
Data-Efficient Reinforcement Learning in
Continuous State-Action Gaussian-POMDPs

Rowan Thomas McAllister
Department of Engineering

Cambridge University
Cambridge, CB2 1PZ
rtm26@cam.ac.uk

Carl Edward Rasmussen
Department of Engineering
University of Cambridge

Cambridge, CB2 1PZ
cer54@cam.ac.uk

Abstract

We present a data-efficient reinforcement learning method for continuous state-
action systems under significant observation noise. Data-efficient solutions under
small noise exist, such as PILCO which learns the cartpole swing-up task in
30s. PILCO evaluates policies by planning state-trajectories using a dynamics
model. However, PILCO applies policies to the observed state, therefore planning
in observation space. We extend PILCO with filtering to instead plan in belief
space, consistent with partially observable Markov decisions process (POMDP)
planning. This enables data-efficient learning under significant observation noise,
outperforming more naive methods such as post-hoc application of a filter to
policies optimised by the original (unfiltered) PILCO algorithm. We test our
method on the cartpole swing-up task, which involves nonlinear dynamics and
requires nonlinear control.

1 Introduction

The Probabilistic Inference and Learning for COntrol (PILCO) [5] framework is a reinforcement
learning algorithm, which uses Gaussian Processes (GPs) to learn the dynamics in continuous state
spaces. The method has shown to be highly efficient in the sense that it can learn with only very
few interactions with the real system. However, a serious limitation of PILCO is that it assumes
that the observation noise level is small. There are two main reasons which make this assumption
necessary. Firstly, the dynamics are learnt from the noisy observations, but learning the transition
model in this way doesn’t correctly account for the noise in the observations. If the noise is assumed
small, then this will be a good approximation to the real transition function. Secondly, PILCO uses
the noisy observation directly to calculate the action, which is problematic if the observation noise is
substantial. Consider a policy controlling an unstable system, where high gain feed-back is necessary
for good performance. Observation noise is amplified when the noisy input is fed directly to the high
gain controller, which in turn injects noise back into the state, creating cycles of increasing variance
and instability.

In this paper we extend PILCO to address these two shortcomings, enabling PILCO to be used in
situations with substantial observation noise. The first issue is addressed using the so-called Direct
method for training the transition model, see section 3.3. The second problem can be tackled by
filtering the observations. One way to look at this is that PILCO does planning in observation space,
rather than in belief space. In this paper we extend PILCO to allow filtering of the state, by combining
the previous state distribution with the dynamics model and the observation using Bayes rule. Note,
that this is easily done when the controller is being applied, but to gain the full benefit, we have to
also take the filter into account when optimising the policy.

PILCO trains its policy through minimising the expected predicted loss when simulating the system
and controller actions. Since the dynamics are not known exactly, the simulation in PILCO had to

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

simulate distributions of possible trajectories of the physical state of the system. This was achieved
using an analytical approximation based on moment-matching and Gaussian state distributions. In
this paper we thus need to augment the simulation over physical states to include the state of the
filter, an information state or belief state. A complication is that the belief state is itself a probability
distribution, necessitating simulating distributions over distributions. This allows our algorithm to
not only apply filtering during execution, but also anticipate the effects of filtering during training,
thereby learning a better policy.

We will first give a brief outline of related work in section 2 and the original PILCO algorithm
in section 3, including the proposed use of the ‘Direct method’ for training dynamics from noisy
observations in section 3.3. In section 4 will derive the algorithm for POMDP training or planning
in belief space. Note an assumption is that we observe noisy versions of the state variables. We
do not handle more general POMDPs where other unobserved states are also learnt nor learn any
other mapping from the state space to observations other than additive Gaussian noise. In the final
sections we show experimental results of our proposed algorithm handling observation noise better
than competing algorithms.

2 Related work

Implementing a filter is straightforward when the system dynamics are known and linear, referred to
as Kalman filtering. For known nonlinear systems, the extended Kalman filter (EKF) is often adequate
(e.g. [13]), as long as the dynamics are approximately linear within the region covered by the belief
distribution. Otherwise, the EKF’s first order Taylor expansion approximation breaks down. Larger
nonlinearities warrant the unscented Kalman filter (UKF) – a deterministic sampling technique to
estimate moments – or particle methods [7, 12]. However, if moments can be computed analytically
and exactly, moment-matching methods are preferred. Moment-matching using distributions from
the exponential family (e.g. Gaussians) is equivalent to optimising the Kullback-Leibler divergence
KL(p||q) between the true distribution p and an approximate distribution q. In such cases, moment-
matching is less susceptible to model bias than the EKF due to its conservative predictions [4].

Unfortunately, the literature does not provide a continuous state-action method that is both data
efficient and resistant to noise when the dynamics are unknown and locally nonlinear. Model-free
methods can solve many tasks but require thousands of trials to solve the cartpole swing-up task [8],
opposed to model-based methods like PILCO which requires about six. Sometimes the dynamics are
partially-known, with known functional form yet unknown parameters. Such ‘grey-box’ problems
have the aesthetic solution of incorporating the unknown dynamics parameters into the state, reducing
the learning task to a POMDP planning task [6, 12, 14]. Finite state-action space tasks can be similarly
solved, perhaps using Dirichlet parameters to model the finitely-many state-action-state transitions
[10]. However, such solutions are not suitable for continuous-state ‘black-box’ problems with no prior
dynamics knowledge. The original PILCO framework does not assume task-specific prior dynamics
knowledge (only that the prior is vague, encoding only time-independent dynamics and smoothness
on some unknown scale) yet assumes full state observability, failing under moderate sensor noise.
One proposed solution is to filter observations during policy execution [4]. However, without also
predicting system trajectories w.r.t. the filtering process, a policy is merely optimised for unfiltered
control, not filtered control. The mismatch between unfiltered-prediction and filtered-execution
restricts PILCO’s ability to take full advantage of filtering. Dallaire et al. [3] optimise a policy using
a more realistic filtered-prediction. However, the method neglects model uncertainty by using the
maximum a posteriori (MAP) model. Unlike the method of Deisenroth and Peters [4] which gives a
full probabilistic treatment of the dynamics predictions, work by Dallaire et al. [3] is therefore highly
susceptible to model error, hampering data-efficiency.

We instead predict system trajectories using closed loop filtered control precisely because we execute
closed loop filtered control. The resulting policies are thus optimised for the specific case in which
they are used. Doing so, our method retains the same data-efficiency properties of PILCO whilst
applicable to tasks with high observation noise. To evaluate our method, we use the benchmark
cartpole swing-up task with noisy sensors. We show that realistic and probabilistic prediction enable
our method to outperform the aforementioned methods.

2

Algorithm 1 PILCO
1: Define policy’s functional form: π : zt × ψ → ut.
2: Initialise policy parameters ψ randomly.
3: repeat
4: Execute policy, record data.
5: Learn dynamics model p(f).
6: Predict state trajectories from p(X0) to p(XT).
7: Evaluate policy: J(ψ) =

∑T
t=0 γ

tEt, Et = EX [cost(Xt)|ψ].
8: Improve policy: ψ ← argminψJ(ψ).
9: until policy parameters ψ converge

3 The PILCO algorithm

PILCO is a model-based policy-search RL algorithm, summarised by Algorithm 1. It applies to
continuous-state, continuous-action, continuous-observation and discrete-time control tasks. After
the policy is executed, the additional data is recorded to train a probabilistic dynamics model. The
probabilistic dynamics model is then used to predict one-step system dynamics (from one timestep
to the next). This allows PILCO to probabilistically predict multi-step system trajectories over an
arbitrary time horizon T , by repeatedly using the predictive dynamics model’s output at one timestep,
as the (uncertain) input in the following timestep. For tractability PILCO uses moment-matching to
keep the latent state distribution Gaussian. The result is an analytic distribution of state-trajectories,
approximated as a joint Gaussian distribution over T states. The policy is evaluated as the expected
total cost of the trajectories, where the cost function is assumed to be known. Next, the policy is
improved using local gradient-based optimisation, searching over policy-parameter space. A distinct
advantage of moment-matched prediction for policy search instead of particle methods is smoother
policy gradients and fewer local optima [9]. This process then repeats a small number of iterations
before converging to a locally optimal policy. We now discuss details of each step in Algorithm 1
below, with policy evaluation and improvement discussed Appendix B.

3.1 Execution phase
Once a policy is initialised, PILCO can execute the system (Algorithm 1, line 4). Let the latent state
of the system at time t be xt ∈ RD, which is noisily observed as zt = xt + εt, where εt

iid∼ N (0,Σε).
The policy π, parameterised by ψ, takes observation zt as input, and outputs a control action
ut = π(zt, ψ) ∈ RF . Applying action ut to the dynamical system in state xt, results in a new system
state xt+1. Repeating until horizon T results in a new single state-trajectory of data.

3.2 Learning dynamics
To learn the unknown dynamics (Algorithm 1, line 5), any probabilistic model flexible enough
to capture the complexity of the dynamics can be used. Bayesian nonparametric models are
particularly suited given their resistance to overfitting and underfitting respectively. Overfitting
otherwise leads to model bias - the result of optimising the policy on the erroneous model. Un-
derfitting limits the complexity of the system this method can learn to control. In a nonpara-
metric model no prior dynamics knowledge is required, not even knowledge of how complex the
unknown dynamics might be since the model’s complexity grows with the available data. We
define the latent dynamics f : x̃t → xt+1, where x̃t

.
= [x>t , u

>
t]>. PILCO models the dynam-

ics with D independent Gaussian process (GP) priors, one for each dynamics output variable:
fa : x̃t → xat+1, where a ∈ [1, D] is the a’th dynamics output, and fa ∼ GP(φ>a x̃, k

a(x̃i, x̃j)).
Note we implement PILCO with a linear mean function1, φ>a x̃, where φa are additional hyperpa-
rameters trained by optimising the marginal likelihood [11, Section 2.7]. The covariance function
k is squared exponential, with length scales Λa = diag([l2a,1, ..., l

2
a,D+F]), and signal variance s2

a:
ka(x̃i, x̃j) = s2

a exp
(
− 1

2 (x̃i − x̃j)>Λ−1
a (x̃i − x̃j)

)
.

3.3 Learning dynamics from noisy observations
The original PILCO algorithm ignored sensor noise when training each GP by assuming each
observation zt to be the latent state xt. However, this approximation breaks down under significant
noise. More complex training schemes are required for each GP that correctly treat each training

1 The original PILCO [5] instead uses a zero mean function, and instead predicts relative changes in state.

3

datum xt as latent, yet noisily-observed as zt. We resort to GP state space model methods, specifically
the ‘Direct method’ [9, section 3.5]. The Direct method infers the marginal likelihood p(z1:N)
approximately using moment-matching in a single forward-pass. Doing so, it specifically exploits
the time series structure that generated observations z1:N . We use the Direct method to set the
GP’s training data {x1:N , u1:N} and observation noise variance Σε to the inducing point parameters
and noise parameters that optimise the marginal likelihood. In this paper we use the superior
Direct method to train GPs, both in our extended version of PILCO presented section 4, and in our
implementation of the original PILCO algorithm for fair comparison in the experiments.

3.4 Prediction phase
In contrast to the execution phase, PILCO also predicts analytic distributions of state-trajectories
(Algorithm 1, line 6) for policy evaluation. PILCO does this offline, between the online system execu-
tions. Predicted control is identical to executed control except each aforementioned quantity is instead
now a random variable, distinguished with capitals: Xt, Zt, Ut, X̃t and Xt+1, all approximated as
jointly Gaussian. These variables interact both in execution and prediction according to Figure 1. To
predict Xt+1 now that X̃t is uncertain PILCO uses the iterated law of expectation and variance:

p(Xt+1|X̃t) = N (µxt+1 = EX̃ [Ef [f(X̃t)]], Σxt+1 = VX̃ [Ef [f(X̃t)]] + EX̃ [Vf [f(X̃t)]]). (1)

After a one-step prediction from X0 to X1, PILCO repeats the process from X1 to X2, and up to XT ,
resulting in a multi-step prediction whose joint we refer to as a distribution over state-trajectories.

4 Our method: PILCO extended with Bayesian filtering

Here we describe the novel aspects of our method. Our method uses the same high-level algorithm
as PILCO (Algorithm 1). However, we modify (using PILCO’s source code http://mlg.eng.
cam.ac.uk/pilco/) two subroutines to extend PILCO from MDPs to a special-case of POMDPs
(specifically where the partial observability has the form of additive Gaussian noise on the unobserved
state X). First, we filter observations during system execution (Algorithm 1, line 4), detailed in
Section 4.1. Second, we predict belief -trajectories instead of state-trajectories (line 6), detailed
section 4.2. Filtering maintains a belief posterior of the latent system state. The belief is conditioned
on, not just the most recent observation, but all previous observations (Figure 2). Such additional
conditioning has the benefit of providing a less-noisy and more-informed input to the policy: the
filtered belief-mean instead of the raw observation zt. Our implementation continues PILCO’s
distinction between executing the system (resulting in a single real belief-trajectory) and predicting
the system’s responses (which in our case yields an analytic distribution of multiple possible future
belief-trajectories). During the execution phase, the system reads specific observations zt. Our
method additionally maintains a belief state b ∼ N (m,V) by filtering observations. This belief
state b can be treated as a random variable with a distribution parameterised by belief-mean m and
belief-certainty V seen Figure 3. Note both m and V are functions of previous observations z1:t.
Now, during the (probabilistic) prediction phase, future observations are instead random variables
(since they have not been observed yet), distinguished as Z. Since the belief parameters m and V are

Xt Xt+1

Zt Ut Zt+1
π

f

Figure 1: The original (unfiltered) PILCO,
as a probabilistic graphical model. At each
timestep, the latent system Xt is observed nois-
ily as Zt which is inputted directly into policy
function π to decide action Ut. Finally, the la-
tent system will evolve to Xt+1, according to
the unknown, nonlinear dynamics function f
of the previous state Xt and action Ut.

Bt|t−1 Bt|t Bt+1|t

Zt Ut Zt+1

π

f

Figure 2: Our method (PILCO extended with Bayesian
filtering). Our prior belief Bt|t−1 (over latent system
Xt), generates observation Zt. The prior belief Bt|t−1

then combines with observation Zt resulting in posterior
belief Bt|t (the update step). Then, the mean posterior
belief E[Bt|t] is inputted into policy function π to decide
action Ut. Finally, the next timestep’s prior belief Bt+1|t
is predicted using dynamics model f (the prediction step).

4

http://mlg.eng.cam.ac.uk/pilco/
http://mlg.eng.cam.ac.uk/pilco/

m V

B

Figure 3: Belief in execution phase: a Gaussian ran-
dom variable parameterised by mean m and variance
V .

µm Σm

M V̄

B

Figure 4: Belief in prediction phase: a Gaussian
random variable with random mean M and non-
random variance V̄ , where M is itself a Gaussian
random variable parameterised by mean µm and vari-
ance Σm.

functions of the now-random observations, the belief parameters must be random also, distinguished
as M and V ′. Given the belief’s distribution parameters are now random, the belief is hierarchically-
random, denoted B ∼ N (M,V ′) seen Figure 4. Our framework allows us to consider multiple
possible future belief-states analytically during policy evaluation. Intuitively, our framework is an
analytical analogue of POMDP policy evaluation using particle methods. In particle methods, each
particle is associated with a distinct belief, due to each conditioning on independent samples of
future observations. A particle distribution thus defines a distribution over beliefs. Our method is the
analytical analogue of this particle distribution, and requires no sampling. By restricting our beliefs
as (parametric) Gaussian, we can tractably encode a distribution over beliefs by a distribution over
belief-parameters.

4.1 Execution phase with a filter
When an actual filter is applied, it starts with three pieces of information: mt|t−1, Vt|t−1 and a noisy
observation of the system zt (the dual subscript means belief of the latent physical state x at time t
given all observations up until time t− 1 inclusive). The filtering ‘update step’ combines prior belief
bt|t−1 = Xt|z1:t−1, u1:t−1 ∼ N (mt|t−1, Vt|t−1) with observational likelihood p(zt) = N (Xt,Σ

ε)
using Bayes rule to yield posterior belief bt|t = Xt|z1:t, u1:t−1:

bt|t ∼ N (mt|t, Vt|t), mt|t = Wmmt|t−1 +Wzzt, Vt|t = WmVt|t−1, (2)

with weight matricesWm = Σε(Vt|t−1+Σε)−1 andWz = Vt|t−1(Vt|t−1+Σε)−1 computed from the
standard result Gaussian conditioning. The policy π instead uses updated belief-mean mt|t (smoother
and better-informed than zt) to decide the action: ut = π(mt|t, ψ). Thus, the joint distribution over
the updated (random) belief and the (non-random) action is

b̃t|t
.
=

[
bt|t
ut

]
∼ N

(
m̃t|t

.
=

[
mt|t
ut

]
, Ṽt|t

.
=

[
Vt|t 0
0 0

])
. (3)

Next, the filtering ‘prediction step’ computes the predictive-distribution of bt+1|t = p(xt+1|z1:t, u1:t)
from the output of dynamics model f given random input b̃t|t. The distribution f(b̃t|t) is non-
Gaussian yet has analytically computable moments [5]. For tractability, we approximate bt+1|t as
Gaussian-distributed using moment-matching:

bt+1|t∼N (mt+1|t, Vt+1|t), ma
t+1|t=Eb̃t|t [f

a(b̃t|t)], V abt+1|t=Cb̃t|t [f
a(b̃t|t), f

b(b̃t|t)], (4)

where a and b refer to the a’th and b’th dynamics output. Both ma
t+1|t and V abt+1|t are derived in

Appendix D. The process then repeats using the predictive belief (4) as the prior belief in the following
timestep. This completes the specification of the system in execution.

4.2 Prediction phase with a filter
During the prediction phase, we compute the probabilistic behaviour of the filtered system via an ana-
lytic distribution of belief states (Figure 4). We begin with a prior belief at time t = 0 before any obser-
vations are recorded (symbolised by ‘−1’), setting the prior Gaussian belief to have a distribution equal

5

to the known initial Gaussian state distribution: B0|−1 ∼ N (M0|−1, V̄0|−1), where M0|−1 ∼ N (µx0 , 0)
and V̄0|−1 = Σx0 . Note the variance of M0|−1 is zero, corresponding to a single prior belief at the
beginning of the prediction phase. We probabilistically predict the yet-unobserved observation Zt
using our belief distribution Bt|t−1 and the known additive Gaussian observation noise εt as per
Figure 2. Since we restrict both the belief mean M and observation Z to being Gaussian random
variables, we can express their joint distribution:[

Mt|t−1

Zt

]
∼ N

([
µmt|t−1

µmt|t−1

]
,

[
Σmt|t−1 Σmt|t−1

Σmt|t−1 Σzt

])
, (5)

where Σzt = Σmt|t−1 + V̄t|t−1 + Σε.

The filtering ‘update step’ combines prior belief Bt|t−1 with observation Zt using the same logic
as (2), the only difference being Zt is now random. Since the updated posterior belief mean Mt|t is
a (deterministic) function of random Zt, then Mt|t is necessarily random (with non-zero variance
unlike M0|−1). Their relationship, Mt|t = WmMt|t−1 +WzZt, results in the updated hierarchical
belief posterior:

Bt|t ∼ N
(
Mt|t, V̄t|t

)
, where Mt|t ∼ N

(
µmt|t,Σ

m
t|t

)
, (6)

µmt|t = Wmµ
m
t|t−1 +Wzµ

m
t|t−1 = µmt|t−1, (7)

Σmt|t = WmΣmt|t−1W
>
m +WmΣmt|t−1W

>
z +WzΣ

m
t|t−1W

>
m +WzΣ

z
tW
>
z , (8)

V̄t|t = WmV̄t|t−1. (9)

The policy now has a random inputMt|t, thus the control output must also be random (even though π is
a deterministic function): Ut = π(Mt|t, ψ), which we implement by overloading the policy function:
(µut ,Σ

u
t , C

mu
t) = π(µmt|t,Σ

m
t|t, ψ), where µut is the output mean, Σut the output variance and Cmut

input-output covariance with premultiplied inverse input variance, Cmut
.
= (Σmt|t)

−1CM [Mt|t, Ut].
Making a moment-matched approximation yields a joint Gaussian:

M̃t|t
.
=

[
Mt|t
Ut

]
∼ N

(
µm̃t|t

.
=

[
µmt|t
µut

]
, Σm̃t|t

.
=

[
Σmt|t Σmt|tC

mu
t

(Cmut)>Σmt|t Σut

])
. (10)

Finally, we probabilistically predict the belief-mean Mt+1|t ∼ N (µmt+1|t,Σ
m
t+1|t) and the expected

belief-variance V̄t+1|t = EM̃t|t
[V ′t+1|t]. To do this we use a novel generalisation of Gaussian process

moment matching with uncertain inputs by Candela et al. [1] generalised to hierarchically-uncertain
inputs detailed in Appendix E. We have now discussed the one-step prediction of the filtered system,
from Bt|t−1 to Bt+1|t. Using this process repeatedly, from initial belief B0|−1 we one-step predict to
B1|0, then to B2|1, up to BT |T−1.

5 Experiments

We test our algorithm on the cartpole swing-up problem (shown in Appendix A), a benchmark for
comparing controllers of nonlinear dynamical systems. We experiment using a physics simulator by
solving the differential equations of the system. Each episode begins with the pendulum hanging
downwards. The goal is then to swing the pendulum upright, thereafter continuing to balance it. The
use a cart mass of mc = 0.5kg. A zero-order hold controller applies horizontal forces to the cart
within range [−10, 10]N. The policy is a linear combination of 100 radial basis functions. Friction re-
sists the cart’s motion with damping coefficient b = 0.1Ns/m. Connected to the cart is a pole of length
l = 0.2m and mass mp = 0.5kg located at its endpoint, which swings due to gravity’s acceleration
g = 9.82m/s2. An inexpensive camera observes the system. Frame rates of $10 webcams are typically
30Hz at maximum resolution, thus the time discretisation is ∆t = 1/30s. The state x comprises
the cart position, pendulum angle, and their time derivatives x = [xc, θ, ẋc, θ̇]

>. We both randomly-
initialise the system and set the initial belief of the system according to B0|−1 ∼ N (M0|−1, V0|−1)
where M0|−1 ∼ δ([0, π, 0, 0]>) and V

1/2
0|−1 = diag([0.2m, 0.2rad, 0.2m/s, 0.2rad/s]). The camera’s

noise standard deviation is: (Σε)1/2 = diag([0.03m, 0.03rad, 0.03
∆t m/s, 0.03

∆t rad/s]), noting 0.03rad ≈
1.7◦. We use the 0.03

∆t terms since using a camera we cannot observe velocities directly but can
estimate them with finite differences. Each episode has a two second time horizon (60 timesteps). The
cost function we impose is 1− exp

(
− 1

2d
2/σ2

c

)
where σc = 0.25m and d2 is the squared Euclidean

distance between the pendulum’s end point and its goal.

6

We compare four algorithms: 1) PILCO by Deisenroth and Rasmussen [5] as a baseline (unfiltered
execution, and unfiltered full-prediction); 2) the method by Dallaire et al. [3] (filtered execution,
and filtered MAP-prediction); 3) the method by Deisenroth and Peters [4] (filtered execution, and
unfiltered full-prediction); and lastly 4) our method (filtered execution, and filtered full-prediction).
For clear comparison we first control for data and dynamics models, where each algorithm has access
to the exact same data and exact same dynamics model. The reason is to eliminate variance in
performance caused by different algorithms choosing different actions. We generate a single dataset
by running the baseline PILCO algorithm for 11 episodes (totalling 22 seconds of system interaction).
The independent variables of our first experiment are 1) the method of system prediction and 2) the
method of system execution. Each policy is then optimised from the same initialisation using their
respective prediction methods, before comparing performances. Afterwards, we experiment allowing
each algorithm to collect its own data, and also experiment with various noise level.

6 Results and analysis

6.1 Results using a common dataset
We now compare algorithm performance, both predictive (Figure 5) and empirical (Figure 6). First,
we analyse predictive costs per timestep (Figure 5). Since predictions are probabilistic, the costs
have distributions, with the exception of Dallaire et al. [3] which predicts MAP trajectories and
therefore has deterministic cost. Even though we plot distributed costs, policies are optimised w.r.t.
expected total cost only. Using the same dynamics, the different prediction methods optimise different
policies (with the exception of Deisenroth and Rasmussen [5] and Deisenroth and Peters [4], whose
prediction methods are identical). During the first 10 timesteps, we note identical performance with
maximum cost due to the non-zero time required to physically swing the pendulum up near the goal.
Performances thereafter diverge. Since we predict w.r.t. a filtering process, less noise is predicted to
be injected into the policy, and the optimiser can thus afford higher gain parameters w.r.t. the pole at
balance point. If we linearise our policy around the goal point, our policy has a gain of -81.7N/rad
w.r.t. pendulum angle, a larger-magnitude than both Deisenroth method gains of -39.1N/rad (negative
values refer to left forces in Figure 11). This higher gain is advantageous here, corresponding to a
more reactive system which is more likely to catch a falling pendulum. Finally, we note Dallaire et al.
[3] predict very high performance. Without balancing the costs across multiple possible trajectories,
the method instead optimises a sequence of deterministic states to near perfection.

To compare the predictive results against the empirical, we used 100 executions of each algorithm
(Figure 6). First, we notice a stark difference between predictive and executed performances from
Dallaire et al. [3], due to neglecting model uncertainty, suffering model bias. In contrast, the other
methods consider uncertainty and have relatively unbiased predictions, judging by the similarity
between predictive-vs-empirical performances. Deisenroth’s methods, which differ only in execution,
illustrate that filtering during execution-only can be better than no filtering at all. However, the major
benefit comes when the policy is evaluated from multi-step predictions of a filtered system. Opposed
to Deisenroth and Peters [4], our method’s predictions reflect reality closer because we both predict
and execute system trajectories using closed loop filtering control.

To test statistical significance of empirical cost differences given 100 executions, we use a Wilcoxon
rank-sum test at each time step. Excluding time steps ranging t = [0, 29] (whose costs are similar),
the minimum z-score over timesteps t = [30, 60] that our method has superior average-cost than each
other methods follows: Deisenroth 2011 min(z) = 4.99, Dallaire 2009’s min(z) = 8.08, Deisenroth
2012’s min(z) = 3.51. Since the minimum min(z) = 3.51, we have p > 99.9% certainty our
method’s average empirical cost is superior than each other method.

6.2 Results of full reinforcement learning task
In the previous experiment we used a common dataset to compare each algorithm, to isolate and focus
on how well each algorithm makes use of data, rather than also considering the different ways each
algorithm collects different data. Here, we remove the constraint of a common dataset, and test the
full reinforcement learning task by allowing each algorithm to collect its own data over repeated trials
of the cart-pole task. Each algorithm is allowed 15 trials (episodes), repeated 10 times with different
random seeds. For a particular re-run experiment and episode number, an algorithm’s predicted loss
is unchanged when repeatedly computed, yet the empirical loss differs due to random initial states,
observation noise, and process noise. We therefore average the empirical results over 100 random
executions of the controller at each episode and seed.

7

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Timestep

Co
st

Deisenroth 2011
Dallaire 2009
Deisenroth 2012
Our Method

Figure 5: Predictive cost per timestep. The error
bars show ±1 standard deviation. Each algorithm has
access to the same data set (generated by baseline
Deisenroth 2011) and dynamics model. Algorithms
differ in their multi-step prediction methods (except
Deisenroth’s algorithms whose predictions overlap).

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Timestep

Figure 6: Empirical cost per timestep. We generate
empirical cost distributions from 100 executions per
algorithm. Error bars show ±1 standard deviation.
The plot colours and shapes correspond to the legend
in Figure 5.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

Episode

Lo
ss

Deisenroth 2011
Dallaire 2009
Deisenroth 2012
Our Method

Figure 7: Predictive loss per episode. Error bars
show ±1 standard error of the mean predicted loss
given 10 repeats of each algorithm.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

20

40

60

Episode

Deisenroth 2011
Dallaire 2009
Deisenroth 2012
Our Method

Figure 8: Empirical loss per episode. Error bars
show ±1 standard error of the mean empirical loss
given 10 repeats of each algorithm. In each repeat we
computed the mean empirical loss using 100 indepen-
dent executions of the controller.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

Episode

Lo
ss

k = 1

k = 2

k = 4

k = 8

k = 16

Figure 9: Empirical loss of Deisenroth 2011 for var-
ious noise levels. The error bars show ±1 standard
deviation of the empirical loss distribution based on
100 repeats of the same learned controller, per noise
level.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

10

20

30

40

50

60

Episode

Figure 10: Empirical loss of Filtered PILCO for
various noise levels. The error bars show ±1 stan-
dard deviation of the empirical loss distribution based
on 100 repeats of the same learned controller, per
noise level.

8

The predictive loss (cumulative cost) distributions of each algorithm are shown Figure 7. Perhaps
the most striking difference between the full reinforcement learning predictions and those made
with a controlled dataset (Figure 5) is that Dallaire does not predict it will perform well. The
quality of the data collected by Dallaire within the first 15 episodes is not sufficient to predict
good performance. Our Filtered PILCO method accurately predicts its own strong performance and
additionally outperforms the competing algorithm seen in Figure 8. Of interest is how each algorithm
performs equally poorly during the first four episodes, with Filtered PILCO’s performance breaking
away and learning the task well by the seventh trial. Such a learning rate was similar to the original
PILCO experiment with the noise-free cartpole.

6.3 Results with various observation noises
Different observation noise levels were also tested, comparing PILCO (Figure 9) with Filtered
PILCO (Figure 10). Both figures show a noise factors k, such that the observation noise is:√

Σε=k × diag([0.01m, 0.01rad, 0.01
∆t m/s, 0.01

∆t rad/s]). For reference, our previous experiments used
a noise factor of k = 3. At low noise factor k = 1, both algorithms perform similarly-well, since
observations are precise enough to control a system without a filter. As observations noise increases,
the performance of unfiltered PILCO soon drops, whilst the Filtered PILCO can successfully control
the system under higher noise levels (Figure 10).

6.4 Training time complexity
Training the GP dynamics model involved N = 660 data points, M = 50 inducing points under
a sparse GP Fully Independent Training Conditional (FITC) [2], P = 100 policy RBF centroids,
D = 4 state dimensions, F = 1 action dimensions, and T = 60 timestep horizon, with time
complexity O(DNM2). Policy optimisation (with 300 steps, each of which require trajectory
prediction with gradients) is the most intense part: our method and both Deisenroth’s methods scale
O(M2D2(D + F)2T + P 2D2F 2T), whilst Dallaire’s only scales O(MD(D + F)T + PDFT).
Worst case we require M = O(exp(D + F)) inducing points to capture dynamics, the average case
is unknown. Total training time was four hours to train the original PILCO method with an additional
one hour to re-optimise the policy.

7 Conclusion and future work

In this paper, we extended the original PILCO algorithm [5] to filter observations, both during system
execution and multi-step probabilistic prediction required for policy evaluation. The extended frame-
work enables learning in a special case of partially-observed MDP environments (POMDPs) whilst
retaining PILCO’s data-efficiency property. We demonstrated successful application to a benchmark
control problem, the noisily-observed cartpole swing-up. Our algorithm learned a good policy under
significant observation noise in less than 30 seconds of system interaction. Importantly, our algorithm
evaluates policies with predictions that are faithful to reality: we predict w.r.t. closed loop filtered
control precisely because we execute closed loop filtered control. We showed experimentally that
faithful and probabilistic predictions improved performance with respect to the baselines. For clear
comparison we first constrained each algorithm to use the same dynamics dataset to demonstrate su-
perior data-usage of our algorithm. Afterwards we relaxed this constraint, and showed our algorithm
was able to learn from fewer data.

Several more challenges remain for future work. Firstly the assumption of zero variance of the
belief-variance could be relaxed. A relaxation allows distributed trajectories to more accurately
consider belief states having various degrees of certainty (belief-variance). For example, system
trajectories have larger belief-variance when passing though data-sparse regions of state-space, and
smaller belief-variance in data-dense regions. Secondly, the policy could be a function of the full
belief distribution (mean and variance) rather than just the mean. Such flexibility could help the policy
make more ‘cautious’ actions when more uncertain about the state. A third challenge is handling
non-Gaussian noise and unobserved state variables. For example, in real-life scenarios using a camera
sensor for self-driving, observations are occasionally fully or partially occluded, or limited by weather
conditions, where such occlusions and limitations change, opposed to assuming a fixed Gaussian
addition noise. Lastly, experiments with a real robot would be important to show the usefulness in
practice.

9

References

[1] Joaquin Candela, Agathe Girard, Jan Larsen, and Carl Rasmussen. Propagation of uncertainty in Bayesian
kernel models-application to multiple-step ahead forecasting. In International Conference on Acoustics,
Speech, and Signal Processing, volume 2, pages 701–704, 2003.

[2] Lehel Csató and Manfred Opper. Sparse on-line Gaussian processes. Neural Computation, 14(3):641–668,
2002.

[3] Patrick Dallaire, Camille Besse, Stephane Ross, and Brahim Chaib-draa. Bayesian reinforcement learning
in continuous POMDPs with Gaussian processes. In International Conference on Intelligent Robots and
Systems, pages 2604–2609, 2009.

[4] Marc Deisenroth and Jan Peters. Solving nonlinear continuous state-action-observation POMDPs for
mechanical systems with Gaussian noise. In European Workshop on Reinforcement Learning, 2012.

[5] Marc Deisenroth and Carl Rasmussen. PILCO: A model-based and data-efficient approach to policy search.
In International Conference on Machine Learning, pages 465–472, New York, NY, USA, 2011.

[6] Michael Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov decision pro-
cesses. PhD thesis, Department of Computer Science, University of Massachusetts Amherst, 2002.

[7] Jonathan Ko and Dieter Fox. GP-BayesFilters: Bayesian filtering using Gaussian process prediction and
observation models. Autonomous Robots, 27(1):75–90, 2009.

[8] Timothy Lillicrap, Jonathan Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver,
and Daan Wierstra. Continuous control with deep reinforcement learning. In arXiv preprint, arXiv
1509.02971, 2015.

[9] Andrew McHutchon. Nonlinear modelling and control using Gaussian processes. PhD thesis, Department
of Engineering, University of Cambridge, 2014.

[10] Pascal Poupart, Nikos Vlassis, Jesse Hoey, and Kevin Regan. An analytic solution to discrete Bayesian
reinforcement learning. International Conference on Machine learning, pages 697–704, 2006.

[11] Carl Rasmussen and Chris Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge,
MA, USA, 1 2006.

[12] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayesian reinforcement learning in continuous
POMDPs with application to robot navigation. In International Conference on Robotics and Automation,
pages 2845–2851, 2008.

[13] Jur van den Berg, Sachin Patil, and Ron Alterovitz. Efficient approximate value iteration for continuous
Gaussian POMDPs. In Association for the Advancement of Artificial Intelligence, 2012.

[14] Dustin Webb, Kyle Crandall, and Jur van den Berg. Online parameter estimation via real-time replanning of
continuous Gaussian POMDPs. In International Conference Robotics and Automation, pages 5998–6005,
2014.

10

A The cartpole system

We test our algorithm on the cartpole swing-up problem (Figure sec:app-cartpole). The cartpole’s
motion is described with the differential equation:

ẋ>=

[
ẋc, θ̇,

−2mplθ̇
2s+3mpgsc+4u−4bẋc

4(mc+mp)− 3mpc2
,
−3mplθ̇

2sc+6(mc+mp)gs+6(u−bẋc)c
4l(mc+mp)− 3mplc2

]
, (11)

using shorthand s = sin θ and c = cos θ. The cost function we impose is 1− exp
(
− 1

2d
2/σ2

c

)
where

σc = 0.25m and d2 is the squared Euclidean distance between the pendulum’s end point (xp, yp)
and its goal (0, l). I.e. d2 = x2

p + (l − yp)2 = (xc − l sin θ)2 + (l − l cos θ)2.

mc

mp

l

θ

xc

yp

xp

l

u

Figure 11: The cartpole swing-up task. A pendulum of length l is attached to a cart by a frictionless pivot. The
cart has mass mc and position xc. The pendulum’s endpoint has mass mp and position (xp, yp), with angle θ
from vertical. The cart begins at position xc = 0 and pendulum hanging down: θ = π. The goal is to accelerate
the cart by applying horizontal force ut at each timestep t to invert then stabilise the pendulum’s endpoint at the
goal (black cross), i.e. to maintain xc = 0 and θ = 0.

B Gradients for policy improvement

Let vec(·) be the ‘unwrap operator’ that reshapes matrices columnwise into vectors. We define a
Markov filtered-system from the belief’s parameters: St = [M>t|t−1, vec(Vt|t−1)>]>. To predict
system evolution, the state distribution is defined:

p(St) ∼ N
(
µst =

[
µmt|t−1

vec(Vt+1|t)

]
, Σst =

[
Σmt|t−1 0

0 0

])
. (12)

To compute policy gradient dJ/dψ we first require dEt/dψ:

dEt
dθ

=
dEt

dp(St)
dp(St)

dθ

=
dEt
∂µst

∂µst
dθ

+
dEt
∂Σst

∂Σst
dθ

, and (13)

dp(St+1)

dθ
=

dp(St+1)

dp(St)
dp(St)

dθ
+
∂p(St+1)

∂θ
. (14)

Application of the chain rule backwards from the state distribution at the horizon ST , to St at arbitrary
time t, is analogous to that detailed in PILCO [5], where we use St, µst and Σst in the place of xt, µt
and Σt respectively.

B.1 Policy evaluation and improvement
To evaluate the policy π (or more specifically, the policy parameters ψ), PILCO computes the loss
J(ψ) by applying a cost function to the marginal state distribution at each timestep (see Algorithm 1,
line 7). After policy evaluation, PILCO optimises the policy using the analytic gradients of J . A
BFGS optimisation method searches for the set of policy parameters ψ that minimise the total cost
J(ψ) using gradients information dJ/dψ (Algorithm 1, line 8). To compute dJ/dψ we require
derivatives dEt/dψ at each time t to chain together, detailed in [5].

11

B.2 Policy evaluation and improvement with a filter
To evaluate a policy we again apply the loss function J (Algorithm 1, line 7) to the multi-step
prediction (section 4.2). The policy is again optimised using the analytic gradients of J . Since
J now is a function of beliefs, we additionally consider the gradients of Bt|t−1 w.r.t. ψ. As the
belief is distributed byBt|t−1 ∼ N (Mt|t−1, Vt|t−1) ∼ N (N (µmt|t−1,Σ

m
t|t−1), Vt|t−1), we use partial

derivatives of µmt|t−1, Σmt|t−1 and Vt|t−1 w.r.t. each other and w.r.t ψ.

C Identities for Gaussian process prediction with hierarchical uncertain in-
puts

The two functions

q(x, x′,Λ, V) , |Λ−1V + I|−1/2 exp
(
− 1

2 (x− x′)[Λ + V]−1(x− x′)
)
,

Q(x, x′,Λa,Λb, V, µ,Σ) , c1 exp
(
− 1

2 (x− x′)>[Λa + Λb + 2V]−1(x− x′)
)

× exp
(
− 1

2 (z − µ)>
[(

(Λa + V)−1 + (Λb + V)−1
)−1

+ Σ
]−1

(z − µ)
)
,

= c2 q(x, µ,Λa, V) q(µ, x′Λb, V)

× exp
(

1
2r
>[(Λa + V)−1 + (Λb + V)−1 + Σ−1

]−1
r
)
,

where


z = (Λb + V)(Λa + Λb + 2V)−1x+ (Λa + V)(Λa + Λb + 2V)−1x′

r = (Λa + V)−1(x− µ) + (Λb + V)−1(x′ − µ)

c1 =
∣∣(Λa + V)(Λb + V) + (Λa + Λb + 2V)Σ

∣∣−1/2∣∣ΛaΛb
∣∣1/2

c2 =
∣∣((Λa + V)−1 + (Λb + V)−1

)
Σ + I

∣∣−1/2
,

(15)

have the following Gaussian integrals∫
q(x, t,Λ, V)N (t|µ,Σ)dt = q(x, µ,Λ,Σ + V),∫

q(x, t,Λa, V) q(t, x′,Λb, V)N (t|µ,Σ)dt = Q(x, x′,Λa,Λb, V, µ,Σ),∫
Q(x, x′,Λa,Λb, 0, µ, V)N (µ|m,Σ)dµ = Q(x, x′,Λa,Λb, 0,m,Σ + V).

(16)

We want to model data with E output coordinates, and use separate combinations of linear models
and GPs to make predictions, a = 1, . . . , E:

fa(x∗) = f∗a ∼ N
(
θ>a x

∗ + ka(x∗,x)βa, ka(x∗, x∗)− ka(x∗,x)(Ka + Σaε)−1ka(x, x∗)
)
,

where the E squared exponential covariance functions are

ka(x, x′) = s2
aq(x, x

′,Λa, 0), where a = 1, . . . , E, (17)

and s2
a are the signal variances and Λa is a diagonal matrix of squared length scales for GP number

a. The noise variances are Σaε . The inputs are x and the outputs ya and we define βa = (Ka +
Σaε)−1(ya − θ>a x), where Ka is the Gram matrix.

C.1 Derivatives
For symmetric Λ and V and Σ:

∂ ln q(x, x′,Λ, V)

∂x
= − (Λ + V)−1(x− x′) = −(Λ−1V + I)−1Λ−1(x− x′)

∂ ln q(x, x′,Λ, V)

∂x′
= (Λ + V)−1(x− x′)

∂ ln q(x, x′,Λ, V)

∂V
= − 1

2
(Λ + V)−1 +

1

2
(Λ + V)−1(x− x′)(x− x′)>(Λ + V)−1

(18)

12

Let L = (Λa +V)−1 + (Λb +V)−1, R = ΣL+ I , Y = R−1Σ =
[
L+ Σ−1

]−1
, T : X → XX>:

∂Q(x, x′,Λa,Λb, V, µ,Σ) = Q ◦ ∂
(

ln c2 + ln q(x, µ,Λa, V) + ln q(µ, x′Λb, V) +
1

2
y>Y y

)
1

2

∂ y>Y y

∂µ
= y>Y

∂y

∂µ
= −y>Y L

∂ ln c2
∂Σ

= −1

2

∂ ln |LΣ + I|
∂Σ

= −1

2
L>(LΣ + I)−> = −1

2
LR−1

∂ y>Y y

∂Σ
= Σ−>Y >yy>Y >Σ−> = T (R−>y)

∂ ln c2
∂V

= −1

2

∂ ln |LΣ + I|
∂V

= −1

2

∂ ln |
∑
i

[
(Λi + V)−1

]
Σ + I|

∂V

=
1

2

∑
i

[
(Λi + V)−>

(∑
j

[
(Λj + V)−1

]
Σ + I

)
−>Σ>(Λi + V)−>

]
=

1

2

∑
i

[
(Λi + V)−1Y (Λi + V)−1

]
∂ y>Y y

∂V
= y>

∂ Y

∂V
y +

∂y>

∂V
Y y + y>Y

∂y

∂V
=

∑
i

[
(Λi + V)−1Y >yy>Y >(Λi + V)−1

]
−
∑
i

[
(Λi + V)−1(xni − µ)(Y y)>(Λi + V)−1

]
−
∑
i

[
(Λi + V)−1(y>Y)>(xni − µ)>(Λi + V)−1

]
=
∑
i

[
T
(

(Λi + V)−1(Y y − (xni − µ))
)
− T

(
(Λi + V)−1(xni − µ)

)]
(19)

13

D Dynamics predictions in execution phase

Here we specify the predictive distribution p(bt+1|t), whose moments are equal to the moments
from dynamics model output f with uncertain input b̃t|t ∼ N (m̃t|t, Ṽt|t) similar to Deisenroth and
Rasmussen [5] which was based on work by Candela et al. [1]. Consider making predictions from
a = 1, . . . , E GPs at b̃t|t with specification b̃t|t ∼ N (m̃t|t, Ṽt|t). We have the following expressions
for the predictive mean, variances and input-output covariances using the law of iterated expectations
and variances:

bt+1|t ∼ N (mt+1|t, Vt+1|t), (20)

ma
t+1|t = Eb̃t|t [f

a(b̃t|t)]

=

∫ (
s2
aβ
>
a q(xi, b̃t|t,Λa, 0) + φ>a b̃t|t

)
N (b̃t|t; m̃t|t, Ṽt|t)db̃t|t

= s2
aβ
>
a q

a + φ>a m̃t|t, (21)

Ca
.
= Ṽ −1

t|t Cb̃t|t [b̃t|t, f
a(b̃t|t)− φ>a b̃t|t],

= Ṽ −1
t|t

∫
(b̃t|t − m̃t|t)s

2
aβ
>
a q(x, b̃t|t,Λa, 0)N (b̃t|t; m̃t|t, Ṽt|t)db̃t|t

= s2
a(Λa + Ṽt|t)

−1(x− m̃t|t)βaq
a, (22)

V abt+1|t = Cb̃t|t
[
fa(b̃t|t), f

b(b̃t|t)
]

= Cb̃t|t
[
Ef [fa(b̃t|t),Ef [f b(b̃t|t)

]
+ Eb̃t|t

[
Cf [fa(b̃t|t), f

b(b̃t|t)]
]

= Cb̃t|t
[
s2
aβ
>
a q(x, b̃t|t,Λa, 0) + φ>a b̃t|t, s2

bβ
>
b q(x, b̃t|t,Λb, 0) + φ>b b̃t|t

]
+

δabE[s2
a − ka(b̃t|t, x)(Ka + Σaε)−1ka(x, b̃t|t)]

= s2
as

2
b

[
β>a (Qab−qaqb>)βb +

δab
(
s−2
a −tr((Ka + Σaε)−1Qaa)

)]
+ C>a Ṽt|tφb + φ>a Ṽt|tCb + φ>a Ṽt|tφb, (23)

where

qai = q
(
xi, m̃t|t,Λa, Ṽt|t

)
,

Qabij = Q
(
xi, xj ,Λa,Λb, 0, m̃t|t, Ṽt|t

)
,

βa = (Ka + Σε,a)−1(ya − φ>a x),

and training inputs are x, outputs are ya (determined by the ‘Direct method’), Ka is a Gram matrix.

E Dynamics predictions in prediction phase

Here we describe the prediction formulae for the random belief state in the prediction phase. We again
note, during execution, our belief distribution is specified by certain parameters, bt|t ∼ N (mt|t, Vt|t).
By contrast, during the prediction phase, our belief distribution is specified by an uncertain belief-
mean and certain belief-variance: Bt|t ∼ N (Mt|t, Vt|t) ∼ N (N (µmt|t,Σ

m
t|t), V̄t|t), where we assumed

a delta distribution on V̄t|t for mathematical simplicity, i.e. vec(Vt|t) ∼ N (vec(V̄t|t), 0). Therefore
we conduct GP prediction given hierarchically-uncertain inputs, outlining each output moment
below. For instance, consider making predictions from a = 1, . . . , E GPs at Bt|t with hierarchical
specification

Bt|t ∼ N (Mt|t, V̄t|t), and Mt|t ∼ N (µmt|t,Σ
m
t|t), (24)

or equivalently the joint[
Bt|t
Mt|t

]
∼ N

([
µmt|t
µmt|t

]
,

[
Σmt|t + V̄t|t Σmt|t

Σmt|t Σmt|t

])
. (25)

14

Mean of the Belief-Mean: dynamics prediction uses input M̃t|t ∼ N (µm̃t|t,Σ
m̃
t|t), which is jointly

distributed according to (10). Using the belief-mean ma
t+1|t definition (21),

µm,at+1|t = EM̃t|t
[Ma

t+1|t]

=

∫
Ma
t+1|tN (M̃t|t;µ

m̃
t|t,Σ

m̃
t|t)dM̃t|t,

= s2
aβ
>
a

∫
q(x, M̃t|t,Λa, Ṽt|t)N (M̃t|t;µ

m̃
t|t,Σ

m̃
t|t)dM̃t|t + φ>a µ

m̃
t|t

= s2
aβ
>
a q̂

a + φ>a µ
m̃
t|t, (26)

q̂ai = q
(
xi, µ

m̃
t|t,Λa,Σ

m̃
t|t + Ṽt|t

)
. (27)

Input-Output Covariance: the expected input-output covariance belief term (22) (equivalent to
the input-output covariance of the belief-mean) is:

Ĉa
.
= Ṽ −1

t|t EM̃t|t
[CBt|t [B̃t|t, f(B̃t|t)− φ>a M̃t|t]], and similarly defined

.
= (Σm̃t|t)

−1CM̃t|t
[M̃t|t,EBt|t [f(B̃t|t)− φ>a M̃t|t]],

= (Σm̃t|t)
−1

∫
(M̃t|t − µm̃t|t)EBt|t [f(B̃t|t)]N (M̃t|t;µ

m̃
t|t,Σ

m̃
t|t)dM̃t|t

= (Σm̃t|t)
−1

∫
(M̃t|t − µm̃t|t)

(
s2
aβ
>
a q(xi, M̃t|t,Λa, Ṽt|t))N (M̃t|t;µ

m̃
t|t,Σ

m̃
t|t)dM̃t|t

= s2
a(Λa + Σm̃t|t + Ṽt|t)

−1(x− µm̃t|t)βaq̂
a
i . (28)

Variance of the Belief-Mean: the variance of randomised belief-mean (Eq 21) is:

Σm,abt+1|t = CM̃t|t
[Ma

t+1|t,M
b
t+1|t],

=

∫
Ma
t+1|tM

b
t+1|tN (M̃t|t|µm̃t|t,Σ

m̃
t|t)dM̃t|t − µamt+1|t

µbmt+1|t
,

= s2
as

2
bβ
>
a (Q̂ab − q̂aq̂b>)βb + Ĉ>a Σm̃t|tφb + φ>a Σm̃t|tĈb + φ>a Σm̃t|tφb, (29)

Q̂abij = Q(xi, xj ,Λa,Λb, Ṽt|t, µm̃t|t,Σ
m̃
t|t). (30)

Mean of the Belief-Variance: using the belief-variance V abt+1|t definition (23),

V̄ abt+1|t = EM̃t|t
[V abt+1|t]

=

∫
V abt+1|tN (M̃t|t|µm̃t|t,Σ

m̃
t|t)dM̃t|t

= s2
as

2
b

[
β>a (Q̃ab − Q̂ab)βb + δab

(
s−2
a − tr((Ka + Σaε)−1Q̃aa)

)]
+Ĉ>a Ṽt|tφb + φ>a Ṽt|tĈb + φ>a Ṽt|tφb, (31)

Q̃abij = Q(xi, xj ,Λa,Λb, 0, µm̃t|t,Σ
m̃
t|t + Ṽt|t). (32)

15

	Introduction
	Related work
	The PILCO algorithm
	Execution phase
	Learning dynamics
	Learning dynamics from noisy observations
	Prediction phase

	Our method: PILCO extended with Bayesian filtering
	Execution phase with a filter
	Prediction phase with a filter

	Experiments
	Results and analysis
	Results using a common dataset
	Results of full reinforcement learning task
	Results with various observation noises
	Training time complexity

	Conclusion and future work
	The cartpole system
	Gradients for policy improvement
	Policy evaluation and improvement
	Policy evaluation and improvement with a filter

	Identities for Gaussian process prediction with hierarchical uncertain inputs
	Derivatives

	Dynamics predictions in execution phase
	Dynamics predictions in prediction phase

