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Abstract

Earthquakes represent a serious threat to the safety of masonry structures, with failure of these

constructions under the influence of seismic action generally occurring via specific, well-documented

collapse mechanisms. Analysis and assessment of these collapse mechanisms remains a challenge

- while most analysis tools are time-consuming and computationally expensive, typical assessment

methods are too simplified and often tend to underestimate the dynamic resistance of the structures.

This dissertation aims to bridge the gap between the two through the development of a computational

tool for the seismic collapse assessment of masonry structures, which uses rocking dynamics to

accurately capture large displacement response, without compromising on computational efficiency.

The tool could be used for rapid evaluation of critical mechanisms in a structure in order to prioritise

retrofit solutions, as well as for code-based seismic assessment.

The framework of the tool is first presented, wherein the rocking equations of motion are derived

for a range of different collapse mechanisms, for any user-defined structural geometry, using as a

starting point a geometric model of the structure in Rhino (a 3D CAD software). These equations of

motion are then exported for solution to MATLAB. As a number of collapse mechanisms take place

above ground level, a methodology to account for ground motion amplification effects is also proposed,

while in the case of comparison of multiple different mechanisms, an algorithm to automatically

detect critical mechanisms is presented. These developments make it possible to rapidly conduct a

seismic analysis of structures with complicated three-dimensional geometries.

However, the rocking equations of motion utilised thus far assume that the interfaces between the

masonry macro-elements are rigid, which is not the case in reality. Thus, a flexible interface model

is introduced, where the interfaces are characterised by a finite stiffness and compressive strength.

This modelling strategy results in an inward shift of the rocking rotation points, and expressions are

derived for these shifting rotation points for different interface geometries. The rocking equations of

motion are also re-derived to account for the influence of the continuously moving hinges. However,

the new equations tend to be highly non-linear - especially in the case of more complex collapse

mechanisms. Thus to reduce computational burden, the semi-flexible interface model is proposed,

which accounts for the shifting hinges in a more simplified manner than its fully-flexible counterpart.

These new analytical models enable more accurate prediction of the seismic response of real-world

structures, where interface flexibility tends to have a significant influence on dynamic response, while

material damage in the form of crushing of the masonry also reduces dynamic resistance.



x

The ability of the tool to be used for both seismic analysis and assessment is finally demonstrated

by using it to perform a rocking dynamics-based analysis as well as a code-based seismic assessment

of the walls of a historic earthen structure.
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Chapter 1

Introduction

1.1 Motivation

Masonry structures comprise a broad range of building materials and structural typologies - ranging

from monumental structures such as Roman triumphal arches and Greek temples, which were usually

constructed using materials such as stone and marble, to more modern constructions such as multi-

story office buildings and apartment blocks, which are commonly built using brick and mortar, or

even concrete blocks.

In the case of historic masonry structures in particular, their relatively large scale results in gravity

being the predominant load acting on them. In fact, the effect of environmental loads such as wind

and snow is usually small when compared to the structure’s self-weight. Coupled with the durability

of masonry as a building material as well as its high compressive strength, it is thus hardly surprising

that masonry structures make up the majority of built cultural heritage still surviving today.

However, as the safety of these structures is usually governed by stability rather than material

strength (Heyman, 1995), the large displacements induced by earthquakes have the potential to be

extremely destructive to these constructions. In fact, failure of masonry structures under the influence

of seismic action is frequently observed – most recently during the earthquakes in Central Mexico

[2017], Amatrice, Italy [2016] and Nepal [2015]. The collapse of structures during earthquakes not

only causes a catastrophic amount of damage in terms of human casualties and economic losses, but

also results in the loss of a part of our shared cultural heritage through the destruction of monuments,

churches and other historic masonry structures.

However, while failure of these structures during earthquakes is well-documented, the tools

and methods currently used to assess their vulnerability to collapse (and consequently the need for

intervention) leave room for improvement. This is particularly relevant in the case of historic masonry

structures, where over-conservative predictions of seismic vulnerability can result in occasionally

unnecessary retrofit solutions - which tend to disturb the original fabric/aesthetics of the structure.

Furthermore, when applied incorrectly, such interventions can also further increase susceptibility to

collapse - as was observed in the case of several cultural heritage buildings during the 2009 L’Aquila
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earthquake (Augenti and Parisi, 2010). These factors, combined with the formidable cost of seismic

strengthening measures, make it impractical to retrofit all the potentially vulnerable elements in a

structure, and thus emphasise the need for improved assessment tools which enable rapid comparison

of the relative vulnerabilities of different elements within a structure, so that retrofit solutions can be

prioritised and used as effectively as possible.

At present, the tools used for modelling collapse of these structures can be broadly divided

into simplified code-based analytical methods and detailed numerical modelling programs. While

code-based analytical methods provide rapid estimates of the response of the structure, they tend to

ignore certain dynamic features of this response, and thus yield generally conservative predictions.

Conversely, numerical modelling programs, while providing more realistic predictions, tend to be

computationally-expensive and time-consuming, and are thus better suited for analysis of these

structures, rather than assessment. There thus exists a need for the development a tool which bridges

the gap between the two procedures - by better capturing large displacement response and thus more

effectively modelling collapse than the current code-based methods, but by doing so in a manner that

is more computationally-efficient than typical numerical modelling procedures.

Such a tool has the potential to be extremely useful not just in Europe, with its abundance of

cultural heritage vulnerable to seismic action, but also in developing countries such as India, Pakistan

and Nepal - which lie in highly seismic zones and tend to suffer from a disproportionately large

number of casualties during earthquakes - with 8,790 people dying during the 2015 Gorkha earthquake

in Nepal (National Planning Commission (NPC), 2015), 72,760 people being killed during the 2005

Kashmir earthquake in Pakistan (EEFIT, 2005), and more than 20,000 casualties being recorded

during the 2001 Bhuj earthquake in India (Hough et al., 2002). A dearth of government funding

for the protection of built heritage in these countries thus makes it even more critical to develop an

open-source, easy to use, computationally-efficient tool, which is independent of specific commercial

software and can thus be used by engineers and academics all over the world.

1.2 Background

Failure of masonry structures during earthquakes generally occurs via specific, well-documented

collapse mechanisms (D’Ayala and Speranza (2002), D’Ayala and Speranza (2003), PCM-DPC

MiBAC (2006)), which can broadly be divided into in-plane and out-of-plane mechanisms, with local

or out-of-plane collapse tending to dominate failure.

Dynamic analysis of these collapse mechanisms can be conducted using either analytical tools or

numerical methods. Typical assessment tools, commonly applied in practice, comprise both force-

based and displacement-based procedures, and include code-based methods such as those outlined by

ASCE 43-05 (2007) and the Italian Building Code (DMI, 2008), the FaMIVE procedure proposed by

D’Ayala and Speranza (2002), as well as various commercial software (Aedes Software Snc (1997),

STADATA (2012), Lagomarsino and Ottonelli (2012)). The dynamic resistance of the structure, which
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increases with its scale, is generally factored into these assessment methods by either using a multiple

of the static acceleration required to activate the mechanism (e.g. through the use of a behaviour factor,

typically equal to 2, as in the Italian Building Code), or by approximating the dynamic response using

a single-degree-of-freedom linear-elastic oscillator. Such an approach tends to incorporate certain

dynamic effects, but ignores others, and consequently yields results which are generally conservative

(Shawa et al., 2012), which can lead to expensive and unnecessary retrofitting solutions.

At the other end of the spectrum, numerical methods such as Finite Element Modelling (FEM)

and Discrete Element Methods (DEM) can be used for more detailed analysis of these collapse

mechanisms. Using FEM, the masonry can either be modelled as a continuum (macro-modelling) or

with each unit individually represented and the joints between them modelled as interfaces (micro-

modelling). As an alternative, DEM can be used to model the masonry as rigid blocks separated by

interfaces of a given stiffness, which enables the capture of large displacement response as well as

the opening and closing of the joints. However such methods are sensitive to input parameters such

as damping and joint properties, and can be both time-consuming and computationally expensive

(de Felice et al., 2017), particularly when trying to model collapse.

Alternatively, non-linear dynamic analysis, which directly integrates the equations of motion of

the local collapse mechanisms, can be used to analytically model collapse, based on the assumption of

rigid body behaviour of the masonry macro-elements. Equations of motion derived in the literature thus

far model these collapse mechanisms as single, two or multiple block mechanisms (Housner (1963),

Mauro et al. (2015), Sorrentino et al. (2008b), Makris and Vassiliou (2013)), with formulations also

being proposed for structures with more complicated geometries such as masonry spires and arches

(DeJong (2012b), DeJong and Dimitrakopoulos (2014)). Such an approach has been found to better-

reproduce experimental results, with considerably less scatter being observed with the experimental

data - especially when compared to code-based predictions (Shawa et al., 2012). However, while

such an approach enables faster assessment and depends on fewer variables than FEM and DEM, the

solution of real geometries involving complicated 3D mechanisms has not been feasible up to this

point.

Furthermore, while most of the rocking equations of motion found in the literature tend to model

the kinematic chain as a set of rigid bodies with rigid interfaces, this is not realistic as real-world

structures have non-rigid joints (generally due to the presence of mortar) with finite compressive

strength. In fact, interface flexibility has been observed to have a substantial influence on dynamic

response (ElGawady et al., 2011), while the assumption of infinite compressive strength also tends

to be un-conservative - particularly for large-scale structures, or for vertically-spanning walls under

large superimposed loadings.
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1.3 Research objectives

While numerous formulations have been proposed in the literature for analytically modelling dynamic

collapse of masonry structures, most of these formulations have been limited to simple structural

geometries such as rectangular blocks and cones (DeJong (2012b), Mauro et al. (2015), Sorrentino

et al. (2008b), Makris and Vassiliou (2013)). Conversely in the case of more complex structures, most

analytical formulations have been restricted to kinematic limit analysis (de Luca et al. (2004), Block

et al. (2006)) with the equivalent displacement demand being evaluated through the combination of

this approach with the capacity spectrum method (DMI (2008), Lagomarsino (2015)). However, given

that a number of real-world structures tend to have complicated geometries and thus cannot simply

be idealised as simple rectangular blocks or cones, there is a need to integrate both aspects of this

problem in a simplified manner that could also be implemented in codes of practice. Thus the first

objective of this dissertation is to:

1. Develop a simple computational modelling tool to rapidly predict critical mechanisms and

dynamic collapse of any user-defined structural geometry.

Furthermore, in the case of large-scale structures or structures with a low compressive strength,

interface flexibility tends to influence dynamic response, with material damage in the form of crushing

of the masonry leading to reduction in dynamic resistance. Thus to more realistically model the effects

of non-rigid interfaces, the second objective of this dissertation is to:

2. Develop a new interface formulation to more realistically model the influence of interface

stiffness and crushing (i.e. material damage) on the dynamic response of masonry structures -

which can also be implemented within the framework of the tool.

More generally, the aim of this research is to develop an accurate but computationally-efficient

modelling tool for the seismic assessment of masonry structures, which incorporates the dynamics of

seismic collapse, while requiring only a 3D geometric model (i.e. CAD model) of the structure as input.

Major benefits will include the circumvention of labour-intensive, manual generation of complicated

structural analysis models, avoidance of time-intensive computation typical of many computational

analysis methods, as well as the provision of more accurate results than typical assessment methods

through the more direct incorporation of dynamic effects.

1.4 Outline of thesis

To meet the objectives outlined above, the following approach is adopted. Having introduced the

problem in this chapter, Chapter 2 conducts a review of the numerical and analytical modelling tools

currently being used for the seismic analysis of masonry structures.

The framework of the new tool is then presented in Chapter 3, which focusses on the derivation

of the rocking equations of motion for user-defined structural geometries directly within the CAD
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environment, followed by their export to and eventual solution in MATLAB. Note that the equations

presented here model the interfaces between blocks as rigid - which is an assumption that will be

revisited in Chapter 6. Furthermore, as a number of collapse mechanisms tend to take place above

ground level, a new methodology to account for ground motion amplification effects is also proposed.

Additionally, as one of the objectives of the tool is to rapidly compare different mechanisms and

identify the most vulnerable one(s), an algorithm to automatically detect critical mechanisms is also

introduced here.

Chapter 4 conducts an evaluation of the rigid rocking tool through comparison of the predictions of

the tool with the results of experimental shake table tests, numerical simulations, and field observations

from a recent earthquake. A potential application of the tool is then demonstrated in Chapter

5, by using it for the seismic analysis of a typical Italian church geometry. Both these chapters

demonstrate the tool’s ability to provide realistic predictions, as well as the potential effectiveness

of the methodology proposed to account for ground motion amplification. Furthermore, Chapter 5

highlights the tool’s capacity for rapid comparison and detection of critical collapse mechanisms.

In Chapter 6, the rigid interface assumptions are revisited through the introduction of the flexible

interface model, wherein the interfaces between block macroelements are characterised by a finite

stiffness and compressive strength. Modelling interfaces as non-rigid results in an inward shift of the

rocking rotation points, and expressions defining these shifting rotation points are derived for different

interface geometries. These shifting rotation points also result in the rocking equations of motion

needing to be re-derived for the single, two and multiple-block mechanisms. However, these new

equations of motion are highly non-linear, and thus to reduce computational burden, a semi-flexible

interface model is also introduced, which accounts for the inward shift of the rotation points in a more

simplified manner than its fully-flexible counterpart. The new analytical models are then evaluated

in Chapter 7 through comparison with field observations as well as validated against the results of

numerical simulations.

Finally, the tool’s ability to be used for both seismic analysis and assessment is illustrated in

Chapter 8, by using it to conduct a rocking dynamics-based analysis as well as a code-based seismic

assessment of the walls of a historic earthen structure.

Chapter 9 summarises this work, while also highlighting the scientific contributions as well as

practical applications of the research. Furthermore, future research ideas, in the form of additional

theoretical and computational developments required before the tool can be disseminated for practical

use, are also presented.





Chapter 2

Literature Review

2.1 Introduction

Recent earthquakes have emphasised the need to better understand the behaviour of masonry structures,

both unreinforced and reinforced, under dynamic loading, and the need for better assessment tools.

Typical failure of these structures generally occurs via specific collapse mechanisms, which have

been well documented (D’Ayala and Speranza, 2002, 2003; PCM-DPC MiBAC, 2006) (Figs. 2.1-2.2).

These mechanisms can broadly be divided into in-plane and out-of-plane mechanisms, with local or

out-of-plane collapse being particularly common modes of failure, as was observed during the recent

earthquakes in Amatrice, Italy (2016) (Fiorentino et al., 2017) and Nepal (2015) (Rai et al., 2016).

Analysis of these collapse mechanisms can be conducted using a range of tools, which fall into

two primary categories: (1) Detailed computational analysis and (2) Simplified analytical/code-based

assessment methods.

Fig. 2.1 Typical out-of-plane collapse mechanisms of masonry walls (D’Ayala and Speranza, 2002)
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The computational analysis of masonry is generally conducted using numerical modelling tech-

niques such as finite element modelling programs (FEM), which have been well-developed and are

commonly used by practising engineers. However, while extensive research into the seismic response

of masonry structures has been conducted using FEM, they are better suited to problems of elasticity

and plasticity such as global in-plane behaviour and pushover analysis, and not overturning stability,

which is often the primary concern in the case of masonry structures (DeJong, 2009) as well as the

focus of this dissertation. Discrete element modelling (DEM), on the other hand, inherently captures

the interaction of discrete bodies, and allows for joint contact recognition in a more efficient manner

than many finite-element modelling procedures, thereby enabling masonry collapse mechanisms to be

modelled with a reasonable degree of accuracy. In this dissertation, DEM will be used for comparison

with existing analytical formulations as well as for validation of new analytical models. Consequently

Section 2.2 of this chapter reviews the various studies conducted using DEM to model masonry

structures.

The dynamic behaviour of masonry can also be captured using simplified code-based assessment

methods, in addition to analytical tools such as pushover analyses, macro-element modelling, and

dynamic analysis comprising the direct integration of equations of motion. Thus Section 2.3 of

this chapter reviews the various analytical tools and methods developed to describe the response of

masonry structures to seismic loading.

2.2 Numerical tools

Masonry structures are made up of distinct blocks separated by dry or mortared joints and thus

exhibit complex behaviour, including large displacements and the opening and closing of joints,

in strong seismic events. This behaviour can be modelled using either macro or micro modelling.

While macro-modelling represents the intrinsic structure of masonry by using appropriate constitutive

relations, and is predominantly used in practice, micro-modelling explicitly represents the individual

blocks and joints and is more commonly used for research purposes, although its applicability to real

structures is also increasing (Lemos, 2007).

While finite element models are generally used for the macro-modelling of masonry, they can also

be used for micro-modelling if they feature joint or interface elements. However, discrete element

models are not only more computationally efficient than their finite element counterparts, but are

also more applicable to problems of stability or in cases where structures fail by mechanisms, as they

allow large displacements and full separation between blocks, as well as automatic contact detection

and updates (Lemos, 2007).

The other features that distinguish discrete element models from finite element models include the

assumption of rigid blocks with system deformability concentrated in the joints (although deformable

blocks, where blocks are discretized into finite element meshes are also allowed), as well as the use of

contacts to represent block interaction (Lemos, 2007). These contacts can be modelled as either rigid
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(no overlap between blocks) or deformable (small overlap between blocks in compression). In the

case of deformable contacts, the permitted overlap size is defined in terms of the normal and shear

contact stiffness (Lemos, 2007). The solution of the equations of motion of the system is carried

out using an explicit time-stepping algorithm, and an example of the calculation cycle for one DEM

program (3DEC (Itasca Consulting Group, 2007a)) is illustrated by Fig. 2.3.

Fig. 2.3 Cycle of mechanical calculations in 3DEC (Itasca Consulting Group, 2007b)

Numerous discrete element formulations can be used in the analysis of masonry structures, and

are broadly divided into the following categories: discrete/distinct element models, discrete-finite

elements, discontinuous deformation analysis (DDA), and rigid block analysis and limit equilibrium

methods. Discrete-finite elements are primarily used for problems of fracture mechanics, while the

use of DDA is limited to cases where contacts are assumed to be rigid and blocks are assumed to

be in a state of uniform strain and stress (Lemos, 2007). Similarly, the use of rigid block analysis

and limit equilibrium methods is based on plasticity concepts developed by Heyman (1995) and is

predominantly used to determine collapse loads and is, as the name suggests, limited to rigid blocks.

Discrete/distinct element models (DEM), on the other hand, allow blocks to be modelled as either

rigid or deformable, and use deformable contacts. Furthermore, distinct element codes such as the

Universal Distinct Element Code (UDEC, for 2D problems) and the 3 Dimensional Distinct Element

Code (3DEC, for 3D problems) not only allow collapse conditions to be determined, but also enable

the dynamic behaviour of the structure to observed until complete collapse (Cundall, 1988; Hart et al.,

1988). These two programs also perform automatic contact detection and update, and enable structural

reinforcement to be modelled in the form of cable and beam elements.

The suitability of DEM for modelling both the static and dynamic behaviour of masonry structures

has been demonstrated through several studies, with the tested structures comprising both unreinforced

(Bui and Limam, 2012; de Felice and Giannini, 2000; Mendes et al., 2017) and retrofitted (Alexandris

et al., 2004; Zhuge, 2008) masonry walls, 3-wall assemblages (Lemos and Campos Costa, 2017),

free-standing columns (Papantonopoulos et al., 2002; Papastamatiou and Psycharis, 1993) and column-

lintel configurations (Psycharis et al., 2003), arches (Azevedo et al., 2000; De Lorenzis et al., 2007;
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Dimitri et al., 2011; Lemos, 1998; Mehrotra et al., 2015; Mirabella-Roberti and Calvetti, 1998) and

aqueducts (Azevedo et al., 2000; Drei and Oliveira, 2001). DEM was also used for the seismic

assessment of structures such as bell towers (Azevedo and Sincraian, 2001; Azevedo et al., 2000),

a lighthouse (Oliveira et al., 2002) and stone spires (DeJong and Vibert, 2012a), while its ability to

realistically model irregular masonry walls was demonstrated by studies conducted by Mirabella-

Roberti and Spina (2001) and de Felice (2011).

However numerical methods like DEM are sensitive to input parameters such as damping and

joint properties, and can be both time-consuming and computationally expensive (de Felice et al.,

2017), particularly when trying to model collapse. As an alternative, both non-linear static and

dynamic analysis tools have been developed to analytically model these collapse mechanisms, which

are based on the assumption of rigid body behaviour of the masonry macro-elements. While such an

approach enables faster assessment and depends on fewer variables than its numerical counterpart, it

also requires explicit definition of the collapse mechanisms, which depends in turn on user experience

and engineering judgement (de Felice et al., 2017).

2.3 Analytical models and tools

Modern codes such as Eurocode 8 (EN 1998-1, 2004) and ASCE-FEMA (Applied Technology Council

(ATC), 2000) consider the following four methods of structural analysis for the seismic assessment

of buildings: linear static, linear dynamic, non-linear static and non-linear dynamic (Magenes,

2006). Although linear analysis tools and software are more commonly used by practising engineers,

they are over-conservative in their solutions and cannot fully capture the non-linear behaviour of

masonry (Magenes, 2006), and thus shall not be reviewed in this section. Furthermore, while detailed

computational models used for the non-linear analysis of masonry (e.g. DEM as discussed in Section

2.2) could also be used for (non-linear) assessment, they can be computationally demanding and

time-consuming and as such are not entirely feasible for day-to-day use by practising engineers. Thus

the focus of this section shall be on simplified analytical/computational assessment/design methods

which capture the non-linear behaviour of masonry in a computationally efficient and rapid manner.

These methods can be further divided into the following two aspects – local mechanisms, which

generally comprise the out-of-plane response of the individual structural elements, and global mecha-

nisms, which involve the in-plane response of walls (Magenes, 2006). However, during an earthquake,

both local and global mechanisms are activated simultaneously, and it is upon the prevention of local

out-of-plane collapse that global in-plane mechanisms are allowed to develop (Magenes, 2006). The

main tools that currently exist for the non-linear analysis of masonry structures are summarized in

Table 2.1, and shall be discussed in greater depth in this section.



12 Literature Review

Table 2.1 Non-linear analytical and computational assessment and design methods

Static Dynamic

Global

(a) POR method (a) TREMURI
(b) Equivalent frame models: (b) Macro-element models

- Simplified Analysis of Masonry
- SSWP, WSSP

Local

(a) Code-based methods: (a) Modified macro-element model
- Italian Building Code (b) Classical rocking theory
- ASCE 43-05

(b) FaMIVE procedure
(c) MB_PERPETUATE
(d) MeBaSe procedure

2.3.1 Code-based assessment methods

Most damage to masonry buildings under seismic action is due to local mechanisms in the form of

out-of-plane damage and collapse. Furthermore, as was previously mentioned, global mechanisms are

only allowed to develop if out-of-plane or local collapse is prevented. Thus, the assessment of local

mechanisms was made mandatory by the Italian Building Code (DMI, 2008), which proposed the use

of rigid-body limit analysis to assess the behaviour of masonry structures, through the performance of

either a strength-based or displacement-based safety check.

In the case of the strength-based check, a maximum allowable peak ground acceleration (PGA) to

prevent collapse is determined, which is usually equal to the ground acceleration required to activate

the mechanism, multiplied by a safety/behaviour factor q (typically equal to 2) (Shawa et al. (2012),

DeJong (2014)). In the case of the displacement-based check, the displacement capacity du* is first

defined, which is equal to 40% of the displacement which would cause the actual structure/mechanism

to overturn. This displacement is then used to determine the effective secant period of the mechanism

(calculated at 40% of du*), which in turn is used to evaluate the corresponding displacement demand

∆d from the linear-elastic response spectrum (Shawa et al. (2012), DeJong (2014)).

Linear-elastic response spectra are also used in ASCE 43-05 (2007) to calculate a "best estimate"

for the maximum rocking response of the structure/mechanism (DeJong, 2014). In this case, a

maximum rocking rotation rather than displacement is specified, which is used to determine the

spectral acceleration capacity Sa,CAP. The equivalent natural period Tn of the linear-elastic oscillator

is then determined by equating the potential energy of the oscillator to that of the mechanism at the

maximum rocking angle - which in turn is used to extract the spectral acceleration demand Sa,DEM

from the linear-elastic spectral design chart (scaled to a PGA = 1g) (DeJong, 2014).

However, due to their relative simplicity, code-based methods tend to disregard certain features of

the motion of the structure, such as the evolution of the system over time and the energy dissipation

(Giresini et al., 2015). Consequently, the results of the analysis, as found using the code-based
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approach, tend to be over-conservative - as was observed for the case-study of the altar of the Beata

Vergine Annunziata church, where the predictions obtained using the Italian code were found to be

more conservative than those obtained using classical rocking theory (Giresini et al., 2015).

Fig. 2.4 Comparison of the predictions obtained using the strength-based (a, c) and displacement-based
(b, d) procedures of the Italian Building Code with those obtained using DEM (a, b) and analytical (c,
d) modelling, as found in Shawa et al. (2012)

Similar trends were also observed by Shawa et al. (2012), where a comparison of the predictions

obtained using both Italian code-based procedures with those obtained using analytical modelling as

well as DEM for a set of masonry walls with varying geometries revealed a significant scatter in the

results (Fig. 2.4). The predictions of the analyses were compared in terms of demand/capacity ratios,
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which in the case of the Italian strength-based procedure was the ratio of the PGA to the ground

acceleration a0 required to activate the mechanism (multiplied by the safety/behaviour factor of 2),

while in the case of the displacement-based procedure was the ratio of the spectral displacement ∆d

to the displacement capacity du*. In the case of the numerical (DEM) and analytical models, the

demand/capacity ratios were evaluated in terms of the potential energy of the walls, with the capacity

EC being defined as the maximum potential energy of the wall - attained when the structure is at

the unstable equilibrium configuration (i.e. at the point of overturning), while the demand ED was

the defined as the maximum potential energy recorded during the motion of the wall (in the case

where the wall does not overturn) or the sum of the potential and kinetic energies evaluated at the

point of overturning (when the wall does overturn). For all four methods, collapse occurs when

the demand/capacity ratio exceeds 1. From this comparison, and as Fig. 2.4 illustrates, the code

strength-based and displacement-based procedures were found to be conservative in 99% and 90% of

the cases respectively.

One potential drawback of these over-conservative methods is that they could lead to expensive

and sometimes unnecessary retrofitting solutions, which in the case of historical masonry structures

could also detract from their cultural value (Giresini et al., 2015).

2.3.2 Non-linear static analysis tools

Local Mechanisms

In addition to code-based methods, static-equivalent pushover analysis of local collapse mechanisms

can also be conducted using the FaMIVE procedure, which uses a failure mechanisms approach to

analyse seismic vulnerability (D’Ayala, 2005). In the case of complex structures, where a number of

possible collapse mechanisms could occur, the procedure first calculates the collapse load factor λi for

each mechanism, before identifying the most vulnerable one, with a displacement-based vulnerability

analysis ultimately being conducted of the critical mechanism. The reduction in vulnerability due

to various strengthening interventions is also factored into this approach when predicting the most

probable damage modes and vulnerability levels of the structure (D’Ayala, 2005; D’Ayala and

Speranza, 2002).

Non-linear static-equivalent analysis of local collapse mechanisms can also be performed using

software such as MB_PERPETUATE (Lagomarsino and Ottonelli, 2012), which makes use of incre-

mental kinematic analysis to generate a pushover curve for a given mechanism (Lagomarsino, 2015).

Similar to the FaMIVE procedure, a displacement-based vulnerability analysis is then conducted, with

the corresponding seismic demand being defined through an over-damped Acceleration-Displacement

Response Spectrum (ADRS), which also accounts for the filtering effect of the structure, and in the

case of mechanisms taking place at a height above ground level - amplification of the ground motion

(Lagomarsino, 2015).
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Alternatively, the MeBaSe procedure proposed by Restrepo-Vélez (2004) could be used instead.

Building on the work of D’Ayala and Speranza (2003), and based on the results of experimental

static tests on dry stone masonry walls (Restrepo-Vélez et al., 2014), new equations for the collapse

load multiplier λi are proposed, in order to better fit the experimental data (Restrepo-Vélez, 2004).

Upon the identification of the most probable out-of-plane failure mechanism, a displacement-based

assessment of seismic vulnerability is then conducted through the definition of limit state functions

for the period TLS and displacement (i.e. capacity) ∆LS. However, unlike the FaMIVE procedure

and MB_PERPETUATE, which use ADRS to determine seismic demand, the demand in this case is

determined using elastic displacement response spectra, with the corresponding displacement demand

being evaluated at the limit state period TLS of the mechanism.

Global Mechanisms

A simplified non-linear static (pushover) assessment method (POR) that could be applied to global

analysis of masonry buildings was first developed by Tomazevic (1978). This method was based

on the storey-mechanism approach, whereby separate non-linear inter-storey shear-displacement

analysis was conducted for each storey, with each connecting pier being characterized by an idealized

non-linear (bilinear) shear-displacement curve (Magenes, 2006). Although this method is widely used

due to its introduction into the Italian code, its application is restricted to certain classes and sizes of

buildings (Magenes, 2006).

The storey-mechanism approach was extended by Magenes (2000) using an equivalent frame

idealization, in which the resisting masonry walls were subdivided into macro-elements comprising

deformable masonry panels - where the deformation and non-linear response were concentrated, and

rigid portions which connected the deformable sections (Lagomarsino et al., 2013). The limited

number of degrees of freedom and corresponding low computational burden make this method, also

known as SAM or Simplified Analysis of Masonry, attractive to practitioners, and it can now be found

in both Eurocode 8 and the Italian building code (DMI, 2008; EC (Eurocode) 8, 2004; Lagomarsino

et al., 2013; Magenes, 2000).

In addition to the equivalent frame model, masonry walls can also be idealized using simplified

models such as the strong spandrels-weak piers model (SSWP) which is based on the assumption

that the piers crack first, and the weak spandrels-strong piers model (WSSP), which assumes that the

spandrels have null strength and stiffness (Lagomarsino et al., 2013). SSWP and WSSP models are

both recommended by FEMA guidelines (Applied Technology Council (ATC), 1998, 2000), while

the SSWP model is also consistent with Tomazevic’s POR method (Tomazevic, 1978). The Italian

building code assumes the WSSP scheme for simple cantilever models, while the SSWP scheme

(storey mechanism) is no longer allowed for multi-storey buildings (DMI, 2008).
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2.3.3 Non-linear dynamic analysis tools

Macroelements

The equivalent-frame formulation was further developed by Lagomarsino et al. (2013) to allow for

both the static and dynamic global analysis of entire buildings in the form of the following procedures:

incremental static with force or displacement control, 3D pushover analysis with fixed and adaptive

load pattern, and 3D time-history dynamic analysis (Newmark integration, Rayleigh viscous damping).

However, this method, which is also implemented in the TREMURI program, is limited to the in-plane

response of walls (Penna et al., 2015).

Penna et al. (2014) extended the non-linear macroelement modelling technique to represent two

main in-plane masonry failure modes: bending-rocking and shear-sliding (Penna et al., 2015). This

model also accounts for the effect of crushing, but like TREMURI is limited to in-plane action.

Consequently, macro-elements were further developed by Penna and Galasco (2013) and Penna

et al. (2015) to account for second order effects, thereby allowing local/out-of-plane failure modes

to also be simulated. The modified macro-element model was validated by comparing the dynamic

solution for overturning of a rigid block to that obtained using classical rocking theory (Housner,

1963; Penna et al., 2015). Further analytical validation was carried out by comparing the model

solution to that reported by Sahlin (1971) for an eccentrically loaded column.

The modified macro-element model was also validated against two sets of experimental results –

the first being an evaluation of the out-of-plane response of stone masonry walls (Costa et al., 2014)

and the second comprising a cyclic test on a triumphal arch with a steel tie-rod (Preti et al., 2013). In

both cases the model was found to be capable of satisfactorily reproducing the response in terms of

the force-displacement curves, and in the case of the arch, was even able to identify the formation of

hinges (Penna et al., 2015).

However, this modified macro-element model is still fairly new, and as such is limited to simple

rocking systems (Penna et al., 2015). Thus in order to study more complex systems, classical rocking

theory as first developed by Housner and advanced by several others since, could also be used.

Classical rocking theory

Classical rocking theory provides the basis to assess collapse mechanisms and has been used to

derive equations of motion for several structural typologies starting from the basic rocking block,

which could be used to model façade overturning, to more complex structures such as arches and

asymmetric rocking frames, which could be used to model the dynamic response of monumental

masonry structures such as triumphal arches, aqueducts, and column and lintel configurations.

Single block mechanism

Early work on rocking (Housner, 1963) derived equations of motion for a single rigid block rocking

on a horizontal rigid base. The relevant geometric properties of the block, which are included in the
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Fig. 2.5 Geometry of the rocking block as found in Housner (1963)

equation of motion, include the moment of inertia about the axis of rotation IO, the weight of the

block W, the distance R between the centre of gravity and the axis of rotation O, as well as α , which

corresponds to the slenderness of the block (Fig. 2.5). Upon being subjected to a horizontal ground

acceleration üg, moment equilibrium about the axis of rotation O yields the following equation of

motion:

IOθ̈ +WRsin(α −θ) =−WR
üg

g
cos(α −θ) (2.1)

Assuming the block is tall and slender, that is, α is generally less than 20°, small angle approximation

can be used to linearise Equation 2.1, resulting in it assuming the following form:

IOθ̈ +WR(α −θ) =−WR
üg

g
(2.2)

Setting WR/IO = p2, Equation 2.2 can then be simplified and re-written as:

θ̈ = p2
(

θ −α −
üg

g

)
(2.3)

where p corresponds to the rocking frequency parameter. Energy dissipation at base impact is also

accounted for by means of a coefficient of restitution η , which is derived by assuming inelastic impact

(no bouncing) and conservation of angular momentum.

This model was then used to investigate the response of the block to rectangular and sinusoidal

acceleration impulses, and to derive a relationship between block size, slenderness, impulse amplitude

and duration required to cause overturning (Housner, 1963).

Building on Housner’s work, Spanos and Koh (1984) and Zhang and Makris (2001) studied

the rocking response of rigid blocks to harmonic motion. However, while Spanos and Koh (1984)
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examined long-duration motion, Zhang and Makris (2001) focussed instead on pulse-type excitations,

which were found to better represent near-source ground motions (Campillo et al., 1989; Iwan and

Chen, 1994; Makris and Roussos, 1998).

To investigate the response of typical unreinforced masonry façades to seismic action, Sorrentino

et al. (2008a) developed a dynamic analytical model to describe one-sided rocking. Comparison of

the analytical results to those from the code-based assessment procedures showed the latter to be

overly conservative, thereby indicating that retrofitting of historical structures could occasionally be

unnecessary (Sorrentino et al., 2008a). Furthermore, to account for the additional energy dissipated by

the impact of the façade with the transverse walls (in addition to base impact), an analytical expression

for the coefficient of restitution was also proposed (Sorrentino et al., 2011).

One-sided rocking was further studied by Shawa et al. (2012) through an experimental, numerical

and analytical investigation into the seismic response of the façade of a U-shaped unreinforced masonry

assemblage. Comparison of the numerical (UDEC) and analytical results with their experimental

counterparts showed a reasonable agreement between both sets in terms of both entire time histories

and maximum rotations.

DeJong (2012b) extended rocking theory to apply to other geometries such as stone spires in

the form of rigid conical shells, and derived the rocking parameters and consequently equations of

motion to describe the response of these structures to horizontal base motion. These equations were

then used to predict the dynamic response in the form of collapse envelopes for both cracked and

un-cracked spires subjected to impulse base motion. The model was also used to evaluate the observed

damage to the spires of the Lion’s Walk Congregational Church in the United Kingdom, as well as the

Christchurch Cathedral in New Zealand.

Two block mechanism

In addition to cracked spires, rocking theory can also be used to model cracked wall sections. Doherty

et al. (2002) demonstrated that a cracked unreinforced masonry (URM) wall that undergoes rocking

with considerable horizontal displacements can be idealized as a single-degree-of-freedom (SDOF)

system in the form of rigid blocks separated by fully cracked cross-sections. However, this idealization

only holds true for cantilever (parapet) and simply-supported walls (Doherty et al., 2002).

The dynamic behaviour of simply-supported walls was further investigated by Sorrentino et al.

(2008b), with analytical formulations being proposed for both the intermediate hinge height (which

depends on the superimposed load applied to the wall as well as the tensile strength of the mortar)

and the coefficient of restitution. From these investigations it was found that the addition of a top

restraint has a beneficial influence on the dynamic behaviour of the wall as it not only increases the

threshold acceleration required for rocking to occur, but also results in greater energy dissipation than

in a cantilever (parapet) wall of equal shape and size (Sorrentino et al., 2008b).

The dynamic response of two block mechanisms was also investigated by Psycharis (1990)

whereby equations of motion were derived for systems comprising two symmetrically stacked blocks
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of different sizes - which could represent a piece of machinery, a statue, or any object placed atop a

rigid base. Four different patterns of response and impact were analysed, with the equation of motion

and corresponding coefficient of restitution (assuming conservation of angular momentum) being

derived separately for each mode of response. Based on this work, Spanos et al. (2001) developed

a more generalized model whereby non-linear equations of motion were derived for the stacked

two-block system.

Multiple block mechanisms

Allen and Bielaks (1986) analytically modelled multiple-block rigid body systems by using a relatively

simple model of a displaced two-storey 2DOF frame structure. Generalized equations of motion were

derived to predict the response of the system to specific ground motions, with several simplifications -

crushing was ignored, and no sliding, a rigid foundation, and energy dissipation upon impact alone

were assumed. The equations were also linearised by making use of the small angle assumption and

neglecting higher order (Coriolis) effects.

Extending the work of Allen and Bielaks (1986), Oppenheim (1992) analytically modelled the

dynamic response of a masonry arch under impulse base motion. The kinematics of the arch assumes

the form of a four-link rigid body mechanism with one degree of freedom in the form of the rotation

θ of the end segment of the arch, upon which the rotation of the other arch segments are dependent

(Oppenheim, 1992).

The masonry arch studied by Oppenheim (1992) was also analysed analytically using rigid

body dynamics and numerically using DEM in UDEC, by DeJong and Ochsendorf (2006). Using

Oppenheim’s assumptions of constant hinge locations, no sliding, and an impulse ground motion,

the analytical and numerical results were found to compare extraordinarily well. However, upon

extending the numerical analysis, it was observed that critical collapse occurs during the second

half-cycle of oscillation and that the hinge locations change continuously. Still assuming no sliding,

failure would actually occur in a much shorter time for the same acceleration impulse, thus indicating

that Oppenheim’s method is actually un-conservative (DeJong and Ochsendorf, 2006).

Furthermore, the mechanism studied by Oppenheim (1992) is just one of several existing mech-

anisms, each with their own set of hinge locations, thus Clemente (1998) proposed an iterative

procedure to determine the mechanism for a given arch. However, Clemente’s analysis is still an

approximation of the dynamic response of the stone arch, as it neglects the effect of impacts between

adjacent blocks, which causes energy dissipation and consequently changes in the response of the

structure (Clemente, 1998).

This impact problem was addressed analytically by De Lorenzis et al. (2007), albeit with simpli-

fying assumptions such as constant hinge locations, unvarying position of the system during impact,

occurrence of impact at the hinge sections, and location of the impulsive force on the opposite side of

the hinge across the arch thickness. The resulting impact model thus does not account for complex

behaviour such as sliding, slide-rocking or bouncing, but it does allow the equivalent coefficient of
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restitution to be estimated using conservation of angular momentum. This coefficient allows the

impact to be described and is dependent only on the initial geometry of the arch (De Lorenzis et al.,

2007). The results of this analysis were also found to be in good agreement with their numerical

counterparts obtained using DEM.

These analytical and numerical models were also confirmed by the experimental tests conducted

by DeJong et al. (2008), in which five different earthquake time histories and harmonic base excitations

were applied to two different arch geometries. The formation of alternating four-hinge mechanisms

and governance of rocking-type failure during these tests indicated that the assumptions made in the

analytical model were both reasonable and effective (DeJong and Dimitrakopoulos, 2012).

Unifying theory with practice

Despite being fairly well-developed, rocking theory is not often implemented in codes of practice, as

it can be rather complex. In order to make rocking theory more applicable and thus unify it with the

codes of practice, simplified methods need to be developed to quickly predict the dynamic (rocking)

response of structures subjected to seismic action.

Building on Housner’s work, closed-form solutions were derived by Dimitrakopoulos and DeJong

(2012) for the equation of motion for the rocking block when subjected to cycloidal pulses, with

analytical equations being provided for non-dimensional overturning plots so that the response of

the block to any pulse-type excitation could be easily predicted, needing only to be scaled by the

amplitude and frequency of the excitation.

In addition to overturning plots, rocking response spectra, comparable to linear elastic response

spectra but derived from the SDOF rocking block, could also be used to predict the dynamic response

of these structures to seismic excitation. The use of these spectra was first studied by Makris and Zhang

(1999) and Makris and Konstantinidis (2001), who derived relationships between size, slenderness

and overall stability. Further investigations by DeJong and Dimitrakopoulos (2012) into the use of

rocking spectra to capture the response of complex structures found that different rocking systems

could be defined by the same four parameters used for the single rocking block: the rocking frequency

parameter p, the critical rotation α , the coefficient of restitution η , and the uplift parameter λ , all

of which depend solely on the geometry of the structure. Examples of systems which exhibit direct

dynamic equivalence with the single block include SDOF systems such as a point mass supported by

a rigid strut, a masonry spire, as well as a symmetric rocking frame, with the latter exhibiting local

dynamic equivalence with the single block, assuming that sliding or bouncing do not occur (DeJong

and Dimitrakopoulos, 2014).

In the case of more complicated multiple block mechanisms such as two and three block structures

as well as the masonry arch and asymmetric frame, local equivalence with the rocking block can be

derived at the point of unstable equilibrium (φ = φcr), and the equation of motion can be linearised

about this point (DeJong and Dimitrakopoulos, 2014). The errors introduced by this linearisation are
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found to be dependent on the geometry and kinematics of the mechanism, but are, for the most part,

acceptable (DeJong and Dimitrakopoulos, 2014).

Nevertheless, this method only allows the approximate magnitude of global rocking response to

be determined, and not the exact displacements (DeJong and Dimitrakopoulos, 2014). However, it is

a useful means of rapidly predicting the seismic response of a complex structure as it circumvents the

need for solving complicated equations of motion.

This method was extended by Mauro et al. (2015) to predict and directly compare the relative

dynamic resilience of the various out-of-plane collapse mechanisms of masonry façades, specifically

examining the cases of one-sided rocking mechanisms of walls bearing loads from floors and additional

applied forces, and multiple block mechanisms in the form of a generalized two block mechanism.

Using this method, comparisons can then be made between the various possible mechanisms by using

a single equation of motion to derive the overturning envelopes for each mechanism. This method can

also be used to compare the relative effectiveness of various retrofit solutions.

Beyond the rigid model

Most of the formulations considered in the literature thus far have been extensions of the Housner

(1963) model, which assumes the blocks have infinite stiffness until the onset of rocking motion. In

reality, masonry structures have been found to exhibit small deformations before rocking initiates, due

in part to elastic deformability as well as the progressive formation of hinges (Lagomarsino, 2015).

This behaviour has been observed both experimentally in static push tests conducted on unreinforced

brick masonry walls (Doherty et al., 2000; Griffith et al., 2004), as well as numerically as a result of

discrete element analyses conducted on a set of real masonry wall sections (de Felice, 2011). The

force-displacement curves obtained from both the experimental and numerical campaigns (Fig. 2.6)

have been found to exhibit an initial elastic branch (positive stiffness) before rocking initiates.

Fig. 2.6 (a) Experimentally (Doherty et al., 2000) and (b) numerically obtained (de Felice, 2011)
force-displacement curves
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Fig. 2.7 (a) Bilinear (Lagomarsino, 2015) (Reprinted by permission from Springer Nature), (b) trilinear
(Doherty et al., 2002), (c) four-branch (Ferreira et al., 2015) and (d) smooth (Lipo and de Felice,
2016) models

.

Furthermore, factors such as geometrical imperfections, non-rigid interfaces and disaggregation

of multi-leaf wall sections due to poor transverse bonds between leaves have been found to contribute

to the reduction in the strength and displacement capacity of the masonry sections (de Felice, 2011) -

resulting in the structures having an overall lower dynamic capacity than the purely rigid (Housner)

model. In fact, experimental tests conducted by ElGawady et al. (2011) using concrete, timber, rubber

and steel joints demonstrated that the interface material tends to have a substantial influence on the

free rocking response of rigid blocks. Similarly, numerical analyses conducted by de Felice (2011) on

30 real wall sections found the resulting capacity curves to always be lower than the Housner model,

with an average reduction in both strength and displacement capacity of 25% and 35% respectively.

Several simplified analytical representations have been proposed for these more realistic force-

displacement curves - including a bilinear (Lagomarsino, 2015) (Fig. 2.7a), trilinear (Doherty et al.,

2002) (Fig. 2.7b) and four-branch (Ferreira et al., 2015) (Fig. 2.7c) model. Alternatively, a smooth

force-displacement curve (Fig. 2.7d) can be obtained by modelling the structure as a rigid block

resting on a flexible Winkler-type foundation (Lipo and de Felice, 2016, 2017), wherein the interface

is modelled as a set of springs characterised by a normal stiffness kn.

While most of the analytical studies previously conducted on these flexible interfaces assume pure

elastic behaviour (Koh et al., 1986; Lipo and de Felice, 2016, 2017; Psycharis and Jennings, 1983;

Shawa et al., 2012), recent work by Roh and Reinhorn (2009), Costa (2012); Costa et al. (2013) and
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(Penna and Galasco, 2013) assume a bilinear elastic representation of the compressive behaviour of

the interface, and thus also account for crushing effects. Nevertheless, in both cases the (non-linear)

rocking equation of motion (Equation 2.1) now includes an additional term a f (θ ) which accounts for

the moment due to the reaction from the elastic/elasto-plastic joint, and is a function of the rotation θ

of the structure, as illustrated by Equation 2.4:

IO′ (θ) θ̈ +WRsin(α −θ) =−WR
üg

g
cos(α −θ)+Wa f (θ) (2.4)

Note that the equation of motion now also depends on the moment of inertia IO′(θ ), which is no longer

constant and is now determined relative to the inwardly-shifted rocking rotation point O’, which is

also the point at which the reaction force from the interface acts. Note that the location of this point is

given by a f (θ ), and that it varies based on the rotation of the structure (Costa, 2012).

2.4 Summary

In this chapter, the various numerical and analytical models and tools currently being used for the

analysis of masonry collapse mechanisms are examined. The objective of this literature review is

to identify what has been done, and to determine where progress still needs to be made. The main

conclusions are as follows:

• The use of numerical models such as finite element analyses and discrete element methods

(DEM) for the seismic assessment of masonry can be computationally-expensive and time-

consuming, especially if the objective is to model collapse. However, DEM in particular has

been proven to effectively capture the response of masonry structures to seismic action and

could serve as a valuable tool for the validation of simpler analytical models. In Chapters 4 and

7, DEM simulations in 3DEC are thus used to evaluate simplifications made in the proposed

analytical models and validate them for practical use.

• A substantial amount of progress has been made with respect to the analytical modelling of

masonry collapse mechanisms using non-linear static and dynamic analysis methods. Moreover,

efforts have also been made to simplify these models so that they can be easily implemented

in practice. Currently, static limit analysis methods, combined with linear elastic dynamic

response are the basis for assessment, while the non-linear dynamics of rocking are typically

not considered. In the case of non-linear dynamic analysis, much progress has been made using

classical rocking theory, with the resulting simplified models exhibiting a dependence on four

rocking parameters which are all functions of the geometry of the structure. However, the work

done so far is limited to simple structural geometries. Thus in Chapter 3, a new analytical

modelling tool is presented whereby the rocking parameters defining the equation of motion can

be derived for any user-defined structural geometry, using as a starting point a 3D CAD drawing

(or laser scan) of the structure, thereby extending the application of this simplified method.
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The predictions of this new tool are evaluated in Chapter 4, while potential applications are

demonstrated in Chapters 5 and 8.

• Most of the equations of motion derived in the literature thus far have been based on classical

rocking theory, which assumes that the blocks have an infinite stiffness before rocking initiates,

and that the interfaces between blocks are entirely rigid. However, the results of experimental

and numerical campaigns have demonstrated that masonry structures exhibit small deformations

before rocking initiates, due in part to elastic deformability as well as the progressive formation

of hinges, while factors such as geometrical imperfections, non-rigid interfaces and disaggrega-

tion of multi-leaf wall sections due to poor transverse bonds between leaves further contribute to

reductions in their strength and displacement capacities. While equations of motion have been

derived to account for the reduction in dynamic capacity due to the inward shift of the rocking

rotation point, these formulations have been limited to single block mechanisms with solid

rectangular interfaces. Thus in Chapter 6 the rocking equation of motion is re-derived for the

single, two and multiple-block mechanisms to account for the inward shift of the rotation points

for different interface geometries, and these modified equations of motion are implemented

within the framework of the new analytical modelling tool. Studies validating the use of these

new equations of motion are presented in Chapter 7.

• Finally, the potential of the tool to be used for both seismic analysis and assessment is demon-

strated in Chapter 8.

The main contributions of this dissertation are summarised in Table 2.2, while the primary previous

work upon which they build is also cited.

Table 2.2 Main contributions and primary previous work they build upon

Contribution Primary Previous Work Chapters

Rocking equations of motion for
user-defined structural geometries

Housner (1963)
3, 4, 5DeJong and Dimitrakopoulos (2014)

Mauro et al. (2015)

Ground motion amplification effects Priestley (1985) 3, 4, 5

Critical mechanism detection - 3, 4, 5

Flexible & semiflexible interface models Costa (2012) 6, 7



Chapter 3

Framework of the new tool

3.1 Introduction

Much progress has been made with respect to the non-linear dynamic analysis of masonry collapse

mechanisms. In addition to the rigid rocking block (Housner, 1963), equations of motion have also

been derived for structures with more realistic geometries such as masonry spires (DeJong, 2012b),

as well as for mechanisms involving multiple elements in the kinematic chain such as cracked wall

sections (modelled as a two block mechanism) (Doherty et al., 2002; Mauro et al., 2015; Sorrentino

et al., 2008b), arches (De Lorenzis et al., 2007), symmetric portal frames (Allen and Bielaks, 1986;

Makris and Vassiliou, 2013), and asymmetric portal frames (DeJong and Dimitrakopoulos, 2014).

In the case of simpler mechanisms such as the spire and symmetric portal frame, direct dynamic

equivalence has been exhibited with the single rocking block, while the dynamic response of the more

complicated multi-block mechanisms can be approximated by linearising the equations of motion

about the point of unstable equilibrium (DeJong and Dimitrakopoulos, 2014). Furthermore, equations

of motion have also been derived for structures such as façades, which are often subjected to external

loads in the form of additional masses from floors/beams/roofs as well as thrusts from vaults and

tie-bar reactions, which were approximated as static forces (Mauro et al., 2015).

However, derivation of these equations of motion can be fairly cumbersome and time-consuming,

especially in the case of structures which have complicated geometries or mechanisms which involve

multiple elements in the kinematic chain. To this end, a new tool has been developed which makes

use of digital drawings of masonry structures in a typical CAD software (in this case Rhino (Robert

McNeel & Associates, 2014)) to directly generate the relevant equations of motion for user-specified

collapse mechanisms, which are defined based on factors such as quality and texture of the masonry,

presence of openings, quality of connections at corners etc. The equations of motion are then exported

to MATLAB where they can be solved for single sinusoidal pulse-type excitations, which in turn

are used to generate overturning plots which predict whether or not the structure will overturn for

pulses of varying frequencies and amplitudes. These plots are particularly useful for comparing the

relative dynamic resilience of different collapse mechanisms, as well as the potential effectiveness
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of retrofitting solutions. Alternatively, a full time-history analysis can also be conducted, whereby

the equations of motion are solved in order to predict the response of the structure to real earthquake

ground motion records. A flowchart illustrating the functioning of the tool can be found in Fig. 3.1.

This chapter aims to outline the core essence of this tool, and will focus on the derivation of

the equations of motion for the different mechanisms using Rhinoscript – which is one of the main

contributions of the tool, as well as their solution in MATLAB. New developments including a

methodology to account for amplification effects in the structure, as well as automatic detection of

critical mechanisms, will also be discussed.

Fig. 3.1 Flowchart illustrating functioning of tool

3.2 Generation of the equation of motion in Rhino (rigid interfaces)

The mechanisms modelled by the tool can be broadly divided into four different typologies – namely

a simple single block mechanism, a single block mechanism with added masses and forces, two

block and multiple block mechanisms. Following the approach presented in Mauro et al. (2015), the

equation of motion for any rocking mechanism can be derived using Lagrange’s equation, which

assumes the following form:

∂

∂ t

(
∂T
(
φ , φ̇

)
∂ φ̇

)
−

∂T
(
φ , φ̇

)
∂φ

+
∂V (φ)

∂φ
=−B(φ) üg +M (φ) (3.1)
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where φ is the rotation of the block and φ̇ the angular velocity. The term T(φ ,φ̇ ) represents the kinetic

energy of the system, V(φ ) the potential energy, B(φ )üg the inertial force induced by the ground

acceleration, and M(φ ) the moment provided by the external static forces. However, in order to obtain

local dynamic equivalence with the rocking block, Equation 3.1 can be linearised about the point of

unstable equilibrium (φ=φcr), which corresponds to the configuration at which the potential energy of

the system is maximum, and is thus the rotation at which:

∂V (φ)

∂φ

∣∣∣∣
φ=φcr

= 0 (3.2)

This yields the following general linearised equation of motion:

Ĩφ̈ − K̃ (φ −φcr) =−B̃üg + M̃ (3.3)

where Ĩ is the moment of inertia of the portion of the structural system involved in the mechanism

about the axis of rotation, and K̃ is the rotational stiffness:

Ĩ =
∂ 2T

(
φ , φ̇

)
∂ φ̇ 2

∣∣∣∣∣
φ=φcr

(3.4)

K̃ =
∂M (φ)

∂φ

∣∣∣∣
φ=φcr

− ∂ 2V (φ)

∂φ 2

∣∣∣∣
φ=φcr

(3.5)

B̃ = B(φ)|
φ=φcr

(3.6)

M̃ = M (φ)|
φ=φcr

(3.7)

Using the following transformation of variables:

θ = φ
K̃
gB̃

(3.8)

Equation 3.3 can be re-written as:

θ̈ = p2
eq

(
θ − λ̃ −

üg

g

)
(3.9)

where peq is the equivalent frequency parameter and is given by:

peq =

√
K̃
Ĩ

(3.10)
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and λ̃ is an approximation of the static load multiplier which activates the mechanism:

λ̃ =−M̃− K̃φcr

gB̃
(3.11)

Thus peq and λ̃ are the equivalent rocking parameters defining the linearised equation of motion

of the given mechanism, and depend primarily on the kinematic constants Ĩ, K̃, B̃ and φcr, which

can be derived solely based on the geometry of the structure, as well as M̃ (where relevant), which

depends on the external static forces applied to the system.

Furthermore, in the presence of external static forces (i.e. M̃ ̸= 0), the overturning rotation – that

is, the rotation at which the restoring moment is zero, no longer corresponds to φcr and is instead

defined as:

φ̃ov = φcr −
M̃
K̃

(3.12)

To this end, as part of the tool, scripts have been developed in Rhino to compute these kinematic

constants (and consequently the equivalent rocking parameters) for the four aforementioned mech-

anism typologies, for any arbitrary or user-defined structural geometry, and which are described in

further detail in the following sub-sections (3.2.1-3.2.4).

3.2.1 Single block mechanism

The simple single block mechanism can be used to capture the dynamic behaviour of many real-world

masonry structures which rock monolithically - such as statues (Fig. 3.2), columns, pillars, and

obelisks, as well as corner mechanisms and overturning of elements such as spires, apses and gables,

which are commonly found in churches. The kinematic constants for this mechanism are:

Ĩ = IO (3.13)

K̃ = gMR (3.14)

B̃ = MR (3.15)

φcr = φ̃ov = α (3.16)

where IO is the moment of inertia of the portion of the structure involved in the mechanism about the

axis of rotation, M is the mass, R is the distance between the center of mass and the axis of rotation

and α is the slenderness (Fig. 3.2b).

In the case of structures with fairly regular geometries such as walls (which can be approximated

as blocks) and spires (i.e. cones (DeJong, 2012b)), these geometric properties, and consequently the

kinematic constants they define, can be easily derived analytically. However for structures with more

complicated or irregular geometries, such as statues, derivation of these kinematic constants is far

less straightforward. Thus a script was written in Rhino which makes use of the software’s ability to
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Fig. 3.2 Simple single block mechanism (Statue geometry and mesh from EPFL Computer Graphics
and Geometry Laboratory). Note that the red line indicates the axis of rotation

quickly compute geometric quantities such as volumes, centroids, distances and moments of inertia,

to determine the aforementioned geometric properties, and consequently the kinematic constants,

for any user-defined structural geometry. For example, the geometry could be a meshed point cloud

generated from photogrammetry or laser-scan data, as in Fig. 3.3.

However, Rhino can only compute the moment of inertia about the centroid of the object (for the

volume moments of inertia) and about the global X, Y and Z axes (for the product moments of inertia).

Furthermore, the moments of inertia output by Rhino are in terms of volume, which consequently

need to be multiplied by the density of the object in order to get the corresponding mass moments of

inertia. Thus in order to calculate the moment of inertia of the object about the user-defined axis of

rotation, the script first has to compute the angles (βx, βy, βz) between the axis of rotation and the

global X, Y and Z axes. The product moments about the centroid are then obtained by applying the

following set of transformations:

Ixy = I0xy − (Vb × xc × yc) (3.17)

Iyz = I0yz − (Vb × yc × zc) (3.18)

Izx = I0zx − (Vb × zc × xc) (3.19)
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Fig. 3.3 Sample CAD geometry to illustrate functioning of script in Rhino, with the axis of rotation
indicated by the red line and the centre of mass by the red dot

where Ixy, Iyz and Izx are the product moments of inertia about the centroid, I0xy, I0yz and I0zx are

the product moments about the global axes, Vb is the volume of the object and xc, yc and zc are the

distances from the origin to the centroid of the object in the X, Y and Z directions respectively. The

distance rb between the centroid and the axis of rotation is also determined for each object. Using

these quantities, the mass moment of inertia of the object about the user-defined axis of rotation (IO)

is then computed by means of the following equation:

IO = ρ

[
Ixxcos2βx + Iyycos2βy + Izzcos2βz −2Ixy cosβx cosβy

−2Iyz cosβy cosβz −2Izx cosβz cosβx +Vbr2
b

]
(3.20)

where Ixx, Iyy and Izz are the volume moments of inertia about the centroid, and ρ is the density of the

object.

As input, upon opening the relevant CAD file (e.g. Fig. 3.3) and calling the script, the user is

first prompted to drag-select with the mouse all the objects involved in the mechanism and input the

density of the selected objects. For mechanisms involving objects of different densities (for example,

a stone column topped with a bronze statue), the user is prompted to first select objects of the first

density, then select objects of the second density and so on, with the script then joining objects of

the same density together. The user then defines (draws) the axis of rotation (indicated by the red

line in Fig. 3.2 and Fig. 3.3) and any cracks which occur, and based upon this input alone the script

computes the resultant kinematic constants for the mechanism. These kinematic constants are then
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used to calculate the rocking parameters, which are subsequently written to a text file for export to

MATLAB, where they are used to generate and solve the corresponding equation of motion.

3.2.2 Single block mechanism with added masses and forces

Equations of motion have also been derived for the single block mechanism under the influence of

additional masses and external static forces (Mauro et al., 2015). These equations can be used to

model the behaviour of walls bearing loads from floors and roofs, which, depending upon which way

they span, can transmit both their self-weight and inertial loads to the wall and can thus be modelled

as either load-bearing (designated as Mi in Fig. 3.4) or non-load bearing (M j in Fig. 3.4) concentrated

masses (Mauro et al., 2015). The equations also account for the influence of external static forces in

the form of thrusts from vaults and roofs (F1 and F3, Fig. 3.4), as well as the effect of tie-bars (F2

in Fig. 3.4) (Mauro et al., 2015). The kinematic constants defining this type of mechanism are thus

given by:

Ĩ = IO +∑ni MiR2
i (3.21)

K̃ = gMcRc +FR f sin(α f −αc) (3.22)

B̃ = M∗
c R∗

c (3.23)

M̃ = FR f cos(α f −αc) (3.24)

φcr = αc (3.25)

φ̃ov = αc −
FR f cos(α f −αc)

gMcRc +FR f sin(α f −αc)
(3.26)

where IO is the moment of inertia of the portion of the structure involved in the mechanism about the

axis of rotation and ∑ni MiR2
i is the sum of the moments of inertia of the load-bearing masses. Mc is

the combined mass of the portion of the structure involved in the mechanism and the load-bearing

masses, whose resulting center of mass is defined by Rc and αc, while Mc* is the combined mass

of the portion of the structure involved in the mechanism as well as the load-bearing and non-load

bearing masses, the position of the center of mass of which is denoted by Rc* and αc*. Similarly, F is

the resultant force obtained by adding up all the external forces acting on the wall, which acts at a

point defined by R f and α f so as to preserve the total moment about O (Mauro et al., 2015).

The script written in Rhino in this case is more complex. It first prompts the user to select the

main wall (i.e. the wall to which the additional masses will be transmitted) as well as any adjacent

walls involved in the mechanism, and define the density, axis of rotation (red line in Fig. 3.4), and

any cracks which occur. The user is then provided with a check-box and asked to indicate which

additional elements are acting on the structure, with the options including floors, the roof, vaults and

tie-bars.

If floors are selected, the user is then prompted to select all the floor elements transmitting loads

to the wall in the CAD file and enter their density. The script then cycles through each of the floors
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Fig. 3.4 Single block mechanism with added masses and forces, adapted from Mauro et al. (2015)

and determines how they intersect with the wall – based on the type of intersection, the corresponding

concentrated mass is then classified as either load bearing or non-load bearing and is stored in the

appropriate mass array. The resultant point of action of the mass, which is determined by finding

the centroid of the area of intersection between the floor and the wall, is also stored in an analogous

location array.

Similarly, if the roof option is selected, the user is asked to select the roof element and enter its

density. The script then finds the intersection between the roof and the wall, and uses that to determine

the orientation of the former relative to the latter. A bounding box is then created and used to calculate

the span and height of the roof, which in turn is used to compute the corresponding thrust. This thrust

is stored in the array of forces, with the point of application being stored in a separate location array.

The mass of the roof is also calculated and, depending on the type of intersection with the walls, is

classified as load or non-load bearing, with the corresponding point(s) of application being stored in

the appropriate location array.

If the vault option has been selected, the user is prompted to select the relevant macro-element

and, as in the case of the roof element, a bounding box is then used to calculate the height, span and

length of the vault, as well as the height to span ratio, with the latter being used to determine the

vertical and horizontal thrusts using Ungewitter’s tables (assuming quadripartite vaults) (Ungewitter

and Mohrmann, 1901). Since thrusts from the table also depend on the thickness of the vault and

material used in its construction, the user is asked to select an option from a set of five cases, which

are:
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1. ½ lightweight brick (125 mm)

2. ½ strong brick (125 mm) or ¾ lightweight brick (190 mm)

3. ¾ strong brick (190 mm) or 1 lightweight brick (250 mm)

4. 1 strong brick (250 mm) or 200 mm sandstone

5. 300 mm rubble vault

Based on this input, the script then automatically determines the vertical thrust, which is converted

into a load-bearing mass, and the horizontal thrust, which is treated as a static force, and which

are stored in the appropriate arrays. The corresponding points of application of both the mass and

force are also determined based on the intersection of the vault with the walls and are stored in their

respective point cloud arrays.

Finally if the tie bar option is selected, the user is prompted to enter the number of tie bars and

for each one is made to select the element and enter the magnitude of the force in the bar, which is

stored in the force array. The point of application of each tie bar force is then determined based on the

intersection of the bar element with the façade wall, and is stored in the location array.

The script then cycles through each of the mass, force and point cloud arrays to determine Mc,

Rc, αc, Mc*, Rc*, αc*, F, R f and α f . These terms are used to calculate the corresponding kinematic

constants as defined by Equations 3.21-3.26 - and by extension the equivalent rocking parameters,

with the latter then being written to a text file for export to MATLAB.

3.2.3 Two block mechanism

The two block mechanism is used to capture the dynamic behaviour of structures such as façades

which are well-restrained at both the top and bottom, resulting in the formation of two additional

hinges – one at the top and another at an arbitrary location along the wall height (as indicated in Fig.

3.5). The height hc at which the intermediate hinge occurs depends on the self-weight of the wall W,

the external vertical force acting on it N, the base area (l x b) and full height of the wall h, as well as

the tensile strength of the mortar fmt . Following the approach presented in Sorrentino et al. (2008b),

hc can be determined analytically using the following equation:

hc = h

1+

N
W + fmt(l×b)

W −
√(

2+ fmt(l×b)
W +2 N

W

)(
N
W + fmt(l×b)

W

)
2+ N

W

 (3.27)
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Fig. 3.5 Two block mechanism, image on right adapted from Mauro et al. (2015)

Once hc has been determined, the wall can be divided into two blocks and the kinematic constants

computed using Equations 3.28–3.33:

Ĩ = IO1 + IO2
sin2 (α2)

sin2 (α1)
(3.28)

K̃ = R2
sin(α2)

sin(α1)

 g
(

m1 +m2

(
2+ sin(α2)

sin(α1)

))
+2N sin(α2)

sin(α1)

(
cos2 (α2)+(1−ξ )sin2 (α2)+

sin(α1)
sin(α2)

)  (3.29)

B̃ = (m1 +m2)R2
sin(α2)

sin(α1)
(3.30)

M̃ = ξ N sin(2α2)R2
sin(α2)

sin(α1)
(3.31)

φcr = α1 (3.32)

φ̃ov = α1 −
ξ N sin(2α2)[

2N +g(m1 +2m2)+2N sin(α2)
sin(α1)

(
cos2 (α2)+(1−ξ )sin2 (α2)+

gm2
2N

)] (3.33)

where IO1 and IO2 are the moments of inertia of the bottom and top blocks about their respective axes

of rotation, while α1 and α2 are the respective block slenderness values. R2 is the distance between

the center of mass of the top block and its axis of rotation, while m1 and m2 are the masses of the

bottom and top blocks, and ξ represents the distance from the edge support at which the external

vertical force N acts, normalized by the thickness of the wall b, as illustrated by Fig. 3.5c.
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In this case, the script written in Rhino first prompts the user to select the main wall involved in

the mechanism, and to draw the axis of rotation at its base (O in Fig. 3.5d). The user is then asked

to select the structural component(s) transmitting external vertical forces N to the wall. Based on

this input, the script determines the exact position at which this force acts, by finding the centroid

of the area of intersection between the wall and the selected structural component(s). The user is

then prompted to enter the relevant material properties – such as the densities of the wall ρw and the

structural components ρsc, as well as the tensile strength of the mortar fmt . The script then computes

the volumes of the main wall and selected structural components, multiplying them by the input

densities to get W and N respectively. Using a bounding box, the full height h and base area (l x b)

of the main wall are determined, and Equation 3.27 is used to calculate the height hc at which the

intermediate hinge develops. A cutting plane is then generated at hc and is used to split the wall into

two blocks/segments, as well as create an additional axis of rotation at H (Fig. 3.5d). The relevant

geometric properties and consequently kinematic constants are then computed, which are then used to

calculate the equivalent rocking parameters for export to MATLAB.

3.2.4 Multiple block mechanism

Fig. 3.6 Multiple block mechanism: (a) Location of side-aisle vault within church, (b) collapse
mechanism of macroelement, (c) geometric properties of the blocks (adapted from DeJong and
Dimitrakopoulos (2014))

Equations have also been derived for the multiple block mechanism (Fig. 3.6) (DeJong and

Dimitrakopoulos, 2014), which can be used to model the dynamic response of structures such as

arches, vaults, portal frames and belfries, which are commonly found in churches. This mechanism
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Fig. 3.7 Multiple block mechanism: (a) Hinge locations for positive rotations (φ > 0), (b) hinge
locations for negative rotations (φ < 0), adapted from DeJong and Dimitrakopoulos (2014)

comprises three blocks with four hinges (labelled A-D as indicated in Fig. 3.6c), and it is assumed

that once rocking motion initiates, the location of these hinges does not change – only reflecting

to the opposite face of the block upon impact – thereby leading to one set of hinges for positive

rotations (ABCD, Fig. 3.7a), and another for negative rotations (A’B’C’D’, Fig. 3.7b) (DeJong

and Dimitrakopoulos, 2014). The linearised equation of motion for this type of mechanism is fairly

complex and the expressions defining the corresponding kinematic constants can be computed using

Equations 3.34-3.37 (DeJong and Dimitrakopoulos, 2014):

Ĩ =
{

IAB + ICD fCD(ϕcr)
2 + IBC fBC(ϕcr)

2 +mBCAB [AB+2rBC cos(ϕcr −ϕBC (ϕcr)−ψBC) fBC (ϕcr)]
}

(3.34)

K̃ =−g


mBCrBC

[
cos(ϕBC (ϕcr)+ψBC) f ′BC (ϕcr)− sin(ϕBC (ϕcr)+ψBC) fBC(ϕcr)

2
]

+mCDrCD

[
cos(ϕCD (ϕcr)+ψCD) f ′CD (ϕcr)− sin(ϕCD (ϕcr)+ψCD) fCD(ϕcr)

2
]

−mABrAB sin(ϕcr +ψAB)−mBCABsinϕcr


(3.35)

B̃ =

{
mABrAB sin(ϕcr +ψAB)+mCDrCD sin(ϕCD (ϕcr)+ψCD) fCD (ϕcr)

+mBCrBC sin(ϕBC (ϕcr)+ψBC) fBC (ϕcr)+mBCABsinϕcr

}
(3.36)

φcr = φ̃ov = ϕ0AB −ϕcr (3.37)
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Where:

BD(ϕ) =
√

AB2 +AD2 − (2×AB×AD× cos(ϕ −ϕAD)) (3.38)

ϕBC (ϕ) = arctan
[
−ABsinϕ +ADsinϕAD +CDsinϕCD (ϕ)

−ABcosϕ +ADcosϕAD +CDcosϕCD (ϕ)

]
(3.39)

ϕCD (ϕ) = arctan
[

ABsinϕ −ADsinϕAD

ABcosϕ −ADcosϕAD

]
− arccos

[
BD2 (ϕ)+CD2 −BC2

2 ·CD ·BD(ϕ)

]
(3.40)

fBC (ϕ) =
∂ϕBC

∂ϕ
; f ′BC (ϕ) =

∂ 2ϕBC

∂ϕ2 (3.41)

fCD (ϕ) =
∂ϕCD

∂ϕ
; f ′CD (ϕ) =

∂ 2ϕCD

∂ϕ2 (3.42)

The critical rotation of the system ϕcr, is obtained by iteratively solving the following equation

for the first derivative of the potential energy of the system, for both the original and reflected hinge

locations:

∂V
∂ϕ

∣∣∣∣
ϕ=ϕcr

= g


mABrAB cos(ϕcr +ψAB)+mBCABcosϕcr

+mBCrBC cos(ϕBC (ϕcr)+ψBC)
AB
BC

sin(ϕcr−ϕCD(ϕcr))
sin(ϕCD(ϕcr)−ϕBC(ϕcr))

+mCDrCD cos(ϕCD (ϕcr)+ψCD)
AB
BC

sin(ϕcr−ϕCD(ϕcr))
sin(ϕCD(ϕcr)−ϕBC(ϕcr))

= 0 (3.43)

The script written in Rhino for this mechanism is far more complicated than those written for

the other three mechanisms. As input, the user is first prompted to select the three sets of objects

(segments AB, BC and CD in Fig. 3.6c and Fig. 3.7) and define two sets of four hinges (one set for

positive, and one reflected set for negative rotations), as well as one axis of rotation (represented by

the red line in Fig. 3.6a), which the script translates to the other hinges to create the other three/seven

rotation axes. Based upon this input, the script then automatically determines the geometric properties

such as mass, moment of inertia, distance between hinges etc., as well as ϕ , ψ and r for each of the

three blocks, and iteratively solves Equation 3.43 to obtain the critical rotation of the system ϕcr. The

other kinematic constants are then computed by plugging the values of the geometric properties as

well as the critical rotation into Equations 3.34-3.37, which are then used to determine the equivalent

rocking parameters for the system. A more detailed explanation about the functioning of this script

can be found in Fig. 3.8.

3.3 Solution of the equation of motion in MATLAB

The rocking parameters peq (Equation 3.10) and λ̃ (Equation 3.11), upon being exported to MATLAB,

are used to generate the linearised equation of motion as defined in Equation 3.9. The equation of

motion as it currently stands can then be solved either for the pulse response or the full time-history,

depending on the type of analysis being conducted. The pulse response in particular can be useful
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Fig. 3.8 Flowchart illustrating functioning of the Rhinoscript for the multiple block mechanisms
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for comparing the relative dynamic resilience of different mechanisms (Mauro et al., 2015), and

prioritizing retrofit solutions, as well as modelling known near-fault seismic scenarios.

Numerical integration of the equation of motion is conducted using the ode45 solver in MATLAB,

which employs the Runge-Kutta algorithm with a variable time-step in order to provide a solution in a

computationally-efficient manner. The solution procedure is iterative: starting from a given set of

initial conditions, the algorithm computes the rotation and angular velocity at each time-step, which

are subsequently used as input (i.e. the initial conditions) for the following time-step. Furthermore,

in the case of impact, the energy dissipated by the block(s) - which results in a reduction in angular

velocity - is accounted for in the form of the coefficient of restitution η , which is an additional

rocking parameter to be considered when solving Equation 3.9 for both the pulse response and full

time-history.

For the simple single block mechanism undergoing two-sided rocking, the following coefficient

of restitution proposed by Housner (1963) is used:

η = 1−2
MR2

IO
sin2

α (3.44)

For one-sided rocking (commonly observed in façades), the following coefficient of restitution

proposed by Sorrentino et al. (2011) is used instead:

η =

(
1−2

MR2

IO
sin2

α

)2(
1−2

MR2

IO
cos2

α

)
(3.45)

Similarly, for the two block mechanism, the coefficient of restitution as derived by Sorrentino et al.

(2008b) can be applied:

η =
IO1 − IO2

tanα2
tanα1

−2m1R2
1sin2

α1 +m2R2
1

[
2−4sin2

α1 + sinα1 cosα1

(
1

sinα2 cosα2
+ 1

tanα2
− tanα2

)]
IO1 − IO2

tanα2
tanα1

+m2R2
1

[
2+ sinα1 cosα1

(
1

sinα2 cosα2
+ 1

tanα2
+ tanα2

)]
(3.46)

As these coefficients depend entirely on the geometry of the structure, they are also calculated as part

of the script in Rhino for the simple single block and two block mechanisms. However, it should be

noted that these derivations assume inelastic impact between the blocks and the ground, providing the

maximum amount of energy dissipated at impact – thus yielding a slightly un-conservative estimate

for this parameter. Alternatively, a suitable coefficient of restitution can also be provided by the user

based on the results of experimental tests (e.g. as in Sorrentino et al. (2011), Graziotti et al. (2016)).

In the case of the other mechanisms, derivation of the coefficient of restitution is not as straightfor-

ward. While analytical expressions/models can be used for the coefficient of restitution for the multiple

block mechanisms (De Lorenzis et al., 2007), these tend to be quite complex. As an alternative, in

keeping with the assumptions of Mauro et al. (2015), the coefficient of restitution can instead be
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treated as a parameter that is independently specified by the user, calibrated based on the results of

either experimental campaigns (DeJong et al., 2008) and/or numerical simulations (De Lorenzis et al.,

2007).

3.3.1 Pulse response (overturning plots)

Fig. 3.9 Sample dimensionless overturning plot for both one and two-sided rocking

The equations of motion exported to MATLAB can be used to generate overturning plots, which

predict the response of the structure to single sinusoidal acceleration pulses of varying frequency

( fp) and amplitude (ap), and depend primarily on peq, λ̃ , and the coefficient of restitution η . As

the general linearised equations of motion derived for the different mechanisms have local dynamic

equivalence with the single rocking block, the closed-form solutions for overturning plots obtained

by Dimitrakopoulos and DeJong (2012) can be used. However, to avoid regenerating these plots for

every prediction, a library of dimensionless plots (Fig. 3.9) for different coefficients of restitution was

instead pre-generated and stored in the MATLAB directory. In the case of one-sided rocking, it was

assumed that collapse of the structure is governed by positive pulse overturning without impact, which

is true for the vast majority of practical one-sided mechanisms (Mauro et al., 2015), and is therefore

independent of the coefficient of restitution. This assumption results in only a single dimensionless

plot being needed.

Thus for each mechanism, depending on the coefficient of restitution either calculated or assumed,

as well as the type of rocking (i.e. one or two-sided), the appropriate dimensionless plot is then

selected by the tool and scaled by peq and λ̃ in order to get the actual overturning envelope for that

particular mechanism.
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3.3.2 Full time-history analysis

As an alternative to the overturning plots, full time-history analyses can also be conducted for the

considered structures/mechanisms. The results in this case are presented in terms of the maximum

rotation θ of the structure over time, with the rotation being expressed as a fraction of the overturning

rotation φ̃ov (as defined in Section 3.2 and equal to α , i.e. the slenderness of the block, in the case

of the simple single block mechanisms in the absence of any external static forces). Overturning is

herein assumed to occur when this ratio exceeds 1, though an appropriate safety factor such as that in

the Italian Building Code (DMI, 2008), could also be applied. Furthermore, for assessment purposes,

the tool could also be used to follow typical code-based procedures as specified for example in ASCE

43-05 (2007), where the code prescribes running full time-history analyses using a minimum of five

different earthquake records to estimate the maximum rocking response of the structure.

3.4 New developments

3.4.1 Amplification effects

As a number of collapse mechanisms tend to take place above ground level, a methodology was also

developed to account for dynamic amplification of the ground motion up the structure.

3.4.1.1 Pulse response (overturning plots)

In the case of pulse-response analysis, a method was developed to scale the overturning plots.

Applying the approach originally proposed by Priestley (1985), elastic modal analysis is used to

generate response spectra by solving the equation of motion for an equivalent single-degree-of-

freedom system with 5% damping and a natural frequency fn corresponding to that of the structure

under consideration, under the influence of single acceleration sine pulses of varying frequency fp.

Only first-mode response is considered, without taking higher mode effects into account. The resulting

pulse response spectrum (Fig. 3.10a) is obtained by plotting the variation of the maximum recorded

response acceleration ar (normalized by the input ground acceleration ag) against the normalized

pulse frequency fp/ fn.

This response acceleration is assumed to act at the effective center (modal height) of seismic force

he, and assuming a linear first-mode shape (Fig. 3.10b, (Priestley, 1985)), the response acceleration

at heights h above and below he can then be determined through linear extrapolation. However,

ar is only the acceleration relative to the ground, and thus must be combined with the ground

acceleration ag in order to obtain the total acceleration of the structure asc. In order to do this, the

square-root-sum-of-squares (SRSS) approach is used (Priestley, 1985), whereby:

asc =

√
a2

r

(
h
he

)2

+a2
g (3.47)
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Fig. 3.10 Methodology for scaling the overturning plots: (a) Pulse response spectrum; (b) Linear
mode shape assumed; (c) Scaled acceleration profile; (d) Scaled pulse response spectra and (e) Scaled
overturning plots
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Leading to the scaled acceleration profile as depicted in Fig. 3.10c.

This acceleration profile is then used to scale the pulse response spectrum (Fig. 3.10a) for different

heights within the structure – as illustrated by Fig. 3.10d, with these modified linear-elastic pulse

response spectra finally being used to scale the corresponding overturning plots in MATLAB (Fig.

3.10e).

3.4.1.2 Full time-history analysis

Similarly, in the case of full time-history analyses, an approach similar to that proposed in Section

3.4.1.1 can be employed - but by replacing the pulse response spectrum with the acceleration response

spectrum generated for the recorded signal (assuming 5% damping). Using the acceleration response

spectrum, the spectral acceleration Sa at the natural period of the structure Tn can then be determined,

which is substituted into Equation 3.47 (in place of ar) to get the scaled acceleration asc. The level

of scaling to be applied to the ground motion is then found by dividing asc by the input ground

acceleration ag, leading to the following expression for the scale factor SF:

SF =
asc

ag
=

√(
Sa (Tn)

ag
· h

he

)2

+1 (3.48)

Alternatively, simple code-based equations to account for amplification up the structure could be used

instead. This includes the following expression as adapted from Eurocode 8 (EN 1998-1, 2004):

SF = S
[

3
(

1+
h
H

)
−0.5

]
(3.49)

where S is the soil factor and H is the full height of the structure; as well as smallest of the following

three coefficients as defined in the New Zealand Standard, NZS 1170.5 (NZS, 2004):

SF = 1+
h
6

h < 12 m (3.50)

SF = 1+10
h
H

h < 0.2 H (3.51)

SF = 3 h > 0.2 H (3.52)

In addition to the scale factor determined either using Equation 3.48 or code-based methods, other

levels of scaling can also be applied to the earthquake ground motion in order to gauge their influence

on the dynamic response of the structure.

3.4.2 Automatic detection of critical mechanisms

As the overturning plots enable comparison of the dynamic resilience of multiple different mechanisms

(Fig. 3.11a), a methodology was also developed in MATLAB to automatically determine the most

vulnerable mechanism for each pulse frequency. In order to do this, the lower bounds of each of
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Fig. 3.11 Methodology for automatic detection of critical mechanisms: (a) Overturning plots for
the different mechanisms; (b) Lower bound of each overturning plot; (c) Lower bound of all the
overturning plots; (d) Most vulnerable mechanism for each pulse frequency
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the overturning plots were first determined (Fig. 3.11b), which were stored in a master array. These

lower bounds were then compared to get an overall lower bound for all the plots (Fig. 3.11c), with

the mechanism that each lower bound corresponded to (i.e. the critical mechanism) being flagged

and stored in a separate array. Different coloured markers were assigned to each of the considered

mechanisms, with the script cycling through the flagged array and plotting the appropriate markers

for each value of fp - thus highlighting the most vulnerable mechanism for each pulse frequency (Fig.

3.11d).

3.5 Summary

In this chapter, a new tool is presented for the non-linear dynamic analysis of masonry collapse

mechanisms. The tool makes use of rocking dynamics to derive and solve equations of motion for a

range of different failure mechanisms, for any user-defined structural geometry, using as a starting

point a digital drawing of the structure in a typical CAD software (in this case Rhino). Scripts

have been written in Rhino which make use of the program’s ability to quickly compute geometric

properties for any arbitrary structural geometry, to derive the equivalent rocking parameters defining

the equations of motion for the different mechanisms, which can broadly be classified as single block,

single block with added masses and forces, two block and multiple block mechanisms. These rocking

parameters are then exported to MATLAB, where they are used to generate the relevant equations of

motion which can be solved for either the pulse response (for known near-fault seismic scenarios or

to generate overturning plots to rapidly compare different mechanisms) or full time-history response.

Furthermore, new developments such as a methodology to account for dynamic amplification of the

ground motion up the structure, as well as a procedure to automatically detect the critical mechanisms,

are also expounded upon.

The tool represents an improvement on typical code-based methods as well as analytical and

numerical tools currently used in the field. Specific advantages include:

• The provision of a faster and less computationally-expensive alternative to typical numerical

analysis procedures such as finite element analysis and discrete element methods, which allows

for rapid comparison of different mechanisms, determination of the most vulnerable one(s), as

well as prioritization of retrofit solutions.

• By making use of rocking dynamics, the tool accounts for the dynamic resistance of the structure

in a more accurate manner than many current code-based assessment procedures.

• The tool’s implementation in Rhino enables the equations of motion to be derived for any

arbitrary geometry, and thus in contrast to most contemporary non-linear dynamic analytical

methods it is not limited to simple structural geometries.

• The use of a pre-existing CAD file as input eliminates the need to generate a new model of the

structure for analysis.
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The ability of this new tool to provide realistic predictions for different structural geometries

will be evaluated in Chapter 4, while a potential application of the tool for seismic analysis will be

demonstrated in Chapter 5.



Chapter 4

Evaluation of the rigid rocking tool

4.1 Introduction

In order to assess the ability of the tool to realistically model the dynamic response of different

structural geometries, a range of case studies are presented in this chapter, comprising masonry

structures of varying scales and typologies such as regular buildings, monuments and temples. These

case studies are experimental tests or structures which have experienced real earthquakes, and are used

for evaluation of the predictions of the tool - which, depending on the type and purpose of the analysis,

comprise either overturning plots or full time-histories (or both) - to actual observed behaviour.

4.2 LNEC 3-D Shaking Table Tests, Portugal

The tool’s ability to provide realistic predictions was first evaluated by using it to simulate the

experimental tests conducted on two masonry mock-ups in the LNEC-3D shaking table as part of

a workshop on the out-of-plane assessment of existing masonry buildings (Candeias et al., 2017).

The mock-ups used for the tests were U-shaped and comprised a façade with a central opening and a

gable, as well as two transverse walls – one blind, and one with a window. While the first mock-up

was constructed using slightly perforated clay bricks and cement-based mortar, in an English bond

arrangement (Brick House, with density ρbr = 1890 kgm−3, Fig. 4.1a), the other was made up of

irregular granite stones and lime-based mortar, arranged in multiple leaves (Stone House, with density

ρst = 2360 kgm−3, Fig. 4.1b) (Candeias et al., 2017). The Rhino models generated for each of these

structures can also be found in Fig. 4.1.

Both mock-ups were subjected to unidirectional seismic loading of increasing intensity applied in

a direction perpendicular to the façade. The accelerogram used for the testing was taken from the

N64E strong ground motion component of the 2011 Christchurch (New Zealand) earthquake, and

was filtered and cropped in such a manner so that only the most intense part of the motion remained

(Candeias et al., 2017). The resulting seismic reference signal used as input in the tests is shown in Fig.

4.2. The response of both structures to this input ground motion was measured in terms of absolute
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Fig. 4.1 Shake table test mock-ups: (a) Brick House and (b) Stone House (Candeias et al., 2017)

Fig. 4.2 Input ground motion (filtered and cropped) as used in the shake-table tests
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accelerations (using 20 accelerometers distributed over the façade and the two transverse walls of

the mock-ups) as well as relative out-of-plane displacements (using 6 linear variable displacement

transducers distributed over the façade) (Candeias et al., 2017).

4.2.1 Analytical Modelling

A range of different collapse mechanisms were evaluated for both structures, as illustrated by Fig.

4.3, with the collapsed portion of the structure being highlighted in blue and the respective axes of

rotation being indicated by the black lines. All the considered mechanisms are variations of the simple

single block mechanism undergoing two-sided rocking, with the exception of Mechanisms 3 and 4 of

the Stone House (SH_M3 and SH_M4), which undergo one-sided rocking. Note that Mechanisms 1

and 2 are identical for both structures, while Mechanisms 3 and 4 for the Stone House were selected

based on the pattern of stonework within the structure, with a limit being imposed on the angle of the

diagonal cracks. These mechanisms were not imposed for the brickwork due to the bonding pattern.

The rocking parameters derived by the script in Rhino for these mechanisms can be found in Table

4.1. Note that the coefficients of restitution η derived for the one-sided rocking cases are negative due

to the rebounding effect against the transverse walls (Sorrentino et al., 2011).

Fig. 4.3 Different mechanisms evaluated for the Brick House (BH) and Stone House (SH) mock-ups

These rocking parameters were then exported to MATLAB where the corresponding equations of

motion were solved for the full time-history for different levels of scaling of the input ground motion.

While most of the considered mechanisms were found to be fairly resistant to collapse, experiencing

very small rotations with magnitudes in the order of 1×10−3 radians, Mechanism 2 of the Brick

House (BH_M2, Fig. 4.4a) and Mechanism 3 of the Stone House (SH_M3, Fig. 4.4b) were observed
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Table 4.1 Rocking parameters computed by the Rhinoscript for the different mechanisms

Mechanism peq (s−1) λ (rad) η

BH_M1 5.77 0.61 0.54
BH_M2 4.16 0.26 0.89
SH_M1 4.77 0.94 0.07
SH_M2 3.84 0.49 0.65
SH_M3 2.24 0.14 -0.70
SH_M4 2.28 0.17 -0.63

to overturn for higher levels of scaling of the earthquake ground motion. To facilitate comparison

with the results of the real tests (measured using the displacement transducer placed at the top center

of the gable) (Mendes et al., 2017), the rotations predicted by the analytical model for both structures

were converted into the corresponding displacements at the peak of the gable and are listed in Table

4.2 and Table 4.3 for the Brick House and Stone House respectively.

Fig. 4.4 Time-history responses for different levels of scaling (different PGAs) of the input ground
motion for (a) Brick House Mechanism 2 (BH_M2) and (b) Stone House Mechanism 3 (SH_M3)

4.2.2 Comparison with experimental results

For the Brick House, the simulations of Mechanism 2 predicted relatively small response for smaller

ground motions and then collapse for the 0.84g and 1.27g tests. Table 4.2 shows that for lower

levels of scaling, the predictions and experimental results both indicate small displacements; the

experimental results may be slightly higher due to elastic (non-rocking) displacements as well as

damage accumulation due to progressive scaling of the input ground motion (de Felice et al., 2017).

For the 0.41g test, rocking amplification (DeJong, 2012a) resulted in a significant over-prediction

of the maximum displacement by the analytical model. This type of behaviour demonstrates the



4.2 LNEC 3-D Shaking Table Tests, Portugal 51

Table 4.2 Analytical and experimental displacements obtained for the Brick House

Test PGA (g)
Maximum relative displacement (mm)

BH_M1 BH_M2 Experimental

1 0.18 0.00 0.00 0.16
2 0.29 0.00 0.06 0.19
3 0.36 0.00 0.10 0.33
4 0.41 0.00 189.20 0.44
5 0.52 0.00 0.04 0.89
6 0.78 1.50 0.01 1.95
7 0.84 2.25 243.12 (c) 5.44
8 1.27 2.50 243.12 (c) 136.49 (c)

chaotic nature of the rocking response. For the 0.84g test, the analytical model predicted collapse (c)

while a maximum displacement of 5.44 mm was recorded during the experiment, while the 1.27g test

resulted in collapse of both the analytical model and the experimental test. Note that the displacement

transducer at the top of the gable was disconnected during 1.27g test due to the partial collapse of

the mock-up - resulting in truncation of this measurement and consequently a lower value for the

experimentally-recorded displacement than was observed in reality (Candeias et al., 2017).

Furthermore, while the analytical model assumes that the collapse mechanism has already formed,

in reality rocking is only activated after cracking of the structure - which depends in turn on factors

such as the tensile strength of the mortar, as well as the degree to which the stones are interlocked.

Thus in the case of the Brick House, the collapse mechanism only started to form after the 0.52g test,

with rocking only initiating during the 0.84g test following the formation of a complete horizontal

crack across the full length of the gable (Candeias et al., 2017). Moreover, the actual observed failure

mechanism of the structure was also slightly more complex than the one predicted by the analytical

model, with the asymmetry of the lateral walls inducing torsional movements in the mock-up. Thus

during the final (1.27g) test, the northern part of the gable first collapsed out of plane, while the

north-east pier rocked without falling and rotated around the vertical axis. At the same time, the

north-west pier only rocked in-plane, and consequently due to lack of support from this pier, the lintel

over the window opening on the north lateral wall collapsed vertically. Finally, the north-west pier

fell towards the west, while the southern part of the gable eventually collapsed out-of-plane towards

the east - that is, in the same direction as its northern counterpart (Candeias et al., 2017).

For the Stone House, the analytical simulations predicted Mechanism 3, but this was prevented

from occurring in reality due to the good interlocking of the stones at the corner. Instead, interlocking

of stones forced Mechanism 4 to occur. After the shaking table tests, the Stone House was found to

have cracked in a pattern corresponding to this mechanism, though overturning did not occur. In fact,

a comparison of the analytical predictions for SH_M4 and the experimental results (Table 4.3) reveals

a reasonably good correlation between the two sets of displacements for the 0.41g and 0.66g tests.
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Table 4.3 Analytical and experimental displacements obtained for the Stone House

Test PGA (g)
Maximum relative displacement (mm)

SH_M1 SH_M2 SH_M3 SH_M4 Experimental

0 0.38 0.00 0.00 3.03 0.85 1.66
1 0.40 0.00 0.00 4.41 0.01 2.07
2 0.41 0.00 0.00 0.20 3.58 3.47
3 0.66 0.00 0.33 60.88 6.34 7.79
4 1.02 0.09 1.30 7.16 0.61 25.39
5 1.07 0.27 0.19 395.90 (c) 21.21 218.49

Qualitatively, for higher levels of scaling of the ground motion, it can also be observed that neither

the analytical model nor the experimental test resulted in overturning of the structure. However, the

maximum displacements for these last two tests were considerably underestimated by the analytical

model - which could be due in part to the accumulation of damage during the shaking table tests,

which the rigid rocking model was not able to fully reproduce or account for.

Furthermore, as in the case of the Brick House, the analytical model of the Stone House assumes

a more simplified (monolithic) collapse mechanism than was observed in reality. Specifically, the

presence of the door opening created a discontinuity in the façade, and resulted in its division into

three separate elements - namely north, central and south (Candeias et al., 2017). Thus during the

1.07g test, two stones atop the north-west corner of the structure first detached and fell, while the

pier they surmounted rocked in-plane. Simultaneously, the north-east corner rocked in the east-west

direction - first in one piece, then split into two by diagonal cracks, while the north and south parts of

the façade rocked out-of-plane around cracks which had developed on either side of the door opening.

Finally, the central part of the gable also rocked out-of-plane, separated from the rest of the façade by

the diagonal cracks formed on either side of the lintel stone above the door opening (Candeias et al.,

2017).

Thus while this case study exemplifies the potential of this simplified method of analysis, it

should be pointed out that the effectiveness of these predictions depend on realistic, feasible collapse

mechanisms, which currently relies on engineering judgement and proper consideration of factors

such as masonry texture, presence of openings, quality of connections at corners etc.

4.3 2015 Gorkha Earthquake

The ability of the tool to model the seismic response of real-world structures was also evaluated by

using it for the analysis of a number of monuments damaged during the 2015 Gorkha earthquake.

This earthquake caused a significant amount of damage in the Kathmandu Valley – leaving over 8,790

dead, 22,300 injured, and in total affecting 8 million people - almost a third of Nepal’s population

(National Planning Commission (NPC), 2015). Economic losses were also catastrophic and were
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estimated to be approximately $7 billion – or a third of Nepal’s GDP (National Planning Commission

(NPC), 2015). Many buildings and other constructions in the Kathmandu Valley also sustained

severe structural damage. However, unlike the 1934 Nepal-Bihar earthquake, which destroyed about

20% of the vernacular dwellings in Kathmandu, less than 1% of these structures were destroyed

during the earthquake in 2015 (Galetzka et al., 2015). Nevertheless, most destruction was generally

limited to low-strength stone and brick masonry structures, while many reinforced concrete buildings

sustained little to no harm (Goda et al., 2015). Furthermore, taller masonry structures were observed

to have been more adversely affected by the earthquake, with structures such as Kathmandu’s iconic

Dharahara Tower completely collapsing, despite partially surviving the earthquake in 1934 (Galetzka

et al., 2015).

Fig. 4.5 (a) Basantapur Column (Source: Alamy/AP), (b) Patan Column (Source: Jean-Francois Gor-
net/CC BY-SA 2.0), (c) Dharahara Tower (Source: Ian Trower/JAI/Corbis & Narendra Shrestha/EPA)
before and after the 2015 earthquake and (d) Narayan Temple after the earthquake and corresponding
cracking mechanism

The objective of this section is to use the tool to evaluate the behaviour of slender monuments

during the 2015 Gorkha earthquake – in particular, to assess the effects of scale, slenderness and pulse

duration on the dynamic response of these structures. The selected monuments comprise a column

topped with a statue of the Hindu god Garuda in the Basantapur Durbar Square (referred to here as the
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Basantapur Column (Fig. 4.5a)), Yogendra Malla’s statue in the Patan Durbar Square (referred to here

as the Patan Column (Fig. 4.5b)), the Dharahara Tower in Kathmandu (Fig. 4.5c), and the Narayan

Temple in Bhaktapur (Fig. 4.5d). These particular monuments were chosen as they are relatively

simple, symmetric, and of considerably varying size.

In addition to being modelled analytically by the tool, the Basantapur column and the Dharahara

Tower were also modelled numerically using discrete element modelling (DEM) in 3DEC. The

objective in this case was to not only evaluate simplifications made in the analytical models, but also

to investigate the influence of certain parameters on the structures’ dynamic response that cannot be

captured analytically.

4.3.1 Analytical Modelling

Methodology

Fig. 4.6 Rhino models of the collapsed portions of the (a) Basantapur Column, (b) Patan Column, (c)
Dharahara Tower and (d) Narayan Temple

The Rhino models generated for each of the four monuments can be found in Fig. 4.6. Only the

collapsed portions of the structures were modelled, and while the geometries of the stone segments

of the Basantapur and Patan columns were recreated using survey data taken by hand, the entire
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Table 4.4 Rocking parameters computed by the Rhinoscript for the different monuments

Structure peq (s−1) λ (rad) η

Basantapur Column 2.06 0.16 0.96
Patan Column 1.84 0.15 0.96
Dharahara Tower 0.50 0.12 0.98
Narayan Temple 1.39 0.24 0.91

structural geometries of the Dharahara Tower and the Narayan Temple were reconstructed using point

cloud data from the laser scanner, with this data also allowing the collapse mechanisms of the tower

and temple to be easily determined. Moreover, as the bronze statues at the top of the Basantapur and

Patan columns had been removed almost immediately after the earthquake, their dimensions had to

be estimated using photographs and they were thus recreated using simple geometries in Rhino, as

illustrated by Figs. 4.6a & b.

The collapse mechanisms of all four structures were assumed to take the form of the simple single

block mechanism undergoing two-sided rocking, with the relevant axes of rotation defined by the

dashed black lines in Fig. 4.6. Furthermore, as collapse of the Basantapur and Patan columns involved

objects of two different densities (stone, as shown in grey in Fig. 4.6 with density ρst = 2300 kgm−3

and bronze, as depicted in orange in Fig. 4.6 with ρbr = 8700 kgm−3), the script in Rhino first had the

user separately select the two sets of objects, before cycling through and working out the relevant

geometric properties and consequently rocking parameters, which are listed in Table 4.4 for each of

the different monuments. These rocking parameters were then exported to MATLAB to generate and

solve the equations of motion for the different mechanisms.

The equations of motion exported to MATLAB were solved for the full acceleration time-history of

the Gorkha earthquake using the ground motion records from the USGS KATNP station in Kathmandu,

as well as from the Bhaktapur (THM) and Patan (PTN) stations of Hokkaido University and Tribhuvan

University (Takai et al., 2016), in both the east-west (EW) and north-south (NS) directions. The

KATNP station was located approximately 1.2 km and 1.4 km away from the Basantapur Column

and Dharahara Tower respectively, 4.6 km away from the Patan Column, and 12 km away from the

Narayan Temple. As Fig. 4.7 illustrates, the ground motion recorded at this station was characterized

by distinct high amplitude, low frequency pulses with periods of approximately 5 s and PGAs of

1.55 ms−2 and 1.61 ms−2, and was accompanied by relatively large ground displacements of 1.17

m and -1.39 m in the EW and NS directions respectively. The THM station, on the other hand, was

located approximately 7.1 km and 6.5 km away from the Basantapur Column and Dharahara Tower

respectively, 5.0 km away from the Patan Column, and 5.4 km away from the Narayan Temple. The

ground motion recorded at this station had a number of distinct pulses, with periods of approximately

4 s and PGAs of 1.34 ms−2 and 1.42 ms−2 in the EW and NS directions respectively (Fig. 4.7).

Similarly, the PTN station was found to be 1.3 km, 2.7 km, 2.1 km and 10.7 km away from the

Patan Column, Basantapur Column, Dharahara Tower and Narayan Temple respectively. However the
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ground motion recorded at this station was characterized by higher frequency pulses and lower PGAs,

with an average pulse period of approximately 3.5 s and PGAs of 1.28 ms−2 and 1.51 ms−2 in the

EW and NS directions respectively (Fig. 4.7).

Fig. 4.7 Input ground motion as recorded at the USGS Kathmandu (KATNP), Bhaktapur (THM) and
Patan (PTN) stations, in both the East-West (EW, top) and North-South (NS, bottom) directions (Takai
et al., 2016)

Overturning envelopes (Section 3.3.1, Dimitrakopoulos and DeJong (2012)) were also generated

for each of the structures and were used to predict the response of the monuments to the primary

sine pulses isolated from the different ground motion records (Fig. 4.8). Each pulse is represented

as a singular point on the overturning plot, and depending on which region of the plot it lies in,

it is predicted to either cause no rocking, rocking but no overturning, overturning with impact, or

overturning without impact. Furthermore, as the ground motion scaling (and consequently the isolated

pulse amplitude ap) increases, this point moves up in the plot – gradually migrating from the “safe”

(no rocking/overturning) zone to the “unsafe” (overturning) zone. While this comparison does not

account for the potential amplifying/de-amplifying effect of the remainder of the ground motion, it

does however allow for rapid prediction of the proportion of the response that could be caused by the

single maximum sine pulse alone.

Results

While all four structures were subjected to the six ground motion records depicted in Fig. 4.7, the

results presented here are only for the ground motion recorded at the station closest to each site (in

the dominant direction of collapse). In the case of the Basantapur Column and Dharahara Tower this
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Fig. 4.8 Primary sine pulses (in red) extracted from the ground motion recorded at the USGS
Kathmandu (KATNP), Bhaktapur (THM) and Patan (PTN) stations, in both the East-West (EW, top)
and North-South (NS, bottom) directions (adapted from Takai et al. (2016))

was the USGS KATNP station in Kathmandu, while in the case of the Patan Column and Narayan

Temple this was the Patan (PTN) station and the THM station in Bhaktapur respectively.

Basantapur Column

As collapse of the Basantapur Column occurred towards the east, the results presented here are for the

EW component of the KATNP ground motion. In the case of this structure, the time-history results

(Fig. 4.9a) predicted overturning of the column for scaling factors of 1.15 and higher, with overturning

generally occurring when θ /φov exceeded an absolute value of 1. For lower levels of scaling of the

earthquake ground motion, the column was found to rock with multiple impacts before returning to

equilibrium – indicating that the scaled acceleration was large enough to initiate rocking, but not large

enough to cause collapse. For scaling factors of 1.15 to 1.25, the column rocked with multiple impacts

before overturning, while for larger scaling factors the column overturned without impact. Moreover,

while the time required for collapse generally decreased with an increase in ground motion scaling,

overturning was actually observed to occur faster for the scaling factor of 1.15 than for the higher

scaling factors of 1.20 and 1.25.

An overturning plot (Fig. 4.9b) was also generated, including the primary pulses isolated from the

scaled acceleration records. To facilitate comparison with the time-history results, these pulses were

plotted using filled circles (•) for cases where the time-history plots predicted collapse, and crosses

(×) for cases where they did not. In general, good agreement was observed between both sets of
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results, with the overturning plot usually providing more conservative predictions – as was the case

for the scaling factor of 1.10, where the overturning plot predicted collapse while the time-history

indicated a return to equilibrium.

Fig. 4.9 Basantapur Column: (a) time-history responses for ground motion scaling values shown, (b)
overturning envelope (right figure is zoomed view of left) for same ground motion scaling values

Patan Column

As collapse of the Patan Column occurred towards the west, it was subjected to the EW component

of the PTN ground motion. In the case of this structure, rocking only initiated for scaling factors of

1.15 and higher (although this is due in part to the slightly lower PGA of the PTN ground motion)

with overturning of the structure taking place for scaling factors of 1.50 and above (Fig. 4.10a). For

scaling factors between 1.15 and 1.25 (inclusive), the column was observed to rock with multiple

low-amplitude impacts before returning to equilibrium. As in the case of the Basantapur Column, an

overturning plot was also generated for the Patan Column, and the primary pulses isolated from the

scaled PTN records were plotted on it. In this case, a very good correlation was observed between

both sets of predictions, with the overturning plot once again yielding slightly more conservative

estimates than its time-history counterpart - as exemplified by the scaling factor of 1.75, where the

plot predicted overturning without impact, whereas the time-history indicated a single impact before

the column overturned and collapsed.

Dharahara Tower

As collapse of the Dharahara Tower was observed to have occurred in a roughly south-western

direction, the results presented here are for both the NS and EW components of the KATNP ground

motion (Fig. 4.11a & b respectively). An overturning plot was also generated for the tower, which

contains pulses isolated from both components of the ground motion. In the case of the time-history
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Fig. 4.10 Patan Column: (a) time-history responses for ground motion scaling values shown, (b)
overturning envelope (right figure is zoomed view of left) for same ground motion scaling values

results, collapse of the tower was generally found to occur for scaling factors of 1.50 and higher, with

the exception of the scaling factor of 1.15, which was found to cause overturning in the NS direction

as well.

For scaling factors of 1.50 and higher in both directions, the tower was found to rock with a single

impact before collapsing – comparing quite well with the mode of failure predicted by the overturning

plots (Fig. 4.11c). For the scaling factor of 1.15 in the NS direction, the tower was observed to rock

with multiple (3) impacts before overturning indicating that more than a single sine pulse must be

considered in order to predict the response. Similar behaviour was also observed in the case of the

Patan Column for the ground motion scaling factor of 1.50. For ground motion scaling of 1.05 and

1.15 times and higher in the NS and EW directions respectively, the tower was found to experience

rocking amplitudes greater than θ /φov = 0.4, and rock with multiple impacts before returning to

equilibrium. It is noteworthy, that although complete rigid body collapse is not predicted, the Italian

building code (DMI, 2008) specifies a value of θ /φov = 0.4 when predicting collapse of out-of-plane

mechanisms in unreinforced masonry structures. Thus these very large rotation values indicate that if

material failure and geometric imperfections were considered, collapse may well still occur.

Unlike the Basantapur and Patan Columns, the predictions of the overturning plots of Dharahara

Tower had far more inconsistencies with their time-history counterparts, with the former once again

yielding more conservative results. Moreover, dashed lines demarcating the threshold acceleration

below which no rocking occurs were added to each of the overturning plots and it can be seen that in

the case of the columns in particular, the region in which the structures go from no rocking at all to

complete overturning is extremely small – highlighting the importance of the long pulse present in the

Nepal earthquake ground motion.
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Fig. 4.11 Dharahara Tower: time-history responses for ground motion scaling values shown in both
the (a) NS and (b) EW directions; (c) overturning envelope (right figure is zoomed view of left) for
same ground motion scaling values



4.3 2015 Gorkha Earthquake 61

Narayan Temple

As the principal axis of the Narayan Temple is oriented along the NNE-SSW direction, and the

main cracks were observed to occur on the south-eastern façade (Menon et al., 2017), the results

presented here are for the NS component of the ground motion recorded at the THM station. From the

time-history results (Fig. 4.12a) it can be seen that rocking of the structure only initiates for scaling

factors of 1.75 and higher, while overturning of the structure does not occur for any of the considered

scaling factors. For both the scaling factors of 1.75 and 2.00, the temple undergoes low-amplitude,

high-frequency rocking before returning to equilibrium. In fact, the maximum rotation experienced

by the temple is for the scaling factor of 1.75, and corresponds θ /φov ≈ 0.004. However, this small

rotation is still most likely an overestimate, as the assumption of two-sided rocking for the temple is

conservative – in fact, two-sided rocking would require formation of the identical mechanism in the

opposite direction, which would result in far more energy dissipation than is assumed here.

An overturning plot was also generated for the temple and the primary pulses isolated from the

scaled acceleration records were plotted on it (Fig. 4.12b). In general, a fairly good correlation

was observed between the predictions of the overturning plot and the time-history results, with the

exception of the scaling factor of 2 - for which the overturning plot predicted collapse while the

time-history indicated a return to equilibrium.

Fig. 4.12 Narayan Temple: (a) time-history responses for ground motion scaling values shown, (b)
overturning envelope (right figure is zoomed view of left) for same ground motion scaling values

In order to compare the responses of the four structures to the ground motion recorded at each of

the different stations, bar graphs were also generated showing the minimum scaling factors required

for rocking to initiate (Fig. 4.13a) and overturning to occur (Fig. 4.13b) for each structure, for each

of the acceleration records provided in Fig. 4.7. From Fig. 4.13a it can be seen that the Dharahara

Tower (DT), being the most slender, starts rocking for lower scaling factors than the Narayan Temple

(NT) or even the Basantapur and Patan Columns (BC, PC). Nevertheless once rocking initiates, the
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Basantapur and Patan Columns, due to their smaller size, generally overturn for lower scaling factors

than either the tower or the temple (Fig. 4.13b).

Fig. 4.13 Scaling factors required to (a) initiate rocking and (b) cause overturning of each of the four
monuments, for the different ground motion records

4.3.2 Numerical Modelling using DEM

While the analytical models provide a very quick and computationally-inexpensive way of modelling

the global seismic response of the selected monuments, they are not capable of predicting the more

complicated features of dynamic collapse of multi-block structures, which can be influenced by block

stereotomy and local block displacements (DeJong and Vibert, 2012b). Thus computational analyses

were also conducted using discrete element modelling (DEM) in 3DEC to investigate certain aspects

of the dynamic response not considered by the simplified analytical models. In addition to validating

the analytical results, parametric studies are also conducted to assess the influence of factors such as

the column embedment depth and joint stiffness, and in the case of the Dharahara Tower the effect of

the pedestal and joint tensile strength, on the dynamic response.

Methodology

Basantapur Column

The 3DEC model of the Basantapur Column was directly generated from the CAD file created for

the analytical modelling of the structure. Rigid blocks were used in the analysis, and their material

properties were assumed to be those of stone for the column itself and bronze for the statue on top

(see Table 4.5). The joint stiffnesses were calculated individually for each joint based on the Young’s
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Table 4.5 Block material properties

Property Stone Bronze Brick

Density, ρ (kgm−3) 2300 8700 2000
Young’s modulus, E (GPa) 45 108 4.75
Poisson’s ratio, υ 0.25 0.34 0.25

modulus of the materials involved and the distance between the interfaces. A friction angle of 35° was

specified for all joints, which falls within the range of values reported in Barton (1976) for rock joints,

except at the base where a larger angle of 80° was adopted to account for the presence of the tenon and

mortise joints observed on site. The joints were also assumed to have no tensile strength or cohesion,

as the column was made of dry stone masonry with no mortar.

Stiffness-proportional Rayleigh damping was used for the dynamic simulations in order to damp

out the influence of unrealistic high-frequency vibrations (DeJong, 2009), with a damping constant

of 1.96 × 10−4 being specified, while mass damping was set to zero. For both the column and the

Dharahara Tower, the earthquake loading was applied simultaneously in both cardinal directions using

the acceleration data from the KATNP station in Kathmandu (Figure 4.7). The vertical component

of the ground motion was not applied, as its influence is practically negligible for heavier blocks

(Gazetas et al., 2012). Furthermore, as dynamic analyses can be computationally expensive and fairly

time-intensive, the analyses in 3DEC were run for the most destructive 20 seconds of the record,

beyond which the ground motion was so small that it was found to have a negligible effect on the

results.

Fig. 4.14 (a) Fixed base column 3DEC model; (b) Embedded base column 3DEC models; (c)
Dharahara Tower 3DEC model (final discretized geometry)
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In the first set of analyses, the base column was assumed to be embedded deep enough into the

ground that it could be treated as fixed (Figure 4.14a) – which was also the assumption made in the

analytical model (see results in Figure 4.9). The results from these analyses were thus used to validate

the predictions of the analytical model. The second set of analyses used the Basantapur Column

to investigate the influence of the column embedment depth and joint stiffness at the embedment

on the stability of the structure. In order to do this, the base column was no longer assumed to be

fixed and the 4.6 m of the column visible above the ground was kept constant, while the length of the

column below the ground was varied from 25% to 75% of the length above ground (Figure 4.14b).

Furthermore, the joint stiffness calculated at the embedment was divided by factors of 1, 10 and 100

in order to simulate different soil conditions and gauge how the softening of the joints at the base

affects the response of the structure. The ground motion in this case was not scaled as the objective

was to evaluate the responses by comparing the maximum rocking rotation.

Dharahara Tower

The 3DEC model for the Dharahara Tower was also generated using the CAD file created for the

analytical modelling. However, unlike the columns which were made up of a few individual large

blocks which could directly be modelled in 3DEC, the brick masonry tower was discretized into

relatively large blocks to decrease computation time. Thus the shaft of the tower was divided into

twenty 3.0 m high layers, with each layer containing 12 blocks joined in pairs of two in such a manner

as to ensure some degree of interlocking over the height of the structure. The widths and thicknesses

of the individual blocks making up each layer gradually decreased in line with the tapering form of

the tower. The final discretized geometry is illustrated in Figure 4.14c.

Rigid blocks were once again used in the analysis. Typical material properties of clay brick

masonry with lime surkhi mortar were assumed for the tower (Table 4.5, Rai and Dhanapal (2013),

Kaushik et al. (2007)), while typical properties of stone were assumed for the pedestal upon which the

tower sits. The joint stiffnesses were calculated based on the Young’s moduli of the interface materials

and the distance between joints, while a minimal joint tensile strength of 1.00 kPa was assumed in

order to account for the mortar as well as eliminate disintegration throughout the tower and thus more

realistically model its collapse – although the magnitude of this tensile strength was later varied in

order to gauge its effect on the response of the structure. A friction angle of 35°, which falls within the

range of values determined experimentally by Atkinson et al. (1989), Drysdale et al. (1979), Stockl

and Hofmann (1986), and Capozucca (2011) for clay brick masonry with mortar, was defined for all

the joints. Parametric studies were also conducted to analyse the effect of ground motion scaling on

the tower’s dynamic response, as well as the influence of the pedestal. Stiffness-proportional damping

was again used for the dynamic analysis, with a damping constant of 1.85 × 10−4 being specified for

the structure.
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Results

Basantapur Column

In the case of the Basantapur Column, the fixed base column model was used for comparison with the

predictions of the analytical model. In general it was found that the collapsed portions of the column

did not behave as multiple sliding and rocking surfaces, and instead rocked monolithically – thereby

confirming the simplified assumptions of the analytical model. To better facilitate comparison with

the analytical results, the time-history responses of the computational model were plotted in terms of

the variation of the maximum rotation of the column over time, with the rotation being expressed as a

fraction of the overturning rotation φov. As Figure 4.15 illustrates, the analytical and computational

results were observed to be in fairly good agreement for the ground motion scaling levels shown.

Fig. 4.15 Comparison between 3DEC and analytical time-history results for the fixed-base model of
the Basantapur Column

The second set of analyses conducted on the model of the Basantapur Column evaluated the effect

of column embedment depth and the related embedment joint stiffness (k j) on the dynamic stability

of the structure. Figure 4.16a shows that decreasing the embedment depth leads to an increase in

the maximum rocking rotation of the column, while decreasing the joint stiffness at the embedment

(in this case dividing it by factors of 10 and 100) also leads to a significant increase in the rocking

response (Figure 4.16b). The extent to which these factors contributed to the response of the real

structure cannot be conclusively determined without a more detailed geotechnical investigation, but it

is clear that rotation of the column due to embedment could well have increased the rocking response

of the upper part of the structure. During the field survey, a gap was noticed between the base of the

column and surrounding paving stones, indicating that some rotation of the embedded column did

occur. This provides an additional explanation as to why the simulation results for the actual ground

motion predict a marginally smaller response than the collapse that occurred.
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Fig. 4.16 (a) Effect of embed depth on response (for case where joint stiffness is reduced by factor of
10) (b) Effect of joint stiffness on response (for 50% embedment case)

Dharahara Tower

In the case of the Dharahara Tower, the results from the computational analyses were compared both

to the predictions of the analytical model, as well as corroborated with field observations, according

to which the tower first cracked diagonally and rotated towards the south east, before eventually

collapsing in a south-western direction.

The first set of computational analyses evaluated the influence of ground motion scaling on the

dynamic response of the tower. From this analysis it was found that when the acceleration data is

scaled by a factor of 1.50, the computational model of the tower first rotates towards the north-east

before a pulse in the opposite direction causes ground displacement towards the south-west, resulting

in most of the debris falling in this direction (Figure 4.17) – which corresponds quite well with the

final failure mode of the tower.

Varying the level of scaling of the earthquake ground motion was found to affect both the direction

of collapse as well as the height at which the tower cracked – as illustrated by Figure 4.18. A decrease

in ground motion scaling was observed to increase the height at which the crack occurred, and

consequently decrease the size of the collapsed portion of the tower, while the direction of collapse

appeared to follow a clockwise pattern – with the collapse direction progressively changing from

south-east (for a scaling factor of 2) to north-west (scaling factor of 1).

As the Dharahara Tower experienced significant displacements in both cardinal directions, the

time-history results are plotted in the form of displacement traces on a horizontal X-Y axis, as

illustrated by Figure 4.19. The displacements are tracked at both the top center of the tower (T),

as well as at the base (B) for the different levels of scaling of the earthquake ground motion. The

diameter of the tower is also plotted in the form of a grey filled circle, which allows the magnitude of

the displacements to easily be compared to the original diameter of the tower, while the grey arrow

indicates the actual direction of collapse. From Figure 4.19 it can be seen that for all ground motion



4.3 2015 Gorkha Earthquake 67

Fig. 4.17 Progressive collapse of Dharahara Tower for ground motion scaling of 1.50

Fig. 4.18 Comparison of failure modes for different ground motion scaling levels
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scaling levels both the base and the top of the tower appear to follow a similar swirling pattern, with the

displacement magnitude generally increasing with an increase in scaling. Furthermore the magnitude

of the displacement at the bottom of the tower starts off as fairly large at first (and in the case of the

scaling factor of 2 is almost equal to the radius of the tower) before gradually decreasing, while the

response at the top continuously increases in magnitude. The dominant collapse directions for the

different scaling levels are also more clearly indicated by Figure 4.19 - reiterating the observations

from Figure 4.18 about the different failure modes of the tower.

Parametric studies were also conducted to gauge the influence of joint tensile strength and the

pedestal on the response of the tower. However, varying these parameters was found to have a

relatively minor effect on the tower’s dynamic behaviour, and thus the results have not been presented

here.

Fig. 4.19 Effect of ground motion scaling (joint tensile strength = 1 kPa, grey arrow indicates actual
collapse direction)

4.3.3 Discussion

Importance of ground motion pulse

The resistance of objects to overturning is influenced by both their slenderness and size. While the

slenderness of a structure determines when rocking initiates, the magnitude of rotation, and ultimately

collapse, is governed by its size (as was illustrated in Fig. 4.13). Thus smaller objects can overturn

without an obvious long duration pulse, while larger objects generally require a longer duration (lower

frequency) pulse in order to generate enough rotational momentum to overturn and collapse – an
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observation which is also supported by the findings of this chapter. A comparison of the overturning

plots for the selected structures reveals that the Dharahara Tower, with its considerably larger size,

required a significantly longer pulse than any of the other monuments in order to overturn (Fig. 4.20).

In the case of the Nepal earthquake ground motion, the primary pulse alone was large enough to cause

overturning of both the tower and the Basantapur and Patan Columns, without taking into account any

additional effects. Thus the large low-frequency content within the Nepal earthquake ground motion

made slender unreinforced masonry structures particularly vulnerable to overturning, while structures

of moderate size had their dynamic resistance almost completely eliminated by the long-duration

pulse. In fact, any structure with a slenderness less than the amplitude of the dominant pulse extracted

from the earthquake ground motion would have been in danger of collapse. Conversely, this could

provide an explanation as to why the Narayan Temple, despite being of moderate size, did not overturn

and collapse, as it was nearly twice as stocky as the tower, and 1.5 times as stocky as the columns

(Table 4.4). Essentially, the additional dynamic resistance to overturning typically characteristic of

rocking motion (Doherty et al., 2002) was essentially non-existent for this particular ground motion.

In other words, the Italian building code (DMI, 2008) assessment method of predicting overturning to

occur at ground accelerations equal to a multiple (typically 2) of the PGA, would have been extremely

un-conservative here. The proper multiple would have been 1 for this earthquake, despite the fact that

a value of 2 is usually conservative for typical ground motion recordings (particularly in Italy).

Fig. 4.20 Comparison of the overturning plots for the selected monuments, and their predicted response
to pulses isolated from different major earthquakes

This detrimental effect of the long-duration pulse present within the Nepal earthquake ground

motion is better illustrated by comparing the predicted response of the four structures to the primary

pulses isolated from different major earthquakes. From Fig. 4.20 it can be seen that despite their large

magnitudes, none of the other earthquakes have a pulse large enough or long enough to cause the
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overturning of the Dharahara Tower or the Narayan Temple, and only a few have pulses long enough

to cause the Basantapur and Patan Columns to overturn. The scale effect becomes directly evident

from this plot.

It should however be pointed out that this type of overturning failure is distinctly different from

collapse caused by resonance, or by cumulative material failure causing excessive damage due to

repeated cyclic loading. These types of failure are much more sensitive to the spectral acceleration

at the natural frequencies of the structure. While elastic resonance can cause large base shears and

subsequent damage, it cannot directly cause large rotations and overturning collapse. This provides

some evidence as to the nature of the ground motion that caused only the top portion of the Dharahara

Tower to collapse during the 1934 earthquake (as opposed to completely overturning around the base).

Any distinct long-duration ground motion pulse, if present, would have had to have been of shorter

period or lower amplitude than that observed in 2015. As a result, larger higher frequency excitation,

accompanied by elastic amplification, might have played a larger role in the observed damage in 1934.

Comparison of analytical time-history and overturning plot results

A comparison between the analytical time-history responses and the predictions of the sine pulse

overturning plots enables further discussion about the dominance of the long period pulse. For three

out of four of the analysed monuments there were instances when the overturning plots predicted

collapse when the time-history analyses did not. Possible reasons for this follow.

Firstly, to extract the pulse information from the Nepal earthquake ground motion, a single sine

pulse was fit to the most destructive pulse in the acceleration data. However the actual earthquake

time-history contains higher frequency content, as well as several cycles of long-period motion as

opposed to just a single pulse. Thus the presence of high frequency content combined with the

imperfect fitting of the sine pulse could be one reason for the discrepancy between the time-history

responses and predictions of the overturning plots.

Furthermore, the multiple cycles of long period pulses present in the acceleration data could have

had an amplifying or de-amplifying effect on the response of the structure – depending on the phase

of rocking relative to the ground motion. This behaviour can be quantified in terms of the rate of

energy input into the system (DeJong, 2012a), which for the linearised equation of motion presented

earlier (Equation 3.9) is:

∂E
∂τ

=−MRügθ
′ (4.1)

where E is the total energy, τ is dimensionless time and θ ’ is the rotational velocity of the structure.

From Equation 4.1 it can be seen that the rate of energy input is positive only if the current rotational

velocity and ground motion are opposite in sign (DeJong, 2012a). Thus maximum energy input (i.e.

amplification resulting in overturning) is attained when the input ground motion (acceleration) is

always opposite in sign to the rotational velocity, while removal of energy from the system (and
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subsequently de-amplification) takes place when the acceleration and rotational velocity are the same

sign.

This de-amplifying effect is best illustrated by studying the response of the Dharahara Tower to

the KATNP NS ground motion record scaled by a factor of 1.25. As Fig. 4.21a demonstrates, the

rotational velocity and ground acceleration are initially perfectly out of phase, resulting in energy

being input into the system thus causing an increase in the rocking amplitude of the tower. This is

followed by a subsequent removal of energy from the system (de-amplification) by the pulse that

followed, as a result of which the rocking amplitude of the tower never exceeded 0.5 α . Then, as the

magnitude of the input acceleration decreased so did the rotation of the structure, resulting in a return

to equilibrium despite the predictions of the overturning plot.

Fig. 4.21 Comparison of the rotation (top), acceleration and angular velocity (bottom) time-histories
for the Dharahara Tower: (a) scaling factor of 1.25; (b) scaling factor of 1.15

While rocking de-amplification can explain why the overturning plots predicted collapse while

the time-history analyses did not, rocking amplification could account for those cases where the

structure overturned faster than expected – as was observed for the Basantapur Column for scaling

factors of 1.15, as well as for the Dharahara Tower for a scaling factor of 1.15 in the north-south

direction (Fig. 4.21b). As Fig. 4.21b illustrates, the tower experienced some initial amplification

between 45-55 seconds, which initiated the large rotation of the structure. This was followed by a

second amplification between 57-60 seconds, which added energy to the system thus leading to the

overturning of the tower for lower ground motion scaling than in Fig. 4.21a.

The similarity between Figs. 4.21 a & b indicates that once the large rocking response of the

structure commences the overturning collapse can be very sensitive to the ground motion, with minor

differences in phase affecting the outcome. For the most part however, the sine-pulse overturning
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envelopes were found to be sufficient for predicting the collapse of the three monuments, with the rest

of the ground motion generally de-amplifying the rotation of the structure rather than amplifying it.

Comparison of analytical and numerical (DEM) results

A comparison between the analytical time-history results and predictions of the computational (3DEC)

model revealed a fairly good correlation between both sets of results for the Basantapur Column. For

scaling factors of 1.15 and 1.50 the 3DEC and analytical results seemed to match almost exactly, while

for the scaling factor of 1.25 the analytical model appeared to recover from a fairly large rotation

before overturning about 2 seconds after the 3DEC model. This discrepancy could be due to the

de-amplifying effect of the ground motion presented earlier, as well as the fact that both the NS

and EW ground motion records were simultaneously applied to the computational model while the

analytical model was subjected to the EW ground motion record only.

Comparison of analytical and numerical (DEM) results with field observations

From the analytical time-history results it was found that while rocking generally initiated for the

Basantapur and Patan Columns and the Dharahara Tower for all levels of scaling of the input ground

motion, overturning only occurred for scaling factors of 1.15, 1.10 and 1.50 and higher for the

Basantapur Column, Patan Column and Dharahara Tower respectively (overturning of the tower for

the scaling factor of 1.15 in the NS direction due to rocking amplification has already been discussed).

Similarly, rocking of the Narayan Temple only initiated for scaling factors of 1.50 and higher, with

overturning collapse only taking place when the ground motion was scaled by a factor of 2.00 or

greater (Fig. 4.13).

However, collapse of the columns and tower (and initiation of rocking of the temple) obviously

occurred for a scaling factor of 1, and the differences between the predictions of the time-history

plots and what was observed in reality could be due to a number of factors. Firstly, the local ground

motion at the site could have been different from what was recorded at the USGS KATNP, PTN and

THM stations. All four monuments were situated in the Kathmandu Valley and would therefore have

experienced similar long period effects, however they were separated by up to 12 km and could also

have been subjected to local site effects. Furthermore, errors in estimating the mass and geometry of

the structures when creating the Rhino models could have contributed to these discrepancies as well.

In the case of the Dharahara Tower, failure also involved some slipping of the tower off the

pedestal which was not predicted in 3DEC due to the pre-defined block discretization which did not

allow a true diagonal crack as observed in reality, while local crushing during rocking could have

taken place as well.

Additionally, due to the tower’s size and slenderness, elastic effects might not have been negligible.

Thus an elastic analysis was also conducted wherein the possibility of elastic resonance due to modal

amplification was investigated. Using Lord Rayleigh’s principle, the natural frequency of the tower

was calculated for the Young’s modulus value specified in Table 4.5, as well as a range of density
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values, and was found to range between 0.64 – 0.83 Hz or 1.21 – 1.56 seconds, which is far from the 4 –

6 second dominant peak in the ground motion response spectra. Nevertheless, elastic resonance would

have only initiated rocking earlier – it would not alone have caused complete overturning collapse

about the base. This possibility of elastic resonance initiating rocking earlier, and consequently

reducing the pulse amplitude required to cause collapse – especially in the region of the overturning

plot where the Nepal earthquake pulse sits (Acikgoz and DeJong, 2012) - also supports the result

that the (analytical) time-history results were un-conservative. The assumption of rigid blocks is less

likely to be a source of error for the Basantapur and Patan Columns however, as the response of these

solid stone monuments would probably be almost completely unaffected by elastic response.

Furthermore, due to the soft soil in the Kathmandu Valley basin, soil-structure interaction effects

might not have been negligible. In the case of the Basantapur Column, the embedment of the column

in the ground was also observed to cause some rotation at the base which in turn affected overturning

at the height at which it occurred. While this behaviour was not reproduced analytically, the analyses

conducted in 3DEC did corroborate these field observations.

Accounting for amplification effects

As the collapse mechanisms of the Basantapur and Patan Columns occurred at a height above ground

level, amplification effects might not have been negligible and could also account for the discrepancies

between the original predictions of the analytical model and what was observed in reality.

To this end, using the methodology outlined in Section 3.4.1, appropriate scale factors SF were

determined for both columns. In order to do this, the natural frequencies fn and modal heights he of

the columns were first determined by treating the surviving 4.60 m of both structures as cantilevers,

and the collapsed portions as point loads on top. Using Lord Rayleigh’s principle as in DeJong

(2012b) and assuming Young’s modulus Est = 45 GPa as specified in Table 4.5, the modal heights

he were determined to be 4.54 m and 4.56 m for the Basantapur and Patan Columns respectively,

while fn was estimated to be 7.7 Hz and 6.5 Hz - leading to natural periods Tn of 0.13 s and 0.15 s

respectively. As the input ground motion is applied at the base of the collapsed portion of the structure

(and consequently the top surface of the surviving portion of the column), h is therefore 4.60 m for

both columns.

The acceleration response spectra were then generated for both the KATNP and PTN ground

motion records (assuming 5% damping), as illustrated by Fig. 4.22. From these graphs, the spectral

accelerations Sa at Tn were determined to be 0.19 g for the Basantapur Column and 0.21 g for the

Patan Column - as indicated by the red dots in Fig. 4.22. Using Equation 3.48, the scale factor was

then calculated, and was found to be 1.6 and 1.9 for the Basantapur and Patan Columns respectively.

Given that the Basantapur Column was found to overturn for ground motion scaling of 1.15 times and

higher, a scale factor of 1.6 would almost certainly cause collapse of the structure. Similarly, the Patan

Column was observed to overturn for ground motion scaling of 1.5 times and higher, thus applying a

scale factor of 1.9 to the input ground motion would cause collapse as well. A comparison of these
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Fig. 4.22 Elastic acceleration response spectra generated (assuming 5% damping) for the (a) KATNP
and (b) PTN ground motion

Table 4.6 Comparison of the scale factors computed by the different methods for the Basantapur and
Patan Columns

Structure
Proposed Method Eurocode 8 NZS 1170.5
(Equation 3.48) (Equation 3.49) (Equation 3.50)

Basantapur Column 1.6 2.9 1.8
Patan Column 1.9 2.9 1.8

scale factors with those determined using code-based methods found them to be considerably lower

than the scale factor of 2.9 calculated using the method presented in Eurocode 8 (EN 1998-1, 2004),

and comparable to the scale factor of 1.8 determined using NZS 1170.5 (NZS, 2004) (Table 4.6).

Using the values of he, h and fn determined above, the methodology presented in Section 3.4.1

was also used for scaling the overturning plots of both columns. A comparison of the scaled and

unscaled plots (Fig. 4.23) demonstrates that accounting for amplification effects results in an overall

reduction in the minimum pulse amplitude required for overturning to occur for all considered pulse

frequencies, thus decreasing the dynamic resistance of the structures. This is better illustrated by once

again comparing the response of these structures to the primary pulses isolated from the different

major earthquakes. As Fig. 4.24 demonstrates, in addition to the pulses isolated from the Nepal, Kobe

and Loma Prieta earthquakes, accounting for amplification effects now makes the Basantapur and

Patan Columns vulnerable to collapse for the lower-amplitude, higher-frequency pulses isolated from

the El Centro and Imperial Valley earthquakes as well.
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Fig. 4.23 Comparison of the scaled and unscaled overturning plots for the (a) Basantapur Column
(BC) and (b) Patan Column (PC)

Fig. 4.24 Comparison of the overturning plots after the inclusion of amplification effects
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4.4 Summary

The objective of this chapter was to evaluate the ability of the tool to realistically model the dynamic

response of different structural geometries. To that end, a range of case-studies were investigated,

which comprised masonry structures of varying scales and typologies. Detailed comparisons were

conducted with the results of experimental tests, numerical simulations, and field observations from

a recent earthquake, and in general, the tool was found to be capable of adequately capturing the

dynamic response of the considered structures. These investigations allowed the following conclusions

to be drawn:

• In the case of the LNEC Shaking Table Tests, while a fair correlation was observed between the

predictions of the tool and the outcome of the laboratory tests, this correlation is influenced

by the selection of appropriate mechanisms for analysis, which depends in turn upon user

experience and engineering judgement.

• In the case of the Basantapur and Patan Columns (both of which overturned and collapsed

during the Gorkha earthquake), some discrepancies were observed between the predictions of

the tool and the field observations. However, using the methodology proposed in Section 3.4.1

to account for amplification effects eliminated these differences, and simultaneously illustrated

the potential effectiveness of this model.

• The predictions of the tool and the results of the numerical (3DEC) simulations were in

fairly good agreement for the Basantapur Column, thus illustrating the effectiveness of the

analytical model currently implemented in the tool for the non-linear dynamic analysis of

two-dimensional collapse mechanisms. However, this model cannot capture certain additional

features of the response such as the rocking of the embedded portion of the column, the effect

of joint stiffness on dynamic behaviour and in the case of the Dharahara Tower in particular -

the three-dimensional nature of the rocking response.

• In the case of the Dharahara Tower, the discrepancies between the predictions of the tool and

the field observations could be due in part to crushing of the masonry at the base of the tower,

which the current analytical model, with its assumption of purely rigid interfaces, is not able to

reproduce.

• The overturning plots generated by the tool for each of the structures damaged during the

Gorkha earthquake illustrated the influence of size on stability, with smaller structures such

as the Basantapur and Patan Columns being far more vulnerable to collapse. These plots also

highlighted the importance of the large low frequency content within the Gorkha earthquake

ground motion, as this is what caused larger structures such as the Dharahara Tower to overturn

and fail.
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• In general, a reasonably good correlation was observed between the predictions of the overturn-

ing plots and the results of the full time-histories, with discrepancies between the two generally

being accounted for in terms of rocking amplification or de-amplification. From this particular

investigation it was also found that once large rocking response of the structure begins, collapse

can be fairly sensitive to the ground motion - thus highlighting the chaotic nature of the rocking

response.





Chapter 5

Demonstration of the rigid rocking tool

5.1 Introduction

The rigid rocking tool presented in Chapter 3 can be applied in two main ways:

1. For seismic analysis, in order to rapidly evaluate critical mechanisms within a structure.

2. For seismic assessment, in order to evaluate the dynamic capacity of critical mechanisms.

While this chapter focusses on the first application, the second could be readily conducted for any

given structure or mechanism using code-based methods as in (DeJong et al., 2015; Giresini et al.,

2015; Shawa et al., 2012). Furthermore, application of the tool for seismic assessment of a real-world

masonry structure will also be demonstrated in Chapter 8.

Thus, in order to demonstrate the ability of the rigid rocking tool to rapidly evaluate critical

mechanisms, it was used for the seismic analysis of the Church of San Leonardo Limosino in the

Italian municipality of Mirandola. Constructed in the 15th century, the church comprises a nave and

side aisles (which are covered by cross-vaults), a roof supported by king-post trusses, a rounded apse,

and a bell tower (Decanini et al., 2012). The church sustained a significant amount of damage during

the 2012 Emilia earthquake sequence - during the first shock on May 20th, the tip of the bell tower’s

spire collapsed and a portion of the façade above the central window overturned out-of-plane (Fig.

5.1a). Vertical cracks below the spire and some corner spalling just above the roof level of the church

were also observed in the bell tower (Decanini et al., 2012). Following the second shock on May 29th,

the façade of the church suffered further damage, while the bell tower was partially destroyed (Fig.

5.1b).

In this chapter, the tool will be used to conduct a seismic analysis of the church, through the

evaluation and comparison of a number of different collapse mechanisms, all of which are variations

of typical church collapse mechanisms as presented in Chapter 2 (Fig. 2.2). The potential effectiveness

of reinforcement, as well as the influence of accounting for ground motion amplification, will also

be investigated. Finally, the tool’s ability to identify critical mechanisms will be assessed through

comparison with field observations.
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Fig. 5.1 Church of San Leonardo Limosino after the (a) 20th May 2012 shock; (b) 29th May 2012
shock (Sorrentino et al., 2014)(Reprinted by permission from Springer Nature)

5.2 Methodology

In order to analyse the church using the tool, a 3D CAD model of the structure was first generated

in Rhino (Fig. 5.3) based on the dimensions and drawings presented in Decanini et al. (2012) and

Sorrentino et al. (2014) (Fig. 5.2) - albeit with some simplifications. While the actual observed

failure mechanisms – namely the overturning of the spire and façade, and collapse of the bell tower

(Fig. 5.4a) - were all modelled by the tool, given that all three are simply variations of the simple

single block mechanism, a number of other potential mechanisms were evaluated as well, which

were selected based on the presence of certain macro-elements within the church (Fig. 5.4b). These

included more complex mechanisms such as other possible overturning mechanisms for the façade,

which accounted for additional loads in the form of the weight of the roof (ρr = 750 kgm−3, with

a density ρm of 1800 kgm−3 assumed for the masonry), and thrust of the vault (Fv = 41 kN, from

Ungewitter’s table (Ungewitter and Mohrmann, 1901), assuming Case B, Section 3.2.2), as well as the

restraining influence of tie-bars (Ft = 40 kN), and which were modelled as single block mechanisms

with added masses and forces (Fig. 5.5a), as well as the collapse of the side-aisle vault, which was

modelled as a multiple-block mechanism undergoing one-sided rocking (Fig. 5.5b). Parametric

studies were also conducted through the modification of factors such as the location of the axis of

rotation and variation of the crack angle. The equivalent rocking parameters derived by the scripts in

Rhino for each of these different mechanisms were then exported to MATLAB, where they were used

to generate the corresponding equations of motion.

As the objective in this case was to compare the relative dynamic resilience of the different

collapse mechanisms and identify the most vulnerable one(s), the equations of motion generated in

MATLAB were then solved for the pulse response in order to produce overturning plots. However

as a number of these mechanisms (namely 1 – 6 in Fig. 5.4) take place at a height h above ground

level, potential amplification of the ground motion up the structure was also accounted for through an
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Fig. 5.2 Plan and elevation drawings of the Church of San Leonardo Limosino (reproduced from
Sorrentino et al. (2014), reprinted by permission from Springer Nature)

Fig. 5.3 Rhino model of the Church of San Leonardo Limosino
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Fig. 5.4 Collapse mechanisms evaluated for Church of San Leonardo Limosino: (a) actual mechanisms
and (b) potential mechanisms

Fig. 5.5 Complex mechanisms considered: (a) Overturning of the façade and (b) Side aisle vault
collapse

extension of the method described by Priestley (1985) and outlined in Section 3.4.1. In order to do

this, the natural frequency fn of the church first needed to be determined. For mechanisms involving

the bell tower (i.e. 1, 2 and 4), the structure was assumed to be free-standing (independent of the

church) and its natural frequency was calculated using Lord Rayleigh’s principle (assuming Young’s

modulus E = 2.4 GPa for the masonry), and was determined to be 1.8 Hz. For mechanisms involving

the main church body (i.e. 3, 5 and 6) the natural frequency of the structure was estimated to be 2.9

Hz based on finite element analyses conducted on a number of churches of similar scale (Betti and

Vignoli, 2008, 2011; Casarin and Modena, 2008; Castellazzi et al., 2013; Dal Cin and Russo, 2014;

Mele et al., 2003). The modal heights he were also calculated, and were found to be 14.5 m and 6.5 m
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for the bell tower and church respectively. Using the computed natural frequencies and modal heights,

the pulse response spectra and consequently the scaled overturning plots were then generated, with

the latter being presented in the following section.

5.3 Results

In the case of the masonry spire of the bell tower (Mechanism 1, Fig. 5.4a and Mechanism 26,

Fig. 2.2), two-sided rocking was assumed, and parametric studies were conducted for both varying

crack angles β (with the angle being measured from the horizontal) and varying crack heights hc

(with the height being measured from the tip of the spire). Following the methodology outlined in

Sections 3.3.1 and 3.4.1, overturning envelopes (Fig. 5.6) were then generated for each of these

different mechanisms by using the rocking and scaling parameters listed in Table 5.1 to select and

scale the appropriate dimensionless overturning plots in MATLAB. From Fig. 5.6a it can be seen

that increasing the angle of the crack tends to decrease the stability of the spire, thus making it more

vulnerable to overturning for all pulse frequencies, while Fig. 5.6b illustrates that increasing the

height of the portion that separates and rocks tends to increase the stability of the spire, thus making

it less vulnerable to overturning. In reality, the crack angle would be limited by the coursing of the

masonry and thus appropriate limits on crack inclinations should be specified by the user.

Table 5.1 Rocking and scaling parameters used for generating the overturning plots for the different
spire mechanisms

Mechanism peq (s−1) λ (rad) η fn (Hz) he (m) h (m)

hc = H/2
β = 45◦ 3.17 0.42 0.72 1.82 14.05 20.25
β = 60◦ 3.04 0.34 0.81 1.82 14.05 20.25
β = 75◦ 2.75 0.23 0.90 1.82 14.05 20.25

β = 45◦
hc = H 2.19 0.40 0.75 1.82 14.05 18.25
hc = 2H/3 2.73 0.41 0.73 1.82 14.05 19.58
hc = H/2 3.17 0.42 0.72 1.82 14.05 20.25
hc = H/3 3.88 0.43 0.72 1.82 14.05 20.92

In the case of the apse (Mechanism 5, Fig. 5.4b and Mechanism 16, Fig. 2.2), one-sided rocking

was assumed, and parametric studies were conducted for varying crack angles β (once again measured

from the horizontal), with the cracks occurring at both the base (B) of the apse as well as the window

openings (W). Table 5.2 lists the rocking and scaling parameters used to generate the corresponding

overturning plots (Fig. 5.7) for these different mechanisms. As Fig. 5.7 illustrates, the mechanisms

originating at the window openings are, for the most part, more susceptible to overturning, and in

general the overturning vulnerability increases with an increase in crack angle. However, in the case

of the crack angle of 45◦, the mechanism originating at the base is more likely to overturn for higher

frequencies (> 3 Hz) as well as for frequencies less than 1 Hz.
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Fig. 5.6 Overturning envelopes generated for the spire for: (a) varying crack angles at hc = H/2; (b)
varying heights for a constant crack angle β = 45◦

Fig. 5.7 Overturning plots generated for the apse for varying crack angles, with crack either starting
from the base (B) or the window openings (W)
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Table 5.2 Rocking and scaling parameters used for generating the overturning plots for the different
apse mechanisms

Mechanism peq (s−1) λ (rad) η fn (Hz) he (m) h (m)

βB = 45◦ 1.39 0.29 N/A 2.89 6.64 0.00
βB = 60◦ 1.37 0.24 N/A 2.89 6.64 0.00
βB = 75◦ 1.35 0.16 N/A 2.89 6.64 0.00
βW = 45◦ 1.74 0.41 N/A 2.89 6.64 3.00
βW = 60◦ 1.85 0.27 N/A 2.89 6.64 3.00
βW = 75◦ 1.96 0.13 N/A 2.89 6.64 3.00

In the case of the façade, five different mechanisms were evaluated, as illustrated by Fig. 5.8

(with the equivalent rocking and scaling parameters being listed in Table 5.3). Note that these five

mechanisms are all variations of Mechanisms 3 and 6 as depicted in Fig. 5.4 and Mechanisms 1

and 2 as depicted in Fig. 2.2. One-sided rocking was assumed for all cases, and from the resulting

overturning plots it was found that for all considered frequencies, Case 1 (gable only) was the least

vulnerable to overturning, while Case 4 (façade + side walls (SW) + additional loads) was the most

vulnerable.

Fig. 5.8 Façade overturning plots for the different cases
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Table 5.3 Equivalent rocking and scaling parameters used for generating the overturning plots for the
different façade mechanisms

Mechanism peq (s−1) λ (rad) η fn (Hz) he (m) h (m)

Case 1 3.25 0.29 N/A 2.89 6.64 9.70
Case 2 2.19 0.12 N/A 2.89 6.64 7.75
Case 3 1.38 0.06 N/A 2.89 6.64 3.00
Case 4 1.39 0.02 N/A 2.89 6.64 3.00
Case 5 1.39 0.06 N/A 2.89 6.64 3.00

In the case of the bell tower, corner mechanisms were evaluated at both the mid-height of the

tower as well as at the belfry window (Mechanism 2, Fig. 5.4a and Mechanism 27, Fig. 2.2). The

belfry was also evaluated as a portal frame (Mechanism 4, Fig. 5.4b and Mechanism 28, Fig. 2.2),

as this mechanism is often observed during earthquakes, and takes the form as illustrated by Fig.

5.9. Two-sided (2S) rocking was assumed for all three mechanisms, while in the case of the corner

mechanisms one-sided (1S) rocking was also investigated. The rocking and scaling parameters used

to generate the overturning plots (Fig. 5.9) for these different mechanisms can be found in Table

5.4. From Fig. 5.9 it can be seen that for pulse frequencies between 0.5 - 2.5 Hz the portal frame

mechanism appears to control collapse, while for frequencies greater than 2.5 Hz and less than 0.5 Hz

the corner mechanism originating at the midpoint tends to dominate.

Table 5.4 Rocking and scaling parameters used for generating the overturning plots for the different
bell tower mechanisms

Mechanism peq (s−1) λ (rad) η fn (Hz) he (m) h (m)

Corner: Midpoint 2S 1.04 0.15 0.98 1.82 14.05 9.00
Corner: Midpoint 1S 1.04 0.15 N/A 1.82 14.05 9.00
Corner: Window 2S 1.32 0.27 0.93 1.82 14.05 13.00
Corner: Window 1S 1.32 0.27 N/A 1.82 14.05 13.00
Portal frame 2.21 0.21 0.92 1.82 14.05 13.00
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Fig. 5.9 Bell tower overturning envelopes for the different mechanisms. One-sided (1S) and two-sided
(2S) envelopes are shown for the corner collapse mechanisms, while only the two-sided mechanism is
shown for the portal frame.

Assuming one-sided rocking, overturning plots were also generated for the three-block mecha-

nisms involving the vault of the side-aisle (Mechanism 7, Fig. 5.4b and and Mechanism 9, Fig. 2.2)

as illustrated by Fig. 5.10, with the equivalent rocking and scaling parameters being listed in Table

5.5. The mechanisms were evaluated at both the base of the side wall and the mid-height, and the

overturning envelopes in this case assume a relatively linear form - the resistance to collapse generally

increases with an increase in pulse frequency, with the mechanism originating at the base displaying a

larger vulnerability to overturning for all frequencies.
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Table 5.5 Equivalent rocking and scaling parameters used for generating the overturning plots for the
different side-aisle mechanisms

Mechanism peq (s−1) λ (rad) η fn (Hz) he (m) h (m)

Base 1.85 1.11 N/A 2.89 6.64 0.00
Midpoint 2.21 4.82 N/A 2.89 6.64 2.70

Fig. 5.10 Overturning plots for the side aisle vault (left), with an illustration of the corresponding
(three-block) mechanism (right)

Finally, in order to compare the relative dynamic resilience of the different collapse mechanisms,

the most vulnerable (controlling) mechanisms from each of the parametric studies were plotted in

Fig. 5.11, with the only exception being the façade, where Case 2 (Mechanism 3, Fig. 5.4a) was

plotted instead of Case 4 (Mechanism 6, Fig. 5.4b), as this was the mechanism which was actually

observed to occur during the earthquake. Furthermore, the script written in MATLAB to automatically

detect critical mechanisms (as described in Section 3.4.2) was also run in order to determine the most

vulnerable mechanism for each pulse frequency.

Table 5.6 Rocking and scaling parameters used for generating the overturning plots for the controlling
mechanisms from the different parametric studies

Mechanism peq (s−1) λ (rad) η fn (Hz) he (m) h (m)

1. Spire 2.75 0.23 0.90 1.82 14.05 20.25
2. Bell tower (corner) 1.04 0.15 0.98 1.82 14.05 9.00
3. Façade (cracked at window) 2.19 0.12 N/A 2.89 6.64 7.75
4. Bell tower (frame) 2.21 0.21 0.92 1.82 14.05 13.00
5. Apse 1.96 0.13 N/A 2.89 6.64 3.00
6. Façade 1.39 0.02 N/A 2.89 6.64 3.00
7. Side aisle 1.85 1.11 N/A 2.89 6.64 0.00
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Fig. 5.11 Comparison of the overturning plots for the different mechanisms: (a) without and (b) with
amplification

The rocking and scaling parameters for each of these controlling mechanisms are listed in Table

5.6. In order to highlight the effect of ground motion amplification, Fig. 5.11 includes both the

unscaled and scaled overturning envelopes. From Fig. 5.11 it can be seen that for the unscaled case, the

façade mechanism is the most vulnerable to overturning for all considered pulse frequencies, followed

by the spire for frequencies less than 2 Hz and the apse for frequencies greater than 2 Hz. However, by

accounting for amplification effects, the spire actually becomes most susceptible to collapse for pulse

frequencies in the range of 0.5 - 2.0 Hz, while the façade remains the most vulnerable mechanism for

frequencies less than 0.5 Hz and greater than 2 Hz. Fig. 5.11 also demonstrates that accounting for
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dynamic amplification generally reduces the minimum pulse amplitude required for overturning to

occur, and in some cases even changes the relative vulnerabilities of the different collapse mechanisms.

5.4 Discussion

5.4.1 Effect of slenderness and scale

As expounded upon in Chapter 4, the resistance of objects to overturning is dependent on both their

slenderness and scale. While the ratio of the acceleration amplitude of the ground motion to the

slenderness of a structure determines when rocking initiates, the magnitude of rotation (and thus

collapse) depends on the scale of the structure with respect to the period of large pulses within the

ground motion.

This effect of slenderness and scale on the rocking stability of structures is illustrated by the

overturning envelopes generated for the spire (Fig. 5.6). From Fig. 5.6a it can be seen that for a

constant crack height, the resistance of the spire to overturning decreases with an increase in crack

angle. An increase in crack angle results in an increased slenderness of the structure (Table 5.1), thus

leading to rocking initiating earlier. Furthermore, these more slender structures are also of a relatively

smaller scale than their stockier counterparts and are thus susceptible to overturning with impact for

higher frequencies as well. This effect of scale on stability is reinforced by Fig. 5.6b, wherein for a

constant crack angle and varying crack heights – that is, for a constant slenderness and varying scale -

it can be seen that the overturning resistance again decreases with a decrease in scale.

For two-sided rocking mechanisms involving structures of similar scale but different slenderness,

such as the two corner mechanisms (Fig. 5.9), it can be seen that for more slender structures (in this

case the mechanism which originates at the tower midpoint) rocking not only initiates earlier, but for

pulse frequencies less that 0.85 Hz overturning for both the case with and without impact occurs at a

lower pulse amplitude. However, as the mechanisms involve structures of relatively similar scale, the

range of pulse frequencies for which overturning with impact occurs remains unchanged.

For one-sided rocking mechanisms, such as those observed in the apse and façade walls (Fig. 5.7

and Fig. 5.8 respectively) only positive pulse overturning without impact is considered. In this case,

the only variation observed is in the pulse amplitude at which overturning occurs. For the façade and

its associated mechanisms, resistance to overturning was generally found to decrease with an increase

in slenderness, with the gable (Case 1) being the stockiest and hence the most resistant to overturning.

However, Case 2, despite being less slender than Case 3, was actually found to be more susceptible to

collapse. This behaviour is due to amplification of the ground motion, which shall be discussed in

greater detail in the following sub-section.

For the apse, the threshold pulse amplitudes at which overturning occurs were again found

to decrease with an increase in slenderness. However, in the case of the 45◦ crack angle, the

mechanism originating at the window, despite its smaller scale, was largely found to be more resistant

to overturning than the corresponding base mechanism. This is due to the fact that the slenderness
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of the structure only controls the minimum acceleration (for an infinitely long pulse) required for

overturning to occur, while the rate at which this increases for higher frequency pulses depends on the

ratio between λ , which is linked to the slenderness, and peq, which is related to the scale. For the

crack angle of 45◦, the window mechanism was not only stockier than the base (0.41 vs 0.29 rad), but

also had a higher ratio of λ to peq (0.24 vs 0.21), thus resulting in a generally higher resistance to

overturning. However, the window mechanism also occurs at a height above the ground, and, like

the façade, experiences amplification of the ground motion which reduces the overturning resistance,

making it more vulnerable than the base mechanism for lower frequencies – especially in the range of

1 – 3 Hz.

5.4.2 Effect of ground motion amplification

As a number of the mechanisms considered in this study take place above ground level, amplification

effects needed to be accounted for as they tend to increase the overturning vulnerability of the structure.

This was done using pulse response spectra which were generated and scaled according to the height

h at which the mechanisms occurred.

The effects of elastic amplification on one-sided mechanisms are best illustrated by the façade

overturning envelopes (Fig. 5.8), where Case 2, despite being stockier than Case 3, was actually found

to be more vulnerable to collapse for pulse frequencies between 1 - 3 Hz. As Case 2 occurs at a greater

height than Case 3, it has greater amplification of the ground motion and consequently a greater

increase in vulnerability to overturning. Correspondingly, the reduction of the overturning resistance

of the 45◦ apse window mechanism can also be attributed to the effect of elastic amplification.

In the case of two-sided mechanisms, the effects of elastic amplification are illustrated by Fig.

5.11. If amplification effects are not considered (Fig. 5.11a), both the spire and the belfry (frame)

have relatively similar vulnerabilities. However, accounting for elastic amplification (Fig. 5.11b)

results in a greater increase in vulnerability of the spire than of the belfry, as this mechanism occurs at

a greater height than the frame mechanism, and as such experiences a greater amplification of the

ground motion.

5.4.3 Effect of reinforcement

The overturning envelopes generated in Fig. 5.8 also highlight the effect of reinforcement on the

dynamic resilience of the façade. From Fig. 5.8 it can be seen that the addition of the tie bars to Case

4 effectively countered the influence of the additional loads from the roof and thrust from the vault,

resulting in the structure having an overturning vulnerability comparable to the case in which there

were no additional loads at all. In fact, it could very well be the case that such reinforcement, which

ensures good connectivity between the façade and side walls, does actually exist (either directly or

through good quality masonry with interlocking at the wall intersection) and prevented Case 4 from

occurring in reality, thus making Case 2 the most vulnerable mechanism for the façade (as observed

in the damage).
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5.4.4 Comparison with field observations

Comparing the results from Fig. 5.11 to the findings of the post-earthquake damage surveys (Decanini

et al., 2012; Sorrentino et al., 2014) it can be seen that there is a generally good correlation between

the predictions of the overturning plots and results of the field inspections. Fig. 5.11 predicts that for

frequencies less than 3.5 Hz, the most likely or vulnerable mechanisms are the out-of-plane collapse

of the portion of the façade above the window, and the overturning of the bell tower spire. In reality,

both these mechanisms took place during the first shock of the Emilia earthquake in 2012. After this

first shock, some corner spalling of the bell tower had also been observed (Decanini et al., 2012),

which could potentially have weakened the structure, thus making it more susceptible to corner failure

during the second shock.

5.5 Summary

The objective of this chapter was to demonstrate a potential application of the rigid rocking tool, by

using it to conduct a seismic analysis of a typical church geometry - based on the Church of San

Leonardo Limosino, Italy. The tool was used to derive equations of motion for different collapse

mechanisms (all of which are variations of the typical church collapse mechanisms presented in Fig.

2.2 of Chapter 2), and solve for their response to pulse-type excitations, while taking into account

elastic amplification of the ground motion. The main conclusions to be drawn from this investigation

are as follows:

• While the mechanisms modelled in Chapter 4 were variations of the simple single block

mechanism, this study demonstrated the tool’s ability to model more complex mechanisms such

as the single block subjected to additional masses and forces (i.e. the façade mechanisms) as

well as multiple block mechanisms such as the portal frame mechanism of the belfry and the

collapse of the side aisle vault. Furthermore, the tool’s potential for modelling the beneficial

influence of reinforcement was also illustrated.

• The capacity of the tool to rapidly compare different mechanisms - either through parametric

studies or through the juxtaposition of various types of mechanisms as in Fig. 5.11 - was also

demonstrated. Moreover, ground motion amplification was also found to have a significant

effect when comparing different mechanisms to evaluate which one is most critical.

• Through the parametric studies, the effect of slenderness and scale on the rocking stability

of the church was evaluated. For both one and two-sided mechanisms, the slenderness was

observed to control the point at which rocking initiates as well as the minimum acceleration

required for very long-period pulses to cause overturning. For two-sided mechanisms, the scale

of the macro-element involved in the rocking mechanism was found to govern the range of pulse

frequencies for which single-impact overturning could occur, while for one-sided mechanisms
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the ratio of slenderness to scale determined the rate at which the structure’s resistance to

overturning increased with an increase in pulse frequency.

• Finally, the tool’s ability to provide realistic predictions was evidenced by the generally good

agreement observed between the analysis results and field observations, with the overturning

plots correctly predicting the highest vulnerability for the portion of the façade above the

window and the spire of the bell tower, both of which collapsed during the Emilia earthquake in

2012.

However, while this chapter focussed on the application of the tool for seismic analysis, the ability

the new framework to be used for assessment will also be demonstrated in Chapter 8, by using it to

conduct a code-based seismic assessment of a historic masonry structure.





Chapter 6

Extension of modelling to flexible
interfaces

6.1 Introduction

The equations of motion presented in Chapter 3 assume that the structure can be modelled as a rigid

body rocking on a rigid foundation, which is not necessarily true – especially since real structures have

non-rigid interfaces, and typically rest on soil. In fact, experimental tests conducted by ElGawady

et al. (2011) using concrete, timber, rubber and steel joints demonstrated that the interface material

tends to have a substantial influence on the free rocking response of rigid blocks. Furthermore, the

rigid model assumes that the blocks have an infinite stiffness (i.e. exhibit no deformations) until the

initiation of rocking motion, which experimental tests and numerical simulations conducted on a set of

unreinforced masonry walls by Doherty et al. (2000) and de Felice (2011) respectively, showed to be

untrue (Fig. 2.6 in Chapter 2). In fact, factors such as non-rigid interfaces, geometrical imperfections,

and disaggregation of multi-leaf wall sections due to poor transversal bonding tends to lead to a

reduction in the dynamic capacity of these structures (de Felice, 2011).

In this case, it is perhaps more realistic to use a flexible Winkler-type foundation, which models

the interface (and to some extent block deformability near the interface) using a set of springs with a

stiffness kn. While most of the analytical studies previously conducted on these flexible interfaces

assume pure elastic behaviour with an infinite compressive strength for the masonry (Koh et al.,

1986; Lipo and de Felice, 2016, 2017; Psycharis and Jennings, 1983; Shawa et al., 2012), they do not

account for local material failure – which could potentially be both un-conservative and un-realistic,

especially in the case of walls subjected to significant overburden forces. However, recent work by

Roh and Reinhorn (2009), Costa (2012), Costa et al. (2013) and Penna and Galasco (2013) assumes a

bilinear elastic representation of the compressive behaviour of the interface, and thus also accounts for

crushing effects. Nonetheless, in both cases the rocking equation of motion now includes an additional

term a f (φ ) which represents the inward shift of the rocking rotation point due to the reaction from
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the elastic/elasto-plastic joint, and is a function of the rotation φ of the structure, as illustrated by

Equation 6.1:

φ̈ =− WR0

IO′ (φ)

[
sin(α0sgn(φ)−φ)−

a f (φ)

R0
+

üg

g
cos(α0sgn(φ)−φ)

]
(6.1)

where φ̈ is the angular acceleration, W is the weight, R0 is the distance between the center of the mass

and the axis of rotation, α0 is the slenderness, üg is the input ground acceleration, g is the acceleration

due to gravity, and φ is the corresponding rotation of the structure. The equation of motion also

depends on the moment of inertia IO′(φ ), which in this case is determined relative to a shifting rotation

point O’, which varies based on the rotation of the structure (Costa (2012)).

The analytical expressions derived for a f (φ ) thus far have been limited to interfaces which assume

the form of solid rectangles as for the rocking block, whereas in reality this is not always the case

– as demonstrated by structures such as bell towers, columns, domes etc., which tend to have non-

rectangular and/or hollow cross-sections. For the analytical modelling tool described in this thesis

to be practically useful, it needs to be able to automatically derive equations of motion for these

more complicated geometries as well. Therefore, to incorporate the effects of interface flexibility and

crushing into the tool, Section 6.2 of this chapter presents derivations for a f (φ ) for different interface

geometries, including hollow rectangular bases, solid circular bases and hollow circular bases.

Furthermore, the equation of motion as derived by Costa (2012) is limited to the simple single

block mechanism, whereas in reality failure of many masonry structures assumes the form of more

complex collapse mechanisms. While recent work by Mordant et al. (2015) proposed a rocking

model for the two block mechanism wherein a series of spring and dashpot elements were used to

model the interfaces between the blocks as both flexible and viscous, such an approach results in the

system having four degrees of freedom – namely the rotations and vertical displacements of the top

and bottom blocks - which is more complex than the single degree-of-freedom (SDOF) formulation

implemented in the analytical modelling tool. Thus in order to account for the presence of flexible

interfaces and crushing effects in these more complicated collapse mechanisms without introducing

additional degrees of freedom into the problem, Section 6.3 of this chapter uses Lagrange’s equation

to re-derive the equations of motion for the single, two and multiple block mechanisms.

6.2 Derivation of a f (φ ) for different interface geometries

In this section, expressions will be derived for a f (φ ) for different base geometries, which can then be

substituted either into the equation of motion as defined in Costa (2012) (expressed in a different form

in Equation 6.1) or into the modified equations of motion derived later in this chapter. The analytical

tool allows the user to interactively select the 3D collapse mechanism in the CAD environment, and

then exports the appropriate equations to MATLAB, where they can be solved for a variety of input

ground motions.
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6.2.1 Solid rectangular interface

Structures which can be modelled as having solid rectangular bases include walls, solid towers,

rectangular columns, and statues or sculptures which rest on rectangular bases, as illustrated by

Fig. 6.1. Due to the introduction of a flexible interface, the various terms in the equation of motion

now depend on a f (φ ) which represents the position of the reaction force from the interface and

consequently the new rotation point of the structure. This rotation point is a function of the rotation φ

of the structure and can be calculated based on the relationship between the stiffness of the interface

kn (=E/e, where E is the Young’s modulus and e is the thickness of the interface), curvature χ(=φ /e),

strain ε (=χa where a is the width of the interface) and stress σ (=Eε), as presented in Costa et al.

(2013).

Fig. 6.1 Solid rectangular base geometry and example real-world application – sculpture of an
Egyptian Royal Lady (Royal-Athena Galleries)

Following Costa’s approach, the position of the reaction force is calculated for three different

cases which depend primarily on the stress distribution at the base, which in turn is a function of the

rotation of the structure φ as illustrated by Fig. 6.2, and includes: (1) full contact, (2) partial contact

and (3) partial contact with crushing. Full contact is assumed for cases in which the rotation is less

than the joint opening rotation φ jo, which is determined analytically using the following expression:

φ jo =
2W

knb2l
(6.2)

where W is the weight of the structure, b and l are the base dimensions as depicted in Fig. 6.1, and

kn is the normal stiffness of the interface. Upon exceeding φ jo, the entire cross section is no longer

in contact with the base and the stress distribution assumes a triangular form. The contact length a

decreases with an increase in the rotation φ , until the point where the maximum stress σ equals the

compressive strength fm. At this point, the threshold contact length ac is reached (indicated by the
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Fig. 6.2 Interface stress distributions and corresponding rotations (adapted from Costa et al. (2013))

dashed line in Fig. 6.2), which can be determined analytically using the following equation:

ac =
2W
fml

(6.3)

The corresponding threshold rotation at which crushing begins, φc, can then be obtained by substituting

ac into the following expression:

φc =
fm

knac
(6.4)

Upon the exceedance of this threshold rotation, the behaviour of the interface switches from

purely elastic to bilinear elasto-plastic, with the contact length continuing to decrease until the limiting

length alim (depicted by the dotted line in Fig. 6.2) is reached at which point the behaviour is purely

plastic across the entire area of joint contact.

Once the various threshold conditions (rotations and contact lengths) have been determined,

expressions can then be derived for the position a f (φ ) of the reaction force for each of the different

cases, as given by Equations 6.5-6.7. These expressions can then be used to determine a f (φ ) for a

range of different rotations, which can then be substituted back into either Equation 6.1 or into the

formulations presented in the second half of this chapter to generate and solve the modified rocking
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equation of motion.

a f (φ) = sgn(φ)
[

b
2
− b3knl |φ |

12W

]
0 < |φ | ≤ φ jo (6.5)

a f (φ) = sgn(φ)

[
1
3

√
2W

knl |φ |

]
φ jo ≤ |φ | ≤ φc (6.6)

a f (φ) =
sgn(φ)

2

[
W
fml

+
fm

3l

12Wkn
2|φ |2

]
φc ≤ |φ | (6.7)

where sgn(φ ) is the sign function and is equal to 1 for φ > 0 and -1 for φ < 0. Note that a f (0)= b/2.

6.2.2 Hollow rectangular interface

Fig. 6.3 Hollow rectangular base geometry and example structure - St Mark’s Campanile (Wikimedia
Commons)

While the analytical expressions determined for a f (φ ) for solid rectangular bases by Costa et al.

(2013) can be used for a broad range of structures, there also exist cases in which they may not always

be applicable – one such example being bell towers, which instead have hollow rectangular bases, as

illustrated by Fig. 6.3. In the case of such bases, new expressions for a f (φ ), as well as the threshold

rotations and contact lengths, need to be derived, which take into consideration the reduction in

contact area due to the hollow base section.

However, complete overturning of these entire structures about their bases is unlikely - rather,

failure in the form of partial collapse through the development of an inclined crack is more likely to

occur. While expressions have been derived for a f (φ ) which factor in the crack inclination, for most

realistic geometries this was not observed to have a substantial influence on the dynamic resistance of
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the structure - with the assumption of no inclination generally yielding more conservative predictions.

Thus in this section (and those that follow), the derivations are presented assuming no inclination of

the interfaces.

The threshold joint opening rotation φ jo for the hollow rectangular base is consequently given by

the following expression, where t corresponds to the thickness of the base as shown in Fig. 6.3:

φ jo =
W

knbt (l +b−2t)
(6.8)

Similarly, in order to determine the threshold contact length ac at which crushing occurs, i.e.

the maximum stress at the base equals the compressive strength fm, three possible cases need to be

considered, as illustrated by Fig. 6.4. The corresponding analytical expressions for ac for each of

these different cases are provided by Equations 6.9-6.11:

Case I : ac =
1
l

 −
(

2bt +2tl −bl −4t2 −W/
fm

)
+

√(
2bt +2tl −bl −4t2 −W/

fm

)2
−2l

(
b2l/

2−b2t −blt +2bt2
)
 (6.9)

Case II : ac =
−
(

2l −4t −2W/
fmt
)
+

√(
2l −4t −2W/

fmt
)2

−8t (2t − l)

4
(6.10)

Case III : ac =
2W
fml

(6.11)

Once ac has been determined, it can then be substituted into Equation 6.4 to obtain the resultant

threshold rotation for crushing φc at which the behaviour of the interface switches from purely elastic

to elasto-plastic. Expressions were then derived for a f (φ ) for the cases of full contact, partial contact

and partial contact with crushing.

Fig. 6.4 Different cases considered for threshold contact length ac for the hollow rectangular base
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For full contact, the position of the reaction force can be determined using the following expres-

sion:

a f (φ) = sgn(φ)
[

b
2
− kn |φ |

6W

(
8t4 +4t3 (3b− l)+6bt2 (l −b)+b2t (b+3l)

)]
0 < |φ | ≤ φ jo

(6.12)

For partial contact with pure elastic behaviour, three possible cases, analogous to those for ac, need to

be considered:

Case I : a f (φ) = sgn(φ)
[

kn |φ |
2W

(
a3t
3

+
(l −2t)

6

(
t2(3a−2t)+2(a+2b−2t)(a−b+ t)2

))]
(6.13)

Case II : a f (φ) = sgn(φ)
[

kn |φ | t
W

(
a3

3
+

alt
2

− t2
(

a+
l
3

)
+

2t3

3

)]
(6.14)

Case III : a f (φ) = sgn(φ)

[
1
3

√
2W

knl |φ |

]
(6.15)

It is worth noting that the expression for a f (φ ) (as well as ac) for Case III is the same as that for the

solid rectangular base. Similarly for φc ≤ |φ | (partial contact with crushing), although theoretically the

same three cases should be considered, it can be shown that for most reasonable values of compressive

strength and density (and correspondingly W), the first two cases can be neglected and thus the same

equation as is used for the solid rectangular base (Equation 6.7) can be applied here as well.

6.2.3 Solid circular interface

Fig. 6.5 Solid circular base geometry and example structure – Columns of the Baths of Diocletian
(Jerzy Strzelecki CC BY-SA 3.0)



102 Extension of modelling to flexible interfaces

Expressions were also derived for solid circular bases, as are commonly found in structures such

as monumental columns and pedestals, as illustrated by Fig. 6.5. The joint opening rotation φ jo for

such bases (which have a radius R) can be determined analytically using the following expression:

φ jo =
W

knπR3 (6.16)

However, unlike the rectangular base cases and due to the 3D nature of the stress distribution as

illustrated by Fig. 6.6, a closed-form analytical solution does not exist for ac. Instead, ac needs to

be determined by numerically solving the following expression, which is obtained by integrating the

stress distribution and setting it equal to the weight of the structure W:

W =
2 fmR2

ac

[
ψ

2
(ac −R)+

R
3

sinψ

]
+

∣∣∣∣R2 |sin(2ψ)| fm (ac −R)
6ac

∣∣∣∣ where ψ = arccos
(

R−ac

R

)
(6.17)

Once computed, ac can then be substituted into Equation 6.4 to obtain φc for the solid circular base.

Fig. 6.6 Stress distribution for φ jo≤|φ |≤φc for the solid circular base/interface

As in the case of the rectangular base, expressions were then derived for the position of the reaction

force a f (φ ) for the cases of full contact, partial contact and partial contact with crushing.

In the case of full contact, i.e. for 0 < |φ | ≤ φ jo, the following expression can be used for a f (φ ):

a f (φ) = sgn(φ)
[

R− πR4kn |φ |
4W

]
(6.18)

Note that a f (0) = R. For the case of partial contact with purely elastic behaviour, i.e. φ jo ≤ |φ | ≤
φc, the contact length a now varies with the rotation φ , and thus first needs to be determined by

numerically solving the following expression for each value of φ :

W = 2kn |φ |R2
[

ψ

2
(a−R)+

R
3

sinψ

]
+

∣∣∣∣R2 |sin(2ψ)|kn |φ |(a−R)
6

∣∣∣∣ where ψ = arccos
(

R−a
R

)
(6.19)
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The computed value of a is then substituted into Equation 6.20 to get a f (φ ):

a f (φ) = sgn(φ)R

1−

2
(

R(ψ+cosψ sinψ)
8 − sinψ(R−a)

3

)
+ |R−a||sin(2ψ)|cosψ

12

|R−a||sin(2ψ)|
6 −2

(
ψ(R−a)

2 − Rsinψ

3

)
 (6.20)

For cases where the rotation φ exceeds the threshold rotation for crushing, i.e. for φc ≤ |φ |, the

derivation of a f (φ ) is not as straightforward. In this case, the elastic and plastic portions of the

stress distribution (with lengths a1 and a2 as depicted in Fig. 6.7 respectively) need to be treated

separately. In order to do this, the limiting contact length alim at which the interface exhibits pure

plastic behaviour first needs to be determined by numerically solving Equation 6.21:

W = fmR2
(

ψlim − sin(2ψlim)

2

)
where ψlim = arccos

(
R−alim

R

)
(6.21)

Fig. 6.7 Stress distribution for φc≤|φ | (solid circular base) – elastic portion shown in light grey, plastic
in dark grey
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The length a2 of the plastic portion of the stress distribution, which depends on the rotation of the

structure φ , can then be computed using the given expression:

a2 (φ) =

(
|φ |−φc

|φ |

)
alim (6.22)

Upon calculating a2, the reaction force W2 from the plastic portion of the stress distribution is then

calculated as shown below:

W2 = fmR2
(

ψ2 −
sin(2ψ2)

2

)
where ψ2 = arccos

(
R−a2

R

)
(6.23)

This reaction force W2 can be assumed to act at a distance of x2 from the edge of the base:

x2 =
4Rsin3

ψ2

3(2ψ2 − sin(2ψ2))
(6.24)

Similarly, the reaction force W1 from the elastic portion of the stress distribution can be determined by

simply subtracting W2 from the total weight of the structure W:

W1 =W −W2 (6.25)

Consequently, the length a1 of the elastic portion of the stress distribution can be obtained by

numerically solving the following equation:

W1 = fmR


R
(

sin(2ψ2)
2 −ψ2 +π

)
+ 2R2

3a1

(√
1−
(a1+a2−R

R

)2 −
√

1−
(R−a2

R

)2
)

+ 1
3a1

(
(a1 +a2 −R)2

√
1−
(a1+a2−R

R

)2
)
−

R
a1

(
arccos

(a1+a2−R
R

)
(a1 +a2 −R)+(R−a2)(π −ψ2)

)

 (6.26)

The distance x1 at which the resultant force W1 acts is found by determining the x-coordinate of

the centroid of the 3D stress distribution (using triple integrals), which is considered as 3 separate

sections as illustrated by Fig. 6.8.

V1 =
fm∫
0

−Rsinψ2∫
−Rsinψ1(z)

|R2−y2|∫
Rcosψ1(z)

x∂x∂y∂ z

V2 =
fm∫
0

Rsinψ2∫
−Rsinψ2

Rcosψ2∫
Rcosψ1(z)

x∂x∂y∂ z

V3 =
fm∫
0

Rsinψ1(z)∫
Rsinψ2

|R2−y2|∫
Rcosψ1(z)

x∂x∂y∂ z

(6.27)
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Fig. 6.8 3 separate sections of stress distribution considered for computation of x1

Thus:

x1 =

(
V1 +V2 +V3

W1

)
where ψ1 (z) = arccos

(
R−a2 −a1z/

fm

R

)
(6.28)

Finally, the resultant point of application of the reaction force a f (φ ) for the elasto-plastic case is

obtained by taking the weighted average of x1 and x2 as shown below:

a f (φ) = sgn(φ)
(

R− W1x1 +W2x2

W

)
(6.29)

6.2.4 Hollow circular interface

The expressions derived in the previous section for solid circular bases were also modified to account

for hollow circular bases, as are commonly found in structures such as minarets, spires and towers as

illustrated by Fig. 6.9. The joint opening rotation φ jo in this case is determined using the following

expression:

φ jo =
W

knπRO
(
R2

O −R2
I

) (6.30)

where RO and RI are the outer and inner radii of the base respectively.
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Fig. 6.9 Hollow circular base geometry and example real-world application – Dharahara Tower (Ian
Trower/JAI/Corbis)

Fig. 6.10 Different cases considered for threshold contact length ac for the hollow circular base
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The threshold contact length ac, at which the stress at the base is equal to the compressive strength

fm, is determined by numerically solving the following expression:

W =

 2 fmR2
O

ac

[
ψ1
2 (ac −RO)+

RO
3 sinψ1

]
+
∣∣∣R2

O|sin(2ψ1)| fm(ac−RO)
6ac

∣∣∣
−2 fmR2

I
ac

[
ψ2
2 (ac −RO)+

RI
3 sinψ2

]
−
∣∣∣R2

I |sin(2ψ2)| fm(ac−RO)
6ac

∣∣∣
 (6.31)

where:

ψ1 = arccos
(

RO −ac

RO

)
(6.32)

However, as in the case of the hollow rectangular base, three possible cases for ac need to be

considered, as illustrated by Fig. 6.10. Thus, depending on the case, the appropriate value/expression

for ψ2 needs to be selected, as shown below:

Case I : ψ2 = π

Case II : ψ2 = arccos
(

RO−ac
RI

)
Case III : ψ2 = 0

(6.33)

The computed value of ac is then substituted into Equation 6.4 to obtain the threshold rotation for

crushing φc for the hollow circular base.

Once the threshold rotations are computed, expressions can then be derived for the position of the

reaction force. In the case of full contact, i.e. for 0 < |φ | ≤ φ jo, the following analytical expression

can be used for a f (φ ):

a f (φ) = sgn(φ)

[
RO −

(
π
(
R4

O −R4
I
)

kn |φ |
4W

)]
(6.34)

Note that a f (0) = RO. In the case of partial contact with pure elastic behaviour, i.e. φ jo ≤ |φ | ≤ φc,

the contact length a varies with φ and is determined by numerically solving the following expression

in a manner similar to that for ac for each value of φ , with ψ1 and ψ2 being defined as in Equations

6.32 and 6.33 respectively but in this case replacing ac with a:

W =

 2kn |φ |R2
O

[
ψ1
2 (a−RO)+

RO
3 sinψ1

]
+
∣∣∣R2

O|sin(2ψ1)|kn|φ |(a−RO)
6

∣∣∣
−2kn |φ |R2

I
[

ψ2
2 (a−RO)+

RI
3 sinψ2

]
−
∣∣∣R2

I |sin(2ψ2)|kn|φ |(a−RO)
6

∣∣∣
 (6.35)
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The computed value of a is then substituted into the following equation to get a f (φ ):

a f (φ) = sgn(φ)

RO − 2kn |φ |
W


R3

O

[
sinψ1(a−RO)

3 + RO(ψ1+sinψ1 cosψ1)
8

− |sin(2ψ1)(a−RO)|cos(π−ψ1)
24

]

−R3
I

[
sinψ2(a−RO)

3 + RI(ψ2+sinψ2 cosψ2)
8

− |sin(2ψ2)(a−RO)|cos(π−ψ2)
24

]

 (6.36)

As was observed for the solid circular base, in the case of partial contact with elasto-plastic behaviour,

i.e. φc ≤ |φ |, the derivation of a f (φ ) is more complicated. Once again alim, which is the limiting

contact length at which the interface exhibits pure plastic behaviour, first needs to be determined, and

this is done by numerically solving the following equation:

W = fm

[
R2

O

(
ψlim,O −

sin(2ψlim,O)

2

)
−R2

I

(
ψlim,I −

sin(2ψlim,I)

2

)]
(6.37)

where ψlim,O and ψlim,I are defined the same way as ψ1 and ψ2 respectively, but in this case substituting

alim for ac.

Fig. 6.11 Stress distribution for φc≤|φ | (hollow circular base) – elastic portion shown in light grey,
plastic in dark grey

The length of the plastic portion of the stress distribution (a2 in Fig. 6.11) is defined the same way

as it was for the solid circular base (Equation 6.22) and once computed, it can be used to calculate W2

using the following expression:

W2 = fm

[
R2

O

(
ψ2,O − sin(2ψ2,O)

2

)
−R2

I

(
ψ2,I −

sin(2ψ2,I)

2

)]
(6.38)

where ψ2,O and ψ2,I are defined the same way as ψ1 and ψ2 respectively, but in this case replacing ac

with a2. This reaction from the plastic portion of the stress distribution can be assumed to act at a



6.2 Derivation of a f (φ ) for different interface geometries 109

distance of x2 from the edge of the base (Fig.6.11):

x2 =
2 fm

3W2

[
R3

Osin3
ψ2,O −R3

I sin3
ψ2,I
]

(6.39)

Similarly W1, the reaction from the elastic portion of the stress distribution can be found by subtracting

W2 from the total weight of the structure W, as was done in the case of the solid circular base (Equation

6.25). The length a1 of the elastic portion of the stress distribution is then found by numerically

solving the following expression:

W1 =

 R2
O

fm∫
0

[(
ψ1,O (z)− sin(2ψ1,O(z))

2

)
−
(

ψ2,O − sin(2ψ2,O)
2

)]
∂ z

−R2
I

fmI∫
0

[(
ψ1,I (z)− sin(2ψ1,I(z))

2

)
−
(

ψ2,I − sin(2ψ2,I)
2

)]
∂ z

 (6.40)

where:

ψ1,O (z) = arccos

(
RO −a2 −a1z/

fm

RO

)
(6.41)

and ψ1,I(z) and fmI depend on the magnitude of a2 and are defined as follows:

ψ1,I (z) = arccos

(
RI −a1z/

fm

RI

)
fmI = fm

(
a1 +a2 − (RO −RI)

a1

)
(i f a2 < RO −RI) (6.42)

ψ1,I (z) = arccos

(
RO −a2 −a1z/

fm

RI

)
fmI = fm (i f a2 > RO −RI) (6.43)

The distance x1 at which W1 acts is found by determining the x-coordinate of the centroid of the 3D

stress distribution (using triple integrals), but in this case by treating the inner and outer sections

separately:

V1,O =
fm∫
0

−RO sinψ2,O∫
−RO sinψ1,O(z)

|R2
O−y2|∫

RO cosψ1,O(z)
x∂x∂y∂ z

V2,O =
fm∫
0

RO sinψ2,O∫
−RO sinψ2,O

RO cosψ2,O∫
RO cosψ1,O(z)

x∂x∂y∂ z

V3,O =
fm∫
0

RO sinψ1,O(z)∫
RO sinψ2,O

|R2
O−y2|∫

RO cosψ1,O(z)
x∂x∂y∂ z

V1,I =
fmI∫
0

−RI sinψ2,I∫
−RI sinψ1,I(z)

|R2
I −y2|∫

RI cosψ1,I(z)
x∂x∂y∂ z

V2,I =
fmI∫
0

RI sinψ2,I∫
−RI sinψ2,I

RI cosψ2,I∫
RI cosψ1,I(z)

x∂x∂y∂ z

V3,I =
fmI∫
0

RI sinψ1,I(z)∫
RI sinψ2,I

|R2
I −y2|∫

RI cosψ1,I(z)
x∂x∂y∂ z

(6.44)



110 Extension of modelling to flexible interfaces

leading to:

x1 =

[
(V1,O +V2,O +V3,O)− (V1,I +V2,I +V3,I)

W1

]
(6.45)

Finally, the resultant point of application of the reaction force a f (φ ) for this elasto-plastic case is

obtained by taking the weighted average of x1 and x2 as presented in Equation 6.29 for the solid

circular base.

6.3 Derivation of the modified equations of motion

In this section, the equations of motion for the single, two and multiple block mechanisms will be

re-derived in order to account for the presence of flexible interfaces and crushing effects. Starting

from first principles, the equation of motion for any rocking mechanism (single/two/multiple block)

can be derived using Lagrange’s equation as shown below:

∂

∂ t

(
∂T
(
φ , φ̇

)
∂ φ̇

)
−

∂T
(
φ , φ̇

)
∂φ

+
∂V (φ)

∂φ
=−B(φ) üg +M (φ) (6.46)

where φ is the rotation of the block and φ̇ the angular velocity. The term T(φ ,φ̇ ) represents the kinetic

energy of the system, V(φ ) the potential energy, B(φ )üg the generalized inertial force induced by the

ground acceleration, and M(φ ) the generalized force due to the external static forces (where relevant).

Note that in Lagrange’s equation, B(φ )üg and M(φ ) are obtained by taking the derivative of the virtual

work done by these non-conservative forces. While the equations of motion presented in Chapter

3 for the rigid interface case derived these terms relative to a fixed rotation point, in this section

new formulations - relative now to a shifting rotation point - will be presented for each of these

terms for the single, two and multiple block mechanisms - which in turn will be used to derive their

corresponding equations of motion. Specifically, two new formulations for modelling the interface

are presented – namely a fully-flexible and semi-flexible model, with the latter also being used to

re-derive the relationship between the relative rotations of the blocks (in the case of the two and

multiple block mechanisms) as well as the coefficient of restitution (in the case of the single and two

block mechanisms).
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Fig. 6.12 Geometry of a rigid block rocking on a flexible interface

6.3.1 Single block mechanism

6.3.1.1 Fully-flexible model

In the case of the simple single block mechanism as depicted in Fig. 6.12, each of the aforementioned

terms is defined as follows:

T
(
φ , φ̇

)
=

1
2

IO′ (φ) φ̇
2 (6.47)

V (φ) =WR(φ)cos(α (φ)−φ) (6.48)

B(φ) =
W
g

R(φ)cos(α (φ)−φ) (6.49)

Note that the kinetic energy T(φ ,φ̇ ) depends on IO′(φ ), which is the moment of inertia relative to the

shifting rotation point O’, and is determined using the following equation:

IO′ (φ) = IC +
W
g

R(φ)2 (6.50)

where IC is the moment of inertia of the block about its centroid, and R(φ ) is the distance between the

centroid of the block and the shifting rotation point O’ (as indicated in Fig. 6.12). This distance R(φ )

is obtained from:

R(φ)2 = R2
0cos2

α0 +[R0 sinα0 − sgn(φ)a f (φ)]
2 (6.51)

where a f (φ ) is the “inward-shift” of the rotation point O’ relative to original (rigid) rotation point

O, as well as the location of the reaction force from the flexible interface. Similarly, α(φ ) is the
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slenderness of the block, and is obtained by making use of the following relationship between R(φ ),

R0 and α0:

α (φ) = arccos
(

R0 cosα0

R(φ)

)
(6.52)

Substituting these terms into Lagrange’s equation (Equation 6.46), results in the equation of motion

assuming the following form:

φ̈ =−WR(φ)

IO′ (φ)

 −1
g

∂R
∂φ

φ̇ 2 + 1
R(φ)

∂R
∂φ

cos(α (φ)sgn(φ)−φ)

−sin(α (φ)sgn(φ)−φ)
(

∂α

∂φ
−1
)
+

üg
g cos(α (φ)sgn(φ)−φ)

 (6.53)

where ∂R
∂φ

and ∂α

∂φ
represent the rate of change of the radius of rotation R(φ ) and the slenderness

α(φ ) respectively, relative to the rotation of the block. However, for most considered values of

interface stiffness and compressive strength, as well as block slenderness and scale, ∂R
∂φ

and ∂α

∂φ
are

only significant for extremely small rotations of the structure. While the maximum rotation for which

these terms are significant tends to increase with a decrease in interface stiffness and increase in

block slenderness, the influence of ∂R
∂φ

and ∂α

∂φ
is generally minimal for φ /α0 ≥ 0.05, as illustrated

by Fig. 6.13. Note that in the interest of brevity only the plots for varying joint stiffness and block

slenderness are shown here as similar plots for joint compressive strength and block scale showed

minimal variation in the results.

Thus, assuming ∂R
∂φ

= 0 and ∂α

∂φ
= 0, Equation 6.53 can be simplified and re-written as:

φ̈ =−WR(φ)

IO′ (φ)

[
sin(α (φ)sgn(φ)−φ)+

üg

g
cos(α (φ)sgn(φ)−φ)

]
(6.54)

which is essentially similar in form to Equation 6.1, but now with the influence of the reaction due

the flexible interface implicitly incorporated into the equation of motion through the derivation of

the kinetic energy T(φ ,φ̇ ) and potential energy V(φ ), as well as the generalized inertial force B(φ )üg,

relative to the shifting rotation point O’.
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Fig. 6.13 Variation of ∂R
∂φ

(left) and ∂α

∂φ
(right) (both normalized by their maximum values) with

varying (a) interface stiffness kn and (b) block slenderness
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6.3.1.2 Semi-flexible model

Fig. 6.14 Single block mechanism - semi-flexible interface model

Further simplifications to Equation 6.54 can be made through the introduction of the semi-flexible

interface model. This model still accounts for the inward shift of the rotation point due to the

introduction of the non-rigid joint, but in a more simplified/approximate manner than its fully-flexible

counterpart. Unlike the fully-flexible formulation, which models the hinge as continuously moving, the

semi-flexible model fixes the hinge in place at a distance aSF from the original (rigid) hinge location,

which is equal to the value of a f (φ ) for φ = φc, that is, the point at which the stress distribution at the

base switches from elastic to elasto-plastic - as illustrated by Fig. 6.14.

The kinetic energy of the block TSF (φ ,φ̇ ) in this case is determined relative to the inwardly-shifted

(and now fixed) rotation point OSF , and is defined as:

TSF
(
φ , φ̇

)
=

1
2

ISF φ̇
2 (6.55)

where ISF is the moment of inertia of the block relative to OSF and is determined using the following

equation:

ISF = IC +
W
g

RP
2 (6.56)

where RP is the semi-flexible radius of rotation and is given by:

RP
2 = (R0 cosα0)

2 +(R0 sinα0 −aSF)
2 (6.57)
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Similarly, the semi-flexible slenderness of the block αP is calculated using the following equation:

αP = arccos
(

R0 cosα0

RP

)
(6.58)

A comparison of the fully-flexible and semi-flexible models in terms of radius of rotation and

moment of inertia (Fig. 6.15) revealed that for all considered values of interface stiffness kn, the semi-

flexible model is able to approximate the fully-flexible model fairly well (generally being accurate to

within 2.5%). However, in the case of the block slenderness (Fig. 6.15c), the semi-flexible model’s

approximation is not as accurate - especially for smaller rotations of the structure. Similar trends were

also observed for varying values of the compressive strength fm, but in the interest of brevity only the

plots for varying stiffness are included here.

Thus, while the semi-flexible model can be used to approximate the kinetic energy of the block,

for the potential energy and generalized forces, it is recommended to use the fully-flexible derivations

instead. Consequently, for the semi-flexible interface model, Equation 6.54 can be re-written as:

φ̈ =−WR(φ)

ISF

[
sin(α (φ)sgn(φ)−φ)+

üg

g
cos(α (φ)sgn(φ)−φ)

]
(6.59)

Using the assumption of conservation of angular momentum similar to Housner (1963), the

semi-flexible model can also be used to re-derive the coefficient of restitution for the single rocking

block, which now assumes the following form:

ηSF = 1−2
MR2

P

ISF
sin2

αP (6.60)

where M is the mass of the block. As evidenced by Fig. 6.16, for the range of compressive strengths,

block scales and slendernesses considered, Equation 6.60 generally yields a slightly higher value

for the coefficient of restitution than the purely rigid (ηR) formulation presented in Chapter 3, with

the ratio between the two tending to increase with an increase in block scale and decrease in block

slenderness (i.e. increase in α0), as well as increase with a decrease in interface compressive strength

fm.

6.3.2 Two block mechanism

6.3.2.1 Fully-flexible model

The rocking equation of motion was also re-derived for the two block mechanism, which is used to

represent cracked wall sections under the influence of varying overburden forces F. Following the

approach outlined in Chapter 3 for the rigid interface case, the height hc at which the wall segment

cracks and develops an additional hinge is first determined using Equation 3.27, which in turn is

used to determine W1 and W2, which are the weights of the bottom and top blocks respectively - as

illustrated by Fig. 6.17a.
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Fig. 6.15 Comparison of the fully-flexible and semi-flexible interface models in terms of (a) radius of
rotation, (b) moment of inertia and (c) block slenderness, for varying values of the interface stiffness
kn
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Fig. 6.16 Comparison of the semi-flexible ηSF and rigid ηR coefficients of restitution for varying (a)
block scale and (b) block slenderness, for varying values of the interface compressive strength fm

The kinetic energy T(φ ,φ̇ ) and potential energy V(φ ) of the blocks, as well as the generalized

forces B(φ )üg and M(φ ), derived now relative to the shifting rotation points 1, 2 and 3 (Fig. 6.17(b-d)),

can then be computed using Equations 6.61-6.64:

T
(
φ , φ̇

)
=

φ̇ 2

2

 IG1 + IG2

(
∂φ2(φ)

∂φ

)2
+ W1

g R1(φ)
2 + W2

g R2(φ)
2
(

∂φ2(φ)
∂φ

)2
+ W2

g R12(φ)
2

−2W2
g R12 (φ)R2 (φ)cos(α12 (φ)−φ +α2 (φ)−φ2 (φ))

∂φ2(φ)
∂φ

 (6.61)

V (φ) =W1R1 (φ)cos(α1 (φ)−φ)+W2 [R12 (φ)cos(α12 (φ)−φ)+R2 (φ)cos(α2 (φ)−φ2 (φ))]

(6.62)

B(φ) =
W1

g
R1 (φ)cos(α1 (φ)−φ)+

W2

g

[
R12 (φ)cos(α12 (φ)−φ)

−R2 (φ)cos(α2 (φ)−φ2 (φ))
∂φ2(φ)

∂φ

]
(6.63)

M (φ) =−F
[

R12 (φ)sin(α12 (φ)−φ)+R23 (φ)sin(α23 (φ)−φ2 (φ))
∂φ2 (φ)

∂φ

]
(6.64)

where IG1 and IG2 represent the moments of inertia of the bottom and top blocks about their own

centroids, while the other geometric properties are defined in Fig. 6.17. Note that the inward shift of

each of the hinges varies based on both the magnitude of the reaction force Fx at the interface, as well

as the rotation φx of the blocks relative to each other, as illustrated by Fig. 6.17. The values for Fx and

φx for each hinge can be found in Table 6.1.

Furthermore, the relationship between the rotation φ2(φ ) of the top and φ of the bottom block is

determined by making use of the constraint that the wall is restrained in the horizontal direction, and

that the two-block system can thus only translate vertically. However, unlike the approach presented in

Mauro et al. (2015) and Sorrentino et al. (2008b), where the hinges are located at the outer extremity

of the blocks, in this case the intermediate hinge is fixed at its semi-flexible location - that is, at aSF2
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Fig. 6.17 Two block mechanism: (a) un-deformed wall segment, (b-d) cracked wall configuration
showing the different geometric properties used in the equation of motion
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Table 6.1 Two block mechanism: Reaction forces and rotations for each of the hinges

x Fx φx

1 F+W1+W2 φ

2 F+W2 φ+φ2
3 F φ2

= a f 2(φ = φc), thus leading to the following expression for φ2(φ ):

φ2 (φ) = α2H − arcsin
[

RO2

R2H
sin(αO2 −φ)

]
(6.65)

where α2H , αO2, R2H and RO2 are defined in Fig. 6.18. Note that Equation 6.65 can then be used to

determine ∂φ2
∂φ

.

Fig. 6.18 Geometric parameters used to determine the relationship between the rotations of the top
and bottom blocks

The expressions for T(φ ,φ̇ ), V(φ ), B(φ )üg and M(φ ) are then substituted into Lagrange’s equation

(Equation 6.46) in order to generate the equation of motion for the system. As was the case for the

single block mechanism, the influence of the terms ∂Rx
∂φ

and ∂αx
∂φ

(where x refers to the hinge number)

is once again neglected as these were only found to be significant for small rotations of the structure

(generally φ /α01 ≤ 0.05, where α01 is the slenderness of the bottom block), as illustrated by Fig. 6.19

- both for the different blocks, as well as for varying values of the overburden force (normalized by

the full weight of the un-cracked wall segment W0, and shown here for the case of the bottom block).
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Fig. 6.19 Variation of ∂Rx
∂φ

(left) and ∂αx
∂φ

(right) (both normalized by their maximum values) for the
two block mechanism for (a) the different blocks and (b) varying overburden forces
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6.3.2.2 Semi-flexible model

Fig. 6.20 Two block mechanism - semi-flexible interface model

In the case of the two block mechanism, the methodology to determine the semi-flexible hinge

locations is the same as that used for the single block case, that is, at a f x(φx = φcx), where x represents

the hinge number and φcx the rotation at which the stress distribution at the interface switches from

elastic to elasto-plastic. The kinetic energy of the system TSF (φ ,φ̇ ) in this case is derived relative to

the inwardly-shifted (but now fixed) rotation points, as given by Equation 6.66 below:

TSF
(
φ , φ̇

)
=

φ̇ 2

2

 IG1 + IG2

(
∂φ2(φ)

∂φ

)2
+ W1

g R1P
2 + W2

g R2P
2
(

∂φ2(φ)
∂φ

)2
+ W2

g R12P
2

−2W2
g R12PR2P cos(α12P −φ +α2P −φ2 (φ))

∂φ2(φ)
∂φ

 (6.66)

where IG1, IG2, φ2(φ ) and ∂φ2
∂φ

are the same as for the fully-flexible interface model, while the other

geometric properties are defined in Fig. 6.20. The coefficient of restitution is also re-derived for

this mechanism by equating the angular momentum of the blocks before and after impact (similar to

Sorrentino et al. (2008b), but determined now relative to the inwardly-shifted rotation points), leading
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to the following expression for ηSF :

ηSF =


IG1 +m1(R1P cosα1P)

2 −m1(R1P sinα1P)
2 − IG2

∂φ2
∂φ

∣∣∣
φ=0

+m2R2P cosα2P (R12P cosα12P +R2P cosα2P)
∂φ2
∂φ

∣∣∣
φ=0

−m2

(
R12P sinα12P +R2P sinα2P

∂φ2
∂φ

∣∣∣
φ=0

)
(R12P sinα12P −R2P sinα2P)




IG1 +m1R2
1P − IG2

∂φ2
∂φ

∣∣∣
φ=0

+m2R2P cosα2P (R12P cosα12P +R2P cosα2P)
∂φ2
∂φ

∣∣∣
φ=0

+m2

(
R12P sinα12P +R2P sinα2P

∂φ2
∂φ

∣∣∣
φ=0

)
(R12P sinα12P −R2P sinα2P)


(6.67)

where m1 and m2 are the masses of the bottom and top blocks respectively. A comparison of ηSF to

the coefficient of restitution obtained using the rigid formulation (ηR) presented in Chapter 3 revealed

that, as in the case of the single block mechanism, Equation 6.67 generally yields a more conservative

estimate for this parameter than its rigid counterpart. Furthermore, as Fig. 6.21 demonstrates, the

difference between the two tends to increase with an increase in overburden force F as well as increase

with a decrease in interface compressive strength fm.

Fig. 6.21 Comparison of the semi-flexible ηSF and rigid ηR coefficients of restitution for varying
overburden forces F (normalized by the full weight of the un-cracked wall segment W0), for different
values of the interface compressive strength fm

6.3.3 Multiple block mechanism 1: Symmetric rocking frame

6.3.3.1 Fully-flexible model

The equation of motion was also re-derived for the symmetric rocking frame - which is used to capture

the dynamic behaviour of structures such as portal frames as well as free-standing columns topped
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Fig. 6.22 Symmetric rocking frame: (a) un-deformed configuration, (b) forces acting on each of the
blocks, (c) geometric properties used in the equation of motion and (d) semi-flexible interface model
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Table 6.2 Symmetric rocking frame: Reaction forces and rotations for each of the hinges

x Fx φx

1 W1+W2/2 φ

2 W2/2 φ

with rigid beams - as are commonly found in Greek temples (Makris and Vassiliou, 2013). Due to the

symmetry of this structure, the columns exhibit identical rotations in this mechanism , while the beam

only undergoes translation. The kinetic and potential energies, as well as the generalized inertial force

for this mechanism - derived now relative to the shifting rotation points 1 and 2 (due to the symmetry

of the mechanism and as indicated in Fig. 6.22c) - are defined as follows:

T
(
φ , φ̇

)
= φ̇

2
[

IG1 +
W1

g
R1(φ)

2 +
W2

2g
R12(φ)

2
]

(6.68)

V (φ) = 2W1R1 (φ)cos(α1 (φ)−φ)+W2

[
R12 (φ)cos(α12 (φ)−φ)+

hb

2

]
(6.69)

B(φ) =
2W1

g
R1 (φ)cos(α1 (φ)−φ)+

W2

g
R12 (φ)cos(α12 (φ)−φ) (6.70)

where IG1 is the moment of inertia of each column about its own centroid, while the other geometric

properties are defined in Fig. 6.22. As in the case of the two block mechanism, the inward shift of

each of the hinges depends on both the magnitude of the reaction force Fx at the interface, as well as

the rotation φx of the blocks relative to each other (Table 6.2) - which as Fig. 6.22 illustrates in the

case of the symmetric rocking frame is simply φ everywhere.

Furthermore, as in the case of the single and two block mechanisms, the influence of the terms
∂Rx
∂φ

and ∂αx
∂φ

is once again neglected, as they were found to be negligible for φ ≥ 0.05α0, where α0 is

the slenderness of the columns.

6.3.3.2 Semi-flexible model

Using the same methodology as employed for the single and two block mechanisms, the semi-flexible

hinge locations aSFx for the symmetric rocking frame are determined by setting aSFx = a f x(φx = φcx),

where x represents the hinge number. Similarly, the kinetic energy of the system TSF (φ ,φ̇ ) is now

determined relative to the inwardly-shifted rotation points, and can be computed using Equation 6.71

below:

TSF
(
φ , φ̇

)
= φ̇

2
[

IG1 +
W1

g
R1P

2 +
W2

2g
R12P

2
]

(6.71)

where IG1 is the moment of inertia of each column about its own centroid, while R1P and R12P

are defined in Fig. 6.22d. Furthermore, as the symmetric rocking frame exhibits direct dynamic

equivalence with the single rocking block (DeJong and Dimitrakopoulos, 2014; Makris and Vassiliou,
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2013), an analytical coefficient of restitution can also be derived for this mechanism (assuming

conservation of angular momentum once again), as given by Equation 6.72:

ηSF =
IG1 +m1R2

1P

(
1−2sin2

α1P
)
+

m2R2
12P

2

(
1−2sin2

α12P
)

IG1 +m1R2
1P +

m2R2
12P

2

(6.72)

where m1 is the mass of each column and m2 the mass of the beam, while α1P and α12P are defined in

Fig. 6.22d. A comparison of the semi-flexible coefficient of restitution ηSF with the rigid formulation

ηR as found in the literature (Fig. 6.23) (DeJong and Dimitrakopoulos, 2014; Makris and Vassiliou,

2013) demonstrated that, as in the case of the single and two block mechanisms, ηSF is generally

more conservative than ηR - with the difference between the two tending to increase with in increase

in mass ratio γ (which compares the mass of the beam to the combined mass of the columns) and

decrease with an increase in compressive strength fm.

Fig. 6.23 Comparison of the semi-flexible ηSF and rigid ηR coefficients of restitution for varying mass
ratios γ = m2/2m1 and varying values of the compressive strength fm

6.3.4 Multiple block mechanism 2: Asymmetric rocking frame

6.3.4.1 Fully-flexible model

The equation of motion for the multiple block mechanism can be further generalized for the case

of the asymmetric rocking frame. In this case, the two columns are no longer identical in size, and

consequently exhibit different rotations, as a result of which the beam atop them undergoes both

rotation and translation as demonstrated by Fig. 6.24b. Unlike the mechanisms considered thus far,

different mechanisms exist for positive and negative rotations of this structure, and thus the sign of

the rotation needs to be taken into account when deriving the kinetic and potential energies of the

system, as well as the generalized inertial force, as indicated in Equations 6.73-6.78:



126 Extension of modelling to flexible interfaces

Fig. 6.24 Asymmetric rocking frame: (a) un-deformed configuration, (b) forces acting on each of the
blocks, (c-d) geometric properties used in the equation of motion for positive rotations (φ > 0) and
(e-f) geometric properties used in the equation of motion for negative rotations (φ < 0)
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T
(
φ , φ̇

)
=

φ̇ 2

2


IG1 +

W1
g R1(φ)

2 + IG2

(
∂φ23(φ)

∂φ

)2
+ IG3

(
∂φ4(φ)

∂φ

)2
+ W3

g R3(φ)
2
(

∂φ4(φ)
∂φ

)2

+W2
g

 R12(φ)
2 +R2(φ)

2
(

∂φ23(φ)
∂φ

)2

−2R12 (φ)R2 (φ)sin(φ −α12 (φ)sgn(φ)+φ23 (φ)+ψ2 (φ))
∂φ23(φ)

∂φ




(6.73)

V (φ) =


W1R1 (φ)cos(α1 (φ)sgn(φ)−φ)

+W2 (R12 (φ)cos(α12 (φ)sgn(φ)−φ)+R2 (φ)sin(φ23 (φ)+ψ2 (φ)))

+W3

(
R3 (φ)cos(α3 (φ)sgn(φ)−φ4 (φ))+RAD sinφAD

+a f 4 (φ)sinφ4 (φ)−a f 1 (φ)sinφ

)
 (6.74)

B(φ) =
1
g


W1R1 (φ)cos(α1 (φ)sgn(φ)−φ)

+W2

(
R12 (φ)cos(α12 (φ)sgn(φ)−φ)−R2 (φ)sin(φ23 (φ)+ψ2 (φ))

∂φ23(φ)
∂φ

)
+W3R3 (φ)cos(α3 (φ)sgn(φ)−φ4 (φ))

∂φ4(φ)
∂φ


(6.75)

where IG1, IG2 and IG3 represent the moments of inertia of the first column (AB), the beam (BC) and

the second column (CD) about their own centroids, while the other geometric properties are derived

relative to the shifting hinges (1, 2, 3 and 4) as defined in Fig. 6.24. The inward shift of each of

these hinges depends on both the magnitude of the reaction force Fx at the interface, as well as the

rotation φx of the blocks making up that interface, relative to each other, as illustrated by Fig. 6.24b

and defined in Table 6.3. Note that at the different interfaces, the rotations φx of the blocks relative to

each other are combinations of the rotation φ of the first column, as well as the rotation of the beam

φ23(φ ) and second column φ4(φ ), which are defined as follows:

φ23 (φ) = arctan
[
−RA2 cos(αA2sgn(φ)−φ)+RAD sinφAD +R3D cos(α3Dsgn(φ)−φ4 (φ))

RA2 sin(αA2sgn(φ)−φ)+RAD cosφAD −R3D sin(α3Dsgn(φ)−φ4 (φ))

]
(6.76)

φ4 (φ) = α3Dsgn(φ)− arctan
[

RA2 sin(αA2sgn(φ)−φ)+RAD cosφAD

RA2 cos(αA2sgn(φ)−φ)−RAD sinφAD

]
+ arccos

[
R2D(φ)

2 +R2
3D −R2

23
2 ·R3D ·R2D (φ)

]
(6.77)

where:

R2D (φ) =

√
R2

A2 +R2
AD −

(
2×RA2 ×RAD × cos

(
αA2sgn(φ)+

π

2
−φ −φAD

))
(6.78)

while the geometric parameters RA2, αA2, RAD, φAD, R3D and α3D are defined in Fig. 6.25. Note that

unlike the formulation presented in DeJong and Dimitrakopoulos (2014), where all the hinges in the

kinematic chain are located at the outer edge of the blocks, in order to determine the relationship
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Table 6.3 Asymmetric rocking frame: Reaction forces and rotations for each of the hinges

x Fx φx

1 W1+W2/2 φ

2 W2/2 φ+φ23
3 W2/2 φ23+φ4
4 W1+W2/2 φ4

between the rotations of the different blocks in this case, the hinges between the columns and the

beam (B, C) are shifted inwards and fixed at their semi-flexible locations (2, 3) as illustrated by Fig.

6.25. However, these parameters are identical for both positive and negative rotations.

Fig. 6.25 Geometric parameters used to determine the relationship between the rotations of the
different blocks for (a) positive rotations (φ > 0) and (b) negative rotations (φ < 0)

Furthermore, as in the case of all the previously considered mechanisms, the influence of the

terms ∂Rx
∂φ

and ∂αx
∂φ

(where x refers to the hinge number) is once again neglected as they were only

found to be significant for the different blocks for φ /α01 ≤ 0.05 (Fig. 6.26), where α01 corresponds to

the slenderness of the first column (AB).

6.3.4.2 Semi-flexible model

Adopting the same methodology as was used for the previous mechanisms, the semi-flexible hinge

locations aSFx (where x refers to the hinge number) for the asymmetric rocking frame were determined

by setting aSFx = a f x(φx = φcx), where φcx is the rotation at which the interface stress distribution

switches from purely elastic to elasto-plastic. Using these new hinge locations, the kinetic energy of

the system TSF (φ ,φ̇ ) was then calculated using Equation 6.79:
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Fig. 6.26 Variation of ∂Rx
∂φ

(left) and ∂αx
∂φ

(right) (normalized by their maximum values) for the
asymmetric rocking frame for each of the different blocks

Fig. 6.27 Asymmetric rocking frame - semi-flexible interface model for (a) positive rotations (φ > 0)
and (b) negative rotations (φ < 0)
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TSF
(
φ , φ̇

)
=

φ̇ 2

2


IG1 +

W1
g R1P

2 + IG2

(
∂φ23(φ)

∂φ

)2
+ IG3

(
∂φ4(φ)

∂φ

)2
+ W3

g R3P
2
(

∂φ4(φ)
∂φ

)2

+W2
g

 R12P
2 +R2P

2
(

∂φ23(φ)
∂φ

)2

−2R12PR2P sin(φ −α12Psgn(φ)+φ23 (φ)+ψ2P)
∂φ23(φ)

∂φ


 (6.79)

where IG1, IG2, IG3, φ23(φ ), ∂φ23
∂φ

and ∂φ4
∂φ

are the same as for the fully-flexible interface model, while

the other geometric parameters are defined in Fig. 6.27 for both positive (φ > 0) and negative (φ < 0)

rotations. Note that in the case of the columns, the geometric properties are identical for both sets of

rotations, while in the case of the beam, R2P and ψ2P change magnitude based on the sign of rotation

and thus need to be substituted into Equation 6.79 accordingly.

6.3.5 Multiple block mechanism 3: Side-aisle vault collapse

6.3.5.1 Fully-flexible model

The multiple block mechanism can also be used to model the collapse of side aisle vaults, as are

commonly found in churches. A simplification of this collapse mechanism involves the vault cracking

and consequently developing a hinge (B) at the apex, as well as hinges at both the base of the vault

(A, C) as well as the base of the wall supporting it (D, Fig. 6.28a). In the case of this mechanism,

only one-sided rocking (φ > 0) is considered, as it is assumed that the rest of the church restrains

movement of the vault in the opposite direction. The kinetic and potential energies of this system, as

well as the generalized inertial force, are derived relative to the shifting rotation points 1, 2, 3 and 4 as

indicated in Fig. 6.28c, and can be computed using Equations 6.80-6.82:

T
(
φ , φ̇

)
=

φ̇ 2

2


IG1 +

W1
g R1(φ)

2 + IG2

(
∂φ23(φ)

∂φ

)2
+ IG3

(
∂φ4(φ)

∂φ

)2
+ W3

g R3(φ)
2
(

∂φ4(φ)
∂φ

)2

+W2
g

 R12(φ)
2 +R2(φ)

2
(

∂φ23(φ)
∂φ

)2

+2R12 (φ)R2 (φ)cos(φ +α12 (φ)+φ23 (φ)+α2 (φ))
∂φ23(φ)

∂φ



(6.80)

V (φ) =


W1R1 (φ)cos(α1 (φ)+φ)

+W2 (R12 (φ)cos(α12 (φ)+φ)−R2 (φ)cos(α2 (φ)+φ23 (φ)))

+W3 (R3 (φ)cos(α3 (φ)−φ4 (φ))+RAD sinφAD +a f 4 (φ)sinφ4 (φ)−a f 1 (φ)sinφ)


(6.81)

B(φ) =
1
g


W1R1 (φ)cos(α1 (φ)+φ)

+W2

(
R12 (φ)cos(α12 (φ)+φ)+R2 (φ)cos(α2 (φ)+φ23 (φ))

∂φ23 (φ)

∂φ

)
+W3R3 (φ)cos(α3 (φ)−φ4 (φ))

∂φ4 (φ)

∂φ

 (6.82)
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Fig. 6.28 Vault supported on a side wall: (a) un-deformed configuration, (b) forces acting on each of
the segments and (c-d) geometric properties used in the equation of motion
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Table 6.4 Side-aisle vault collapse: Reaction forces and rotations for each of the hinges

x Fx φx

1 W1 φ

2 T φ+φ23
3 W2 φ23+φ4
4 W2+W3 φ4

where IG1, IG2 and IG3 represent the moments of inertia of the two halves of the vault and the wall

respectively, about their centroids, while the other geometric properties, computed relative to the

shifting rotation points, are defined in Fig. 6.28. As in the case of all the mechanisms considered thus

far, the inward shift of each of these rotation points depends on both the magnitude of the reaction

force at the interface Fx, as well as the relative rotation φx of the segments making up the interface as

illustrated by Fig. 6.28b, with the specific values for Fx and φx for each of the hinges being listed in

Table 6.4. Note that for hinge 2, the force F2 at the interface is equal to the thrust of the vault T.

Fig. 6.29 Geometric parameters used to determine the relationship between the rotations of the
different segments for the side-aisle vault collapse mechanism

Furthermore, as indicated in Table 6.4, the relative rotations φx of the blocks at the different

interfaces are combinations of the rotation of the first half of the vault φ , the rotation of the second

half of the vault φ23(φ ) (determined relative to the vertical, Fig. 6.28c), as well as the rotation of the

wall φ4(φ ), with the latter two rotations being defined as follows:
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φ23 (φ) =−α23 + arctan
[
−RA2 sin(αA2 +φ)+RAD cosφAD −R3D sin(α3D −φ4 (φ))

RA2 cos(αA2 +φ)−RAD sinφAD −R3D cos(α3D −φ4 (φ))

]
(6.83)

φ4 (φ) = α3D − arctan
[
−RA2 sin(αA2 +φ)+RAD cosφAD

RA2 cos(αA2 +φ)−RAD sinφAD

]
+ arccos

[
R2D(φ)

2 +R2
3D −R2

23
2 ·R3D ·R2D (φ)

]
(6.84)

where:

R2D (φ) =

√
R2

A2 +R2
AD −

(
2×RA2 ×RAD × cos

(
π

2
−αA2 −φ −φAD

))
(6.85)

while the geometric parameters RA2, αA2, α23, RAD, φAD, R3D and α3D are defined in Fig. 6.29.

Note that in order to determine the relationship between the rotations of the different segments, the

intermediate hinges of the kinematic chain (i.e. hinges 2 and 3) are shifted inwards and fixed at their

semi-flexible locations. Furthermore, as in the case of the asymmetric rocking frame, the influence of

the terms ∂Rx
∂φ

and ∂αx
∂φ

(where x refers to the hinge number) is neglected here as well, as they were

only found to be significant for extremely small rotations of the structure.

6.3.5.2 Semi-flexible model

Fig. 6.30 Side-aisle vault collapse - semi-flexible interface model

The semi-flexible hinge locations aSFx for the vault collapse mechanism were determined in a

manner similar to that used for the other mechanisms considered thus far - that is, by setting aSFx
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= a f x(φx = φcx). The kinetic energy of the system TSF (φ ,φ̇ ), is then calculated relative to these new

(fixed) rotation points, as given by Equation 6.86:

T
(
φ , φ̇

)
=

φ̇ 2

2


IG1 +

W1
g R1P

2 + IG2

(
∂φ23(φ)

∂φ

)2
+ IG3

(
∂φ4(φ)

∂φ

)2
+ W3

g R3P
2
(

∂φ4(φ)
∂φ

)2

+W2
g

 R12P
2 +R2P

2
(

∂φ23(φ)
∂φ

)2

+2R12PR2P cos(φ +α12P +φ23 (φ)+α2P)
∂φ23(φ)

∂φ


 (6.86)

where IG1, IG2, IG3, φ23(φ ), ∂φ23
∂φ

and ∂φ4
∂φ

are the same as for the fully-flexible interface model, while

definitions for the other geometric properties can be found in Fig. 6.30.

6.4 Summary

In this chapter, the equations of motion presented in Chapter 3 for different masonry collapse

mechanisms were re-derived in order to account for the presence of flexible interfaces and crushing

effects. These modified equations of motion now account for the inward shift of the rocking rotation

points due to the presence of flexible interfaces with finite compressive strengths, and fit within the

broader framework of the CAD-interfaced computational tool described in this thesis for the seismic

collapse assessment of masonry structures. Specifically, the new contributions of this work include:

• Derivation of expressions for the inward shift of the rocking rotation points for different interface

geometries as are commonly found in real-world structures - including solid rectangular, hollow

rectangular, solid circular and hollow circular interfaces.

• Re-derivation of the equations of motion for the single and two block mechanisms, as well

as multiple block mechanisms such as the symmetric rocking frame, the asymmetric rocking

frame, and collapse of a side-aisle vault that is supported on a wall.

• Development of a semi-flexible interface model which accounts for the inward shift of the

rocking rotation points in a more simplified manner than the fully-flexible formulation, which in

turn is used to re-derive the coefficient of restitution for the single, two and simplified multiple

block mechanisms.

In Chapter 7, the modified equations of motion derived in this chapter will be used to investigate

the influence of interface geometry, flexibility and crushing on the seismic resilience of a few simple

masonry structures, while a potential application of this new methodology to real-world structures

will be presented in Chapter 8.



Chapter 7

Evaluation of the new analytical models

7.1 Introduction

In this chapter, a series of analyses are conducted in order to evaluate the ability of the expressions and

equations derived in Chapter 6 to model the dynamic response of masonry structures with non-rigid

interfaces. The effect of interface geometry, stiffness and crushing on the dynamic response of

different collapse mechanisms will be evaluated, while the ability of the relatively simple semi-flexible

interface model to approximate its fully-flexible counterpart will also be assessed. Furthermore, the

equations of motion derived for the complicated multi-block mechanisms will be validated through

comparison of the analytical results to those obtained using numerical modelling in 3DEC.

7.2 Single block mechanism

In this section, the equation of motion derived for the single block mechanism (Equation 6.54) will be

used to generate moment-rotation curves in order to investigate the influence of geometry, interface

stiffness and compressive strength on the rocking response of a few simple structures. Free-rocking

response analyses will also be conducted in order to compare the fully-flexible, semi-flexible and rigid

interface models for interfaces of varying stiffness, as well as blocks with varying slenderness. Finally,

a real-world application of the equations will be demonstrated by conducting a full time-history

analysis of a monumental masonry tower which was completely destroyed during the 2015 Gorkha

earthquake.

7.2.1 Moment-rotation curves

In the first set of analyses, the expressions derived for the shifting hinge location a f (φ ) for the

different base geometries were used to generate moment-rotation curves, making use of the following
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Fig. 7.1 Structural geometries used for the parametric study

generalized formula for the restoring moment MR(φ ):

MR (φ) =
∂V (φ)

∂φ
−M (φ) (7.1)

where V(φ ) is the potential energy of the system, while M(φ ) is the generalized force due to external

static forces (where relevant).

These curves were used to evaluate the influence of cross-sectional geometry, as well as material

properties (i.e. compressive strength and interface stiffness) on the dynamic response of the four

structural geometries depicted in Fig. 7.1 (all with a density ρ of 1800 kgm−3).

In order to gauge the effect of interface geometry on the seismic resistance of the structures,

moment-rotation curves (Fig. 7.2a) were first generated for the four structures depicted in Fig. 7.1.

Note that all four structures have the same size (R0) and slenderness (α0). From Fig. 7.2a it can be

observed that for structures of comparable scale and slenderness, the introduction of a flexible interface

with a finite compressive strength leads to a greater reduction in the dynamic capacity of structures

with circular bases than those with rectangular ones, with the former generally overturning for lower

rotations (with the overturning rotation being defined as the rotation at which the restoring moment

MR(φ ) = 0). Moreover, structures with hollow bases appear to have a higher seismic resistance than

their solid counterparts.

Examining more closely the behaviour of structures with hollow bases, moment-rotation curves

were also generated for the hollow rectangular base (Fig. 7.1b) for varying base thicknesses (t) as

illustrated by Fig. 7.2b. From this plot it was found that the inclusion of an elasto-plastic interface

caused less of a reduction in the dynamic capacity of thinner–walled structures.
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Fig. 7.2 Moment-rotation curves generated for: (a) varying base geometry; (b) varying thickness t (for
hollow bases); (c) varying compressive strength fm; (d) varying scale and (e) varying joint stiffness kn
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The effect of varying the compressive strength fm of the interface was also investigated, using

as a reference case the structure with a solid rectangular base (Fig. 7.1a). Assuming a constant

normal stiffness kn of 340 MPa/m, moment-rotation curves were generated for different compressive

strengths as illustrated by Fig. 7.2c. As expected, decreasing the compressive strength was observed to

decrease the dynamic resistance of the structure, with the block experiencing crushing (and ultimately

overturning) for lower rotations when the compressive strength is reduced. Moreover, for compressive

strengths higher than 1.28 MPa, the behaviour of the interface remained entirely elastic, and no

crushing was observed to occur – with the curves for fm = 2.56 and 5.12 MPa almost exactly matching

the curve generated assuming an infinite compressive strength ( fm = ∞). Keeping the compressive

strength and normal stiffness constant while varying the scale of the structure (Fig. 7.2d) yielded

similar results - larger scale structures (scale = 2 and 5) experience crushing more rapidly (and

consequently overturning more quickly) than their smaller counterparts (scale = 0.25, 0.50 and 1) -

with the latter actually having near-identical moment-rotation curves.

Finally, keeping the compressive strength constant and increasing the normal stiffness kn (Fig.

7.2e) was also found to increase the block’s dynamic capacity. However, in this case, an increase in

normal stiffness resulted in crushing occurring for smaller rotations, whereas purely elastic ("smooth")

behaviour was observed for the lowest stiffness considered (85 MPa/m). Furthermore, to facilitate

comparison with Housner’s original assumption of an entirely rigid interface, the moment-rotation

curve for the infinitely stiff case (kn = ∞) is also shown, which predictably has a much higher capacity

than the curves generated for the flexible interfaces – thus highlighting just how un-conservative this

assumption can be.

7.2.2 Free-rocking response

In order to compare the performance of the fully-flexible, semi-flexible, and rigid interface models,

a free-rocking response analysis was also conducted for varying values of the interface stiffness kn

(Fig. 7.3) and block slenderness α0 (Fig. 7.4). From Fig. 7.3 it can be seen that for all considered

values of interface stiffness, the fully-flexible and semi-flexible models appear to be in generally

good agreement, and consistently yield more conservative predictions than the rigid model. However,

the difference between the predictions of the fully-flexible/semi-flexible and rigid models tends to

decrease with an increase in interface stiffness (that is, as the joint becomes more rigid).

Similarly, in the case of varying block slendernesses, the fully-flexible and semi-flexible models

once again compare fairly well for all considered values of α0 (Fig. 7.4), while the rigid model

displays less conservative behaviour - going out of phase with the flexible solutions in relatively few

cycles of rocking motion, as well as damping out earlier - particularly in the case of stockier blocks

(α0 ≥ 0.24 rad).
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Fig. 7.3 Comparison of the fully-flexible, semi-flexible and rigid free-rocking response (φ0/α0 = 0.8)
of interfaces of varying stiffness kn ( fm = 1.28 MPa)

7.2.3 Case Study: Dharahara Tower

To evaluate the ability of the expressions and equations derived in Chapter 6 to realistically capture

the dynamic behaviour of real-world structures, the Dharahara Tower in Kathmandu, Nepal (Fig.

7.5), which was almost completely destroyed during the 2015 Gorkha earthquake, was chosen as a

case-study. The tower was also analysed in Chapter 4 using the rigid interface model. In this section,
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Fig. 7.4 Comparison of the fully-flexible, semi-flexible and rigid free-rocking response (φ0/α0 = 0.8)
of blocks of varying slenderness α0 (kn = 340 MPa/m, fm = 1.28 MPa)

the tower will be re-analysed using the flexible interface model in order to demonstrate the importance

of accounting for crushing effects in the masonry.

The tower was constructed using brick masonry with lime and mud mortar (Bhagat et al., 2017)

and the geometry of the structure, including that of its base, is shown in Fig. 7.5. The geometric

properties were automatically extracted by the analytical tool, using as a starting point the 3D model
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Fig. 7.5 Dharahara Tower before and after the 2015 Gorkha earthquake (L) (Ian Tower/JAI/Corbis,
Turjoy Chowdhury/NurPhoto/Corbis) and structural geometry (R)

of the structure in Rhino, and are listed in Table 7.1, while the material properties adopted for the

hollow circular interface can be found in Table 7.2. To illustrate different possible applications of the

model, two different sets of joint stiffnesses and a range of compressive strengths were considered

in the analysis. The compressive strengths were chosen based on the range of values provided in

the Italian Building Code for brick masonry with lime mortar (DMI, 2008), as well as the results of

both in-situ and experimental tests conducted on brick masonry structures in Nepal (Parajuli et al.,

2011; Parajuli and Kiyono, 2015). Similarly, the first set of joint stiffnesses - varying from flexible (kn

= 85 MPa/m) to very stiff (kn = 13.5 GPa/m), were chosen with the objective of exemplifying how

foundation stiffness could be taken into account in the model, and were selected based on similar

analyses conducted in Shawa et al. (2012), Lipo and de Felice (2016) and Lipo and de Felice (2017).

The second set of stiffnesses is representative of interfaces within the structure - modelling both the

stiffness of a single interface (kn = 200, 500, 1500 GPa/m) as well as the deformation associated with

of a larger portion of the structure in the vicinity of the interface (kn = 2, 5, 15 GPa/m), with the latter

having been found to lead to an overall reduction in dynamic capacity de Felice (2011). Note that to

model the interface stiffness, the values of kn were obtained by assuming a Young’s modulus of 1000

× fm, and estimating the thickness of a single interface to be 0.01 m and the approximate portion of

the structure involved in local deformation near the rotation point to be 1 m.

The expressions derived in Section 6.2 were then used calculate a f (φ ) for the specified range of

joint stiffnesses and compressive strengths, which in turn were used to generate moment-rotation

curves (both with and without crushing) for the structure, as illustrated by Fig. 7.6 and Fig. 7.7.
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Table 7.1 Dimensions of the Dharahara Tower

RO (m) 3.99
RI (m) 2.12
W (kN) 24003.94
R0 (m) 30.44
α0 (rad) 0.125

Table 7.2 Material properties considered for the interface of the Dharahara Tower

Joint stiffness (foundation) kn (MPa/m) 85, 170, 340, 680, 1350, 13500
Joint stiffness (interface) kn (GPa/m) 2, 5, 15, 200, 500, 1500
Compressive strength fm (MPa) 2, 5, 15

Fig. 7.6 Moment-rotation curves generated for the Dharahara Tower for different foundation stiffnesses,
both with crushing ( fm = 2, 5 and 15 MPa) and without crushing ( fm = ∞)
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Fig. 7.7 Moment-rotation curves for the Dharahara Tower for different interface stiffnesses and
compressive strengths: (a) without crushing and (b) with crushing

For the purpose of comparison with Housner’s model, the curve for the pure rigid interface (infinite

stiffness, infinite compressive strength) is also included in these plots.

Fig. 7.6 shows that for low values of compressive strength ( fm = 2 MPa), the structure experiences

crushing at relatively small rotations for all considered levels of joint stiffness, which leads to an

overall reduction of 40% in the dynamic capacity of the structure as compared to the rigid interface

model. For higher compressive strengths ( fm = 15 MPa), the more flexible models (kn = 85 MPa/m

and 170 MPa/m) remain entirely in the elastic zone (compare with the curves for fm = ∞), while

the stiffer models still experience crushing, with the threshold rotation for crushing φc generally

decreasing with an increase in foundation stiffness.

Similarly, in the case of varying interface stiffness, it was observed that including crushing

effects resulted in a significant reduction in the dynamic capacity of the structure (Fig. 7.7a vs Fig.

7.7b). In fact, crushing occurred almost instantly for all levels of compressive strength, for both

considered stiffness values – thus resulting in nearly-overlapping curves for each value of fm (Fig.

7.7b). Furthermore, as rocking of the Dharahara Tower was observed to occur at the masonry-masonry

interface during the earthquake, the values derived for a f (φ ) for the different interface stiffnesses

were then substituted into Equation 6.54, to be used for the non-linear time-history analysis of the

tower. The input ground motion used in the analysis was the north-south component of the 2015

Gorkha earthquake recorded at the USGS KANTP station, as illustrated by Fig. 7.8. No scaling was

applied to the ground motion.

The results of the time-history analyses are presented in Fig. 7.9, both for the case without

crushing (Fig. 7.9a) and with crushing (Fig. 7.9b). Furthermore, to facilitate comparison with

Housner’s model, the time-history response of an interface with infinite stiffness and compressive

strength (i.e. a rigid interface) is also presented here. To better compare the relative magnitudes of the

rotations predicted by the different interface models, the rotation of the structure φ was normalized
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Fig. 7.8 North-south component of the 2015 Gorkha earthquake ground motion as recorded at the
USGS KATNP station (unscaled)

by the slenderness of the tower α0. Note that unlike Chapter 4, α0 (or variations of it) is generally

used in this chapter instead of the overturning rotation φov, as this remains constant for the same

mechanism regardless of the interface material properties, while φov varies with the interface stiffness

and compressive strength and is thus also different for the rigid model. As the objective here is to

compare the magnitude of the rotations predicted by the different interface models, it is therefore

more reasonable to normalize the rotations by α0 instead. However, as overturning of the structure in

this case no longer occurs when φ /α0 exceeds 1 (as is the case for the rigid interface model) – and

instead takes place when the restoring moment MR(φ ) = 0, φov for each of the models was extracted

from Fig. 7.7, and the time-history analyses stopped when this rotation was exceeded.

In the case of the models with infinite compressive strength (no crushing, Fig. 7.9a), overturning

of the tower was found to occur fairly quickly for lower levels of the joint stiffness (kn ≤ 15 GPa/m),

while higher levels of the stiffness also caused overturning of the tower, albeit after the first big

pulse in the ground motion (with the exception of kn = 500 GPa/m, which exhibited low-amplitude

high-frequency rocking before returning to equilibrium). On the other hand, including crushing effects

at the interface results in the tower overturning for all considered levels of interface compressive

strength and stiffness in a comparable amount of time, with lower levels of the compressive strength

generally resulting in larger rotations and faster overturning of the structure (Fig. 7.9b). For the

compressive strength of 2 MPa, the stiffer model was actually found to overturn faster than its more

flexible counterpart, while for fm = 15 MPa, the more flexible interface model results in collapse

before the stiffer one. However, in both cases the difference between collapse times of the two models

is generally less than 0.5 seconds, thus indicating that compressive strength more than stiffness tends

to control dynamic response. This behaviour compares fairly well what was observed in reality – the

Dharahara Tower did in fact overturn and collapse during the earthquake in 2015. Due to the scale of
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Fig. 7.9 Time-history responses of the Dharahara Tower for different interface stiffnesses and com-
pressive strengths: (a) without crushing and (b) with crushing

the structure, it is quite possible that some crushing could have occurred at the base, which would

have decreased its resistance to overturning. This behaviour failed to be captured by the purely rigid

model, which instead predicted very small rotations for the tower (Fig. 7.9). Note that this study has

focused on the effects of stiffness and strength at or near the rocking interface; the elastic deformation

of the tower itself, being large and slender, was not considered here, though it could play a significant

role in the response.
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Fig. 7.10 Typical multi-story spanning masonry wall, with corresponding overburden forces for each
wall segment (left); geometry of a single wall segment with an intermediate crack at height hc (right)

7.3 Two block mechanism

In this section, the equations of motion derived for the two-block mechanism will be evaluated -

using as a case-study a typical multi-story spanning masonry wall as depicted in Fig. 7.10. This

load-bearing wall spans 4 floors, with each portion of the wall between floors having a constant width

b of 0.4 m, length l of 1.0 m, height H of 3.0 m and density ρ of 1800 kgm−3 (Fig. 7.10). Each

wall segment is subjected to a vertical overburden force F, the magnitude of which depends on the

weight of the floors and walls above the segment in question, as illustrated by Fig. 7.10. Following

the approach presented in Chapter 3, this overburden force, together with the tensile strength assumed

for the mortar joints fmt , can then be substituted into Equation 3.27 in order to calculate the height

hc at which the wall segment cracks and forms an additional hinge, which in turn can be used to

determine W1 and W2 – the weights of the bottom and top blocks respectively. The corresponding

equation of motion is then derived using Lagrange’s principle as outlined in Section 6.3.2, and is

used to evaluate the influence of interface stiffness, compressive strength and overburden force on the

dynamic resilience of the wall - through the use of moment-rotation curves, free-rocking response, as

well as full time-history analyses.
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7.3.1 Moment-rotation curves

In the first set of analyses conducted on the cracked wall segment, moment-rotation curves were

generated using Equation 7.1 for varying values of the joint stiffness kn, compressive strength fm and

overburden force F (Fig. 7.11).

Fig. 7.11 Moment-rotation curves for: (a) varying interface stiffness kn, (b) varying compressive
strength fm and (c) varying overburden force F

From Fig. 7.11a, it can be seen that for the same compressive strength and overburden force, an

increase in joint stiffness kn results in an increase in the dynamic capacity of the mechanism, as well

as an increase in the overturning rotation (that is, the rotation at which the restoring moment MR(φ )

equals 0).

In the case of varying values of the compressive strength fm (Fig. 7.11b), it was found that, as

in the case of increasing joint stiffness, an increase in compressive strength results in a considerable

increase in the maximum restoring moment of the structure as well as the overturning rotation.

However, for the two highest compressive strengths ( fm = 2.56 and 5.12 MPa), the behaviour of the
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joints remains entirely elastic and no crushing is observed to occur – resulting in near-identical curves

for these two values of fm, which also correspond to the curve generated for the case of an infinite

compressive strength ( fm = ∞).

Similarly, keeping kn and fm constant while increasing the overburden force F (Fig. 7.11c)

was found to considerably increase the maximum restoring moment (and consequently the dynamic

capacity) of the mechanism. However, this was generally accompanied by a decrease in the overturning

rotation of the wall segment, thus making the structure more vulnerable to collapse at larger rotations.

7.3.2 Free-rocking response

To further investigate the effect of the overburden force, the free-rocking response of the cracked wall

was also assessed, starting with an initial rotation of the bottom block φ0 = 0.8α01. As demonstrated

by Fig. 7.12, an increase in the vertical loading was generally found to have a stabilizing effect on the

wall – while the relative amplitude of rocking remained similar, the response damped out faster under

the influence of overburden forces, than in the case of no force at all – with larger forces causing the

blocks to return to equilibrium more quickly.

Fig. 7.12 Free-rocking response comparison for varying magnitudes of the overburden force F (kn =
340 MPa/m, fm = 1.28 MPa)

The free-rocking response was also used to compare the performance of the fully-flexible, semi-

flexible and rigid interface models for a constant overburden force F = 2W. As Fig. 7.13 illustrates,

the rigid model predicted smaller rotation amplitudes and damped out more quickly than the other

two models – thus emphasizing just how un-conservative this approach can be. The fully-flexible and

semi-flexible models, on the other hand, had a very similar response – indicating that the simpler

semi-flexible model could well be used to model dynamic response in cases where absolute precision

is not required and there is a need to reduce computational burden/solve time.
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Fig. 7.13 Free-rocking response comparison for the flexible, semi-flexible and rigid interface models
(kn = 340 MPa/m, fm = 1.28 MPa)

7.3.3 Full time-history analyses

In addition to the free-rocking response, the performance of the three interface models when subjected

to forced excitations – in this case, the ground motion recorded during the 1999 Chi Chi (Taiwan)

earthquake (Fig. 7.14) - was also investigated. All three models were also subjected to a constant

overburden force F = 2W. In order for rocking to initiate in the rigid model, the input ground motion

had to be scaled by at least a factor of 2.75, which was determined using the formulation for the static

load multiplier λ presented in Chapter 3. However, this level of scaling of the ground motion caused

a very small (almost imperceptible) response of the structure. Thus the scaling was increased to

4.50, which resulted in a larger rocking response and consequently collapse. To facilitate comparison

between the three models, this scaling factor had to be applied to the input ground motion for the

fully-flexible and semi-flexible models as well. The response predicted by each of these three models

is found in Fig. 7.15. From this figure it can be seen that the rigid model is once again fairly

un-conservative – initiating motion only after the other two models have already collapsed, while

the predictions of the semi-flexible and fully-flexible interface models are, as in the case of the

free-rocking response, in generally good agreement.

Further examination of the response of the fully-flexible interface model was conducted by

varying the joint stiffness kn and overburden force F. In this case three different levels of scaling

SF of the input ground motion were used, as shown in Fig. 7.16. Note that the maximum response

of the structure φmax in each case was normalized by the overturning rotation φov as extracted from

the moment-rotation plots (Fig. 7.11) for each value of kn and F. As Fig. 7.16a illustrates, for all

considered levels of scaling of the ground motion, an increase in joint stiffness generally leads to a

decrease in the maximum rotation of the cracked wall. A similar trend can also be observed in the case
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Fig. 7.14 Input ground motion (unscaled): 1999 Chi-Chi (Taiwan) earthquake

of varying overburden force (Fig. 7.16b), however for higher levels of F/W, the response eventually

levels off – indicating that the benefit of the applied force is being counteracted by crushing effects.

In fact, had a rigid interface model been used instead, more linear behaviour would most likely have

been observed under the influence of increased vertical loading.

7.4 Multiple block mechanism

The equations of motion derived for the multiple block mechanisms - specifically the symmetric and

asymmetric rocking frames - were also evaluated, using as case studies the two structural geometries

depicted in Fig. 7.17, both with an assumed density ρ of 1800 kgm−3. Full time-history analyses were

carried out in order to compare the responses of the fully-flexible, semi-flexible and rigid interface

models, while validation of the new equations of motion was conducted through comparison of the

analytical predictions to those obtained using discrete element modelling (DEM) in 3DEC. However,

unlike the symmetric rocking frame, the coefficient of restitution for the asymmetric frame could not

be easily calculated analytically and was instead specified to be 0.90 - which was calibrated based on

the results of numerical simulations, as explained in greater detail in Section 7.4.3.

7.4.1 Full time-history analyses

In order to conduct a full time-history analysis, the symmetric and asymmetric rocking frames were

subjected to the ground motion recorded during the 1989 Loma Prieta earthquake (Fig. 7.18). A

scaling factor of 1.25 was applied to the acceleration record, as lower levels of scaling resulted in

very small rotations of the structures. The results are presented here in terms of the variation of the

rotation φ of the structure over time, normalized by the slenderness of the first column α01.
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Fig. 7.15 Full time-history response comparison for the fully-flexible, semi-flexible and rigid interface
models (F = 2W, kn = 340 MPa/m, fm = 1.28 MPa)

Fig. 7.16 Full time-history maximum response comparison for different earthquake scale factors (SF),
and for (a) varying joint stiffness kn and (b) varying overburden force F (normalized by the full weight
of the wall W)
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Fig. 7.17 Structural geometry and dimensions of the (a) symmetric rocking frame and (b) asymmetric
rocking frame

In the case of the symmetric rocking frame (Fig. 7.19), a comparison of the predictions of the

fully-flexible and semi-flexible interface models revealed a generally good correlation between the

two for higher levels of interface stiffness (kn ≥ 1.35 GPa/m), while some scatter was observed in

the results for the more flexible interface models. This scatter could be due in part to the fact that for

lower levels of stiffness, the interfaces remain in the elastic zone for a larger range of rotations, and

thus the difference between the fully-flexible and semi-flexible hinge locations for smaller rotations

of the structure is not negligible. Consequently, when the fully-flexible model predicts small rotations

of the structure, the semi-flexible model tends to yield a more conservative estimate of the response,

thus resulting in larger rotation amplitudes as evidenced by the plots for kn = 170 MPa/m and kn =

680 MPa/m. Similar behaviour was also observed in the case of the two block mechanism, but is less

obvious due to the large level of scaling applied to the ground motion, which resulted in collapse

being predicted by both models after the first large pulse in the acceleration record.
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Furthermore, a comparison of the fully-flexible, semi-flexible and rigid models for selected

values of the interface stiffness (Fig. 7.20) demonstrated that once again the rigid model is the least

conservative of the three - particularly in the case of interfaces with low stiffnesses.

Fig. 7.18 Input ground motion (unscaled): 1989 Loma Prieta earthquake
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Fig. 7.19 Symmetric rocking frame: comparison of fully-flexible and semi-flexible interface models
for varying values of interface stiffness kn

In the case of the asymmetric rocking frame, a comparison of the predictions of the fully-flexible

and semi-flexible interface models revealed similar trends to those observed for the symmetric rocking

frame. The two models generally compared fairly well for higher interface stiffnesses, as well as

larger rotations - as illustrated by the plot for kn = 170 MPa/m, which, despite the low stiffness of the

interface, resulted in identical responses being predicted by both models due to the relatively large
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Fig. 7.20 Symmetric rocking frame: comparison of fully-flexible, semi-flexible and rigid interface
models for selected values of interface stiffness kn

rocking amplitudes experienced by the structure. Discrepancies between the predictions of the two

models could also be partially attributed to the generally chaotic nature of the rocking response.
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Fig. 7.21 Asymmetric rocking frame: comparison of fully-flexible and semi-flexible interface models
for varying values of interface stiffness kn

Finally, a comparison of the predictions of the fully-flexible, semi-flexible and rigid models (Fig.

7.22) once again highlighted the un-conservativeness of the rigid model, which tended to predict

smaller rotations and generally damped out faster than its fully-flexible and semi-flexible counterparts.
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Fig. 7.22 Asymmetric rocking frame: comparison of fully-flexible, semi-flexible and rigid interface
models for selected values of interface stiffness kn

7.4.2 Validation of the models using DEM

In order to validate the equations of motion derived in Chapter 6 for practical use within the framework

of the tool, the results of the previously-conducted time-history analyses were compared to the

predictions obtained using discrete element modelling (DEM) in 3DEC.
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3DEC models of both the symmetric and asymmetric frames were generated from the CAD

models created in Rhino, based on the geometries and dimensions depicted in Fig. 7.17. Rigid blocks

were used in the analysis, with a density ρ of 1800 kgm−3 being assumed for both structures. The

joint normal stiffnesses kn were the same as those used in the analytical models, while the shear

stiffness ks was set to 0.4kn (Shawa et al., 2012). Furthermore, in order to prevent sliding failure, an

artificially large friction angle of 80◦ was specified for all the joints.

As rigid blocks were being used in the analysis, each of the corresponding (horizontal) interfaces

in 3DEC was made up of four vertical spring-dashpot elements - one in each corner. Consequently,

rotation of the blocks would then occur about each of these corners, which is the same as the

assumption of rigid interfaces. Thus to better capture the "shifting" of the rotation points, each of

these interfaces needed to be further discretised to create additional contact points. In order to do this,

the two columns of the frame were subdivided into n segments before export to 3DEC, resulting in

(n+1) contact points at each of the interfaces. Once the geometry had been imported into the 3DEC

environment, the columns were then joined back together so that they would behave as singular rigid

bodies.

However, increasing the number of contacts tends to increase the solve time, thus in order to

determine the optimal level of discretisation, a parametric study was conducted using as a starting

point the asymmetric rocking frame. The number of segments that each of the columns of the frame

were subdivided into was varied, and each of these discretised models was then subjected to the

Loma Prieta ground motion record (Fig. 7.18), with a scale factor of 1.25 being applied to the ground

motion (as was done in the analytical simulations). However, to minimise computational burden, the

numerical analyses were only run for the first 20 seconds of the record, as this was found to be the

most destructive. Furthermore, stiffness-proportional Rayleigh damping was used for the analyses

in order to damp out the effect of unrealistic high-frequency vibrations (DeJong, 2009), with the

corresponding damping constants βR (which varied with the level of discretisation) being listed in

Table 7.3. Note that mass damping (αR) was set to zero for these analyses.

Table 7.3 Stiffness-proportional damping constants (βR) specified for the different levels of interface
discretisation

Discretisation βR

2 3.22 × 10−2

10 1.45 × 10−2

20 1.02 × 10−2

80 5.14 × 10−3

The response predicted by each of these models is presented in Fig. 7.23. From this plot it can be

seen that the response of the structure tends to increase with an increase in discretisation, with the

response for higher levels of discretisation (disc20 and disc80) being nearly identical. Thus disc20

was determined to be the optimal level of discretisation, as it provides reasonably accurate predictions
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Fig. 7.23 Predicted response of the 3DEC models for different levels of interface discretisation

while minimising computational burden/solve time, as evidenced by the fact that simulation using the

disc20 model took half as long as with the disc80 model.

Using this level of discretisation, the 3DEC model for the symmetric rocking frame was then run

for the different values of interface stiffness, and the predicted responses for each value of kn were

compared to those obtained using the fully-flexible interface formulation of the analytical model (Fig.

7.24). As Fig. 7.24 illustrates, in general the two solutions compare fairly well for most considered

values of kn - as evidenced by the plot of kn = 85 MPa/m, where the two solutions are almost identical

for the first few cycles of motion. However, for kn = 170 MPa/m and 340 MPa/m, the numerical

model predicted collapse while the analytical model indicated a return to equilibrium - the differences

in response of the two models could be attributed to factors such as the chaotic nature of the rocking

response, as well as the sensitivity of both models to damping.

Similarly in the case of the asymmetric rocking frame (Fig. 7.25), a generally good correlation

was observed between the two models for almost all considered values of interface stiffness kn, with

the exception of kn = 340 MPa/m, where the numerical model predicted collapse while the analytical

model predicted a return to equilibrium. However, up until the point of collapse, the two solutions

also compare fairly well.
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Fig. 7.24 Symmetric rocking frame: comparison of analytical (fully-flexible) and numerical (3DEC)
predictions for varying values of interface stiffness kn
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Fig. 7.25 Asymmetric rocking frame: comparison of analytical (fully-flexible) and numerical (3DEC)
predictions for varying values of interface stiffness kn
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Fig. 7.26 Calibration of the coefficient of restitution of the asymmetric rocking frame

7.4.3 Calibration of the coefficient of restitution

In the case of the asymmetric rocking frame, the coefficient of restitution η cannot be easily determined

analytically and instead needs to be calibrated based on the results of either experimental tests or

numerical simulations. For this particular case study, η was thus calibrated against the results of the

numerical simulations in 3DEC. In order to do this, upper and lower bounds for this parameter were

first determined using the analytical formulation for ηSF for the symmetric rocking frame (Equation

6.72), but in this case considering two different frame geometries - the first with a column height

corresponding to hc1 (i.e. the height of the first column of the asymmetric frame, Fig. 7.17b) and the

second with a column height equal to hc2 (i.e. the height of the second column of the asymmetric

frame, Fig. 7.17b). This resulted in upper and lower bounds on η of 0.95 and 0.75 respectively.

Analyses were then run using these two values of η , as well as three intermediate values of this

parameter, for each of the different values of interface stiffness kn. The results of these analyses were

then compared to those obtained from the numerical simulations in 3DEC, as illustrated by Fig. 7.26.

As Fig. 7.26 demonstrates, for lower values of the interface stiffness (kn = 85 MPa/m), the response

of the numerical model is best captured by the model using the highest value of the coefficient of

restitution (η = 0.95). In the case of the intermediate stiffnesses (kn = 170 and 680 MPa/m), the
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numerical response is best reproduced by the models with η = 0.90. Finally, in the case of higher

values of kn(= 1.35 GPa/m), η = 0.85 was observed to predict a response most similar to the 3DEC

simulation. Thus η = 0.90 was specified as an average, as this was found to best capture the majority

of the numerical results.

7.5 Broader applications of the new analytical models

In addition to modelling non-rigid interfaces between blocks, the new analytical models could also be

used to account for damage to structures, as well as model the reduction in dynamic capacity of poorly

built multi-leaf walls - which often lack proper transverse bonds between the external and internal

leaves and consequently cease to behave as rigid rocking bodies, with failure instead occurring via the

disaggregation of the wall section (de Felice, 2011). The numerically-obtained capacity curves for

these structures (Fig. 2.6b) tend to display a significant reduction in both strength and displacement

capacity (25% and 35% respectively) as compared to the purely rigid model (de Felice, 2011).

Thus in order to better capture the dynamic behaviour of these structures using analytical methods,

an equivalent stiffness kn could be defined, which takes into account wall section morphology, quality

of masonry, as well as any pre-existing damage within the structure - calibrated based on the results

of either experimental tests or numerical simulations.

7.6 Summary

The objective of this chapter was to evaluate the ability of the analytical models presented in Chapter

6 to model the dynamic response of masonry structures with non-rigid interfaces. The equations of

motion derived for the different mechanisms were used for the generation of moment-rotation curves,

as well as for the free-rocking response and full time-history analysis of a range of simple structural

geometries. Parametric studies were also conducted to examine the influence of interface geometry,

stiffness and crushing on the dynamic response of these structures. These investigations enabled the

following conclusions to be drawn:

• Structures with rectangular interfaces are generally more resistant to overturning than their

circular counterparts, while hollow structures are more resistant to collapse than solid structures.

• For a given structure, increasing the interface stiffness (for a fixed compressive strength)

consistently increases the dynamic resistance, with the structure experiencing crushing faster

for higher levels of stiffness. However, increasing the compressive strength (for a fixed stiffness)

only increases the seismic resistance to a certain threshold - beyond which the behaviour of the

interface remains entirely elastic and the structure does not experience crushing at all.

• In general, the semi-flexible interface models are capable of adequately capturing the dynamic

response of their fully-flexible counterparts for both free-rocking as well as full time-histories
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for all considered mechanisms. The predictions of these two models are also consistently

more conservative than those of the rigid interface model. Further comparison between the

semi-flexible and fully-flexible predictions revealed the semi-flexible model to be the more

conservative of the two, although exceptions to these general trends can always be found due to

the chaotic nature of the rocking response.

• The tendency of the rigid model to underestimate the response was reiterated through the

case study of the Dharahara Tower - which also demonstrates a real-world application of the

new flexible interface model. The purely rigid model predicted very small rotations of the

tower, while the inclusion of a flexible interface (with finite compressive strength) resulted

in overturning of the structure as was observed in reality, thus highlighting the importance of

considering both interface stiffness as well as crushing effects.

• In the case of the cracked wall section (two block mechanism), an increase in overburden

force was found to yield mixed results. While increasing the overburden load increases the

effective stiffness of the system, it also causes material crushing. For larger loads, these crushing

effects tend to counteract the beneficial influence of the force, resulting in a levelling off of the

maximum rocking response of the wall, as well as a reduction in the overturning rotation of the

structure.

• Validation of the new models for the more complex multiple block mechanisms was also carried

out through a comparison with the results obtained using numerical modelling in 3DEC, and in

general, a fairly good correlation was observed between the analytical and numerical predictions

for both the symmetric and asymmetric rocking frames for all considered levels of interface

stiffness.

In addition to modelling non-rigid interfaces, these new analytical models could also be applied to

the analysis of damaged or poorly-built wall sections, through the definition of an equivalent stiffness

which could be calibrated based on the results of either experimental or numerical campaigns.



Chapter 8

Application of the tool for seismic
assessment

8.1 Introduction

The case studies used to illustrate potential applications of the tool thus far have comprised fairly

simple/regular structural geometries, and have focussed for the most part on comparing the relative

dynamic resilience of masonry collapse mechanisms (Chapter 5). Thus in order to demonstrate

the tool’s ability to analyse structures with complex geometries (such as those which have been

reconstructed using point cloud data from a laser scanner), as well as its capacity for conducting

seismic assessment using code-based methods, it was also used for the safety assessment of the Great

House of the Casa Grande Ruins National Monument in Arizona, USA (Fig. 8.1).

Originally constructed to demonstrate box-like behaviour, decay and degradation of the Great

House over the years - in the form of loss of the roof and floors, partial collapse of the exterior walls,

as well as the development of vertical cracks and fissures at wall junctions - resulted in the structure

being reduced to an assemblage of laterally unsupported walls with an increased vulnerability to

overturning (Fattal, 1977).

This chapter conducts a seismic vulnerability analysis of these walls, in order to both identify the

wall sections which are most susceptible to overturning, as well as evaluate the seismic capacity of

these isolated wall elements. To do the former, the tool will be used to generate overturning plots

in order to compare the different wall mechanisms and identify which one(s) are most vulnerable

to collapse, while the latter will be accomplished through the application of code-based assessment

methods. While the rigid model presented in Chapter 3 will be used to initially identify the most

vulnerable mechanisms, more detailed analysis into these critical wall sections will then be conducted

using the flexible interface model.

The seismic analysis is part of a broader inter-disciplinary research campaign which seeks to

better understand the period building technology as well as the structure’s current physical condition,
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Fig. 8.1 Great House of the Casa Grande Ruins National Monument (USA) (photograph by N. Dixon,
reproduced from Porter et al. (2018))

Fig. 8.2 East perimeter wall showing (a) horizontal coursing and (b) large vertical cracks; (c) west
perimeter wall displaying similar vertical cracking behaviour (adapted from Porter et al. (2018))
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in order to minimise future interventions and use them as efficiently as possible (Porter et al., 2018).

This research was carried out in collaboration with Professor Douglas Porter at the University of

Vermont, who also provided the point cloud data used for the reconstruction of the wall geometry in

Rhino.

8.2 Background

Originally occupied between 1350-1450 AD (Porter et al., 2018), the Great House of the Casa Grande

Ruins National Monument is the largest surviving prehistoric earthen building in the United States,

and is the only surviving example of Classic Period Hohokam "Great House" architecture (Matero,

1999).

Rectangular in plan, the building has overall dimensions of 13 m × 18 m (Fattal, 1977), and walls

ranging in height from 7.6 m (for the outer walls) to 9.1 m (for the inner walls) (Matero, 1999). These

walls have an average thickness of 1.25 m, and were constructed using lenses of caliche, which were

deposited onto the walls in horizontal courses of varying heights (Fig. 8.2a), with an average course

thickness of 61 - 76 cm (Porter et al., 2018).

However, erosion of the walls over the years, coupled with the removal of wooden structural ele-

ments that supported floor and roof frame members, has resulted in reduction of the wall cross-sections

by almost as much as 50% in some places (Porter et al., 2018). Moreover, previous earthquakes

as well as damage due to animal activity led to the development of large vertical cracks and fis-

sures in the walls (Fig. 8.2b & c), which effectively divided them into a series of tall and slender

laterally-unsupported columns, with an increased vulnerability to overturning collapse (Matero, 1999;

Porter et al., 2018). While early intervention measures in the 1890s to stabilise these vulnerable wall

elements comprised wooden beams and iron tie-rods, more recent proposals recommend the use of an

extensive system of wall cores as well as the reinstatement of original wooden structural elements

(Porter et al., 2018). The purpose of this seismic analysis is to determine which walls, if any, are in

need of these interventions.

8.3 Seismic analysis using the rigid rocking tool

In the first set of analyses, the rigid rocking tool is used to identify the most vulnerable walls in the

structure. This is done through the use of overturning plots (to compare the relative vulnerability

of the walls to sinusoidal pulses of varying frequency fp and amplitude ap), as well as through the

employment of code-based methods (to determine the actual capacity of the walls with respect to the

expected ground motions on site). The wall segments chosen for analysis are either isolated from

corners or abutting walls (which could provide bracing) by large cracks or voids, or have suffered

erosion at their bases which effectively reduces the wall section by 33-50%. It is also assumed that
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each of these wall elements act independently - that is, they are not sufficiently connected to each

other.

In total, a seismic analysis of 7 different wall sections (comprising both exterior and interior

walls) of the house was conducted, resulting in a total of 8 different mechanisms (as two mechanisms

were considered for Wall 0), as illustrated by Figs. 8.3 and 8.4. Walls 0a, 2, 3, and 5 are full-height

segments isolated by cracks and voids, while Walls 0b, 1, 4, and 6 have substantial section losses at

their bases. The material properties adopted for the analysis of these walls can be found in Table 8.1.

Table 8.1 Material properties adopted for the caliche walls (Matero, 1999)

Density, ρ (kgm−3) 2240
Young’s modulus, E (GPa) 6.89
Compressive strength, fm (MPa) 1.00

Models of each of these walls were created in Rhino using point cloud data obtained from the

laser scan of the site (Fig. 8.3). Capturing the exact geometry of these walls is essential to accurately

model stability against overturning, particularly to capture the effects of potential existing lean of the

walls and local loss of material (especially for Walls 1, 4, and 6). The point cloud data was then used

to construct a mesh which in turn was used to generate a closed solid. Each wall was assumed to

behave like single rocking block, with the axis of rotation being defined at the base of the wall section,

while two-sided rocking was assumed in all cases. Table 8.2 lists the rocking parameters calculated

by the script in Rhino for each of these different walls/mechanisms.

Table 8.2 Rocking parameters computed by the Rhinoscript for the different wall mechanisms

Mechanism peq (s−1) λ (rad) η R0 (m)

Wall 0a (W0a) 1.60 0.14 0.97 2.84
Wall 0b (W0b) 3.36 0.54 0.62 0.62
Wall 1 (W1) 2.15 0.25 0.90 1.75
Wall 2 (W2) 1.60 0.23 0.92 2.88
Wall 3 (W3) 1.62 0.20 0.94 2.71
Wall 4 (W4) 2.67 0.34 0.83 1.04
Wall 5 (W5) 1.63 0.24 0.92 2.72
Wall 6 (W6) 2.26 0.21 0.94 1.46
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8.3.1 Evaluation of critical mechanisms

The rocking parameters computed by the tool were then used to generate the corresponding equations

of motion, which were exported to MATLAB to be solved for the pulse response in order to generate

overturning plots, as illustrated by Fig. 8.5. As a number of the mechanisms (namely W0b, W1, W4

and W6) take place above ground level, their overturning plots needed to be scaled to account for

amplification of the ground motion, using the method outlined in Section 3.4.1. To do this, the natural

frequency fn, modal height he and height h at which each mechanism takes place were determined

for each of these walls using Lord Rayleigh’s principle, and are listed in Table 8.3 (alternatively, if

desired, a FEM analysis could also be conducted to estimate the natural frequency). As multiple

mechanisms were being compared, the tool automatically determined the critical mechanism for each

pulse frequency. Moreover, to illustrate the importance of accounting for ground motion amplification

when comparing the relative vulnerability of the different wall sections, both the unscaled (Fig. 8.5a)

and scaled (Fig. 8.5b) overturning plots are presented here.

Table 8.3 Parameters used for scaling the overturning plots for the Casa Grande Ruins National
Monument

Mechanism fn (Hz) he (m) h (m)

Wall 0b (W0b) 7.72 4.73 4.98
Wall 1 (W1) 6.22 4.66 3.11
Wall 4 (W4) 6.16 4.20 3.76
Wall 6 (W6) 2.50 6.01 4.77

From this comparison it was found that Wall 0a was most likely to overturn for lower pulse

frequencies (< 0.6 Hz scaled and < 1.2 Hz unscaled), while Wall 6 was most vulnerable for pulses in

the range of 0.6 – 3.0 Hz (scaled) and for pulse frequencies greater than 1.2 Hz (unscaled). This is

because larger walls require a lower frequency pulse to overturn. For higher frequency pulses, the

smaller walls are more vulnerable even if they are less slender. This was also the case for Wall 0b,

which was found to be most susceptible to collapse for frequencies greater than 3.0 Hz - due in part to

its relatively small scale, as well as the effect of accounting for ground motion amplification up the

structure.

However, this method of analysis assumes that the interface between the walls and the ground is

perfectly rigid, that is - infinitely stiff, with an infinite compressive strength, which is not the case

in reality. In fact, the finite compressive strength of the material, coupled with the large scale of the

walls, may well have resulted in some crushing of the masonry occurring at the base – thus potentially

making the results presented here un-conservative. These assumptions will be addressed in Section

8.4.
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Fig. 8.5 Comparison of the overturning plots for the different walls: (a) without and (b) with
amplification
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8.3.2 Code-based seismic assessment

While the overturning plots provide a good picture of the relative vulnerability of each collapse

mechanism, they do not provide a prediction of the maximum response expected for a specific site

with a specific seismic hazard. In order to do this, the rocking response of each wall segment was also

evaluated using the procedures found in ASCE 43-05 (2007) and the Italian Building Code (DMI,

2008), both of which use linear-elastic response spectra to predict the maximum rocking response of

a structure. For the purpose of this assessment, the linear-elastic response spectrum was approximated

using the shape of the design spectrum as specified by the International Building Code (International

Code Council, 2009), with the parameters used for the definition of this spectrum being listed in Table

8.4.

Table 8.4 Seismic design parameters used for the definition of the response spectrum

Maximum Considered Earthquake (MCE) values:
Ss 0.25 g
S1 0.08 g
TL 6 s

For Site Class = B, response spectra defined by:
SDS 0.167 g
SD1 0.053 g

Both code methods use an equivalent linear elastic oscillator to approximate the structure, and

calculate an equivalent period in order to determine the spectral demand from the response spectrum.

In order to calculate these equivalent periods, both methods require as input the slenderness of the

structure α0 ( = λ for the simple single block mechanism), the radius of rotation R0, and in the case of

the ASCE 43-05 method, the rocking frequency parameter peq - all of which can be readily calculated

by the tool and are already listed in Table 8.2 for each of the different walls/mechanisms. However,

while the two methods are similar in their use of an approximate equivalent period to determine the

spectral demand, their definition of this period is different. While ASCE 43-05 defines the equivalent

period by equating the potential energy of the rocking structure to that of the deformed linear oscillator

at maximum displacement, the Italian code approximates this period through the calculation of the

secant period of the mechanism at 40% of the critical displacement - which in turn is defined as 40%

of the collapse displacement of the centre of mass of the structure (DeJong, 2014; Shawa et al., 2012).

The two code methods also differ in their definition of the overturning rotation φov,c - i.e. the

rotation upon the exceedance of which the structure is predicted to overturn and collapse. While the

Italian code sets the allowable rotation equal to 40% of the analytical (in this case rigid) overturning

rotation φov, the ASCE 43-05 method, due to its cryptic definition of the spectral acceleration capacity

Sa,CAP (and correspondingly the design spectral displacement Sd,CAP), specifies an allowable rotation

that, depending on the aspect ratio of the structure, is approximately equal to 66% - 75% of the

analytical overturning rotation (DeJong, 2014).
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The predictions of both code methods are presented in terms of the variation of the peak ground

acceleration (PGA) with the maximum rocking angle φ as illustrated by Fig. 8.6. Note that to enable

comparison between the relative magnitudes of the rotations predicted by the two methods, in both

plots φ is expressed as a fraction of the analytical overturning rotation φov. In the case of the single

rocking block mechanism with a rigid interface, this overturning rotation is equal to the slenderness

α0 of the wall under consideration, that is, φov = α0. The PGAs required to cause overturning of each

of the walls can then be extracted directly from these plots, and are listed in Table 8.6 for both code

methods. In the case of the Italian code, this is simply done by determining the PGA for φov,c/φov

= 0.4 for each of the different walls, while in the case of the ASCE 43-05 procedure, the ratio of

φov,c/φov corresponding to the overturning displacement first needed to be determined and is listed in

Table 8.5 for each of the different walls/mechanisms.

From Fig. 8.6 and Table 8.6 it can be seen that both the ASCE 43-05 method and the Italian

code predict the same relative resilience of the different wall sections - namely that Walls 0a and

6 are most vulnerable to collapse, while Walls 0b, 2 and 5 are least vulnerable. However, a more

detailed comparison of the predictions of the two methods reveals that the Italian code is generally

more conservative than its ASCE 43-05 counterpart. This is further evidenced by a comparison of the

predictions of the two methods for Wall 0a (Fig. 8.7) from which it can be seen that for nearly all

considered levels of PGA, ASCE 43-05 consistently predicts smaller rotations of the structure than

the Italian code. Such behaviour is likely because the Italian Code was more directly derived to deal

with collapse mechanisms in ageing buildings, while ASCE 43-05 was not. However, given that the

PGA of the site is 0.10g (International Code Council, 2009), it can be seen that rocking is unlikely to

initiate (and thus overturning unlikely to occur) for any of the collapse mechanisms considered.

A qualitative comparison between the results of the overturning plots (Fig. 8.5) and those obtained

from the two code-based procedures (Fig. 8.6) reveals a generally good agreement between the three

sets of results in terms of the relative resilience of the collapse mechanisms. All three plots predict a

greater resistance to collapse (larger PGAs required) for wall segments 2 and 5 while wall segments

0a and 6 are found to be most vulnerable to failure. The main exception is Wall 0b - while both

code methods predict the largest resistance to overturning for this wall segment, the overturning plots

indicate that it is most vulnerable to collapse for higher frequency pulses, due in part to accounting

for the effects of ground motion amplification in the structure.

Wall 0b notwithstanding, the predictions of the code-based methods are generally more conserva-

tive than the overturning plots (especially in the higher frequency range), while for the lower frequency

(longer period) pulses it can be seen that the code-based procedures actually tend to overestimate the

dynamic resistance of the walls and are thus un-conservative.
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Fig. 8.6 Variation of the maximum rocking rotation φ (normalized by the analytical overturning
rotation φov) with PGA for the different wall sections, as derived by the (a) ASCE 43-05 procedure
and (b) the Italian Building Code

8.4 Seismic analysis using the flexible interface model

In the second set of analyses, the critical mechanisms identified by the rigid rocking tool in Section

8.3 were analysed in more detail using the flexible interface model as developed in Chapter 6, in

order to evaluate the influence of crushing on the seismic resilience of the walls. A code-based

seismic assessment was also conducted using this model, in order to demonstrate how the new flexible

interface formulations can be feasibly implemented within codes of practice.
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Table 8.5 Rotation predicted by ASCE 43-05 to cause collapse (φov,c) normalized by the analytical
overturning rotation (φov)

Mechanism φov,c/φov

Wall 0a (W0a) 0.69
Wall 0b (W0b) 0.86
Wall 1 (W1) 0.64
Wall 2 (W2) 0.69
Wall 3 (W3) 0.71
Wall 4 (W4) 0.72
Wall 5 (W5) 0.71
Wall 6 (W6) 0.68

Table 8.6 PGAs predicted to cause overturning by the ASCE 43-05 and Italian Building Code methods

Mechanism
PGA [g]

ASCE 43-05 Italian Building Code

Wall 0a (W0a) 0.68 0.35
Wall 0b (W0b) 1.43 0.62
Wall 1 (W1) 0.89 0.49
Wall 2 (W2) 1.12 0.58
Wall 3 (W3) 0.96 0.48
Wall 4 (W4) 1.01 0.50
Wall 5 (W5) 1.11 0.56
Wall 6 (W6) 0.70 0.36

Fig. 8.7 Comparison of the variation of maximum rocking rotation φ with PGA for Wall 0a, as derived
by ASCE 43-05 and the Italian Building Code
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Fig. 8.8 Moment-rotation curves generated for the different wall sections

8.4.1 Evaluation of critical mechanisms

The effect of crushing on the dynamic resistance of the different wall sections was first evaluated by

using the expressions derived for the shifting hinge location a f (φ ) in Chapter 6, in conjunction with

Equation 7.1, to generate moment-rotation curves for the different walls/mechanisms. The interfaces

for all the walls were approximated as solid rectangular cross-sections, characterised by a compressive

strength fm = 1.00 MPa (Table 8.1), while the stiffness of each interface was calculated by dividing the

Young’s modulus E of caliche (Table 8.1) by the average thickness of a single course of the material -

determined to be 0.69 m - leading to an approximate stiffness kn = 10.0 GPa/m.

The moment-rotation curves generated for each of the walls (normalized by the maximum rigid

restoring moment WR0sin(α0)) can be found in Fig. 8.8. From this figure it can be seen that due

to the high stiffness and low compressive strength of the caliche, all the wall segments experience

crushing fairly rapidly, with Wall 0a exhibiting the greatest relative reduction in dynamic capacity (as

compared to the rigid model). In fact, the full height wall segments (namely Walls 0a, 2, 3 and 5)

generally exhibit a greater reduction in dynamic capacity - which is to be expected, as due to their

larger scale, crushing effects are more likely to play a role in the reduction of their seismic resistance.

Note that in this plot, the curves for Walls 2 and 3 are overlapping, as are the curves for Walls 1 and 4.

To further investigate the influence of crushing on reduction in dynamic capacity, a more detailed

analysis was conducted into the response of the two most critical wall sections as identified by the

tool in Section 8.3 - namely Walls 0a and 6. The response of these walls to pulse-type excitations was

investigated by solving Equation 6.54 for pulses of varying frequency fp and amplitude ap, and the

results of these analyses are presented in Fig. 8.9, with crosses (×) being used to represent cases in
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Fig. 8.9 Comparison of the rigid and flexible overturning spectra for: (a) Wall 0a and (b) Wall 6

which the walls were found to overturn and collapse. Furthermore, to facilitate comparison with the

predictions of the rigid model, the overturning envelopes generated for the walls in Section 8.3 were

also superimposed onto the overturning spectra in Fig. 8.9.

As Fig. 8.9 illustrates, for both wall sections, the two models compare fairly well for low-

frequency pulses ( fp ≤ 1 and 1.5 Hz for W0a and W6 respectively). However, for higher frequency

pulses, the rigid model tends to underestimate the pulse amplitude required to cause overturning

without impact, while over-estimating the pulse frequencies capable of causing collapse after a single

impact. These discrepancies are particularly predominant in the case of Wall 0a, due in part to the

greater reduction in dynamic capacity of this mechanism because of crushing effects at the interface.

In addition to single sinusoidal pulses, the performance of the two mechanisms when subjected to

a full earthquake ground motion record was also compared - using in this case the ground motion

recorded during the 1940 El Centro earthquake (Fig. 8.10a). As the mechanism for Wall 6 takes place

at a height above ground level, amplification effects also needed to be accounted for, and this was

done by calculating an appropriate scale factor for the ground motion, using the methodology outlined

in Section 3.4.1. In addition to fn, he and h, which had already been computed for the scaling of the

overturning plots in Section 8.3 (Table 8.3), the spectral acceleration Sa at the natural period Tn of

the wall also needed to be determined - as indicated by the red dot in Fig. 8.10b. Using Equation

3.48, the scale factor was then calculated, and was found to be 2.0 for this mechanism. Note that as

the mechanism for Wall 0a takes places approximately at ground level, no scaling was applied to the

ground motion for this mechanism.
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Fig. 8.10 1940 El Centro earthquake: (a) input ground motion (unscaled) and (b) elastic acceleration
response spectra (5% damping)

Fig. 8.11 Predicted response of Walls 0a and 6 to the 1940 El Centro ground motion
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The response of the two walls upon being subjected to the appropriately-scaled ground motion

can be found in Fig. 8.11. As the results of the time-history analyses indicate, due to the large level of

scaling applied to the ground motion for Wall 6, this structure was found to collapse, while Wall 0a -

despite undergoing relatively large rotations, was eventually observed to return to equilibrium. This

also corresponds well with the results of the overturning spectra (Fig. 8.9), as for the range of pulse

frequencies and amplitudes considered, Wall 6 was generally found to be more susceptible to collapse

than Wall 0a.

8.4.2 Code-based seismic assessment

The new flexible interface model (with crushing effects included as in Section 8.4.1) was also

implemented within code-based seismic assessment procedures - specifically the response spectra

procedure outlined in ASCE 43-05 and the Italian Building Code, as well as the response-history

analysis method prescribed by ASCE 43-05.

In the case of the response spectra procedure, the equivalent periods of the mechanisms are now

determined using R(φ ), α(φ ) and in the case of the ASCE 43-05 method, peq(φ ) (as opposed to R0,

α0 and peq as in the rigid case), which change magnitude based on the rotation φ of the structure

(and consequently based on the shifting hinge location a f (φ )). The predictions of these code-based

methods using the new interface model can be found in Fig. 8.12.

While the flexible interface model with a finite compressive strength (i.e. crushing effects)

generally predicts a very similar relative dynamic resilience of the walls as its rigid counterpart,

there is however, a marked reduction in the actual dynamic capacity of the different mechanisms - as

illustrated by a comparison of the PGAs predicted to cause overturning by both models (Table 8.7,

determined following the same procedure as in Section 8.3.2). From this comparison it can be seen

that for all considered wall mechanisms, the flexible model with crushing effects consistently requires

a smaller PGA for collapse to occur. Furthermore, the reduction in PGA is more significant in the

case of the full-height wall segments (W0a, W2, W3 and W5) due to the greater effect of crushing at

their bases. This observation is reiterated by comparing the rigid and flexible interface predictions for

Walls 0a and 6 (i.e. the two critical wall segments) as derived by the Italian Building Code method.

As Fig. 8.13 illustrates, while the PGAs predicted to cause the same rocking rotation by the flexible

models are consistently lower than their rigid counterparts, the difference between the two is more

pronounced in the case of Wall 0a (i.e. the full-height wall segment) than Wall 6.
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Fig. 8.12 Comparison of the maximum predicted rocking rotation φ (normalized by the overturning
rotation φov) with PGA for the flexible interface model with crushing effects, as derived by the (a)
ASCE 43-05 procedure and (b) the Italian Building Code
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Table 8.7 Comparison of the PGAs predicted to cause overturning by the code-based methods for the
rigid and flexible (with crushing) interface models

Mechanism
PGA [g]

ASCE 43-05 Italian Building Code

Rigid Flexible Rigid Flexible

Wall 0a (W0a) 0.68 0.58 0.35 0.30
Wall 0b (W0b) 1.43 1.39 0.62 0.60
Wall 1 (W1) 0.89 0.86 0.49 0.47
Wall 2 (W2) 1.12 1.00 0.58 0.52
Wall 3 (W3) 0.96 0.86 0.48 0.43
Wall 4 (W4) 1.01 0.97 0.50 0.48
Wall 5 (W5) 1.11 1.01 0.56 0.51
Wall 6 (W6) 0.70 0.65 0.36 0.34

Fig. 8.13 Comparison of the rigid and flexible (with crushing) interface models, in terms of the
variation of the maximum predicted rocking rotation φ (normalized by the overturning rotation φov)
with PGA, as derived by the Italian Building Code

The flexible interface model with crushing was also used to conduct a code-based response-history

analysis, following the procedure outlined in ASCE 43-05. In order to do this, five earthquake ground

motion records were selected from the PEER NGA database (PEER, 2014), and were scaled in order

to match the target spectrum for the site. This target spectrum has the same shape as the design

spectrum from Section 8.3, but is now scaled to 0.10g, in order to match the PGA of the site. The

selected records had the smallest mean squared errors (MSE) of all the records in the database, as

compared to the target spectrum, and are listed in Table 8.8, while their corresponding response

spectra can be found in Fig. 8.14a. Note that the PGAs listed in Table 8.8 are those measured after
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Fig. 8.14 Target spectrum for the site with: (a) the scaled response spectra of the selected earthquakes
and (b) the geometric mean of the scaled earthquake records

the scaling of the ground motion records. Furthermore, the geometric mean of these five records is

plotted in Fig. 8.14b, which compares reasonably well with the target spectrum of the site.

Table 8.8 Earthquake ground motion records selected for analysis from the PEER NGA database

Earthquake Event NGA ID Magnitude MSE Scale Factor PGA [g]

San Fernando 1971 92 6.61 0.063 2.86 0.08
Friuli, Italy 1976 121 6.50 0.102 3.37 0.10
Gazli, USSR 1976 126 6.80 0.083 0.11 0.08
Tabas, Iran 1978 139 7.35 0.084 0.23 0.07
Imperial Valley 1979 172 6.53 0.084 0.50 0.07

The scaled ground motion records were then used to conduct a full time-history analysis of the

two critical wall segments (Walls 0a and 6). Moreover in the case of Wall 6, Equation 3.48 was used

to compute the additional scale factors required to account for amplification of ground motion up the

structure, and these are listed in Table 8.9 for each of the different earthquake records.

However, this method of simply applying a scale factor to the entire ground motion to account for

amplification effects is an approximation. In reality the structure would filter the motion, resulting in a

change in frequency content between the base of the structure and the bottom of the mechanism. One

method to better capture this change in frequency content would be to use a single-degree-of-freedom

oscillator with a frequency corresponding to the natural frequency of the structure under consideration,

to calculate the response at different heights along the structure. This response could then be used

as input at the base of the mechanism. However, in order for this method to be effective, the natural
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frequency of the structure needs to be determined accurately. Thus for the purpose of this analysis,

the ground motion was simply scaled up using Equation 3.48 and the change in frequency content

ignored - as this is sensitive to the natural frequency of the structure, which is challenging to calculate

accurately without a detailed finite element model.

Table 8.9 Scale factors computed by Equation 3.48 for Wall 6, for the selected ground motion records

Earthquake Event Scale Factor

San Fernando 1971 1.4
Friuli, Italy 1976 1.1
Gazli, USSR 1976 1.6
Tabas, Iran 1978 1.8
Imperial Valley 1979 1.4

The "best-estimate" of the rocking demand using the response-history method is the average of

the maximum predicted rocking response from all five simulations. The results of these analyses

(normalised by the analytical overturning rotation φov) are presented in Table 8.10 for the two walls,

for different levels of scaling of the target spectrum. Furthermore, to facilitate comparison of the

predictions of the time-history analyses with those obtained using the response spectra procedures, the

results of those analyses are also listed in Table 8.10, along with the code-based allowable rotations

for each of the different methods. Note that for the time-history method, the allowable rotation is

determined by simply applying a safety factor of 2 to the analytical overturning rotation.

Table 8.10 Comparison of the predictions of the different code-based methods for the maximum
rocking response of the critical wall segments

Method
Wall 0a : φ /φov

φov,c/φov
PGA = 0.10g PGA = 0.20g PGA = 0.30g

ASCE 43-05 (response spectra) 0.010 0.060 0.130 0.689
Italian code (response spectra) 0.010 0.175 0.400 0.400
ASCE 43-05 (time-history) 0.014 0.058 0.173 0.500

Method
Wall 6 : φ /φov

φov,c/φov
PGA = 0.10g PGA = 0.20g PGA = 0.30g

ASCE 43-05 (response spectra) N/A 0.045 0.100 0.682
Italian code (response spectra) N/A 0.140 0.310 0.400
ASCE 43-05 (time-history) 0.002 0.052 0.235 0.500

From this comparison it can be seen that for Wall 0a, the predictions of the time-history simulations

compare reasonably well with those obtained using the ASCE 43-05 response spectra procedure for

all considered levels of scaling of the PGA. The predicted rotations are also considerably smaller than

the analytical overturning rotation (at most φ /φov = 0.17) as well as the code-based allowable rotation
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(at most φ /φov,c = 0.35). The Italian code, on the other hand, yields far more conservative predictions,

and in the case of the PGA of 0.30g even predicts overturning of the structure.

In the case of Wall 6, the time-history simulations consistently yield more conservative predictions

than the ASCE 43-05 response spectra method. In the case of the PGA of 0.30g in particular, the

response obtained using time-history analyses was considerably larger than the rotation predicted by

the response spectra method. This is due to the effect of rocking amplification in the case of the Gazli,

USSR ground motion record, which predicted a maximum rotation for the structure which was almost

three times as high as the other records - thus skewing the average. However, these rotations are still

smaller than the code-based allowable rotations, as well as the rotations predicted by the Italian code -

with the exception of the PGA of 0.10g, where the Italian code predicted no response at all.

8.5 Summary

In this chapter, the computational tool was used to conduct a seismic vulnerability analysis of the

Great House of the Casa Grande Ruins National Monument, USA. Through this analysis, the ability

of the tool to integrate complicated geometry obtained from laser scan data with the dynamic analysis

of rocking mechanisms was demonstrated. The capacity of the detailed wall geometries to resist

overturning due to earthquake loading was quantified using both rocking dynamics theory as well

as a variety of code-based methods, for both the rigid and flexible interface models, while the most

vulnerable portions of the structure were also identified. The main findings from these investigations

are summarised below:

• A comparison of the overturning plots generated for the structure using the rigid rocking

tool indicated that Walls 0a and 6 are most vulnerable to collapse. These observations were

corroborated by the results of the code-based methods, which also predicted the highest

vulnerabilities for these two wall segments.

• In fact, a qualitative comparison between the results of the overturning plots and those obtained

from the two code-based procedures revealed a generally good agreement between the three

sets of results in terms of the relative resilience of the different collapse mechanisms. However,

while the predictions of the code-based methods are generally more conservative than the

overturning plots (especially in the higher frequency range), for the lower frequency (longer

period) pulses it can be seen that the code-based procedures actually tend to overestimate the

dynamic resistance of the walls and are thus un-conservative.

• The introduction of the flexible interface model with crushing effects generally reduces the

dynamic resistance of the walls. In the case of the overturning plots, the introduction of a

flexible interface with a finite compressive strength generally led to a reduction in the pulse

amplitude required to cause overturning without impact, while also decreasing the range of

pulse frequencies capable of causing single-impact overturning. Similarly in the case of the
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code-based response spectra methods, the flexible interface model generally decreased the PGA

predicted to cause overturning of the walls - with this effect being more pronounced in the

case of the larger-scale full height walls, due to the greater influence of crushing effects at their

bases.

• A comparison of predictions of the ASCE 43-05 procedure and those of the Italian Building

Code (Table 8.7) shows that, for both the rigid and flexible interface models, the procedure

outlined in the Italian code is generally more conservative than its ASCE 43-05 counterpart.

This is likely because the Italian Code is more directly derived to deal with collapse mechanisms

in ageing buildings.

• Furthermore, a comparison of the predictions of the ASCE 43-05 response spectra and time-

history methods also revealed a reasonably good correlation between both sets of results.

• Given that the PGA of the site is 0.10g, rocking is unlikely to initiate (for the rigid models), and

thus overturning unlikely to occur (for both rigid and flexible models) for any of the collapse

mechanisms considered. Thus using any of the analytical methods that are currently available,

none of the walls are in danger of collapse as a result of overturning.
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Conclusions

9.1 Summary of findings

This research has two main objectives: (1) To develop a simple computational modelling tool to

rapidly predict critical mechanisms and dynamic collapse of any user-defined structural geometry,

and (2) to develop a new interface formulation to more realistically model the influence of interface

stiffness and crushing (i.e. material damage) on the dynamic response of masonry structures - which

can also be implemented within the framework of the tool.

Starting with a digital drawing of a user-defined structural geometry in Rhino (a typical CAD

software), the tool calculates the equivalent rocking parameters defining a range of different collapse

mechanisms, which are then exported to MATLAB where either rocking dynamics can be used to

derive and solve the relevant equations of motion, or, depending on the purpose of the analysis,

a code-based seismic assessment can be conducted instead. Furthermore, to better capture the

dynamic behaviour of real-world structures, a new formulation is proposed to account for ground

motion amplification effects. In the case of the flexible interfaces with a finite compressive strength

(i.e. crushing effects), expressions are also derived to account for the inward-shift of the rocking

rotation points, which in turn are used to re-derive the rocking equations of motion for the different

mechanisms. The tool is then used for the seismic analysis of a number of case-studies, comprising

masonry structures of varying scales and typologies. The main findings from these investigations are

as follows:

• Complex geometries and mechanisms: The ability of the tool to model complex structural

geometries was demonstrated through its application to the seismic analysis of a number of

structures reconstructed using point cloud data from the laser scanner - including a temple

and tower damaged during the 2015 Gorkha earthquake, as well as the walls of a historic

earthen structure, while its capacity for modelling complex mechanisms as well as the beneficial

influence of reinforcement was demonstrated through its application to the analysis of a typical

Italian church.
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• Time-history analyses: A comparison of the time-history predictions of the tool with the results

of experimental shaking table tests revealed a generally good correlation between both sets of

results - however, this correlation is influenced by the selection of appropriate mechanisms for

analysis, which depend in turn upon user experience and engineering judgement. Similarly in

the case of the monuments damaged during the 2015 Gorkha earthquake, a comparison of the

predictions of the analytical model with the results of numerical simulations in 3DEC showed

the tool to be capable of adequately reproducing two-dimensional collapse, but inherently

limited when it came to capturing more complex three-dimensional rocking response.

• Overturning plots: In the case of seismic analyses involving multiple different structures

and/or mechanisms, the overturning plots generated by the tool were found to be an effective

means of comparing the relative dynamic resilience of different collapse mechanisms, with the

tool’s ability to identify the most vulnerable mechanisms for each pulse frequency also being

demonstrated. These plots also enabled investigations to be conducted into the influence of

slenderness and scale on the rocking stability of the structures. While slenderness was generally

found to control the point at which rocking initiates (for the rigid interface model), as well as

the minimum acceleration required for extremely long-period pulses to cause overturning, the

magnitude of rotation, and consequently collapse, is dependent upon the scale of the structure,

with smaller structures generally being more susceptible to collapse.

• Ground motion amplification: Ground motion amplification was found to play a significant

role in the reduction of the dynamic capacity of collapse mechanisms which took place at a

height above ground level. When applied to full time-history analyses, as in the case of the

analysis of the two columns damaged during the 2015 Gorkha earthquake, accounting for

amplification effects resulted in the predictions of the tool comparing fairly well with the field

observations. Similarly, in the case of the seismic analysis of the Italian church, taking these

effects into consideration through the scaling of the overturning plots was observed to generally

reduce the minimum pulse amplitude required for overturning to occur, and in some cases even

change the relative vulnerabilities of the different collapse mechanisms.

• Interface flexibility and crushing: Modelling interfaces as flexible (as opposed to rigid) tends

to reduce the dynamic resistance of the structure due to the inward-shift of the rocking rotation

points. However, the extent of this reduction in dynamic capacity depends on several factors,

which can broadly be divided into properties of the interface - such as the interface geometry,

stiffness and compressive strength, and properties of the structure - such as density, scale

and overburden loads. In general, structures with rectangular interfaces are more resistant

to overturning than their circular counterparts, while hollow structures are more resistant

to collapse than solid structures. Furthermore, increasing the interface stiffness for a given

structure consistently increases the seismic resistance, while increasing compressive strength

only increases the dynamic capacity to a certain threshold - beyond which the behaviour of the
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interface remains entirely elastic and the structure does not experience crushing at all. However,

increasing the overburden force (in the case of the two block mechanism) yields mixed results -

while an increase in overburden load leads to an increase in the effective stiffness of the system,

it also causes crushing, which tends to counteract the beneficial influence of the force. The

importance of considering crushing effects was further highlighted through the case-study of the

tower damaged during the 2015 Gorkha earthquake - while the rigid interface model predicted

very small rotations of the tower, the inclusion of a flexible interface with a finite compressive

strength resulted in overturning of the structure as was observed in reality. Finally, a comparison

of the predictions of the new models for the more complex multiple block mechanisms with

the results obtained using discrete element modelling (DEM) in 3DEC, revealed a generally

good correlation between both sets of results for all considered levels of interface stiffness -

thus providing confidence in these new analytical formulations.

• Semi-flexible interface model: Proposed as a simplified alternative to the fully-flexible in-

terface models, the semi-flexible interface models were found to be capable of adequately

reproducing the dynamic response of the fully-flexible models for both free-rocking as well as

full time-histories, for all considered mechanisms.

• Comparison of rocking dynamics and code-based assessment procedures: A generally

good correlation was observed between the predictions of the overturning plots (obtained

using rocking dynamics) and those of the code-based procedures, in terms of the relative

resilience of the different collapse mechanisms. However, in the higher frequency range the

code-based methods tend to yield more conservative predictions than the overturning plots,

while in the lower frequency range they tend to over-estimate dynamic resistance and are thus

un-conservative.

9.2 Scientific contributions

As the findings in Section 9.1 demonstrate, the two main objectives of the research have been met.

Namely, (1) a computational modelling tool, capable rapidly comparing different mechanisms and

modelling complex structural geometries was developed and (2) a new formulation to model the

influence of interface stiffness and crushing was proposed. More specifically, the new contributions of

this research include:

• Derivation of rocking equations of motion for user-defined structural geometries: The

tool’s implementation in Rhino enables the rocking equations of motion to be derived for any

user-defined structural geometry, thus making the tool particularly useful for the analysis of

structures with irregular geometries such as statues and temples, or walls which have suffered

from substantial section losses due to decay and degradation.



190 Conclusions

• Extension of the procedure to account for ground motion amplification effects: This ex-

tension of Priestley’s (1985) approach accounts for the effect of ground motion amplification in

both the overturning plots as well as the full time-history analyses (through the calculation of an

appropriate scale factor for the input ground motion), thereby making it possible to effectively

represent the reduction in dynamic capacity of collapse mechanisms which take place at a

significant height above ground level - albeit in an approximate manner.

• Development of a methodology for rapid comparison and identification of vulnerable col-
lapse mechanisms: Through the use of overturning plots, the tool makes it possible to rapidly

compare the relative dynamic resilience of different collapse mechanisms. Furthermore, the

methodology developed in MATLAB also enables automatic detection of the most vulnerable

mechanism for each pulse frequency.

• Derivation of expressions for the inward-shift of rocking rotation points due to the pres-
ence of flexible interfaces, for different interface geometries: This extension builds on the

approach originally proposed by Costa (2012) for the single rocking block - which accounts for

the inward-shift of the rocking rotation point due to the presence of a flexible interface with

a finite compressive strength (i.e. crushing) - to derive similar expressions for more complex

geometries such as hollow rectangular, solid circular and hollow circular interfaces - as are

found in many real-world masonry structures.

• Re-derivation of the rocking equations of motion to account for the influence of flexible
interfaces: Starting from Lagrange’s equation, the rocking equation of motion is re-derived for

the single, two and multiple block mechanisms in order to account for the presence of flexible

interfaces with crushing effects. Comparison with the results of numerical (DEM) simulations

and field observations provides confidence in these new analytical models.

• Development of a semi-flexible interface model: To reduce computational burden, an alterna-

tive to the flexible interface model is proposed, which captures the inward-shift of the rocking

rotation points in a more simplified/approximate manner than its fully-flexible counterpart. This

model is also used to re-derive the coefficient of restitution as well as the relationship between

the relative rotations of the blocks, for the different mechanisms.

9.3 Practical applications

The tool has the potential to be extremely useful in European countries, which have an abundance of

cultural heritage vulnerable to seismic action. Furthermore, the use of a CAD model of the structure

as input - which most engineers will most-likely already have - eliminates the need to generate a

new model for analysis, which can be labour-intensive and time-consuming. In fact, the tool requires

the exact same input as the analyses that engineers are doing every day, but provides a much more

appropriate result by accounting more directly for dynamic effects.
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Furthermore, by making it open-source, easy to use and computationally-inexpensive, the tool

could be especially useful to engineers in developing countries such as India, Nepal and Pakistan,

which are highly seismic zones with limited funding for protection of built heritage and which

consequently tend to suffer a disproportionately large number of casualties during earthquakes.

9.4 Future research

While the proof-of-concept of the computational tool has been demonstrated, significant new theo-

retical and computational developments are required before it can be disseminated for practical use.

Specifically these include:

• Development of a new software platform in Python: At present, the equivalent rocking

parameters extracted by the scripts in Rhino are written to a text file for export to MATLAB

where they are then used to generate and solve the corresponding equation of motion for

the mechanism. While such an approach serves its purpose, it is primitive and cumbersome

when dealing with multiple and different mechanisms – especially in the case of parametric

studies or when solving iteratively to determine critical mechanisms. Instead, Python (Python

Software Foundation, 2016) could be used to interface directly with the CAD-software (initially

with Rhino, with the future aim to generalise to other CAD platforms), while the reliance on

MATLAB could also be eliminated. To achieve this, the scripts that are currently written in

Rhino and MATLAB would need to be converted to equivalent Python scripts. In the case of

the scripts in Rhino, this could be done by selective use of RhinoScriptSyntax in Python, while

for the MATLAB scripts SciPy and NumPy (Jones et al., 2001; Van Der Walt et al., 2011) could

be used instead.

• Automatic generation of collapse mechanisms: Thus far, the tool has been limited to user-

defined collapse mechanisms, which is tedious, and requires special expertise and experience

from the user. Thus to make to tool more useful in practice, it should automatically define

different mechanisms, based on the presence of certain macro-elements within the structure,

and determine the most vulnerable one(s). Specifically, this would require automatic detection

of typical structural elements (such as vaults, walls etc.) in the CAD geometry, followed by

an iterative (trial and error) process to determine critical mechanisms for the given structure.

In the case of structural elements such as vaults, new equations of motion would also need to

be derived to model their more complicated 3D collapse mechanisms. Once this procedure is

completed, an extensive number of example structures (and example components of structures)

could be modelled using the tool, and critical collapse mechanisms determined using this

process. These results could then be used as a training set to optimise the automatic definition

of important collapse mechanisms within a given geometry, to limit computational burden.
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• Integration of the tool with other computational analysis programs: In order to enable

practical application of the tool, it is important to more accurately account for dynamic amplifi-

cation effects, which depends in turn upon the accurate determination of the natural frequencies

of the structure. One way of doing this would be to link the tool with an open-source finite

element analysis (FEA) package (e.g. OpenSees). While FEA is not efficient in modelling

complex collapse states involving large displacements and loss of contact at element interfaces,

it is very effective in solving eigenvalue problems. Thus, FEA could be used in the background

to automatically determine the natural frequencies of the structure, and thus more accurately

model collapse towards the top of the structure (i.e. towers, chimneys, upper floor walls).

• Development of a new theoretical framework to realistically model accumulated damage:

At present, analytical expressions have been derived for the inward-shift of rotation points

due to the presence of flexible interfaces and crushing (i.e. material damage). However, no

methodology currently exists to account for the accumulation of damage during an earthquake.

Thus there is a need to develop a new algorithm to solve the equations of motion to account for

damage accumulation due to crushing effects in previous cycles of the motion. This could be

done through the development of a new constitutive model to capture the non-linear behaviour

of the interfaces, including the effects of cyclic loading.

• Retrofit optimisation: Retrofits such as tie bars have proven to be effective at increasing

the resistance of masonry façades and walls to out-of-plane collapse. However, such retrofit

measures can be quite expensive and tend to disturb the original fabric/aesthetics of the structure.

At present, following the approach presented in Mauro et al. (2015), the tool models the

restraining influence of the tie bars as a constant static force (Chapter 3). While this approach

is a good approximation, it should be refined by replacing the constant force with a spring of

constant stiffness instead – as presented in Casapulla et al. (2017) and Giresini and Sassu (2017).

Using either of these approaches, the assessment algorithm could then be used to determine the

optimal number and location of the tie bars, in order to minimise intervention and use them as

effectively as possible.

• Development of a new user-interface: To make the tool accessible to practising engineers and

academics, a user-interface needs to be developed. The idea here is that the user would open

the 3D geometric model directly within a given CAD environment or independent application,

and Python scripts would then be run to derive and solve the relevant equations of motion.

The analysis results could then be output directly within the CAD environment or in the new

independent interface. If multiple mechanisms are being compared, the tool could also highlight

the critical mechanisms directly in the CAD file. The interface could also allow the user to

select numerous options related to the analysis (interface typology, crushing, retrofits etc.), as

well as input related material properties and seismicity parameters that can be used to access a
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catalogue of potential ground motions, or enable user-supplied ones. A user-interface to enable

code-based assessment methods to be compared to analysis results could also be included.





References

Acikgoz, S. and DeJong, M. J. (2012). The interaction of elasticity and rocking in flexible structures
allowed to uplift. Earthquake Engineering & Structural Dynamics, 41:2177–2194.

Aedes Software Snc (1997). AEDES Software.

Alexandris, A. P., Protopapa, E., and Psycharis, I. N. (2004). Collapse mechanisms of masonry
buildings drived by the distinct element method. In Proceedings of 13th World Conference on
Earthquake Engineering, Vancouver, B.C.

Allen, R. H. and Bielaks, J. (1986). On the dynamic response of rigid body assemblies. Earthquake
Engineering & Structural Dynamics, 14:861–876.

Applied Technology Council (ATC) (1998). Evaluation of earthquake damaged concrete and masonry
wall buildings. Basic procedures manual, FEMA 306. Technical report, Redwood City.

Applied Technology Council (ATC) (2000). Pre-standard and commentary for the seismic rehabilita-
tion of buildings, FEMA 356. Technical report, Washington DC.

ASCE 43-05 (2007). Seismic Design Criteria for Structures, Systems, and Components in Nuclear
Facilities. Technical report, American Society of Civil Engineers and Structural Engineering
Institute.

Atkinson, R., Amadei, B., Saeb, S., and Sture, S. (1989). Response of masonry bed joints in direct
shear. Journal of Structural Engineering, 115(9):2276–2296.

Augenti, N. and Parisi, F. (2010). Learning from Construction Failures due to the 2009 L ’ Aquila,
Italy, Earthquake. Journal of Perfomance of Constructed Facilities, 24(6):536–555.

Azevedo, J. and Sincraian, G. (2001). Modelling the Seismic Behaviour of Monumental Masonry
Structures. In Proceedings of the International Congress - ARCHI 2000.

Azevedo, J., Sincraian, G., and Lemos, J. V. (2000). Seismic Behaviour of Blocky Masonry Structures.
Earthquake Spectra.

Barton, N. (1976). The shear strength of rock and rock joints. International Journal of Rock Mechanics
and Mining Sciences and, 13(9):255–279.

Betti, M. and Vignoli, A. (2008). Modelling and analysis of a Romanesque church under earthquake
loading: Assessment of seismic resistance. Engineering Structures, 30(2):352–367.

Betti, M. and Vignoli, A. (2011). Numerical assessment of the static and seismic behaviour of the
basilica of Santa Maria all’Impruneta (Italy). Construction and Building Materials, 25(12):4308–
4324.



196 References

Bhagat, S., Buddika, H. A., Adhikari, R. K., Shrestha, A., Bajracharya, S., Joshi, R., Singh, J.,
Maharjan, R., and Wijeyewickrema, A. C. (2017). Damage to Cultural Heritage Structures and
Buildings Due to the 2015 Nepal Gorkha Earthquake. Journal of Earthquake Engineering, pages
1–20.

Block, P., Ciblac, T., and Ochsendorf, J. (2006). Real-time limit analysis of vaulted masonry buildings.
Computers and Structures, 84(29-30):1841–1852.

Bui, T. T. and Limam, A. (2012). Masonry Walls under Membrane or Bending Loading Cases :
Experiments and Discrete Element Analysis. In Topping, B., editor, Proceedings of the Eleventh
International Conference on Computational Structures Technology, page Paper 119, Stirlingshire,
Scotland. Civil-Comp Press.

Campillo, M., Gariel, J. C., Aki, K., and Sánchez-Sesma, F. (1989). Destructive Strong Ground
Motion in Mexico City: Source, Path and Site Effects During Great 1985 Michoacán Earthquake.
Bulletin of the Seismological Society of America, 79(6):1718–1735.

Candeias, P. X., Costa, A. C., Mendes, N., Costa, A. A., and Lourenço, P. B. (2017). Experimental
Assessment of the Out-of-Plane Performance of Masonry Buildings Through Shaking Table Tests.
International Journal of Architectural Heritage, 11(1):31–58.

Capozucca, R. (2011). Shear Behaviour of Historic Masonry Made of Clay Bricks. The Open
Construction and Building Technology Journal, 5(1):89–96.

Casapulla, C., Giresini, L., and Lourenço, P. B. (2017). Rocking and Kinematic Approaches for Rigid
Block Analysis of Masonry Walls: State of the Art and Recent Developments. Buildings, 7(3):69.

Casarin, F. and Modena, C. (2008). Seismic Assessment of Complex Historical Buildings: Application
to Reggio Emilia Cathedral, Italy. International Journal of Architectural Heritage, 2(3):304–327.

Castellazzi, G., Gentilini, C., and Nobile, L. (2013). Seismic Vulnerability Assessment of a Historical
Church : Limit Analysis and Nonlinear Finite Element Analysis. Advances in Civil Engineering,
2013:12.

Clemente, P. (1998). Introduction to the dynamics of stone arches. International Journal of Earthquake
Engineering and Structural Dynamics, 27:513–522.

Costa, A., Arêde, A., Costa, A. A., Ferreira, T. M., Gomes, A., and Varum, H. (2014). Experimental
study of the out-of-plane behaviour of unreinforced sacco stone masonry walls : Comparative
analysis of two different test setups. In Proceedings of the 9th International Masonry Conference,
Guimaraes.

Costa, A. A. (2012). Seismic Assessment of the Out-of-Plane Performance of Traditional Stone
Masonry Walls. PhD thesis, University of Porto.

Costa, A. A., Arêde, A., Penna, A., and Costa, A. (2013). Free rocking response of a regular stone
masonry wall with equivalent block approach: experimental and analytical evaluation. Earthquake
Engineering & Structural Dynamics, 42(15):2297–2319.

Cundall, P. A. (1988). Formulation of a three-dimensional distinct element model—Part I. A scheme
to detect and represent contacts in a system composed of many polyhedral blocks. International
Journal of Rock Mechanics and Mining, 25(3):107–116.

Dal Cin, A. and Russo, S. (2014). Influence of the annex on seismic behavior of historic churches.
Engineering Failure Analysis, 45:300–313.



References 197

D’Ayala, D. (2005). Force and displacement based vulnerability assessment for traditional buildings.
Bulletin of Earthquake Engineering, 3:235–265.

D’Ayala, D. and Speranza, E. (2002). An Integrated Procedure for the Assessment of Seismic
Vulnerability of Historic Buildings. In Proceedings of the 12th European Conference on Earthquake
Engineering, page Paper 561.

D’Ayala, D. and Speranza, E. (2003). Definition of Collapse Mechanisms and Seismic Vulnerability
of Historic Masonry Buildings. Earthquake Spectra, 19(3):479–509.

de Felice, G. (2011). Out-of-Plane Seismic Capacity of Masonry Depending on Wall Section
Morphology. International Journal of Architectural Heritage, 5(4-5):466–482.

de Felice, G., De Santis, S., Lourenço, P. B., and Mendes, N. (2017). Methods and Challenges for
the Seismic Assessment of Historic Masonry Structures. International Journal of Architectural
Heritage, 11(1):143–160.

de Felice, G. and Giannini, R. (2000). Assessment of Seismic Vulnerability To Out-of-Plane Collapse
of Masonry Walls. In Proceedings of the 12th World Conference on Earthquake Engineering.

De Lorenzis, L., DeJong, M. J., and Ochsendorf, J. A. (2007). Failure of masonry arches under
impulse base motion. Earthquake Engineering & Structural Dynamics, 36(14):2119–2136.

de Luca, A., Giordano, A., and Mele, E. (2004). A simplified procedure for assessing the seismic
capacity of masonry arches. Engineering Structures, 26(13):1915–1929.

Decanini, L. D., Liberatore, D., Liberatore, L., and Sorrentino, L. (2012). Preliminary Report on the
2012, May 20, Emilia Earthquake. Technical report, Sapienza University of Rome.

DeJong, M. J. (2009). Seismic Assessment Strategies for Masonry Structures. Phd thesis, Mas-
sachusetts Institute of Technology.

DeJong, M. J. (2012a). Amplification of Rocking Due to Horizontal Ground Motion. Earthquake
Spectra, 28(4):1405–1421.

DeJong, M. J. (2012b). Seismic response of stone masonry spires: Analytical modeling. Engineering
Structures, 40:556–565.

DeJong, M. J. (2014). Rocking of Structures During Earthquakes: From Collapse of Masonry to
Modern Design. SECED Newsletter, 25(3):1–8.

DeJong, M. J., De Lorenzis, L., Adams, S., and Ochsendorf, J. A. (2008). Rocking Stability of
Masonry Arches in Seismic Regions. Earthquake Spectra, 24(4):847–865.

DeJong, M. J. and Dimitrakopoulos, E. G. (2012). Equivalent rocking systems: Fundamental rocking
parameters. In Proceedings of the 15th World Conference in Earthquake Engineering (WCEE),
Lisbon, Portugal.

DeJong, M. J. and Dimitrakopoulos, E. G. (2014). Dynamically equivalent rocking structures.
Earthquake Engineering & Structural Dynamics, 43(10):1543–1563.

DeJong, M. J., Giardina, G., Plunkett, W., and Ochsendorf, J. A. (2015). Seismic design of a stone
vault. In SECED 2015 Conference: Earthquake Risk and Engineering towards a Resilient World,
pages 1–10, Cambridge.



198 References

DeJong, M. J. and Ochsendorf, J. A. (2006). Analysis of vaulted masonry structures subjected
to horizontal ground motion. In Lourenco, P., Roca, P., Modena, C., and Agrawal, S., editors,
Proceedings, Fifth International Conference on the Structural Analysis of Historical Constructions,
pages 973–980, New Delhi.

DeJong, M. J. and Vibert, C. (2012a). Seismic response of stone masonry spires: Computational and
experimental modeling. Engineering Structures, 40:566–574.

DeJong, M. J. and Vibert, C. (2012b). Seismic response of stone masonry spires: Computational and
experimental modeling. Engineering Structures, 40:566–574.

Dimitrakopoulos, E. G. and DeJong, M. J. (2012). Revisiting the rocking block: closed-form solutions
and similarity laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences, 468(2144):2294–2318.

Dimitri, R., De Lorenzis, L., and Zavarise, G. (2011). Numerical study on the dynamic behavior
of masonry columns and arches on buttresses with the discrete element method. Engineering
Structures, 33(12):3172–3188.

DMI (2008). Decreto del Ministro delle Infrastrutture 14 gennaio 2008. Approvazione delle nuove
norme tecniche per le costruzioni. Gazzetta Ufficiale della Repubblica Italiana n. 29, Supplemento
Ordinario n. 30. Technical report.

Doherty, K., Griffith, M. C., Lam, N. T. K., and Wilson, J. L. (2002). Displacement-based seismic
analysis for out-of-plane bending of unreinforced masonry walls. Earthquake Engineering &
Structural Dynamics, 31(4):833–850.

Doherty, K., Rodolico, B., Lam, N. T. K., Wilson, J. L., and Griffith, M. C. (2000). The Modelling of
Earthquake Induced Collapse of Unreinforced Masonry Walls Combining Force and Displacement
Principals. In Proceedings of the 12th World Conference on Earthquake Engineering, pages 1–8.

Drei, A. and Oliveira, C. (2001). The seismic behaviour of the "Aqueduto da Amoreira” in Elvas using
distinct element modelling. In Lourenço, P. B. and Roca, P., editors, Proceedings, 3rd International
Seminar on Historical Constructions, pages 903–912, Guimaraes.

Drysdale, R., Vanderkeyl, R., and Hamid, A. (1979). Shear strength of brick masonry joints. In
Proceedings, 5th International Brick Masonry Conference, pages 106–113, Washington DC.

EC (Eurocode) 8 (2004). Design of structures for earthquake resistance—Part 1: General rules,
seismic actions and rules for buildings. Technical report, Brussels.

EEFIT (2005). The Kashmir, Pakistan Earthquake of 8 October 2005: A Field Report By EEFIT.
Technical Report October.

ElGawady, M. A., Ma, Q. T., Butterworth, J. W., and Ingham, J. M. (2011). Effects of interface material
on the performance of free rocking blocks. Earthquake Engineering & Structural Dynamics,
40:375–392.

EN 1998-1 (2004). Eurocode 8. Design of structures for earthquake resistance—Part 1: General rules,
seismic actions and rules for buildings. Technical report, Brussels, Belgium.

Fattal, S. (1977). Structural Preservation of Historic Monuments at Casa Grande and Tumacacori.
Technical report, National Bureau of Standards, Washington DC.

Ferreira, T. M., Costa, A. A., Vicente, R., and Varum, H. (2015). A simplified four-branch model
for the analytical study of the out-of-plane performance of regular stone URM walls. Engineering
Structures, 83:140–153.



References 199

Fiorentino, G., Forte, A., Pagano, E., Sabetta, F., Baggio, C., Lavorato, D., Nuti, C., and Santini, S.
(2017). Damage patterns in the town of Amatrice after August 24th 2016 Central Italy earthquakes.
Bulletin of Earthquake Engineering, pages 1–25.

Galetzka, J., Melgar, D., Genrich, J. F., Geng, J., Owen, S., Lindsey, E. O., Xu, X., Bock, Y., Avouac,
J.-P., and Adhikari, L. B. (2015). Slip pulse and resonance of Kathmandu basin during the 2015
Gorkha earthquake Nepal. Science, 349(6252):1091–1095.

Gazetas, G., Garini, E., Berrill, J. B., and Apostolou, M. (2012). Sliding and overturning potential of
Christchurch 2011 earthquake records. Earthquake Engineering & Structural Dynamics, 41:1921–
1944.

Giresini, L., Fragiacomo, M., and Lourenço, P. B. (2015). Comparison between rocking analysis
and kinematic analysis for the dynamic out-of-plane behavior of masonry walls. Earthquake
Engineering & Structural Dynamics.

Giresini, L. and Sassu, M. (2017). Horizontally restrained rocking blocks: evaluation of the role of
boundary conditions with static and dynamic approaches. Bulletin of Earthquake Engineering,
15(1):385–410.

Goda, K., Kiyota, T., Pokhrel, R. M., Chiaro, G., Katagiri, T., Sharma, K., and Wilkinson, S. (2015).
The 2015 Gorkha Nepal earthquake: insights from earthquake damage survey. Frontiers in Built
Environment, 1(8):1–15.

Graziotti, F., Tomassetti, U., Penna, A., and Magenes, G. (2016). Out-of-plane shaking table tests on
URM single leaf and cavity walls. Engineering Structures, 125:455–470.

Griffith, M. C., Lam, N. T. K., Wilson, J. L., and Doherty, K. (2004). Experimental Investigation of
Unreinforced Brick Masonry Walls in Flexure. Journal of Structural Engineering, 130(3):423–432.

Hart, R., Cundall, P. A., and Lemos, J. V. (1988). Formulation of a three-dimensional distinct element
model—Part II. Mechanical calculations for motion and interaction of a system composed of many
polyhedral blocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics
Abstracts, 25(3):117–125.

Heyman, J. (1995). The Stone Skeleton: Sturctural Engineering of Masonry Architecture. Cambridge
University Press, Cambridge.

Hough, S. E., Martin, S., Bilham, R., and Atkinson, G. M. (2002). The 26 January 2001 M 7.6 Bhuj,
India, Earthquake: Observed and Predicted Ground Motions. Bulletin of the Seismological Society
of America, 92(6):2061–2079.

Housner, G. W. (1963). The Behavior of Inverted Pendulum Structures during Earthquakes. Bulletin
of the Seismological Society of America, 53(2):403–417.

International Code Council (2009). International Building Code. Technical report, ICC.

Itasca Consulting Group (2007a). 3DEC - 3 Dimensional Distinct Element Code.

Itasca Consulting Group (2007b). 3DEC 3-Dimensional Distinct Element Code, Version 4.10: Theory
and Background. ICG, Minneapolis, Minnesota.

Iwan, W. and Chen, X. (1994). Important near-field ground motion data from the Landers earth-
quake. In Duma, G., editor, Proceedings, 10th European Conference on Earthquake Engineering,
Rotterdam.



200 References

Jones, E., Oliphant, E., Peterson, P., and Al, E. (2001). SciPy: Open Source Scientific Tools for
Python.

Kaushik, H. B., Rai, D. C., and Jain, S. K. (2007). Stress-Strain Characteristics of Clay Brick Masonry
under Uniaxial Compression. Journal of Materials in Civil Engineering, 19(9):728–739.

Koh, A.-S., Spanos, P. D., and Roesset, J. M. (1986). Harmonic rocking of rigid block on flexible
foundation. Journal of Engineering Mechanics, 112(11):1165–1180.

Lagomarsino, S. (2015). Seismic assessment of rocking masonry structures. Bulletin of Earthquake
Engineering, 13:97–128.

Lagomarsino, S. and Ottonelli, D. (2012). MB_PERPETUATE.

Lagomarsino, S., Penna, A., Galasco, A., and Cattari, S. (2013). TREMURI program: An equivalent
frame model for the nonlinear seismic analysis of masonry buildings. Engineering Structures,
56:1787–1799.

Lemos, J. V. (1998). Discrete element modelling of the seismic behavior of stone masonry arches. In
Proceedings of the Fourth International Symposium on Computer Methods in Structural Masonry,
pages 220–227.

Lemos, J. V. (2007). Discrete Element Modeling of Masonry Structures. International Journal of
Architectural Heritage, 1(2):190–213.

Lemos, J. V. and Campos Costa, A. (2017). Simulation of Shake Table Tests on Out-of-Plane Masonry
Buildings. Part (V): Discrete Element Approach. International Journal of Architectural Heritage,
11(1):117–124.

Lipo, B. and de Felice, G. (2016). Smooth-rocking oscillator under natural accelerograms. In
Papadrakakis, M., Papadopoulos, V., Stefanou, G., and Plevris, V., editors, ECCOMAS Congress
2016: 7th European Congress on Computational Methods in Applied Sciences and Engineering,
number June, pages 5–10, Crete Island, Greece.

Lipo, B. and de Felice, G. (2017). Seismic resilience of masonry walls rocking on elastic foundation.
In Proceedings of the 16th World Conference in Earthquake Engineering (WCEE), Santiago, Chile.

Magenes, G. (2000). A method for pushover analysis in seismic assessment of masonry buildings. In
Proceedings of the 12th World Conference on Earthquake Engineering, page Paper no. 1866.

Magenes, G. (2006). Masonry Building Design in Seismic Areas: Recent Experiences and Prospects
from a European Standpoint. In 1st European Conference on Earthquake Engineering and Seismol-
ogy, Geneva, Switzerland.

Makris, N. and Konstantinidis, D. (2001). The rocking spectrum and the shortcomings of design
guidelines. Technical report.

Makris, N. and Roussos, Y. (1998). Rocking response and overturning of equipment under horizontal
pulse-type motions, Report No. PEER-98/05. Technical report, Pacific Earthquake Engineering
Research Center, University of California, Berkeley.

Makris, N. and Vassiliou, M. F. (2013). Planar rocking response and stability analysis of an array
of free-standing columns capped with a freely supported rigid beam. Earthquake Engineering &
Structural Dynamics, 42(3):431–449.

Makris, N. and Zhang, J. (1999). Rocking Response and Overturning of Anchored Equipment under
Seismic Excitations. Technical report, University of California, Berkeley.



References 201

Matero, F. (1999). Documentation and Assessment of Wall Conditions for the Casa Grande, Casa
Grande Ruins National Monument, Arizona. Technical report, University of Pennsylvania.

Mauro, A., de Felice, G., and DeJong, M. J. (2015). The relative dynamic resilience of masonry
collapse mechanisms. Engineering Structures, 85:182–194.

Mehrotra, A., Arêde, A., and DeJong, M. J. (2015). Discrete Element Modeling of a Post-Tensioned
Masonry Arch. In Kruis, J., Tsompanakis, Y., and Topping, B., editors, Proceedings of the 15th
International Conference on Civil, Structural and Environmental Engineering Computing, pages
1–16, Prague. Civil-Comp Press.

Mele, E., de Luca, A., and Giordano, A. (2003). Modelling and analysis of a basilica under earthquake
loading. Journal of Cultural Heritage, 4:355–367.

Mendes, N., Costa, A. A., Lourenço, P. B., Bento, R., Felice, G. D., Gams, M., Griffith, M. C.,
Ingham, J. M., Lagomarsino, S., Lemos, J. V., Liberatore, D., Oliveira, D. V., Penna, A., Sorrentino,
L., Modena, C., and Beyer, K. (2017). Methods and Approaches for Blind Test Predictions of
Out-of-Plane Behavior of Masonry Walls : A Numerical Comparative Study. International Journal
of Architectural Heritage, 11(1):59–71.

Menon, A., Shukla, S., Samson, S., Aravaind, N., Romão, X., and Paupério, E. (2017). Field
observations on the performance of heritage structures in the Nepal 2015 earthquake. In Proceedings
of the 16th World Conference on Earthquake Engineering, number June 2015, Santiago, Chile.

Mirabella-Roberti, G. and Calvetti, F. (1998). Distinct element analysis of stone arches. In Sinopoli,
A., editor, Arch Bridges, pages 181–186. Rotterdam.

Mirabella-Roberti, G. and Spina, O. (2001). Discrete element analysis on the Sardinian’ Nuaraghe.
In Lourenço, P. B. and Roca, P., editors, Proceedings, 3rd International Seminar on Historical
Constructions, pages 719–727, Guimaraes.

Mordant, C., Denoel, V., and Degee, H. (2015). Rocking behaviour of simple unreinforced load-
bearing masonry walls including soundproofing rubber layers. In Papadrakakis, M., Papadopoulos,
V., and Plevris, V., editors, 5th ECCOMAS Thematic Conference on Computational Methods in
Structural Dynamics and Earthquake Engineering, pages 759–771, Crete Island, Greece.

National Planning Commission (NPC) (2015). Nepal Earthquake 2015: Post Disaster Needs Assess-
ment, Executive Summary. Technical report, Government of Nepal, Kathmandu.

NZS (2004). NZS 1170.5: 2004: Structural Design Actions: Part 5: Earthquake actions, New Zealand.
Technical report, Standards New Zealand.

Oliveira, C., Lemos, J. V., and Sincraian, G. (2002). Modelling large displacements of structures
damaged by earthquake motions. European Earthquake Engineering, 16(3):56–71.

Oppenheim, I. J. (1992). The masonry arch as a four-link mechanism under base motion. Earthquake
Engineering & Structural Dynamics, 21:1005–1017.

Papantonopoulos, C., Psycharis, I. N., Papastamatiou, D. Y., Lemos, J. V., and Mouzakis, H. P. (2002).
Numerical prediction of the earthquake response of classical columns using the distinct element
method. Earthquake Engineering and Structural Dynamics, 31(9):1699–1717.

Papastamatiou, D. Y. and Psycharis, I. N. (1993). Seismic response of classical monuments-a
numerical perspective developed at the Temple of Apollo in Bassae, Greece. Terra Nova, 5(6):591–
601.



202 References

Parajuli, H. R., Kiyono, J., and Taniguchi, H. (2011). Structural Assessment of the Kathmandu World
Heritage Buildings. In Proceedings of the 31st Conference on Earthquake Engineering.

Parajuli, R. R. and Kiyono, J. (2015). Ground Motion Characteristics of the 2015 Gorkha Earthquake,
Survey of Damage to Stone Masonry Structures and Structural Field Tests. Frontiers in Built
Environment, 1.

PCM-DPC MiBAC (2006). Model A-DC Scheda per il rilievo del danno ai beni culturali - Chiese.

PEER (2014). PEER Ground Motion Database.

Penna, A. and Galasco, A. (2013). A Macro-Element Model for the Nonlinear Analysis of Masonry
Members Including Second Order Effects. In Papadrakakis, M., Papadopoulos, V., and Plevris, V.,
editors, 4th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics
and Earthquake Engineering, Kos Island, Greece.

Penna, A., Galasco, A., and Magenes, G. (2015). Macro-element modelling of earthquake-induced
local failure modes in existing masonry building. In SECED 2015 Conference: Earthquake Risk
and Engineering towards a Resilient World, Cambridge.

Penna, A., Lagomarsino, S., and Galasco, A. (2014). A nonlinear macroelement model for the seismic
analysis of masonry buildings. Earthquake Engineering and Structural Dynamics, 43(2):159–179.

Porter, D., Mehrotra, A., DeJong, M. J., Bass, A., and Guebard, M. (2018). (under review). Material
and Seismic Assessment of the Great House at Casa Grande Ruins National Monument, Arizona.
Journal of Architectural Engineering.

Preti, M., Marini, A., Bolis, V., and Giuriani, E. (2013). Experimental response of a large-scale
transverse arch subjected to horizontal cyclic loading. In Proceedings of the 15th Italian Conference
on Earthquake Engineering, Padua.

Priestley, M. (1985). Seismic behaviour of unreinforced masonry walls. Bulletin of the New Zealand
Society for Earthquake Engineering, 18(2):191–205.

Psycharis, I. N. (1990). Dynamic Behaviour of Rocking Two-Block Assemblies. Earthquake
Engineering & Structural Dynamics, 19:555–575.

Psycharis, I. N. and Jennings, P. C. (1983). Rocking of slender rigid bodies allowed to uplift.
Earthquake Engineering & Structural Dynamics, 11:57–76.

Psycharis, I. N., Lemos, J. V., Papastamatiou, D. Y., Zambas, C., and Papantonopoulos, C. (2003). Nu-
merical study of the seismic behaviour of a part of the Parthenon Pronaos. Earthquake Engineering
& Structural Dynamics, 32(13):2063–2084.

Python Software Foundation (2016). Python Language Reference.

Rai, D. C. and Dhanapal, S. (2013). Bricks and mortars in Lucknow monuments of c. 17-18 century.
Current Science, 104(2):238–244.

Rai, D. C., Singhal, V., Raj S, B., and Sagar, S. L. (2016). Reconnaissance of the effects of the M7.8
Gorkha (Nepal) earthquake of April 25, 2015. Geomatics, Natural Hazards and Risk, 7(1):1–17.

Restrepo-Vélez, L. F. (2004). Seismic Risk of Unreinforced Masonry Buildings. PhD thesis, Rose
School, University of Pavia.

Restrepo-Vélez, L. F., Magenes, G., and Griffith, M. C. (2014). Dry stone masonry walls in bending-
Part I: Static tests. International Journal of Architectural Heritage, 8(1):1–28.



References 203

Robert McNeel & Associates (2014). Rhinoceros 5.

Roh, H. and Reinhorn, A. M. (2009). Analytical modeling of rocking elements. Engineering
Structures, 31(5):1179–1189.

Sahlin, S. (1971). Structural Masonry. Prentice-Hall.

Shawa, O. A., de Felice, G., Mauro, A., and Sorrentino, L. (2012). Out-of-plane seismic behaviour of
rocking masonry walls. Earthquake Engineering & Structural Dynamics, 41:949–968.

Sorrentino, L., Al Shawa, O., and Decanini, L. D. (2011). The relevance of energy damping in
unreinforced masonry rocking mechanisms. Experimental and analytic investigations. Bulletin of
Earthquake Engineering, 9(5):1617–1642.

Sorrentino, L., Kunnath, S., Monti, G., and Scalora, G. (2008a). Seismically induced one-sided
rocking response of unreinforced masonry facades. Engineering Structures, 30(8):2140–2153.

Sorrentino, L., Liberatore, L., Decanini, L. D., and Liberatore, D. (2014). The performance of
churches in the 2012 Emilia earthquakes. Bulletin of Earthquake Engineering, 12(5):2299–2331.

Sorrentino, L., Masiani, R., and Griffith, M. C. (2008b). The vertical spanning strip wall as a coupled
rocking rigid body assembly. Structural Engineering and Mechanics, 29(4):433–453.

Spanos, P. D. and Koh, A.-S. (1984). Rocking of rigid bodies due to harmonic shaking. Journal of
Engineering Mechanics, 110:1627–1642.

Spanos, P. D., Roussis, P. C., and Politis, N. P. (2001). Dynamic analysis of stacked rigid blocks. Soil
Dynamics and Earthquake Engineering, 21(7):559–578.

STADATA (2012). 3Muri Program.

Stockl, S. and Hofmann, P. (1986). Tests on the shear bond behaviour in the bed-joints of masonry.
Masonry International, pages 292–303.

Takai, N., Shigefuji, M., Rajaure, S., Bijukchhen, S., Ichiyanagi, M., Dhital, M. R., and Sasatani, T.
(2016). Strong ground motion in the Kathmandu Valley during the 2015 Gorkha, Nepal, earthquake.
Earth, Planets and Space, 68(10).

Tomazevic, M. (1978). The computer program POR. Report ZRMK. Technical report, Ljubljana.

Ungewitter, G. G. and Mohrmann, K. (1901). Lehrbuch der gotischen Konstruktionen. H. Tauchnitz,
Leipzig.

Van Der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array: A structure for
efficient numerical computation. Computing in Science and Engineering, 13(2):22–30.

Zhang, P. and Makris, N. (2001). Rocking response of free-standing blocks under cycloidal pulses.
Journal of Engineering Mechanics, 127:473–483.

Zhuge, Y. (2008). Distinct element modelling of unreinforced masonry wall under seismic loads with
and without cable retrofitting. Transactions of Tianjin University, 14(S1):471–475.



204 References

Related publications by the author

Porter, D., Mehrotra, A., DeJong, M.J., Bass, A. and Guebard, M. (under review). Material and
Seismic Assessment of the Great House at Casa Grande Ruins National Monument, Arizona. Journal
of Architectural Engineering.

Mehrotra A. and DeJong M.J. (2018). The influence of interface geometry, stiffness and crushing
on the dynamic response of masonry collapse mechanisms. Earthquake Engineering & Structural
Dynamics, 47:2661-2681.

Mehrotra A. and DeJong M.J. (2018). A methodology to account for crushing effects during out-
of-plane collapse of masonry. In Proceedings of the 11th International Conference on Structural
Analysis of Historical Constructions (SAHC 2018), Cusco, Peru.

Mehrotra A. and DeJong M.J. (2018). A CAD-interfaced dynamics-based tool for analysis of masonry
collapse mechanisms. Engineering Structures, 172:833-849.

Mehrotra A. and DeJong M.J. (2017). The performance of slender monuments during the 2015
Gorkha earthquake. Earthquake Spectra, 33(S1):S321-S343.

Mehrotra A. and DeJong M.J. (2017). A modelling tool for dynamic analysis of masonry collapse
mechanisms. In Proceedings of the 16th World Conference on Earthquake Engineering (16WCEE),
Santiago, Chile.

Mehrotra A. and DeJong M.J. (2016). Analysis of historical monuments damaged by the 2015 Nepal
earthquake. In Proceedings of the 10th International Conference on Structural Analysis of Historical
Constructions (SAHC 2016), Leuven, Belgium.


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.3 Research objectives
	1.4 Outline of thesis

	2 Literature Review
	2.1 Introduction
	2.2 Numerical tools
	2.3 Analytical models and tools
	2.3.1 Code-based assessment methods
	2.3.2 Non-linear static analysis tools
	2.3.3 Non-linear dynamic analysis tools

	2.4 Summary

	3 Framework of the new tool
	3.1 Introduction
	3.2 Generation of the equation of motion in Rhino (rigid interfaces)
	3.2.1 Single block mechanism
	3.2.2 Single block mechanism with added masses and forces
	3.2.3 Two block mechanism
	3.2.4 Multiple block mechanism

	3.3 Solution of the equation of motion in MATLAB
	3.3.1 Pulse response (overturning plots)
	3.3.2 Full time-history analysis

	3.4 New developments
	3.4.1 Amplification effects
	3.4.1.1 Pulse response (overturning plots)
	3.4.1.2 Full time-history analysis

	3.4.2 Automatic detection of critical mechanisms

	3.5 Summary

	4 Evaluation of the rigid rocking tool
	4.1 Introduction
	4.2 LNEC 3-D Shaking Table Tests, Portugal
	4.2.1 Analytical Modelling
	4.2.2 Comparison with experimental results

	4.3 2015 Gorkha Earthquake
	4.3.1 Analytical Modelling
	4.3.2 Numerical Modelling using DEM
	4.3.3 Discussion

	4.4 Summary

	5 Demonstration of the rigid rocking tool
	5.1 Introduction
	5.2 Methodology
	5.3 Results
	5.4 Discussion
	5.4.1 Effect of slenderness and scale
	5.4.2 Effect of ground motion amplification
	5.4.3 Effect of reinforcement
	5.4.4 Comparison with field observations

	5.5 Summary

	6 Extension of modelling to flexible interfaces
	6.1 Introduction
	6.2 Derivation of af() for different interface geometries
	6.2.1 Solid rectangular interface
	6.2.2 Hollow rectangular interface
	6.2.3 Solid circular interface
	6.2.4 Hollow circular interface

	6.3 Derivation of the modified equations of motion
	6.3.1 Single block mechanism
	6.3.1.1 Fully-flexible model
	6.3.1.2 Semi-flexible model

	6.3.2 Two block mechanism
	6.3.2.1 Fully-flexible model
	6.3.2.2 Semi-flexible model

	6.3.3 Multiple block mechanism 1: Symmetric rocking frame
	6.3.3.1 Fully-flexible model
	6.3.3.2 Semi-flexible model

	6.3.4 Multiple block mechanism 2: Asymmetric rocking frame
	6.3.4.1 Fully-flexible model
	6.3.4.2 Semi-flexible model

	6.3.5 Multiple block mechanism 3: Side-aisle vault collapse
	6.3.5.1 Fully-flexible model
	6.3.5.2 Semi-flexible model


	6.4 Summary

	7 Evaluation of the new analytical models
	7.1 Introduction
	7.2 Single block mechanism
	7.2.1 Moment-rotation curves
	7.2.2 Free-rocking response
	7.2.3 Case Study: Dharahara Tower

	7.3 Two block mechanism
	7.3.1 Moment-rotation curves
	7.3.2 Free-rocking response
	7.3.3 Full time-history analyses

	7.4 Multiple block mechanism
	7.4.1 Full time-history analyses
	7.4.2 Validation of the models using DEM
	7.4.3 Calibration of the coefficient of restitution

	7.5 Broader applications of the new analytical models
	7.6 Summary

	8 Application of the tool for seismic assessment
	8.1 Introduction
	8.2 Background
	8.3 Seismic analysis using the rigid rocking tool
	8.3.1 Evaluation of critical mechanisms
	8.3.2 Code-based seismic assessment

	8.4 Seismic analysis using the flexible interface model
	8.4.1 Evaluation of critical mechanisms
	8.4.2 Code-based seismic assessment

	8.5 Summary

	9 Conclusions
	9.1 Summary of findings
	9.2 Scientific contributions
	9.3 Practical applications
	9.4 Future research

	References

