
Canopus: A Scalable and Massively Parallel Consensus Protocol
(Extended report)

Sajjad Rizvi, Bernard Wong, Srinivasan Keshav
Cheriton School of Computer Science

University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada.

December 2, 2019

Abstract

Achieving consensus among a set of distributed entities
(or participants) is a fundamental problem at the heart of
many distributed systems. A critical problem with most
consensus protocols is that they do not scale well. As
the number of participants trying to achieve consensus
increases, increasing network traffic can quickly over-
whelm the network from topology-oblivious broadcasts,
or a central coordinator for centralized consensus pro-
tocols. Thus, either achieving strong consensus is re-
stricted to a handful of participants, or developers must
resort to weaker models of consensus.

We propose Canopus, a highly-parallel consensus
protocol that is ‘plug-compatible’ with ZooKeeper,
which exploits modern data center network topology,
parallelism, and consensus semantics to achieve scal-
ability with respect to the number of participants and
throughput (i.e., the number of key-value reads/writes
per second). In our prototype implementation, compared
to EPaxos and ZooKeeper, Canopus increases through-
put by more than 4x and 16x respectively for read-heavy
workloads.

1 Introduction

In the past few years, an important class of distributed
applications has emerged that requires agreement on
the entries of a replicated transaction log or ledger.
Examples include geo-replicated database systems that
support high-volume, conflict-free transaction process-
ing [32], and private blockchains [2, 3, 1] that contin-
uously add records to a distributed ledger. Each entry
consists of a unit of computation that can read and mod-
ify the states of the application1. Entries are processed
atomically in the order that they appear in the log or
ledger.

1An equivalent implementation would be for each entry to store a
reference and the parameters to a stored procedure.

Supporting these applications requires a consensus
protocol that can scale to hundreds of nodes spanning
multiple datacenters. The protocol must also be able to
handle large volumes of requests, and be efficient for
write-intensive workloads with nearly uniform popular-
ity distributions.

Most commonly used consensus protocols, such as
Paxos [18] and Raft [33], rely on a centralized coordina-
tor to service client requests and replicate state changes.
This introduces unavoidable latency and concentrates
both processing load and network traffic at the coordi-
nator, limiting their scalability.

Protocols such as EPaxos [28], Mencius [25], and
S-Paxos [8] address scalability by moving from a sin-
gle coordinator to a set of coordinators. However, as
we will discuss in more detail in Section 2, message
dissemination in these protocols is network topology-
unaware. Their scalability is therefore still limited in
wide-area deployments with restricted network link ca-
pacities. Paxos Quorum Leases [30] can improve the
scalability of consensus protocols by assigning leases to
non-coordinators, and serving read requests locally by
lease holders. However, they are not well suited for the
workloads required by our motivating applications.

In this paper, we introduce Canopus, a parallel,
network-aware, and decentralized consensus protocol
designed for large-scale deployments. It achieves scala-
bility by (a) exploiting high performance broadcast sup-
port in modern switches and (b) parallelizing communi-
cation along an overlay tree [6]. Moreover, observing
that modern datacenter networks use hardware redun-
dancy, making them immune to single points of failure,
and that they offer numerous disjoint paths between all
pairs of servers, making network partitioning extremely
rare [22, 39, 23], Canopus is optimized for the common
case that an entire rack of servers never fails, and that
the network is never partitioned. This greatly simplifies
our design. We make three contributions:

• We present Canopus, a scalable and parallel con-
sensus protocol.

1

• We provide a prototype that can be integrated with
ZooKeeper to simplify deployment.

• We compare the performance of our prototype with
both ZooKeeper and EPaxos. We find that our
globally-distributed prototype implementation can
handle up to 5 million transactions per second, and
that, unlike EPaxos, the throughput increases with
the number of servers participating in the consensus
protocol.

2 Related Work

Many systems have been designed to solve the consen-
sus problem. We first discuss some well-known central-
ized and decentralized consensus protocols. We then
discuss systems that optimize performance by exploit-
ing specialized hardware and networking technologies.
We also outline related work in the area of group com-
munication protocols and discuss the role of consensus
protocols in the context of private blockchains.

2.1 Centralized Coordination

Paxos [18] is the most widely used consensus protocol.
Paxos participants elect a central coordinator to enforce
consensus on a single value, re-electing the coordina-
tor if it fails. Many variants of Paxos have been pro-
posed over the years. In Fast Paxos [20], clients send
consensus requests directly to the acceptors to reduce
the number of rounds of message exchanges. In Gen-
eralized Paxos [19], nodes can execute commutative re-
quests out-of-order. FGCC [40] builds upon General-
ized Paxos by reducing the message complexity to re-
solve conflicts. Although these variants aim to improve
different aspects of Paxos performance, none of them
significantly improve the scalability of the protocol.

Ring-Paxos [27] and Multi-Ring Paxos [26] are
atomic multicast protocols developed on top of Paxos. In
these protocols, nodes organize into one or more rings,
and the Paxos coordinator and acceptor roles are as-
signed to the nodes along the ring. The major drawback
of these multicast protocols is that the latency of oper-
ations increases proportionally to the number of partici-
pants.

Several other coordinator-based consensus or atomic
broadcast algorithms have been proposed that have the
same scalability limitations as Paxos. These include
Raft [33], a consensus algorithm with understandability
as its main design goal, and Zab [17], an atomic broad-
cast protocol used in ZooKeeper [15].

2.2 Decentralized Coordination

EPaxos [28], Mencius [25], and S-Paxos [8] have been
proposed to improve the scalability of consensus al-
gorithms. These protocols follow a decentralized ap-
proach. For example, in EPaxos and Mencius, each node
serves as the coordinator for the clients connected to that
node. The nodes then forward requests to each other
for conflict resolution and ordering. S-Paxos distributes
the message dissemination load across nodes in a simi-
lar way. However, the nodes send the request IDs to a
centralized coordinator that runs the Paxos algorithm to
order the requests.

Two primary limitations restrict the scalability of
these systems. First, they are not network topology-
aware. For example, each node broadcasts requests to
every other participating node, or at least to a quorum of
the nodes. Thus, multiple instances of the same request
and response may traverse one or more oversubscribed
intra-data-center or high-latency wide-area links, which
limits throughput. In contrast, Canopus organizes the
nodes into a network-aware overlay tree, and remote re-
sults are retrieved once then shared among peers. Sec-
ond, these protocols broadcast both read and write re-
quests. Canopus does not broadcast read requests. In-
stead, Canopus introduces small delays to the read oper-
ations that ensure that read operations are correctly lin-
earized with respect to any concurrent writes operations.

The Giraffe consensus protocol logically organizes
nodes into an interior-node-disjoint forest [38]. It uses
a variant of Paxos to order write requests within a tree
and across trees in the forest. Unlike Canopus, Giraffe
does not provide linearizable consistency, and each tree
in Giraffe has its own coordinator, which limits its scal-
ability.

Canopus is similar to the recently proposed AllCon-
cur [34] consensus algorithm, which organizes nodes in
the form of an overlay digraph. In each consensus round,
each AllConcur node atomically broadcasts a message
to its successors in the graph while keeping track of
node failures. AllConcur nodes are expected to be part
of the same InfiniBand network, typically within a sin-
gle datacenter. In comparison, Canopus is a network-
aware protocol that organizes the nodes in the form of an
wide-area overlay tree. Nodes located in the same rack
form a virtual group, which can use any reliable broad-
cast or stronger protocol to reach agreement. Canopus
efficiently stitches together these virtual groups, as de-
scribed later in this paper.

2

2.3 Consensus Exploiting Network Hard-
ware

Several recent systems [21, 35, 10, 16, 9] exploit fast
networking devices, e.g., low latency switches, or spe-
cialized hardware, such as FPGAs, to achieve consensus
with high throughput and low latency. Since they require
extensive in-network support, these systems can only be
deployed within the same rack or the same datacenter.
In contrast, Canopus is designed to provide consensus
between nodes across globally-distributed datacenters.
Network-hardware-aware consensus protocols are com-
patible with Canopus, in that these systems can be used
to achieve consensus among nodes within a Canopus vir-
tual group.

2.4 Group Communication Protocols

Many overlay and group communication protocols have
been proposed in the research literature [24, 36]. These
protocols efficiently and reliably disseminate messages
across a large number of participants. Canopus uses the
LOT group communication protocol [6], which is simi-
lar to Astrolabe [41], to disseminate protocol state. LOT
embodies three insights to achieve high performance:
(1) communication should be topology aware; most
communication should occur between topologically-
close nodes, (2) communication should be hierarchi-
cal, so that message dissemination to n nodes takes
O(log(n)) steps, and (3) communication should be par-
allel, so that all nodes can make progress independent of
each other.

2.5 Private Blockchains

Private blockchains [2, 3, 1] can be viewed as a dis-
tributed append-only ledger that is replicated across a
large number of nodes. Blockchains can be used for
many different applications such as cryptocurrencies,
stocks settlements, fast currency conversions, and smart
contracts. A common problem with blockchains is poor
scalability, which is primarily due to the use of proof-
of-work or topologically-unaware consensus protocols.
Blockchains use consensus to resolve conflicts among
concurrent append requests to the next ledger index.
However, the throughputs of these protocols peak at a
few tens of thousands of transactions/second with tens of
participants [42]. Canopus can be used as a scalable con-
sensus protocol for private blockchains to significantly
increase their throughput. Although the current design
of Canopus does not provide Byzantine fault tolerance,
we are integrating Byzantine fault-tolerance into Cano-
pus in ongoing work.

2.6 Scalability of Read Requests
Several read optimizations have been proposed to reduce
the latency of read requests for read-intensive work-
loads. Paxos Quorum Leases [30] (PQL) grants read
leases to a set of objects to nodes that frequently access
them. Lease holders can then serve read requests locally
as long as the lease is valid. PQL performs well for
workloads where data popularity is highly skewed. In
Megastore [7], nodes can read data locally if the local-
replica is the most up-to-date. Otherwise, nodes read
from a majority of replicas. Canopus include an optional
read optimization (§7.2) that allows the nodes to always
read from the local replica.

3 System Assumptions
We now specify our six design assumptions:

Network topology: Canopus makes only two minor as-
sumptions about the nature of its data center network.
These are likely to hold for the vast majority of modern
data center networks:

1. All machines running Canopus in the same dat-
acenter are hosted in the same rack, and are
dual-connected to Top-of-Rack (ToR) switches
that provide low-latency connectivity to all the ma-
chines in its rack. If the number of Canopus nodes
in a datacenter exceeds what can be hosted in a sin-
gle rack, we assume that we have control over the
physical location of the Canopus’ nodes within a
datacenter, including the location in the racks or
whether Canopus runs in a VM or a physical ma-
chine.

2. ToR switches are connected to each other
through a hierarchical network fabric. In gen-
eral, we expect latency to increase and bandwidth
to decrease as hop count between the pair of com-
municating nodes increases.

Although Canopus will perform correctly (i.e., either
achieve consensus or stall) without the next two assump-
tions, for acceptable performance, we also assume that:

3. Full rack failures are rare. More precisely, we
assume that although individual machines, ToR
switches, and/or links may fail, it is rarely the case
that all machines in a rack are simultaneously un-
reachable from off-rack machines. Single-failure
fault tolerance is easily achieved by using dual-NIC
machines connected to two ToR switches on each
rack. In the rare cases of rack failures, Canopus
halts until the racks have recovered. Moreover, rack

3

failures do not cause the system to enter into an un-
recoverable state. This is because the nodes per-
sistently store their protocol state, and our system
can resume when enough nodes in the failed racks
recover.

4. Network partitions are rare. A network partition
within a rack requires both ToR switches to simul-
taneously fail, which we assume is rare. Similarly,
we assume that the network provides multiple dis-
joint paths between ToR switches, so that the ToR
switches are mutually reachable despite a link or
switch failure. Finally, we assume that there are
multiple redundant links between data centers, so
that a wide-area link failure does not cause the net-
work to partition.

Many modern datacenters use network topologies that
meet these two assumptions [39, 11], including Clos-like
topologies such as fat-tree [5], VL2 [14], and leaf/spine
networks. These failure assumptions simplify the design
of Canopus and allow us to optimize Canopus for the
common case.

In the unlikely event of a network partition, we believe
it is reasonable for a consensus protocol to stall while
waiting for the network to recover, resuming seamlessly
once the network recovers. Indeed, this is the only rea-
sonable response to a network partition where a majority
of consensus participants do not reside in any single par-
tition. We believe that, given both the rarity of network
partitions and the severity in which they affect applica-
tions and services, it is not worthwhile for a consensus
protocol to provide limited availability at the expense of
a significant increase in protocol complexity. Planned
shutdown of a rack is possible and does not result in any
loss in availability.

5. Client-coordinator communication: In Canopus, as
in many other consensus systems, clients send key-value
read and write requests to a Canopus node. We assume
that a client that has a pending request with a particular
node does not send a request to any other node. This
is to allow serialization of client requests at each node.
If a client were to concurrently send a write and a read
request to two different nodes, the read request could
return before the write request even if the read was sent
after the write, which would violate program order.

6. Crash-stop failures: We assume that nodes fail by
crashing and require a failed node to rejoin the sys-
tem using a join protocol. The Canopus join protocol
closely resembles the join protocol for other consensus
systems [33]. Canopus detects node failures by using a
method similar to the heartbeat mechanism in Raft.

4 Canopus
Canopus is a scalable distributed consensus protocol that
ensures live nodes in a Canopus group agree on the same
ordered sequence of operations. Unlike most previous
consensus protocols, Canopus does not have a single
leader and uses a virtual tree overlay for message dis-
semination to limit network traffic across oversubscribed
links. It leverages hardware redundancies, both within a
rack and inside the network fabric, to reduce both proto-
col complexity and communication overhead. These de-
sign decisions enable Canopus to support large deploy-
ments without significant performance penalties.

The Canopus protocol divides execution into a se-
quence of consensus cycles. Each cycle is labelled with
a monotonically increasing cycle ID. During a consen-
sus cycle, the protocol determines the order of pending
write requests received by nodes from clients before the
start of the cycle and performs the write requests in the
same order at every node in the group. Read requests
are responded to by the node receiving it. Section 5
will describe how Canopus provides linearizable consis-
tency while allowing any node to service read requests
and without needing to disseminate read requests.

Canopus determines the ordering of the write requests
by having each node, for each cycle, independently
choose a large random number, then ordering write re-
quests based on the random numbers. Ties are expected
to be rare and are broken deterministically using the
unique IDs of the nodes. Requests received by the same
node are ordered by their order of arrival, which main-
tains request order for a client that sends multiple out-
standing requests during the same consensus cycle.

4.1 Leaf-Only Trees

During each consensus cycle, each Canopus node dis-
seminates the write requests it receives during the previ-
ous cycle to every other node in a series of rounds. For
now, we will assume that all nodes start the same cycle
in parallel at approximately the same time. We relax this
assumption in Section 4.4, where we discuss how Cano-
pus nodes self-synchronize.

Instead of directly broadcasting requests to every node
in the group, which can create significant strain on over-
subscribed links in a datacenter network or wide-area
links in a multi-datacenter deployment, message dissem-
ination follows paths on a topology-aware virtual tree
overlay.

Specifically, Canopus uses a Leaf-Only Tree over-
lay [6], that allows nodes arranged in a logical tree to
compute an arbitrary global aggregation function. We
adapt LOT for use in a consensus protocol; from this
point on, we will always be referring to our modified

4

Figure 1: An example of a leaf-only tree (LOT). Only the leaf nodes exist physically and the internal nodes are virtual.
A leaf node emulates all of its ancestor virtual nodes.

version of LOT.

A LOT has three distinguishing properties:

i. Physical and virtual nodes: In LOT, only the leaf-
nodes exist physically (in the form of a dedicated pro-
cess running in a physical machine). Internal nodes are
virtual and do not exist as a dedicated process. Instead,
each leaf node emulates all of its ancestor nodes. For
clarity, we denote a leaf node as a pnode and an internal
node as a vnode.

ii. Node emulation: Each pnode emulates all of its an-
cestor vnodes. i.e., each pnode is aware of and main-
tains the state corresponding to all of its ancestor vn-
odes. Thus, the current state of a vnode can be obtained
by querying any one of its descendants, making vnodes
inherently fault tolerant, and making vnode state access
parallelizable.

iii. Super-leaves: All the pnodes located within the
same rack are grouped into a single super-leaf for two
reasons. First, this reduces the number of messages ex-
changed between any two super-leaves; instead of all-
to-all communication between all the pnodes in the re-
spective super-leaves, only a subset of the super-leaf
nodes, called its representatives, communicate with an-
other super-leaf on behalf of their peers. Second, be-
cause all the pnodes in a super-leaf replicate their com-
mon parents’ state, a majority of the super-leaf members
need to simultaneously fail to cause the super-leaf to fail.

Figure 1 shows an example of a leaf-only tree consist-
ing of 27 pnodes. There are three pnodes per super-leaf.
The pnodeN emulates all of its ancestor vnodes 1.1.1,
1.1, and 1. The root node 1 is emulated by all of the
pnodes in the tree.

We assume that during Canopus initialization, each
node is provided with the identities and IP addresses of
the peers in its own super-leaf.

4.2 Consensus Cycle
Each consensus cycle consists of h rounds where h is the
height of the LOT. Each consensus cycle is labelled by
a monotone non-decreasing cycle ID. Canopus ensures
that nodes concurrently execute the same consensus cy-
cle, which we further explain in Section 4.4. In the fol-
lowing sections, we describe the details of the messages
exchanged in each round of a consensus cycle.

First round in a consensus cycle: In the first round
of a consensus cycle, each pnode prepares a proposal
message and broadcasts the message to the peers in its
super-leaf using a reliable broadcast protocol, which we
describe in detail in Section 4.3. A proposal message
contains the set of pending client requests, group mem-
bership updates, and a large random number generated
by each node at the start of the consensus cycle. This
random number, called the proposal number, is used to
order the proposals across the nodes in each round in
the consensus cycle. A proposal message is also tagged
with the cycle ID, the round number, and the vnode ID
whose state is being represented by the proposal mes-
sage. The group membership updates include the mem-
bership changes that happened before starting the cur-
rent consensus cycle. Note that proposal messages sent
in the first round are used to inform the receivers about
the start of the next consensus cycle.

After receiving the round-1 proposal messages from
all the peers in its super-leaf, each pnode independently
orders the proposals according to their (random) pro-
posal numbers. The sorted list of proposals represents
the partial order of the requests in the current round and
constitutes the state of the parent vnode of the super-
leaf. A node finishes its first round after it has obtained
proposal messages from all its super-leaf peers, and then
immediately starts the next round in the consensus cycle.

Round-i in a consensus cycle: In each subsequent
round, each node independently prepares a new pro-
posal message, which is used to share the computed state

5

from the previous round with other super-leaves. The
list of requests in the proposal message is simply the
sorted list of requests obtained in the previous round.
Similarly, the proposal number in the new message is
the largest proposal number from the previous round.
Thus, a proposal message for round i can be defined
as Mi = {R′i−1, N ′i−1, F ′i−1, C, i, v}, where R′ is the
sorted list of proposals from the previous round, N ′i−1 is
the largest proposal number in the previous round, F ′i−1
is the set of membership updates received in the propos-
als from the previous round, C is the cycle ID, i is the
round number, and v is the vnode ID, or the pnode ID in
the case of the first round.

In round i, the pnodes compute, in parallel, the state
of their height-i ancestor vnode. For example, the root
vnode in Figure 1 has a height of 3, and therefore, its
state is computed in the third round. As the current state
of a vnode is just the merged and sorted list of proposals
belonging to its child pnodes or vnodes, each super-leaf
independently gathers the proposals of that vnode’s chil-
dren from their emulators, where a vnode’s emulator
is a pnode that is known to have the vnode’s state; see
§ 4.6 for details.

To obtain the proposal belonging to a vnode, represen-
tatives from each super-leaf select one of that vnode’s
emulators and sends a proposal-request message to the
selected emulator. For instance, to compute the state of
the node 1.1, representative nodeN in Figure 1 sends a
proposal-request to emulators of the vnodes 1.1.2 and
1.1.3 – it already knows the state of the vnode 1.1.1,
which was computed in the previous round.

The proposal-request message contains the cycle ID,
round number, and the vnode ID for which the state is
required. In response to receiving a proposal-request
message, the receiver pnode replies with the proposal
message belonging to the required vnode. If the re-
ceiver pnode has not yet computed the state of the vn-
ode, it buffers the request message and replies with the
proposal message only after computing the state of the
vnode. When the super-leaf representative receives the
proposal message, it broadcasts the proposal to its super-
leaf peers using reliable broadcast. These peers then in-
dependently sort the proposals, resulting in each node
computing the state of their height-i ancestor. Note
that representatives from all super-leaves issue proposal-
requests in parallel, and all nodes in all super-leaves in-
dependently and in parallel compute the state of their
height-i ancestor.

Completing a consensus cycle: The consensus proto-
col finishes after all nodes have computed the state of
the root node, which takes time proportional to the log-
arithm of the number of Canopus pnodes. At this point,
every node has a total order of requests received by all
the nodes. The node logs the requests in its request log

for execution. It then initiates the next consensus cycle
with its super-leaf peers if it received one or more client
requests during the prior consensus cycle.

4.3 Reliable-Broadcast in a Super-Leaf
The nodes in a super-leaf use reliable broadcast to ex-
change proposal messages with each other. For ToR
switches that support hardware-assisted atomic broad-
cast, nodes in a super-leaf can use this functionality
to efficiently and safely distribute proposal messages
within the super-leaf.

If hardware support is not available, we use a variant
of Raft [33] to perform reliable broadcast. Each node
in a super-leaf creates its own dedicated Raft group and
becomes the initial leader of the group. All other nodes
in the super-leaf participate as followers in the group.
Each node broadcasts its proposal messages to the other
nodes in its super-leaf using the Raft log replication pro-
tocol in its own Raft group. If a node fails, the other
nodes detect that the leader of the group has failed, and
elect a new leader for the group using the Raft election
protocol. The new leader completes any incomplete log
replication, after which all the nodes leave that group to
eliminate the group from the super-leaf.

Reliable broadcast requires 2F +1 replicas to support
F failures. If more than F nodes fail in the same super-
leaf, the entire super-leaf fails and the consensus process
halts.

4.4 Self-Synchronization
So far we have assumed that all of the nodes start at the
same consensus cycle in parallel. Here, we describe how
the nodes are self-synchronized to concurrently execute
the same consensus cycle.

Before starting a consensus cycle, a node remains in
an idle state. In this state, its network traffic is limited
to periodic heartbeat messages to maintain its liveness.
A new consensus cycle only starts when the node re-
ceives outside prompting. The simplest version of this
prompting is when the node receives a client request for
consensus. A client request triggers the node to start a
new consensus cycle and broadcast a proposal message
to other peers in its super-leaf. The proposal message in-
forms the peers that it is time to start the next consensus
cycle, if it is not already under way. The representatives,
in effect, send proposal-request messages to other super-
leaves that trigger them to start the next consensus cycle,
if they have not started yet.

Alternatively, a node, while in the idle state, may re-
ceive either a proposal message from its peers in its
super-leaf, or a proposal-request message from another
super-leaf. This indicates that a new cycle has started,

6

and therefore, this node begins the next consensus cycle.
In this scenario, the node’s proposal message contains
an empty list of client requests. As a result, the nodes
are self-clocked to execute the same consensus cycle.

4.5 Super-Leaf Representatives

A super-leaf representative fetches the state of a required
vnode on behalf of its super-leaf peers and broadcasts
the fetched state to the peers using reliable broadcast
(§ 4.3). We use a variant of Raft’s leader election and
heartbeat protocols [33] to allow nodes in a super-leaf to
select one or more super-leaf representatives and detect
representative failures. A representative failure triggers
a new election to select a replacement representative.

The representatives of a super-leaf are each individu-
ally responsible for fetching the states of the tree’s vn-
odes. A representative can fetch the states of more than
one vnode. However, to improve load balancing, we rec-
ommend that different representatives fetch the states of
different vnodes. The vnode to representative assign-
ment can be performed deterministically by taking the
modulo of each vnode ID by the number of representa-
tives in a super-leaf. Because representatives of a super-
leaf are numbered and ordered (e.g., representative-0,
representative-1, etc.), the result of the modulo opera-
tion can be used to determine which representative is
assigned to a vnode without the need for any commu-
nication or consensus.

4.6 Emulation Table

Thus far, we have not discussed how Canopus nodes ac-
tually communicate with other nodes. To initiate com-
munication with an emulator of a vnode (a pnode in the
sub-tree of the vnode) with a given ID, LOT maintains
an emulation table that maps each vnode to a set of IP
addresses of the pnodes that emulate that vnode. For ex-
ample, for the LOT given in Figure 1, the table would
map vnode 1.1 to the set of IP addresses of the nine pn-
odes that emulate this vnode.

We assume that at system initialization time, the em-
ulation table is complete, correct, and made available
to all pnodes. Subsequently, failed pnodes must be re-
moved from the emulation tables maintained by all non-
failed pnodes. Note that this itself requires consensus.
Hence we maintain emulation tables in parallel with the
consensus process, by piggybacking changes in the em-
ulation table on proposal messages.

Specifically, in the first round of a consensus cy-
cle, pnodes list membership changes (determined based
on an within-super-leaf failure-detector protocol, such
as through Raft heartbeats) in their proposal messages.

x

A
B

C

y

D
E

F

z

Super-leaf Sx Super-leaf Sy

Consensus

in round 1

Consensus

in round 2

(a) Six nodes are arranged in two super-leaves in a LOT of height 2.

PA= [RA | NA | 1]
1

2

P
x
= [PA, PC, PB | NB | 2]

F

D D

E E

FD

A

B

C

3

Py

Px

4

P
z
= [Py, Px | NB | 3]

Px

6

7

PC = [Ø | NC | 1]

5

Proposal message to/from

remote node

Proposal-request message
Round 2

Round 1

PB= [RB | NB | 1]

Qx

Qi: Proposal-request to fetch the

state of vnode i

Pi: Proposal belonging to node i

Qy

Qy

Qx

Reliable broadcast of a proposal message

(b) Timing diagram of the events occurring in the super-leaf Sx, which
consists of the nodes A, B, and C.

Figure 2: Illustration of a consensus cycle in Canopus.

Membership changes for a pnode include the list of pn-
odes that joined or left its super-leaf before the pnode
started its current consensus cycle. At the end of the
consensus cycle, all the pnodes have the same set of pro-
posal messages, and thus the same set of membership
changes are delivered to each pnode. Therefore, each
pnode applies the same membership updates to the em-
ulation table at the end of each consensus cycle. As a re-
sult, each pnode has the same emulation table and same
membership view of LOT in each consensus cycle.

4.7 An Illustrative Example

We illustrate Canopus using an example in which six
nodes are arranged in two super-leaves in a LOT of
height 2 as shown in Figure 2(a). Nodes A, B, and C
comprise super-leaf Sx, and the nodes D, E, and F com-
prise the super-leaf Sy . The nodes in Sx and Sy are con-
nected with the common vnodes x and y respectively.
The vnodes x and y are connected with the root vn-
ode z. In the first round, the states of vnodes x and y
are computed, which establishes consensus within the
super-leaves. In the second round, the state of the root
vnode z is computed, which establishes consensus be-
tween super-leaves. Figure 2(b) shows the events occur-

7

ring in the super-leaf Sx during the consensus cycle. The
events are labelled in circles and explained as follows:
1. The consensus cycle starts: Nodes A and B start
the first round of the consensus cycle. At the start of the
cycle, nodes A and B have the pending requests RA and
RB . The nodes prepare proposal-messages and broad-
cast them to their peers in the super-leaf.

Assume that the proposals of nodes A, B, and C are
PA = {RA | NA | 1}, PB = {RB | NB | 1}, and PC =
{φ | NC | 1}, where Ri is the ordered set of pending
requests on node i, Ni is the proposal number, and 1 is
the round number. We omit the other information from
the proposals for simplicity.
2. A proposal-request message is sent: Node C re-
ceives the proposal message from node A and starts its
consensus cycle. Assuming that nodes A and C are
the representatives for super-leaf Sx, these nodes send
proposal-request messages Qy to D and E respectively
to redundantly fetch the state of vnode y. The nodes in
Sx require the state of y to compute the state of the an-
cestor vnode z in the next round.
3. A proposal-request is received for an unfinished
round: Node A receives a proposal-request message
from F , which belongs to the next round of the current
consensus cycle, asking for the proposal Px. As node A
has not yet finished its first round that results in Px, it
buffers the request and does not send any reply until it
finishes its first round.
4. The first round is completed: Node C receives the
proposal message PB from B. As node C has received
the proposals from all the peers in its super-leaf, it fin-
ishes its first round. Node C sorts the requests in the
received proposals and its own proposal according the
proposal numbers. The sorted list of requests is the con-
sensus result from the first round, and comprises the cur-
rent state of the vnode x. When nodes A and B finish
their first round, they also have the same sorted list of
requests.

To continue with the next round, the nodes prepare the
proposal-messages that contain the sorted list of requests
and the largest proposal number from the last round.
In this example, the three nodes prepare the round-2
proposal Px = {PA, PC , PB | NB | 2}, assuming
NA < NC < NB .
5. A proposal-request is served: Node A continues
in the next round after finishing the first round and pre-
pares the proposal Px. It replies to the pending proposal-
request Qx, which it received from node F .
6. Coordinating the proposals: Node C receives the
reply of its request Qy for the round-2 proposal Py , and
reliably broadcasts Py to other peers in its super-leaf.
Assume that Py = {PD, PE , PF | NF | 2}.
7. The consensus cycle is completed: After receiv-
ing all the required round-2 proposals, node C finishes

the second round of the consensus cycle. At the end
of the round, node C has the proposal Pz = {Py, Px |
NB | 3}, assuming NF < NB . As node C has now
finished calculating the state of the root node, it fin-
ishes the consensus cycle. At the end of the cycle,
node C has the consensus on the requests, which is
{RD, RE , RF , RA, RC , RB}. Other nodes will have the
same ordering of the requests when their second round
is finished. Node C applies the requests in its copy of
the commit log. Note that all node eventually agree on
identical copies of this log.

5 Linearizability

Canopus provides linearizability by totally ordering
both read and update requests. Interestingly, Cano-
pus enforces global total order without disseminating
read requests to participating nodes, significantly re-
ducing network utilization for read-heavy workloads.
Instead, Canopus nodes delay read requests until
all concurrently-received update requests are ordered
through the consensus process. Once the update request
ordering is known, each Canopus node locally orders its
pending read requests with respect to its own update re-
quests such that the request orders of its clients are not
violated. This trades off read latency for network band-
width.

During consensus cycle Ci, the nodes buffer the re-
quests received from the clients. The requests accumu-
lated on a node Ni during cycle Cj form a request set
Sj
i . In Canopus, the requests within a request set are

sequential and follow the receive order. In contrast, the
request sets across the nodes in cycle Cj , which we de-
note as Sj

∗, are concurrent. To order the concurrent sets
in Sj

∗, Canopus executes the next instance Cj+1 of the
consensus protocol. The consensus process gives a to-
tal order of the concurrent sets in Sj

∗. The total order
of the concurrent sets translates to the linearized order
of the requests received during the cycle Cj . Note that
the requests in a request set are never separated. We are
instead ordering the request sets to determine a total or-
der of requests. At the end of the consensus process,
each node has the same total order of write requests, and
inserts its read requests in the appropriate positions to
preserve its own request set order.

In this approach, each node delays its read requests
for either one or two consensus cycles to provide lin-
earizability. If a request is received immediately after
starting a consensus cycleCj , the read request is delayed
for two consensus cycles: The currently executing cycle
Cj , and the next cycle Cj+1 in which the request sets Sj

i

are ordered and executed. If the request is received just
before completing the currently executing cycle Cj , the

8

read is delayed for only one consensus cycle Cj+1.

6 Correctness Properties
Canopus provides the following properties, which are
similar to those provided by Paxos and EPaxos:
Nontriviality: A node commits and serves only those
requests that it receives from clients.
Agreement: All correct nodes that complete consensus
cycle ci commit the same ordered-set of requests at the
end of ci. If a correct node commits a request ra before a
request rb at the end of cycle ci, all correct nodes commit
ra before rb at the end of cycle ci.
Liveness: If a super-leaf has not failed, the live nodes
can eventually achieve consensus after receiving all the
messages required to complete the current consensus cy-
cle. Stronger liveness property cannot be guaranteed due
to FLP impossibility result [12].

In addition to the above mentioned safety and liveness
properties, Canopus also guarantees that:
Linearizability: All the correct nodes observe the same
order of reads and write requests.
FIFO order of client requests: For each client, a node
serves requests in the order it received them from the
client. If a node receives a request ra before rb, it exe-
cutes ra before rb, and it replies ra before rb.
THEOREM 1: For a height-h LOT consisting of n
super-leaves, all the live descendant-nodes Êr

w of the
root-vnode w that eventually complete the last round
r = h have the same ordered-set of messages.

∀
i,j∈Êr

w

Mr
i = Mr

j (1)

where Mr
i is the set of messages that a live node i has

after completing the round r of the current consensus
cycle.

We provide a proof sketch for the special case of
the first consensus cycle for height-2 tree with n super-
leaves. The complete proof is given in Appendix A.

The proof assumes that:

A1 All nodes are initialized with the same emulation
table and membership view.

A2 The network cannot be partitioned, messages are
not corrupted, messages are eventually delivered
to a live receiver, and that nodes fail by crashing.
Node failures within a super-leaf are detected by
using heartbeats and timeouts similar to Raft.

A3 The super-leaf-level structure of LOT does not
change: Nodes may leave or join super-leaves,
however, super-leaves are not added or removed.

… …

w

u1 u2

…

un

…

s1,1

s1 s2 sn

s1,x s2,1 s2,y sn,1 sn,z

Figure 3: A LOT of height 2 with n super-leaves.

A4 Reliable broadcast functionality is available within
a super-leaf, which ensures that all the live nodes in
a super-leaf receive the same set of messages.

Proof Sketch: Consider a height-2 LOT consisting of n
super-leaves, as shown in Figure 8. Each super-leaf Si

has a height-1 parent vnode ui. The height-1 vnodes are
connected with the common root vnode w. A consensus
cycle consists of two rounds for a LOT of height 2. In the
first round, the nodes share the pending batch of update-
requests within their super-leaf using the reliable broad-
cast functionality (assumption A4). The nodes sort the
messages according to the proposal numbers received in
the messages. At the end of the first round, each node
f iSj

in a super-leaf Sj has the same ordered-set of mes-
sages M1

j , which represents the state of the height-1 an-
cestor uj of the nodes in Sj . To order the messages in
the next round, the largest proposal number received in
the current round is selected.

In the second round each node f iSj
calculates the state

of its height-2 ancestor w. Therefore, the set of mes-
sages that f iSj

requires to complete the second round is
M2

j = ∀u∈C2
j
∪M1

u , where C2
j is the set of children of

the height-2 ancestor of any node in the super-leaf Sj .
By Canopus’ design, a set of representatives of Sj

fetch the missing state M1
u of each vnode u ∈ C2

j from
the live descendants of u. By assumption A1 and A2,
the representatives will eventually succeed in fetching
the state of u if there is at least one live super-leaf de-
scending from u. If the representatives of Sj eventually
succeed in fetching the states of all the vnodes u ∈ C2

j ,
then by reliable broadcast within the super-leaf (assump-
tion A4), all the nodes in the Sj have the same set of
messages M2

j that are required to complete the second
round.

By assumptions A1 and A3, all the nodes have the
same view of LOT in the first consensus cycle. There-
fore, the representatives of each super-leaf fetch the
same state of a common vnode u from any of the descen-
dants of u. This implies that, for all the super-leaves for
which the representatives have succeeded in fetching all
the required states of height-1 vnodes, the nodes in the

9

super-leaves have same set of messages, which allows
the nodes to complete the second round. Thus,

∀
i,j∈Ê2

w

M2
i = M2

j (2)

the nodes sort the messages according the proposal num-
bers received with the vnode-states. As the consensus
cycle consists of two rounds for a LOT of height 2, equa-
tion 2 implies that all of the descendants of the height-2
root vnode that complete the first consensus cycle have
the same ordered-set of messages. This shows that the
live nodes reach agreement and eventually complete the
consensus cycle, if a super-leaf does not fail.

If the representatives of a super-leaf Sj fail in fetch-
ing the state of at least one vnode u ∈ C2

j in the sec-
ond round, then either (a) all the descendants of u have
crashed or they do not have the state of u due to not com-
pleting the previous round, or (b) all the representatives
of Sj have crashed, which implies that the super-leaf Sj

has failed due to insufficient number of live nodes to
elect a new representative. In either case, the nodes in
Sj cannot complete the second round due to missing a
required state, and the consensus process stalls for the
nodes in Sj in the second round of the current consensus
cycle.

Alternatively, if the nodes in another super-leaf Sk

succeed in fetching all the required states, then the con-
sensus process stalls for the nodes in Sk in the next cycle
c + 1 because the live nodes in Sj are stalled in the last
cycle c. This shows that the consensus process stalls for
the live nodes due to a super-leaf failure and the nodes
do not return a wrong result.

In the subsequent consensus cycles, the assump-
tion A1 does not hold because the membership of LOT
changes if a node fails or a new node joins a super-leaf.
However, we show in the detailed proof, which is given
in Appendix A, using induction that the emulation ta-
bles are maintained and all the live nodes that eventu-
ally complete a cycle c have the same emulation table in
cycle c + 1. Therefore, Canopus satisfies agreement in
any consensus cycle for height-2 LOT. We prove these
properties for a LOT of any height-h using induction,
for which the height-2 LOT serves as the base case.

7 Optimizations

In this section, we discuss two optimizations that en-
able Canopus to achieve high throughput and low read
latency in wide-area deployments.

7.1 Pipelining
The completion time of a consensus cycle depends on
the latency between the most widely-separated super-
leaves. If only one cycle executes at a time, then
high latency would reduce throughput as the nodes are
mostly idle and are waiting for distant messages to ar-
rive. Therefore, we use pipelining in Canopus to in-
crease the throughput of the system. Specifically, instead
of executing only one consensus cycle at a time, a node
is permitted to participate in the next consensus cycle if
any of the following events occur:

• The node receives a message belonging to the con-
sensus cycle that is higher than its most recently
started consensus cycle.

• A periodical timer expires, which serves as an up-
per bound for the offset between the start of two
consensus cycles.

• The number of outstanding client requests exceeds
the maximum batch size of requests.

With this change, a node can start exchanging mes-
sages with its peers that belong to the next consensus cy-
cle even before the end of the prior cycle. In effect, this
allows Canopus to maintain multiple in-progress con-
sensus cycles. However, log commits only happen when
a particular consensus cycle is complete, and always in
strict order of consensus cycles. This is no different than
a transport layer maintaining a window of transmitted-
but-unacked packets.

Two cases need to be addressed to maintain the to-
tal order of the requests. First, nodes must always start
consensus cycles in sequence (i.e., they cannot skip a cy-
cle). It may happen that a node receives a message be-
longing to cycle Cj≥i+2 where Ci is the most recently
started consensus cycle at the node. In that case, the
node still starts the next cycle Ci+1 instead of starting
the cycle Cj . Second, nodes always commit the requests
from consensus cycles in sequence. Due to parallelism
and fetching proposals from different nodes in each cy-
cle, it may happen that a node receives all the required
messages to complete a cycle Cj≥i+1 before it has com-
pleted the cycle Ci. However, to maintain the total or-
der, nodes do not commit the requests from Cj until the
requests from all the cycles before Cj have been com-
mitted.

7.2 Optimizing Read Operations
Canopus delays read operations to linearize them rela-
tive to the write requests across all the nodes in the sys-
tem. Therefore, the read operations must be deferred to
the end of the next consensus cycle, which is bounded by

10

the round-trip latency between the farthest super-leaves.
However, for read-heavy workload, it is desirable that
the read operations are performed with minimal latency.
Canopus can optionally support write-leases for a partic-
ular key during a consensus cycle to reduce the latency
of read operations while preserving linearizability.

For any key, during any consensus cycle either a write
lease is inactive, so that no writes are permitted to that
key, and all nodes can read this key with no loss of con-
sistency or all nodes have permission to write to this key
(with a write order that is decided at the end of the con-
sensus cycle) and no reads are permitted to this key. Any
read requests made to a key during a consensus cycle i
such that there is a write lease for the key is deferred
to the end of the (i + 1)th consensus cycle, to ensure
linearizability.

Write leases require the following three modifications
to Canopus:

1. Blocking client requests: Following the model
in Paxos Quorum Leases [31], our read optimization re-
stricts the clients to sending only one request at any one
time. This is different than our earlier model, where
the clients are permitted many outstanding requests at
a time.

2. Write leases: Write requests are committed af-
ter acquiring the write-lease for the keys in the requests.
Nodes piggyback lease requests with the proposal mes-
sages in the next consensus cycle Ci+1. At the end
of the consensus cycle Ci+1, all the correct nodes that
complete the cycle have the same set of lease requests.
Therefore, all the correct nodes in the system can apply
the lease in the same consensus cycle Ci+p+1.

3. Reads without delay: A node N performs a read
operation for a key y immediately (reading results from
committed consensus cycles) if the write-lease for y is
not active in any of the currently ongoing consensus cy-
cles. If a node receives a read request for y while the
write-lease for y is currently active, the node delays the
read request until the end of the next consensus cycle.

8 Evaluation

The focus of our evaluation is to compare the through-
put and latency of Canopus with other competing sys-
tems at different deployment sizes. Our experiments
are based on our prototype implementation of Cano-
pus, which consists of approximately 2000 lines of Java
code. We select EPaxos as a representative for state-of-
the-art decentralized consensus approaches as EPaxos
has been reported [28] to perform equal or better than
other decentralized consensus protocols. We use the
publicly available implementation [29] of EPaxos from
the paper’s authors for the evaluation. We also compare

against ZooKeeper, a widely used coordination service
that uses Zab, a centralized atomic broadcast protocol, to
provide agreement. In order to provide a fair comparison
with ZooKeeper, which includes additional abstractions
that may introduce extra overhead, we created ZKCano-
pus, a modified version of ZooKeeper that replaces Zab
with Canopus and performed all of our comparisons to
ZooKeeper using ZKCanopus.

8.1 Single Datacenter Deployment

In this section, we evaluate the performance of Canopus
and EPaxos when all the nodes are located in the same
datacenter.

Experimental setup: We conducted our experiments
on a three rack cluster where each rack consists of 13
machines. Each machine contains 32GB of memory,
a 200GB Intel S3700 SSD, and two Intel Xeon E5-
2620 processors. The machines in each rack are con-
nected through a Mellanox SX1012 top-of-rack switch
via 10Gbps links. Rack switches are connected through
2x10Gbps links to a common Mellanox SX1012 aggre-
gation switch. Thus, the network oversubscription is 1.5,
2.5, 3.5, and 4.5 for experiments with 9, 15, 21, and 27
nodes respectively.

For our ZooKeeper and ZKCanopus experiments,
both systems were configured to write logs and snap-
shots of the current system state asynchronously to the
filesystem. We use an in-memory filesystem to sim-
plify our experimental setup. To ensure that using an
in-memory filesystem does not appreciably affect our re-
sults, we perform additional experiments in which logs
are stored to an SSD. The results show that, for both
ZooKeeper and ZKCanopus, throughput is not affected
and median completion time increases by less than 0.5
ms.

Each experiment runs for 50 seconds and is repeated
five times. We discard the first and last 5 seconds to
capture the steady state performance. The error bars in
the graphs show 95% confidence intervals.

Workload: Our experimental workloads are driven by
180 clients, which are uniformly distributed across 15
dedicated machines with 5 machines per rack. Each
client connects to a uniformly-selected node in the same
rack. The clients send requests to nodes according to
a Poisson process at a given inter-arrival rate. Each re-
quest consists of a 16-byte key-value pair where the key
is randomly selected from 1 million keys.

LOT configuration in Canopus: Canopus nodes are or-
ganized into three super-leaves in a LOT of height 2. To
vary the group size, we change the super-leaf size to 3,
5, 7, and 9 nodes. Due to the size of our cluster, we did
not run experiments with taller trees. In our current im-

11

9 15 21 27

Num ber of nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
R

e
q

u
e

s
ts

 p
e

r
s
e

c
o

n
d

 (
x

1
0

6
)

Canopus
20% writes

Canopus
50% writes

Canopus
100% writes

(a) Throughput (b) Median completion time

Figure 4: Throughput and median request completion times of Canopus and EPaxos while scaling the number of nodes
in the system.

plementation, nodes reliably broadcast messages within
a super-leaf without hardware assistance. Instead, they
use the Raft-based reliable broadcast protocol described
in Section 4.3 in which nodes communicate using uni-
cast messages.

Performance metrics: The two key performance met-
rics we measure in our experiments are throughput and
request completion time. We determine the throughput
of a system by increasing the request inter-arrival rate
until the throughput reaches a plateau. Our empirical
results show that, for all of the tested systems and con-
figurations, the plateau is reached before the median re-
quest completion time reaches 10 ms. To simplify our
testing procedure, our experiments run until the request
completion time is above 10 ms and we use the last data
point as the throughput result for that run. For each run,
we manually verify that we have reached the system’s
maximum throughput.

As it is difficult to determine the exact inter-arrival
rate at which maximum throughput has been reached,
together with the common operating practice of running
critical systems below their maximum load, we report
the median request completion time of the tested sys-
tems when they are operating at 70% of their maximum
throughput. We believe this is more representative of the
completion times that applications will experience when
interacting with these systems compared to the median
completion time at 100% load.

8.1.1 Comparison with EPaxos

In this experiment, we compare the performance of
Canopus with EPaxos at different system sizes. Fig-
ure 4(a) shows the maximum throughput of the two sys-
tems. The first three bars in each group show the Cano-
pus’ throughput at 20%, 50%, and 100% write requests,
and the last two bars show the throughput of EPaxos

at its default batch duration of 5 ms, in which requests
are delayed for up to 5 ms in order to collect a larger
batch of requests, and a reduced batch duration of 2 ms.
For EPaxos, we ensure there is 0% command interfer-
ence to evaluate its performance under the best possible
condition. As EPaxos sends reads over the network to
other nodes, its performance is largely independent of
the write percentage; we show its results using the 20%
write request workload.

The performance results show that with 20% and 50%
write requests, Canopus provides significantly higher
throughput than EPaxos with the performance gap in-
creasing with larger system sizes. With 27 nodes and
20% write requests, Canopus provides more than 3 times
the throughput of EPaxos with 5 ms batching. This is
because Canopus can serve read requests locally with-
out disseminating the request to the rest of the nodes in
the group while still providing linearizable consistency.
For the 100% write request workload, Canopus provides
similar throughput to EPaxos with a 5 ms batching du-
ration. This is in part due to network bandwidth be-
ing relatively abundant in a single datacenter deploy-
ment. EPaxos with a 2 ms batching duration shows a
significant drop in throughput as we increase the num-
ber of nodes in the system. This illustrates that EPaxos
has scalability limitations when configured with smaller
batch sizes.

Figure 4(b) shows the median request completion
times of the two systems. From 9 to 27 nodes, Cano-
pus’ request completion time is mostly independent of
write request percentage, and is significantly shorter
than EPaxos.

EPaxos’ high request completion time is primarily
due to its batching duration. By reducing its batch-
ing duration to 2 ms, EPaxos’ median request comple-
tion time reduces by more than half and is within 1
ms of Canopus’ request completion time. However, as

12

we saw previously, EPaxos relies on large batch sizes
to scale. Therefore, our results show that EPaxos must
tradeoff request completion time for scalability, whereas
Canopus’ read throughput increases with more nodes, its
write throughput remains largely constant up to at least
27 nodes, and its median request completion time only
marginally increases going from 9 to 27 nodes.

8.1.2 Comparison with ZooKeeper

In this experiment, we compare the performance of
ZooKeeper with ZKCanopus, our Canopus-integrated
version of ZooKeeper. This comparison serves three
purposes. First, it compares the performance of Canopus
with that of a centralized coordinator-based consensus
protocol. Second, it shows the effectiveness of Canopus
in scaling an existing system by eliminating the central-
ized coordinator bottleneck. Finally, these experiments
evaluate the end-to-end performance of complete coor-
dination services, instead of evaluating just the perfor-
mance of the consensus protocols.

We configure ZooKeeper to have only five follow-
ers with the rest of the nodes set as observers that do
not participate in the Zab atomic broadcast protocol but
asynchronously receive update requests. This choice is
mainly to reduce the load on the centralized leader node.
Although observers do not provide additional fault toler-
ance, they can improve read request performance by ser-
vicing read requests. In the case of ZKCanopus, every
node participates fully in the Canopus consensus pro-
tocol. We use one znode in these experiments and the
clients read from and write to the same znode.

Figure 5 shows the throughput to median request com-
pletion time results for ZKCanopus and ZooKeeper with
9 and 27 nodes. For ZKCanopus, we do not show the
request completion time at low throughputs in order to
improve the readability of the graphs. The results show
that, when the system is not loaded, ZKCanopus has a
median request completion time that is between 0.2 ms
to 0.5 ms higher than ZooKeeper. This is in part due
to the additional network round trips required to dis-
seminate write requests using a tree overlay instead of
through direct broadcast. However, we believe the small
increase in request completion time is acceptable given
the significant improvement in scalability and through-
put that ZKCanopus provides over ZooKeeper.

8.2 Multi-Datacenter Deployment

In this section, we evaluate the performance of Cano-
pus in a wide area deployment. We run the experiments
on Amazon EC2 cloud using three, five, and seven dat-
acenters. Each datacenter consists of three nodes lo-
cated in the same site. Each node runs on an EC2

Table 1: Latencies (ms) between the datacenters used in
the experiments.

IR CA VA TK OR SY FF
IR 0.2
CA 133 0.2
VA 66 60 0.25
TK 243 113 145 0.13
OR 154 20 80 100 0.26
SY 295 168 226 103 161 0.2
FF 22 145 89 226 156 322 0.23

c3.4xlarge instance, which consists of 30GB memory
and Intel Xeon E5-2680 processor. Each datacenter has
100 clients that connect to a uniform-randomly selected
node in the same datacenter and concurrently perform
read and write operations at a given rate. The work-
load consists of 20% write requests, unless otherwise
mentioned. The messages consists of 16-byte key-value
pairs. The inter-datacenter latencies are given in the Ta-
ble 1.

For Canopus, each datacenter contains a super-leaf,
although the nodes might not be located in the same
rack. We enable pipelining to overcome the long de-
lays across datacenters. Each node starts a new consen-
sus cycle every 5ms or after 1000 requests have accumu-
lated, whichever happens earlier. For EPaxos, we used
the same batch size as Canopus, and the workload con-
sists of zero command interference. We enable latency-
probing in EPaxos to dynamically select the nodes in the
quorum. We disable thrifty optimization in EPaxos be-
cause our experiments show lower throughput with the
thrifty optimization turned on.

Figure 6 shows the throughput and median request
completion times of Canopus and EPaxos when de-
ployed in three, five, and seven datacenters. Each dat-
acenter consists of three nodes. The vertical lines in the
graph show the throughput when the latency touches 1.5
times the base latency.

Scaling across the datacenters, Canopus is able to
achieve about 2.6, 3.8, and 4.7 millions requests per sec-
ond, which is nearly 4x to 13.6x higher throughput than
EPaxos. Canopus is able to achieve high throughput be-
cause of its more efficient utilization of CPU and net-
work resources. Unlike EPaxos, Canopus does not dis-
seminate read requests across the nodes, not even the
read keys, which reduces the number and size of mes-
sages exchanged between the nodes. For ready-heavy
workloads, this significantly impacts the utilization of
CPU and network resources. Furthermore, due to the hi-
erarchical and network-aware design of Canopus, a pro-
posal message is exchanged between each pair of super-
leaves only once. This approach places a lower load

13

Figure 5: Throughput and median request completion times of ZKCanopus and ZooKeeper when the system consists
of 9 nodes (left) and 27 nodes (right). Note that the x-axis is in log scale.

0 1 2 3 4 5 6
0

100

200

300

400

500

600

M
e

d
ia

n
 r

e
q

u
e

s
t

c
o

m
p

le
ti

o
n

 t
im

e
 (

m
s
)

9 nodes

Canopus EPaxos

0 1 2 3 4 5 6

Throughput (x106)

0

100

200

300

400

500

600

15 nodes

0 1 2 3 4 5 6
0

100

200

300

400

500

600

21 nodes

Figure 6: Throughput and median request completion times of Canopus and EPaxos in the multi-datacenter experiment
with 20% writes workload.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Throughput (x106)

0

100

200

300

400

500

M
e

d
ia

n
 r

e
q

u
e

s
t

c
o

m
p

le
ti

o
n

 t
im

e
 (

m
s
)

Canopus 1% writes

Canopus 50% writes

Canopus 20% writes

EPaxos 20% writes

Figure 7: Performance of Canopus and EPaxos with dif-
ferent ratios of writes in the workload.

on wide-area network links compared to the broadcast-
based approach used in EPaxos.

8.2.1 Writes to Reads Ratio in the Workload

In this section, we evaluate the performance of Canopus
and EPaxos with different ratios of writes in the work-
load. We run these experiments with nine nodes de-
ployed in three datacenters. Figure 7 shows the results

when the workload consists of 1%, 20%, and 50% write
requests. For EPaxos, our results show the same results
with different write-ratios in the workloads. Therefore,
we only show the results for 20% writes workload.

As expected, Canopus has higher throughput for more
read-heavy workloads, reaching up to 3.6 million re-
quests per second with 1% writes workload , as com-
pared to the 2.65 millions requests per second with 20%
writes workload. However, even with a write intensive
workload consisting of 50% writes, Canopus achieves
2.5x higher throughput than EPaxos.

9 Discussion
This paper describes the current design of Canopus and
evaluates its performance in comparison with other pro-
tocols. Additional capabilities may be necessary in order
to satisfy the requirements of specific applications.
Full-rack failures: In Canopus, nodes belonging to the
same super-leaf are placed in the same rack. There-
fore, catastrophic failures that cause complete rack fail-
ures result in super-leaf failures, which halts the con-
sensus process. Although, top-of-rack switch failures
are rare [13] and the fault-tolerant design of datacen-

14

ters [22, 23, 39, 37] reduce the possibility of rack fail-
ures, there can be applications that have more stringent
availability requirements. For such applications, we are
currently investigating a rack-failure recovery mecha-
nism.

Experiments at large scale: In order to limit the cost of
our experiments, we only evaluated Canopus with up to
27 nodes across seven datacenters. However, we expect
Canopus to scale to a large number of nodes by care-
fully constructing the LOT hierarchy. The number of
nodes in Canopus can be increased either by increasing
the size of the super-leaves, or by increasing the number
of super-leaves in the system. The LOT should be struc-
tured such that the time it takes to complete the opera-
tions within a super-leaf is less than the round-trip time
between super-leaves. If necessary, the height of the tree
can be increased to satisfy this condition.

Byzantine fault tolerance: Private blockchains use
consensus protocols to achieve agreement on the order-
ing and timing of operations between the participating
nodes. In many private blockchains, nodes do not trust
each other as they can act maliciously, either intention-
ally or due to being hacked. A common approach to
solve the trust problem is to use Byzantine fault-tolerant
(BFT) consensus algorithms. An alternative approach
to establish trust is to create a trusted computing envi-
ronment [4] using hardware assisted secure enclaves. In
this way, the nodes can use non-BFT consensus proto-
cols, such as Canopus, to solve the trust issue. We are in
the process of extending Canopus to support BFT.

10 Conclusion

In this paper, we have presented Canopus, a highly par-
allel, scalable, and network-aware consensus protocol.
Evaluation results using our prototype implementation
show that Canopus can perform millions of requests per
second with 27 nodes in a single datacenter deployment,
which is more than 4x higher than EPaxos. Furthermore,
our Canopus-integrated version of ZooKeeper increases
the throughput of ZooKeeper by more than 16x for read-
heavy workloads.

Acknowledgements

We would like to thank the anonymous reviewers for
their valuable feedback. This work was supported by
the Natural Sciences and Engineering Research Council
of Canada (NSERC). This work benefited from the use
of the SyN Facility at the University of Waterloo.

References
[1] Chain blockchain infrastructure, 2017.

[2] Hyperledger blockchain technologies, 2017.

[3] Kadena permissioned blockchain, 2017.

[4] The Coco Framework, 2017.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat. A scal-
able, commodity data center network architecture.
In Proceedings of the ACM SIGCOMM 2008 Con-
ference on Data Communication, SIGCOMM ’08,
pages 63–74. ACM, 2008.

[6] A. Allavena, Q. Wang, I. Ilyas, and S. Keshav.
LOT: A robust overlay for distributed range query
processing. Technical report, CS-2006-21, Univer-
sity of Waterloo, 2006.

[7] J. Baker, C. Bond, J. C. Corbett, J. Furman,
A. Khorlin, J. Larson, J.-M. Leon, Y. Li, A. Lloyd,
and V. Yushprakh. Megastore: Providing scalable,
highly available storage for interactive services. In
Proceedings of the Conference on Innovative Data
system Research (CIDR), pages 223–234, 2011.

[8] M. Biely, Z. Milosevic, N. Santos, and A. Schiper.
S-Paxos: Offloading the leader for high throughput
state machine replication. In Proceedings of the
IEEE Symposium on Reliable Distributed Systems
(SRDS), pages 111–120. IEEE, 2012.

[9] H. T. Dang, M. Canini, F. Pedone, and R. Soulé.
Paxos made switch-y. SIGCOMM Computer
Communication Review (CCR), 46(2):18–24, May
2016.

[10] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. Netpaxos: Consensus at network speed.
In Proceedings of the 1st ACM SIGCOMM Sym-
posium on Software Defined Networking Research
(SOSR), pages 5:1–5:7. ACM, 2015.

[11] N. Farrington and A. Andreyev. Facebook’s data
center network architecture. In IEEE Optical In-
terconnects Conference, pages 5–7, 2013.

[12] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[13] P. Gill, N. Jain, and N. Nagappan. Understand-
ing network failures in data centers: Measure-
ment, analysis, and implications. In Proceedings
of the ACM SIGCOMM Conference, SIGCOMM
’11, pages 350–361. ACM, 2011.

15

[14] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sen-
gupta. Vl2: a scalable and flexible data center net-
work. Communications of the ACM, 54(3):95–104,
2011.

[15] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
Zookeeper: Wait-free coordination for internet-
scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Confer-
ence, USENIX ATC ’10, page 9. USENIX Associ-
ation, 2010.

[16] Z. István, D. Sidler, G. Alonso, and M. Vukolic.
Consensus in a box: Inexpensive coordination in
hardware. In Proceedings of the 13th USENIX
Symposium on Networked Systems Design and Im-
plementation, NSDI ’16, pages 425–438, Santa
Clara, CA, 2016. USENIX Association.

[17] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab:
High-performance broadcast for primary-backup
systems. In Proceedings of the IEEE/IFIP 41st
International Conference on Dependable Systems
Networks (DSN ’11), pages 245–256. IEEE, 2011.

[18] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems (TOCS), 16(2):133–
169, 1998.

[19] L. Lamport. Generalized consensus and paxos.
Technical report, MSR-TR-2005-33, Microsoft
Research, 2005.

[20] L. Lamport. Fast paxos. Springer Distributed
Computing, 19(2):79–103, 2006.

[21] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Just say NO to paxos overhead:
Replacing consensus with network ordering. In
Proceedings of 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI
16), pages 467–483. USENIX Association, 2016.

[22] V. Liu, D. Halperin, A. Krishnamurthy, and T. An-
derson. F10: A fault-tolerant engineered network.
In In Proceedings of the 10th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI ’13), pages 399–412. USENIX Association,
2013.

[23] V. Liu, D. Zhuo, S. Peter, A. Krishnamurthy, and
T. Anderson. Subways: A case for redundant, in-
expensive data center edge links. In Proceedings of
the 11th ACM Conference on Emerging Network-
ing Experiments and Technologies, CoNEXT ’15,
pages 27:1–27:13. ACM, 2015.

[24] R. Makhloufi, G. Doyen, G. Bonnet, and D. Gaı̈ti.
A survey and performance evaluation of decentral-
ized aggregation schemes for autonomic manage-
ment. International Journal of Network Manage-
ment, 24(6):469–498, 2014.

[25] Y. Mao, F. P. Junqueira, and K. Marzullo. Men-
cius: building efficient replicated state machines
for wans. In Proceedings of the 8th USENIX con-
ference on Operating systems design and imple-
mentation, volume 8 of OSDI ’08, pages 369–384,
2008.

[26] P. J. Marandi, M. Primi, and F. Pedone. Multi-
ring paxos. In Proceedings of the 2012 IEEE/IFIP
International Conference on Dependable Systems
and Networks, DSN ’12, pages 1–12. IEEE, 2012.

[27] P. J. Marandi, M. Primi, N. Schiper, and F. Pedone.
Ring paxos: A high-throughput atomic broadcast
protocol. In Proceedings of the 2010 IEEE/IFIP
International Conference on Dependable Systems
Networks, DSN ’10, pages 527–536. IEEE, 2010.

[28] I. Moraru, D. G. Andersen, and M. Kaminsky.
There is more consensus in egalitarian parliaments.
In Proceedings of the 24th ACM Symposium on
Operating Systems Principles, SOSP ’13, pages
358–372. ACM, 2013.

[29] I. Moraru, D. G. Andersen, and M. Kaminsky.
EPaxos source code, 2014.

[30] I. Moraru, D. G. Andersen, and M. Kaminsky.
Paxos quorum leases: Fast reads without sacrific-
ing writes. In Proceedings of SoCC. ACM, 2014.

[31] I. Moraru, D. G. Andersen, and M. Kaminsky.
Paxos quorum leases: Fast reads without sacrific-
ing writes. In Proceedings of the ACM Symposium
on Cloud Computing, pages 1–13. ACM, 2014.

[32] S. Mu, L. Nelson, W. Lloyd, and J. Li. Con-
solidating concurrency control and consensus for
commits under conflicts. In Proceedings of
USENIX OSDI, pages 517–532. USENIX Associ-
ation, 2016.

[33] D. Ongaro and J. Ousterhout. In search of an un-
derstandable consensus algorithm. In Proceedings
of USENIX ATC, pages 305–320. USENIX Asso-
ciation, 2014.

[34] M. Poke, T. Hoefler, and C. W. Glass. Allconcur:
Leaderless concurrent atomic broadcast. In Pro-
ceedings of the 26th International Symposium on
High-Performance Parallel and Distributed Com-
puting (HPDC), HPDC ’17, pages 205–218. ACM,
2017.

16

[35] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and
A. Krishnamurthy. Designing distributed systems
using approximate synchrony in data center net-
works. In Proceedings of 12th USENIX Symposium
on Networked Systems Design and Implementa-
tion (NSDI 15), pages 43–57, Oakland, CA, 2015.
USENIX Association.

[36] J. Risson and T. Moors. Survey of research towards
robust peer-to-peer networks: search methods.
Computer networks, 50(17):3485–3521, 2006.

[37] B. Schlinker, R. N. Mysore, S. Smith, J. C. Mogul,
A. Vahdat, M. Yu, E. Katz-Bassett, and M. Rubin.
Condor: Better topologies through declarative de-
sign. In Proceedings of the ACM SIGCOMM 2015
Conference, pages 449–463. ACM, 2015.

[38] X. Shi, H. Lin, H. Jin, B. B. Zhou, Z. Yin, S. Di,
and S. Wu. GIRAFFE: A scalable distributed co-
ordination service for large-scale systems. In Pro-
ceedings of IEEE Cluster Computing (CLUSTER),
pages 38–47. IEEE, 2014.

[39] A. Singh, J. Ong, A. Agarwal, G. Anderson,
A. Armistead, R. Bannon, S. Boving, G. Desai,
B. Felderman, P. Germano, et al. Jupiter rising: A
decade of clos topologies and centralized control
in google’s datacenter network. In Porceedings of
SIGCOMM, pages 183–197. ACM, 2015.

[40] P. Sutra and M. Shapiro. Fast genuine general-
ized consensus. In Proceedings of the IEEE Sym-
posium on Reliable Distributed Systems (SRDS),
pages 255–264. IEEE, 2011.

[41] R. Van Renesse, K. P. Birman, and W. Vogels. As-
trolabe: A robust and scalable technology for dis-
tributed system monitoring, management, and data
mining. ACM Transactions on Computer Systems
(TOCS), 21(2):164–206, May 2003.

[42] M. Vukolić. The quest for scalable blockchain fab-
ric: Proof-of-work vs. bft replication. In Interna-
tional Workshop on Open Problems in Network Se-
curity, pages 112–125. Springer, 2015.

17

Symbol Description
h Tree height
S = { si } Set of super-leaves with elements si
si,j jth leaf-node in a super-leaf si
L = { li,j } Set of correct leaf nodes where li,j ∈ si
A(n, i) ith ancestor of (v)node n; a(n, 0) = n

C(n) Set of children of node n
D(n) Correct descendants of node n
R(si,j , c) Set of requests that a node si,j has received during consensus cycle c− 1.
F (si,j , c) Set of membership updates that a node si,j has received during consensus cycle

c− 1. Membership updates are of the form delete(si,j) and add(si,j) which delete
and add a leaf node in super-leaf si respectively.

N(si,j , c) A large random number (e.g., 32-bit) chosen by node si,j at the start of consensus
cycle c

Π(si,j , n, c, r) State of (v)node n computed at leaf node si,j just before the start of the rth round
of consensus cycle c.
The state of a leaf node (at itself) consists of the nested tuple < F (si,j , c), <
N(si,j , c), R(si,j , c) >>.
The state of a non-leaf node n at leaf node si,j consists of the nested tuple
< F (c), [< N(si′,j′ , c), R(si′,j′ , c) >] > where F (c) is the set of membership
updates received by node si,j during cycle c, and [< N(si′,j′ , c), R(si′,j′ , c) >]
is an array of requests received by si,j from leaf nodes si′,j′ ∈ D(n) ordered by
N(si′,j′ , c).

Πt(si,j , n, c, r) Temporary state of vnode n at leaf node si,j during the rth round of consensus
cycle c. This state consists of the tuple < F t(c), [< N(si′,j′ , c), R(si′,j′ , c) >]t >,
where F t(c) is the set of membership updates received so far in round r by node
si,j , and [< N(si′,j′ , c), R(si′,j′ , c) >]t is the set of requests received by si,j from
leaf nodes si′,j′ ∈ D(n) ordered by N(si′,j′ , c).

M(si,j ,Π(si,j , n, c, r), c, r) Proposal response that a node si,j in super-leaf si sends in round r of consensus
cycle c

T (si,j , n, c) Emulation table at node si,j for node n at the start of consensus cycle c. This is a
list of leaf nodes that emulate n.

Table 2: Notations used in the appendix

A Correctness Proof
In this section, we provide a proof of correctness for Canopus. This proof has minor differences in notation and
structure to our proof-sketch in Section 6.

A.1 Definitions
We first define the terms used in the proof.

1. Leaf-nodes: A leaf-node in LOT is a physical server implementing the Canopus protocol. The terms leaf-node
and node are used interchangeably. Each node is assumed to have a globally unique node ID.

2. Virtual-nodes: A virtual-node, also denoted as vnode, is any non-leaf node. Each vnode is also assumed to have
a globally unique node ID.

3. Super-leaf: Nodes are logically grouped to form super-leafs. All nodes in a super-leaf share the same height-1
parent vnode, that is, ∀j, j′ in the same super-leaf si A(si,j , 1) = A(si,j′ , 1).

18

4. Reliable broadcast: A reliable broadcast2 ensures that broadcast communication within a super-leaf has validity,
integrity, and agreement (these are defined further in the cited reference).

5. Consensus cycle and round: A consensus cycle is a complete execution of the Canopus consensus protocol.
The consensus cycle consists of h rounds, where h is the height of the root node. The state of the root node
represents the consensus, and this is computed at the end of h rounds. We use the terms consensus cycle and
cycle interchangeably.

6. Super-leaf representative: Each super-leaf si elects k nodes as representatives of that super-leaf. A super-leaf
representative fetches remote state on behalf of its peer nodes in its super-leaf, then uses reliable broadcast to
disseminate the fetched state to live nodes in its super-leaf.

7. Failed node: A failed node is a crashed node. A node that has not failed is called alive. A failed node is unable
to communicate with live nodes.

• Each node in a super-leaf is the leader of its own Raft group. Therefore, upon failure of a node its group will know the leader has failed
and will elect a new leader. This failure detector is assumed to be perfect, and its output is used to update the membership state at each
leaf node, then subsequently communicated to other nodes using message exchanges. Failed nodes recover by explicitly rejoining the
system using a join protocol, which also updates the membership state at nodes.

• If a super-leaf representative fails, the remaining live nodes in the super-leaf elect a new representative to replace the failed one. A
new representative can be elected using a leader election protocol. In our implementation, we use the Raft consensus protocol within
a super-leaf, which provides this functionality.

• Note that the successful fetching of remote state by any one of the k representatives allows the Canopus protocol to proceed despite
crash-stop failures. Thus, a sufficiently large value of k mitigates both against representative failure as well as long network latencies
in the state fetching process.

8. Suspended node: A suspended node is alive but cannot progress. A node eventually goes into the suspended
state if either (a) its super-leaf has failed due to an insufficient number of live nodes, or (b) the node is missing
a required message to complete the current round in a consensus cycle. A suspended node can receive messages
and can share state or messages belonging to previous rounds that it has already completed. A suspended node
becomes correct and can progress when it has received all the required messages to complete the current round.

9. Correct node: A node is correct if it is both alive and can make progress, i.e., it is not suspended. Only correct
nodes start and complete a consensus cycle.

10. Super-leaf failure: A super-leaf si is considered to have failed if the live nodes in si do not have sufficient
quorum to elect k representative for si. This can happen if the election process require more than b live nodes
and the super-leaf does not have more than b live nodes. If a super-leaf fails, the live nodes in the super-leaf go
into a suspended state.

11. Message: All correct leaf nodes calculate the state of their height-r ancestors in the round r of each consensus
cycle (as discussed later in this section). Upon request from peers or super-leaf representatives, they send this
calculated state using proposal-response messages. For simplicity, we only model proposal responses and not
proposal requests. We assume messages are either transferred in their entirety from source to destination and are
received without duplication or corruption or lost.

A proposal response message M(si,j ,Π(si,j , n, c, r− 1), c, r) sent by node si,j during round r contains the state
Π(si,j , A(si,j , r − 1), c, r) of n, the height-(r − 1) ancestor A(si,j , (r − 1)) of si,j . For example, in the first
round, when r = 1, since A(si,j , 0) = si,j , si,j sends it own state computed just before the start of round 1 in
each message M(si,j , 1). We discuss how this state is computed next.

12. Node state: The state of node/vnode n at node si,j just before start of round r of consensus cycle c, denoted
Π(si,j , n, c, r). Node state is computed recursively, as discussed next.

To begin with, the state of a leaf node si,j at itself just before the start of consensus cycle c, denoted
Π(si,j , si,j , c, 1) (i.e., just before round 1) is defined as

Π(si,j , si,j , c, 1) , < F (si,j , c), < N(si,j , c), R(si,j >, c) > (3)
2Hadzilacos V, Toueg S. A modular approach to fault-tolerant broadcasts and related problems. Cornell University; 1994.

19

where

• F (si,j , c) is the set of membership updates that si,j has received, but not communicated, before starting
consensus cycle c. This is the set of nodes that have been detected to have failed or have joined before
starting the current cycle c.

• N(si,j , c) is a long (e.g. 32-bit) random number. Each leaf node si,j randomly generates N c
i,j before the

start of the first round of consensus cycle c.

• R(si,j , c) is the set of requests that si,j has received, but not communicated, before starting consensus cycle
c. In other words, these requests are not part of Π(si,j , A(si,j , h), (c − 1), (h + 1)). In other words, these
changes are not reflected in Π(si,j , A(si,j , h), (c− 1), (h+ 1)).

The state of a non-leaf node n at leaf node si,j consists of the nested tuple < F (c), [< N(si′,j′ , c), R(si′,j′ , c) >
] > where F (c) is the set of membership updates received by node si,j during cycle c, and [<
N(si′,j′ , c), R(si′,j′ , c) >] is the set of requests received by si,j from leaf nodes si′,j′ ∈ D(n) ordered by
N(si′,j′ , c). It is computed as follows.

Immediately after the start of the rth round of consensus cycle c, node si,j initializes its temporary copy of its
state for its rth level ancestor A(si,j , r) as its state for its (r − 1)th ancestor A(si,j , r − 1):

Πt(si,j , A(si,j , r), c, r) =< F t(c), [< N(., c), R(., c) >]t >← Π(si,j , A(si,j , r − 1), c, r) (4)

Let node si,j receive M(si′,j′ ,Π(si′,j′ , A(si′,j′ , r− 1), c, r), c, r) either in its role as a super-leaf representative,
or as part of a reliable broadcast from its representative. This message originates from node si′,j′ in round r of
consensus cycle c and carries that node’s state for its (r − 1)th ancestor A(si′,j′ , r − 1). The node first checks
if this is a duplicate message, that it, it already has received the state of A(si′,j′ , r − 1). If not, si,j updates its
temporary state Πt(si,j , A(si,j , r), c, r) as follows:

Πt(si,j , A(si,j , r), c, r)← Πt(si,j , A(si,j , r), c, r) tΠ(si′,j′ , A(si′,j′ , r − 1), c, r) (5)

where the union operation t is defined by:

F t(c)← F t(c) ∪ F (si′,j′ , c) (6)

[< N(., c), R(., c) >]t ← [< N(., c), R(., c) >]t|| < N(si′,j′ , c), R(si′,j′ , c) > (7)

where || indicates addition of a tuple into the correct location in an array of ordered tuples.

Due to the use of reliable broadcast, either all live nodes in a super-leaf receive this message or none do. Hence,
all nodes in the super-leaf consistently update their temporary state after each message broadcast. Finally, node
si,j updates the state of its rth ancestor A(si,j , r) just before the start of the next round r + 1 to the temporary
state:

Π(si,j , A(si,j , r), c, r + 1) = Πt(si,j , A(si,j , r), c, r) (8)

Note that the state Π(si,j , A(si,j , r), c, r + 1) of n, a height-r ancestor of node si,j at the end of round r of
consensus cycle c is defined the union of the states of its children C(A(si,j , r)) at the start of round r. Hence, we
can summarize state computation as follows:

Π(si,j , si,j , c, 1) , < F (si,j , c), < N(si,j , c), R(si,j , c) >> (9)

Π(si,j , A(si,j , r), c, r + 1) =
⊔

∀n′∈C(A(si,j ,r))

Π(si,j , n
′, c, r), 1 ≤ r ≤ h (10)

Π(si,j , A(si,j , k), c, r + 1) = Π(si,j , A(si,j , k), c, r), 1 ≤ k < r ≤ h (11)

Π(A(si,j , k), c, r + 1) is undefined otherwise.

The first equation is the base condition that initializes the recursion. The second equation captures the parallel
computation in each round of computation. The third equation reflects the fact that once a vnode’s state is
computed, it does not change for the remainder of the consensus cycle.

20

13. End of a consensus cycle: Round r of consensus cycle c at node si,j ends when it is able to compute
Π(si,j , A(si,j , r), c, r + 1). That is, it has received a message carrying the state of every child C(A(si,j , r))
of its ancestor A(si,j , r). Consensus cycle c ends at node sij when it completes the hth round of cycle c. Note
that different nodes may complete the same consensus cycle at different times.

14. Emulation table: An emulation table T (si,j , n, c) at node si,j at the start of consensus cycle c maps a vnode n
to the list of its emulators, i.e., its correct descendants. A super-leaf representative queries its emulation table to
select an emulator of a vnode n from which the representative wants to fetch the state of n. The emulation table
contains the necessary information about the emulators of each vnode such as their IDs and the IP addresses.
During initialization, the emulation table maps every vnode to all of its descendants.

15. Update and dissemination of the emulation table: As nodes fail, join, and re-join, the emulation table is
updated. Specifically, if the failure detection protocol within a super-leaf indicates that a certain node si,j has
failed during consensus cycle c, then the remaining nodes in si update their emulation table to remove si,j as an
emulator for every ancestor vnode and also remove the state from this node from Πt(si,j , A(si,j , 1), c, r), their
local temporary state for their shared parent vnode. Moreover, the identity of this node is added to F (si,j , c) and
shared with all other nodes in the next consensus cycle c+ 1.

A node si,j joins or re-joins super-leaf si during consensus cycle c by sending a reliable broadcast to all other
nodes in si. If successful, this results in three outcomes:

• The fact that si,j is now part of super-leaf si is indicated in the membership update F (si,j , c+1) that is part
of the consensus and hence carried in all proposal response messages originating from other nodes si,j′ ∈ si
in consensus cycle c+ 1.

• At the end of cycle c + 1, all live nodes (if any) who receive this broadcast add the newly joined node si,j
to the list of emulators for all ancestors of the joining node in the emulation table

• Starting with cycle c + 2, this node’s state is required for computing the state for its parent vnode si when
ending the first round of each cycle.

Until the end of cycle c+ 1, this node is not considered to be live.

A.2 Assumptions
The proof is based on the following assumptions:

A1 All nodes are initialized with the same emulation table and membership view.

A2 The network does not partition. Moreover, within a super-leaf, all messages are always delivered to a live receiver
within a bounded time and therefore node failure can be perfectly detected. Nodes fail by crashing and are not
Byzantine.

A3 Super-leaf-level structure does not change: Nodes may leave or join super-leaves, however, super-leafs are neither
added nor removed.

A4 Super-leaves support reliable broadcast functionality, guaranteeingvalidity, integrity, and agreement. In our im-
plementation, we used Raft to provide reliable broadcast. Moreover, messages are delivered without duplication
or corruption.

A.3 Proof
We want to prove the consensus property that all correct nodes that complete a consensus cycle c commit the same
ordered-set of messages at the end of the cycle c. We will prove a slightly stronger claim:

THEOREM 1: In a height-h LOT consisting of n super-leaves, at the end of the hth round of a consensus cycle, all
live nodes that complete the last (hth) round are either stalled or have the same state for the root node:

∀
li,j ,li′,j′∈L

Π(li,j , A(li,j , h), c, h+ 1) = Π(li′,j′ , A(li′,j′ , h), c, h+ 1) (12)

We prove Theorem 1 by induction, as sketched next:

21

… …

w

u1 u2

…

un

…

s1,1

s1 s2 sn

s1,x s2,1 s2,y sn,1 sn,z

Figure 8: LOT of height 2 with n super-leaves

• We first show that the theorem holds for the first cycle of a tree of height 2 (Lemma 1).

• We then show that, assuming that the theorem holds for a tree of height k, the theorem is true at the end of the
last round r = k + 1 of the first cycle for a tree of height k + 1 (Lemma 2).

• We finally show that, assuming that the theorem holds at the end of the (c− 1)th cycle, it also holds at the end of
the cth cycle (Lemma 3).

A.4 First cycle for tree of height 2
Consider a tree of height 2, consisting of n super-leaves, S = {s1, s2, . . . , sn}, as shown in Figure 8. Super-leaves
si correspond to vnodes ui, with a common parent height-2 vnode w. The consensus cycle consists of two rounds, r1
and r2. In the first round, states of vnodes ui are calculated, and in the second round, the state of the root-vnode w is
calculated.

LEMMA 1 For a tree of height 2, at the end of the first consensus cycle, all the correct nodes descending from the
height-2 root-vnode w, that complete the second round have the same state for the root node:

∀
li,j ,li′,j′∈C(C(w))

Π(li,j , w, 1, 3) = Π(li′,j′ , w, 1, 3) (13)

Moreover, the consensus process is stalled for all nodes that do not complete the second round of the first consensus
cycle.

PROOF: The first cycle has two rounds.

L1.1 First round: By assumption A1, each node knows the identity and IP address of all its peers in its super-leaf and
by assumption A2 these nodes are all reachable during the entire round (unless the node has failed). Recall that
nodes use reliable broadcast to disseminate their state to all other nodes within the super-leaf. By assumption
A4, messages sent by each node in this round are received without corruption by all other correct nodes in the
super-leaf by the end of the round (if some nodes fail during the first round, they are excluded from contributing
to the state of the super-leaf). Hence, all correct nodes receive the same set of messages by the the end of the
round 1. Thus, based on the union property of state update:

∀
li,j ,li,j′

∈ si, Π(li,j , si, 1, 2) = Π(li,j′ , si, 1, 2) (14)

Note that by assumption A4 each correct node knows which other nodes have failed during the round. Once a node fails, it will not re-join
other than through an explicit join message, based on assumption A2.

L1.2 Second round: In the second round, each node si,j calculates the state of its height-2 ancestor w = A(si,j , 2) by
combining the states of the children of w, C(w) = {ui}. Note that each node si,j ∈ si is missing the state of the
other vnodes ui′ ∈ C(w) except ui.

To collect the missing state, the super-leaf first elects k representatives from its set of correct nodes. We do
not discuss this election process, other than noting that it is trivially accomplished using reliable broadcast.

22

w

…

…

u
1

h-1

…

…

…

…
u

m

h-1

u
1

1
u

n

1

u
1

2

u
d

2

s1 snsn-1s2

sn-1,1 sn-1,j’’ sn,1 sn,j’’’

… …
s1,1 s1,j

…

s2,1 s2,j’

Figure 9: LOT of height k + 1 with n super-leaves

Subsequently, each representative from each super-leaf si fetches state Π(si′,j′ , ui′ , 1, 2), from node si′,j′ where
i′ 6= i and si′,j′ is one of the emulators of ui′ randomly selected from T (si,j , ui′ , 1).

Based on assumption A1, all the chosen representatives have a valid emulation table and the same membership
view at the start of the first consensus cycle. Therefore, the representatives already know the emulators of each
vnode ui′ . However, the selected emulator may have failed since the last update of the emulation table. Hence, if
the chosen emulator does not respond before a timeout, based on assumption A2 the representative assumes that
the emulator has crashed, marks it as such, and picks another live emulator from the table. If no such emulator
exists, the representative stalls.

In the best case, neither the representative nor any of the emulators fail during the first consensus cycle. However,
it is possible for failures to occur, which complicates the process.

• We first consider the case when neither representatives nor emulators fail. By design, the representatives in
super-leaf si receive M(si′,j′ ,Π(si′,j′ , ui′ , 1, 2), 1, 2) from each emulator si′,j′ and use reliable broadcast
to transmit it to every other node si,j ∈ si. Then, each such node uses Equation 5 to update its temporary
state for w. In the absence of failures, all nodes in all super-leaves receive identical values for states of the
vnodes ui. Hence, all nodes in all super-leaves compute the same state for the w at the end of the second
round, as desired.

• Now, suppose that one of the representatives for one of the super-leaves, say si fails to retrieve the state
of some vnode ui′ . This could be due to a failure of the representative or the failure of the emulator, or
message loss. Nevertheless, if at least one of the representatives assigned to fetch the state of each vnode
ui′ eventually succeeds, all the correct nodes in si will eventually receive M(si′,j′ ,Π(si′,j′ , ui′ , 1, 2), 1, 2)
and complete the second round of the consensus cycle, as before.

• Now consider the situation when all representatives in super-leaf si fail in fetching the state of at least one
vnode ui′ . The representatives may fail because either (a) all the emulators of ui′ have crashed or are in a
suspended state and no more emulators are available to respond to proposal requests for the state of ui′ or
(b) all the representatives in si have crashed or are in a suspended state, and this super-leaf does not have a
sufficient number of live nodes to elect a new representative. In either case, the nodes in si will be unable
to complete the second round of the consensus cycle and will stall and go into suspended state.

In all three cases, it is clear that nodes fall into three categories: (a) correct nodes that complete the second round
and have the same state or (b) nodes that are stalled or (c) nodes that have failed. Nevertheless, all non-stalled
live nodes have the same state, which proves Lemma 1. �

23

A.4.1 First cycle for a tree of height k+1

Consider a LOT of height k + 1 consisting of n super-leaves, shown in Figure 9. The root-vnode w has m children of
height k, i.e., C(w) = {u1, u2, . . . , um}.

LEMMA 2 If, in a tree of height k, at the end of the kth round in the first consensus cycle either(a) all correct nodes
that complete the (k)th round compute the same state for the root node:

∀
li,j ,li′,j′∈D(C(w))

Π(li,j , w, k), 1, k + 1) = Π(li,j , w, k), 1, k + 1) (15)

or (b) the consensus process is stalled for live nodes that do not complete the kth round then in a tree of height k+ 1 at
the end of the last round of a consensus cycle c, either (a) all correct nodes that complete the (k+ 1)th round compute
the same state for the root node:

∀
li,j ,li′,j′∈D(w)

Π(li,j , w, c, k + 2) = Π(li′,j′ , w, c, k + 2) (16)

or (b) the consensus process is stalled for live nodes that do not complete the (k + 1)th round.
PROOF:
From the induction hypothesis, for the height-(k+1) tree, correct nodes in super-leaf si that have completed round-

k already have computed the state of their height-k ancestor A(si,j , k). These nodes require the state of other children
of the root vnode w, i.e., ui′ ∈ C(w) where ui′ 6= A(si,j , k), to complete the last round h = k + 1. In round k + 1,
super-leaf representatives from all the n super-leaves fetch the state of node ui′ ∈ C(w) from one of its emulators and
use the reliable broadcast (Assumption A4) functionality to disseminate the state to live nodes in their own super-leaf.
The representatives either succeed or fail to fetch the required state. We consider these two cases below.

L2.1 Representatives of super-leaf si succeed in fetching the state of each vnode ui′ ∈ C(A(si,j , k + 1)), ui′ 6=
A(si,j , k).

The representatives of all the super-leaves fetch the same state of vnode ui from its live emulators that completed
the round k, based on the induction hypotheses. So all correct nodes si,j receive the same of state of ui, either
fetched by themselves or received from the representatives of si. As a result, all the nodes that complete the last
round k + 1 compute the same state of the height k + 1 root vnode w:

∀
li,j ,li′,j′∈D(w)

Π(li,j , w, c, k + 2) = Π(li′,j′ , w, c, k + 1) (17)

which proves the desired property.

L2.2 None of the representatives of a super-leaf si succeed in fetching the state of at least one vnode ui′ ∈ C(w).

The representatives of a super-leaf si can fail to fetch state of ui′ because of one of the following two reasons:

1. All the representatives of super-leaf si have crashed and si does not have sufficient number of live nodes to
elect a new representative. In this situation, the consensus process stalls for si in the current cycle c.
Nodes in other super-leaves may succeed in fetching the state of A(si,j , k) from the live descendants
D(A(si,j , k)) of A(si,j , k) and complete the last round k + 1. Following the same reasoning as given
in the previous case in L2.1, these nodes compute the same state of the root vnode w as desired.

2. The representatives of super-leaf si are alive but they fail in fetching the state of ui′ . This can happen only
if all the nodes descending from ui′ have not completed the round k either because (a) all the descendants
of ui′ are stalled before completing the round k or (b) because all the descendants of ui′ have failed. In
either case, the consensus process stalls for the nodes in si in the current cycle c. Other nodes that succeed
in fetching the state of ui′ may complete the last round k + 1 and compute the same state of the root vnode
w, which follows from the same reasoning as given in L2.1.

L2.3 As the two cases in L2.1 and L2.2 are exhaustive, this proves Lemma 2. �

24

A.4.2 Subsequent cycles

LEMMA 3: For a tree of height k, if at the end of consensus cycle c− 1, either (a) all correct leaf nodes that complete
the cycle have the same state for the root node:

∀
li,j ,li′,j′∈L

Π(li,j , A(li,j , 2), c− 1, 3) = Π(li′,j′ , A(li′,j′ , 2), c− 1, 3) (18)

or (b) the consensus process is stalled for some live nodes, then at the end of consensus cycle c, either (a) all correct
leaf nodes that complete the cycle have the same state for the root node:

∀
li,j ,li′,j′∈L

Π(li,j , A(li,j , 2), c, 3) = Π(li′,j′ , A(li′,j′ , 2), c, 3) (19)

or (b) the consensus process is stalled for some live nodes.
Proof: If all live nodes are stalled in cycle c − 1, then cycle c cannot be initiated, and in this case the lemma is

trivially true. Hence, we only consider the case when consensus cycle c− 1 terminates with only some stalled nodes,
with all live nodes having the same state for the root node.

If some live nodes were stalled at the end of cycle c − 1, these nodes are unable to participate in the first round of
cycle c, and this prevents the computation of the state of their super-leaf vnode parent. Thus, all other live nodes in all
other super-leaves will also be stalled in the second round of cycle c, which completes the proof of the lemma.

Note that the only other difference between the first consensus cycle and cycle c is that at the start of the first
consensus cycle, the emulation table at all live nodes is known to be identical and accurate. This emulation table may
be updated in subsequent cycles, since some nodes may have failed (and recovered) during the first c− 1 cycles, thus
introducing potential inaccuracies. Hence, to prove this lemma, we only need to show that these inaccuracies do not
affect the correctness of the consensus process.

Recall that the structure of the emulation table is that it maps from a vnode n to its set of potential emulators {si,j}.
If the emulation table is inaccurate, one of three cases must be true:

1. si,j is in fact not a descendant of n

2. si,j is a descendant of n but is incorrect (either crashed or stopped)

3. si,j is a live descendant of n but is not marked as a potential emulator in the emulation table

Note that the first and third cases are impossible due to the design of the protocol (see Definition 15). The second case
will lead to a representative who uses this emulator to fail to get a proposal-response. However, this is identical to the
failure of the emulator or representative, as discussed in Lemma 1, and hence does not affect the correctness of the
protocol.

Since these cases are exhaustive, this proves Lemma 3. �

A.4.3 Proof of Theorem 1

Proof: The proof follows by induction from Lemmas 1, 2, and 3. �

25

	Introduction
	Related Work
	Centralized Coordination
	Decentralized Coordination
	Consensus Exploiting Network Hardware
	Group Communication Protocols
	Private Blockchains
	Scalability of Read Requests

	System Assumptions
	Canopus
	Leaf-Only Trees
	Consensus Cycle
	Reliable-Broadcast in a Super-Leaf
	Self-Synchronization
	Super-Leaf Representatives
	Emulation Table
	An Illustrative Example

	Linearizability
	Correctness Properties
	Optimizations
	Pipelining
	Optimizing Read Operations

	Evaluation
	Single Datacenter Deployment
	Comparison with EPaxos
	Comparison with ZooKeeper

	Multi-Datacenter Deployment
	Writes to Reads Ratio in the Workload

	Discussion
	Conclusion
	Correctness Proof
	Definitions
	Assumptions
	Proof
	First cycle for tree of height 2
	First cycle for a tree of height k+1
	Subsequent cycles
	Proof of Theorem 1

