
1Scientific Reports |         (2019) 9:15088  | https://doi.org/10.1038/s41598-019-51492-3

www.nature.com/scientificreports

Metabolomic profiling identifies 
novel associations with Electrolyte 
and Acid-Base Homeostatic 
patterns
Cristina Menni   1*, Linsay McCallum2, Maik Pietzner3,4, Jonas Zierer   1,5, Alisha Aman   2,  
Karsten Suhre   6, Robert P. Mohney   6, Massimo Mangino   1, Nele Friedrich3, 
Tim D. Spector1 & Sandosh Padmanabhan2*

Electrolytes have a crucial role in maintaining health and their serum levels are homeostatically 
maintained within a narrow range by multiple pathways involving the kidneys. Here we use 
metabolomics profiling (592 fasting serum metabolites) to identify molecular markers and pathways 
associated with serum electrolyte levels in two independent population-based cohorts. We included 
1523 adults from TwinsUK not on blood pressure-lowering therapy and without renal impairment to 
look for metabolites associated with chloride, sodium, potassium and bicarbonate by running linear 
mixed models adjusting for covariates and multiple comparisons. For each electrolyte, we further 
performed pathway enrichment analysis (PAGE algorithm). Results were replicated in an independent 
cohort. Chloride, potassium, bicarbonate and sodium associated with 10, 58, 36 and 17 metabolites 
respectively (each P < 2.1 × 10−5), mainly lipids. Of all the electrolytes, serum potassium showed 
the most significant associations with individual fatty acid metabolites and specific enrichment of 
fatty acid pathways. In contrast, serum sodium and bicarbonate showed associations predominantly 
with amino-acid related species. In the first study to examine systematically associations between 
serum electrolytes and small circulating molecules, we identified novel metabolites and metabolic 
pathways associated with serum electrolyte levels. The role of these metabolic pathways on electrolyte 
homeostasis merits further studies.

Electrolytes have a crucial role in maintaining health and their serum levels are homeostatically maintained 
within a narrow range by multiple mechanisms usually involving the kidneys1. Sodium is the principal cation and 
osmotic agent in the extracellular fluid (ECF) compartment, while potassium is the main cation in the intracel-
lular fluid (ICF) compartment with the two compartments separated by the cell membrane. The ECF volume is 
essentially preserved by the factors controlling the body sodium content mainly by the kidneys1. Of the total body 
sodium, 44% is in the ECF, 9% in the ICF and the remaining 47% in bone2. Only about half of the bone sodium 
is exchangeable and the rest are osmotically inactive. The ICF contains almost 98% of potassium1,3 and 75% of 
the body potassium stores is in skeletal muscle1. The sodium-potassium ATPase pump is the most important 
determinant of potassium distribution and the activity of the pump itself is increased by catecholamines and 
insulin4–7. The major anions balancing the cations are chloride and bicarbonate in the ECF while it is proteins 
and phosphates in the ICF. Regulation of the internal distribution of potassium is efficiently maintained by the 
kidneys as the movement of as little as 2% of the ICF potassium to the ECF can result in a potentially fatal increase 
in the serum potassium concentration1. The homeostatic maintenance of the controlled partition of fluid and 
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electrolytes in different body compartments is essential for health, and in clinical medicine, most measurements 
of electrolyte concentration are performed on the extracellular fluid compartment, notably the blood serum. At a 
cellular level, metabolic processes are crucial for the regulation of fluid and electrolytes, the maintenance of serum 
protein level, and control of the amounts of sugar (glucose) and fats (lipids) in the blood the milieu interieur8.

Understanding the relationship between serum electrolytes and small molecules in circulation may generate 
insights into homeostatic mechanisms that are orthogonal to kidney functional status as proteins, phospholipids, 
cholesterol, and neutral fats account for 90% of the mass of dissolved solutes in the serum9. The aim of this study 
is to use metabolomics profiling to discover molecular markers and pathways associated with serum electrolyte 
levels.

Results
A total of 1523 adults from the TwinsUK cohort not on BP-lowering therapy and without renal impairment 
were included in the analysis of 592 fasting serum metabolites. The demographic characteristics of the study 
population are presented in Table 1. Chloride, potassium, bicarbonate, and sodium were found to correlate with 
10, 58, 36 and 17 metabolites respectively (each P < 2.11 × 10−5 after multivariate adjustment; Table S1 in the 
Supplementary Material).

Metabolites-electrolytes associations.  Backward linear regressions identified 6 metabolites inde-
pendently associated with sodium (R2 = 0.07), 4 with chloride (R2 = 0.08), 8 with potassium (R2 = 0.16), and 
13 with bicarbonate (R2 = 0.27), (Table 2). Serum sodium and chloride levels show significant direct association 
predominantly with amino-acid metabolites. In the methionine-cysteine pathway, serum sodium is significantly 
associated with cystine (Beta(SE) = 0.31(0.07), P = 6.78 × 10−6) and cystathionine (0.39(0.06), P = 2.67 × 10−10) 
and serum chloride with N-acetyl methionine (0.33(0.07), P = 7.65 × 10−7) (Table S1). In the urea cycle path-
way, serum sodium directly associated with pro-hydroxy-pro (0.29(0.05), P = 1.00 × 10−7) and N-acetylcitrulline 
(0.31(0.06), P = 3.01 × 10−8). N-acetylputrescine (polyamine pathway) is inversely associated with serum 
sodium (−0.23(0.05), P = 5.61 × 10−6), while aspartate is inversely associated with serum chloride (−0.40(0.09), 
P = 7.34 × 10−6). Other significant associations are DHEA-S for serum sodium (0.25(0.06), P = 1.61 × 10−5) 
and the inverse association of γ-glutamyl-ε-lysine (−0.30(0.07), P = 9.11 × 10−6) and oxalate (−0.42(0.08), 
P = 1.37 × 10−7) for serum chloride (Table S1).

Serum potassium exhibited significant associations with tricarboxylic acid (TCA) cycle intermediates and 
metabolites involved in lipid metabolism pathways, including medium-chain fatty acids, long-chain and poly-
unsaturated fatty acids, dicarboxylic acids, acylcarnitines, and glycerol. Each of these metabolites were inversely 
correlated with serum potassium; only sphingomyelin showed a direct correlation. Associations between 
non-lipid-related metabolites and serum potassium were also observed (Table S1).

Serum bicarbonate concentrations significantly associated with amino-acid as well as lipid species. Most of 
the amino-acids were positively associated, including suberate, N-acetylphenylalanine, glycerophosphorylcho-
line (GPC), and citrulline, while lysine, threonine, and phenylpyruvate were inversely associated. All the lipids, 
4-hydroxychlorothalonil, methyl indole-3-acetate, and 1-docosapentaenoyl-GPC (22:5n3) were positively 
associated.

Metabolite association by physicochemical patterns.  The results of metabolite association by phys-
icochemical patterns are presented in Fig. 1. Hypochloremic alkalosis pattern is evident with metabolites both 
in the amino-acid and lipid groups, while volume contraction alkalosis pattern is predominantly seen with 
amino-acids and only one lipid (deoxycarnitine) metabolite. The amino-acid associations for hypochloremic 
alkalosis show highly significant associations with serum bicarbonate while the associations with potassium 
were only minor. In contrast, the lipid associations showed nominally significant bicarbonate and highly sig-
nificant potassium associations. Nearly all the amino-acids in the volume contraction alkalosis group showed 

Variable TwinsUK SHIP

N 1523 938

Females n(%) 1462 (95.99%) 522 (55.6%)

Age, yrs 50.29 (8.20) 49.5(10.75)

Bicarbonate, mmol/L 24.99 (2.65) NA

BMI, kg/m² 25.13 (4.11) 27.2 (4.5)

Chloride, mmol/L 104.75 (2.49) NA

Creatinine, mmol/L 73.94 (9.54) 73.6 (13.7)

DBP, mmHg 77.08 (10.33) 76.7 (9.8)

eGFR, mL/min/1.73 m2 79.26 (11.89) 93.5 (15.4)

Potassium, mmol/L 4.19 (0.33) 4.49 (0.35)

Sodium, mmol/L 140.99 (2.08) 139.3 (2.2)

SBP, mmHg 120.38 (14.60) 124.0 (16.7)

Triglycerides, mmol/L 1.16 (0.70)  NA

Table 1.  Demographic characteristics of the study population. Note: Characteristics are expressed in mean 
(SD) for all variables, except gender (%).
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significant sodium and bicarbonate associations with borderline to no potassium associations. Aspartate was 
solely associated with hypochloremia with no associations with bicarbonate or other electrolytes. Interestingly, 
lipid metabolites were consistently significantly associated with hypokalemia either as a solo association or as 
part of a physicochemical pathway, while other metabolites showed variable association with potassium as part of 
physicochemical pathways. This contrasts with sodium or bicarbonate associations which showed the significant 
metabolites distributed across amino-acids and lipids.

Replication.  We replicated the metabolites independently associated with either serum potassium or serum 
sodium in the SHIP-TREND cohort. Out of the 8 metabolites independently associated with serum potassium 
levels, 4 (indolelactate, myristoleate, 10-heptadecenoate, and linolenate [alpha or gamma]) were also measured in 
SHIP-TREND and were significantly replicated (Table 2), while out of the 6 metabolites independently associated 
to serum sodium, two (pro-hydroxy-pro and DHEAS) were also present in SHIP-TREND and pro-hydroxy-pro 
was significantly replicated.

Pathway enrichment analyses (Fig. 2) show long chain fatty acid, PUFA, monohydroxy fatty acid and acylcar-
nitine pathways specifically associated with just serum potassium. Dicarboxylic fatty acid pathway is enriched for 
potassium, chloride and bicarbonate while the TCA cycle pathway is associated with serum potassium and serum 
bicarbonate. Arginine-proline pathway is associated with only sodium and chloride.

METABOLITE

TwinsUK SHIP

Beta SE P Beta SE P

SERUM POTASSIUM

sphingomyelin (d18:1/20:0, d16:1/22:0)* 0.04 0.01 1.20 × 10−6

dihydroorotate −0.05 0.01 1.56 × 10−7

indolelactate 0.04 0.01 9.47 × 10−7 0.3 0.09 1.33 × 10−3

fumarate −0.07 0.01 7.24 × 10−16

myristoleate (14:1n5) −0.06 0.01 1.97 × 10−14 −0.43 0.08 3.17 × 10−7

2-isopropylmalate −0.05 0.01 2.53 × 10−8

10-heptadecenoate (17:1n7) −0.05 0.01 1.07 × 10−8 −0.28 0.09 1.01 × 10−3

linolenate [alpha or gamma; (18:3n3 or 6)] −0.05 0.01 1.94 × 10−12 −0.19 0.09 4.68 × 10−2

SERUM SODIUM

cystine 0.31 0.07 6.78 × 10−6

pro-hydroxy-pro 0.29 0.05 1.00 × 10−7 0.04 0.01 4.76 × 10−3

cystathionine 0.39 0.06 2.67E-10

N-acetylputrescine −0.23 0.05 5.61 × 10−6

N-acetylcitrulline 0.31 0.06 3.01 × 10−8

dehydroisoandrosterone sulfate (DHEA-S) 0.25 0.06 1.61 × 10−5 0.01 0.01 5.12 × 10−1

SERUM BICARBONATE

suberate (octanedioate) 0.28 0.05 1.84 × 10−8

N-acetylphenylalanine 0.45 0.06 2.15 × 10−15

glycerophosphorylcholine (GPC) 0.25 0.06 1.50 × 10−5

lysine −0.33 0.06 7.35 × 10−8

glycerophosphoinositol* 0.43 0.06 4.31 × 10−13

threonine −0.34 0.06 3.92 × 10−8

4-hydroxychlorothalonil 0.34 0.06 2.43 × 10−9

1-docosapentaenoyl-GPC (22:5n3)* 0.26 0.06 1.04 × 10−5

methyl indole-3-acetate 0.27 0.06 1.64 × 10−6

phenylpyruvate −0.30 0.06 1.31 × 10−7

citrulline 0.44 0.06 2.00 × 10−14

prolylproline −0.30 0.06 3.20 × 10−6

gamma-glutamylthreonine* −0.40 0.06 7.05 × 10−10

SERUM CHLORIDE

aspartate −0.40 0.09 7.34 × 10−6

N-acetylmethionine 0.33 0.07 7.65 × 10−7

oxalate (ethanedioate) −0.42 0.08 1.37 × 10−7

gamma-glutamyl-epsilon-lysine −0.30 0.07 9.11 × 10−6

Table 2.  List of metabolites independently associated with serum potassium or sodium levels in TwinsUK and 
replicated in SHIP, when applicable*. *SHIP metabolomics was measured by Metabolon Inc, using an older 
version of the platform employed for TwinsUK that covers less metabolites. Replication was performed only for 
metabolites measured in the two cohorts.
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Sodium Potassium Chloride Bicarbonate

hypochloremic alkalosis aa

hypochloremic alkalosis c&v

hypochloremic alkalosis ch

hypochloremic alkalosis l

hypochloremic alkalosis n

hypochloremic alkalosis p

hypochloremic alkalosis x

hyperchloremic acidosis aa

hyperchloremic acidosis l
hyperchloremic acidosis x

proximal RTA aa

proximal RTA e

proximal RTA l

proximal RTA p

proximal RTA x

volume contraction aa

volume contraction c&v
volume contraction l
volume contraction p

hyperaldo aa

hyperaldo l

hypokalemia aa

hypokalemia e

hypokalemia l

hypokalemia n

hypernatremia aa

hypernatremia l

hypernatremia n
hyponatremia aa

hyponatremia l

hypochloremia aa
hyperkalemia l

−0.3 0.0 0.3 −0.3 0.0 0.3 −0.3 0.0 0.3 −0.3 0.0 0.3

5−oxoproline
asparagine

glutamine
lysine

ornithine
threonine

tyrosine

bilirubin (E,E)*
oxalate

threonate

glycerate

1−docosapentaenoyl−GPC (22:5n3)*
1−linoleoyl−GPA (18:2)*

10−heptadecenoate (17:1n7)
10−undecenoate (11:1n1)

15−methylpalmitate
16−hydroxypalmitate

17−methylstearate
3−hydroxydecanoate

3−hydroxylaurate
5−dodecenoate (12:1n7)

arachidate (20:0)
decanoylcarnitine

glycerophosphoinositol*
glycerophosphorylcholine (GPC)

laurate (12:0)
laurylcarnitine

linoleate (18:2n6)
linolenate [alpha or gamma; (18:3n3 or 6)]

margarate (17:0)
myristoleate (14:1n5)
myristoleoylcarnitine*

nonadecanoate (19:0)
octanoylcarnitine
palmitate (16:0)

palmitoleate (16:1n7)
stearate (18:0)

stearidonate (18:4n3)

dihydroorotate

gamma−glutamyl−epsilon−lysine
gamma−glutamylglutamine
gamma−glutamylthreonine*

gamma−glutamyltyrosine

tartronate (hydroxymalonate)

2−hydroxyphenylacetate
indolelactate

N−acetylphenylalanine

5alpha−pregnan−3beta,20alpha−diol disulfate
methyl indole−3−acetate

isovalerate
methionine sulfoxide
N−acetyltryptophan

2−methylcitrate/homocitrate

pimelate (heptanedioate)
suberate (octanedioate)

prolylproline

2−isopropylmalate
4−hydroxychlorothalonil

4−hydroxyphenylpyruvate
arginine
citrulline
cysteine

dimethylarginine (SDMA + ADMA)
glycine

N−formylmethionine
phenylpyruvate

pro−hydroxy−pro
proline

S−methylcysteine

alpha−tocopherol
deoxycarnitine

gamma−glutamylmethionine
N−acetylmethionine

caprylate (8:0)
dodecanedioate

linoleoylcarnitine*
sebacate (decanedioate)

3−hydroxyisobutyrate

cis−aconitate
citrate

fumarate
malate

1−arachidonoyl−GPA (20:4)
10−nonadecenoate (19:1n9)

2−hydroxydecanoate
3−hydroxybutyrate (BHBA)

3−hydroxyoctanoate
3−hydroxysebacate

caprate (10:0)
dihomo−linoleate (20:2n6)
docosadienoate (22:2n6)

eicosenoate (20:1)
glycerol

hexadecanedioate
myristate (14:0)

octadecanedioate
oleate/vaccenate (18:1)

oleoylcarnitine
palmitoylcarnitine
tetradecanedioate

orotate

cystathionine
cystine

N−acetylcitrulline

21−hydroxypregnenolone disulfate
dehydroisoandrosterone sulfate (DHEA−S)

5−methyluridine (ribothymidine)
N−acetylputrescine

1−palmitoyl−2−arachidonoyl−GPE (16:0/20:4)*
1−palmitoyl−2−docosahexaenoyl−GPE (16:0/22:6)*

1−palmitoyl−2−palmitoleoyl−GPC (16:0/16:1)*
1−palmitoyl−GPE (16:0)

aspartate
sphingomyelin (d18:1/20:0, d16:1/22:0)*

Beta 95% C.I.

Figure 1.  Metabolite associations by electrolyte and acid-base physicochemical patterns. aa = amino-acids, 
c&v = cofactors & vitamins, ch = carbohydrates, l = lipids, n = nucleotides, p = peptides, x = xenobiotics.
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Discussion
This is the first study to examine systematically associations between serum electrolytes and small circulating 
molecules. We identified yet unknown dependencies between metabolites and metabolic pathways associating 
with serum electrolyte levels, and replicated some of the top associations in an independent cohort. Of all the 
electrolytes, serum potassium showed the most significant associations with individual fatty acid metabolites and 
specific enrichment in fatty acid pathways. In contrast, serum sodium and bicarbonate showed associations pre-
dominantly with amino-acids. Mapping electrolyte and bicarbonate patterns based on the Stewart physicochem-
ical model of acid-base chemistry10,11, we identify novel correlations between amino-acid and lipid metabolite 
associations with homeostatic patterns and further refine the electrolyte associations that are truly independent. 
These associations may be the consequences or the causes of these physicochemical patterns and they warrant 
replication and further research.

The major finding from this work is an inverse association between serum potassium and a range of long-chain 
and medium-chain fatty acids. A previous study of male Wistar rats showed induced potassium deficiency was 
associated with decreased levels of total lipids, phospholipids, and glycerol and increased levels of free fatty acids, 
implying that potassium-deficient rats use fatty acids as a substrate for oxidative metabolism12. Consistently, our 
findings indicate that low potassium is associated with increased fatty acids, glycerol, ketoacids, acylcarnitines 
and TCA cycle intermediates supporting an independent effect of serum potassium on lipolysis and fatty acid 
production. Furthermore, an increase in free fatty acids (FFA) is known to be a risk factor for insulin resistance 
and diabetes13. Two observational studies that have examined the association between serum potassium and risk 
of diabetes independent of antihypertensive use showed increased risk of type 2 diabetes with low potassium 
levels14,15. Our findings link low potassium with an increase in fatty acid suggesting a possible mechanism for 
increased risk of type 2 diabetes in relation to serum potassium, although this needs to be validated.

Serum potassium showed a direct association with sphingomyelin levels. A similar relationship was seen with 
serum sodium, but it did not attain statistical significance. In humans, sphingomyelins comprise nearly 85% of all 
sphingolipids and 10–20 mol% of the total serum membrane lipids16. Interestingly, the sphingolipids, sphingomye-
lin and ceramide have been shown to mediate loss of insulin sensitivity, to promote the characteristic diabetic proin-
flammatory state, and to induce cell death and dysfunction in important organs such as the pancreas and heart17.

Serum potassium also showed a significant inverse association with dihydroorotate (DHO) levels. 
Dihydroorotate dehydrogenase (DHODs) are flavin mononucleotide-containing enzymes that convert dihydro-
orotate to orotate in the only redox step in the de novo synthesis of pyrimidines18. The arthritis treatment drug 
leflunomide is a potent inhibitor of DHOD and a decrease in potassium levels is a known side-effect of this drug19. 
This indicates a possible role of DHOD in the regulation of serum potassium levels.

Here, serum sodium exhibited a predominantly significant direct association with several amino-acids and 
derivatives. The relationship between serum sodium and amino-acids may be related to the significant role played 

Figure 2.  Pathway analysis based on the metabolite associations with electrolytes in TwinsUK. All pathways 
enriched for potassium are colour coded in blue, for bicarbonate in orange, for sodium in purple and for 
chloride in yellow.
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by the kidney in maintaining serum amino-acid concentrations; specifically, nearly 99% of all amino-acids filtered 
by the kidneys are reabsorbed in the proximal renal tubules and returned to serum20,21. The Na+ gradient is estab-
lished across the cell by Na+-K+ ATPase, and inhibition of this pump by ouabain diminishes amino-acid uptake22. 
Among the amino-acids and related molecules, the most significant direct associations were with cysteine and 
its immediate upstream precursor cystathionine, which are components of the methionine-cysteine-taurine 
pathway. Our data show a direct relationship between circulating levels of cysteine and cystathionine and the 
electrolyte sodium. Cysteine may contribute to blood pressure control through multiple mechanisms including 
antioxidant effects that protect nitric oxide from the oxidative effects of reactive oxygen species (ROS), through 
modulation of the renin-angiotensin system23. Thus, the direct association between blood sodium and cysteine 
(and cystathionine) may reflect a compensatory mechanism by the body to modulate sodium-induced hyperten-
sion. Additionally, we also see two metabolites (21-hydroxypregnenolone and DHEA-S) from the adrenal-steroid 
synthesis pathway to feature within the top 20 associations with serum sodium, though given this should be taken 
with caution because of the sex imbalance of our discovery cohort.

The renal system provides a powerful mechanism to maintain acid-base balance within the body through 
modulation of bicarbonate levels in the blood, which help to keep the pH of the blood in the narrow range essen-
tial for life. Chloride is transported actively and passively with either HCO3− or sodium. It is absorbed in both 
the small and large intestine1. There is a normal Cl−–HCO3− exchange in the small bowel1. Acid-base balance 
and amino-acid metabolism are intimately related. Changes in acid-base balance influence the metabolic fate of 
many amino-acids24. Serum lysine shows significant inverse association with serum chloride and a direct asso-
ciation with serum bicarbonate. Administration of lysine monochloride is known to profoundly inhibit bicar-
bonate reabsorption and cause severe bicarbonate diuresis while lysine dichloride does not affect bicarbonate 
transport25. Citrulline malate has been shown to increase renal reabsorption of bicarbonate and we see a signif-
icant direct association between citrulline and bicarbonate26. Glutamine is the primary amino-acid involved in 
renal ammonia-genesis, a process intimately related to acid excretion24. The basic (cationic) amino-acids (lysine, 
arginine and histidine) yield neutral end-products plus a proton; sulfur (methionine and cysteine) amino-acids 
are also acidogenic because they generate sulfuric acid when oxidized2. The dicarboxylic (anionic) amino-acids 
(aspartate and glutamate, but not asparagine and glutamine) consume acid when oxidized and thus reduce the 
acid load of the diet2.

In this study, direct associations between serum bicarbonate and numerous protein amino-acids were 
observed, the strongest of which (Beta = 0.50) involved glutamine, which has the highest concentration in blood 
of all amino-acids. However, the bicarbonate associations all occurred as part of physicochemical patterns and we 
did not observe any bicarbonate association unaccompanied by association with other electrolytes.

We also note some study limitations. Our discovery sample consisted of females only. We have only replicated 
a fraction of the associations and we have not validated the physicochemical pathway signals. The metabolic asso-
ciations observed do not necessarily have to be related to the renal system, but could also be related to metabolic 
alterations in the pancreas, liver, muscle, fat or other metabolically active organs. Further studies integrating 
urinary data will help dissect the renal contributions from others. Moreover, our association data provides only 
a snapshot on whether levels of proteins, phospholipids, cholesterol, and neutral fats have an impact on free cir-
culating electrolyte concentrations and lack a mechanistic component. Notwithstanding, we identify metabolite 
pathways associated with complex homeostatic mechanisms which maintain electroneutrality and acid-base bal-
ance. This brings a common understanding of the physiological implications of shifts in electrolytes even among 
healthy individuals and may inform or support future physiological studies.

Methods
Study cohorts.  Discovery cohort.  Study subjects were twins enrolled in the TwinsUK registry, a national reg-
ister of adult twins recruited as volunteers without selecting for any particular disease or trait27. All recruited twins 
were of the same sex. Here we analysed data from 1523 individuals, mainly females (96%) with a wide age range 
(32.8–74.7 years) without renal impairment (estimated glomerular filtration rate (eGFR) >60 mL/min per 1.73 m2) 
and not on any blood pressure (BP)-lowering medications. All individuals included in the analysis had metabolo-
mics profiling and electrolytes measured in serum at the same time point. Serum sodium, potassium, chloride and 
bicarbonate were measured at St Thomas Hospital using the Kodak Ektachem dry chemistry analysers (Johnson 
and Johnson Vitros Ektachem machine which uses thin-film’dry’ chemistry technology to perform colorimet-
ric and potentiometric analyses. Hospital laboratories in the UK are subject to robust external quality control 
schemes (NEQAS [National External Quality Assessment Service]). Direct potentiometric electrolyte assays were 
performed using ion-selective electrodes which has a selective membrane in contact with both the test solution 
(patient’s sample) and an internal filling solution (containing the test ion at a fixed concentration). The coefficients 
of variation for chloride, bicarbonate, sodium and potassium were 1%, 1.5%, 0.9% and 4.8% respectively.

The study was approved by St. Thomas’ Hospital Research Ethics Committee. All participants provided 
informed written consent. The investigation conforms to the principles outlined in the Declaration of Helsinki. 
TwinsUK metabolomics, expression and phenotypic data are publicly available upon request on the department 
website (http://www.twinsuk.ac.uk/data-access/accessmanagement/).

Replication cohort.  The replication cohort consisted of individuals not on BP-lowering therapy and without 
renal impairment drawn from the Study of Health in Pomerania (SHIP-TREND), a population-based research 
project in West Pomerania, a rural region in north-east Germany28. In total, 938 individuals (aged 20–79 years) 
with fasting serum metabolomic profiles available using the Metabolon, Inc. (Durham, USA) platform (for details 
see29) and with measure potassium and sodium were analysed.

https://doi.org/10.1038/s41598-019-51492-3
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Metabolomic profiling.  Non-targeted metabolite detection and quantification was conducted by the 
metabolomics provider Metabolon, Inc. (Durham, USA)on fasting serum samples, as described previously30. The 
metabolomic dataset measured by Metabolon includes 592 known metabolites containing the following broad 
categories - amino-acids, peptides, carbohydrates, energy intermediates, lipids, nucleotides, cofactors and vita-
mins, and xenobiotics.

Statistical analysis.  Statistical analysis was carried out using Stata version 11 and R. Quality control of 
metabolomics data was carried out as previously described30. We inverse normalised the data as the metabolite 
concentrations were not normally distributed. To avoid spurious false-positive associations due to small sample 
size, we excluded metabolic traits with more than 20% missing values leaving for analysis 592 metabolites of 
known chemical identity. We imputed the missing values using the minimum run day measures.

We looked for metabolites (outcome) associated with chloride, sodium, potassium and bicarbonate (exposure) 
by running linear mixed models adjusting for age, body mass index (BMI), gender and family relatedness. We cor-
rected for multiple comparisons using Bonferroni correction, thus giving a significant threshold of P = 2.1 × 10−5 
(0.05/(592 metabolites x 4 phenotypes). We then used a stepwise backward regression model to identify a set of 
metabolites that were significantly associated with each phenotype using P < 0.01 as cut-off threshold.

We replicated the metabolites independently associated with serum sodium or serum potassium in 938 indi-
viduals from SHIP using linear regressions and adjusting for age, BMI and gender. Serum chloride and serum 
bicarbonate measurements were not available for the SHIP-TREND cohort.

Finally, for each electrolyte, we performed pathway enrichment analysis in the TwinsUK data using the PAGE 
algorithm implemented in the R-package piano31. Enrichment tests were performed for each given pathway while 
taking into account the sign of the associations. Statistical significances of all enrichment analyses were assessed 
using empirical p-values estimated from a background distribution of 10,000 random permutations of the varia-
ble labels, and multiple testing correction was used to correct for the number of tested pathways.

Physicochemical pathways.  Acid–base balance and electrolyte homeostasis are intricately connected to 
maintain the internal

environment of the body within narrow and rigidly controlled limits. Thus, the study of metabolomic associ-
ations of electrolytes need to be considered in the context of these homeostatic processes. We mapped common 
electrolyte and acid-base patterns, based on the bicarbonate-centric physicochemical model and electroneutrality, 
to metabolite associations. We classified metabolites showing a hypochloremic alkalosis pattern, if they showed a 
nominally significant positive association with serum bicarbonate and a negative association with serum chloride 
and serum potassium. We contrast this from volume contraction alkalosis, which we defined as metabolites show-
ing nominally significant positive association with serum bicarbonate, positive association with serum sodium 
and variable association with serum potassium and chloride. Hyperchloremic acidosis and proximal renal tubular 
acidosis patterns were defined by nominally significant negative association with serum bicarbonate along with 
positive association with serum chloride in the former and negative association with serum chloride in the latter. 
Pure electrolyte associations were defined as hypo- or hyper- natremia or kalemia when the metabolites showed 
null association with serum bicarbonate.
Received: 25 July 2019; Accepted: 1 October 2019;
Published: xx xx xxxx
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