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Abstract
For many animals, the availability and provision of dietary resources can vary mark-
edly between juvenile and adult stages, often leading to a temporal separation of 
nutrient acquisition and use. Juvenile developmental programs are likely limited by 
the energetic demands of many adult tissues and processes with early developmental 
origins. Enhanced dietary quality in the adult stage may, therefore, alter selection 
on life history and growth patterns in juvenile stages. Heliconius are unique among 
butterflies in actively collecting and digesting pollen grains, which provide an adult 
source of essential amino acids. The origin of pollen feeding has therefore previously 
been hypothesized to lift constraints on larval growth rates, allowing Heliconius to 
spend less time as larvae when they are most vulnerable to predation. By measuring 
larval and pupal life-history traits across three pollen-feeding and three nonpollen-
feeding Heliconiini, we provide the first test of this hypothesis. Although we detect 
significant interspecific variation in larval and pupal development, we do not find any 
consistent shift associated with pollen feeding. We discuss how this result may fit 
with patterns of nitrogen allocation, the benefits of nitrogenous stores, and devel-
opmental limitations on growth. Our results provide a framework for studies aiming 
to link innovations in adult Heliconius to altered selection regimes and developmental 
programs in early life stages.
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1  |  INTRODUC TION

Life-history theory predicts that resource partitioning among life 
stages is optimized by both intrinsic life-history trade-offs and ex-
trinsic environmental effects on survival and reproduction (Partridge 
et al., 2005; Reznick, 2010; Roff, 1992; Stearns, 1992). In holome-
tabolous insects, ecological and biological differences between 
developmental periods can cause resource intake and utilization to 
become separated by life-history transitions, making mechanisms of 
resource budgeting particularly important (Ahlström, 2011; Boggs, 
1981; Istock, 1967). As the main foraging stage, larvae must there-
fore sustain immediate demands for growth and basal metabolism 
while building the reserves necessary for the pupal and adult stages 
(Boggs, 2009; Hahn, 2005).

In insects, the quantity and quality of the larval diet impacts a 
host of adult traits such as body size (Leftwich et al., 2017; Koyama 
& Mirth, 2018), lifespan (Min & Tatar, 2006; Grandison et al., 2009; 
Bruce et al., 2013; Runagall-Mcnaull, Bonduriansky and Crean, 
2015), survival (Sentinella et al., 2013; Rodrigues et al., 2015), re-
productive output (Awmack & Leather, 2002; Hoover et al., 2006; 
Leather, 1995), and even behavior (Davies et al., 2018). However, 
larvae are also typically subject to high risks of predation, parasitism, 
and disease (Feeny, 1976; Gilbert, 1972, 1991). For example, sev-
eral studies in tropical butterflies demonstrate high larval mortality 
(Smiley, 1985; Thurman et al., 2018), contrasting with low adult mor-
tality seen in mark-release-recapture surveys (Turner, 1971; Cook 
et al., 1976; Gilbert, 1984; Mallet et al., 1987). Consequently, the du-
ration of the larval period is subject to a trade-off between resource 
acquisition and minimizing mortality (Dmitriew, 2011; Mattson, 
1980; Nylin & Gotthard, 1998). This tension favors the evolution 
of optimal growth rates and “nutritional targets” (Raubenheimer 
& Simpson, 1993) which must be met before developmental tran-
sitions can be triggered. Larval nutritional targets are shaped by 
expected nutrient intake and expenditure during the adult phase 
(Boggs, 1981, 2009). Therefore, changes in adult diet are likely to 
alter patterns of resource requirements, unlocking potential for life 
history change (Houslay et al., 2015; Gray et al., 2018; Rostant et al., 
2020). However, our understanding of the interplay between adult 
diet and life-history evolution is limited to a small number of exper-
imental evolution and comparative studies (O’Meara & Craig, 1970; 
Telang & Wells, 2004; Rostant et al., 2020).

Lepidoptera provide excellent opportunities to study how vari-
ation in resource partitioning can shape life-history traits because 
they exhibit a variety of foraging ecologies as both larvae and adults 
(Slansky & Scriber, 1985; Swanson et al., 2016). As a resource, di-
etary nitrogen plays a crucial role in limiting developmental growth 
(Mattson, 1980) and constraining reproductive output (Fischer et al., 
2004; Cahenzli & Erhardt, 2013; Swanson et al., 2016; Espeset et al., 
2019). Since the majority of butterflies and moths feed on nectar 
(Slansky & Scriber, 1985), which is a poor source of amino acids 
(Baker & Baker, 1986), the nitrogenous requirements of adult butter-
flies and moths are largely provided for by nitrogen gathered during 
the larval phase from host-plant tissue (O’Brien et al., 2002). One 

notable exception are Heliconius butterflies, which actively collect 
and digest pollen as a consistent source of amino acids during the 
adult stage (Gilbert, 1972; Young & Montgomery, 2020). The ability 
to pollen-feed is a derived trait in Heliconius, marked by distinctive 
flower-handling behaviors (Boggs et al., 1981; Penz & Krenn, 2000), 
foraging strategies (Gilbert, 1975), and mouthpart modifications 
(Krenn & Penz, 1998) absent in all other related genera. Pollen feed-
ing in Heliconius brings about a substantial increase in expected adult 
nitrogen intake (Boggs, 1981), creating an evolutionary opportunity 
for change in patterns of juvenile resource allocation (Boggs, 2009). 
Gilbert (1972, 1991) and Boggs (1981) therefore predicted that the 
evolution of adult pollen feeding might have lifted constraints placed 
on the growth rates of Heliconius larvae by nitrogen nutritional tar-
gets, and that, relieved of these constraints, Heliconius may complete 
their larval development faster and thus minimize juvenile mortality. 
Indeed, previous studies in Heliconiini butterflies have highlighted 
differences in how pollen-feeding Heliconius and nonpollen-feeding 
outgroups allocate resources to reproduction during metamorphosis 
(Boggs, 1981; Dunlap-Pianka et al., 1977), indicating that nitrogen 
targets in Heliconius larvae may indeed be reduced.

Here, we test one of the main predictions about the opportu-
nity provided by the evolution of adult pollen feeding—namely, 
that Heliconius larvae will develop faster than closely related spe-
cies with an exclusively nectar-based adult diet. Specifically, we use 
a comparative approach to study the duration of larval and pupal 
development, larval growth curves, and pupal and adult weights of 
three pollen-feeding Heliconius species and three nonpollen-feeding 
Heliconiini.

2  |  METHODS

2.1  |  Animals

All individuals were reared between February and May of 2019 at 
the insectaries of the Smithsonian Tropical Research Institute in 
Gamboa, Panama, in ambient conditions. Outbred stock popula-
tions of six species were established: Heliconius erato demophoon, 
H. melpomene rosina and H. hecale melicerta (all pollen-feeders), and 
Dryas iulia, Agraulis vanillae, and Dryadula phaetusa (exclusive nec-
tarivores). Adults of each study species were collected within a 
2 km radius of Gamboa and placed in 2 × 2 × 2 m cages to mate. 
All stock cages received fresh Lantana flowers daily, and artificial 
feeders with a 35% sugar solution. Heliconius stocks also received 
fresh Psiguria and Gurania flowers, and crushed bee pollen dissolved 
in the artificial feeders. Eggs were removed from host plants (Table 
S1) by hand each day, and stored without food until emergence. 
First, instar hatchlings were transferred to host plant shoots inside 
individually labeled cups and fed on their preferred host plants; 
Passiflora biflora (H. erato, D. iulia, and D. phaetusa), or P. platyloba (H. 
hecale, H. melpomene and A. vanillae), so as to favor optimal growth 
rates. In addition, to confirm our growth data were consistent with 
natural populations, body weight data were compared to data from 
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wild-caught adults collected in 2012 and 2013, measured as de-
scribed in Montgomery et al. (2016).

2.2  |  Life history characterization

Larval hatchlings were weighed in groups of five, prior to feeding, 
with individual weight taken as one-fifth of the combined weight. 
Larvae were then weighed individually once every two days to 
minimize handling-related mortality. Individuals that successfully 
pupated were allowed to dry for 24  h and were then weighed. 
The duration of the larval and pupal periods was recorded in days. 
All individual weights were measured on a Sartorius H110 Handy 
Analytical Balance, with 0.1 mg resolution. Length of pupal period, 
but not weight, was also recorded for an additional 125  larvae, 
reared for other experiments.

2.3  |  Statistical analyses

All analyses were performed using R v.4.0.0 (R Core Team, 2020) and 
RStudio v.1.3 (RStudio Team, 2020). Unless stated otherwise, linear 
and generalized linear models (GLM) were generated with lme4 
v.1.1-23 (Bates et al., 2015). To test if larval development is short-
ened in pollen-feeding species, we first assessed interspecific varia-
tion in the duration of the larval period (in days) by treating the data 
as counts and using GLMs with Quasi-Poisson distributions to test 
the significance of species. Heliconius versus non-Heliconius com-
parisons were then made to assess whether observed interspecific 
variation was primarily due to group differences, by means of mixed 
effect Conway-Maxwell Poisson GLMs with species as a random 
factor, using the R package glmmTMB v.1.0.1 (Brooks et al., 2017). 
Additionally, linear models were built to test the robustness of the 
results, reported in Tables S2–S7. The same approach was followed 
to investigate variation in the duration of the pupal period.

We compared larval survival rates across species and adult 
foraging habits using the R package survival v. 3.2-13 (Therneau & 
Grambsch, 2000). Larval body mass measurements were used to re-
construct growth curves and ascertain whether patterns of larval 
growth varied across species and groups. To better detect differ-
ences in growth patterns, we normalized developmental age across 
species for each individual to a range between 0 (hatching day) and 
1 (day before pupation). Body mass was also normalized for each 
individual to a range between 0 and 1, with 1 equating to the last 
recorded larval weight. Since not all larvae were weighed on the 
last day before pupation, the difference in days between their final 
weight measurement and their final day as larvae was introduced as 
a random effect in the models. Linear models and GLMs with Gamma 
distribution and log-link functions were built to compare growth 
curves, with individual and species as additional random effects. 
Models of normalized data with the lowest AIC scores are reported 
in the main text. Additionally, pairwise comparisons were run using 
the R package statmod v.1.4.34 (Giner & Smyth, 2016). Full results 

from normalized growth curve models, as well as equivalent models 
built on the original raw growth data, are presented in Tables S2–S7.

Finally, we detected interspecific variation in pupal and adult 
body weight using linear models, while linear mixed models with 
species as a random effect were used for Heliconius versus non-
Heliconius comparisons. Linear regressions with species as a random 
effect were then built to test whether the duration of the larval pe-
riod correlated with pupal and adult weight.

3  |  RESULTS

3.1  |  Larval development

We tracked the development of 125  larvae, of which 58 reached 
the 5th and final instar. Survival rates did not vary significantly 
across species (X2

5,125 = 8.90, p = .100) or between pollen feeders 
and nonpollen feeders (X2

1,125  =  1.00, p  =  .300). While we found 
significant variation in the duration of the larval period between 
species (F5,52  =  10.30, p  <  .0001), pollen feeders did not spend 
less time as larvae than nonpollen feeders (X2

1,58 = 0.78, p = .379; 
Figure 1c; Table 1). Instead, interspecific variation in the duration 
of larval period was primarily driven by D. phaetusa, which had the 
longest developmental time (Table S2). When normalized to control 
for variation in the length of the larval period, larval growth curves 
(Figure 1a), which capture variation in the dynamics of the larval 
growth phase, also differ significantly between species (Figure 1b; 
F5,57 = 27.15, p <  .0001). Although pairwise contrasts were incon-
sistent across models, growth curves of pollen-feeding Heliconius 
consistently do not differ from their nonpollen-feeding relatives 
(F1,57 = 0.05, p = .829; Table S3).

3.2  |  Pupal development

Fifty-seven of the tracked larvae pupated successfully, and 46 com-
pleted pupal development. The weight of dried, fresh pupae varied 
across species (F5,51 = 17.74, p < .0001), but this variation was not ex-
plained by presence or absence of adult pollen feeding (F1,3.98 = 0.04, 
p  =  .845; Table S4). Heliconiini pupal development spanned 6 to 
9 days, with A. vanillae, H. erato, and H. melpomene pupae developing 
significantly faster than H. hecale, and significantly slower than D. 
iulia (F5,119 = 17.51, p < .0001; Table 2; Table S5). Interspecific varia-
tion in the duration of the pupal period was not explained by pollen 
feeding (X2

1,125 = 0.38, p = .540).

3.3  |  Adult weight and regressions

Forty-three of the 46 surviving pupae emerged successfully. Adult 
D. phaetusa weighed significantly more than all other species ex-
cept H. hecale, which were in turn significantly heavier than H. 
erato and H. melpomene (F5,37 = 11.06, p < .0001). As a group, adult 



4 of 9  |     HEBBERECHT et al.

body mass at emergence of Heliconius was not significantly differ-
ent from that of the nectarivorous species (F1,3.926 = 0.97, p = .382; 
Table S6). Final larval weight was a significant predictor of both 
pupal and adult weight (larva/pupa F1,19.796 = 412.73, p <  .0001, 
larva/adult F1,41 = 59.56, p < .0001), but there was no significant 
relationship between the duration of the larval period and body 
mass in future developmental stages (Figure 2; pupal body mass 
F1,54.231 = 0.47, p = .496, adult body mass F1,40.688 = 1.85, p = .181; 

Table S7). To confirm that our rearing conditions did not bias pat-
terns of growth, we compared our adult weights to those of wild-
caught butterflies from the same population. We found that wild 
butterflies were lighter than caged ones (F1,92 = 20.65, p < .0001), 
but the ranks between species were conserved (r(4)  =  1.00, 
p = .003).

4  |  DISCUSSION

By evolving to utilize a novel source of protein in the adult stage, 
Heliconius butterflies are hypothesized to have had an evolutionary 
opportunity to shorten the time spent as vulnerable larvae (Gilbert, 
1972, 1991). Collecting pollen as adults, which provides a rich source 
of amino acids, could help recover the costs of accelerated larval 
growth and reduce the burden of foraging larvae to accumulate re-
serves for the adult stage. However, our results reject this effect 
in Heliconius. Developmental rates are subject to well-documented 
trade-offs with other life-history traits (Nestel & Nemny-Lavy, 
2008; Cotter et al., 2011; Rádai et al., 2020). Since sampled individu-
als had access to unconstrained resources and preferred hostplants, 
our rearing treatment likely minimized plastic environmental effects 
governed by life-history trade-offs, and produced growth rates close 
to the maximum observed in the wild for each species. Under these 
conditions, we would expect to see evidence of any adaptive, de-
velopmental modifications related to the major adult dietary shift 
observed in Heliconius. While we observed significant species differ-
ences in larval and pupal developmental time, larval growth trajec-
tories and pupal and adult weight, they were not associated with the 
presence of pollen-feeding behavior in adults. This is not in line with 
patterns seen in other insects. For example, anautogenous strains of 
Aedes spp. mosquitoes, feeding on nutrient-rich blood meals before 
ovipositing, spend less time in the larval phase than autogenous adult 
strains, which do not require a blood meal to oviposit, and therefore 
have greater reliance on larval stores (O’Meara & Craig, 1970). Our 
results also contrast with investment shifts already described in 
Heliconius. First, pollen-feeding H. charithonia and H. cydno eclose 
with less total abdominal nitrogen, a proxy for larval reproductive 
investment, than the nonpollen-feeding Dryas iulia (Boggs, 1981). 
Second, the ovaries of H. charithonia  females are also smaller and 
contain fewer total oocytes than those of D. iulia females (Dunlap-
Pianka et al., 1977). These data strongly suggest that pollen feeders 
earmark relatively fewer larval reserves to reproduction, and if this 
energetic requirement were reallocated to the adult stage, this could 
favor the evolution of faster larval development in Heliconius. Below, 
we discuss three plausible alternative hypotheses that may explain 
why the energy diverted away from reproduction in Heliconius is not 
reallocated to larval growth rates.

First, Heliconius butterflies may use the larval reserves not 
invested in reproduction to strengthen their chemical defence 
(Cardoso & Gilbert, 2013). If so, the total nitrogen nutritional tar-
gets may remain the same for all Heliconiini larvae, and therefore 
limit growth rates across the board. Heliconiines are chemically 

F I G U R E  1 Larval growth curves and duration of larval 
development in pollen- (red tones) and nonpollen feeders (blue 
tones). (a) Variation in growth patterns and duration of larval period 
in raw larval weight data for 58 fully tracked individuals. Trend 
curves are generated with ggplot2 loess function and have no 
statistical purpose. (b) Variation in growth patterns and duration of 
larval period in normalized larval weight data for 58 fully tracked 
individuals as used in statistical comparisons. Growth patterns 
differ significantly between species (F5,415 = 3.202, p = .008) 
but not by adult foraging strategy (F1,417 = 0.292, p = .589). (c) 
Duration in days of the larval period per species. Duration of the 
larval period did not differ between pollen- and nonpollen feeders 
(X2

1,58 = 0.398, p = .528). Asterisks denote significant interspecific 
contrasts at p < .0001 in posthoc comparisons. (d) Phylogenetic 
relationships between study species, adapted from Kozak et al. 
(2015)
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defended by cyanogenic glycosides, both sequestered from their 
Passifloraceae host plants, and biosynthesized de novo from amino 
acids (Davis & Nahrstedt, 1987; Engler-Chaouat & Gilbert, 2007). 
Comparisons across 19 Heliconiini show that Heliconius species are 
generally more cyanogenic than the other heliconiines (Pinheiro de 
Castro et al., 2019). However, this difference is nonsignificant, and 

nonpollen-feeding Agraulis vanillae, as well as certain Eueides spp., 
show concentrations comparable to those detected in Heliconius 
species (Pinheiro de Castro et al., 2019). Such comparisons are com-
plicated by the fact that concentration of cyanogenic glycosides 
alone might not be an accurate measure of toxicity level. Moreover, 
there is considerable interspecific variation in chemical profile 

Species Pollen-feeding N

Mean 
duration 
(days)

Standard 
deviation

Standard 
error

Dryadula phaetusa no 7 15.429 1.397 0.528

Dryas iulia no 9 13.111 0.928 0.309

Agraulis vanillae no 9 12.333 1.000 0.333

Heliconius erato yes 10 12.100 1.101 0.348

Heliconius hecale yes 9 13.444 0.726 0.242

Heliconius melpomene yes 13 13.154 1.345 0.373

TA B L E  1 Average duration of the larval 
development across species. Standard 
error = standard deviation/√n

Species Pollen-feeding N

Mean 
duration 
(days)

Standard 
deviation

Standard 
error

Dryadula phaetusa no 14 8.429 0.646 0.173

Dryas iulia no 25 7.480 0.510 0.102

Agraulis vanillae no 23 7.913 0.515 0.107

Heliconius erato yes 29 7.690 0.541 0.101

Heliconius hecale yes 12 9.000 0.000 0.000

Heliconius melpomene yes 22 7.909 0.526 0.112

TA B L E  2 Average duration of the 
pupal period across species. Standard 
error = standard deviation/√n

F I G U R E  2 Correlations between pupal and adult weight and the duration of the larval period, by species. (a) There was no significant 
relationship between the length of the larval period and the final pupal weight when controlling for species (F1,54.231 = 0.470, p = .496). 
(b) There was no significant relationship between the duration of the larval phase and the final adult weight when controlling for species 
(F1,40.48 = 1.339, p = .254)
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(Pinheiro de Castro et al., 2019), with corresponding differences in 
the energetic costs of the cyanogenic metabolism. Further research 
is necessary to quantify energetic investment in toxicity throughout 
the life cycle, with particular focus on the allocation of larval nitro-
gen intake to cyanogenic metabolism.

Second, it may be that having large nutritional reserves upon 
emergence is advantageous for all Heliconiini, regardless of adult diet, 
particularly if the reliance on adult-derived amino acids is “phased 
in.” Adult body size positively correlates with oviposition rates in H. 
charithonia, and is a direct consequence of larval food quality and 
quantity (Dunlap-Pianka, 1979). Boggs and Iyengar, (2022) studied 
pollen use throughout the first 45 days of adult life in male and fe-
male H. charithonia in captivity. Male pollen load increased gradually 
until reaching a plateau around days 11–15, regardless of rearing en-
vironment. Females, on the other hand, delayed pollen collection until 
days 15–18 of adult life, unless they were fed ad libitum, in which case 
pollen-collection trends resembled those of males. Trends in both 
sexes suggest that the role of pollen-derived nutrition is less import-
ant during at least the first 10 days of adult life than it is thereafter, 
supporting a scenario in which it may be beneficial for young but-
terflies of either sex to emerge with large nutritional stores formed 
during the larval stage. Furthermore, oviposition rates of H. charitho-
nia females reared without pollen only begin to drop after 15–20 days 
of pollen starvation (Dunlap-Pianka et al., 1977) and are affected 
by the quality of larval diet (Dunlap-Pianka, 1979). Similarly, for at 
least some Heliconius species, cyanogenesis is unaffected by pollen 
deprivation during the first 20  days after emergence, but declines 
thereafter (Cardoso & Gilbert, 2013), suggesting that cyanogenic 
metabolism also exploits larval reserves during early adult life. These 
data indicate that larval-derived resources in Heliconius likely have a 
large role in supporting both reproduction and toxicity during the first 
weeks of adult life. This scenario appears to be at odds with cited 
evidence of comparatively less abdominal nitrogen and reproduc-
tive tissue in Heliconius than in nonpollen-feeding Dryas iulia (Boggs, 
1981; Dunlap-Pianka et al., 1977). However, organism-wide nitrogen 
contents in Boggs (1981, personal communication), are comparable 
between H. cydno and D. iulia (but not H. charithonia), suggesting that 
nitrogen not allocated to reproduction can be redirected elsewhere 
following adaptive pollen use, although this may not always be the 
case. More research is needed to track larval- and adult-derived ni-
trogen in the products of reproductive and cyanogenic processes 
throughout the first month of the adult stage.

Third, even if Heliconius larvae do have a smaller nitrogen quota 
to fill, nitrogen accumulation may not be the limiting factor for faster 
larval development (Dmitriew, 2011). The larvae in this study were 
grown in their native environment under ambient conditions, with 
abundant supply of their preferred host plants and minimum inci-
dence of disease. Therefore, we have likely observed the higher 
range of each species’ optimal growth rate. Our results may simply 
reflect the developmental constraints that cap all Heliconiini larvae 
under ideal growth conditions, and a faster development would not 
be possible without substantial costs (Arendt, 1997). For example, it 
may be that the developmental tasks shared by all Heliconiini, such 

as the accumulation of other nutrients, or the time and resources 
required to form the precursors of adult tissues or synthesize certain 
metabolites, are more time-limiting than the formation of nitrogen 
reserves.

In conclusion, the simple prediction that increased quality of 
adult diets will relax constraints on Heliconius growth rates during 
vulnerable larval and pupal stages is not supported by our results. 
Indeed, current available evidence suggests that pollen feeding may 
have primarily relieved constraints on adult, rather than larval, de-
velopment, allowing Heliconius to dramatically extend their lifespan 
(Ehrlich & Gilbert, 1973; Gilbert, 1972), sustain life-long oogenesis 
(Dunlap-Pianka et al., 1977), and potentially free nitrogenous re-
sources for use in enhanced chemical defence (Cardoso & Gilbert, 
2013; Young & Montgomery, 2020). To fully understand the con-
sequences that the evolution of pollen feeding had on life-history 
traits in Heliconius, it will be important to investigate trends in re-
source allocation and nitrogen use across the Heliconiini. In par-
ticular, it is unknown whether the larval nutritional target of pollen 
feeders is smaller than that of exclusive nectarivores, or if decreased 
investment in reproduction and increased investment in toxicity are 
characteristic traits in Heliconius. The fate of larval nitrogen through-
out life stages has not been established, and the complicated land-
scape of heliconiine toxicity is only starting to be revealed. Finding 
answers to these questions will prime future use of the unique 
Heliconiini system as a tool to understand the coevolution of dietary 
innovations and life history components.
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