u′2
c̄2

)
, (III.20)

which can be decomposed as a balance of acoustic, entropic and compositional waves. The
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jump conditions for mass, total temperature and species are the same as in the isentropic case
(see (III.3)), and the entropy conservation condition is replaced by (III.20).

III.2.3 Transfer functions

The anisentropic jump from the jet mixing area to the outlet can expressed in matrix form as:

Yjwj = Y2w2, (III.21)

wherewj andwj are the wave vectors at the jet interface and outlet, andYj andY2 are transfer
matrices of the form:

Y =



1 +
1

M̄
1− 1

M̄
−1 −Ψ

(γ − 1)
(
1 + M̄

)
1 + γ−1

2 M̄2

(γ − 1)
(
1− M̄

)
1 + γ−1

2 M̄2

1

1 + γ−1
2 M̄2

Ψ

1 + γ−1
2 M̄2

c̄
(
A2
A

1
¯

M
+ 2 + M̄

)
c̄
(
A2
A

1
¯

M
− 2 + M̄

)
−M̄ c̄ −ΨM̄ c̄

0 0 0 1


.

(III.22)
The isentropic jump from the inlet to the jet transition can be described as in §III.1, with:

[Xw]j1 = 0, (III.23)

where w1 and wj are the wave vectors at the inlet and jet interface, and X is the isentropic
transfer matrix from (III.6).

To obtain a relationship between the waves at the inlet and outlet of the nozzlew1 andw2,
we can write:

X1w1 = XjY
−1
j Y2w2, (III.24)

or in terms of ingoing and outgoing waveswi andwo:

Xiwi = Xowo, (III.25)

whereXi andXo are permutations ofX1 andXjY
−1
j Y2 respectively.

The overall matrix of nozzle transfer functions is T = X−1
o Xi. Explicit expressions for
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the nozzle transfer functions contained in T can be readily obtained, but these are too long to
provide much physical insight and are therefore presented in Appendix A.

Unlike a compact isentropic nozzle, the anisotropic compact nozzle exhibits acoustic-entropic
and compositional-entropic couplings, with σ2/π+

1 ≥ 0, σ2/π−
2 ≤ 0 and σ2/ξ1 ≥ 0. Further-

more, entropic fluctuations are not necessarily conserved, and we have σ2/σ1 ≤ 1. The range
of possible couplings between acoustic, entropic and compositional modes at a subsonic com-
pact anisentropic nozzle are shown in figure III.7.

Figure III.7: Non-zero mode transfer mechanisms between acoustic (π), entropic (σ) and
compositional waves (ξ) at the inlet and outlet of a subsonic anisentropic compact nozzle.

III.3 Effect of anisentropicity

The effect of anisentropicity on nozzle transfer functions is examined in this section. We con-
sider a subsonic nozzle of dimensions based on the Cambridge Wave Generator described in
§VI. The nozzle has an identical flow area at the inlet and outlet (A1 = A2 ≈ 1.425 × 10−3

m2), corresponding to a circular cross section of diameter d = 42.6 mm. The throat area
At ≈ 3.42× 10−5 m2 corresponds to a circular cross section of diameter dt = 6.6 mm. The
effect of a vena contracta is neglected here for simplicity.

Based on these dimensions, we define ten nozzles with varying levels of anisentropicity.
This is set by selecting a value of Λ ∈ [0, 1], which in turn defines an effective jet mixing area
Aj . This jet area can be related to an effective jet diameter dj . These are shown for the ten
nozzles considered here in III.1. In reality, one can expect the anisentropicity Λ of a given
nozzle to vary with the mass flow rate; this is not considered here.
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Nozzle 1 2 3 4 5 6 7 8 9 10

Λ 0 0.85 0.9 0.93 0.95 0.97 0.98 0.99 0.998 1
dj (mm) 42.6 17.59 14.86 12.94 11.49 9.83 8.89 7.83 6.86 6.6

Table III.1: Anisentropicity levels Λ and corresponding effect jet area diameters dj for ten
nozzles.

For all the results presented here, the outlet operating conditions are set to atmospheric
(p̄2 = 101, 325 Pa , ρ̄2 = 1.204 kgm−3, T̄2 = 293.15 K). For a given mass flow rate ṁ and
Λ, we calculate the corresponding mean flow variables at the jet location, at the throat and
at the inlet. This is achieved by solving the mean flow jump conditions in (III.1) and (III.19)
numerically. By repeating this process for a range of mass flow rates (up to 16 g s−1 of air), we
can obtain nozzle transfer functions for the full subsonic range (with the throat Mach number
M̄t ranging from 0 to 1). The resulting inlet and outlet mean Mach numbers M̄1 and M̄2 and
inlet pressure p̄1 are shown as a function of the throat Mach number M̄t in figure III.8.

The inlet Mach number M̄1(M̄t) does not depend onΛ. Conversely, the outlet Mach num-
ber M̄2 increases with Λ; the difference is particularly pronounced at high values of M̄t. This
can be explained by the fact that the inlet pressure p̄1 increases in line with Λ, while p̄2 is con-
stant. Indeed, a pressure difference p̄1 − p̄2 is required to overcome the total pressure losses
in the divergent nozzle for anisentropic cases. For the isentropic case (Λ = 0) considered by
Marble &Candel 61 andMagri et al. 58 , p̄1 is simply equal to p̄2 since there are no total pressure
losses across the nozzle and we have A1 = A2. Consequently, we have M̄1 = M̄2 only in the
fully isentropic case, and M̄1 < M̄2 otherwise. This is equivalent to a Fanno line process, in
which the generation of entropy due to wall friction leads to the acceleration of the flow74.

Once the mean flow variables have been obtained, the nozzle transfer functions can be
computed using the method shown in §III.2.1.

III.3.1 Acoustic-acoustic transfer functions

An impinging upstream acoustic wave π+
1 leads to the generation of a reflected wave π−

1 and
a transmitted wave π+

2 . The corresponding reflection and transmission coefficients are:

T1 =
p̄2
p̄1

π+
2

π+
1

, R1 =
π−
1

π+
1

, (III.26)
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III. Transfer functions of compact nozzles

Figure III.8: (a) Inlet Mach number M̄1, (b) outlet Mach number M̄2 and (c) inlet mean
pressure p̄1 as a function of the throat Mach number M̄t. Ten values of Λ are shown, ranging
from isentropic with Λ = 0 ( ) to fully anisentropic with Λ = 1 ( ), with intermediate
cases where 0 < Λ < 1 ( ).
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III. Transfer functions of compact nozzles

where the pressure factor p̄2/p̄1 is introduced to account for the change in pressure across the
nozzle in the anisentropic cases. The coefficients are plotted in figure III.9. The limit case of a
isentropic choked nozzle (M̄t = 1) is also shown for comparison.

Figure III.9: (a) Acoustic transmission coefficient T1, (b) acoustic reflection coefficientR1 as
a function of the throat Mach number M̄t. Ten values of Λ are shown, ranging from Λ = 0
( ) to Λ = 1 ( ), with intermediate cases where 0 < Λ < 1 ( ). The limit case of an
isentropic choked nozzle is also shown ( ).

In the isentropic limit case (Λ = 0), the wave is fully transmitted (T1 = 1) with no re-
flection (R1 = 0). For the anisentropic cases, this is no longer the case: the wave is only
partially transmitted (T1 < 1), and a reflection occurs (R1 > 0). These effects become more
pronounced as the level of anisentropicity Λ and the throat Mach number M̄t increase.

When the nozzle is choked (at M̄t = 1), the isentropic transfer functions jump fromT1 = 1

to T1 ≈ 0.07 and from R1 = 0 to R1 ≈ 0.99. This change in behaviour is explained by the
fact that upstream propagating waves downstream of the throat can no longer propagate into
the upstream section of the nozzle in choked conditions. In the anisentropic cases, a similar
jump occurs.

Notably, in the case of a fully dissipative divergent section (Λ = 1), there is no large jump
in the reflection coefficientR1 for M̄t → 1. This is because in choked conditions,R1 depends
solely on the converging section of the nozzle, which is always modelled as isentropic. For
Λ = 1 and M̄t → 1, the acoustic energy in the divergent nozzle is dissipated, and contributes
very little to the acoustics in the convergent. Conversely, the transmission coefficient T1 of a
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III. Transfer functions of compact nozzles

fully dissipative anisentropic nozzle for M̄t → 1 is slightly lower than for an isentropic choked
nozzle. This is because in the anisentropic case, a portion of the acoustic energy is dissipated
in the divergent nozzle.

An impinging downstream acoustic wave π−
2 leads to the generation of a reflected wave π+

2

and a transmitted wave π−
1 . The corresponding reflection and transmission coefficients are:

T2 =
p̄1
p̄2

π−
1

π−
2

, R2 =
π+
2

π−
2

, (III.27)

and are shown in figure III.10.

Figure III.10: (a) Acoustic reflection coefficient R2, (b) acoustic transmission coefficient T2

as a function of the throat Mach number M̄t. Ten values of Λ are shown, ranging from Λ = 0
( ) to Λ = 1 ( ), with intermediate cases where 0 < Λ < 1 ( ). The limit case of an
isentropic choked nozzle is also shown ( ).

As before, the impinging acoustic wave is fully transmitted in the isentropic case (T2 =

1) with no reflection (R2 = 0). The transmission and reflection coefficients increase and
decrease (respectively) as Λ and M̄t increase. For a choked nozzle, the transmission jumps to
T2 = 0 since waves cannot propagate past the throat with M̄t = 1. This limit is recovered
for Λ = 1 (fully dissipative divergent nozzle) as M̄t → 1. Similarly, the isentropic reflection
coefficient jumps to R1 ≈ 0.94 as the nozzle becomes choked. For Λ = 1 and M̄t → 1, we
obtain a slightly lower value, since some acoustic energy is dissipated in the divergent section.
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III. Transfer functions of compact nozzles

III.3.2 Entropic-acoustic transfer functions

The entropic noise mechanism is governed by entropic-acoustic transfer functions. An im-
pinging entropic wave σ1 gives rise to a ‘reflected’ acoustic wave π−

1 , as well as a ‘transmitted’
acoustic wave π+

2 . Their amplitudes are related by the entropic-acoustic transmission and
reflection coefficients:

Tσ =
p̄2
p̄1

π+
2

σ1
, Rσ =

π−
1

σ1
, (III.28)

which are plotted in figure III.11.

Figure III.11: (a) Entropic-acoustic transmission coefficient Tσ , (b) entropic-acoustic reflec-
tion coefficient Rσ as a function of the throat Mach number M̄t. Ten values of Λ are shown,
ranging from Λ = 0 ( ) to Λ = 1 ( ), with intermediate cases where 0 < Λ < 1 ( ).
The limit case of an isentropic choked nozzle is also shown ( ).

For the fully isentropic case, there is no entropic noise, since M̄1 = M̄2. Entropic noise is
produced for the anisentropic cases (Λ > 0), reaching extreme values of Tσ ≈ 6.55 × 10−3

andRσ ≈ −6.92× 10−3 for Λ = 1.
It should be noted that this difference cannot be wholly attributed due to the fact that M̄1 <

M̄2 for anisentropic cases (Λ > 0). Indeed, taking the case with largest acceleration (from
M̄1 ≈ 0.0139 to M̄2 ≈ 0.0253), we obtain Tσ ≈ 1.40 × 10−4 and Rσ ≈ −8.03 × 10−5 in
the isentropic case. This shows that the majority of the additional entropic noise for Λ > 0 is
indeed driven by anisentropicity rather than small changes in Mach numbers.

Aswith the acoustic-acoustic transfer functions, there is a discontinuity at the choking point
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III. Transfer functions of compact nozzles

(for M̄t = 1). The transfer functions at that operating condition are similar to those for the
fully anisentropic divergent section with Λ = 1 and M̄t → 1.

III.3.3 Compositional-acoustic transfer functions

The compositional noise mechanism is governed by compositional-acoustic reflection and
transmission coefficients:

Tξ =
p̄2
p̄1

π+
2

ξ1
, Rξ =

π−
1

ξ1
, (III.29)

which are plotted in figure III.12 for constantΨ = −10.

Figure III.12: (a) Compositional-acoustic transmission coefficient Tξ , (b) compositional-
acoustic reflection coefficient Rξ as a function of the throat Mach number M̄t. Ten values
of Λ are shown, ranging from Λ = 0 ( ) to Λ = 1 ( ), with intermediate cases where
0 < Λ < 1 ( ). The limit case of an isentropic choked nozzle is also shown ( ).

In the isentropic case, compositional noise is driven by changes in the Mach number and
in the chemical potential function Ψ. Here we have fixed the value of Ψ (such that Ψ1 =

Ψt = Ψj = Ψ2 = −10). This is not entirely realistic since in practice the chemical potential
function changes with the local flow pressure and temperature. However, this special case
enables us to recover an interesting limit:

Tξ = ΨTσ, (III.30)

which was previously shown to be the case for Λ = 0 by Ihme 44 . The results presented here
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show that this result also holds for an anisentropic nozzle where Λ ∈ [0, 1] (this can also be
demonstrated analytically). Though this was not originally considered by Ihme 44 , we can also
write:

Rξ = ΨRσ. (III.31)

These relationships tell us that in the case where the chemical potential functionΨ is constant,
then the ratio of the compositional to entropic noise transfer functions is simplyΨ.

III.3.4 Generation of entropic waves

For an isentropic nozzle, there are no acoustic-entropic interactions, since entropic pertur-
bations are conserved across the nozzle. In the anisentropic case however, such a coupling
occurs, and impinging acoustic waves π+

1 and π−
2 generate an entropic wave σ2 as shown in

figure III.13. An impinging upstream wave generates a positive entropic fluctuation (σ2 > 0),
while an impinging downstream wave generates a negative entropic fluctuation (σ2 < 0)

Figure III.13: (a) Acoustic-entropic coefficient (p̄2/p̄1)σ2/π+
1 , (b) acoustic-entropic coeffi-

cient σ2/π−
2 as a function of the throat Mach number M̄t. Ten values ofΛ are shown, ranging

from Λ = 0 ( ) to Λ = 1 ( ), with intermediate cases where 0 < Λ < 1 ( ). The limit
case of an isentropic choked nozzle is also shown ( ).

Finally, if entropic fluctuations are not conserved across the nozzle (σ1 ̸= σ2), an impinging
compositional wave may also generate an entropic wave. This is shown in figure III.14.
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Figure III.14: (a) Entropic-entropic coefficientσ2/σ1, (b) Compositional-entropic coefficient
σ2/ξ1 as a function of the throat Mach number M̄t. Ten values of Λ are shown, ranging from
Λ = 0 ( or ) to Λ = 1 ( or ), with intermediate cases where 0 < Λ < 1 ( or

) for (a) and (b) respectively. The limit case of an isentropic choked nozzle is also shown
( , ).

We see that as the anisentropicity increases, the amplitude of the convected entropic fluc-
tuation decreases (σ2 < σ1). An impinging compositional fluctuation generates an entropic
fluctuation of the same sign (forΨ < 0).

Once again, for a constant value ofΨ across the nozzle, we find analytically that:

σ2
ξ1

= Ψ

(
1− σ2

σ1

)
. (III.32)
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IV
Reverberation

The objective of this thesis is to compare theoretical models of direct and indirect noise to
experimental measurements. The theoretical framework presented in §II–III enables the am-
plitude of generated direct and indirect acoustic waves to be computed for several operating
conditions. Nevertheless, the relation between these waves and the acoustic pressure fluctua-
tions one measures in an experiment is not always straightforward.

For a one-dimensional system, the acoustic pressure at a time t is obtained by considering
the amplitudes of the forward and backward propagating acoustic waves at a particular axial
location x:

p′

γp̄
(x, t) = π+(x, t) + π−(x, t). (IV.1)

When considering the amplitude of direct and indirect noise, it may be tempting to sub-
stitute π+ and π− for the acoustic waves amplitudes πd, πσ and πξ , for which analytical ex-
pressions have been obtained. This would not usually provide an accurate result however, as
real systems typically present substantial acoustic reflections which are measured along with
the original sound waves, thus modifying both the shape and amplitude of the pressure sig-
nal. In this chapter, the effect of repeated acoustic reflections inside a one-dimensional duct
is determined analytically.

In the first instance, we examine the case of a unicameral system (i.e. consisting of one
chamber) containing an acoustic source. We start by considering the reflections of a rectan-
gular acoustic pulse, in the case where the acoustic wavelength is substantially longer than
the system itself (i.e. low-frequency sound). In that scenario, reverberation occurs, whereby
sound is sustained even after the acoustic source is switched off. A time-domain approach is
used to obtain expressions for the corresponding acoustic pressure.
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IV. Reverberation

Following this, an analogous method is used to obtain expressions for the reverberation
of arbitrary acoustic pulses at arbitrary frequencies, in both the time and frequency domains.
The results can be formulated to define reverberation transfer functions for a given reflective
system, relating acoustic source signals to the resulting acoustic pressure.

In the second instance, we consider a bicameral system, consisting of two reverberating
chambers separated by an interface (e.g. a nozzle). The influence of sound sources upstream
and downstream of the interface on the acoustic pressure is determined analytically using
reverberation transfer functions.

IV.1 Unicameral reverberation

IV.1.1 Rectangular source

We start by considering a one-dimensional unicameral system consisting of a single chamber
of lengthL. Acoustic reflections occur at the inlet and outlet with reflection coefficientsRi and
Ro respectively. The acoustic pressure is measured using a pressure transducer at a distance x
downstream of the inlet.

The acoustic pressure inside the duct is attributed to acoustic waves generated by one or
more acoustically compact sources producing forward- andbackward-propagatingwaves. Ow-
ing to the superposition principle, the total acoustic pressure is a sum of the acoustic pressures
due to each one of these sources.

As such, we can consider the effect of a single acoustic source located at a distance xs down-
stream of the inlet, producing forward- and backward-propagating acoustic waves π+

s (t) and
π−
s (t) as shown in figure IV.1. The entire acoustic field can be recovered by considering the

superposition of several of these sources.

We start by examining the case where the pressure transducer is located downstream of the
acoustic source (x > xs). The source signal is taken to be a rectangular pulse, which means
that it is activated at t = 0 and deactivated at t = te with no rise time or decay:

π−
s (t) =

π−
s if t ∈ [0, te]

0 if t ∈ [te,+∞[
, π+

s (t) =

π+
s if t ∈ [0, te]

0 if t ∈ [te,+∞[
. (IV.2)

For the following analysis, we consider acoustic reflections of waves occurring during the
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π−
s (t)

π+
s (t)Ri Ro

L

xs

x

Figure IV.1: Unicameral system: an acoustic source at a location xs generates forward- and
backward-propagating waves π+

s (t) and π−
s (t).

pulse (0 ≤ t ≤ te), and after the pulse (t > te).

During the pulse

When the acoustic source is active, acoustic waves of amplitudes π−
s and π+

s are being con-
tinuously generated. At first, the only waves in the duct are those propagating away from the
acoustic source. As these waves reach the inlet and outlet of the system, they are reflected,
giving rise to waves propagating in the opposite direction, with amplitudes Roπ

+
s and Riπ

−
s .

These reflected waves propagate through the duct, and are once again reflected at the opposite
ends as RoRiπ

−
s and RiRoπ

+
s . The successive reflections of π+

s are shown diagrammatically
in figure IV.2. As this process repeats itself until the end of the pulse, the overall amplitudes π+

and π− of the acoustic waves in the duct change, and the acoustic pressure inside the system
is modified accordingly, as shown in equation (IV.1).

Each reflection of π−
s and π+

s is measured with an acoustic time delay, which is the time
taken for the wave to travel from its origin at location xs to the transducer at location x. These
time delays are related to the time taken for a wave to propagate either forward or backward
across a given distance. For example, the time delays associated to a given length l are:

τ+l =
l

c̄+ ū
, τ−l =

l

c̄− ū
, (IV.3)

where τ+l and τ−l are the times taken for an acoustic wave to propagate with and against the
flow over a distance l. In (IV.3), l can be substituted by x or xs depending on the length of
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Ri Ro

RiRoπ
+
s

R2
iR

2
oπ

+
s

π+
s

Roπ
+
s

RiR
2
oπ

+
s

L

xs

x

Figure IV.2: The forward-propagating wave π+
s generated by the acoustic source is succes-

sively reflected at the inlet and outlet of the unicameral system.

Amplitude Distance travelled Time-delay

π+
s (x− xs) = lp τ+x − τ+xs

= τp
Roπ

+
s (L− xs) + (L− x) = lq τ − τ−x − τ+xs

= τq
RoRiπ

+
s (x− xs) + 2L = lp + 2L τ+x − τ+xs

+ τ = τp + τ
R2

oRiπ
+
s (L− xs) + (L− x) + 2L = lq + 2L τ − τ−x − τ+xs

+ τ = τq + τ
...

...
...

Table IV.1: Amplitudes, distances travelled and time delays associated to the forward-
propagating acoustic wave π+

s and its first three reflections.

interest. In addition, we define the acoustic round-trip time τ :

τ =
L

c̄+ ū
+

L

c̄− ū
, (IV.4)

which is the time delay for a wave to reflect at both ends of the duct, and propagate back to its
original position.

The amplitudes, distances travelled, and time delays associated to each reflection of of the
acoustic waves π+ and π−

s are shown in tables IV.1 and IV.2 respectively. If we consider that
the pulse duration is longer than the acoustic time-scale (te > τ ), then the acoustic signal is
reverberated, and acoustic reflections occur while the original wave is still being generated.

The successive reflections of π−
s and π+

s correspond to the sum of the terms of two geomet-
ric series of ratio RiRo, and in which each term is separated by a time delay τ . The general
formula for the sum Sk of the first k terms of a geometric series is:
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Amplitude Distance travelled Time-delay

Riπ
−
s (xs + x) = ls τ−xs

+ τ+x = τs
RiRoπ

−
s (L+ xs) + (L− x) = lr + 2L τ−xs

− τ−x = τr
R2

iRoπ
−
s (xs + x) + 2L = ls + 2L τ−xs

+ τ+x + τ = τs + τ
R2

iR
2
oπ

−
s (L+ xs) + (L− x) + 2L = lr + 4L τ−xs

− τ−x + τ = τr + τ
...

...
...

Table IV.2: Amplitudes, distances travelled and time delays associated to the backward-
propagating acoustic wave π−

s and its first three reflections.

Sk =
a(1− rk)

1− r
(IV.5)

where r is the ratio and a is the first term of the series. This enables us to express the acoustic
pressure due to the acoustic source as:

p′

γp̄

∣∣∣∣
s

(x, t ≤ te) =

for t ≥ τp︷ ︸︸ ︷
π+
s

1− (RiRo)
⌊ t−τp+τ

τ
⌋

1−RiRo
+

for t ≥ τq︷ ︸︸ ︷
Roπ

+
s

1− (RiRo)
⌊ t−τq+τ

τ
⌋

1−RiRo
+

Riπ
−
s

1− (RiRo)
⌊ t−τs+τ

τ
⌋

1−RiRo︸ ︷︷ ︸
for t ≥ τs

+RiRoπ
−
s

1− (RiRo)
⌊ t−τr+τ

T
⌋

1−RiRo︸ ︷︷ ︸
for t ≥ τr

.

(IV.6)

where ⌊β⌋ denotes the floor function, which gives the greatest integer which is less than or
equal to β. The time delays τp, τq , τr and τs are defined in tables IV.1 and IV.2.

In a typical real system we have |RiRo| < 1, and equation (IV.6) converges. If the acoustic
time-scale τ is significantly shorter than the pulse duration te, then the acoustic pressure will
quickly converge towards:

lim
t→∞

p′

γp̄

∣∣∣∣
s

=
(
Riπ

−
s + π+

s

) 1 +Ro

1−RiRo
. (IV.7)

After the pulse

Once the acoustic source is deactivated at t = te, it no longer generates acoustic waves. The
only contributions to the acoustic pressure come from pre-existing waves propagating and
reflecting at the boundaries of the system.
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πs

πsRi Ro

L

x

Figure IV.3: The forward and backward-propagating waves of amplitude πs after the acoustic
source has been deactivated.

The acoustic pressure immediately after the source is deactivated is p′/γp̄|s (x, te). We
make the simplifying assumption that the acoustic field is comprised of a forward and a back-
ward propagating wave, both of equal amplitude πs, as shown in figure IV.3 The wave ampli-
tude πs must satisfy equation (IV.1) and can be assumed to be:

πs =
1

2

p′

γp̄

∣∣∣∣
s

(x, te). (IV.8)

The amplitudes and time delays associated to each wave passing at the pressure measure-
ment location x can be determined as in tables IV.1 and IV.2. The successive reflections of
πs correspond to the terms of four geometric sequences with ratios RiRo, and in which each
term is separated by a time delay τ . If we consider the successive terms of two of these four
sequences,the acoustic pressure in the tube can be approximated as:

p′

γp̄

∣∣∣∣
s

(t > te) = πs(RiRo)
⌊ t−te

τ
⌋ +Roπs(RiRo)

⌊ t−(te+τ−τ+x −τ−x )
τ

⌋. (IV.9)

The accuracy of this approximation is examined in §V.3 (limit case IV).

Effect of acoustic attenuation

Acoustic attenuation occurs in the tube due to turbulence, mixing, viscous effects as well as
losses at the walls. The amplitude change of a acoustic wave due to attenuation can be ex-
pressed as:

π(l) = π0e
−αl (IV.10)
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where π0 is the original amplitude of the wave, π(l) is the amplitude of the wave at a distance
l from its origin, and α is the attenuation coefficient. The effect of acoustic attenuation can
be included in the results presented in the previous section. Consider the case of a wave π+

s

generated at the wave generator. If acoustic attenuation is neglected, the wave propagates
towards the outlet, and returns with an amplitude π+

s Ro. If acoustic attenuation is taken into
account, the wave is attenuated over a distance 2(L − xs), and returns with an amplitude
π+
s Roe

−2α(L−xs).
Including attenuation terms of the form e−αl throughout the derivation in §IV.1.1 –IV.1.1

yields modified expressions for the acoustic pressure due to reverberation. These modified
expressions can be easily obtained by substituting Ri with Rie

−2αx and Ro by Roe
−2α(L−x)

in equations (IV.6) and (IV.9). For example, (IV.6) becomes:

p′

γp̄

∣∣∣∣
s

(x, t ≤ te) =

for t ≥ τp︷ ︸︸ ︷
π+
s

1− (RiRoe
−2αL)⌊

t−τp+τ

τ
⌋

1−RiRoe−2αL
+

for t ≥ τq︷ ︸︸ ︷
Roe

−2α(L−x)π+
s

1− (RiRoe
−2αL)⌊

t−τq+τ

τ
⌋

1−RiRoe−2αL

+Rie
−2αxπ−

s

1− (RiRoe
−2αL)⌊

t−τs+τ
τ

⌋

1−RiRoe−2αL︸ ︷︷ ︸
for t ≥ τs

+RiRoe
−2αLπ−

s

1− (RiRoe
−2αL)⌊

t−τr+τ
T

⌋

1−RiRoe−2αL︸ ︷︷ ︸
for t ≥ τr

.

(IV.11)

Extension to arbitrary sources using Riemann rectangles

One of the limitations of the reverberationmodel outlined above is that it requires the acoustic
source signal to be rectangular in time. In real systems this is not usually the case. However,
the acoustic pressure resulting from the reverberation of non-rectangular acoustic signals can
be closely approximated analytically by discretising the acoustic signal.

Indeed, an acoustic signal of arbitrary shape can be approximated as the succession of rect-
angular pulses of varying amplitudes and of duration δt. As δt is decreased, the approximation
of the arbitrary signal becomes increasingly accurate. In this sense, any acoustic signal can be
closely approximated as a train of several successive rectangular acoustic waves. This is shown
in figure IV.4 in the case where the acoustic pulse is a raised sine wave (of the form sin2(ωt))
lasting te = 200 ms with an amplitude π+

s = 10−5 . The acoustic wave is shown in (a),
and rectangular approximations for δt = 20 ms and δt = 10 ms are shown in (b) and (c)
respectively.
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Figure IV.4: (a) Non-rectangular acoustic wave (b) Non-rectangular acoustic wave ( ) and
rectangular approximation ( ) for δt = 20 ms, (c) Non-rectangular acoustic wave and rect-
angular approximation for δt = 10 ms.

The acoustic pressure resulting from the reverberation of the non-rectangular signal can
then be estimated as the sum of the acoustic pressures due to each of the rectangular waves
used to construct it. This can be calculated analytically by using the reverberation model
presented in equations (V.2), (V.3) and (V.4). In principle, the accuracy of this approximation
can be improved by decreasing δt as required. Note that if the rectangular pulse width δt is
smaller than the acoustic time-scale τ , the ‘floored’ terms ⌊·⌋must be replaced by (·) to recover
a physical solution.

IV.1.2 Arbitrary source signal

The results shown up to this point are restricted to cases where the acoustic pulse duration
is long compared to the acoustic time-scale of the system (te ≫ τ ). This effectively limits
the analysis to low-frequency acoustic sources. Furthermore, the expressions describing the
acoustic pressure (V.2)–(V.4) are piece-wise defined, which complicates their manipulation.

Using a similar approach to the one employed above, we derive new equations for the re-
verberation of arbitrary acoustic signals π+

s (t) and π−
s (t). The reverberation process can be

formulated in the frequency domain, which enables one to obtain acoustic transfer functions,
which are a two-way link between acoustic sources and the acoustic pressure in the system.

Time-domain analysis

We consider a unicameral one-dimensional system as shown in figure IV.1. The source gen-
erates forward- and backward-propagating waves π+

s (t) and π−
s (t), the amplitudes of which

vary with time. Once again, we start by examining only the effect of a forward-propagating
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wave π+
s (t), in the case where the pressure transducer is located downstream of the acoustic

source (x > xs).
The amplitudes, distances travelled, and time delays associated to each reflection of the

acoustic wave π+
s are shown in table IV.1. The amplitudes of successive reflections correspond

to two alternating geometric sequences (where successive terms are multiplied byRiRo). The
time delays associated to these waves correspond to two alternating arithmetic sequences
(where each term is separated by τ ). The acoustic pressure at themicrophone locationp′/γp̄|s(x, t)
corresponds to the sum of all the acoustic waves passing at x at a time t:

p′

γp̄

∣∣∣∣
s

(x, t) = π+
s (t− τp) +Roπ

+
s (t− τq) +RiRoπ

+
s (t− τp − τ)

+RiR
2
oπ

+(t− τq − 2τ) +R2
iR

2
oπ

+(t− τp − 2τ) + ... (IV.12)

where τp = τ+x − τ+xs
and τq = τ − τ−x − τ+xs

. By defining π+
s (t < 0) = 0, the sum can be

recast as:

p′

γp̄

∣∣∣∣
s

(x, t) =
∞∑
n=0

(RiRo)
n[π+

s (t− (τp + nτ)) +Roπ
+
s (t− (τq + nτ))] (IV.13)

In practice it is sufficient to compute the sum up to n = N , whereN is a number of acoustic
reflections occurring up to given point in time t = Nτ .

Similarly, the acoustic pressure due to the reflections of the backward-propagating wave
π−
s (t) can be expressed as:

p′

γp̄

∣∣∣∣
s

(x, t) =
∞∑
n=1

(RiRo)
n[π−

s (t− (τr + (n+ 1)τ))] +
∞∑
n=0

(RiRo)
n[Riπ

−
s (t− (τs + nτ))]

(IV.14)
where τr = τ−xs

− τ−x and τs = τ−xs
+ τ+x .

Frequency-domain analysis

The Fourier transform of the acoustic pressure p′/γp̄|s(x, t) expressed in (IV.13) is:

p̂′

γp̄

∣∣∣∣∣
s

(x, ω) =

∞∑
n=0

(RiRo)
ne−iωnτ [e−iωτp +Roe

−iωτq ]π̂+
s (ω) (IV.15)
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where π̂+
s (ω) is the Fourier transform of the acoustic wave π+

s (t). For |RiRo|< 1 (which is
true in a physical system), the series in (IV.15) is convergent, and we can write:

p̂′

γp̄

∣∣∣∣∣
s

(x, ω) =
e−iωτp +Roe

−iωτq

1−RiRoe−iωτ
π̂+
s . (IV.16)

The transfer function R+ between the Fourier transforms of the acoustic wave amplitude
π+
s (t) and the resulting acoustic pressure fluctuation p′/γp̄|s(x, t) is given by:

R+(x, ω) =
p̂′/γp̄|s
π̂+
s

=
e−iωτp +Roe

−iωτq

1−RiRoe−iωτ
. (IV.17)

Note thatR+ is a function of themeasurement and acoustic source locationsx andxs. Sim-
ilarly, we can define the transfer functionR− between the Fourier transforms of the backward
acoustic wave π−

s (t) and the resulting acoustic pressure p′/γp̄(x, t):

R−(x, ω) =
p̂′/γp̄|s
π̂−
s

=
RiRoe

−iω(τr+τ) +Rie
−iωτs

1−RiRoe−iωτ
. (IV.18)

Reverberation transfer functions

We have derived frequency-dependent acoustic transfer functions R+(ω) and R−(ω), relat-
ing acoustic source signals π̂−

s (ω) and π̂−
s (ω) to the resulting acoustic pressures. The overall

acoustic pressure is then simply:

p̂′

γp̄

∣∣∣∣∣
s

= R+π̂+
s +R−π̂−

s . (IV.19)

We can also introduce the effect of acoustic attenuation as in §IV.1.1. The resulting transfer
functions are:

R+ =
e−iωτp−αlp +Roe

−iωτq−αlq

1−RiRoe−iωτ−2αL
, (IV.20)

R− =
RiRoe

−iω(τr+τ)−α(lr+2L) +Rie
−iωτs−αls

1−RiRoe−iωτ−2αL
. (IV.21)

Until nowwehave focused on the casewhere the pressure transducer is located downstream
of the acoustic source (x > xs). Alternative transfer functions can be derived in the same way
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π−
s1(t)

π+
s1(t)

xs1

L1 L2

x1 x2

Ri1 Ro2
To1

Ro1

Ri2

Ti2

Figure IV.5: Bicameral system: an upstream acoustic source at a location xs1 generates
forward- and backward-propagating waves π+

s1(t) and π−
s1(t).

for the opposite case:

R+ =
RiRoe

−iω(τp+τ)−α(lp+2L) +Roe
−iωτq−αlq

1−RiRoe−iωτ−2αL
, (IV.22)

R− =
e−iωτr−αlr +Rie

−iωτs−αls

1−RiRoe−iωτ−2αL
. (IV.23)

IV.2 Bicameral reverberation

So far we have considered a unicameral system, in which there are no reflections apart from
those at the inlet and at the outlet. This is not representative of most systems. For example,
acoustic waves transmitted through the outlet of the chamber can be reflected further down-
stream, and be transmitted back into the reverberating chamber, thus affecting the acoustic
pressure. Additionally, if one wishes to measure the acoustic waves generated or transmitted
downstream of the outlet, reflections occurring further downstream must also be considered.

To account for these effects we can consider a bicameral model consisting of two reverber-
ating chambers separated by an interface: a first chamber upstream, and a second chamber
downstream as shown in figure IV.5.

Each chamber is defined by its length L, internal inlet and outlet reflection coefficients
(Ri,Ro), as well as its transmission coefficient across the interface T . The subscripts 1 and
2 are used to denote quantities relating to the first and second chambers respectively. We
consider the acoustic pressure in each chambers, at locations x1 and x2.
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π+
s1

Ro1π
+
s1

To1Ro2Ti2π
+
s1

To1R
2
o2Ri2Ti2π

+
s1

To1π
+
s1

To1Ro2Ri2π
+
s1

L1 L2

x1 x2

Ri1 Ro2

Figure IV.6: The forward-propagating wave π+
s1 generated by the upstream acoustic source

is successively reflected at the inlet and outlet of the second chamber, effectively resulting in
several reflections.

IV.2.1 Upstream arbitrary source signal

To start, we consider an acoustic source in the first (upstream) chamber, generating acoustic
waves π+

s1(t) and π−
s1(t).

Acoustic pressure in the first chamber

The effect of this source on the acoustic pressure in the first chamber (at location x1) can be
thought of as follows. Forward-propagating waves impinging at the nozzle π+

s1 are reflected
with a coefficientRo1, aswell as transmittedwith a coefficientTo1. The transmitted component
To1π

+
s1 is reflected at the outlet of the second chamber downstream, and returns to the nozzle

with an amplitude To1Ro2π
+
1 , and a time delay τ2. Part of this wave is transmitted back into

the first chamber with an amplitude To1Ro2To2π
+
s1, while another part is reflected yet again

with an amplitude To1Ro2Ri2π
+
s1. The latter wave will lead to yet another chain of reflections.

This is shown diagrammatically in figure IV.6. The amplitudes and time delays associated to
the reflections of π+

s1 are shown in table IV.3.

One way to conceptualise this process is to think of the effective upstream reflection coeffi-
cient at the nozzle

⋆

Ro1, which corresponds to an immediate reflectionRo1, but also subsequent
delayed reflections due to the transmitted component. We can write:

⋆

Ro1 = Ro1+To1Ro2Ti2e
−iωτ2+To1R

2
o2Ri2Ti2e

−2iωτ2+To1R
3
o2R

2
i2Ti2e

−3iωτ2+... (IV.24)
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Amplitude Distance travelled Time-delay

Ro1π
+
s1 0 0

To1Ro2Ti2π
+
s1 2L2 τ2

To1Ri2R
2
o2Ti2π

+
s1 4L2 2τ2

To1R
2
i2R

3
o2Ti2π

+
s1 6L2 3τ2

...
...

...

Table IV.3: Amplitudes, distances travelled and time-delays associated to the first four reflec-
tions of the forward-propagating acoustic wave π+

s1.

or
⋆

Ro1 = Ro1 + To1Ti2

∞∑
n=1

(Ri2Ro2)
n

Ri2
e−iωnτ2 , (IV.25)

which can be expressed as:

⋆

Ro1 = Ro1 +
To1Ti2Ro2

eiωτ2 −Ri2Ro2
, (IV.26)

for |Ri2Ro2|< 1.
The effective reflection coefficient

⋆

Ro1 can be implemented in the reverberation transfer
functionsR+

1 andR−
1 derived in §IV.1.2 to account for downstream reflections. This is done

simply by substituting Ro1 with
⋆

Ro1. For example, the upstream reverberation transfer func-
tion for the acoustic pressure resulting from an acoustic wave π+

s1 is:

⋆

R+
1 =

p̂′/γp̄|s1
π̂+
s1

=
e−iωτp1 +

⋆

Ro1e
−iωτq1

1−Ri1

⋆

Ro1e−iωτ1
. (IV.27)

If the outlet of the second chamber is anechoic (Ro2 = 0), then we recover
⋆

Ro1 = Ro1, and
the second chamber has no effect on the first (

⋆

R1 = R1).

Acoustic pressure in the second chamber

In the second chamber, the acoustic pressure is affected by the transmitted component of the
upstream acoustic sources π+

s1 and π−
s1.

Forward-propagating waves impinging at the nozzle π+
s1 are transmitted with a coefficient

To1, as well as reflected with a coefficientRo1. The reflected componentRo1π
+
s1 is reflected at

the inlet of the first chamber, and returns to the interface with an amplitude Ro1Ri1π
+
s1, and
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π+
s1

Ro1Ri1π
+
s1

R2
o1R

2
i1π

+
s1

To1π
+
s1

To1Ri1Ro1π
+
s1

To1R
2
i1R

2
o1π

+
s1

L1 L2

x1 x2

Ri1 Ro2

Figure IV.7: The forward-propagating wave π+
s1 generated by the upstream acoustic source is

successively reflected at the inlet and outlet of the first chamber, effectively resulting in several
transmissions.

Amplitude Distance travelled Time-delay

To1π
+
s1 0 0

To1Ro1Ri1π
+
s1 2L1 τ1

To1R
2
o1R

2
i1π

+
s1 4L1 2τ1

To1R
3
o1R

3
i1π

+
s1 6L1 3τ1

...
...

...

Table IV.4: Amplitudes, distances travelled and time delays associated to the first four trans-
missions of the forward-propagating acoustic wave π+

s1.

a time delay τ1. Part of this wave is transmitted into the second chamber with an amplitude
To1Ro1Ri1π

+
s1, while another part is reflected yet again with an amplitude To1Ro2Ri2π

+
s1. The

latter wave will lead to yet another reflection. This is shown diagrammatically in figure IV.6.
These amplitudes and time delays associated to the transmissions of π+

s1 are shown in table
IV.3. These effectively act as an acoustic source π+

s2 at the inlet of the second chamber.

We can define an effective transmission coefficient
⋆

To1, to incorporate the effect of upstream
reverberation:

⋆

To1 = To1 +Ro1Ri1To1e
−iωτ1 +R2

o1R
2
i1To1e

−2iωτ1 +R3
o1R

3
i1To1e

−3iωτ1 + ... (IV.28)

or
⋆

To1 = To1

(
1 +

∞∑
n=1

(Ro1Ri1)
ne−iωnτ1

)
, (IV.29)
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π−
s2(t)

π+
s2(t)

xs2

L1 L2

x1 x2

Ri1 Ro2
To1

Ro1

Ri2

Ti2

Figure IV.8: Bicameral system: a downstream acoustic source at a location xs2 generates
forward- and backward-propagating waves π+

s2(t) and π−
s2(t).

which can be expressed as:

⋆

To1 = To1

(
1

1−Ro1Ri1e−iωτ1

)
. (IV.30)

for |Ri1Ro1|< 1.

The transmissions of π+
s1 and π−

s1 through the interface can be thought of as an acoustic
source π+

s2 at the inlet of the second chamber. We can define transmissive transfer func-
tions

⋆

T
+

1 and
⋆

T
−
1 to relate the amplitude of the upstream acoustic sources π+

s1 and π−
s1 to

the strength of this effective downstream acoustic source π+
s2:

⋆

T
+

1 =
⋆

To1e
−iωτp1 , (IV.31)

⋆

T
−
1 =

⋆

To1Ri1e
−iωτs1 (IV.32)

where τp1 and τs1 are evaluated at x1 = L1.

IV.2.2 Downstream arbitrary source signal

We now consider an acoustic source located in the second (downstream) chamber, generating
forward- and backward-propagating acoustic waves π+

s2(t) and π
−
s2(t) as shown in figure IV.8.
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Amplitude Distance travelled Time-delay

Ti2π
−
s2 0 0

Ti2Ri2Ro2π
−
s2 2L2 τ2

Ti2R
2
i2R

2
o2π

−
s2 4L2 2τ2

Ti2R
3
i2R

3
o2π

−
s2 6L2 3τ2

...
...

...

Table IV.5: Amplitudes, distances travelled and time-delays associated to the first four trans-
missions of the backward-propagating acoustic wave π−

s2.

Acoustic pressure in the first chamber

The effect of the downstream sources π+
s2 and π−

s2 on the pressure in the first chamber can
be understood in terms of wave transmissions across the interface. For example, a backward-
propagating wave downstream of the nozzle π−

s2 will lead to several transmitted waves, as
shown in table IV.5.

Once again we can define an effective transmission coefficient from the second chamber to
the first:

⋆

Ti2 = Ti2

(
1

1−Ro2Ri2e−iωτ2

)
. (IV.33)

for |Ri2Ro2|< 1.

The transmitted waves due to the downstreamwave π−
s2 are manifested in the first chamber

as a source π−
s1 located at the interface, such that π−

s1 =
⋆

Ti2π
−
s2. We can define transmissive

transfer functions
⋆

T
+

2 and
⋆

T
−
2 to relate the amplitude of the downstream acoustic sources π+

s2

and π−
s2 to the strength of this effective downstream acoustic source π−

s1:

⋆

T
+

2 =
⋆

Ti2Ro2e
−iωτq2 , (IV.34)

⋆

T
−
2 =

⋆

Ti2e
−iωτr2 . (IV.35)

where τq2 and τr2 are evaluated at x2 = 0.

Acoustic pressure in the second chamber

As before, the effect on the first chamber on the second appears in the form of additional
reflections at the inlet of the second chamber. These reflections are shown in table IV.6.
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Amplitude Distance travelled Time-delay

Ri2π
−
s2 0 0

Ti2Ri1To1π
−
s2 2L2 τ2

Ti2R
2
i1Ro1To1π

−
2 4L2 2τ2

Ti2R
3
i1R

2
o1To1π

−
2 6L2 3τ2

...
...

...

Table IV.6: Amplitudes, distances travelled and time-delays associated to the first four reflec-
tions of the backward-propagating acoustic wave π−

s2.

The effective reflection coefficient
⋆

Ri2 is:

⋆

Ri2 = Ri2 +
Ti2To1Ro1

eiωτ1 −Ri1Ro1
, (IV.36)

for |Ri1Ro1|< 1.

This effective reflection coefficient can be implemented in the reverberation transfer func-
tionsR+

2 andR−
2 derived in §IV.1.2 to account for upstream reflections. This is done simply

by substitutingRi2 with
⋆

Ri2. The downstream reverberation transfer function for the acoustic
pressure resulting from an acoustic wave π+

s2 is:

⋆

R+
2 =

p̂′/γp̄

π̂+
s2

=
e−iωτp2−αlp2 +Ro2e

−iωτq2−αlq2

1−
⋆

Ri2Ro2e−iωτ2−2αL2

. (IV.37)

If the inlet of the first chamber is anechoic (Ri1 = 0), then we recover
⋆

Ri2 = Ri2, and the
first chamber has no effect on the second (

⋆

R+
2 = R+

2 ). If the outlet of the second chamber
is anechoic (Ro2 = 0), then

⋆

R+
2 is simply a time delay representing the propagation of the

source wave to the measurement location.

Reverberation and transmission transfer functions

Wehave derived frequency-dependent acoustic transfer functions
⋆

R+,
⋆

R−,
⋆

T + and
⋆

T −, relat-
ing acoustic source signals π̂+

s1, π̂
−
s1, π̂

+
s2 and π̂−

s2 to the resulting acoustic pressures upstream
and downstream of the interface. The full expressions for these transfer functions (including
the effect of acoustic attenuation) are shown in in Appendix B.

77



IV. Reverberation

The overall acoustic pressures in the first and second chambers are:

p̂′

γp̄

∣∣∣∣∣
1

(x1, ω) =
⋆

R+
1 π̂

+
s1 +

⋆

R−
1 π̂

−
s1 +

⋆

R−
1

(
⋆

T +
1 π̂+

s2 +
⋆

T −
1 π̂−

s2

)
, (IV.38)

p̂′

γp̄

∣∣∣∣∣
2

(x2, ω) =
⋆

R+
2 π̂

+
s2 +

⋆

R−
2 π̂

−
s2 +

⋆

R−
2

(
⋆

T +
2 π̂+

s1 +
⋆

T −
2 π̂−

s1

)
. (IV.39)
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V
Direct and indirect noise model

The results presented in §II–IV enable us to assemble a complete model of direct and indirect
noise generation in a one-dimensional system. We apply this model to a system containing a
wave source with a compact nozzle further downstream as show in in figure V.1.

Owing to the superposition principle, the total acoustic pressure is a sum of the acoustic
pressures due to the direct, entropic and compositional noise sources:

p′

γp̄
(x, t) =

p′

γp̄

∣∣∣∣
d

(x, t) +
p′

γp̄

∣∣∣∣
σ

(x, t) +
p′

γp̄

∣∣∣∣
ξ

(x, t). (V.1)

In this section, expressions for each of the pressure contributions in (V.1) are shown for
both unicameral and bicameral systems. These will be applied to a variety of scenarios, with
the goal of comparing the results with data from a model experiment on direct and indirect
noise (see §VII–IX).These results are implemented in a set of limit cases to showcase the range
of behaviours expected from systems of this type.

π−
d

π+
d

σ

ξ

π−
σ

π−
ξ

π+
σ

π+
ξ

[0] [1] [2]

compact nozzlewave source

Figure V.1: A one-dimensional wave generator generates forward and backward direct acous-
tic waves π−

d and π+
d along with entropic and compositional waves σ and ξ. The convected

waves generate corresponding forward and backward indirect acoustic waves (π+
σ ,π−

σ ,π+
ξ and

π−
ξ ) as they are convected through the nozzle.
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π−
d

π+
d

σ

ξ

π−
σ

π−
ξ

Ri Ro

L

Lc

x

Figure V.2: Unicameral system: a wave generator produces direct noise and convected waves,
which produce indirect noise after propagating across a convective length Lc.

Themodel can also be used to shed some light on the relative importance of direct and indi-
rect noise. Building on the approach of Leyko et al. 53 , analytical indirect to direct noise ratios
are obtained for the simple case of a cold flame (see §II.4.1). Finally, we present a method
to extract information about direct and indirect noise sources from acoustic pressure signals.
This ‘source identification’ technique can be used to separate direct and indirect noise in ex-
perimental data.

V.1 Unicameral model

The results in §IV.1 can be applied to the reverberation of direct and indirect noise. For a uni-
cameral system (i.e. a single reverberating chamber) where the outlet is a nozzle, the system
contains a direct noise source (generating π+

d and π−
d ), and an indirect noise source (generat-

ing π−
σ and π−

ξ ), as shown in figure V.2.

The indirect noise source is activated once the entropic and compositional waves have prop-
agated from the wave source to the nozzle over a convective length Lc, which corresponds to
a convective time delay τc = Lc/ū.

The forward-propagating indirect noise (π+
σ , π+

ξ ) is not considered since it propagates
downstream of the outlet. Similarly, noise transmitted at the inlet and outlet is not factored
into the model. This is good approximation in the cases where the outlet nozzle is choked or
supersonic (in which case downstream waves cannot propagate upstream past the nozzle), or
if transmitted waves are not reflected once they leave the system.
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V.1.1 Rectangular pulses

Assuming the direct and indirect acoustic signals are effectively rectangular pulses, we can
employ (IV.6) and (IV.9) to calculate the acoustic pressure in the system. If we consider that
the pulse duration is much longer than the system’s acoustic time-scale (te >> τ ), then the
expressions may be approximated and combined to obtain hybrid functions for the acoustic
pressure contributions:

p′

γp̄

∣∣∣∣
d

(t) ≈

(π+
d + π−

d Ri)(1 +Ro)
1−(RiRo)

⌊ t+T
T

⌋

1−RiRo
for t ∈ [0, te]

2πd(RiRo)
⌊ t−te+τ

τ
⌋ for t ∈ ]te,+∞[

(V.2)

p′

γp̄

∣∣∣∣
σ

(t) ≈

π−
σ (1 +Ri)

1−(RiRo)
⌊ t−τc+T

T
⌋

1−RiRo
for t ∈ [τc, te + τc]

2πσ(RiRo)
⌊ t−te−τc+τ

τ
⌋ for t ∈ ]te + τc,+∞[

(V.3)

p′

γp̄

∣∣∣∣
ξ

(t) ≈

π−
ξ (1 +Ri)

1−(RiRo)
⌊ t−τc+T

T
⌋

1−RiRo
for t ∈ [τc, te + τc]

πξ(RiRo)
⌊ t−te−τc+τ

τ
⌋ for t ∈ ]te + τc,+∞[

(V.4)

The wave amplitudes πd, πσ and πξ describing acoustic decay are determined based on (IV.8).
Note that the spatial dependency of p′/γp̄ has disappeared due to the low frequency assump-
tion (according to which the acoustic pressure is the same throughout the system).

Equations (V.2), (V.3) and (V.4) are straightforward expressions for the evolution of acoustic
pressure due to the successive reflections of direct, entropic and compositional noise respec-
tively. These show that the pressure in the duct closely follows a power law, governed by the
acoustic time-scale of the system τ , and the product of the inlet and outlet reflection coeffi-
cientsRiRo.

V.1.2 Arbitrary pulses

The reverberation transfer functions can also be used to construct an analytical model for di-
rect and indirect noise. Unlike the rectangular pulse approximation, thismodel can be applied
to arbitrary source signals. Knowledge of the system’s dimensions, reflection coefficients, and
of the imposed perturbations enables the acoustic pressure due to direct and indirect acoustic
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Figure V.3: Block diagram representing the analytical model for a unicameral reverberating
system.

waves to be calculated:

p̂′

γp̄

∣∣∣∣∣
d

(x, ω) = R+(x, xs) π̂
+
d (ω) +R−(x, xs)π̂

−
d (ω), (V.5)

p̂′

γp̄

∣∣∣∣∣
σ

(x, ω) = R−(x, L)π̂−
σ (ω), (V.6)

p̂′

γp̄

∣∣∣∣∣
ξ

(x, ω) = R−(x, L)π̂−
ξ (ω), (V.7)

where the reverberation transfer functions for indirect noise have been computed for xs = L,
since they are generated at the outlet nozzle.

The amplitudes of the direct acoustic waves π−
d , π

+
d and convected waves σ, ξ can be com-

puted using the wave generation model presented in §II. The indirect noise generated at the
nozzle can be computed using the anisentropic nozzle transfer functions presented in §III
using a suitable anisentropicity factor Λ. These transfer functions also yield the acoustic re-
flection coefficients of the nozzle, which are an input of the reverberation transfer functions.
The complete analytical model is shown in figure V.3

V.2 Bicameral model

Theresults in §IV.2 can be applied to the reverberation of direct and indirect noise in bicameral
systems. This allows us to account for the forward-propagating components of indirect noise
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Figure V.4: Bicameral system: a wave generator produces direct noise and convected waves,
which produce indirect noise after propagating through a convective length Lc.

π+
σ and π+

ξ , as shown in figure V.4.

Transmission transfer functions are now required to relate upstreamanddownstream sound
sources. In the first chamber, the acoustic pressure contributions are:

p̂′

γp̄

∣∣∣∣∣
d

(x1, ω) =
⋆

R+
1 (x1, xs1)π̂

+
d (ω) +

⋆

R−
1 (x, xs1)π̂

−
d (ω), (V.8)

p̂′

γp̄

∣∣∣∣∣
σ

(x1, ω) =
⋆

R−
1 (x1, L1)

(
π̂−
σ (ω) +

⋆

T +
2 π̂+

σ (ω)
)
, (V.9)

p̂′

γp̄

∣∣∣∣∣
ξ

(x1, ω) =
⋆

R−
1 (x1, L1)

(
π̂−
ξ (ω) +

⋆

T +
2 π̂+

ξ (ω)
)
. (V.10)

For the acoustic pressure in the second chamber, we have:

p̂′

γp̄

∣∣∣∣∣
d

(x2, ω) =
⋆

R+
2 (x2, 0)

(
⋆

T +
1 (L1, xs1)π̂

+
d (ω) +

⋆

T −
1 (L1, xs1)π̂

−
d (ω)

)
, (V.11)

p̂′

γp̄

∣∣∣∣∣
σ

(x2, ω) =
⋆

R+
2 (x2, 0)

(
π̂+
σ (ω) +

⋆

T −
1 (L1, L1)π̂

−
σ (ω)

)
, (V.12)

p̂′

γp̄

∣∣∣∣∣
ξ

(x2, ω) =
⋆

R+
2 (x2, 0)

(
π̂+
ξ (ω) +

⋆

T −
1 (L1, L1)π̂

−
ξ (ω)

)
. (V.13)

The analytical models for the overall acoustic pressures upstream and downstream of the
nozzle are shown diagrammatically in figures V.5 and V.6.
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Figure V.5: Block diagram representing the analytical model for the upstream pressure in a
bicameral reverberating system.
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Figure V.6: Block diagram representing the analytical model for the downstream pressure in
a bicameral reverberating system.
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V.3 Limit cases

Themodels in §V.1 can be used to compute the acoustic pressure in unicameral reflective sys-
tems. While these expressions assume ideal conditions (one-dimensional wave field, localised
reflections), they may be used to show some of the limit cases for this type of system.

This section presents eight limit cases showcasing the range of behaviours that may be dis-
played by model experiments on indirect noise. Cases I–IV examine the influence of acoustic
reflections on direct noise, while cases V–VII examine the interaction between direct and
indirect noise. Case VIII corresponds to the case where the forcing acoustic pulse is not rect-
angular. All cases correspond to the geometry shown in figure V.2, where the wave generator
is located xs = 1 m downstream of the inlet, and the total length is L = 3 m. A pressure
sensor is located x = 2m downstream of the inlet. Acoustic reflections occur at the inlet and
outlet of the duct (specified byRi andRo respectively). Acoustic attenuation is neglected.

The expressions in §V.1.1 assume low-frequency perturbations, which in this case corre-
sponds to te ≫ τ , i.e. the pulse ismuch longer than the acoustic time-scale. To place ourselves
in this scenario, we take te = 200 ms for all cases, with τ ≈ 17.5 ms depending on the case
(the sound speed is taken as c̄ = 345 m s−1). These values are broadly representative of the
DLR EWG4 and VWG46 experiments, as well as the CambridgeWave Generator presented in
§VI.

As a point of comparison, the acoustic pressures for cases I–VIII are also computed numer-
ically using the general model for arbitrary pulses (§V.1.2). The time-domain formulation
of (IV.13) is used rather than the reverberation transfer functions to avoid the Gibbs phe-
nomenon (since in this case the input signal is a discontinuous piecewise function).

V.3.1 Cases I–IV: Direct noise

In cases I–IV, we consider that there is no indirect noise generation at the outlet, meaning
that only direct noise is generated (π−

σ = π−
ξ = 0). For simplicity, the forcing acoustic signal

is considered to be a rectangular pulse lasting te = 200 ms, with π+
d = π−

d = 10−5. The
reflection coefficients used for each case are listed in table V.1. These are chosen to cover a
range of limit behaviours. The acoustic pressure histories for cases I–IV are shown in figure
V.7.

In case I, the system is anechoic (Ri = Ro = 0). As a result, the only contribution to the
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Limit case Description Ri Ro

I Anechoic 0 0
II Fully reflective 0.9999 1
III Open-ended 0.75 -1
IV Partial Reflections 0.75 0.25→ 0.75

Table V.1: Description of limit cases I-IV with corresponding inlet and outlet reflection coef-
ficientsRi andRo.

Figure V.7: Acoustic pressure history p′/γp̄ at x = 2m ( ) and case I results (for reference)
( ). (a) case I: Anechoic (b) case II: Fully reflective (c) case III: Open-ended.

acoustic pressure at the pressure measurement location x = 1m is π+
d . The acoustic pressure

p′/γp̄(x, t) rises sharply to a maximum value of π+
d = 10−5 at t = τp, and falls back to 0

at t = te + τp. As expected, this corresponds to a rectangular pulse (identical to the forcing
pulse), with a time shift τp = τ+x − τ+xs

due to the acoustic propagation time delay between
the wave generator and the pressure measurement location.

A fully reflective system corresponds to Ri = Ro = 1, but the expressions derived in
§IV.1.1 are not defined for RiRo = 1. A virtually identical result is obtained in case II by
taking Ri = 0.9999 and Ro = 1. In this scenario, waves are (nearly) fully reflected at the
boundaries of the system, and there are effectively no acoustic losses. Given that waves π+

d

and π−
d are being continuously generated for t ≤ te, acoustic energy accumulates inside the

system as acoustic waves repeatedly reflect at the boundaries with the same sign. As a result,
the acoustic pressure rises gradually to reach a large value (approximately 45 times larger than
in the anechoic case here).

Paying close attention to the acoustic pressure history reveals that the pressure does not
rise continuously, but instead increases ‘step by step’. Each step corresponds to a wave being
reflected at a boundary and adding to the total acoustic pressure. These steps are separated
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by the acoustic time-scale τ , which is the time taken for a given acoustic wave to be reflected
back to its original position. The ‘staircase’ aspect of the computed signal is not related to a
numerical method, but is instead due to the fact that the pulse is perfectly rectangular. In a
real situation, the forcing pulse is smoother, and a combination of fluid-mechanical effects
(primarily mixing) make this aspect less pronounced. After the end of the pulse (once the
wave generator is switched off), internal acoustic energy is conserved as there are no acoustic
losses, and the pressure stays constant.

In case III, the inlet of the system is partially reflective (Ri = 0.5) and the outlet is open-
ended (Ro = −1). Thismeans that acoustic waves propagating downstream are reflected with
a negative sign; instead of increasing the total acoustic pressure as in case II, these reflected
waves decrease the acoustic pressure and interact deconstructively with incoming waves. The
acoustic pressure oscillates around 0, bounded in the interval [−π+

d , π
+
d ]. The amplitude of

these oscillations decreases with time. This is due to the partial reflections at the inlet, which
make each successively reflected wave slightly smaller in amplitude than the previous one.
Once the forcing pulse ends, the acoustic pressure quickly returns to zero. This behaviour is
similar to the experimental measurements for case A in De Domenico et al. 20 .

The results for case IV are shown in figure V.8 for (a) the analytical expressions for arbitrary
acoustic signals (IV.13), (b) the full expressions for a rectangular pulse (equations (IV.6) and
(IV.9)), and (c) the simplified expressions for a rectangular pulse (equation (V.2)). Case IV
corresponds to the case where both the inlet and outlet of the system are partially reflective. As
in case II, waves are positively reflected, leading to an overall increase of the acoustic pressure,
but as shown in case III, the amplitudes of the partially reflected waves at the inlet decrease as
time goes on.

As a result, the acoustic pressure converges towards a maximum value, which is consistent
with (IV.7). For all values of Ro, the maximum acoustic pressure is higher than in case I
(anechoic), but lower than in case II (fully reflective). Notably, asRo is increased from 0.25 to
0.75, the acoustic pressure increases. The results given by themodel for arbitrary source signals
(a) and the the full expressions for rectangular pulses (b) are virtually identical. The simplified
expressions for rectangular pulses however, show a coarser signal, due to the fact that small
time delays are neglected. However, the signal converges towards the same maximum, and
the overall growth rate (neglecting the slightly different step changes) is the same.

Once the wave generator is switched off at t = 200 ms, the acoustic pressure decays as
acoustic energy leaves the system. Each discontinuous decrease corresponds to an acoustic
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Figure V.8: Acoustic pressure history p′/γp̄ at x = 2m and case I results (for reference) ( ).
(a) case IV: arbitrary source signal forRo = 0.25 ( ),Ro = 0.5 ( ), andRo = 0.75 ( ),
(b) case IV: full expressions for a rectangular pulse , (c) case IV: simplified expression for a
rectangular pulse.

wave reaching a boundary, at which point it loses a fraction (1 − Ri or 1 − Ro) of its ampli-
tude. Here, the analytical results (figure V.8 b,c) give a coarser result than the arbitrary source
method (figure V.8 a). This is because of the simplifying assumptions made in §IV.1.1. Most
notably, we have approximated the successive terms of four series as the terms of just two se-
ries, which explains why the pressure decays in larger steps in the analytical results. However,
the decay rate is identical in all three simulations (e.g. the acoustic pressure falls to 10% of its
maximum at t = 273 ms in all cases).

V.3.2 Cases V-VII: Direct and indirect noise

Cases V-VII highlight the behaviours of both direct and indirect noise. Here, we assume that
there is flow acceleration downstream of the wave generator location, such that indirect noise
is generated at the outlet. We consider rectangular pulses with π+

d = π−
d = 10−5 and π−

i =

π−
σ +π−

ξ = −10−5 in all cases regardless of the flow conditions. In a real system, these values
would vary based on the flow, but using constant values enables different cases to be compared
on an even basis. For each case we vary the reflection coefficients, as well as theMach number
in the duct M̄ (which primarily affects the convective time delay τc). These parameters are
shown in table V.2. The acoustic pressure histories for cases V-VII are shown in figure V.9.

In case V, the Mach number is relatively low, and there is a large convective time delay
τc between the times at which direct and indirect noise are generated. In this case, we have
τc > te meaning that entropy waves reach the outlet once direct noise is no longer being gen-
erated. This can be seen in the acoustic pressure histories, which shows a very clear temporal
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Limit case Description Ri Ro M̄

V Anechoic 0 0 0.025
VI Partial reflections (low Mach) 0.5 0.5 0.025
VII Partial reflections 0.5 0.5 0.1

Table V.2: Description of limit cases V-VII with corresponding reflection coefficientsRi and
Ro and Mach number M̄ .

Figure V.9: Acoustic pressure history p′/γp̄ at x = 2m of total noise ( ), direct noise ( )
and indirect noise ( ). (a) case V: Anechoic (low Mach) (b) case VI: Partial reflections (low
Mach) (c) case VII: Partial reflections.

separation between direct and indirect noise. As in case I, the direct noise appears as a rect-
angular pulse of duration te with a maximum value of πd = 10−5. The indirect noise is also
a rectangular pulse, but time shifted by τc, with a maximum of πi. The total acoustic pressure
in the tube shows a positive pulse (corresponding to the direct noise, followed by a negative
pulse (corresponding to indirect noise).

Case VI is identical to case V except that theMach number in the system is four times larger
(and the convective time delay τc is four times smaller as a result). We now have τc < te,
meaning that there is an overlap between the generation of direct and indirect noise. Once
again, the total acoustic pressure corresponds to a positive pulse followed by a negative pulse.
In this case however, direct and indirect noise interact deconstructively, and the duration of
these pulses is reduced to τc. At the limit where the convective and acoustic time scales τc
and τ are 0 (i.e. there is no separation between the entropy wave source and the outlet), then
direct and indirect noise cancel each other out completely.

Case VI is a combination of cases IV and V, where direct and indirect noise are clearly
separated, and there are partial reflections at the inlet and outlet of the system. As expected,
direct and indirect noise are effectively amplified compared to case V (anechoic). Direct and
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Figure V.10: Acoustic pressure history p′/γp̄ at x = 2 m for case VIII ( ) with acoustic
forcing signal ( ) obtained with (a) the arbitrary source signal model (b) rectangular ap-
proximation for δt = 20 ms and (c) rectangular approximation for δt = 5 ms.

indirect noise are not amplified by the same factor however: while both of them give a max-
imum pressure amplitude of 10−5 in the anechoic case, they reach 3 × 10−5 and 2 × 10−5

respectively. This can be explained by the fact that indirect noise is produced directly at the
outlet, unlike direct noise. This difference in amplification is made apparent in (V.17).

Case VII is similar to case VI, except that there is now a large overlap between direct and
indirect noise due to the decreased convective time delay. This overlap results in a merging
effect, whereby direct and indirect noise interact deconstructively and the overall acoustic
pressure is reduced.

V.3.3 Case VIII: Non-rectangular pulse with complex reflections

While the compact nozzle model always gives real-valued reflection coefficients (R ∈ R), in
some cases it is useful tomodel an acoustic boundary as giving rise to a complex-valued reflec-
tion (R ∈ C). For example, a complex-valued reflection coefficient was used to simulate the
DLR Entropy Wave Generator experiment4,71,52,25. The model presented here enables these
complex reflections to be taken into account.

For case VIII, we consider an non-rectangular acoustic pulse, of the form sin2(ωt), lasting
te = 200 ms with an amplitude π+ = 10−5 (shown in figure IV.4a). The reflection coeffi-
cients at the inlet and outlet are taken to be Ri = 0.75 and Ro = 0.75 + 0.65i (complex
reflection coefficient). The results are shown in figure V.10 for (a) the arbitrary source signal
model (b) using a rectangular approximation with δt = 20 ms, and (c) using a rectangular
approximation with δt = 5 ms.

The acoustic pressures computed using all threemethods show an excellent agreement over-
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all. Although the shape of the acoustic pressure signal obtained using the true source signal
is not entirely replicated for δt = 20 ms, this small error becomes negligible for δt = 5 ms.
The time step δt used in the semi-analytical method can be further reduced to achieve results
virtually identical to those obtained with the arbitrary method. Unlike cases IV, the acous-
tic signal contains a negative pressure fluctuation even though the forcing signal is positive.
This is becauseRo is complex-valued; the introduction of a complex reflection coefficient can
introduce oscillations not present in the original acoustic signal.

V.3.4 Direct and indirect noise ratios

One of the open questions in the study of combustion noise is the relative importance of direct
and indirect noise. This is sometimes estimated by computing a noise ratio.

In their work, Leyko et al. 53 and Duran et al. 25 define an indirect to direct noise ratio η by
considering the acoustic waves brought about by the direct and entropic noise mechanisms:
π+
d and π+

i = π+
σ respectively. Considering the noise downstream of the nozzle (subscript 2),

they define the indirect to direct noise ratio as:

η2 =
π+
i

To1π
+
d

(V.14)

where To1 is included to account for the transmission of direct noise through the nozzle.
The formulation above misses out the fact that the backward-propagating waves π−

d and
π−
i also contribute to the noise downstream of the nozzle. Indeed, these waves are reflected at

the inlet of the first chamber and transmitted downstream asRi1To1π
−
d andRi1To1π

−
i .

Additionally, we must also take into account that acoustic waves can interfere either con-
structively or deconstructively depending on the system’s time delays. For example, although
π+
i and π−

i are typically of opposite signs, we cannot say a priori that these waves will interfere
deconstructively. For this reason, it is sensible to take the absolute value of individual waves.
We can define a new indirect to direct noise ratio ζ to account for both of these effects:

ζ2 =
|π+

i |+|Ri1To1π
−
i |

|To1π
+
d |+|To1Ri1π

−
d |

. (V.15)

The ratios η2 and ζ2 are only equivalent if Ri1 = 0, which is not a good approximation of
a combustion system. In fact, the inlet of a combustion chamber is often modelled as an area
expansion22, which typically result in a refection coefficientRi1 of the order of 1.
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We can define a similar ratio ζ1 upstream of the nozzle as :

ζ1 =
|Ro2Ti2π

+
i |+|π−

i |
|π+

d |+|Ri1π
−
d |

(V.16)

Analytical expressions for ζ1 and ζ2 can be obtained using the appropriate equations in
§II–III.

Physically speaking, a more relevant result is the ratio of the direct and indirect pressure
contributions p′d and p′i to the total acoustic pressure p′. Therefore we define a third indirect
to direct noise ratio χ, with:

χ1 =
p′i1
p′d1

, χ2 =
p′i2
p′d2

. (V.17)

We can compute χ1 and χ2 using reverberation transfer functions:

χ1 =
|

⋆

R−
1 π

−
i |+|

⋆

R−
1

⋆

T +
2 π+

i |
|

⋆

R+
1 π

+
d |+|

⋆

R−
1 π

−
d |

, χ2 =
|

⋆

R+
2 π

+
i |+|

⋆

R+
2

⋆

T −
1 π−

i |)
|

⋆

R+
2

⋆

T +
1 π+

d |+|
⋆

R+
2

⋆

T −
1 π−

d |
. (V.18)

which simplifies to:

χ1 =

∣∣∣∣ 1 +Ri1

1 +Ro1

∣∣∣∣ ζ1, χ2 = ζ2. (V.19)

Upstream of the nozzle, the ratios χ1 and ζ1 are equivalent only if |1 + Ri1|= |1 + Ro1|.
This highlights the importance of taking reflection coefficients into account when considering
the noise ratio in a real system with acoustic reflections.

If the objective is to estimate the actual ratio of indirect to direct noise in a real system, then
the wave ratio η gives the wrong result; the ratio χ must be used instead. This ratio requires
the inlet and outlet reflectionRi1 andRo2 to be known.

To examine the evolution of the noise ratioχwith the inlet and outlet reflection coefficients
Ri1 and Ro1, we repeat the analysis carried out by Leyko et al. 53 . We consider the direct
and entropic noise produced by a cold flame (see §II.4.1) followed by an isentropic nozzle,
neglecting the dispersion and dissipation of entropic waves.

Using the nozzle transfer functions defined in §III, we can compute the entropic to direct
noise ratios upstream and downstream of the nozzle χ1 and χ2. These are shown in figure
V.11 as a function ofRi1 for M̄1 = [0.025, 0.05, 0.1], and M̄2 = [0.4, 0.8, 1.2, 1.6]. The ratio
η2 computed by Leyko et al. 53 is shown for comparison (a factor 2 error in the subsonic cases
in their original study has been corrected here).

The downstream ratio of indirect to direct noise χ2 coincides with the ratio η2 only for
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Figure V.11: Upstream and downstream indirect to direct noise ratios χ1 and χ2 with M̄1 =
0.025 ( ), M̄1 = 0.05 ( ), M̄1 = 0.1 ( ), and wave ratio η2 for comparison with
M̄1 = 0.025 ( ), M̄1 = 0.05 ( ), M̄1 = 0.1 ( ).

Ri1 = 0. Beyond this value, χ2 decreases as Ri1 is increased. This is due to the fact that
backward-propagating direct wave π−

d is larger than the backward-propagating indirect wave
π−
i : their contribution to the signal decreases the noise ratio. Overall, the results show that

indirect noise is generally of the same order of magnitude as direct noise in the subsonic cases,
and is an order of magnitude larger downstream of the nozzle in sonic or supersonic cases.

Conversely, the upstream ratio χ1 increases as the inlet reflection Ri1 is increased. This is
not due to the relative amplitudes of direct and indirect waves, but rather to the effect of rever-
beration, which is responsible for the factor |1 + Ri1| in (V.19). This is particularly apparent
in the subsonic cases. In the supersonic cases (M̄2 ≥ 1), the noise ratio is unaffected by the
downstream wave π+

i since Ti2 = 0.
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V.4 Source and system identification

The results presented in §V.1–V.2 show how the analytical models can be used to simulate
model experiments. However, this does not enable us to quantify how much direct, entropic
and compositional noise is generated in the experimental cases. Indeed, the measured quan-
tity in an experiment is typically is acoustic pressure, which is dependent on the system’s prop-
erties and operating conditions. Ideally, we would like to obtain quantitative experimental
measurements of direct, entropic and compositional acoustic waves (π+

d , π
−
d , π

+
σ , π−

σ , π+
ξ

and π−
ξ ), which are not dependent on a particular system, and could be directly compared to

theoretical models from the literature.

This can be achieved by solving an inverse problem, whereby the amplitudes of the acoustic
sources π+

d , π
−
d , π

−
i = π−

σ +π−
ξ and π+

i = π+
σ +π+

ξ are recovered from experimental pressure
measurements of p′.

V.4.1 General method

Since the reverberation transfer functions are dependent on the pressure measurement loca-
tion, then we can use four pressure measurements at different locations to solve for the direct
and indirect source waves.

For example, if we have two pressure measurements upstream of the nozzle (at locations
x11 and x22) and two measurements downstream of the nozzle (at x21 and x22), we can write:

p̂′/γp̄|11

p̂′/γp̄|12

p̂′/γp̄|21

p̂′/γp̄|22


=



⋆
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π̂+
d

π̂−
d

π̂+
i

π̂−
i


.

(V.20)

which can be directly inverted to recover values for π̂+
d , π̂

−
d , π̂

+
i and π̂−

i . This can be done
for each frequency ω of interest to recover the full frequency dependence of the signals. It
should be noted that the reverberation transfer functions can take values near zero at certain
frequencies (close to the system’s antiresonance frequencies in particular). The source iden-
tification inversion is likely to lead to spurious solutions in the vicinity of these frequencies.
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In general, the problem may be ill-posed in which case some form of regularisation may be
required (such as Tikhonov regularisation).

In certain conditions, fewer than four pressure measurements are required to solve the in-
versionproblem. For example, we have shown in §II that the forward andbackward-propagating
direct noise waves are generally related as:

π−
d =

1 + M̄1

1− M̄1
π+
d . (V.21)

Assuming the above allows us to solve for threewaves (π̂+
d , π̂

+
i , π̂

−
i ) instead of four,meaning

that only three pressure measurements are now required.
Furthermore, if we are dealing with a unicameral system (choked nozzle or no downstream

reflections), then we can solve for only two waves in the upstream section of the system (π̂+
d ,

π̂−
i ), which can be identified with only two pressure measurements.
The method above requires the system’s length, acoustic reflection and transmission coef-

ficients to be known. Alternatively, these parameters can be recovered as long as the source
waves are known (i.e. system identification).

V.4.2 Application to model experiments

The aim of experiments such as the DLR EntropyWave Generator4 and the Cambridge Wave
Generator (§VI) is to identify and measure direct and indirect in model conditions. For these
systems, several simplifications are appropriate (1) the acoustic frequencies of interest are low
i.e. He ≈ 0, (2) the Mach number upstream of the nozzle is small i.e. M̄1 ≪ 1, (3) the
measurement section downstream of the nozzle is anechoic i.e. Ro2 = 0.

In the low frequency range (ω ≈ 0), the system can be described with a single acoustic
transfer functionR, which is not a function of the transducer or source locations:

R(ω) =
1

1−Ri1Ro1e−iωτ1−2αL1
. (V.22)

The acoustic pressures upstream and downstream of the nozzle are then given by:

p̂′

γp̄
(x1, ω) = R π̂1

p̂′

γp̄
(x2, ω) = R π̂2 + π̂+

i ,

 (V.23)
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where π̂1 and π̂2 are effectively a weighted sum of all the acoustic sources:

π̂1 = (1 +Ro1)(1 +Ri1) π̂
+
d + (1 +Ri1) π̂

−
i

π̂2 = To1(1 +Ri1) π̂
+
d + To1Ri1 π̂

−
i ,

 (V.24)

where we have used the fact that π+
d = π−

d as M̄1 → 0.
The equations above can be used to identify direct and indirect noise sources, as well as the

acoustic characteristics of the system. This is demonstrated on theCambridgeWaveGenerator
in §VI.4.2.
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VI
The Cambridge Wave Generator

Experiments are carried out on the Cambridge Wave Generator with the objective of inves-
tigating the interaction of acoustic, entropic and compositional waves with nozzles. These
effects are notoriously difficult to measure in a combustor. Therefore, the Cambridge Wave
Generator (CWG) is designed to operate in model conditions. The complexities associated
to the presence of a turbulent flame are avoided by generating acoustic, entropic and compo-
sitional waves synthetically using interchangeable wave generators. Furthermore, the CWG
is modular; its dimensions and boundaries can be varied to manipulate its acoustic proper-
ties. These features are used in tandem to generate, identify and measure direct, entropic and
compositional noise.

VI.1 Experimental set-up

The CWG is essentially a flow duct, as shown in figure VI.1. A primary flow of air is supplied
at up to 7 bar from the laboratory’s compressed air supply. The air is filtered and fed through a
250 l tank to dampen unwanted flow oscillations. It is then delivered into the flow duct using
a flexible hose (12 mm inner diameter, 0.7 m length) connected to a flat inlet flange. The
flow rate of air is controlled using a mass flow controller (the details of which are presented in
§VI.3.1). The flow duct itself has an inner diameter of 42.6 mm throughout, and consists of
sections of either rigid polyvinyl chloride (PVC) or stainless steel (type 316).

Waves are induced inside the air flow using one of three wave generation modules. These
modules are designed to generate a combination of acoustic, entropic and/or compositional
waves. The frequency of these waves is kept deliberately low in order for flow elements to be
acoustically compact. Depending on the configuration, the flow may be accelerated through
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VI. The Cambridge Wave Generator

Figure VI.1: The Cambridge Wave Generator: air flows through a duct fitted with wave gen-
eration modules and a nozzle.

a nozzle, potentially generating indirect noise. Transducers can be used to measure the flow
pressure or temperature at several locations along the duct.

VI.1.1 Configurations

TheCWG can be operated in several configurations owing to its modular design. The purpose
of these configurations is tomodify the lengths governing the acoustic behaviour of the system.
These are: (1) the upstream length L1 from the duct inlet to the nozzle, (2) the downstream
length L2 from the nozzle to the outlet, and (3) the convective length Lc from the wave gener-
ator to the nozzle. There are three generic configurations: ‘long’, ‘short’ and ‘short extended’.
These are shown in figure VI.2.

The first configuration (‘long’) is designed to minimise the effect of downstream acoustic
reflections. This is achieved by placing a 60 m flexible duct downstream of the wave genera-
tion module. This has two main effects. First, the acoustic round-trip time is τ ≈ 360 ms

(since L1 ≈ 60 m). In this case, the outlet is effectively anechoic for t < 360 ms. This en-
ables individual acoustic pulses to be identified and separated. Second, since the convective
length between the wave generation module is of the order of Lc ≈ 60 m, we can expect any
convected wave to have dissipated or dispersed before reaching the outlet, meaning that no
indirect noise is generated. Pressure transducers are positioned at short distances upstream
and downstream of the wave generation module. In this configuration, the CWG can be con-
sidered to be unicameral since there is no duct downstream of the nozzle (i.e. L2 = 0 m).

In the second configuration (‘short’), the length between the wave generator and the nozzle
is small (L1 and Lc are of the order of 1 m). This results in an acoustic round-trip time of
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VI. The Cambridge Wave Generator

Figure VI.2: Section views of the CWG in its (a) long, (b) short and (c) short extended con-
figurations with upstream length L1, downstream length L2, wave source location xs and
convective length Lc.

the order of τ ≈ 10 ms, which will lead to acoustic reverberation. In addition, the convective
distance Lc is reduced, and convected waves are unlikely to have fully dispersed or dissipated
before reaching the outlet. If entropic or compositional waves are generated, the measured
pressure signal is likely to be a combination of direct and indirect noise. After passing through
the nozzle, the flow expands directly into ambient air. Pressure transducers are positioned
throughout the duct. Once again, the CWG can be considered to be unicameral since L2 = 0

m.

The third configuration (‘short extended’) is identical to the short configuration, with the
addition of an open-ended 60 m duct downstream of the nozzle (L2 ≈ 60 m). This enables
the acoustic pressure to be measured both upstream and downstream of the nozzle. Crucially,
the forward-propagating indirect noise can now be measured. In addition, the transmissive
properties of the nozzle can be determined. In the short extended configuration, the CWG
is effectively a bicameral system since there is a chamber downstream of the nozzle. Each
configuration enables different noise contributions to be measured, as shown in table VI.1.

VI.1.2 Nozzles

The CWG can be fitted with a nozzle (or an orifice plate) in order to accelerate the flow, thus
modifying the system’s acoustic boundary conditions. The three most important aspects of
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Configuration Direct noise Indirect noise Indirect noise
(π+

d , π
−
d ) (π−

σ , π−
ξ ) (π+

σ , π+
ξ )

Long • - -

Short • • -

Short extended • • •

Table VI.1: Noise types measured (•) and not measured (-) in each configuration of the Cam-
bridge Wave Generator.

Figure VI.3: Three nozzles used in the Cambridge Wave Generator: (a) orifice plate, (b)
choked converging nozzle, (c) subsonic converging nozzle.

each nozzle are: (1) the throat size (which determines the overall acceleration), (2) the length
and shape of the acceleration profile (whichmight result in a different nozzle transfer function
due to phasing effects), and (3) the level of anisentropicity (as shown in §III.2). In order to
examine the effect of these aspects, we use (a) an orifice plate, (b) a choked converging nozzle
and (c) a subsonic converging nozzle, as shown in figure VI.3.

All of the nozzles are manufactured from rigid polyvinyl chloride (PVC). The orifice plate
has a geometric throat diameter of dg = 6.6 mm, and a thickness of 8 mm.

The inlet diameter of the converging nozzles match the duct inlet diameter (d1 = 42.6

mm). One of the nozzles has a geometric throat diameter of dg = 4 mm, which enables it
to be operated in choked conditions. The choked nozzle has a linear geometric acceleration
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VI. The Cambridge Wave Generator

profile with a length of 23 mm (which corresponds to an angle of approximately 43.6°).
The second converging nozzle has a geometric throat diameter of dg = 6.6mm, and is fully

subsonic for the operating conditions considered here. The converging section has a linear
geometric profile with a length of 24 mm (which corresponds to an angle of approximately
40°).

Since we are dealing with perturbations with a frequency of the order of f = 1 Hz, the
Helmholtz number for all of the nozzles is negligible (He < 0.001). As such, we expect
each of the nozzles considered to be acoustically compact (He ≪ 1), meaning that their
length and acceleration profile will have no effect on their response (assuming the same level
of anisentropicity).

VI.2 Wave generators

The CWG can be operated with one of three wave generation modules, performing A: air
injection (at ambient temperature), B: heat addition and C: helium injection. Each module
generates a different combination of acoustic, entropic and compositional waves, as shown in
table VI.2. These perturbations are generated in the form of low-frequency pulses.

Wave generation Acoustic Entropic Compositional
module wave wave wave

A: Air injection • - -

B: Heat addition • • -

C: Helium injection • • •

Table VI.2: Wave types generated (•) and not generated (-) by each wave generation module.

VI.2.1 Gas injection/extraction

Flowperturbations can be generated by pulse injecting/extracting a gas into/from the duct. An
injection or extraction of air generates acoustic waves as shown in §II.4.2. Injecting helium
generates acoustic waves as well as a combined entropic and compositional wave, (see §II.4.3).

The injector nozzle consists of a Swagelok 1/4” fitting, connected to a 0.1m length of flexible
tubing (2mm inner diameter) through which the injected gas is supplied. The injector can be
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Figure VI.4: Section views of the gas injector/extractor.

mounted via one of several 1/4” ports located along the duct. This enables a range of different
source locations xs to be used (resulting in different convective lengths Lc). The ports are
aligned with the duct centreline, so that the injected gas enters the duct in the radial direction,
as shown in figure VI.4.

An important consideration is that when gas is not being injected or extracted, the injection
linemust not have an effect on the acoustics of themain flow duct. Indeed, onemight consider
that acoustic waves propagating within the duct could be transmitted into the injection flow
line through the injector, potentially reflecting and reverberating inside it and modifying the
pressure in the duct.

This scenario is avoided due to the geometry of the injector, which is very thin (4 mm

internal diameter) and contains a flow constriction (1mm internal diameter). This flow con-
striction limits any acoustic transmission between the injection line and the flow duct. This is
verified experimentally, by performing tests with different boundary conditions upstream of
the injector to show that the injection line has no effect on the duct acoustics.

The injector is connected either to the main air tank, or to a bottle of helium (>99.996%
purity), depending on which gas is being injected, as shown in figure VI.5.

The injection itself is carried out using a fast-response micro-solenoid valve (ASCO Nu-
matics HSM2L7H50V). The valve is opened and closed using a Glassman LP 60-20 power
supply, which is driven using a computer-generated pulse signal. The injection is a result of
the pressure differential across the fast-response valve: when the valve is open, gas flows at a
rate determined by the size of the orifice inside it. The amount of gas ṁi injected into the duct
is adjusted using a pressure regulator upstream of the valve, and measured using a mass flow
meter (see §VI.3.1).
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Air

Primary �ow

Injected �ow

(3)

(1) (2)
(5)

(7)

(8)(6)

Helium (4)

Figure VI.5: Flow lines for air/helium injection with (1) pressure gauge, (2) valve, (3) air tank,
(4) helium bottle, (5) pressure regulator, (6) mass flow meter, (7) mass flow controller and (8)
fast response valve.

Air
Primary �ow

Extracted �ow

Figure VI.6: Flow lines for air extraction.

Alternatively, air can be extracted from the duct. This is achieved by disconnecting the
pressure regulator upstream of the fast-response valve, as shown in figure VI.6 If the duct is
pressurised, opening the fast-response valve leads to a portion of the primary air flow escaping
the duct through the valve into the atmosphere (ṁi < 0).

The computer-generated signal triggering the gas injection/extraction is essentially a rectan-
gular pulse lasting between τp=100 and 500ms. Each pulse is repeated several times (typically
at a rate of 0.25 Hz) to allow for signal averaging (see §VI.3.2).

VI.2.2 Heat addition

Flow perturbations can be generated by heating up the primary air flow unsteadily. This gen-
erates acoustic waves, as well as an entropic wave (see §II.4.1).

Heat addition is achieved using a heating device shown in figure VI.7, which was designed
by Francesca de Domenico20. The device consists of 7 layers of glass-reinforced epoxy lami-
nate FR4 sheets (roughly 1.4mm thick each) fitted with a central hole matching the duct inner
diameter. Three of these sheets are heating grids connected in series; tungsten wires (58 μm
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Figure VI.7: Exploded view of the heating device.

diameter) with an overall resistance of 1 Ω are wound around a tooth comb structure. These
wires connect to copper plating on either sides of the heating grid, through which a current
can be delivered.

The device is secured between two PVC flanges to provide electric insulation. The obstruc-
tion due to the heating device is minimal: it occupies less than 0.15% of the duct cross section.
The total thickness of the heating device is of the order of 10 mm, meaning that it can be
considered to be acoustically compact. As such, we consider that it has a negligible effect on
acoustic propagation within the duct.

The heating device is driven using an in-house circuit: a computer-generated pulse drives
a Glassman LP 60-20 power supply, delivering a current pulse of 21 A through the heating
device. This process heats up the heating grid wires via Joule effect, which in turn heats up the
air flowing through the heating device (primarily by conduction and convection). This can be
thought of as a fluctuating heat releaseQ′ being delivered to the primary air flow, typically for
a duration τp ≈ 300 ms.

The heat flux Q′ due to the heating device is expected to be a approximately the same for
all cases. Given the dissipative losses in the heating device circuit however, it is not possible
to compute a priori howmuch heat is transferred to the flow. Furthermore, the heat exchange
process from the heating grids to the flow can be assumed to vary based on the flow conditions.

The heat added to the flow can be deduced by considering the temperature fluctuation∆Td

generated just downstream of the heating device: Q′ = ṁc̄p∆Td.

Similarly, the amplitude of the entropic wave generated by the heating device can be related
to the temperature fluctuation∆Tn associated to it : σ ≈ ∆Tn/T̄ .
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Figure VI.8: Example of pressure transducers and thermocouples mounted on the CWG.

VI.3 Data acquisition and processing

VI.3.1 Mass flow control and measurement

The primary air flow ṁ is controlled using an Alicat MCR500 mass flow controller. It enables
the mass flow rate to be set to a value between 0 and 10 g s−1, with an accuracy of± 1%.

Themass flow rate of injected gas ṁi is monitored with an Alicat MCR250mass flowmeter
(accuracy: ± 1%). The meter can be calibrated for either air or helium, depending on the gas
being injected. For gas extraction, the meter is simply mounted in the reverse direction.

Themass flow controller andmeter are connected to a computer via an Alicat BB9 breakout
box, which enables primary and injected/extractedmass flow rates to be logged simultaneously
at a frequency of roughly 50 Hz. This is sufficient to measure the amplitude of low-frequency
pulses with accuracy (for the most part we are dealing with pulses lasting τp ≈ 200 ms).

VI.3.2 Pressure measurements

Acoustic pressure measurements are carried out using Kulite XTE-190M piezoresistive pres-
sure transducers, which can be flush mounted at several 1/4” transducer ports along the duct
as shown in figure VI.8. The absolute pressure is logged with Kulite XT-140M transducers,
flush-mounted at 1/8” ports.
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Figure VI.9: Example of acoustic pressure signal conditioning: (a) raw signal, (b) averaged
signal (over 100 pulses), (c) averaged and filtered signal.

The pressure transducer signals are amplified using a Fylde FE379-TA amplifier, and ac-
quired with a National Instruments 2090 Digital Acquisition box connected to a National
Instruments PCI-5259 card. The signal is sampled at 8192 Hz. Random noise is reduced
by performing signal averaging (typically over 100 pulses). Oscillations at 50 Hz (power fre-
quency) and above 400 Hz are filtered out, since the frequencies of interest in this study are
low. The effect of averaging and filtering on the raw pressure data is shown in figure VI.9.

VI.3.3 Temperature measurements

If the heating device is used, entropic waves are generated due to a fluctuating heat release
Q′. The temperature fluctuations associated to these entropic waves are measured using fast-
response type K thermocouples. These are mounted at the duct centreline via 1/4” ports as
shown in figure VI.8.

The thermocouple signals are amplified using an in-house circuit, and acquired with a Na-
tional Instruments 2090 Digital Acquisition box connected to a National Instruments PCI-
5259 card. To account for the time-lag inherent to thermocouples, the temperature measure-
ment is corrected using independent anemometer measurements. The temperature measure-
ments and corrections were conducted by Francesca De Domenico20.

The entropic wave can be expected to dissipate, diffuse and disperse as it convects from the
grid to the nozzle. As such, temperature fluctuations are measured 40 mm downstream the
grid (∆Td) as well as 50 mm upstream of the nozzle (∆Tn).
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VI.4 Simulation and source identification

The Cambridge Wave Generator can be modelled as a unicameral system (in the long and
short configurations) or as bicameral system (in the short extended configuration). As such,
the one-dimensional model presented in §V can be used to simulate the test cases analyti-
cally. The results can be compared to experimental measurements or used to perform source
identification.

Themain inputs required for the direct and indirect noisemodels are themass, momentum,
energy and composition fluxes (φ′

m, φ′
M , φ′

e and φ′
Z), the mean flow properties, as well as the

system’s acoustic transfer functions, as shown in figure V.3.
The normalised perturbation fluxes are those outlined in §II.4. The mean flow properties

in the duct (p̄, T̄ , M̄ ) can be measured using the instruments described in §VI.3. The acoustic
transfer functions require the reflection (Ri1,,Ro1, Ri2, Ro2) and transmission coefficients
(To1, Ti2) to be known.

VI.4.1 Reflection and transmission coefficients

The reflection coefficient at the inlet of the duct is defined as Ri1 = π+/π− where π+ is the
reflection of an impinging backward-propagating wave at the inlet. We assume there are no
mass flow rate fluctuations at themass flow controller (ṁ′ = 0), a conditionwhich is easilymet
at the current low frequencies. As shown in §II, this condition can be written as a relationship
between acoustic and entropic waves at the mass flow controller location:

(
1 +

1

M̄

)
π+ +

(
1− 1

M̄

)
π− − σ = 0 (VI.1)

Assuming that there are no entropic waves upstream of the mass flow controller (σ = 0),
then the reflection coefficient at the mass flow controller can be expressed as:

R =
π+

π− =
1− M̄

1 + M̄
(VI.2)

which corresponds to a reflection coefficient of roughlyR ≈ 0.99 for theMach number range
considered here.

Acoustic reflections also occur at the transition between the flexible tube downstream of
the mass flow controller (12 mm inner diameter) to the main tube (42.6 mm inner diameter).
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Seen from the perspective of a backward-propagating wave π−, this change in cross-section
can be shown to have a reflection coefficient R ≈ 0.8582. Given that the distance between
this transition and the mass flow controller is small relative to the perturbation wavelength
(compactness assumption) we assume that both reflections can be captured by a reflection
coefficient ofRi1 ≈ 0.99 located at the inlet flange.

In the short extended configuration, the outlet acts as a pressure node, and the reflection
coefficient can be taken to be Ro2 = −1.

The nozzle reflection and transmission coefficients (Ro1, Ri2, To1, Ti2) can be computed
using the expressions in §III.2. Some of these values can be verified using experimental data.

For example, in the short extended configuration we have pressure measurements both
upstream and downstream of the nozzle (at locations x1 and x2 respectively). If only direct
noise is considered, then we can obtain the transmission coefficient of the nozzle as:

To1 =
p′/γp̄(x2)

p′/γp̄(x1)
(1 +Ro1). (VI.3)

In the short configuration, if the general wave source π1 defined in (V.24) is known, then
we can recover the reflection coefficientRo1 as:

Ro1 =
(p̂′/γp̄)− π̂1

(p̂′/γp̄)Ri1e−iωτ1 + π̂1
. (VI.4)

whereR is the overall reverberation function defined in (V.22).
The acoustic attenuationα is not known a priori. It can be deduced from the results in cases

A1-A10 (shown in §VII.1.1), in which successive decaying reflections are clearly separated.
For most test cases, we obtain α = 0.0015 m−1.

VI.4.2 Source identification

One of the main challenges associated to model experiments is identifying direct and indirect
noise contributions in the overall pressure signal. One way to achieve this is to take advantage
of the convective time delay τc, which is effectively the time separation between direct and
indirect noise generation. By carefully choosing and varying the convective lengthLc, we can
use time-delay arguments to identify direct and indirect noise.

Alternatively, the source identificationmethods outlined in §V.4 can be applied to the Cam-
bridgeWave Generator to identify direct and indirect noise. This is accomplished by perform-
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ing experiments in several configurations.
In the long configuration, the system is unicameral with L1 ≈ 60 m. Since no indirect

noise is generated at the nozzle (due to dissipation and/or dispersion), we can write:

π+
d =

1

R
1

(1 +Ri1)(1 +Ro1)

p′

γp̄
(x1). (VI.5)

Since we are dealing with a 60 m duct, downstream acoustic reflections will affect the pres-
sure signal after τ ≈ 340 ms. In this situation, we effectively have Ro1 = 0 for t < 340 ms

(i.e. the duct outlet is anechoic). In that case, (VI.5) simplifies to:

π+
d =

1

R
1

1 +Ri1

p′

γp̄
(x1), (VI.6)

from which the direct acoustic wave can be directly recovered.
In the short configuration, a backward-propagating indirect acoustic wave π−

i is generated
at the nozzle. We can write:

π−
i =

1

R
1

1 +Ri1

p′

γp̄
− (1 +Ro1)π

+
d . (VI.7)

Finally, in the short extended configuration, a 60 m duct is installed downstream of the
nozzle. Upstream and downstream pressure measurements p′(x1) and p′(x2) enable us to
identify the forward-propagating indirect acoustic wave:

π+
i =

p′

γp̄
(x2)−

To1

1 +Ro1

p′

γp̄
(x1). (VI.8)
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VII
Air injection – direct noise

Experiments are carried out on the Cambridge Wave Generator with wave generation mod-
ule A (air injection/extraction). As shown in §II.4.2, air injection/extraction is expected to
generate negligible entropy, meaning that only direct noise is produced.

Sixteen experimental cases are examined in total (A1–A16). Cases A1–A10 are carried out
in the long configuration. The corresponding results reveal the direct noise produced by air
injection without the effect of reverberation, and enable the acoustic attenuation in the duct
to be estimated. Cases A11–A16 are carried out in the short configuration, enabling the effect
of repeated acoustic reflections to be examined specifically.

The test cases are simulated using the analytical framework shown in §V, and compared to
experimental pressure data. Finally, source identification is performed to extract information
regarding the acoustic sources present in the system. The results are compared to analytical
predictions.

VII.1 Long configuration

In the long configuration, the flow system is effectively a single duct of length L = 62.6 m, as
shown in figure VII.1. The injector is located xs = 0.95m downstream of the inlet. Themean
and fluctuating pressures are measured at x = 0.8 m.

Acoustic reflections occur at the inlet and outlet with coefficients Ri = 0.99 and Ro. (see
VI.4.1). If the duct is open-ended we take Ro = −1. If it is terminated with a choked nozzle
we compute the reflection coefficient using the isentropic compact nozzle model, obtaining
Ro = 0.992. This is verified a posteriori in §VII.2.4.

Since the system is in its long configuration (L = 62.6m), the acoustic time-scale (τ ≈ 360
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Figure VII.1: Long tube configuration with wave module A: air is injected/extracted into a
duct with reflections at the inlet and outlet.

Case Outlet p̄ [kPa] M̄1 [-] ṁ [g s−1] ṁi [g s−1]

A1 Open 101.6 0.0101 5.92 0.20→ 1.00
A2 Open 101.9 0.0135 7.89 0.20→ 1.00
A3 Open 102.2 0.0168 9.87 0.20→ 1.00
A4 Nozzle 101.3 0 0 0.20→ 1.00
A5 Choked 205.3 0.0052 5.92 0.20→ 1.00
A6 Choked 267.2 0.0052 7.89 0.20→ 1.00
A7 Choked 351.3 0.0052 9.87 0.20→ 1.00
A8 Choked 205.3 0.0052 5.92 -0.67
A9 Choked 267.2 0.0052 7.89 -0.89
A10 Choked 351.3 0.0052 9.87 -1.11

Table VII.1: Experimental cases for wave module A (air injection/extraction) in the long con-
figuration with outlet type, mean pressure p̄, meanMach number M̄1, primary mass flow rate
ṁ and injected mass flow rate ṁi.

ms) is sufficiently long for successive acoustic reflections to be distinct.

The test cases for the long configuration are shown in table VII.1. The duct is terminated
as an open end (cases A1–A3), or with the convergent nozzle (A4–A10). In the cases where a
nozzle is used, the duct can be pressurised, so that the mean pressure p̄ is substantially higher
than the atmospheric pressure (cases A5–A10). In those cases, the nozzle is choked (i.e. sonic
at the throat).

Cases A1–A7 correspond to air injection: in each case, 5 different flow rates of secondary
air are injected (0.20, 0.40, 0.60, 0.80 and 1.00 g s−1), meaning that 35 tests are conducted in
total. Cases A8–A10 correspond to air extraction. Unlike cases A1–A7, the mass flow rate
ṁi < 0 extracted from the duct is a function of the mean internal pressure. As a result, only
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Figure VII.2: Experimental pressure fluctuation p′(x, t) for (a) case A1 and (b) case A4 with
ṁi =0.2 ( ), 0.4 ( ), 0.6 ( ), 0.8 ( ), 1.0 g s−1( ). The valve timing signal is shown
for reference ( ).

one value of ṁi is used for each case. The duration of the injection/extraction pulse is τp =
300ms for all tests and phase averaging is performed over 100 pulses.

VII.1.1 Experimental results

The pressure measurements p′(x, t) for case A1 are shown in figure VII.2(a). The pressure
trace corresponds to a succession of acoustic pulses alternating in sign. The first pulse coin-
cides with the valve pulse signal (starting at t = 0 and ending at τp = 300 ms). This pulse
corresponds to the direct acoustic waves π+

d and π−
d generated during the injection. The fol-

lowing pulses are acoustic reflections of the first pulse, which reflects at the outlet of the system,
and returns with a time-delay τ ≈ 2L/c̄ ≈ 360 ms. Since we have RiRo < 0, successively
reflected pulses alternate in sign. Additionally, there are acoustic losses (|RiRoe

−2αL|< 1),
so the amplitude of subsequent pulses decreases exponentially.

The results for case A1 show that the pressure fluctuations increase proportionally to the
amount of injected air ṁi, as predicted by the analytical model in (II.13). Experimental results
for cases A2 and A3 are consistent with those for case A1.

In case A4 (shown in figure VII.2(b)), there is no primary air flow (M̄1 = 0), and the duct
is terminated with a nozzle. The amplitudes of the first pulses are identical to those in case
A1. This confirms that the pressure fluctuation arising from an air injection is independent
of both the mean Mach number and mean pressure in the duct, as predicted in (II.13). The
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Figure VII.3: Experimental pressure fluctuation p′(x, t) for (a) case A5 with ṁi =0.2 ( ),
0.4 ( ), 0.6 ( ), 0.8 ( ), 1.0 g s−1( ) and (b) cases A8 ( ), A9 ( ) and A10 ( ).
The valve timing signal is shown for reference ( ).

reflected pulses are all positive, sinceRiRo > 0.

The results for case A5 are shown in figure VII.3(a). Here, the duct is choked, and the outlet
reflection coefficient can be taken asRo = 0.992. Notably, the second acoustic pulse is larger
than the first one. This is because the amplitude of the second pulse (given by (1+Ri)Ro(π

+
d +

Riπ
−
d )) is larger than the first one (π+

d +Riπ
−
d ) for this value ofRo.

The experimental results for casesA8–A10 (air extraction) are shown infigureVII.3(b). The
results are similar to those of previous cases, except that all the acoustic pulses are negative.
Once again, this is in agreement with the analytical model: in the case of an extraction, the
added energy flux is negative, leading to a negative pressure fluctuation.

In theory, the ratio of the amplitudes of two successive pulses (excluding the first) isRiRoe
−2αL.

SinceRi andRo are known, measuring the amplitudes of successive pulses in the experimen-
tal signal gives us an estimation of the effective attenuation α. Since the flow properties vary
depending on the case, we can expect to find different values of α for each test. The measured
values of the acoustic attenuation α are shown in figure VII.4 for cases A1–A3 and A5–A10.

The results indicate that the attenuation is a function of the mean Mach number M̄1 (or
mean velocity ū) in the duct. Conversely, the attenuation does not seem to be largely depen-
dent on the mean pressure p̄ and density ρ̄. Indeed, α is very similar in cases A5–A10, despite
the fact that the mean density and pressure are widely different for each test (ranging from
p̄=205.3 to 351.3 kPa). Conversely, the mean pressure is very similar in cases A1, A2 and A3
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Figure VII.4: Measured acoustic attenuation α as a function of mean Mach number M̄1 for
cases A1 ( ), A2 ( ), A3 ( ), A5-A7 ( ) and A8-A10 ( ).

(p̄ ≈ 101.9 kPa) but these cases lead to widely different values of α (0.03, 0.0045 and 0.006
respectively).

VII.1.2 Simulations

Thetest cases can be simulated analytically using themodel presented in §V (implementing the
values of α extracted from experimental data). The analytical results for the acoustic pressure
p′(x, t) are shown in figure VII.5 for cases A1 and A3. The analytical results for cases A5 and
A8 are shown in figure VII.6.

The simulation results are in good agreement with the experimental data. The amplitude of
the first pulse is consistent with the experimental model (with a small error depending on the
case). This suggest that the direct noise model is appropriate to compute the acoustic waves
generated by an unsteady injection/extraction of air.

Additionally, the amplitudes and time delays between the reflected acoustic pulses are cor-
rectly predicted. This indicates that the reflection coefficients, acoustic attenuation and re-
verberation transfer functions we have implemented are representative of the experimental
system.

There is a slight discrepancy in the shape of the acoustic pulses. This could be due to pres-
sure fluctuations inside the injection line, which would affect the measured mass flow rate.
Alternatively, the discrepancy could be due to an additional source of noise not accounted
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Figure VII.5: Analytical ( ) and experimental ( ) results for (a) case A1 with ṁi =1
g s−1 and (b) case A3 with ṁi =1 g s−1.

for in the analytical model. For example, two- and three-dimensional effects such as vorti-
cal structures produced during the air injection have been neglected in the one-dimensional
model.

Figure VII.6: Analytical ( ) and experimental ( ) results for (a) case A5 with ṁi =1
g s−1 and (b) case A8.
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Figure VII.7: Direct acoustic wave π+
d extracted from experimental data ( ), computed

theoretically ( ) and normalised experimental acoustic pressure ( ) for (a) case A6 with
ṁi =1 g s−1 and (b) case A9.

VII.1.3 Source identification

In theory, air injection/extraction generates direct acoustic waves π+
d and π−

d . By using the
source identificationmethod outlined in §VI.4.2, we can extract ameasurement of thesewaves
from the experimental data. The direct acoustic wave π+

d recovered from experimental pres-
suremeasurements is shown in figure VII.7 for cases A6 (air injection) and A9 (air extraction).
Once again, we can compare this measurement to the theoretical result given by the direct
noise model (§II.4.2).

As expected, the acoustic wave π+
d is generated only while air is being injected/extracted

(0 < t < 300 ms), and takes a value close to zero for t > 300 ms. This shows that the
subsequent pulses present in the measured acoustic pressure signal are clearly due to acoustic
reflections at the outlet. This suggests the source identificationmethod is working as expected.

Furthermore, the measurements of π+
d are very close to the theoretical predictions. This

is unsurprising. Indeed, the good agreement between simulations and experiments in the
previous section indicates that the reverberation and direct noise models are accurate. Since
the source identification method relies on these same models, it is also likely to be in good
agreement with the experiment. In other words, if the simulations are in good agreement
with experiments, the source identification method should successfully recover the acoustic
sources.
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Figure VII.8: Short tube configuration with wave module A: air is injected/extracted into a
duct with reflections at the inlet and outlet.

VII.2 Short configuration

In the short configuration, the flow system is effectively a single duct of length L = 1.6 m, as
shown in figure VII.8. The injector is located at a location xs = 0.95 m downstream of the
inlet. The mean and fluctuating pressures are measured at x = 0.8 m.

Acoustic reflections occur at the inlet and outlet, with reflection coefficientsRi = 0.99 and
Ro = 0.992 (since the outlet is a choked isentropic nozzle in all cases).

Since the duct is in its short configuration (L = 1.6 m), the acoustic round-trip time is
now τ ≈ 10 ms, which is much shorter than the pulse duration (τp = 300 ms). Therefore,
the reflections now overlap the initial acoustic signal (i.e. reverberation occurs).

The test cases for the short configuration are shown in table VII.2.

Case Outlet p̄ [kPa] M̄1 [-] ṁ [g s−1] ṁi [g s−1]

A11 Choked 205.3 0.0052 5.92 0.20→ 1.00
A12 Choked 267.2 0.0052 7.89 0.20→ 1.00
A13 Choked 351.3 0.0052 9.87 0.20→ 1.00
A14 Choked 205.3 0.0052 5.92 -0.64
A15 Choked 267.2 0.0052 7.89 -0.88
A16 Choked 351.3 0.0052 9.87 -1.12

Table VII.2: Experimental cases for wave module A (air injection/extraction) in the short
configuration with outlet type, mean pressure p̄, mean Mach number M̄1, primary mass flow
rate ṁ and injected mass flow rate ṁi.

Cases A11–A13 correspond to air injection: in each case, 5 different flow rates of secondary
air are injected (0.20, 0.40, 0.60, 0.80 and 1.00 g s−1), corresponding to 15 tests in total. Cases
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Figure VII.9: Experimental pressure fluctuation p′(x, t) for case A11 with ṁi=0.2 ( ), 0.4
( ), 0.6 ( ), 0.8 ( ), 1.0 g s−1( ). The valve timing signal is shown for reference ( ).

A14–A16 correspond to air extraction, with a single value of ṁi < 0 for each case. The
duration of the injection/extraction pulse is τp = 300 ms for all tests and phase averaging is
performed over 100 pulses.

VII.2.1 Experimental results

The pressure measurements p′(x, t) for case A11 (air injection) are shown in figure VII.9.
In case A11, the acoustic pressure rises sharply during the injection pulse (for 0 < t < 300

ms). This can be explained as follows: during the injection, acoustic waves are generated and
reflected at the inlet and outlet with a time delay τ ≈ 10 ms, meaning that roughly τp/τ ≈
30 reflections occur before the end of the injection at t = τp. As such, the pressure signal
corresponds to a superposition of several acoustic pulses, each with a small time delay.

Observing the experimental signal closely reveals the pressure does not rise continuously,
but rather in discrete steps, where each step is an acoustic reflection as shown in figureVII.9(b).

Once the valve is closed at τp = 300 ms, acoustic waves are no longer being generated.
The acoustic pulses being reflected inside the duct progressively decay due to acoustic losses
(|R1R2e

−2αL|< 1), until the acoustic pressure reaches zero.
The pressure measurements for case A14–A16 (air extraction) are shown in figure VII.10.

The results are similar to those for cases A11–A13, except that the pressure fluctuation is now
negative. This is consistent with the theoretical prediction that an air extraction generates
negative pressure waves (while an injection generates positive ones).
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Figure VII.10: Experimental pressure fluctuation p′(x, t) for cases A14 ( ), A15 ( ) and
A16 ( ). The valve timing signal is shown for reference ( ).

During the air extraction, the pressure decreases in increments corresponding to individual
acoustic reflections of π+

d and π−
d , as shown in figure VII.10(b). The pressure fluctuation then

decays progressively after the valve is closed.

VII.2.2 Simulations

The analytical results for the acoustic pressure p′(x, t) are shown in figure VII.11 for cases A13
(air injection) and A14 (air extraction).

Figure VII.11: Analytical ( ) and experimental ( ) pressure fluctuation p′(x, t) for (a)
case A13 with ṁi = 1 g s−1 and (b) case A14.
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Figure VII.12: Direct acoustic wave π+
d extracted from experimental data ( ), computed

theoretically ( ) for (a) case A12 with ṁi =1 g s−1 and (b) case A16.

The analytical results are once again in good agreement with the experimental data, and
the system’s behaviour is correctly predicted. Once the injection is stopped at τp = 300 ms,
the analytical model suggests the pressure should decrease exponentially, as (RiRoe

−2αL)t/τ .
In the experiment however, the pressure appears to decay at a slightly different rate. This
difference is small; a deviation in the value of RiRoe

−2αL by as little as 0.5% would explain
the decay rate discrepancy.

VII.2.3 Source identification

As with the long configuration cases, we can perform source identification to extract acoustic
sources from the experimental data. Thedirect acousticwaveπ+

d recovered fromexperimental
pressure measurements is shown in figure VII.12 for cases A12 (air injection) and A16 (air
extraction), and compared to the theoretical result given by the direct noise model (§II.4.2).

The extracted acoustic source is consistent with theoretical predictions. Crucially, the mea-
surement of π+

d is also in agreement with the corresponding measurements in the long con-
figuration (cases A6 and A9 shown in figure VII.7).

This confirms that the effect of acoustic reflections is being correctly eliminated. Indeed, the
measured acoustic pressure is very different in the long and short configurations (see figures
VII.3 and VII.9 for example). By performing source identification, we have shown that these
differences are due entirely to the acoustic properties of the system (L,Ri,Ro, α), but that the

121



VII. Air injection – direct noise

Figure VII.13: Experimental acoustic pressure ( ) and theoretical decay for Ro = 0.982
( ), Ro = 0.985 ( ) and Ro = 0.988 ( ) for (a) case A12 with ṁi =1 g s−1 and (b)
case A16.

acoustic source π+
d is actually identical. This is consistent with our analytical model.

VII.2.4 System identification

So far, we have assumed the outlet reflection coefficient to beRo = 0.992, as predicted by the
isentropic compact nozzle model. We can now verify this assumption.

Indeed, (VI.4) shows that Ro can be recovered from the experimental pressure signal, as
long as the acoustic source π+

d is known. Using our analytical prediction for π+
d , extracting

the outlet reflection coefficient Ro for ω = 0 (compactness hypothesis) gives Ro = 0.995

(±0.7% depending on the test case). This measurement is in good agreement with the isen-
tropic compact model for a choked nozzle.

Alternatively, we can estimate the value ofRo by taking advantage of the fact that the pres-
sure fluctuations in cases A11–A16 are predicted to decay exponentially as (RiRoe

−2αL)t/τ .
Each value ofRo leads to a different decay rate, as shown in figure VII.13.

There is good agreement between the experimental signal and the exponential decaymodel
forRo = 0.995 (±0.2% depending on the experimental case). The decay rate is very sensitive
to the value ofRo, suggesting that our estimation of this value is likely to be precise.
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Figure VII.14: Analytical ( ) and experimental results for the peak direct noise pressure
p′ = γp̄(π+

d + π−
d ) for cases A1-A4 ( ), A5-A7 ( ), A8-A10 ( ), A11-A13 ( ) and A14-A16

( ) .

VII.3 Comparison to the direct noise model

For each of the experimental cases (A1–A16), we can identify the acoustic sources π+
d and

π−
d . We can then compute the peak pressure fluctuation associated to these acoustic sources:

p′ = γp̄(π+
d + π−

d ). This peak pressure is plotted as a function of the added energy flux ϕ′
e =

ṁic̄pT̄/A1 in figure VII.14. These measurements can be directly compared to the analytical
direct noise model (§II.4.2).

The experimental measurements are in good agreement with the analytical model. As pre-
dicted in (II.14), the direct noise fluctuation p′ is proportional to the added energy flux ϕ′

e,
such that p′ ≈ γ−1

c ϕ′
e. This confirms that the direct noise model is correct.
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VIII
Heat addition – entropic noise

Experiments are carried out on the Cambridge Wave Generator with wave module B (heat
addition). This is expected to generate direct noise as well as convected entropic waves (as
shown in §II.4.1). If these entropic waves are not fully dispersed or dissipated before reaching
the outlet of the duct they will lead to the generation of entropic noise.

Twenty experimental cases are carried out in total (B1–B20). Cases B1–B6 correspond to
the long duct configuration, in which acoustic pulses are separated by a large time delay, and
no entropic noise is produced. The results of these tests are used to determine the direct noise
generated by unsteady heat addition. Cases B7–B20 are carried out in the short configuration,
meaning that reverberation occurs and that entropic waves are convected through the outlet
nozzle. The resulting entropic noise is measured for a choked nozzle (B7–B12) and a subsonic
orifice (B13–B20).

The experimental results are then compared to simulations carried out using the analytical
model presented in §V. Source identification enables the contributions of direct and entropic
noise to be identified clearly in the experimental signal. This enables us to shed light on the
suitability of the isentropic and anisentropic nozzle transfer functions derived in §III.

The experiments presented in this chapterwere carried out either by Francesca deDomenico
(B13–B20), or in collaboration with her (B1–B12). The interpretation and analysis of the ex-
perimental data was performed by the author.

VIII.1 Long configuration

In the long configuration, the system is effectively a duct of length L = 62.6 m as shown in
figure VIII.1. The heating device is located at a distance xs = 0.7 m downstream of the inlet,

125



VIII. Heat addition – entropic noise

Figure VIII.1: Long tube configuration with wave module B: heat is generated in a duct with
reflections at the inlet and outlet.

Case Outlet p̄ [kPa] M̄1 [-] ṁ [g s−1] ∆Td [K]

B1 Open 101.6 0.0101 5.92 5.1
B2 Open 101.8 0.0135 7.89 3.9
B3 Open 102.2 0.0168 9.87 3.2
B4 Choked 205.3 0.0052 5.92 5.7
B5 Choked 267.2 0.0052 7.89 4.1
B6 Choked 351.3 0.0052 9.87 3.3

Table VIII.1: Experimental cases for wavemodule B (heat addition) in the long configuration
with outlet type, mean pressure p̄, mean Mach number M̄1, primary mass flow rate ṁ and
average grid temperature fluctuation∆Td.

and the mean and fluctuating pressures are measured at x = 1.2 m.

The fluctuating temperature ∆Td is measured 0.04 m downstream of the heating device.
This is used as an indication of how much heat has been added to the flow (see §VI.2.2).

Acoustic reflections occur at the inlet of the duct with Ri = 0.99. The outlet is either
open-ended (with Ro = −1), or fitted with a choked converging nozzle (Ro = 0.992). As a
consequence of the duct length (L = 62.6 m), reverberation does not occur and only direct
noise is generated.

The test cases are shown in table VIII.1. Cases B1–B3 are carried out near atmospheric
pressure with an open end. The duct is pressurised in cases B4–B6, in which the outlet is a
choked converging nozzle. In all cases, the heating device is activated for a pulse duration of
τp = 300 ms and phase averaging is performed over 50 pulses.
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Figure VIII.2: Experimental temperature fluctuation∆Td downstream of the heating device
for (a) cases B1 ( ), B2 ( ), B3 ( ) and (b) cases B4 ( ), B5 ( ), B6 ( ). The heating
device signal is shown for reference ( ).

VIII.1.1 Experimental results

The temperature fluctuations∆Td measured just downstream of the heating device are shown
in figure VIII.2 for cases B1–B6.

The temperature fluctuationmeasured is consistent with the activation of the heating device
for 0 < t < 300 ms. There is small time delay since ∆Td is measured 40 mm downstream
of the device itself. The temperature rises sharply when the heating device is switched on at
t = 0 and heat is transferred to the flow by convection. The induced temperature fluctuation
then decreases until t = 300ms, at which point the device is switched off and the temperature
fluctuation falls. The temperature fluctuation appears to be negative for a short duration after
the heating device is switched off, after which it progressively returns to zero.

For all cases, we see that the amplitude of the induced temperature fluctuation is inversely
proportional to the mass flow rate. This is consistent with the fact that we have a nearly con-
stant heat fluxQ′ ≈ ṁc̄p∆Td.

The acoustic pressure measurements p′(x, t) for cases B1–B3 and B4–B6 are shown in fig-
ures VIII.3(a) and (b) respectively.

The results for cases B1–B6 are reminiscent of those for cases A1–A6 (long configuration,
air injection). The pressure signal corresponds to several time-separated acoustic pulses. The
duration of the pulses coincides with the heating device pulse duration τp = 300 ms.

The shape of the acoustic pulses is very similar to the shape of the temperature fluctua-
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Figure VIII.3: Experimental pressure fluctuation p′(x, t) for (a) cases B1 ( ), B2 ( ), B3
( ) and (b) cases B4 ( ), B5 ( ), B6 ( ). The heating device signal is shown for refer-
ence ( ).

tions shown in figure VIII.2. This is consistent with the analytical model for an unsteady heat
addition (§II.4.1), which predicts that the direct noise pulse is directly proportional to the
normalised heat flux q′ = ∆Td/T̄ .

Once again, the sign of the reflected pulses is given by the sign of the outlet reflection co-
efficient Ro. Notably, the amplitude of the pulses is roughly the same for all cases. This is
consistent with the theory, which shows that for a given heat input Q′ (equivalent to a con-
stant energy flux ϕ′), the resulting direct pressure fluctuation p′ is independent of the mean
pressure and Mach number, as shown in (II.14).

In cases B1–B3 shown in figure VIII.3(a) the first acoustic pulse is identical but the reflec-
tions decay at slightly different rates. This is consistent with a change in acoustic attenuation
α due to the Mach number in the duct (see figure VII.4).

VIII.1.2 Simulations

Analytical results for cases B1 and B4 are shown in figure VIII.4 along with the corresponding
experimental measurements. The input used for the heat flux at the heating device is the tem-
perature measurement∆Td. We use the acoustic attenuation factors αmeasured in §VII.1.1.

The analytical results are in very good agreementwith the experimentalmeasurements. The
shape of the pressure pulses is finely predicted by the analytical model, which suggests that the
temperature measurements used as an input are accurate.

128



VIII. Heat addition – entropic noise

Figure VIII.4: Analytical ( ) and experimental results ( ) for the pressure fluctuation
p′(x, t) for (a) case B1 (b) case B4.

VIII.2 Short configuration – choked nozzle

Six cases are carried out in the short configuration with a choked converging nozzle. The
length of the duct is eitherL = 1.1m orL = 1.6m. This corresponds to acoustic time-scales
of less than 10 ms (much shorter than the heat pulse duration), meaning that reverberation
occurs.

The convective length Lc = L − xs between the heating device and the outlet nozzle is
Lc = 0.4 m or Lc = 0.9 m depending on the case. These relatively short lengths ensure that
entropic waves are not fully dispersed or dissipated before reaching the outlet nozzle, meaning
that entropic noise will be generated.

The heating device is located at xs = 0.7 m, and the mean and fluctuating pressures are
measured at x = 1.2 m. Temperature fluctuations are measured 40 mm downstream of the
heating device (∆Td) and 50 mm upstream of the outlet (∆Tn). The latter provides a mea-
surement of the amplitude of the entropic wave σ ≈ ∆Tn/T̄ convected through the nozzle.

The operating conditions for cases B7–B11 are shown in table VIII.2. The heating device is
activated for a pulse duration of τp = 200 ms in all cases and phase averaging is performed
over 50 pulses.
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Figure VIII.5: Short tube configuration with wave module B: heat is generated in a duct with
reflections at the inlet and outlet. An entropic wave is generated at the heating device and
convected through the duct.

Case L[m] Lc[m] p̄ [kPa] M̄1 [-] ṁ [g s−1] ∆Td [K] ∆Tn [K]

B7 1.6 0.9 205.3 0.0052 5.92 5.7 4.8
B8 1.6 0.9 267.2 0.0052 7.89 4.1 3.6
B9 1.6 0.9 351.3 0.0052 9.87 3.3 2.9
B10 1.1 0.4 205.3 0.0052 5.92 5.7 4.5
B11 1.1 0.4 267.2 0.0052 7.89 4.1 3.5
B12 1.1 0.4 351.3 0.0052 9.87 3.3 2.8

Table VIII.2: Experimental cases for wave module B (heat addition) in the short configura-
tion with a choked nozzle, convective length Lc, mean pressure p̄, mean Mach number M̄1,
primary mass flow rate ṁ, average grid temperature fluctuation∆Td and average nozzle tem-
perature fluctuation∆Tn.
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Figure VIII.6: Experimental temperature fluctuations downstream of the heating device and
upstream of the nozzle (∆Td ,∆Tn) for (a) cases B7 ( , ), B8 ( , ), B9 ( , ) and
(b) cases B10 ( , ), B11 ( , ), B12 ( , ). The convective time delay ( ) and
heating device signal ( ) are shown for reference.

VIII.2.1 Experimental results

The temperature measurements downstream of the heating device and upstream of the nozzle
are shown for cases B7–B12 in figure VIII.6.

The temperature fluctuations ∆Td measured near the heating device are very similar to
those obtained in the corresponding long tube cases (B4–B6); themain difference is the shorter
pulse duration (τp = 200 ms). As before, the temperature fluctuation∆Td briefly falls below
zero just after the heating device is switched off.

For cases B7–B9, an entropic wave is measured at the nozzle starting at t ≈ 0.4 s. This is
consistent with the convective time delay τc = Lc/ū ≈ 0.5 s. Similarly, in cases B10–B12 the
entropic wave is measured at the nozzle at t ≈ 0.2 s, which is close to the mean convective
time delay τc = Lc/ū ≈ 0.22 s. The slight discrepancy in these two values can be explained
by the fact that the entropic wave is measured at the duct centreline (at which the flow speed
is higher than the mean flow speed). As such, it is measured earlier than indicated by the
convective time delay τc, which is based on the mean flow speed ū.

In all cases the shape of the temperature fluctuation at the nozzle is slightly different to
the one at the heating device, and its amplitude is reduced. This is indicative of diffusion,
dissipation and dispersion69.

The acoustic pressures for cases B7–B9 and B10–B12 are shown in figures VIII.7(a) and (b)
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Figure VIII.7: Experimental pressure fluctuation p′(x, t) for (a) cases B7 ( ), B8 ( ), B9
( ) and (b) cases B10 ( ), B11 ( ), B12 ( ). The convective time delay ( ) and
heating device signal are shown for reference ( ).

respectively.

We know from the results for configuration A (§VII.2) that in the case of a short duct, the
acoustic time-scale is shorter than the pulse duration (τ ≪ τp), and the acoustic pressure
builds up and decreases exponentially. The results for cases B7–B9 show a slightly different
picture. During the heat addition (0 < t < 200 ms), the pressure rises sharply to reach
a maximum at t = 200 ms. The pressure then appears to decrease exponentially. At t =

τc ≈ 500 ms (when the entropic wave reaches the nozzle), the pressure appears to decrease
at a different rate. Once the temperature disturbance has completely convected through the
nozzle (at t = τc + τp ≈ 700 ms), the pressure disturbance appears to decay exponentially
once again. These results suggests that the pressure fluctuation visible from t = 0 to t = τp is
direct noise due to heat addition, while the change in slope at t = τc is due to entropic noise
as the entropic wave is accelerated through the nozzle.

In cases B10–B12, the duct is shorter than in cases B7–B9, meaning that the acoustic round-
trip time τ is also shorter. This explains why the maximum pressure is higher than in cases
B7–B9: the repeated acoustic reflections accumulate faster. The convection time τc ≈ 220

ms nearly coincides with the pulse duration τp. As a result, the change in slope associated
to indirect noise appears sooner in the experimental signal, and the entropic noise does not
cause the overall acoustic pressure to become negative.

132



VIII. Heat addition – entropic noise

Figure VIII.8: Analytical ( ) and experimental results ( ) for the pressure fluctuation
p′(x, t): (a) case B7 (b) case B10. Contributions of direct ( ) and entropic ( ) noise to the
overall analytical pressure ( ) for (c) case B7 and (d) case B10.

VIII.2.2 Simulations

The analytical results for cases B7 and B10 are in good agreement with the experimental mea-
surements, as shown in figure VIII.8. In both cases, the peak pressure is slightly higher than
expected. In case B10, the change in slope ismore pronounced than in the experimental signal,
which suggests that the entropic noise may have been slightly over-predicted.

While the individual contributions of direct and entropic noise are merged in the experi-
mental results, they can be computed separately in the analytical model. These contributions
are shown in figures VIII.8(c) and (d) for cases B7 and B10. The results clearly show that the
change in slope which occurs after a convective time delay is due to entropic noise. In the
cases shown here, entropic noise is approximately half as large as direct noise.
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Figure VIII.9: Acoustic source π/2 for direct ( ) and entropic acoustic waves ( ) gener-
ated for (a) case B7 and (b) case B10. Convective time delay τc ( ).

VIII.2.3 Source identification

The experimental results can be dereverberated using the method outlined in §V.4.2 and
§VI.4.2. As shown in (V.24), the resulting acoustic source signal π is a combination of direct
and entropic soundwaves such that π ≈ 4π+

d +2π−
σ , or π/2 ≈ 2π+

d +π−
σ (sinceRi ≈ Ro ≈ 1

in this case). The source signals π/2 for cases B7 and B10 are shown in figure VIII.9.

The source signals closely match what one would expect. In case B7, a positive acoustic
pulse can be seen for 0 < t < τp, coinciding with the heating device pulse. Clearly, this
corresponds to the direct sound source (π+

d , π
−
d ). The shape of the pressure pulse is consistent

with the results for cases B1–B6 (figure VIII.3), in which direct acoustic pulses are separated.

A negative pulse occurs after the convective time delay, which can be identified as the en-
tropic sound source (π−

σ ). Since the convective time delay τc is longer than the pulse duration
τp, we can clearly separate the direct and indirect sound waves here (direct noise is generated
for t < τp, and indirect noise is generated for t ≥ τc).

In cases B10, the direct and indirect noise appear to be merged since we have τp > τc.
However, these contributions can be separated by subtracting the direct noise signal from
case B7 from the results in case B10 (π−

σ = π/2 − 2π+
d ). Once again, the resulting indirect

noise source signal appears at a time corresponding to the convective time delay τc.
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Case L[m] Lc[m] p̄ [kPa] M̄1 [-] M̄t [-] ṁ [g s−1] ∆Td [K] ∆Tn [K]

B13 2.1 1.4 102.78 0.0026 0.128 1.52 26.7 7.9
B14 2.1 1.4 103.54 0.0033 0.170 2.95 21.1 8.2
B15 2.1 1.4 104.00 0.0036 0.187 2.17 19.5 8.0
B16 2.1 1.4 105.19 0.0043 0.221 2.64 15.9 7.5
B17 2.1 1.4 106.64 0.0051 0.262 3.14 13.3 6.8
B18 2.1 1.4 108.34 0.0058 0.304 3.61 11.7 6.1
B19 2.1 1.4 110.86 0.0066 0.354 4.26 10.5 5.9
B20 2.1 1.4 113.65 0.0075 0.411 4.89 9.2 5.7

TableVIII.3: Experimental cases for wavemodule B (heat addition) in the short configuration
with the orifice, convective lengthLc, mean pressure p̄, meanMach number M̄1, orifice throat
Mach number M̄t, primary mass flow rate ṁ, average grid temperature fluctuation∆Td and
average nozzle temperature fluctuation∆Tn.

VIII.3 Short configuration – orifice

We have shown in §III that the transfer functions of anisentropic nozzles are substantially
different to those of the isentropic nozzles we have considered so far. To investigate this, we
perform experiments on the CambridgeWave Generator with a subsonic orifice, which is one
of the limit cases of an anisentropic nozzle (see §III.2.1).

This enables us to examine the influence of anisentropicity on the acoustic reflection coef-
ficientRo, as well as the entropic-acoustic reflection coefficient π−

σ /σ.

The experimental details are identical to those in §VIII.2 (short configuration – choked
nozzle) unless otherwise stated. Notably, the thermocouples used to measure the temperature
fluctuations at the heating device and at the nozzle have a longer response time than those
used in cases B1–B12. As a result, the temperature measurements can be expected to be less
accurate than those in cases B1–B12.

We perform eight tests in the short configuration with an orifice (B13–B20). The operating
conditions for these cases are shown in table VIII.3. ThemeanMach number at the throatMt

is calculated by solving the mean flow jump equations for an orifice in (III.1) and (III.19) (for
Λ = 1 and Γ = 0.83 ).
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FigureVIII.10: Experimental temperature fluctuations downstreamof the heating device and
upstream of the nozzle (∆Td ,∆Tn) for cases B12 ( , ) to B20 ( , ). The heating
device signal is shown for reference ( ).

VIII.3.1 Experiments

The temperature measurements just downstream of the heating device and just upstream of
the orifice are shown in figure VIII.10.

As in cases B1–B12, the temperature fluctuation ∆Td induced by the heating device de-
creases as the Mach number M̄1 (and mass flow rate ṁ) increases. Nevertheless, the shape
of the temperature fluctuation∆Td is substantially different to the one measured in previous
cases (see figures VIII.2 and VIII.6).

Crucially, the current measurements of ∆Td do not show the negative oscillation seen in
cases B1–B12. Given that the thermocouples used in cases B1–B12 had a faster response time
than those used in cases B13–B20, this oscillation is likely present in cases B13–B20, although
it has not been recovered in the measurements.

An entropicwave is detected upstreamof the orifice in the formof a temperature fluctuation
∆Tn. The time at which it ismeasured is consistent with the convective time delays τc = Lc/ū,
which decrease as the Mach number in the duct is increased. The entropic waves with the
longest convective time delays (i.e. the longest residence times) appear to be most affected by
dispersion and dissipation, which is physically intuitive.

The acoustic pressure measurements for cases B13–B20 are shown in figure VIII.11.

The acoustic pressure increases while the heating device pulse signal is active (0 < t < 200

ms), and decays thereafter. This can be attributed to the reverberation of direct noise. The
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Figure VIII.11: Experimental pressure fluctuations p′(x, t) for cases B12 ( ) to B20 ( ).
The heating device signal is shown for reference ( ).

shape of the pressure signal is very similar to limit case III (§V.3): the acoustic pressure appears
to converge towards a limit as t approaches 200 ms. This is consistent with the predictions of
the reverberation model (see (IV.7)).

After the direct noise pulse (for t < 200 ms), the acoustic pressure signal decays and ap-
pears to reach a negative plateau (∆P < 0) instead of falling to zero.

A negative pressure pulse appears in the measured signal after a time delay. This time delay
is consistent with the convective time delay τc for each case, and decreases as theMach number
M̄1 is increased. Comparing figures VIII.11 and VIII.10 shows that the negative pulse appears
at the same time as an entropic wave is detected at the orifice. This indicates that the negative
pressure pulse is in fact entropic noise. The amplitudes of the direct and entropic noise signals
both increase with the Mach number M̄1.

VIII.3.2 Simulations

One of the objectives of this thesis is to validate the anisentropic nozzle model derived in §III.
As such, simulation of cases B13–B20 are carried out using the anisentropic nozzle model (for
the limit case of an orifice with Λ = 1). For comparison, we also perform simulations using
the isentropic nozzle model previously derived by Marble & Candel 61 , which is applied to a
convergent nozzle of dimensions identical to those of the orifice (A1,At).

The anisentropic nozzle model makes predictions concerning the mean pressure drop p̄1−
p̄2 across the orifice. Taking p̄1 as the mean pressure measured in the duct and p̄2 as atmo-
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Figure VIII.12: Upstream mean pressure p̄1 as a function of the throat Mach number M̄t.
Experimental measurements for cases B13–B20 ( ), isentropic limit case for Λ = 0 ( ),
orifice limit case for Λ = 1 ( ).

spheric, we can compare these predictions to our experimental results. This is shown in figure
VIII.12 for cases B13–B20.

Theupstreampressures p̄1measured experimentally are very close to the analytical solution
obtained with the anisentropic model for the orifice plate limit case (Λ = 1, Γ = 0.83).
Conversely, the isentropic model is inadequate here (since it assumes that there is no mean
pressure drop across the orifice).

The theoretical acoustic (Ro = π−
1 /π

+
1 ) and entropic-acoustic (Rσ = π−

1 /σ1) reflection
coefficients of the anisentropic orifice and isentropic convergent nozzle are shown in figure
VIII.13.

The reflection coefficients of the anisentropic orifice are substantially different from those of
the equivalent isentropic nozzle. The acoustic reflection coefficient of the orifice ismuch lower
than that for the isentropic nozzle. The opposite is true for the entropic-acoustic reflection
coefficient; the orifice plate is predicted to generate a larger amount of entropic noise than the
isentropic nozzle.

The simulation results for cases B13–B20 using the isentropic model are shown in figure
VIII.14.

The simulation results are not in agreement with the experimental measurements. The
pressure peak reached at t ≈ 200 ms is over predicted by up to 160 % depending on the case.
This is consistent with an overestimation of the acoustic reflection coefficientRo.

Conversely, entropic noise is significantly under-predicted in the isentropic simulation.
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Figure VIII.13: Reflection coefficients of the orifice ( ) and of an isentropic convergent
nozzle of identical dimensions ( ). Values corresponding to cases B13–B20 ( , ).

Figure VIII.14: Acoustic pressure fluctuation p′(x, t) for cases B13 ( ) to B20 ( ): (a)
Experimental measurements (b) analytical results with the isentropic nozzle model.
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Figure VIII.15: Acoustic pressure fluctuation p′(x, t) for cases B13 ( ) to B20 ( ): (a)
Experimental measurements (b) analytical results with the anisentropic nozzle model.

While negative entropic pressure pulses can clearly be seen in the experimental signal, the
acoustic pressure barely falls below zero in the simulations. The significant under-prediction
of the entropic noise amplitude suggest that the entropic-acoustic reflection coefficient Rσ

has been underestimated. Overall, the comparison shows that the isentropic nozzle model
employed here is not adapted to an orifice.

The simulation results for cases B13–B20 using the anisentropic nozzle model are shown in
figure VIII.15.

The simulations carried out with the anisentropic model are in good agreement with the
experiment. The amplitudes and shapes of both the direct and entropic noise signals are cor-
rectly recovered. This confirms that the anisentropic nozzle transfer functions are muchmore
representative of the experiment than the isentropic ones.

The negative pressure plateau∆P after the direct noise pulse identified in the experimental
measurements is not recovered in the simulations. Potential explanations for this difference
are addressed in VIII.3.3.

VIII.3.3 Source identification

The acoustic sources in cases B13–B20 are identified using the method outlined in §V.4.2 and
§VI.4.2. The resulting acoustic source signal π is a combination of direct and entropic sound
waves such that π ≈ (1 + Ri)(1 + Ro)π

+
d + (1 + Ri)π

−
σ . The source signal π is shown in

figure VIII.16(a) for cases B13–B20.
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Figure VIII.16: Cases B13 to B20: (a) Overall acoustic source π ( to ), (b) direct and
entropic acoustic sources π+

d ( to ) and π−
σ ( to ).

The results clearly show a direct noise pulse for 0 < t < 200 ms, and an entropic noise
pulse after a convective time delay. The shape of the direct noise pulse is quite different from
that of the temperature measured downstream of the grid shown in figure VIII.10. However,
it is very similar to the temperature measurements for cases B1–B12, which were carried out
with a different method. This confirms that the thermocouple used for cases B1–B12 is more
accurate than the one used for cases B13–B20.

Notably, the direct acoustic source shows a negative oscillation (from t = 200 ms) be-
fore the entropic source appears. This oscillation is consistent with the temperature measure-
ments of∆Td in cases B1–B12, and is likely to be responsible for the negative pressure plateau
∆P seen in the experimental results. An alternative explanation is that the negative pressure
plateau is actually a mean flow effect (rather than an acoustic one). Since the source identi-
fication process assumes all pressure fluctuations are acoustic, this mean flow effect is then
wrongly identified as an acoustic source. However, this first explanation is most consistent
with the negative temperature fluctuation we measure downstream of the grid.

In order to separate the direct and indirect acoustic sources, the negative oscillation re-
sponsible for ∆P is eliminated from the signal using a polynomial fitting algorithm, based
on the assumption that the direct acoustic source is strictly positive. Since the direct and en-
tropic noise sources are clearly separated in signal, they can be separated as shown in figure
VIII.16(b).
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Figure VIII.17: (a) Entropic sound wave |π−
σ | for cases B7–B9 ( ) and cases B10–B12 ( )

compared to the isentropic model ( ) and (b) Entropic-acoustic transfer function |Rσ|=
|π−

1 /σ1| for cases B13–B20 ( ) compared to the anisentropic orificemodel ( ) and isentropic
model ( ).

VIII.4 Comparison to the entropic noise models

Theentropic noise wavesπ−
σ extracted from cases B7-B12 (choked nozzle) can be compared to

the theoretical model for the entropic noise generated at an isentropic choked nozzle (III.14).
This is shown in figure VIII.17(a).

Similarly, we can extract the transfer functions Rσ = π−
σ /σ from the experimental results

for cases B13–B20 (subsonic orifice). These are compared to the isentropic model as well as
the anisentropic model in VIII.17(b).

The experimental measurements of the entropic sound wave π−
σ in cases B7–B12 are in

good agreement with isentropic theory. The entropic noise produced by a choked nozzle in-
creases almost linearly with the incoming entropic wave σ, as predicted by (III.14). The en-
tropic noise is slightly over-predicted. Thismay be due to the one-dimensional approximation
we havemade for the entropic wave: we assume that the temperature disturbance is uniformly
distributed as it convects through the nozzle, yet this is not the case in reality.

The experimental results for the entropic-acoustic reflection coefficient Rσ in cases B13–
B20 are in relatively good agreement with the anisentropicmodel. Conversely,Rσ ismeasured
to be several times larger than predicted by the isentropic model. This demonstrates that
isentropic models inadequately predict the response of nozzles with losses such as orifices.
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IX
Helium injection – compositional noise

Experiments are carried out on the CambridgeWave Generator with wave module C (helium
injection). As shown in §II.4.3, this generates direct noise as well as a convected entropic and
compositional wave. If this convected wave is not fully dispersed or diffused before reaching
the outlet nozzle, entropic and compositional noise are generated.

Twenty-two cases are carried out in total (C1–C22). Cases C1–C6 are carried in the long
configuration. Since the convective length is long, the heliummixes with the air before reach-
ing the outlet, and only noise resulting from the helium injection itself is detectable. In cases
C7–C12, the short configuration is usedwith a choked nozzle, and entropic and compositional
noise are generated. Finally, cases C13–C22 are carried out using the short-extended config-
uration fitted with a subsonic convergent nozzle, meaning that forward-propagating entropic
and compositional noise generated downstream of the nozzle can be measured.

Simulations of each test case are performed using the framework shown in §V, and com-
pared to experimental results. Source identification is then applied to experimental data. The
results are used as a basis to validate theoretical models for the compositional noise generated
at isentropic and anisentropic nozzles.

IX.1 Long configuration

In casesC1–C6, the convective length isLc = 61.65m, and the heliumdisturbances generated
by the CWG can be expected to have dispersed and diffused into the primary air flow before
reaching the nozzle. The only acoustic waves generated are those associated to the helium
injection. The experimental set-up is shown in figure IX.1.

The test cases for wave module C in the long configuration are shown in table IX.1. For
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Figure IX.1: Long tube configuration with wavemodule C: helium is injected into a duct with
reflections at the inlet and outlet.

Case Outlet p̄ [kPa] M̄1 [-] ṁ [g s−1] ṁi [g s−1]

C1 Open 101.3 0.0101 5.92 0.027→ 0.136
C2 Open 101.6 0.0135 7.89 0.027→ 0.136
C3 Open 102.0 0.0168 9.87 0.027→ 0.136
C4 Choked 205.3 0.0052 5.92 0.027→ 0.136
C5 Choked 267.2 0.0052 7.89 0.027→ 0.136
C6 Choked 351.3 0.0052 9.87 0.027→ 0.136

Table IX.1: Experimental cases for wave module C (helium injection) in the long configura-
tion with outlet type, mean pressure p̄, mean Mach number M̄1, primary mass flow rate ṁ
and injected helium mass flow rate ṁi.

each case, 5 different flow rates of helium are injected (0.027, 0.055, 0.082, 0.109 and 0.136
g.s-1), meaning that 30 tests are conducted in total. The pulse duration is τp = 100 ms in all
cases.

IX.1.1 Experimental results

The acoustic pressure measurements p′(x, t) for cases C1 and C4 are shown in figure IX.2.
The results for cases C1 and C4 show a similar trend to the corresponding cases in configu-

rations A and B. An acoustic pulse is generated for 0 < t < 100mswhile the valve is open. As
the mass flow rate of injected helium increases, the amplitude of the acoustic pulses increases
accordingly.

Notably, the amplitude of the first pulse is not the same in cases C1 and C4; it reaches 300
Pa for case C1, while it reaches only 250 Pa for case C4. This appears to contradict the direct
noise model, which suggests that the direct noise is independent of the mean Mach number
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Figure IX.2: Experimental pressure fluctuation p′(x, t) for (a) case C1 and (b) case C4, with
ṁi=0.027 ( ), 0.055 ( ), 0.082 ( ), 0.109 ( ), 0.136 g s−1 ( ).

and pressure (which are the only differences between cases C1 and C4). However, this would
be overlooking the fact that we are injecting helium, which has a different composition and
entropy to air. This generates not only direct noise due to the mass and energy flux at the
dispensing valve, but also indirect noise at the same location, which may be responsible for
the small difference in amplitude between cases C1 and C4.

IX.1.2 Simulations

The experimental and analytical results for case C6 (long tube, choked) are shown in figure
IX.3(a).

The general acoustic behaviour is captured by the analytical model. Unlike the results for
configurations A and B, the amplitude of the experimentally measured acoustic pulse is larger
than the one predictedwith the analyticalmodel. This is expected: the indirect noise generated
when the heliumflows through the valve and decelerates into the duct is not taken into account
by the direct noise model described in §II.

The amplitude of the first pulses in cases C2, C3 (atmospheric pressure) and C5, C6 (pres-
surised duct) are compared to the direct noise model in figure IX.3(b). The results for cases
C2 and C3 are proportional to the total energy flux perturbation, and are consistently 55%

higher than predicted if only direct noise is taken into account. The results for cases C5 and
C6 also increase linearly with the energy flux ϕe, but they are only 22% higher than predicted
by the direct noise model.
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Figure IX.3: (a) Analytical ( ) and experimental ( ) results for case C6 with ṁi = 0.136
g/s and (b) Experimental peak pressure fluctuation: for cases C2 ( ), C3 ( ) with linear fit
( ), and C5 ( ), C6 ( ) with linear fit ( ) and analytical prediction of direct noise ( ).

The direct noise model for a helium injection depends on two measured inputs: (1) ṁHe

the mass flow rate of helium being injected (which is measured with a mass flow meter) and
(2) on the mean Mach number M̄ in the duct (which is computed based on the duct cross
section andmass flow rate ṁ, which is controlledwith amass flow controller). Neither of these
measurements appears to be unreliable. As a result, the discrepancy between the experimental
results and the theoretical prediction is likely to be inherent to the direct noise model itself.

As highlighted in §II.4.3, the direct noise model does not account for the production of
indirect noise that can be expected during the injection of helium at a high speed into a flow
of air. Although it is not possible to apply the one-dimensional indirect noise transfer func-
tions to the inherently two-dimensional helium injection process, the discrepancies between
the direct noise prediction and the experimental results are consistent with the indirect noise
mechanism.

IX.2 Short configuration

In cases C7–C9 and C10–C12, the tube is short (L = 1.6 m), as are the convective lengths
(Lc = 0.65 m and 0.05 m respectively). The experimental set-up is shown in figure IX.4.
Given the short convective lengths, we expect entropic and compositional noise to be gener-
ated at the nozzle.
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Figure IX.4: Long tube configuration with wavemodule C: helium is injected into a duct with
reflections at the inlet and outlet.

Case L[m] p̄ [kPa] M̄1 [-] ṁ [g s−1] ṁi [g s−1]

C7 0.65 205.3 0.0052 5.92 0.027→ 0.136
C8 0.65 267.2 0.0052 7.89 0.027→ 0.136
C9 0.65 351.3 0.0052 9.87 0.027→ 0.136
C10 0.05 205.3 0.0052 5.92 0.027→ 0.136
C11 0.05 267.2 0.0052 7.89 0.027→ 0.136
C12 0.05 351.3 0.0052 9.87 0.027→ 0.136

Table IX.2: Experimental cases for wave module C (helium injection) in the short configura-
tion with a choked nozzle, convective length Lc, mean pressure p̄, mean Mach number M̄1,
primary mass flow rate ṁ and injected helium mass flow rate ṁi.

The operating conditions for cases C7–C12 are shown in table IX.2. The pulse duration is
τp = 100 ms and phase averaging is performed over 100 pulses.

IX.2.1 Experimental results

The experimental results for cases C7 (Lc = 0.65 m) and cases C10 (Lc = 0.05 m) are shown
in figure IX.5.

For cases C7–C9, the pressure rises sharply during the injection (0 < t < 100 ms), and
decreases exponentially thereafter. At t = τc ≈ 365ms (when the helium reaches the nozzle),
the slope changes sharply, and reaches a plateau. Once the helium disturbance has completely
convected through the nozzle (at t = τc + τp ≈ 465 ms), the pressure decays exponentially
once more. These results suggest that the pressure from t = 0 to t = τp is entirely due to the
helium injection, while the change in slope at t = τc is due to indirect noise as the helium
disturbance is convected through the nozzle.
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Figure IX.5: Experimental pressure fluctuation p′(x, t) for (a) case C7 and (b) case C10, with
ṁi=0.027 ( ), 0.055 ( ), 0.082 ( ), 0.109 ( ), 0.136 g s−1 ( ). Convective time delay
τc ( ).

For cases C10–C12, the convective time delay is shorter (τc ≈ 30 ms). As such, the noise
due to the helium injection (0 < t < 100 ms) and the indirect noise (t > τc) overlap. Indeed,
the pressure rises sharply , until its slope decreases at t = τc. The pressure reaches amaximum
at t = τp and decays at a high rate. The decay rate is modified once again at t = τc + τp,
once the helium has completely convected through the nozzle, and indirect noise is no longer
generated.

IX.2.2 Simulations

For cases C7-C12, we adjust the direct noise model in order to incorporate the ‘excess’ noise
measured in cases C4-C6. This is done simply by increasing the output of the direct noise
model by 22%, which based on IX.3(b), appears to correctly predict the injection noise. The an-
alytical and experimental results for cases C7 and C10 are shown in figure IX.6(a) and IX.6(b)
respectively.

The analytical and experimental results for case C7 are in good agreement overall. There
is a substantial difference for t > τc, when the indirect noise is generated. At first glance,
the results appear to suggest that the indirect noise is over-predicted by the model. However,
this is expected. Indeed, we have not accounted for advective-diffusive effects. As a result,
we can expect the helium disturbance to have diffused and dispersed substantially over the
convective length from the injection to the nozzle. This is consistent with the overestimation
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Figure IX.6: Analytical ( ) and experimental results ( ) for the pressure fluctuation
p′(x, t): (a) case C7 (b) case C10. Contributions of direct ( ), entropic ( ) and com-
positional ( ) noise to the overall analytical pressure ( ) for (c) case C7 and (d) case C10.
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of the peak indirect noise amplitude. In case C10, the convective distance is short (Lc = 0.05

m), and we expect significantly less diffusion and dispersion will have taken place. As a result,
the analytical results are in better agreement than in case C7. There is slight discrepancy in
the decay rate, as discussed in §VII.2.

The individual contributions of direct, entropic and compositional noise to the analytical
signal are shown in figures IX.6(c,d) for cases C7 and C10 respectively. The results show that
entropic noise is actually the dominant source of sound in this configuration. Compositional
and direct noise are of comparable amplitudes for the test cases considered here. However,
since compositional and entropic noise add up deconstructively, the direct noise is larger than
the overall indirect noise. Most importantly, if compositional noise had been not taken into ac-
count in the analytical model, the experimental result would differ widely from the theoretical
prediction. In other words, compositional noise contributes significantly to the experimental
signal. This demonstrates that the compositional mechanism contributes significantly to the
overall indirect noise.

IX.2.3 Source identification

Theexperimental results for configurationC can be dereverberated using (V.22). The resulting
signal is a combination of direct noise, entropic and compositional noise π = (1 + Ro)(1 +

Ri)π
+
d + (1 +Ri)(π

−
σ + π−

ξ ). The direct and indirect source signals are separated by a time
delay for case C7–C9, as shown in figure IX.7(a).

The shape of the dereverberated direct noise signal closely matches that of the acoustic
pulse measured in cases C1–C6 (figure IX.2a). The indirect noise signal (π−

σ + π−
ξ ) appears

at a time consistent with the convective time delay τc. The indirect noise source signal resem-
bles a Gaussian, indicating that the helium disturbance has diffused and dispersed during the
convection process.

The only difference between cases C7 and C10 is the convective length Lc between the
valve and the outlet nozzle: the generated direct noise is the same in both cases. We can take
advantage of this by isolating the direct noise in case C7, and subtracting it from the signal in
case C10, leaving us with the indirect noise signal for case C10 (π−

σ + π−
ξ = π/(1 + Ri) −

(1 +Ro)π
+
d ). The resulting direct and indirect noise signals for case C10 are shown in figure

IX.7(b). Here, the indirect noise signal appears earlier due to the reduced convective length,
and the shape of the signal suggests that less diffusion and dispersion has occurred than in
case C7.
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Figure IX.7: Dereverberated experimental signal for direct (π+
d , ) and indirect acoustic

waves (π−
i = π−

σ + π−
ξ , ) generated for ṁi =0.027 ( ), 0.055 ( ), 0.082 ( ), 0.109

( ), 0.136 g s−1 ( ) in (a) case C7 and (b) case C10. Convective time delay τc ( ).

Figure IX.8: Short extended configuration with wave module C: helium is injected/extracted
into a duct with reflections at the inlet and outlet.

IX.3 Short extended configuration

In the short extended configuration, a duct of length L2 = 60.2 m is fitted downstream of
the subsonic convergent nozzle (described in §VI.1.2), as shown in figure IX.8. This enables
pressure measurements to be conducted both upstream and downstream of the nozzle (at
locations x1 = 0.8 m) and x2 = 0.15 m respectively), permitting the nozzle’s transmissive
properties to be measured.

As with the short tube cases (C7–C12), we expect entropic and compositional noise to be
generated at the nozzle, aside from the noise resulting from the helium injection.

We perform ten experimental cases in the short-extended configuration (C13–C22). Cases
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Case Lc[m] p̄ [kPa] M̄1 [-] M̄t [-] ṁ [g s−1] ṁi [g s−1]

C13 0.65 102.93 0.0033 0.155 1.97 0.068
C14 0.65 107.56 0.0063 0.310 3.95 0.068
C15 0.65 115.14 0.0089 0.467 5.92 0.068
C16 0.65 125.85 0.0108 0.629 7.89 0.068
C17 0.65 139.69 0.0122 0.821 9.87 0.068
C18 0.05 102.93 0.0033 0.155 1.97 0.068
C19 0.05 107.56 0.0063 0.310 3.95 0.068
C20 0.05 115.14 0.0089 0.467 5.92 0.068
C21 0.05 125.85 0.0108 0.629 7.89 0.068
C22 0.05 139.69 0.0122 0.821 9.87 0.068

Table IX.3: Experimental cases for wave module C (helium injection) in the short extended
configurationwith a subsonic convergent nozzle: convective lengthLc, mean pressure p̄, mean
Mach number M̄1, mean throat Mach number M̄t, primary mass flow rate ṁ and injected
helium mass flow rate ṁi.

C13–C17 are executed with a ‘long’ convective length Lc = 0.65 m, while cases C18–C22 are
performed with a ‘short’ convective lengthLc = 0.05 m. Together, these two sets of cases will
be used to identify the entropic and compositional noise reflected and transmitted through
the nozzle. The operating conditions for the experimental cases are shown in table IX.3. The
pulse duration is τp = 100 ms in all cases and phase averaging is performed over 100 pulses.

IX.3.1 Experimental results

The experimental pressure measurements upstream (p′(x1)) and downstream of the nozzle
(p′(x2)) are shown in figure IX.9(a,b) for cases C13–C17, and IX.9(c,d) for cases C18–C22.

The experimental results are less straightforward to interpret directly than those obtained in
the short and long configurations. It should be noted that the only effective difference between
cases C13–C17 and C18–C22 are the convective time delays τc after which indirect noise is
generated. As such, differences in the acoustic pressures between these two sets of cases are
manifestations of the indirect noise mechanism.

One easily recognised feature in all of the measured signals is the effect of the acoustic
reflections occurring at the outlet of the second chamber (Ro2 = −1). Since these reflec-
tions occur at a distance of L ≈ 60 m from the inlet of the duct, they appear at intervals of
τ ≈ 2L/c̄ ≈ 360 ms, and alternate in sign (since Ro2 < 0). The reflections are more easily
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Figure IX.9: Experimental pressure fluctuations (a) p′(x1) upstream of the nozzle and (b)
p′(x2) downstream of the nozzle for cases C13 ( ), C14 ( ), C15 ( ), C16 ( ), C17
( ) and (c) p′(x1) upstream of the nozzle and (d) p′(x2) downstream of the nozzle for cases
C18 ( ), C19 ( ), C20 ( ), C21 ( ), C22 ( ). The valve timing signal is shown for
reference ( ).
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discerned in the downstream pressure p′(x2) (figure IX.9b,d) than in the upstream pressure
p′(x1) (figure IX.9a,c). This is because the downstream reflections are attenuated as they are
transmitted upstream through the nozzle (with a coefficient Ti2).

As with the short tube cases, the pressure upstream of the nozzle p′(x1) (figure IX.9a,c)
increases sharply during the helium injection (for 0 < t < 100 ms). This is due to the re-
verberation of the noise generated by the helium injection. In cases C18–C22, the convective
time delay is smaller than the pulse duration (τc < τp). As such, indirect noise is generated
concomitantly with the injection noise. We know from the results of cases C7–C12 that in-
jection noise is positive, while indirect noise is negative for this configuration. As such, these
sound sources interact deconstructively in cases C18–C22. Conversely, in cases C13–C17, the
convective time delay is larger than the pulse duration (τc > τp) and these sound sources do
not interact. This explains why the maximum pressure is higher in cases C13–C17 than in
cases C18–C22.

To obtain further insight regarding the experimental results, one can perform source identi-
fication. The source identification model requires information about the experimental set-up
(reflection and transmission coefficients, level of anisentropicity) which are not known a pri-
ori. These can be obtained using system identification.

IX.3.2 System identification

The experimental results can be used as a basis to perform system identification. We limit
our analysis to the experimental signal measured for t < 0.36 s, which is the time sequence
duringwhich the second chamber downstreamof the nozzle can be considered anechoic (since
τ2 ≈ 360ms). This enables us to use the simplified identificationmethods outlined in §VI.4.2.

One of the main parameters of the anisentropic nozzle model is the anisentropicity factor
Λ = (A2−Aj)/(A2−At). The value ofΛ can be determined by considering the experimental
measurements of themean pressure upstream of the nozzle p̄1 and using a least-squares fitting
for Λ. These measurements are consistent with Λ ≈ 0.9988, as shown in figure IX.10. This
corresponds to a case somewhere between a fully isentropic nozzle (Λ = 0), and one with a
fully dissipative divergent section (Λ = 1).

As shown in VII.2.4, the reflection coefficient of the nozzle Ro1 can be extracted from the
upstream pressure measurements p′(x1) in cases C13–C17. Indeed, we know that reverber-
ated pulses decay exponentially as (Ri1Ro1e

−2αL1)t/τ1 . Each value ofRo1 leads to a different
decay rate, as shown in figure IX.11(a). Using this method, the nozzle reflection coefficient
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Figure IX.10: Upstream mean pressure p̄1 as a function of the throat Mach number M̄t. Ex-
perimental measurements for cases C13–C22 ( ), isentropic limit case for Λ = 0 ( ), fully
dissipative limit case for Λ = 1 ( ) and best fit for Λ = 0.9988 ( ).

Ro1 can be recovered for all experimental cases.
Furthermore, the transmission coefficient across the nozzle To1 can be recovered by con-

sidering the pressures upstream and downstream of the nozzle. In the absence of indirect
noise, the ratio between the upstream and downstream pressures p′/γp̄(x1) and p′/γp̄(x2)

is To1/(1 + Ro1), as shown in (VI.3). Since there is no indirect noise for t < 0.2 s in cases
C13–C17, we can recover the value of To1 by measuring this ratio. This is shown in figure
IX.11(b).

The nozzle reflection and transmission coefficientsRo1 and To1 recovered from the experi-
mental data can be compared to the anisentropic nozzle model forΛ = 0.9988. This is shown
in figure IX.12. The model is in good agreement with the measured values.

IX.3.3 Source identification

The acoustic sources upstream (π1) and downstream (π2) of the nozzle for cases C13–C22 can
be recovered from the experimental pressure measurements using source identification (see
§VI.4.2).

The upstream signal π1 is combination of direct noise and backward-propagating indirect
noise: π1 = (1+Ro1)(1+Ri1)π

+
d +(1+Ri1)π

−
i . Here, the indirect noise source is a combi-

nation of entropic and compositional noise; π−
i = π−

σ + π−
ξ . As with the short configuration

results, we can separate the direct and indirect acoustic sources by taking advantage of the
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Figure IX.11: Case C14: (a) Upstream experimental acoustic pressure p′(x1) ( ) and the-
oretical decay for Ro1 = 0.870 ( ), Ro1 = 0.873 ( ) and Ro1 = 0.867 ( ) and (b)
downstream experimental acoustic pressure p′(x2) ( ) and theoretical upstream transmis-
sion for To1 = 0.131 ( ), To1 = 0.141 ( ) and To1 = 0.121 ( ).

Figure IX.12: (a) Acoustic transmission coefficient To1 and (b) acoustic reflection coefficient
Ro1 extracted from experimental data ( ), and computed using the anisentropic nozzle model
( ).
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Figure IX.13: Dereverberated experimental signal for direct (π+
d , ) and indirect acoustic

waves (π−
i , ) generated for (a) cases C13 ( ), C14 ( ), C15 ( ), C16 ( ), C17 ( )

and (b) cases C18 ( ), C19 ( ), C20 ( ), C21 ( ), C22 ( ).

difference in convective time delays between cases C13–C17 and cases C18–C22. The direct
and indirect acoustic sources upstream of the nozzle are shown in figure IX.13.

The dereverberated signals correspond to injection noise followed by an indirect noise
source. The injection noise appears as a positive pulse for 0 < t < 100 ms. The indirect
noise source is manifested as a negative pulse. In cases C13–C17, it appears after a convective
time delay τc = Lc/ū which depends on the case. In cases C18–C22, the convective time
delay is extremely small, meaning that the indirect noise pulse occurs almost simultaneously
with the injection.

Pressure measurements downstream of the nozzle can also be used to identify the forward-
propagating indirect noise wave π+

i = π+
σ +π+

ξ . As shown in (VI.8), π
+
i is simply the compo-

nent of the downstream pressure p′/γp̄(x2) not resulting from transmissions of the upstream
acoustic pressure (To1/(1 + Ro1))p

′/γp̄(x1). This enables the forward-propagating indirect
sound wave to be identified, as shown in figure IX.14.

The forward-propagating indirect noisewaveπ+
i manifests itself as a positive acoustic source.

it appears with a time delay consistent with the small convective time delays τc for each case.
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Figure IX.14: (a) Downstream pressure p′/γp̄(x2) ( ), transmitted upstream pressure
p′/γp̄(x1) To1/(1 +Ro1) ( ) and resulting indirect sound wave π+

i ( ) for case C21. (b)
Indirect sound wave π+

i for cases C13 ( ), C14 ( ), C15 ( ), C16 ( ), C17 ( ).

IX.4 Comparison to compositional noise models

The backward-propagating entropic and compositional noise wave π−
i = π−

σ + π−
ξ extracted

from cases C7-C12 (choked nozzle) can be compared to the theoretical model for the entropic
noise generated at an isentropic choked nozzle (III.14). This is shown in figure IX.15.

The experimental results for the combined entropic and compositional sound waves |π−
σ +

π−
ξ | are in good agreement with the theoretical isentropic model. The favourable agreement

found for independently measured entropic noise (§VIII.4) suggests that the isentropic model
derived by Magri et al. 58 for the upstream-propagating compositional noise generated at a
compact choked nozzle is representative of the experiment.

We can also extract the indirect noise transfer functions |π−
σ + π−

ξ |/ξ and |π+
σ + π+

ξ |/ξ
from the experimental results for cases C13–C17 (subsonic convergent nozzle). These are
compared to the anisentropic model in IX.16.

Once again, the experimental results are in good agreement with the predictions of the
theoretical model. This demonstrates that the anisentropic model enables one to accurately
predict the entropic and compositional noise produced both upstream and downstream of a
nozzle with losses.
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Figure IX.15: Indirect soundwave |π−
ξ +π−

σ | for cases C10 ( ), C11 ( ) and C12 ( ) compared
to the isentropic model ( ).

Figure IX.16: Indirect noise transfer functions (a) |π+
ξ + π+

σ |/ξ1 and (b) |π−
ξ + π−

σ |/ξ1 for
cases C13–C17 ( ) compared to the anisentropic nozzle model for Λ = 0.9988 ( ).
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Conclusions and future work

In this thesis the entropic and compositional noise generated at compact nozzles has been in-
vestigated both analytically and experimentally. To do so a complete one-dimensional model
of direct and indirect noise generation has been produced, accounting for the effect of anisen-
tropic nozzles and acoustic reverberation. The model enables direct and indirect noise to be
identified, separated and quantified using system and source identification techniques. These
techniques were successfully applied to experimental results obtained on the CambridgeWave
Generator, in which direct, entropic and compositional noise were generated in model condi-
tions. The main findings and conclusions of this work are presented here along with possible
avenues for future work.

Conclusions

The main contributions of this thesis can be organised into four main themes: (1) reverbera-
tion and source identification, (2) direct noise, (3) entropic noise and (4) compositional noise.

Reverberation and source identification

Prior to the present work, experimental data had been largely unable to shed a light on the
validity of indirect noisemodels. While the generation of entropic and vortical noise had been
demonstrated experimentally4,46, quantitative comparisons with theoretical predictions were
not usually carried out46,48,47,77. In the cases where such a comparison was performed4,90, the
results were inconclusive, so that it was unclear exactly how much indirect noise had been
produced.

The difficulty of making these comparisons stems from the fact that indirect noise models
are formulated in terms of acoustic source waves61,57,44. In contrast, in an experiment the
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measured quantity is the acoustic pressure which is a convolution of acoustic source waves
and their subsequent reflections.

To bridge this gap, a one-dimensional model accounting for the effect of repeated acoustic
reflectionswas presented in chapter IV. For rectangular acoustic source pulses in reverberating
systems (in which acoustic wavelengths are longer than the system’s length), it was shown
that acoustic sources can result in a pressure accumulation (during the pulse), followed by
exponential decay (after the pulse). For the more general case (arbitrary acoustic sources), we
derived two-way acoustic transfer functions relating acoustic sources to the resulting acoustic
pressure.

In chapter V, this model was applied to the case of two chambers separated by a nozzle,
in which both direct and indirect noise are produced. The results show that acoustic reflec-
tions (1) greatly affect the shape and amplitude of the measured signal, and (2) affect direct
and indirect noise differently depending on the acoustic properties of the system. Practically
speaking, this means that the effect of repeated acoustic reflections must be eliminated for the
experimental data to be interpreted meaningfully. One way to do this is to eliminate acous-
tic reflections in the experimental set-up — though this is usually unattainable, particularly
at low frequencies. Alternatively, the acoustic transfer functions derived here can be applied
to the experimental data to perform source and system identification, revealing the acoustic
sources and the acoustic properties of the experimental system respectively.

The reverberation and source identification models were validated experimentally in chap-
ter VII. Rectangular acoustic source pulses were generated in the CambridgeWave Generator
using air injection. As predicted by the reverberation model, these acoustic sources were am-
plified, and the shape of the acoustic pressure was in very good agreement with theoretical
predictions. Source identification was achieved by applying the acoustic transfer functions to
the measured pressure signal. The resulting rectangular acoustic source pulse was identical to
the acoustic wave produced by the air injection, which was measured in another experiment.

Direct noise

Indirect noise is generated by the convection of an entropic, vortical or compositional wave.
Practically speaking, the generation of these waves is typically accompanied by the generation
of direct noise, although this has not always been taken into account previously4,48. As such,
direct noise generationmust be understood in order to interpret the results of experiments on
indirect noise.
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Direct noise is usually defined as the noise generated by unsteady heat addition86,8,21. Here,
it is defined more generally as the noise resulting from a mass, momentum and/or energy
addition, which covers a wider range of relevant scenarios.

In chapter II, a one-dimensional model for the generation of direct noise was derived, as-
suming a compact acoustic source at whichmass, momentum, energy and species fluctuations
are imposed on the flow. The results enable the direct noise produced in a variety of cases to
be computed.

The model can be reduced to the case of heat addition, in which case the equations first de-
rived by Cumpsty 18 are recovered. The direct noise produced by heat addition was measured
experimentally on the Cambridge Wave Generator in chapter VIII, in which heat was added
to the flow using a heating device. The results were in excellent agreement with the theory,
thus validating the direct noise model for the first time. This lends additional credibility to
theoretical studies built upon this model, such as the comparison of direct and entropic noise
performed by Leyko et al. 53 .

The direct noise model was also applied to the case of air injection/extraction, in which
mass, momentum and energy are added/removed from the flow. Once again, the results were
in excellent agreement with data obtained on the Cambridge Wave Generator in chapter VII,
further validating the model.

Finally, the direct noise model can be implemented for the special case of an injection of
helium into a flow of air. Clearly the model can only be partially representative of this case,
since an injection of helium into air can be also be expected to produce indirect noise. Exper-
iments on the Cambridge Wave Generator in chapter IX confirm this, showing that the noise
produced by the helium injection is larger than one would expect if only direct noise were
generated.

Entropic noise

Predictions of entropic noise generated at nozzles are typically computed using the Marble &
Candel 61 transfer functions developed for quasi-one-dimensional compact isentropic nozzles,
sometimes extended to account for nozzle non-compactness24. For these predictions to be
trusted, empirical evidence is required to show that real nozzles behave in accordance to these
models.

Up till now, experiments have demonstrated the entropic noise mechanism by measuring
the downstream-propagating entropic noise generated at a nozzle4. Nevertheless, these mea-
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surements were not sufficient to confirm or refute the Marble & Candel 61 model. Further-
more, the upstream-propagating entropic noise (which may play a part in thermoacoustic
instabilities) had yet to be measured. Both of these points have been addressed in this thesis.

In the Cambridge Wave Generator experiment reported in chapter VIII, low-frequency
entropic noise was produced by generating an entropic wave with a heating device and ac-
celerating it through a choked compact nozzle. The reverberation and source identification
framework was then applied to the resulting pressure measurements, revealing the amplitude
of the entropic noise generated upstream of the nozzle. The results are in good agreement
with the Marble & Candel 61 model. The model also makes predictions for the acoustic reflec-
tion coefficient of the nozzle, which once again was in good agreement with the experiment.
These observations provide validation for the Marble & Candel 61 model, showing that it is an
appropriate tool to predict the response of choked compact nozzles.

In another set of experiments on the CWG, the entropic noise generated at a subsonic ori-
fice plate was alsomeasured. Contrary to the previous experiments, themeasurements were in
strong disagreement with the Marble & Candel 61 transfer functions. In a sense this is unsur-
prising since the model assumes an isentropic nozzle whereas an orifice plate is not isentropic.

To account for this difference, transfer functions for subsonic anisentropic compact noz-
zles were derived by De Domenico et al. 19 . These transfer functions were recast in a non-
dimensional form directly comparable to theMarble & Candel 61 transfer functions in chapter
III. The anisentropic model was found to be in good agreement with the entropic noise mea-
surements obtained with a subsonic orifice plate. Crucially, it was demonstrated that anisen-
tropic nozzles produce more entropic noise than the corresponding isentropic nozzles.

Outlet nozzles in gas turbines are designed to be nearly isentropic in most operating condi-
tions, so the effect of anisentropicity can typically be assumed to be small. However, this effect
may be of importance in other combustion systems in which entropic noise occurs. Further-
more, laboratory-scale nozzles used in model experiments on indirect noise are unlikely to be
fully isentropic due to the reduced dimensions and Reynolds numbers. The present findings
show that the nozzle response cannot be predicted correctly unless this effect is taken into
account.

Compositional noise

Magri 57 and Ihme 44 recently theorised the existence of an additional indirect noise mech-
anism: compositional noise generated by convected compositional inhomogeneities. They
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developed one-dimensional transfer functions for isentropic compact57 and non-compact60

nozzles analogous to those obtained byMarble & Candel 61 for entropic noise. This was an im-
portant finding, particularly as compositional noise is thought to be comparable or larger than
direct and entropic noise for certain operating conditions57. Nonetheless, the compositional
noise mechanisms had never been been demonstrated experimentally.

An experimental demonstration of compositional noise generation is reported for the first
time in chapter IX. A compositional and entropic wave was produced in the CambridgeWave
Generator by injecting helium in a flow of air, and convected though a choked compact nozzle
to produce compositional (and entropic) noise. Using source identification, the compositional
noise was shown to be in good agreementwith the one-dimensional isentropic compact nozzle
transfer functions57,44. The results show that the indirect noise generated by a compositional
and entropic wave cannot be explained using entropic noise models alone, and that compo-
sitional noise can be of the same order of magnitude as entropic noise. This highlights the
need to take compositional noise into account if indirect combustion noise is to be predicted
accurately.

Finally, the response of an anisentropic compact nozzle to impinging compositional waves
was derived for the first time in chapter III. The results reveal the existence of a previously
unreported mode transfer mechanism from compositional waves to entropic waves. Further
experiments were carried out on the CWGwith an anisentropic subsonic nozzle. The resulting
upstream- and downstream-propagating compositional and entropic noise were identified in
the pressure measurements. These were found to be in good agreement with the anisentropic
nozzle transfer functions. Once again, the results diverged largely from the isentropic predic-
tions, showing that nozzle anisentropicity should be taken into account when dealing with
nozzles with losses.

Future work

This thesis has focused on the experimental validation of one-dimensional transfer functions
of compact nozzles. This has been achieved, showing that direct, entropic and compositional
noise can be generated, separated and measured in model conditions, with results consistent
with analytical models. The analytical framework and experimental methods developed here
can be used to obtain further insight into indirect noise mechanisms. Promising approaches
for future work on this theme are presented here.
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Supersonic nozzles

The work presented in this thesis has been limited to subsonic nozzles and choked (sonic)
nozzles. Supersonic nozzles have not been tested owing to limitations in the current experi-
mental set-up. In principle a converging-diverging supersonic nozzle could be designed and
adapted to be used on the Cambridge Wave Generator. The results would shed some light
on the behaviour of supersonic nozzles with shocks, for which isentropic transfer functions
have already been derived analytically66. The source identification and separation techniques
developed here could be directly applied to the resulting measurements.

Subsonic isentropic nozzles

The nozzle model shown in chapter III makes predictions for nozzles with varying levels of
anisentropicity, including the limit case of a fully isentropic nozzle. A choked nozzle (which
is fully isentropic in the converging section) was tested to verify these predictions. However,
subsonic isentropic nozzles could not be tested. This was due to the difficulty of designing
and manufacturing an isentropic divergent section at the low flow rates accessible with the
current experimental set-up (up to 10 g s−1). Preliminary experiments were carried out with
a divergent section with an angle of 4.5◦. Even with this moderate angle the nozzle was found
to have a high level of anisentropicity (presumably due to flow separation). By extending the
range of the Cambridge Wave Generator to achieve higher flow rates, it may be possible to
explore the behaviour of fully isentropic subsonic nozzles.

Vortical noise

In this thesis we examined the generation of entropic and compositional noise. Indirect noise
is also thought to be generated by the convection of vortical perturbations. This has been pre-
viously investigated on the Vorticity Wave Generator (VWG) at the DLR by Kings & Bake 46 ,
in which vortical waves were generated by injecting air tangentially into a flow duct. To cor-
roborate these results, a similar set-up was tested on the Cambridge Wave Generator. The
results did not indicate any generation of vortical noise, though this may have been be due
to small differences in the CWG set-up compared to the VWG. Further experiments could
be conducted on the CWG to shed some light on the vortical noise mechanism, particularly
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given that the methods used here to identify entropic and compositional noise should be di-
rectly applicable.

Effect of dispersion and dissipation

The dissipation and dispersion of entropic and compositional waves can be observed in some
of the results shown in chapters VIII and IX. These effects were, for the most part, eliminated
by minimising the convective length, with the objective of isolating the effect of the nozzle
transfer functions on indirect noise generation. Nevertheless, dispersive, dissipative and dif-
fusive effects are interesting in themselves, and they have important consequences for the
emergence of indirect noise in combustion systems69,33.

As a starting point, these effects could be investigated on the current experimental set-up
with minor adjustments. The convection of entropic waves could be examined using a set of
thermocouple measurements along the duct. Furthermore, the addition of an optical access
section to the CWG would open the door to a large array of diagnostics (such as Rayleigh
scattering80 or laser induced thermal grating spectroscopy35) enabling the amplitude of en-
tropic and compositional waves to be examined. The measurements could then be directly
compared to quasi-one-dimensional analytical models for wave propagation92,69,31.

Effect of nozzle non-compactness

The experiments conducted on the CWG have been limited to compact nozzles with low-
frequency perturbations (of the order of 1 Hz). This was due to shortcomings of the wave
generation modules, which were limited by wire cooling time (for the heating device) and
valve response time (for the gas injection). Analytical models show that the nozzle transfer
functions for indirect noise are frequency-dependent24,60. This is likely to be important in real
combustion systems.

The effect of frequency could be investigated on the current rig using improved wave gen-
eration methods. Fast response micro-solenoid valves have been obtained, which in principle
can be operated at up to 600 Hz. These could be used to generate compositional waves at
high frequencies. The source identification method presented in chapter V is not limited to
low-frequency sources, and could be implemented directly to interpret the results.
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Realistic flow geometries

While not described in this thesis, a new experimental rig was designed and manufactured
during the course of the Ph.D. project. The rig is modular, water cooled, visually accessible,
and intended to be operated in both non-reacting and reacting configurations. In the non-
reacting configuration, the wave generationmethods used on the CWGcould be implemented
with minimal adjustments to generate entropic and compositional noise. This would enable
indirect noise to be investigated in a system closer to a realistic gas turbine combustor. This
would also enable dispersion and dissipation to be measured in a two- or three-dimensional
flow field. The effect of the flow field on the generation of indirect noise could also be in-
vestigated, and compared to two-dimensional models developed by others94. Finally, these
experiments could act as a stepping stone towards conducting experiments on indirect noise
in a fully reacting configuration.
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A.1 Matrix permutations

The matrix permutations used in §III.1.2 to relate inlet and outlet matrices X1 and X2 to
ingoing and outgoing matricesXi andXo are:

Xi =


X1(1, 1) −X2(1, 2) X1(1, 3) X1(1, 4)

X1(2, 1) −X2(2, 2) X1(2, 3) X1(1, 4)

X1(3, 1) −X2(3, 2) X1(3, 3) X1(4, 4)

X1(4, 1) −X2(4, 2) X1(4, 3) X1(3, 4)

 , (A.1)

and

Xo =


X2(1, 1) −X1(1, 2) X2(1, 3) X2(1, 4)

X2(2, 1) −X1(2, 2) X2(2, 3) X2(1, 4)

X2(3, 1) −X1(3, 2) X2(3, 3) X2(4, 4)

X2(4, 1) −X1(4, 2) X2(4, 3) X2(3, 4)

 . (A.2)

The same permutation is used in §III.2.3, replacingX2 withXjY
−1
j Y2.

A.2 Supersonic compact isentropic nozzle

If the flow in the nozzle is supersonic (M̄2 > 1), then the backward-propagating downstream
wave π−

2 actually propagates in the forward direction since the flow is faster than sound (ū >

c̄). This is shown in figure A.1.
As such, π−

2 is no longer an incoming wave, and cannot be imposed. We are left with only
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π+
1

π−
1

σ1

ξ1

π+
2

π−
2

σ2

ξ2
[1] [2]

M̄1 < 1 M̄2 ≥ 1

compact nozzle

Figure A.1: Forward and backward acoustic (π+, π−), entropic (σ) and compositional waves
(ξ) upstream [1] and downstream [2] of a supersonic compact nozzle.

two incoming waveswi, and four unknown outgoing waveswo:

wi =


π+
1

σ1

ξ1

 , wo =



π+
2

π−
2

π−
1

σ2

ξ2


. (A.3)

To solve for the outgoing waves, an additional jump condition is required. For a supersonic
nozzle, the flow is constrained by the sonic flow rate at the throat, which can be equated to the
mass flow condition in (III.2) to yield:

γ − 1

2

p′

γp̄
− 1

M̄

u′

c̄
+

1

2

s′

c̄p
+

Ψ

2
Z ′ = 0, (A.4)

which is true throughout the compact nozzle. We can use this as the basis for a jump condition
for the waves upstream and downstream of the nozzle:[(

γ − 1

2
− 1

M̄

)
π+ +

(
γ − 1

2
+

1

M̄

)
π+ +

σ

2
+

Ψξ

2

]2
1

= 0. (A.5)

As before, we can write Xiwi = Xowo, where Xi and Xo are permutations of an aug-
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mented transfer matrixX :

X =



1 +
1

M̄
1− 1

M̄
−1 −Ψ

(γ − 1)
(
1 + M̄

)
1 + γ−1

2 M̄2

(γ − 1)
(
1− M̄

)
1 + γ−1

2 M̄2

1

1 + γ−1
2 M̄2

Ψ

1 + γ−1
2 M̄2

0 0 1 0

0 0 0 1

γ − 1− 2

M̄
γ − 1 +

2

M̄
1 Ψ


. (A.6)

The relationship can be inverted to yieldwo = X−1
o Xiwi = Twi where T is the matrix

of supersonic nozzle transfer functions:

T =



π+
2

π+
1

π+
2

σ1

π+
2

ξ1

π−
1

π+
1

π−
1

σ1

π−
1

ξ1

π−
2

π+
1

π−
2

σ1

π−
2

ξ1

σ2

π+
1

σ2
σ1

σ2
ξ1

ξ2

π+
1

ξ2
σ1

ξ2
ξ1



. (A.7)

Compared to the subsonic case, we now have an additional transmitted wave π−
2 , meaning

that we have two transmission coefficients. The acoustic-acoustic transmission coefficients of
the nozzle are:

π+
2

π+
1

=
1 + γ−1

2 M̄2

1 + γ−1
2 M̄1

,
π−
2

π+
1

=
1− γ−1

2 M̄2

1 + γ−1
2 M̄1

. (A.8)

The acoustic-acoustic reflection coefficient is:

π−
1

π+
1

=
1− γ−1

2 M̄1

1 + γ−1
2 M̄1

. (A.9)
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The entropic-acoustic transmission coefficients read:

π+
2

σ1
=

1

4

M̄2 − M̄1

1 + γ−1
2 M̄1

,
π−
2

σ1
= −1

4

M̄2 + M̄1

1 + γ−1
2 M̄1

, (A.10)

and the entropic-acoustic reflection coefficient is:

π−
1

σ1
= −1

2

M̄1

1 + γ−1
2 M̄1

. (A.11)

The compositional-acoustic transmission coefficients are:

π+
2

ξ1
=

1

2(γ − 1)

[
1 + γ−1

2 M̄2

1 + γ−1
2 M̄1

Ψ1 −Ψ2

]
, (A.12)

π−
2

ξ1
= − 1

2(γ − 1)

[
Ψ2 −

1− γ−1
2 M̄2

1 + γ−1
2 M̄1

Ψ1

]
, (A.13)

and the compositional-acoustic transmission coefficient is:

π−
1

ξ1
= −1

2

M̄1

1 + γ−1
2 M̄1

Ψ1. (A.14)

A.3 Anisentropic compact nozzle

Explicit analytical expressions for the transfer functions of a subsonic compact anisentropic
nozzle are presented here.

A.3.1 Downstream acoustic wave

The upstream acoustic transmission coefficient is:

π+
2

π+
1

= 2M̄2

(
M̄1 + 1

M̄2 + 1

)
A

Y
, (A.15)
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A. Nozzle transfer functions

with

A = 2M̄j
2
c̄j − M̄j

4
c̄j − M̄2

3
M̄j

3
c̄2 − 2M̄2

2
M̄j

2
c̄j + M̄2

2
M̄j

4
c̄j − 2M̄2M̄j c̄2

+
2A2c̄j
Aj

+ 2M̄2M̄j
3
c̄2 + M̄2

3
M̄j c̄2 − 4M̄j

2
c̄jγ + M̄j

4
c̄jγ − 2M̄2M̄j

3
c̄2γ

− 2M̄2
3
M̄j c̄2γ − 3A2M̄j

2
c̄j

Aj
+ M̄2

3
M̄j c̄2γ

2 + 2M̄2
3
M̄j

3
c̄2γ + 4M̄2

2
M̄j

2
c̄jγ

− 2M̄2
2
M̄j

4
c̄jγ + 2M̄2M̄j c̄2γ − M̄2

3
M̄j

3
c̄2γ

2 − 2M̄2
2
M̄j

2
c̄jγ

2 + M̄2
2
M̄j

4
c̄jγ

2

+
3A2M̄j

2
c̄jγ

Aj
+

A2M̄2
2
M̄j

2
c̄j

Aj
− 2A2M̄2

2
M̄j

2
c̄jγ

Aj
+

A2M̄2
2
M̄j

2
c̄jγ

2

Aj
,

(A.16)

Y = 2M̄j c̄2 − 2M̄j
3
c̄2 − 4M̄j

2
c̄j + 2M̄j

4
c̄j + M̄1

2
M̄j

3
c̄2 + 2M̄2

2
M̄j

3
c̄2

+ 2M̄1
2
M̄j

2
c̄j − M̄1

2
M̄j

4
c̄j + 2M̄1M̄j c̄2 + 2M̄2M̄j c̄2 − M̄1

2
M̄j c̄2

− 2M̄1M̄j
3
c̄2 − 2M̄2

2
M̄j c̄2 − 2M̄2M̄j

3
c̄2 − 2M̄1M̄j

2
c̄j + 4M̄2M̄j

2
c̄j

+ M̄1M̄j
4
c̄j − 2M̄2M̄j

4
c̄j − M̄1M̄2

2
M̄j c̄2 − M̄1

2
M̄2M̄j c̄2 + 2M̄1M̄2M̄j

2
c̄j

− M̄1M̄2M̄j
4
c̄j + M̄1

2
M̄j c̄2γ + 2M̄1M̄j

3
c̄2γ + 2M̄2

2
M̄j c̄2γ − 4M̄2M̄j

2
c̄jγ

− M̄1M̄j
4
c̄jγ + 2M̄2M̄j

4
c̄jγ +

2A2M̄j
2
c̄j

Aj
+ M̄1

2
M̄2

2
M̄j c̄2 + M̄1M̄2

2
M̄j

3
c̄2

+ M̄1
2
M̄2M̄j

3
c̄2 − 2M̄1

2
M̄2M̄j

2
c̄j + M̄1

2
M̄2M̄j

4
c̄j − M̄1

2
M̄j

3
c̄2γ − 2M̄2

2
M̄j

3
c̄2γ

− 2M̄1
2
M̄j

2
c̄jγ + M̄1

2
M̄j

4
c̄jγ − 2M̄1M̄j c̄2γ − M̄1

2
M̄2

2
M̄j

3
c̄2 +

2A2M̄1c̄j
Aj

+ M̄1
2
M̄2

2
M̄j c̄2γ

2 + M̄1M̄2
2
M̄j

3
c̄2γ

2 + 2M̄1
2
M̄2

2
M̄j

3
c̄2γ − 2M̄1

2
M̄2M̄j

2
c̄jγ

2

+ M̄1
2
M̄2M̄j

4
c̄jγ

2 − 2A2M̄1M̄2c̄j
Aj

+ 2M̄1M̄2
2
M̄j c̄2γ + M̄1

2
M̄2M̄j c̄2γ

− 2M̄1M̄2M̄j
2
c̄jγ + 2M̄1M̄2M̄j

4
c̄jγ − M̄1

2
M̄2

2
M̄j

3
c̄2γ

2 − A2M̄1M̄j
2
c̄j

Aj

− 2A2M̄2M̄j
2
c̄j

Aj
− M̄1M̄2

2
M̄j c̄2γ

2 − 2M̄1
2
M̄2

2
M̄j c̄2γ − 2M̄1M̄2

2
M̄j

3
c̄2γ

− M̄1
2
M̄2M̄j

3
c̄2γ + 4M̄1

2
M̄2M̄j

2
c̄jγ − M̄1M̄2M̄j

4
c̄jγ

2 − 2M̄1
2
M̄2M̄j

4
c̄jγ

− A2M̄1
2
M̄j

2
c̄j

Aj
+

A2M̄1M̄j
2
c̄jγ

Aj
+

2A2M̄2M̄j
2
c̄jγ

Aj
+

A2M̄1
2
M̄2M̄j

2
c̄j

Aj

+
A2M̄1

2
M̄j

2
c̄jγ

Aj
+

2A2M̄1M̄2c̄jγ

Aj
+

A2M̄1M̄2M̄j
2
c̄j

Aj
+

A2M̄1
2
M̄2M̄j

2
c̄jγ

2

Aj

− 2A2M̄1M̄2M̄j
2
c̄jγ

Aj
+

A2M̄1M̄2M̄j
2
c̄jγ

2

Aj
− 2A2M̄1

2
M̄2M̄j

2
c̄jγ

Aj
.
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A. Nozzle transfer functions

The downstream acoustic reflection coefficient is:

π+
2

π−
2

= −
(
1− M̄2

1 + M̄2

)
B

Y
, (A.18)

with

B = 2M̄j c̄2 − 2M̄j
3
c̄2 + 4M̄j

2
c̄j − 2M̄j

4
c̄j + M̄1

2
M̄j

3
c̄2 + 2M̄2

2
M̄j

3
c̄2

− 2M̄1
2
M̄j

2
c̄j + M̄1

2
M̄j

4
c̄j + 2M̄1M̄j c̄2 − 2M̄2M̄j c̄2 − M̄1

2
M̄j c̄2

− 2M̄1M̄j
3
c̄2 − 2M̄2

2
M̄j c̄2 + 2M̄2M̄j

3
c̄2 + 2M̄1M̄j

2
c̄j + 4M̄2M̄j

2
c̄j

− M̄1M̄j
4
c̄j − 2M̄2M̄j

4
c̄j − M̄1M̄2

2
M̄j c̄2 + M̄1

2
M̄2M̄j c̄2 + 2M̄1M̄2M̄j

2
c̄j

− M̄1M̄2M̄j
4
c̄j + M̄1

2
M̄j c̄2γ + 2M̄1M̄j

3
c̄2γ + 2M̄2

2
M̄j c̄2γ − 4M̄2M̄j

2
c̄jγ

+ M̄1M̄j
4
c̄jγ + 2M̄2M̄j

4
c̄jγ − 2A2M̄j

2
c̄j

Aj
+ M̄1

2
M̄2

2
M̄j c̄2 + M̄1M̄2

2
M̄j

3
c̄2

− M̄1
2
M̄2M̄j

3
c̄2 − 2M̄1

2
M̄2M̄j

2
c̄j + M̄1

2
M̄2M̄j

4
c̄j − M̄1

2
M̄j

3
c̄2γ − 2M̄2

2
M̄j

3
c̄2γ

+ 2M̄1
2
M̄j

2
c̄jγ − M̄1

2
M̄j

4
c̄jγ − 2M̄1M̄j c̄2γ − M̄1

2
M̄2

2
M̄j

3
c̄2 −

2A2M̄1c̄j
Aj

+ M̄1
2
M̄2

2
M̄j c̄2γ

2 + M̄1M̄2
2
M̄j

3
c̄2γ

2 + 2M̄1
2
M̄2

2
M̄j

3
c̄2γ − 2M̄1

2
M̄2M̄j

2
c̄jγ

2

+ M̄1
2
M̄2M̄j

4
c̄jγ

2 − 2A2M̄1M̄2c̄j
Aj

+ 2M̄1M̄2
2
M̄j c̄2γ − M̄1

2
M̄2M̄j c̄2γ

− 2M̄1M̄2M̄j
2
c̄jγ + 2M̄1M̄2M̄j

4
c̄jγ − M̄1

2
M̄2

2
M̄j

3
c̄2γ

2 +
A2M̄1M̄j

2
c̄j

Aj

− 2A2M̄2M̄j
2
c̄j

Aj
− M̄1M̄2

2
M̄j c̄2γ

2 − 2M̄1
2
M̄2

2
M̄j c̄2γ − 2M̄1M̄2

2
M̄j

3
c̄2γ

+ M̄1
2
M̄2M̄j

3
c̄2γ + 4M̄1

2
M̄2M̄j

2
c̄jγ − M̄1M̄2M̄j

4
c̄jγ

2 − 2M̄1
2
M̄2M̄j

4
c̄jγ

+
A2M̄1

2
M̄j

2
c̄j

Aj
− A2M̄1M̄j

2
c̄jγ

Aj
+

2A2M̄2M̄j
2
c̄jγ

Aj
+

A2M̄1
2
M̄2M̄j

2
c̄j

Aj

− A2M̄1
2
M̄j

2
c̄jγ

Aj
+

2A2M̄1M̄2c̄jγ

Aj
+

A2M̄1M̄2M̄j
2
c̄j

Aj
+

A2M̄1
2
M̄2M̄j

2
c̄jγ

2

Aj

− 2A2M̄1M̄2M̄j
2
c̄jγ

Aj
+

A2M̄1M̄2M̄j
2
c̄jγ

2

Aj
− 2A2M̄1

2
M̄2M̄j

2
c̄jγ

Aj
.

(A.19)

The entropic-acoustic transmission coefficient is:

π+
2

σ1
=

(
M̄2

1 + M̄2

)
C

Y
, (A.20)
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A. Nozzle transfer functions

with

C = M̄j
4
c̄j − 2M̄j

2
c̄j + M̄2

3
M̄j

3
c̄2 + 2M̄2

2
M̄j

2
c̄j − M̄2

2
M̄j

4
c̄j + 2M̄2M̄j c̄2

− 2M̄2M̄j
3
c̄2 − M̄2

3
M̄j c̄2 − 2M̄1M̄j

2
c̄j + M̄1M̄j

4
c̄j − 2M̄1M̄2M̄j

3
c̄2

− M̄1M̄2
3
M̄j c̄2 + M̄2

3
M̄j c̄2γ + 2M̄1M̄j

2
c̄jγ − M̄1M̄j

4
c̄jγ − A2M̄1

2
c̄j

Aj
+

A2M̄j
2
c̄j

Aj

+ M̄1M̄2
3
M̄j

3
c̄2 + 2M̄1M̄2

2
M̄j

2
c̄j − M̄1M̄2

2
M̄j

4
c̄j − M̄2

3
M̄j

3
c̄2γ + M̄1

2
M̄j

2
c̄jγ

− 2M̄2
2
M̄j

2
c̄jγ + M̄2

2
M̄j

4
c̄jγ +2M̄1M̄2M̄j c̄2 − 2M̄1M̄2M̄j c̄2γ + M̄1M̄2

3
M̄j

3
c̄2γ

2

+ M̄1M̄2
2
M̄j

2
c̄jγ

2 − M̄1M̄2
2
M̄j

4
c̄jγ

2 + 2M̄1M̄2M̄j
3
c̄2γ + 2M̄1M̄2

3
M̄j c̄2γ

− A2M̄1M̄2
2
c̄j

Aj
+

A2M̄1M̄j
2
c̄j

Aj
− M̄1M̄2

3
M̄j c̄2γ

2 − 2M̄1M̄2
3
M̄j

3
c̄2γ

− 3M̄1M̄2
2
M̄j

2
c̄jγ + 2M̄1M̄2

2
M̄j

4
c̄jγ +

A2M̄1
2
M̄j

2
c̄j

Aj
− A2M̄2

2
M̄j

2
c̄j

Aj

+
A2M̄1M̄2

2
c̄jγ

Aj
− A2M̄1M̄j

2
c̄jγ

Aj
− A2M̄1

2
M̄j

2
c̄jγ

Aj
+

A2M̄2
2
M̄j

2
c̄jγ

Aj
.

(A.21)

The compositional-acoustic transmission coefficient is:

π+
2

ξ1
=

(
M̄2

1 + M̄2

)(
1

γ − 1

)
D

Y
, (A.22)
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A. Nozzle transfer functions

with

D = 2M̄j
2
c̄jΨ1 − M̄j

4
c̄jΨ1 +

2A2c̄jΨ1

Aj
− 2A2c̄jΨj

Aj
+ 2M̄2M̄j

3
c̄2Ψ1 + M̄2

3
M̄j c̄2Ψ1

+ 2M̄1M̄j
2
c̄jΨ1 − M̄1M̄j

4
c̄jΨ1 − 4M̄j

2
c̄jγΨ1 + M̄j

4
c̄jγΨ1 + 2M̄j

2
c̄jγΨj − M̄2

3
M̄j

3
c̄2Ψ1

− 2M̄2
2
M̄j

2
c̄jΨ1 + M̄2

2
M̄j

4
c̄jΨ1 − 2M̄2M̄j c̄2Ψ1 − 2M̄1M̄2M̄j c̄2Ψ1 + 2M̄2M̄j c̄2γΨ1

−M̄2
3
M̄j

3
c̄2γ

2Ψ1−2M̄2
2
M̄j

2
c̄jγ

2Ψ1+M̄2
2
M̄j

4
c̄jγ

2Ψ1+M̄1
2
M̄j

2
c̄jγ

2Ψj +
2A2M̄1c̄jΨ1

Aj

− 2A2M̄1c̄jΨj

Aj
+ 2M̄1M̄2M̄j

3
c̄2Ψ1 + M̄1M̄2

3
M̄j c̄2Ψ1 − 2M̄2M̄j

3
c̄2γΨ1 − 2M̄2

3
M̄j c̄2γΨ1

− 6M̄1M̄j
2
c̄jγΨ1 + 2M̄1M̄j

4
c̄jγΨ1 + 2M̄1M̄j

2
c̄jγΨj +

A2M̄1
2
c̄jΨj

Aj
− 3A2M̄j

2
c̄jΨ1

Aj

+
2A2M̄j

2
c̄jΨj

Aj
− M̄1M̄2

3
M̄j

3
c̄2Ψ1 − 2M̄1M̄2

2
M̄j

2
c̄jΨ1 + M̄1M̄2

2
M̄j

4
c̄jΨ1

+ M̄2
3
M̄j c̄2γ

2Ψ1 + 2M̄2
3
M̄j

3
c̄2γΨ1 + 4M̄1M̄j

2
c̄jγ

2Ψ1 + 4M̄2
2
M̄j

2
c̄jγΨ1

−M̄1M̄j
4
c̄jγ

2Ψ1−2M̄2
2
M̄j

4
c̄jγΨ1−2M̄1M̄j

2
c̄jγ

2Ψj −M̄1
2
M̄j

2
c̄jγΨj +

A2M̄1M̄2
2
c̄jΨj

Aj

− 3A2M̄1M̄j
2
c̄jΨ1

Aj
+

2A2M̄1M̄j
2
c̄jΨj

Aj
− A2M̄1

2
c̄jγΨj

Aj
+

3A2M̄j
2
c̄jγΨ1

Aj

− 2A2M̄j
2
c̄jγΨj

Aj
+ 2M̄1M̄2M̄j

3
c̄2γ

2Ψ1 + 3M̄1M̄2
3
M̄j c̄2γ

2Ψ1 − M̄1M̄2
3
M̄j c̄2γ

3Ψ1

+ 3M̄1M̄2
3
M̄j

3
c̄2γΨ1 + 6M̄1M̄2

2
M̄j

2
c̄jγΨ1 − 3M̄1M̄2

2
M̄j

4
c̄jγΨ1 − M̄1M̄2

2
M̄j

2
c̄jγΨj

+
A2M̄2

2
M̄j

2
c̄jΨ1

Aj
− A2M̄1

2
M̄j

2
c̄jΨj

Aj
+ 4M̄1M̄2M̄j c̄2γΨ1 − 3M̄1M̄2

3
M̄j

3
c̄2γ

2Ψ1

+M̄1M̄2
3
M̄j

3
c̄2γ

3Ψ1−6M̄1M̄2
2
M̄j

2
c̄jγ

2Ψ1+2M̄1M̄2
2
M̄j

2
c̄jγ

3Ψ1+3M̄1M̄2
2
M̄j

4
c̄jγ

2Ψ1

− M̄1M̄2
2
M̄j

4
c̄jγ

3Ψ1 + 2M̄1M̄2
2
M̄j

2
c̄jγ

2Ψj − M̄1M̄2
2
M̄j

2
c̄jγ

3Ψj −
2A2M̄1c̄jγΨ1

Aj

+
2A2M̄1c̄jγΨj

Aj
− 2M̄1M̄2M̄j c̄2γ

2Ψ1 − 4M̄1M̄2M̄j
3
c̄2γΨ1 − 3M̄1M̄2

3
M̄j c̄2γΨ1

+
A2M̄2

2
M̄j

2
c̄jγ

2Ψ1

Aj
− A2M̄1

2
M̄j

2
c̄jγ

2Ψj

Aj
− 2A2M̄1M̄2

2
c̄jγΨj

Aj
+

6A2M̄1M̄j
2
c̄jγΨ1

Aj

− 4A2M̄1M̄j
2
c̄jγΨj

Aj
+

A2M̄1M̄2
2
M̄j

2
c̄jΨ1

Aj
− A2M̄1M̄2

2
M̄j

2
c̄jΨj

Aj
+

A2M̄1M̄2
2
c̄jγ

2Ψj

Aj

− 3A2M̄1M̄j
2
c̄jγ

2Ψ1

Aj
− 2A2M̄2

2
M̄j

2
c̄jγΨ1

Aj
+

2A2M̄1M̄j
2
c̄jγ

2Ψj

Aj
+

2A2M̄1
2
M̄j

2
c̄jγΨj

Aj

− 3A2M̄1M̄2
2
M̄j

2
c̄jγΨ1

Aj
+

3A2M̄1M̄2
2
M̄j

2
c̄jγΨj

Aj
+

3A2M̄1M̄2
2
M̄j

2
c̄jγ

2Ψ1

Aj

− A2M̄1M̄2
2
M̄j

2
c̄jγ

3Ψ1

Aj
− 3A2M̄1M̄2

2
M̄j

2
c̄jγ

2Ψj

Aj
+

A2M̄1M̄2
2
M̄j

2
c̄jγ

3Ψj

Aj
.
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A. Nozzle transfer functions

A.3.2 Upstream acoustic wave

The upstream acoustic-acoustic reflection coefficient is:

π−
1

π+
1

=

(
1 + M̄1

1− M̄1

)
E

Y
, (A.24)

with

E = 2M̄j c̄2 − 2M̄j
3
c̄2 − 4M̄j

2
c̄j + 2M̄j

4
c̄j + M̄1

2
M̄j

3
c̄2 + 2M̄2

2
M̄j

3
c̄2

+2M̄1
2
M̄j

2
c̄j − M̄1

2
M̄j

4
c̄j − 2M̄1M̄j c̄2+2M̄2M̄j c̄2− M̄1

2
M̄j c̄2+2M̄1M̄j

3
c̄2

− 2M̄2
2
M̄j c̄2 − 2M̄2M̄j

3
c̄2 + 2M̄1M̄j

2
c̄j + 4M̄2M̄j

2
c̄j − M̄1M̄j

4
c̄j

− 2M̄2M̄j
4
c̄j + M̄1M̄2

2
M̄j c̄2 − M̄1

2
M̄2M̄j c̄2 − 2M̄1M̄2M̄j

2
c̄j + M̄1M̄2M̄j

4
c̄j

+ M̄1
2
M̄j c̄2γ − 2M̄1M̄j

3
c̄2γ + 2M̄2

2
M̄j c̄2γ − 4M̄2M̄j

2
c̄jγ + M̄1M̄j

4
c̄jγ

+ 2M̄2M̄j
4
c̄jγ +

2A2M̄j
2
c̄j

Aj

+ M̄1
2
M̄2

2
M̄j c̄2 − M̄1M̄2

2
M̄j

3
c̄2 + M̄1

2
M̄2M̄j

3
c̄2

− 2M̄1
2
M̄2M̄j

2
c̄j + M̄1

2
M̄2M̄j

4
c̄j − M̄1

2
M̄j

3
c̄2γ − 2M̄2

2
M̄j

3
c̄2γ

− 2M̄1
2
M̄j

2
c̄jγ + M̄1

2
M̄j

4
c̄jγ + 2M̄1M̄j c̄2γ − M̄1

2
M̄2

2
M̄j

3
c̄2 −

2A2M̄1c̄j
Aj

+ M̄1
2
M̄2

2
M̄j c̄2γ

2 − M̄1M̄2
2
M̄j

3
c̄2γ

2 +2M̄1
2
M̄2

2
M̄j

3
c̄2γ − 2M̄1

2
M̄2M̄j

2
c̄jγ

2

+ M̄1
2
M̄2M̄j

4
c̄jγ

2 +
2A2M̄1M̄2c̄j

Aj

− 2M̄1M̄2
2
M̄j c̄2γ + M̄1

2
M̄2M̄j c̄2γ

+ 2M̄1M̄2M̄j
2
c̄jγ − 2M̄1M̄2M̄j

4
c̄jγ − M̄1

2
M̄2

2
M̄j

3
c̄2γ

2 +
A2M̄1M̄j

2
c̄j

Aj

− 2A2M̄2M̄j
2
c̄j

Aj

+ M̄1M̄2
2
M̄j c̄2γ

2 − 2M̄1
2
M̄2

2
M̄j c̄2γ + 2M̄1M̄2

2
M̄j

3
c̄2γ

− M̄1
2
M̄2M̄j

3
c̄2γ + 4M̄1

2
M̄2M̄j

2
c̄jγ + M̄1M̄2M̄j

4
c̄jγ

2 − 2M̄1
2
M̄2M̄j

4
c̄jγ

− A2M̄1
2
M̄j

2
c̄j

Aj

− A2M̄1M̄j
2
c̄jγ

Aj

+
2A2M̄2M̄j

2
c̄jγ

Aj

+
A2M̄1

2
M̄2M̄j

2
c̄j

Aj

+
A2M̄1

2
M̄j

2
c̄jγ

Aj

− 2A2M̄1M̄2c̄jγ

Aj

− A2M̄1M̄2M̄j
2
c̄j

Aj

+
A2M̄1

2
M̄2M̄j

2
c̄jγ

2

Aj

+
2A2M̄1M̄2M̄j

2
c̄jγ

Aj

− A2M̄1M̄2M̄j
2
c̄jγ

2

Aj

− 2A2M̄1
2
M̄2M̄j

2
c̄jγ

Aj

.
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A. Nozzle transfer functions

The downstream acoustic-acoustic transmission coefficient is:

π−
1

π−
2

= 2

(
M̄1

M̄2

)(
1− M̄2

1− M̄1

)
F

Y
, (A.26)

with

(A.27)F = M̄j c̄2

(
1− M̄j

2
)(

2 + (γ − 1)M̄1
2
)
.

The entropic-acoustic reflection coefficient is:

π−
1

σ1

=

(
M̄1

1− M̄1

)
G

Y
, (A.28)

with

G = 2M̄j
2
c̄j − M̄j

4
c̄j − M̄1

2
M̄j

3
c̄2 − M̄2

2
M̄j

3
c̄2 − 2M̄1

2
M̄j

2
c̄j + M̄1

2
M̄j

4
c̄j

− 2M̄2M̄j c̄2 + M̄1
2
M̄j c̄2 + M̄2

2
M̄j c̄2 + 2M̄2M̄j

3
c̄2 − 2M̄2M̄j

2
c̄j

+ M̄2M̄j
4
c̄j + M̄1

2
M̄2M̄j c̄2 − M̄1

2
M̄j c̄2γ − M̄2

2
M̄j c̄2γ + 2M̄2M̄j

2
c̄jγ

− M̄2M̄j
4
c̄jγ +

A2M̄1
2
c̄j

Aj

− A2M̄j
2
c̄j

Aj

− M̄1
2
M̄2

2
M̄j c̄2 − M̄1

2
M̄2M̄j

3
c̄2

+2M̄1
2
M̄2M̄j

2
c̄j − M̄1

2
M̄2M̄j

4
c̄j + M̄1

2
M̄j

3
c̄2γ+ M̄2

2
M̄j

3
c̄2γ+ M̄1

2
M̄j

2
c̄jγ

− M̄1
2
M̄j

4
c̄jγ + M̄1

2
M̄2

2
M̄j

3
c̄2 − M̄1

2
M̄2

2
M̄j c̄2γ

2 − 2M̄1
2
M̄2

2
M̄j

3
c̄2γ

+ M̄1
2
M̄2M̄j

2
c̄jγ

2 − M̄1
2
M̄2M̄j

4
c̄jγ

2 − M̄1
2
M̄2M̄j c̄2γ + M̄1

2
M̄2

2
M̄j

3
c̄2γ

2

− A2M̄1
2
M̄2c̄j

Aj

+
A2M̄2M̄j

2
c̄j

Aj

+ 2M̄1
2
M̄2

2
M̄j c̄2γ + M̄1

2
M̄2M̄j

3
c̄2γ

− 3M̄1
2
M̄2M̄j

2
c̄jγ + 2M̄1

2
M̄2M̄j

4
c̄jγ +

A2M̄1
2
M̄2c̄jγ

Aj

− A2M̄2M̄j
2
c̄jγ

Aj

.

(A.29)

The compositional-acoustic reflection coefficient is:

π−
1

ξ1
= −

(
M̄1

1− M̄1

)(
1

γ − 1

)
H

Y
, (A.30)
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A. Nozzle transfer functions

with

H = 2M̄j
2
c̄jΨ1 − M̄j

4
c̄jΨ1 +

2A2c̄jΨ1

Aj
− 2A2c̄jΨj

Aj
+ M̄1

2
M̄j c̄2Ψ1 + M̄2

2
M̄j c̄2Ψ1

+ 2M̄2M̄j
3
c̄2Ψ1 − 2M̄2M̄j

2
c̄jΨ1 + M̄2M̄j

4
c̄jΨ1 − 4M̄j

2
c̄jγΨ1 + M̄j

4
c̄jγΨ1

+ 2M̄j
2
c̄jγΨj − M̄1

2
M̄j

3
c̄2Ψ1 − M̄2

2
M̄j

3
c̄2Ψ1 − 2M̄1

2
M̄j

2
c̄jΨ1 + M̄1

2
M̄j

4
c̄jΨ1

− 2M̄2M̄j c̄2Ψ1 +2M̄2M̄j c̄2γΨ1 + M̄1
2
M̄2

2
M̄j

3
c̄2Ψ1 − M̄1

2
M̄j

3
c̄2γ

2Ψ1 − M̄2
2
M̄j

3
c̄2γ

2Ψ1

− 2M̄1
2
M̄j

2
c̄jγ

2Ψ1 + M̄1
2
M̄j

4
c̄jγ

2Ψ1 + M̄1
2
M̄j

2
c̄jγ

2Ψj −
2A2M̄2c̄jΨ1

Aj
+

2A2M̄2c̄jΨj

Aj

+ M̄1
2
M̄2M̄j c̄2Ψ1 − 2M̄1

2
M̄j c̄2γΨ1 − 2M̄2

2
M̄j c̄2γΨ1 − 2M̄2M̄j

3
c̄2γΨ1 + 6M̄2M̄j

2
c̄jγΨ1

− 2M̄2M̄j
4
c̄jγΨ1 − 2M̄2M̄j

2
c̄jγΨj +

A2M̄1
2
c̄jΨj

Aj
− 3A2M̄j

2
c̄jΨ1

Aj
+

2A2M̄j
2
c̄jΨj

Aj

− M̄1
2
M̄2

2
M̄j c̄2Ψ1 − M̄1

2
M̄2M̄j

3
c̄2Ψ1 + 2M̄1

2
M̄2M̄j

2
c̄jΨ1 − M̄1

2
M̄2M̄j

4
c̄jΨ1

+M̄1
2
M̄j c̄2γ

2Ψ1+2M̄1
2
M̄j

3
c̄2γΨ1+M̄2

2
M̄j c̄2γ

2Ψ1+2M̄2
2
M̄j

3
c̄2γΨ1+4M̄1

2
M̄j

2
c̄jγΨ1

−4M̄2M̄j
2
c̄jγ

2Ψ1−2M̄1
2
M̄j

4
c̄jγΨ1+M̄2M̄j

4
c̄jγ

2Ψ1−M̄1
2
M̄j

2
c̄jγΨj+2M̄2M̄j

2
c̄jγ

2Ψj

+ 3M̄1
2
M̄2

2
M̄j

3
c̄2γ

2Ψ1 − M̄1
2
M̄2

2
M̄j

3
c̄2γ

3Ψ1 −
A2M̄1

2
M̄2c̄jΨj

Aj
+

3A2M̄2M̄j
2
c̄jΨ1

Aj

− 2A2M̄2M̄j
2
c̄jΨj

Aj
−A2M̄1

2
c̄jγΨj

Aj
+
3A2M̄j

2
c̄jγΨ1

Aj
− 2A2M̄j

2
c̄jγΨj

Aj
+M̄1

2
M̄2M̄j c̄2γ

2Ψ1

+ 3M̄1
2
M̄2

2
M̄j c̄2γΨ1 + 2M̄1

2
M̄2M̄j

3
c̄2γΨ1 − 6M̄1

2
M̄2M̄j

2
c̄jγΨ1 + 3M̄1

2
M̄2M̄j

4
c̄jγΨ1

+ M̄1
2
M̄2M̄j

2
c̄jγΨj +

A2M̄1
2
M̄j

2
c̄jΨ1

Aj
− A2M̄1

2
M̄j

2
c̄jΨj

Aj
− 3M̄1

2
M̄2

2
M̄j c̄2γ

2Ψ1

− M̄1
2
M̄2M̄j

3
c̄2γ

2Ψ1+ M̄1
2
M̄2

2
M̄j c̄2γ

3Ψ1− 3M̄1
2
M̄2

2
M̄j

3
c̄2γΨ1+6M̄1

2
M̄2M̄j

2
c̄jγ

2Ψ1

−2M̄1
2
M̄2M̄j

2
c̄jγ

3Ψ1−3M̄1
2
M̄2M̄j

4
c̄jγ

2Ψ1+M̄1
2
M̄2M̄j

4
c̄jγ

3Ψ1−2M̄1
2
M̄2M̄j

2
c̄jγ

2Ψj

+ M̄1
2
M̄2M̄j

2
c̄jγ

3Ψj +
2A2M̄2c̄jγΨ1

Aj
− 2A2M̄2c̄jγΨj

Aj
− 2M̄1

2
M̄2M̄j c̄2γΨ1

+
A2M̄1

2
M̄j

2
c̄jγ

2Ψ1

Aj
− A2M̄1

2
M̄j

2
c̄jγ

2Ψj

Aj
+

2A2M̄1
2
M̄2c̄jγΨj

Aj
− 6A2M̄2M̄j

2
c̄jγΨ1

Aj

+
4A2M̄2M̄j

2
c̄jγΨj

Aj
− A2M̄1

2
M̄2M̄j

2
c̄jΨ1

Aj
+

A2M̄1
2
M̄2M̄j

2
c̄jΨj

Aj
− A2M̄1

2
M̄2c̄jγ

2Ψj

Aj

− 2A2M̄1
2
M̄j

2
c̄jγΨ1

Aj
+

3A2M̄2M̄j
2
c̄jγ

2Ψ1

Aj
+

2A2M̄1
2
M̄j

2
c̄jγΨj

Aj
− 2A2M̄2M̄j

2
c̄jγ

2Ψj

Aj

+
3A2M̄1

2
M̄2M̄j

2
c̄jγΨ1

Aj
− 3A2M̄1

2
M̄2M̄j

2
c̄jγΨj

Aj
− 3A2M̄1

2
M̄2M̄j

2
c̄jγ

2Ψ1

Aj

+
A2M̄1

2
M̄2M̄j

2
c̄jγ

3Ψ1

Aj
+

3A2M̄1
2
M̄2M̄j

2
c̄jγ

2Ψj

Aj
− A2M̄1

2
M̄2M̄j

2
c̄jγ

3Ψj

Aj
.
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A. Nozzle transfer functions

The entropic-acoustic transmission coefficient is:

σ2

π+
1

= 2 (γ − 1)
(
1 + M̄1

) I

Y
, (A.32)

with

I = 2M̄j c̄2 − 2M̄j
3
c̄2 − 4M̄j

2
c̄j + 2M̄j

4
c̄j + M̄2

2
M̄j

3
c̄2 + M̄2

3
M̄j

3
c̄2 + 2M̄2

2
M̄j

2
c̄j

− M̄2
2
M̄j

4
c̄j + 2M̄2M̄j c̄2 − M̄2

2
M̄j c̄2 − 2M̄2M̄j

3
c̄2 − M̄2

3
M̄j c̄2 + 2M̄2M̄j

2
c̄j

− M̄2M̄j
4
c̄j + M̄2

2
M̄j c̄2γ + M̄2

3
M̄j c̄2γ + M̄2M̄j

4
c̄jγ +

2A2M̄j
2
c̄j

Aj

− M̄2
2
M̄j

3
c̄2γ − M̄2

3
M̄j

3
c̄2γ − 2M̄2

2
M̄j

2
c̄jγ + M̄2

2
M̄j

4
c̄jγ − 2A2M̄2c̄j

Aj

+
A2M̄2M̄j

2
c̄j

Aj

− A2M̄2
2
M̄j

2
c̄j

Aj

− A2M̄2M̄j
2
c̄jγ

Aj

+
A2M̄2

2
M̄j

2
c̄jγ

Aj

.

(A.33)

A.3.3 Downstream entropic wave

The entropic-acoustic reflection coefficient is:

σ2

π−
2

= −2 (γ − 1)

(
1− M̄2

M̄2

)
J

Y
, (A.34)

with

J = 2M̄1M̄j
3
c̄2 − 2M̄1M̄j c̄2 − 2M̄2

2
M̄j

3
c̄2 + 2M̄2

2
M̄j c̄2 − 4M̄2M̄j

2
c̄j

+ 2M̄2M̄j
4
c̄j + M̄1M̄2

2
M̄j c̄2 − 2M̄1M̄2M̄j

2
c̄j + M̄1M̄2M̄j

4
c̄j

− M̄1
2
M̄2

2
M̄j c̄2 − M̄1M̄2

2
M̄j

3
c̄2 + 2M̄1

2
M̄2M̄j

2
c̄j − M̄1

2
M̄2M̄j

4
c̄j

+ M̄1
2
M̄2

2
M̄j

3
c̄2 − M̄1

2
M̄2

2
M̄j

3
c̄2γ +

2A2M̄1M̄2c̄j
Aj

− M̄1M̄2
2
M̄j c̄2γ

− M̄1M̄2M̄j
4
c̄jγ +

2A2M̄2M̄j
2
c̄j

Aj

+ M̄1
2
M̄2

2
M̄j c̄2γ + M̄1M̄2

2
M̄j

3
c̄2γ

− 2M̄1
2
M̄2M̄j

2
c̄jγ + M̄1

2
M̄2M̄j

4
c̄jγ − A2M̄1

2
M̄2M̄j

2
c̄j

Aj

− A2M̄1M̄2M̄j
2
c̄j

Aj

+
A2M̄1M̄2M̄j

2
c̄jγ

Aj

+
A2M̄1

2
M̄2M̄j

2
c̄jγ

Aj

.
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A. Nozzle transfer functions

The entropic-entropic transmission coefficient is:

σ2

σ1

=
K

Y
(A.36)

with

K = 2M̄j c̄2 − 2M̄j
3
c̄2 − 4M̄j

2
c̄j +2M̄j

4
c̄j + M̄2

2
M̄j

3
c̄2 + M̄2

3
M̄j

3
c̄2 +2M̄2

2
M̄j

2
c̄j

− M̄2
2
M̄j

4
c̄j + 2M̄1M̄j c̄2 + 2M̄2M̄j c̄2 − 2M̄1M̄j

3
c̄2 − M̄2

2
M̄j c̄2

− 2M̄2M̄j
3
c̄2 − M̄2

3
M̄j c̄2 − 4M̄1M̄j

2
c̄j + 2M̄2M̄j

2
c̄j + 2M̄1M̄j

4
c̄j

− M̄2M̄j
4
c̄j − M̄1M̄2

2
M̄j c̄2 − 2M̄1M̄2M̄j

3
c̄2 − M̄1M̄2

3
M̄j c̄2 + 2M̄1M̄2M̄j

2
c̄j

− M̄1M̄2M̄j
4
c̄j + 2M̄1M̄j

3
c̄2γ + M̄2

2
M̄j c̄2γ + M̄2

3
M̄j c̄2γ + 2M̄1M̄j

2
c̄jγ

− 2M̄2M̄j
2
c̄jγ − 2M̄1M̄j

4
c̄jγ + M̄2M̄j

4
c̄jγ +

2A2M̄j
2
c̄j

Aj

+ M̄1M̄2
2
M̄j

3
c̄2

+M̄1M̄2
3
M̄j

3
c̄2+2M̄1M̄2

2
M̄j

2
c̄j−M̄1M̄2

2
M̄j

4
c̄j−M̄2

2
M̄j

3
c̄2γ−M̄2

3
M̄j

3
c̄2γ

− 2M̄2
2
M̄j

2
c̄jγ + M̄2

2
M̄j

4
c̄jγ + 2M̄1M̄2M̄j c̄2 − 2M̄1M̄j c̄2γ +

2A2M̄1c̄j
Aj

− 2M̄1M̄2M̄j c̄2γ + M̄1M̄2
2
M̄j

3
c̄2γ

2 + M̄1M̄2
3
M̄j

3
c̄2γ

2 + M̄1M̄2
2
M̄j

2
c̄jγ

2

− M̄1
2
M̄2M̄j

2
c̄jγ

2 − M̄1M̄2
2
M̄j

4
c̄jγ

2 − 2A2M̄1M̄2c̄j
Aj

+ 2M̄1M̄2
2
M̄j c̄2γ

+ 2M̄1M̄2M̄j
3
c̄2γ + 2M̄1M̄2

3
M̄j c̄2γ − 2M̄1M̄2M̄j

2
c̄jγ + 2M̄1M̄2M̄j

4
c̄jγ

− A2M̄1M̄2
2
c̄j

Aj

− A2M̄1
2
M̄2c̄j

Aj

− A2M̄2M̄j
2
c̄j

Aj

− M̄1M̄2
2
M̄j c̄2γ

2

− 2M̄1M̄2
2
M̄j

3
c̄2γ − M̄1M̄2

3
M̄j c̄2γ

2 − 2M̄1M̄2
3
M̄j

3
c̄2γ − 3M̄1M̄2

2
M̄j

2
c̄jγ

+ M̄1
2
M̄2M̄j

2
c̄jγ − M̄1M̄2M̄j

4
c̄jγ

2 + 2M̄1M̄2
2
M̄j

4
c̄jγ − A2M̄2

2
M̄j

2
c̄j

Aj

+
A2M̄1M̄2

2
c̄jγ

Aj

+
A2M̄1

2
M̄2c̄jγ

Aj

+
A2M̄2M̄j

2
c̄jγ

Aj

+
A2M̄1

2
M̄2M̄j

2
c̄j

Aj

+
A2M̄2

2
M̄j

2
c̄jγ

Aj

+
2A2M̄1M̄2c̄jγ

Aj

+
A2M̄1M̄2M̄j

2
c̄j

Aj

+
A2M̄1

2
M̄2M̄j

2
c̄jγ

2

Aj

− 2A2M̄1M̄2M̄j
2
c̄jγ

Aj

+
A2M̄1M̄2M̄j

2
c̄jγ

2

Aj

− 2A2M̄1
2
M̄2M̄j

2
c̄jγ

Aj

.
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The compositional-entropic transmission coefficient is:

σ2

ξ1
=

L+M

Y
, (A.38)

with

L = 2M̄j c̄2Ψ1 − 2M̄j c̄2Ψ2 − 2M̄j
3
c̄2Ψ1 + 2M̄j

3
c̄2Ψ2 − 4M̄j

2
c̄jΨ1 + 4M̄j

2
c̄jΨ2

+ 2M̄j
4
c̄jΨ1 − 2M̄j

4
c̄jΨ2 − 2M̄1M̄j

3
c̄2Ψ1 + M̄1

2
M̄j c̄2Ψ2 − M̄2

2
M̄j c̄2Ψ1

+ 2M̄1M̄j
3
c̄2Ψ2 − 2M̄2M̄j

3
c̄2Ψ1 + 2M̄2

2
M̄j c̄2Ψ2 − M̄2

3
M̄j c̄2Ψ1

+ 2M̄2M̄j
3
c̄2Ψ2 − 4M̄1M̄j

2
c̄jΨ1 + 2M̄1M̄j

2
c̄jΨ2 + 2M̄2M̄j

2
c̄jΨ1

+ 2M̄1M̄j
4
c̄jΨ1 − 4M̄2M̄j

2
c̄jΨ2 − M̄1M̄j

4
c̄jΨ2 − M̄2M̄j

4
c̄jΨ1

+ 2M̄2M̄j
4
c̄jΨ2 − M̄1

2
M̄j

3
c̄2Ψ2 + M̄2

2
M̄j

3
c̄2Ψ1 − 2M̄2

2
M̄j

3
c̄2Ψ2

+ M̄2
3
M̄j

3
c̄2Ψ1 − 2M̄1

2
M̄j

2
c̄jΨ2 + 2M̄2

2
M̄j

2
c̄jΨ1 + M̄1

2
M̄j

4
c̄jΨ2

− M̄2
2
M̄j

4
c̄jΨ1 + 2M̄1M̄j c̄2Ψ1 − 2M̄1M̄j c̄2Ψ2 + 2M̄2M̄j c̄2Ψ1 − 2M̄2M̄j c̄2Ψ2

+ 2M̄1M̄2M̄j c̄2Ψ1 − 2M̄1M̄j c̄2γΨ1 + 2M̄1M̄j c̄2γΨ2 + M̄1
2
M̄2

2
M̄j

3
c̄2Ψ2

− 2A2M̄1c̄jΨ2

Aj

− 2A2M̄2c̄jΨ1

Aj

+
2A2M̄1c̄jΨj

Aj

+
2A2M̄2c̄jΨj

Aj

− M̄1M̄2
2
M̄j c̄2Ψ1 − 2M̄1M̄2M̄j

3
c̄2Ψ1 + M̄1M̄2

2
M̄j c̄2Ψ2 − M̄1M̄2

3
M̄j c̄2Ψ1

+ M̄1
2
M̄2M̄j c̄2Ψ2 + 2M̄1M̄2M̄j

2
c̄jΨ1 − 2M̄1M̄2M̄j

2
c̄jΨ2 − M̄1M̄2M̄j

4
c̄jΨ1

+ M̄1M̄2M̄j
4
c̄jΨ2 + 2M̄1M̄j

3
c̄2γΨ1 − M̄1

2
M̄j c̄2γΨ2 + M̄2

2
M̄j c̄2γΨ1

− 2M̄1M̄j
3
c̄2γΨ2 − 2M̄2

2
M̄j c̄2γΨ2 + M̄2

3
M̄j c̄2γΨ1 + 4M̄1M̄j

2
c̄jγΨ1

− 2M̄1M̄j
4
c̄jγΨ1 + 4M̄2M̄j

2
c̄jγΨ2 + M̄1M̄j

4
c̄jγΨ2 + M̄2M̄j

4
c̄jγΨ1

− 2M̄2M̄j
4
c̄jγΨ2 − 2M̄1M̄j

2
c̄jγΨj − 2M̄2M̄j

2
c̄jγΨj +

2A2M̄j
2
c̄jΨ1

Aj

− 2A2M̄j
2
c̄jΨ2

Aj

+ M̄1M̄2
2
M̄j

3
c̄2Ψ1 − M̄1

2
M̄2

2
M̄j c̄2Ψ2 − M̄1M̄2

2
M̄j

3
c̄2Ψ2

+M̄1M̄2
3
M̄j

3
c̄2Ψ1−M̄1

2
M̄2M̄j

3
c̄2Ψ2+2M̄1M̄2

2
M̄j

2
c̄jΨ1+2M̄1

2
M̄2M̄j

2
c̄jΨ2

− M̄1M̄2
2
M̄j

4
c̄jΨ1 − M̄1

2
M̄2M̄j

4
c̄jΨ2 + M̄1

2
M̄j

3
c̄2γΨ2 − M̄2

2
M̄j

3
c̄2γΨ1

+ 2M̄2
2
M̄j

3
c̄2γΨ2 − M̄2

3
M̄j

3
c̄2γΨ1 + 2M̄1

2
M̄j

2
c̄jγΨ2 − 2M̄2

2
M̄j

2
c̄jγΨ1

− M̄1
2
M̄j

4
c̄jγΨ2 + M̄2

2
M̄j

4
c̄jγΨ1 + M̄1

2
M̄2

2
M̄j

3
c̄2γ

2Ψ2 −
A2M̄1M̄2

2
c̄jΨj

Aj

− A2M̄1
2
M̄2c̄jΨj

Aj

+
2A2M̄1M̄j

2
c̄jΨ1

Aj

+
A2M̄1M̄j

2
c̄jΨ2

Aj

+
A2M̄2M̄j

2
c̄jΨ1

Aj

,
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M = +
2A2M̄2M̄j

2
c̄jΨ2

Aj
− 2A2M̄1M̄j

2
c̄jΨj

Aj
− 2A2M̄2M̄j

2
c̄jΨj

Aj
− M̄1M̄2

2
M̄j c̄2γ

2Ψ1

+ M̄1M̄2
2
M̄j c̄2γ

2Ψ2 − 2M̄1M̄2
2
M̄j

3
c̄2γΨ1 − M̄1M̄2

3
M̄j c̄2γ

2Ψ1

+ 2M̄1
2
M̄2

2
M̄j c̄2γΨ2 + 2M̄1M̄2

2
M̄j

3
c̄2γΨ2 − 2M̄1M̄2

3
M̄j

3
c̄2γΨ1

+ M̄1
2
M̄2M̄j

3
c̄2γΨ2 − 4M̄1M̄2

2
M̄j

2
c̄jγΨ1 − 4M̄1

2
M̄2M̄j

2
c̄jγΨ2

− M̄1M̄2M̄j
4
c̄jγ

2Ψ1 + 2M̄1M̄2
2
M̄j

4
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4
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2Ψ2
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4
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2
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3
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+

2A2M̄1M̄j
2
c̄jγΨj
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+
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2
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2
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2
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2
M̄2M̄j

2
c̄jΨ2

Aj
+

A2M̄1M̄2
2
M̄j

2
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Aj

+
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2
M̄2M̄j

2
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2
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2
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+
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2
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2
c̄jγΨ1
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+
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2
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+
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2
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2
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2Ψ2
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+
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2
M̄2M̄j

2
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2
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2
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2
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2
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2
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2
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2Ψ1
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− A2M̄1

2
M̄2M̄j

2
c̄jγ

2Ψ2

Aj
+

A2M̄1M̄2
2
M̄j

2
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2Ψj
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+
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2
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B
Bicameral transfer functions

Analytical expressions for the reverberation and transmissive transfer functions of a
bicameral system with attenuation are presented here.

B.1 First chamber

The reverberation transfer functions for an acoustic source in the first chamber are
⋆

R+
1 and

⋆

R−
1 . If the pressure transducer is located downstream of the acoustic source

(x1 > xs1), we have:

⋆

R+
1 =

e−iωτp1−αlp1 +
⋆

Ro1e
−iωτq1−αlq1

1−Ri1

⋆

Ro1e−iωτ1−2αL1

, (B.1)

⋆

R−
1 =

Ri1

⋆

Ro1e
−iω(τr1+τ)−α(lr1+2L1) +Rie

−iωτs1−αls1

1−Ri1

⋆

Ro1e−iωτ1−2αL1

. (B.2)

If the pressure transducer is located upstream of the acoustic source (x < xs1), we
have:

⋆

R+
1 =

Ri1

⋆

Ro1e
−iω(τp1+τ1)−α(lp1+2L1) +

⋆

Ro1e
−iωτp1−αlq1

1−Ri1

⋆

Ro1e−iωτ1−2αL1

, (B.3)

⋆

R−
1 =

e−iωτr1−αlr1 +Ri1e
−iωτs1−αls1

1−Ri1

⋆

Ro1e−iωτ1−2αL1

, (B.4)

where
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⋆

Ro1 = Ro1 +
To1Ti2Ro2

eiωτ2−2αL2 −Ri2Ro2

, (B.5)

and τp1 = τ+x1
− τ+xs1

,, τq1 = τ1 − τ−x1
− τ+xs1

, τr1 = τ−xs1
− τ−x1

, and τs1 = τ−xs1
+ τ+x1

.

The transmissive transfer functions
⋆

T
+

2 and
⋆

T
−
2 enable an acoustic source in the

second chamber to be expressed as an acoustic source at the outlet of the first chamber.
We have:

⋆

T
+

2 =
⋆

Ti2Ro2e
−iωτq2−αlq2 , (B.6)

⋆

T
−
2 =

⋆

Ti2e
−iωτr2−αlr2 . (B.7)

where τq2 and τr2 are evaluated at x2 = 0 (at the inlet of the second chamber), and

⋆

Ti2 =
Ti2

1−Ro2Ri2e−iωτ2−2αL2
. (B.8)

B.2 Second chamber

The reverberation transfer functions (for an acoustic source in the second chamber)
are

⋆

R+
2 and

⋆

R−
2 . If the pressure transducer is located downstream of the acoustic

source (x2 > xs2), we have:

⋆

R+
2 =

e−iωτp2−αlp2 +Ro2e
−iωτq2−αlq2

1−
⋆

Ri2Ro2e−iωτ2−2αL2

, (B.9)

⋆

R−
2 =

⋆

Ri2Ro2e
−iω(τr2+τ)−α(lr2+2L2) +

⋆

Ri2e
−iωτs2−αls2

1−
⋆

Ri2Ro2e−iωτ2−2αL2

. (B.10)

If the pressure transducer is located upstream of the acoustic source (x2 < xs2), we
have:

⋆

R+
2 =

⋆

Ri2Ro2e
−iω(τp2+τ2)−α(lp2+2L2) +Ro2e

−iωτp2−αlq2

1−
⋆

Ri2Ro2e−iωτ2−2αL2

, (B.11)
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⋆

R−
2 =

e−iωτr2−αlr2 +
⋆

Ri2e
−iωτs2−αls2

1−
⋆

Ri2Ro2e−iωτ2−2αL2

, (B.12)

where
⋆

Ri2 = Ri2 +
Ti2To1Ro1

eiωτ1−2αL1 −Ri1Ro1

. (B.13)

and τp2 = τ+x2
− τ+xs2

,, τq2 = τ2 − τ−x2
− τ+xs2

, τr2 = τ−xs2
− τ−x2

, and τs2 = τ−xs2
+ τ+x2

.
The transmissive transfer functions

⋆

T
+

1 and
⋆

T
−
1 enable an acoustic source in the

first chamber to be expressed as an acoustic source at the inlet of the second chamber.
We have:

⋆

T
+

1 =
⋆

To1e
−iωτp1−αlp1 , (B.14)

⋆

T
−
1 =

⋆

To1Ri1e
−iωτs1−αls1 (B.15)

where τp1 and τs1 are evaluated at x1 = L1 (at the outlet of the first chamber), and

⋆

To1 =
To1

1−Ro1Ri1e−iωτ1−2αL1
. (B.16)
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