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Abstract

Although HCMV encodes many genes required for the replication of its DNA genome, no HCMV-encoded orthologue of the
origin binding protein, which has been identified in other herpesviruses, has been identified. This has led to speculation that
HCMV may use other viral proteins or possibly cellular factors for the initiation of DNA synthesis. It is also unclear whether
cellular replication factors are required for efficient replication of viral DNA during or after viral replication origin
recognition. Consequently, we have asked whether cellular pre-replication (pre-RC) factors that are either initially associated
with cellular origin of replication (e.g. ORC2), those which recruit other replication factors (e.g. Cdt1 or Cdc6) or those which
are subsequently recruited (e.g. MCMs) play any role in the HCMV DNA replication. We show that whilst RNAi-mediated
knock-down of these factors in the cell affects cellular DNA replication, as predicted, it results in concomitant increases in
viral DNA replication. These data show that cellular factors which initiate cellular DNA synthesis are not required for the
initiation of replication of viral DNA and suggest that inhibition of cellular DNA synthesis, in itself, fosters conditions which
are conducive to viral DNA replication.
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Introduction

Replication from the single origin of lytic replication (oriLyt) of

HCMV requires the proteins from 11 loci of the HCMV genome,

6 core replication proteins and 5 transacting or cell survival factors

in oriLyt amplification assays [1]. The core viral replication

proteins are a single stranded binding protein (UL57); the helicase-

primase complex (UL70, UL102 and UL105) [2]; the viral DNA

polymerase (UL54) and the polymerase accessory factor (UL44)

[3][4]. UL44, essential for virus DNA replication [5,6], localises to

viral replication compartments in infected cells [7] and been

shown to interact with a potential replication initiator UL84 [8]

HCMV does not encode a functional origin binding protein (OBP)

and, whilst it has been suggested that this role is carried out by

UL84 and IE86 [9], whether this process involves cellular DNA

replication proteins is not known.

The control of cellular and viral DNA replication during

infection is intimately linked. Upon infection, HCMV pushes cells

through the G1/S check point into early S phase and it appears

that one mechanism for this is via IE86 activation of E2F

[10][11][12][13]. Once in S phase, cells arrest and do not replicate

their DNA. Both advance into S phase and then cell cycle arrest

have been attributed to IE86 [14][15][16][17].

It has been suggested that the inhibition of cellular DNA

replication by HCMV is due to disruption of the assembly of the

cellular pre-replication complex (pre-RC) [18] [13] which

constitutes the cellular origin binding complex. The key compo-

nents of the pre-RC are the origin recognition complex (ORC)

[19,20] [21] [22,23], [24][25] Cdc6 [24,25], Cdt1 [26] [24] [27]

and the minichromosome maintenance proteins (MCMs)

[28][29][30].

Several studies have addressed the expression and loading of

pre-RC proteins onto cellular DNA during HCMV infection [18]

[13] [31]. Except for a decrease in Cdt1 and an increase in Cdc6,

HCMV infection of quiescent fibroblasts results in little change in

the levels of expression of pre-RC proteins [18]. Similarly, analysis

of loading of pre-RCs onto cellular DNA also showed that HCMV

infection had little effect on chromatin loading of Cdt1 and the

ORCs [13]. In contrast, loading of MCMs onto cellular chromatin

appears to be prevented during HCMV infection [13] and this has

been shown to be due, at least in part, to the viral protein UL117

[31].

In this study, we have used siRNA knockdowns of Cdc6, Cdt1,

ORC2 and MCM7 to address their role, if any, in HCMV DNA

replication and show that infection of cells depleted for these

proteins results in enhanced viral lytic DNA replication. These

data formally rule out a requirement for cellular pre-RC proteins

for HCMV DNA replication and underscores the view that that

inhibition of cellular DNA synthesis, per se, is important for

efficient HCMV DNA replication.
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Methods

Cell Culture and Virus Infection
Human foetal foreskin fibroblasts (HFFFs) were obtained from

the American Type Culture Collection. Cells were grown in

Eagle’s minimal essential medium (Invitrogen) supplemented with

2 mM L-glutamine, 10% fetal calf serum (FCS), 100 U/ml

penicillin and 100 U/ml streptomycin (EMEM-10). Cells were

grown at 37uC in 5% CO2. For synchronisation of cells in G0

phase of cell cycle, cells were serum starved for 24 hours using

EMEM without added FCS (EMEM Wash). To induce the cells to

enter S phase, EMEM washed was replaced with EMEM-10.

HCMV Toledo strain [32] was used for all experiments. Virus

was cultured in HFFFs and the titre was determined by TCID50.

For replication assays, cells were infected at an MOI of 1.

siRNA Transfection
All siRNAs were provided by Dharmacon and were made up in

1x Dharmacon siRNA buffer to a concentration of 20 mM.

siRNAs were stored as aliquots at -80uC to avoid multiple freeze

thaw cycles. Sequences were as follows:

Scramble control (Sc) (custom) GCGCGCUUUGUAG-

GAUUCG. Cdc6 (sigenome) GAGCAGAGAUGUCCACU-

GAUU. Cdc6 (custom) ACUAGAACCAACAAAUGUC. Cdt1

(sigenome) CCAAGGAGGCACAGAAGCAUU. Cdt1 (custom)

GAUAAAGAAAUCCACCCCG. Cdt1 (Higa et al., 2003)

GUACCCCCGAGGCCCCAGA. ORC2 (sigenome) GAA-

GAAACCUCCUAUGAGAUU. ORC2 (custom) GGAGGAG-

CUAAAUUGAAGA. MCM7 (sigenome) GGAAAUAUCCCUC-

GUAGUAUU. UL44 1 (custom) GCCGUACAAGACGG-

CUAU. UL44 2 (custom) UUACUUCAAGACGCGAAA.

Transfection of siRNAs was carried out as previously described

[33]. In detail, where two or three different siRNAs were available

for one target, equivalent amounts of siRNAs were pooled. For

transfection of HFFF cells on a six well plate, cells were grown to

60% confluency and EMEM-10 was replaced with Opti-MEM

(Invitrogen) four hours prior to transfection. 192 pmol siRNA was

added to 470.4 ml Opti-MEM and incubated for 5 minutes at

room temperature, this was then added to a mix of 4.8 ml

Lipofectamine-2000 (Invitrogen) and 475.2 ml Opti-MEM, which

had been freshly made and incubated for 5 minutes at room

temperature. The siRNA-Lipofectamine solutions were incubated

for 20 minutes at room temp. 960 ml of the each solution was then

added to each well of plated cells and mixed gently. EMEM-10 or

serum-free EMEM where indicated, was replaced 3–6 hours post-

transfection. The protocol was scaled down for HFFFs on 8 well

Table 1. Primer sequences and PCR conditions.

Primer Target Sense Primer Sequence Anti-sense Primer Sequence

Annealing Temp.

(6C)
Mg Conc.
(mM)

Product size
(Kb)

IE CGTCCTTGACACGATGGAGT ATTCTTCGGCCAACTCTGGA 55 2.5 194

pp28 GAGGATGACGATAACGAGGA TCAAACAGCACATTAGACACACGG 55 2 548

MIEP TGGGACTTTCCTACTTGG CCAGGCGATCTGACGGTT 50 1.5 285

GAPDH GAGTCAACGGATTTGGTCGT TTGATTTTGGAGGGATCTCG 60 2.5 236

MIEP (QPCR) CCAAGTCTCCACCCCATTGAC GACATTTTGGAAAGTCCCGTTG 60 4.5 71

GAPDH (QPCR) CGGCTACTAGCGGTTTTACG AAGAAGATGCGGCTGACTGT 60 5.5 189

doi:10.1371/journal.pone.0036057.t001

Figure 1. Knockdown of UL44 results in a decrease in viral DNA replication. HFFFs transfected with siUL44 or scramble siRNA were infected
at 48 hours post-transfection with HCMV Toledo strain at an M.O.I. of 1. 96 hours post infection, knockdown of UL44 by siRNA was confirmed by
western blot analysis (A). Levels of viral DNA were also assessed by PCR (B). PP28 (at 96 h post-infection) and IE (at 24 h post-infection) was assayed
by western blot (C). Similarly, pp28 and IE RNA was also assessed at 96 h post-infection by RT-PCR (D).
doi:10.1371/journal.pone.0036057.g001
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slides so that 20 pmol siRNA was used per well. ‘Mock

transfection’ refers to cells treated with Lipofectamine without

the addition of siRNA. Specifically in Figure S2, siRNA-treated

cells were maintained in EMEM wash for 24 h prior to infection.

Western Blot Analysis
Cells and media were harvested 24 and 96 hours post-infection

using a cell scraper. Cell pellets were re-suspended in Laemmli

sample buffer (0.125 M Tris-HCl pH 6.8, 25% v/v glycerol,

1.25% v/v 2-Mercaptoethanol, and 1.25% SDS in distilled water),

boiled for 5 minutes and centrifuged at low speed for 2 minutes.

Proteins were separated by SDS PAGE and transferred onto

Hybond C nitrocellulose filters (Amersham). Following transfer,

the membrane was incubated in blocking solution (5% dried

skimmed milk, 0.1% Tween20 in PBS) for 30 minutes at room

temperature. The membrane was then incubated with the primary

antibody (diluted in blocking solution) for 1 hour at room

temperature or overnight at 4uC. Following this, the filter was

washed (0.1% Tween20 in PBS). The filters were then incubated

for 20 minutes at RT with the secondary antibody (diluted in

blocking solution). Antibody binding was detected using the ECL

or ECL+ system from Amersham (as described by the manufac-

turers’ instructions) and X-ray film. Exposure times varied from 1

second to 1 hour.

Antibodies: Anti-pp28 (mouse, Virusys) used 1 in 500, Anti-beta

actin (goat, Abcam) used 1 in 1000, Anti-UL44/p52/ICP36

(mouse, Autogenbioclear) used 1 in 1000, Anti-gapdh HRP

(rabbit, Abcam) used 1 in 1000, Anti-MCM7 (goat, Abcam) used

1 in 1000, Anti-ORC2 (mouse, Stressgen) used 1 in 1000, Anti-

mouse HRP (donkey, Dako) used 1 in 2000, Anti-goat HRP

(donkey, Dako) used 1 in 2000.

RNA Extraction
16106 Cells were lysed in 1 ml TRI REAGENT and RNA was

extracted according to manufacturers instructions. RNA was

treated with DNase (Promega) prior to reverse transcription

according to manufactueres instructions. RNA was reverse

transcribed using the Promega reverse transcription kit according

to the manufactures instruction. cDNA was stored at 220uC and

analysed by PCR.

Preparation of DNA from Cells
Cells and media were harvested using a cell scraper and pellets

were washed twice in 50 mM EDTA. The pellets were then re-

suspended in 0.25 ml TE. 0.25 ml PK buffer (300 mM NaCl,

200 mM tris pH 7.5, 25 mM EDTA) was added followed by 50 ml

10% SDS to lyse cells. Samples were then incubated at 37uC for

1–1.5 hours with 50 ml RNase A (2 mg/ml) to remove the RNA.

Protein was degraded by the addition of 10 ml proteinase K

(20 mg/ml) and incubation for a further 2 hours. DNA was then

extracted by phenol chloroform extraction and ethanol precipita-

tion in the presence of sodium acetate. Finally, the pellets were re-

suspended in 100 ml TE.

Standard Polymerase Chain Reaction (PCR)
PCR reactions for replication analysis were carried out using

Bioline Red PCR mix in accordance with the manufacturer’s

protocol. The PCR conditions used were denaturation at 94uC for

40 seconds, annealing for 40 seconds (temperature was Tm

dependent) and extension at 72uC for 90 seconds. PCR primer

sequences are shown in table 1. PCR for Cdc6 was carried out as

previously published [34]. DNA products were analysed by

separation on a 1–2% agarose gel at 100V (containing ethidium

bromide) and visualised under UV.

Quantitative PCR (QPCR)
QPCR was carried out using the taqman system (primers shown

in table 1). Mixes were made with Buffer, MgCl2 and Taq

polymerase (Qiagen), dNTPs (Bioline), primers (Sigma) and probes

(TIB MolBiol). GAPDH probe: Cy5-CACGTAGCTCAGGCCT-

CAAGACCT-BBQ. MIEP probe: AFAM-TGGGAGTTTG-

TTTTGGCACCAAA-TMR.

For analysis of levels of viral DNA, QPCR to the MIEP region

of the HCMV genome was performed. QPCR reactions were set

up as follows: 2 ml 10x Hifidelity Polymerase buffer, 2.4 ml MgCl2
(25 mM), 1.6 ml dNTP mix (25 mM each DNTP) 0.6 ml AD169

forward primer (10 mM), 0.1 ml AD169 reverse primer (10 mM),

0.05 ml AD169 probe (10 mM), 0.16 ml HotStar HiFidelity DNA

polymerase, 5.09 ml water and 8 ml DNA sample.

Figure 2. ORC2 knock-down decreases cellular DNA synthesis. Cells were mock transfected, transfected with control siRNA or transfected
with a siRNA to ORC2 in the presence of serum. 48 hours post-transfection, cells and media were harvested by trypsinisation and centrifugation and
analysed by western blot for ORC2 (A). Additionally, mock treated cells or cells transfected with siRNAs were maintained for 72 hours post-
transfection in EMEM-wash and then BrdU was added to the cell media in the presence of serum for 4 hours after which cells were fixed and stained
for BrdU incorporation and samples were analysed by immunofluorescence. 5 independent fields of view were counted for BrdU staining and the
percentage of and the percentage of BrdU positive cells was calculated. Error bars are mean plus standard error margin (B). Numbers of BrdU positive
cells are also shown for cells continually deprived of serum (minus serum) (B).
doi:10.1371/journal.pone.0036057.g002
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Results were normalized against cellular DNA content mea-

sured using a QPCR of the GAPDH gene. Reactions were set up

as follows: 2 ml 10x HiFidelity Polymerase buffer, 3.2 ml MgCl2
(25 mM), 1.6 ml dNTP mix (Bioline, 25 mM each DNTP) 0.6 ml

huGAP forward primer (10 mM), 1.8 ml huGAP reverse primer

(10 mM), 0.1 ml huGAP probe (10 mM), 0.16 ml HotStar HiFidelity

DNA polymerse, 2.54 ml water and 8 ml DNA sample.

Samples were run in a RotorGene 3000 thermocycler alongside

reactions containing known concentration of target DNA. These

were used to produce a standard curve and to allow quantitative

analysis of the sample DNA. The reaction conditions were as

follows: an initial denaturation and activation of enzyme at 95uC
for 15 min, then 45 cycles of annealing/extension at 60uC for

60 sec then denaturation at 95uC for 15 sec.

BrdU Staining
After treatment with siRNAs, HFFFs on 8 well slides were

cultured in EMEM-wash for 72 h. At this time, 10 nM

Bromodeoxyuridine (BrdU) in EMEM-10 was added for 4 hours

at 37uC. After this period, slides were fixed in 1% paraformalde-

hyde for 10 minutes then washed in PBS 3 times for 5 minutes

each. Slides were then permeabilized by incubation with 1% triton

X and washed 3 times for 5 minutes each. To allow detection of

BrdU by the antibody, the DNA was then denatured by

incubation with 4 M HCL for 10 minutes after which the slides

were washed 4 times for 5 minutes. 50 ml neat Rat anti-BrdU

supernatant (Abd Serotec, OBT00305) was added to each well and

incubated for 1 hour at room temperature. Following this, the

slides were washed 3 times for 5 minutes with PBS. Secondary

anti-rat alexaflour 594 (Molecular Probes), 1 in 100 dilution, was

added to each well and left for 1 hour. Slides were washed as

before and were then left to dry, mounted and viewed by

fluorescence microscopy. Images were analysed using Image pro

software.

Propidium Iodide Staining
After treatment with siRNAs, cells were cultured in EMEM-10

for 48 h. 16106 cells were washed twice in PBS then harvested

using cell dissociation buffer before being centrifuged at 1800 rpm

for 5 min in a MSE Falcon 6/300 centrifuge. Cell pellets were re-

suspended in 1 ml 70% ethanol and left for a minimum of 5

minutes at -20uC. The fixed cells were then washed in PBS and re-

suspended in 1 ml PBS plus 10 ml RNAse (2 mg/ml). Samples

were left for 30 minutes at room temperature and then spun at

2500 rpm as before. The pellet was then re-suspended in 1 ml

propidium iodide (50 mg/ml) and incubated for 1 hour at room

temperature. Finally, cells were washed twice in PBS, re-

suspended in 0.5 ml PBS and analysed by flow cytometry. Single

Figure 3. Knockdown of ORC2 increases viral DNA replication. HFFFs were transfected with siRNAs ORC2 or a scramble control in the
presence of serum. 48 hours post-transfection cells were infected at an MOI of 1. Cells and media were harvested at 24 (A and B) and 96 (A and C)
hours post-infection and DNA or protein isolated. Levels of viral DNA were quantified by qPCR and normalized against cellular DNA (A). Error bars
shown are mean plus standard error margin. Alternatively, cells were analysed at 24 h post-infection for the viral gene product IE (B) or at 96 h post-
infection for the viral gene product pp28 (C) by western blot.
doi:10.1371/journal.pone.0036057.g003
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cells were gated and percentages of cells in the G0/G1 phases of

the cell cycle were calculated using winMDi.

Results

Removal of Cellular ORC2 Results in Increased HCMV
DNA Replication

In order to determine the effect of removal of cellular DNA

replication factors on HCMV infection, we used RNAi technology

to deplete expression of the cellular proteins using transient

delivery of specific siRNAs; a protocol which has been used

effectively on a number of HCMV genes to specifically inhibit viral

gene expression [33] [35]. Initially, as a proof of principle, we

tested the effect of siRNA knock down of HCMV UL44, an

essential viral DNA polymerase accessory protein [5], on viral

DNA replication. Figure 1A shows that UL44 siRNAs specific for

UL44 effectively prevent the expression of UL44 protein by

western blot as late as 96 h post-infection. Consistent with the

known essential function of UL44 as a viral DNA polymerase

accessory protein [36], analysis of accumulation of viral DNA at

96 h post-infection showed that levels of viral DNA were also

substantially reduced in UL44-specific siRNA treated cells

(figure 1B). We also noted that siRNAs to UL44 prevented

accumulation of the late protein pp28 RNA or protein (figure 1C

and D), whose expression is dependent on viral DNA replication

[37], but did not prevent expression of the major IE72 protein at

24 h post-infection (Figure 1C and statistical analysis shown in

Figure S1A). Again, this was consistent with the view that siRNAs

to UL44 specifically inhibited viral replication but not virus entry

or immediate early events. Similar results have observed by others

using anti-sense RNAs to UL44 in immortalised glioblastoma cells

[36].

On the basis that siRNA delivery, targeting a factor known to be

essential for viral DNA synthesis did, indeed, specifically inhibit

Figure 4. Cdt1 and Cdc6 knock-down reduces cellular DNA synthesis, as expected. Cells were transfected with control siRNA or transfected
with a siRNA to Cdt1 or Cdc6 in the presence of serum. 48 hours post-transfection cells and media were harvested by trypsinisation and
centrifugation. Cells were analysed by RT-PCR for Cdt1 or Cdc6 mRNA levels (A). Additionally, mock treated cells or cells transfected with siRNAs cells
were maintained for 72 hours post-transfection in EMEM-wash and then BrdU was added to the cell media for 4 hours after which cells were fixed and
stained for BrdU incorporation and samples were analysed by immunofluorescence. 5 independent fields of view were counted for BrdU staining and
the percentage of BrdU positive cells was calculated (B). Error bars are mean plus standard error margin. Numbers of BrdU positive cells are also
shown for cells deprived of serum (minus serum) (B).
doi:10.1371/journal.pone.0036057.g004
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viral DNA replication, we next tested the effect of knock-down of a

cellular factor normally constitutively associated with cellular

origins of replication. We initially chose to target cellular ORC2

which is a key component of the origin recognition complex and

acts as a platform for the assembly of the pre-RC [19,20]

[21][22][23]. Delivery of siRNAs specific for ORC2 resulted in

good levels of ORC2 depletion (figure 2A) which also resulted in a

decrease in cellular DNA synthesis (figure 2B). The effect of ORC2

depletion on HCMV infection was profound. We observed a

substantial increase in the level of viral DNA replication at 96 h

post-infection in siORC2 treated cells compared to cells treated

with control siRNA (figure 3A). This could not be attributed to

increased uptake of viral DNA in siORC2 treated cells as

evidenced from the equivalent levels of viral DNA in control

siRNA treated cells and siORC2 treated cells at 24 h post-

infection (figure 3A). Removal of ORC2 also led to increased levels

of IE72 expression at 24 h post-infection (figure 3B and statistical

analysis shown in figure S1A) and, consistent with the increase in

viral DNA replication, an increase in expression of the true late

protein pp28 (figure 3C).

Taken together, these data show in the absence of ORC2, an

initiating factor for the cellular pre-RC, viral IE gene expression

and subsequent viral DNA replication is substantially enhanced.

Removal of Cellular Cdt1 or Cdc6 Causes an Upregulation
of HCMV DNA Replication

Clearly, removal of the cellular factor ORC2 during HCMV

infection did not impede viral DNA synthesis and actually led to

an increase in viral replication. Consequently, we next asked

whether removal of cellular proteins such as Cdt1 and Cdc6,

which are responsible for licensing cellular replication origins by

recruiting MCM proteins [30] [19] [24][25][26][27], had any

effect on infection. It is interesting to note that at IE/early times of

HCMV infection these factors are differentially regulated: Cdt1 is

downregulated whereas Cdc6 is upregulated [18]. Such an

increase in Cdc6, could reflect a requirement for this cellular

factor during infection. Similarly, in our laboratory, we have

identified an interaction between the viral gene IE86 and Cdt1

(Bain et al., manuscript in preparation). The role for this

interaction between Cdt1 and IE86 is not known. However, one

possibility is that the interaction between Cdt1 and IE86, which

Figure 5. Knockdown of Cdt1 increases viral DNA replication. HFFFs were transfected with siRNAs to Cdt1or a scramble control in the
presence of serum. 48 hours post-transfection cells were infected at an MOI of 1. Cells and media were harvested at 24 and 96 hours post-infection
and DNA isolated. Levels of viral DNA were quantified by qPCR and normalized against cellular DNA (A). Error bars shown are mean plus standard
error margin. Alternatively, cells were also analysed at 24 h post-infection for the viral gene product IE (B) or at 96 h post-infection for the viral gene
product pp28 (C) by western blot.
doi:10.1371/journal.pone.0036057.g005
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itself binds close to the viral origin of replication, results in

recruitment of Cdt1 to viral origins of replication, perhaps

facilitating viral DNA replication. Alternatively, given that steady

state levels of Cdt1 are reduced during HCMV infection [18],

IE86 may sequester Cdt1 to prevent functions of Cdt1 which are

perhaps detrimental to viral replication.

To address this, we first ensured that we were able to remove

Cdt1 or Cdc6 by RNAi and confirmed the effects of their removal

on cellular DNA synthesis. Figure 4A clearly shows that Cdt1 and

Cdc6 mRNA levels were decreased following specific siRNA

treatment. Figure 4B also shows that removal of either Cdt1 or

Cdc6 led to a considerable decrease in the ability of cells to

synthesis cellular DNA.

In contrast, removal of Cdt1 during the course of a virus

infection had profound effects on viral DNA replication. Figure 5A

shows that treatment of cells with siRNAs specific for Cdt1

resulted in a major increase in virus genomes at 96 post-infection

compared to cells treated with scrambled siRNA, although we

note that knock-down of Cdt1 resulted in a small increase in

delivery of viral genomes (about 2 fold, see figure 5A). Interest-

ingly, removal of Cdt1 during infection also led to a profound

increase in levels of IE72 expression at 24 h post-infection

(figure 5B and statistical analysis shown in figure S1A) and,

consistent with increased levels of viral DNA replication, also

resulted in increased levels of the true late pp28 protein at 96 h

post-infection (figure 5C).

Similar to removal of Cdt1, removal of Cdc6 during infection

(figure 6) also resulted in increased viral DNA replication

(figure 6A) with a concomitant increase in IE72 expression at

24 h post-infection (figure 6B and statistical analysis shown in

figure S1A) and, consistent with an increase in viral DNA

replication, increased pp28 expression at 96 h post-infection

(figure 6C). However, the level of increase in IE gene expression,

viral DNA replication and pp28 expression was not as high as that

induced by removal of Cdt1.

Removal of Cellular MCM7 Causes an upregulation of
HCMV DNA Replication

MCM7 is an integral component of the MCM complex which is

essential for both initiation and elongation of DNA replication and

is recruited as part of the pre-RC during cellular DNA replication

[29][30] [28]. An integral function of the MCM complex is

helicase activity and once MCM complex has been recruited to

the cellular origin of replication a fully licensed replication origin

exists. Although HCMV encodes its own replicative helicase-

primase complex in the viral UL70, UL102, and UL105 gene

products [38][39], it is not known if cellular MCMs are required

for viral DNA replication. Consequently, we also analysed HCMV

DNA replication in cells in which MCM7 had been depleted by

Figure 6. Knockdown of Cdc6 increases viral DNA replication. HFFFs were transfected with siRNA Cdc6 or a scramble control in the presence
of serum. 48 hours post-transfection cells were infected at an MOI of 1. Cells and media were harvested at 24 and 96 hours post-infection and DNA
isolated. Levels of viral DNA were quantified by qPCR and normalized against cellular DNA. Error bars shown are mean plus standard error margin (A).
Alternatively, cells were also analysed at 24 h post-infection for the viral gene product IE (B) or at 96 h post-infection for the viral gene product pp28
(C) by western blot.
doi:10.1371/journal.pone.0036057.g006

Cellular ORC Depletion Increases HCMV Replication
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RNAi. To test whether MCM7 is required for the replication of

viral DNA, siRNA molecules were designed to target MCM7.

Figure 7A shows that treatment of cells with MCM7 specific

siRNAs led to a good reduction in steady state levels of MCM7

protein by western blot analysis. Consistent with the known effects

of MCM7 depletion [40], this also led to a profound inhibition of

cellular DNA synthesis (figure 7B).

Nevertheless, this RNAi-mediated reduction in MCM7 during

infection with HCMV once again led to a robust increase in

cellular DNA synthesis at 96 h post-infection (figure 8A) which was

not due to differences in input genome and also led to concomitant

increases in IE72 expression at 24 h post-infection (figure 8B and

statistical analysis shown in figure S1A) and pp28 expression at

96 h post-infection (figure 8C).

In the experiments so far, knock-downs of specific pre-RC

components were carried out in a background of serum which

would otherwise provide the necessary cellular conditions required

for cellular DNA replication. We, therefore, asked whether the

effects of knock-down of pre-RC components in serum-depleted

conditions would also result in similar effects on viral IE gene

expression. Intriguingly, knock-down of pre-RC components in

serum-free medium showed only marginal effects on viral IE gene

expression (see figure S2). One interpretation of this is that under

conditions where there is no competition between the virus and

the cell for cellular factors required for DNA replication, because

cellular DNA replication is already potently inhibited by serum-

deprivation, additional knock-down of specific pre-RC compo-

nents have little additional effects.

Taken together, the data suggest that knock-down of ORC2,

Cdt1 and Cdc6 or MCM7 in a background of conditions

otherwise conducive to cell proliferation, leads to an enhancement

of viral DNA replication.

Discussion

The pre-RC represents a key component of the cellular

replication machinery. The complex assembles from its compo-

nents in a stepwise manner onto cellular DNA replication origin.

This culminates in phosphorylation of the MCMs which leads to

origin melting and recruitment of the DNA polymerase [41].

Cellular pre-RC proteins have been shown to be involved in

herpesvirus latent replication. Both MCM and ORC proteins have

been shown by ChIP assays to bind EBV oriP [42][43] where they

appear to be recruited to the origin by EBNA1 [44]. ORC and

MCMs have also been shown to play a role at the latent origin of

KSHV [45][46][47]. However, to date, it is not known if such

cellular factors are required for herpesvirus lytic replication.

In, for example, herpes simplex virus (HSV) lytic replication,

viral DNA synthesis is initiated by an origin binding protein, UL9.

HCMV does not encode a de facto origin binding protein, so the

exact mechanism by which it initiates viral lytic DNA replication is

unclear. Although, recently, it has been shown that HCMV UL84

can interact with the viral origin of replication and may function as

a replication initiator via interactions with C/EBP [38,48] [49],

other work has shown that UL84 is dispensible for HCMV lytic

replication [50]. Consequently, we have analysed whether

initiation of HCMV DNA replication involves host cell pre-RC

factors.

We tested whether viral DNA replication required factors

involved in three defined stages of cellular pre-RC formation;

these were an initiation factor (ORC2), two recruiting factors

(Cdt1 and Cdc6) and a recruited factor (MCM7).

Our data clearly showed that none of the components of the

cellular pre-RC were required for viral DNA replication. On the

contrary, removal of cellular components required for any stage of

cellular pre-RC formation, resulting in inhibition of cellular DNA

replication, actually led to robust increases in viral DNA

replication. It is well established that HCMV infection results in

cell cycle arrest, suggesting that cellular DNA replication may

compete against viral DNA replication [10][11][12] [51] [17]

[52][53].

Thus, compromising cellular DNA replication by removing

cellular components required for cellular DNA synthesis likely

results in a cellular environment which is more conducive to viral

DNA replication.

Figure 7. MCM7 knock-down reduces cellular DNA synthesis, as expected. Cells were transfected with control siRNA, or transfected with a
siRNA to MCM7. 48 hours post-transfection cells and media were harvested by trypsinisation and centrifugation. Cells were analysed by western blot
for MCM7 content (A). Additionally, mock treated cells or cells transfected with siRNAs were maintained for 72 hours post-transfection in EMEM-wash
and then BrdU was added to the cell media for 4 hours after which cells were fixed and stained for BrdU incorporation and samples were analysed by
immunofluorescence. 5 independent fields of view were counted for BrdU staining and the percentage of BrdU positive cells was calculated. Error
bars are mean plus standard error margin (B). Numbers of BrdU positive cells are also shown for cells deprived of serum (minus serum) (B).
doi:10.1371/journal.pone.0036057.g007
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We also noted that knock-down of ORC2, Cdt1, Cdc6 or

MCM7 as well as resulting in increased viral DNA replication

resulted in robust increases in IE72 expression at IE times of

infection - this could not be explained by, for instance, an

increase in delivery of viral genome to cells lacking these cellular

replication proteins. It is known that HCMV only initiates IE

gene expression in cells in G0/G1 or very early S phase

[54,55,56] and it is well established that depletion of ORC2,

Cdt1, Cdc6 or MCM7 can result in cell cycle arrest at G0/G1

[40] [6,57,58,59,60,61,62]. Consequently, we tested whether cells

treated with specific siRNAs to pre-RC factors under the

conditions we used for our infection assays, resulted in major

differences in the number of cells in G0/G1. Delivery of siRNAs

to ORC2, Cdt1, Cdc6 or MCM7 did result in low but consistent

increases in cells in G0/G1 (see figure S3) which may explain, at

least in part, the increased levels of IE expression in these cells.

However, knock-down of Cdt1 routinely resulted in the highest

increase in IE72 expression (see Figure 5B and figure S1A) and,

while this may have been partly due a minor increase in genome

delivery, Cdt1 knockdown did not routinely result in the highest

increase in cells in G0/G1 - the highest increase in cells in G0/

G1 actually resulted from treatment with siMCM7 (see figure 7

and figure S3) yet siMCM7 treated cells did not result in the

highest increase in IE gene expression.

Consequently, we believe other effects besides increases in

numbers of cells in G0/G1, per se, are responsible for increased

efficiency of IE gene expression and viral DNA replication. These

analyses are presently ongoing.

In conclusion, we have shown that the independent depletion

of a number of cellular pre-RC components, which leads to arrest

of cellular DNA synthesis, does not prevent HCMV DNA

synthesis. On the contrary, removal of ORC2, Cdt1,Cdc6 or

MCM7 led to increased viral DNA synthesis. The reasons for this

are unclear, however, it is possible that arrest of cellular DNA

synthesis enhances the availability of other, as yet unidentified

components important for viral IE expression and viral DNA

synthesis which are normally abundant during G0/G1 phase of

the cell cycle.

Supporting Information

Figure S1 Quantification of the effects of knockdown of
UL44, Cdt1, Cdc6, MCM7 or ORC2 on IE72 expression.
A) HFFFs were transfected with siRNAs as indicated or a scramble

control in the presence of serum. 24 hours post-infection (at an

M.O.I. of one), cells were analysed by western blot for IE

expression. Data represent triplicate experiments averaged to

GAPDH levels and analysed using Image J freeware.

(TIF)

Figure S2 Cells halted at G0 by serum-starvation in the
absence of Cdc6, Cdt1 or MCM7 show marginal
increases in IE and pp28 expression during HCMV
infection. A) Cells transfected with siRNAs were maintained in

Figure 8. Knockdown of MCM7 increases viral DNA replication. HFFFs were transfected with siRNAs to MCM7 or a scramble control in the
presence of serum. 48 hours post-transfection cells were infected at an MOI of 1. Cells and media were harvested at 24 and 96 hours post-infection
and DNA isolated. Levels of viral DNA were quantified by qPCR and normalized against cellular DNA. Error bars shown are mean plus standard error
margin (A). Alternatively, at 24 h post-infection cells were analysed for the viral gene product IE (B) or at 96 h post-infection for the viral gene product
pp28 (C) by western blot.
doi:10.1371/journal.pone.0036057.g008
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EMEM-wash for 24 h then infected with HCMV. 24 h or 96 h

post-infection, IE and pp28 protein was analysed by western blot,

respectively. B) Relative levels of IE proteins in (A) were quantified

using Image J freeware after normalisation to actin levels.

(TIF)

Figure S3 Effects of knockdown of ORC2, MCM7, Cdt1,
and Cdc6 on cell cycle. HFFFs were transfected with siRNAs as

labelled. After this, cells were cultured in EMEM-10 for 48 h and

then stained with PI and cell cycle analysis was assayed by flow

cytometry after gating for single cells. Percentages of cells in the

G0/G1 phases of the cell cycle were calculated using winMDi

software. Untreated cells in the absence of serum (minus serum)

are also shown for comparison.

(TIF)
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