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Young. Semantic Specialisation of Distributional Word Vector Spaces using Monolingual and
Cross-Lingual Constraints. Transactions of the Association for Computational Linguistics,
Volume 5, 2017.
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of magical realism. To Ivan Vulić, thank you for sharing the adventures from Beijing to Haifa, as well
as for our very productive research collaboration. I would also like to thank Roi Reichart for being a
great collaborator, a passionate workaholic, as well as for the many Indian dinners.

To Wen Tsung-Hsien and Su Pei-Hao, thank you for all the inspiration, laughter, healthy competi-
tion, and the copious amounts of Chinese food. Thank you for choosing to start PolyAI with me - I
look forward to seeing how far we can go.

The Dialogue Systems Group has been a great place to work. I thank Paweł for discussions of
sixteenth century Poland and Iñigo for being a Basque separatist. I would also like to thank Milica,
David, Stefan, Dongho, Lina, and especially Matt Henderson, whose work a large part of this thesis
builds on. I would also like to thank my friends at Cambridge and elsewhere for keeping the world an
interesting place: Stefan, Vladan, Ognjen, Dušan, Marko, Ribar, Bojke, Krki, Mare, Matko and many
others. I would also like to thank my father Ljubomir for all his support, care and optimism.

I would also like to thank everyone at Trinity College, my second home, for the wonderful seven
years at the College. In particular, I would like to thank Richard Serjeantson, Arthur Norman and
Sean Holden for their support, as well as Trinity College itself for funding my undergraduate and
postgraduate studies at Cambridge.

To Renata, my archbishop of Banterbury, pigeon, and best friend - thank you for all your love and
support. Without you, these years would not have been so special.

Finally, this thesis is devoted to my mother, Živodarka Purić-Mrkšić, who made sure that I got
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Abstract

Spoken dialogue systems provide a natural conversational interface to computer applications. In recent
years, the substantial improvements in the performance of speech recognition engines have helped shift
the research focus to the next component of the dialogue system pipeline: the one in charge of language
understanding. The role of this module is to translate user inputs into accurate representations of
the user goal in the form that can be used by the system to interact with the underlying application.
The challenges include the modelling of linguistic variation, speech recognition errors and the effects
of dialogue context. Recently, the focus of language understanding research has moved to making
use of word embeddings induced from large textual corpora using unsupervised methods. The work
presented in this thesis demonstrates how these methods can be adapted to overcome the limitations
of language understanding pipelines currently used in spoken dialogue systems.

The thesis starts with a discussion of the pros and cons of language understanding models used
in modern dialogue systems. Most models in use today are based on the delexicalisation paradigm,
where exact string matching supplemented by a list of domain-specific rephrasings is used to recognise
users’ intents and update the system’s internal belief state. This is followed by an attempt to use
pretrained word vector collections to automatically induce domain-specific semantic lexicons, which
are typically hand-crafted to handle lexical variation and account for a plethora of system failure
modes. The results highlight the deficiencies of distributional word vectors which must be overcome
to make them useful for downstream language understanding models.

The thesis next shifts focus to overcoming the language understanding models’ dependency on
semantic lexicons. To achieve that, the proposed Neural Belief Tracking (NBT) model forsakes the
use of standard one-hot n-gram representations used in Natural Language Processing in favour of
distributed representations of user utterances, dialogue context and domain ontologies. The NBT
model makes use of external lexical knowledge embedded in semantically specialised word vectors,
obviating the need for domain-specific semantic lexicons.

Subsequent work focuses on semantic specialisation, presenting an efficient method for injecting
external lexical knowledge into word vector spaces. The proposed ATTRACT-REPEL algorithm
boosts the semantic content of existing word vectors while simultaneously inducing high-quality
cross-lingual word vector spaces. Finally, NBT models powered by specialised cross-lingual word
vectors are used to train multilingual belief tracking models. These models operate across many
languages at once, providing an efficient method for bootstrapping language understanding models
for lower-resource languages with limited training data.
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Chapter 1

Introduction

Since the early days of computing, the notion of talking to machines has captured human
imagination and motivated generations of researchers. The applications and implications of
an autonomous system capable of holding a conversation with a human being are numerous.
They range from deep philosophical questions investigating the nature of consciousness and
self-awareness, to the more practical applications such as large-scale automation of menial
labour in call centres, technical support, and many other industries.

The Turing Test (1950) is one of the most influential criteria for machine intelligence,
measuring the autonomous dialogue agent’s ability to masquerade as a human being. In
an attempt to pass the Turing test, Joseph Weizenbaum designed ELIZA (1966), a template-
based dialogue agent designed to talk to users about their personal problems. Emulating the
paradigm of Rogerian or person-centred psychotherapy, ELIZA aimed to provide an empathic
environment for the patient to discover the answers to their problems through introspection,
rather than by offering expert advice:

ELIZA: What is bothering you?
USER: I feel sad all the time.
ELIZA: Why do you feel sad all the time?
USER: I don’t get along with my parents.
ELIZA: Tell me about your parents.

Weizenbaum designed ELIZA to show how shallow human-machine communication would
be - the procedure consisted of less than 200 lines of code. However, when he let his personal
assistant interact with ELIZA, she spent hours talking to the agent and revealing her most
intimate problems. In fact, she believed there was a human psychotherapist on the other side
of the interface, despite the fact that there was nothing genuinely intelligent about ELIZA

apart from the skilfully written template rules which made it a good reflective listener.



2 Introduction

Following the initial fascination with the Turing test, the research community moved on
from using smoke and mirrors to feign human-like intelligence. As it became clear that
building open-domain dialogue agents capable of conversing about any topic would be
no easy feat, the focus of research shifted to a bottom-up paradigm. Instead of trying to
mimic humans in general conversation, task-oriented dialogue systems could help users
accomplish specific, well-defined tasks. By limiting dialogue systems to narrow domains,
system designers could anticipate user behaviour and implement the required functionality to
a relatively high standard. Examples of existing applications include spoken interfaces for
call centres, booking systems, in-car navigation, and many others.

With the onset of the Fourth Industrial Revolution1 and the adoption of new technologies
such as smart phones, watches, homes, cars and others, personal assistants such as Apple’s
Siri, Google Assistant and Amazon’s Alexa are permeating into every aspect of human life.
These assistants allow users to achieve a plethora of tasks using their voice: playing music or
films, using email, scheduling meetings, setting the room temperature, and many others.

In recent years, the capabilities of virtual assistants have improved dramatically. The
most striking improvements have been in speech recognition, where the systems’ word error
rates already achieved parity with human-level performance. However, virtual assistants
still struggle to understand users’ goals and react in a way which would accomplish their
demands. Large technological companies “solve” this problem by employing hundreds of
engineers to add countless hand-crafted rules which deal with various user actions. This leads
to opaque systems which require more maintenance as they become increasingly complex.
This business model is incredibly expensive, becoming untenable as the number of potential
application domains grows larger. Moreover, the effort is in large part replicated whenever
these systems are deployed for another language.

Data-Driven Language Understanding The main goal of this thesis is to address these
problems by introducing an improved data-driven paradigm for performing language under-
standing for spoken dialogue systems. The first part of the thesis reviews existing language
understanding methods, highlighting the design flaws which limit their applicability to more
complicated dialogue domains. The second part of the thesis shows how recent advances in
neural network research can be used to construct data-driven models which overcome the
limitations of existing language understanding models used in spoken dialogue systems.

1According to Klaus Schwab of the World Economic Forum: “This Fourth Industrial Revolution is, however,
fundamentally different. It is characterized by a range of new technologies that are fusing the physical, digital
and biological worlds, impacting all disciplines, economies and industries, and even challenging ideas about
what it means to be human.”
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The second objective of this thesis is to show that vectorial representations of words,
known as word embeddings, are an effective building block for data-driven language un-
derstanding models. In support of this argument, semantic knowledge from large-scale
semantic lexicons such as WordNet (Miller, 1995) is injected into word embeddings and
seamlessly used by the downstream neural networks to improve their language understanding
capabilities. Subsequently, linguistic relations from multilingual dictionaries are used to
induce cross-lingual word embeddings which allow the proposed language understanding
models to operate across different languages at once, while requiring no language-specific
input from system designers.

1.1 Thesis Outline

The topic of this thesis is language understanding for statistical spoken dialogue systems.
These systems are usually modular, consisting of six components: 1) speech recognition;
2) spoken language understanding; 3) dialogue state tracking; 4) dialogue management; 5)
natural language generation; and 6) text-to-speech synthesis. Chapter 2 gives an overview
of spoken dialogue systems theory, as well as recent trends in the design of each system
component. Special focus is given to the spoken language understanding (SLU) and dialogue
state tracking (DST) components, which form the backbone of language understanding in
modern dialogue systems. Brief summaries of subsequent chapters are given next.

Chapter 3: Word-Based Belief Tracking This chapter presents current state-of-the-art
neural network approaches for language understanding in dialogue systems. Its focus is on
delexicalisation, a technique which treats all user intents defined by the domain ontology
using the same model parameters, relying on little more than exact matching and context
to perform language understanding. This idea is then extended to train multi-domain belief
tracking models, as well as to bootstrap models for new dialogue domains.

Chapter 4: Inducing Semantic Lexicons This chapter shows how pre-trained word em-
beddings can be used to induce semantic lexicons, which are lists of rephrasings that
delexicalisation-based models use to deal with linguistic variation. The pre-trained word
vectors are first calibrated to capture true semantic similarity, and then used to construct
semantic lexicons which improve language understanding performance across two dialogue
domains. The chapter concludes by discussing the limitations of delexicalisation-based
models powered by domain-specific semantic lexicons.
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Chapter 5: Neural Belief Tracker This chapter presents the Neural Belief Tracker (NBT),
a language understanding model designed to move past the word-based delexicalisation
paradigm and allow language understanding models to naturally scale to linguistically rich
user input across disparate dialogue domains and different languages. To do this, the Neural
Belief Tracker reasons purely over pre-trained word embeddings, learning to compose
them into distributed representations of user utterances and dialogue context which are
subsequently used to infer user goals. In doing that, the NBT models make use of the
semantic content embedded in pre-trained word vectors, removing the dependency on exact
matching and domain-specific semantic lexicons.

Chapter 6: Exploiting Lexical Resources This chapter focuses on semantic specialisa-
tion of word vectors, presenting a novel specialisation algorithm termed ATTRACT-REPEL.
This method can inject constraints from mono- and cross-lingual resources into existing
word vectors to create semantically specialised cross-lingual vector spaces. The presented
evaluation shows that the method can make use of existing cross-lingual lexicons to con-
struct high-quality vector spaces for a plethora of different languages, facilitating semantic
transfer from high- to lower-resource ones. Its effectiveness is demonstrated by achieving
state-of-the-art results on semantic similarity datasets across six languages.

Chapter 7: Belief Tracking across Languages Dialogue system research has tradition-
ally focused on English, leaving the problem of deploying existing language understanding
models to other languages relatively unexplored. This chapter investigates the important
factors for applying the research presented in previous chapters to two new languages: Italian
and German. The first part of the chapter studies the interplay between semantic specialisa-
tion of word embeddings and downstream language understanding performance. The second
part of the chapter goes further, investigating the importance of modelling morphological
phenomena for achieving robust performance in languages with complex morphology.

Chapter 8 concludes the thesis, giving an overview of the presented research and sum-
marising the main contributions. It discusses the strengths and weaknesses of the presented
data-driven language understanding paradigm in the context of real-world personal assistants.
The last part of the chapter outlines potential directions for future work.



Chapter 2

Statistical Spoken Dialogue Systems

This chapter gives an overview of statistical spoken dialogue systems and their core compo-
nents, with a particular focus on the role of the language understanding modules.

2.1 Modular Spoken Dialogue Systems

Typical spoken dialogue systems can be thought of as pipelines connecting their principal
components (Figure 2.1). One iteration through this pipeline corresponds to one dialogue
turn, which consists of two utterances: one by the user, the other by the dialogue system.
The long-term research goal of work on end-to-end statistical dialogue systems is to design
all the system components as statistical models with parameters estimated from data (Young,
2010b). Such design would allow all the system components to handle uncertainty in both
their input and their output (Young et al., 2013). This chapter first introduces the notation
required to understand the operation of each component. This is followed by a survey of the
main research directions pertaining to each system module.

2.1.1 Task-Oriented Dialogue Systems

The work presented in this thesis investigates task-oriented dialogue systems.1 Task-oriented
systems are primarily designed to search and interact with large databases which contain
information pertaining to a certain dialogue domain. Examples of dialogue domains in-
clude flight booking (Hemphill et al., 1990), restaurant search (Williams, 2012b) or tourist
information (Henderson et al., 2014b).2

1This term is used interchangeably with goal-oriented dialogue systems.
2Alternative chat-bot style systems do not make use of task ontologies or the pipeline model. Instead, these

models learn to generate/choose system responses based on previous dialogue turns (Kannan and Vinyals, 2017;
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Figure 2.1 The pipeline of the core components in statistical spoken dialogue systems.
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The slots of slot-filling-based dialogue systems fully define the dialogue domain, speci-
fying what the system can talk about and all the tasks it can help the users with. The slots
determine all the actions the system can take, the possible semantics of the user utterances,
and the possible states of the dialogue (Henderson, 2015a).

2.1.2 Domain Ontologies

The domain ontology of a dialogue system contains the information required to model user
goals expressed up to a given point of the conversation. This collection of slots is referred to
as the dialogue state. For any dialogue domain, the ontology is made up of informable slots
Sin f and the set of requestable slots Sreq.3 Figure 2.2 shows the ontology used by the belief
tracker for the Cambridge Restaurants dialogue domain.

The informable slots represent the attributes of entities in a database which the user can
use to constrain the search, whereas the requestable slots represent the entities’ attributes
which the users can ask about, but not necessarily use as search constraints. For example, in
a restaurant search domain, users might be able to search for restaurants with a specific food
type, but may only be able to ask about the address once the dialogue system comes up with
a restaurant suggestion.

The ontology therefore consists of the set of requestable slots Sreq, the set of informable
slots Sin f , and a set of slot values Vs for each s∈ Sin f . The language understanding component
does not need access to the sets of values for requestable slots that are not informable, for
example the addresses of all restaurants in the database. This is because the user cannot
constrain the search using these values. Instead, one can only inquire about these values once
a database entity has been chosen. The dialogue manager component handles requests for
such attributes, as well as any other interaction with the database.

2.1.3 Dialogue Act Taxonomy

Dialogue acts serve to encode the semantics of both user utterances and system prompts. In
slot-based systems, they consist of a dialogue act type and a set of slot-value pairs which
represent the dialogue act arguments (Henderson, 2015a).

Dialogue act types represent the general action of the utterance. The systems inves-
tigated in this thesis rely on three basic types of actions, which correspond to informing

Lowe et al., 2015; Serban et al., 2016a,b; Vinyals and Le, 2015). This means these models cannot interact with
databases or react to user queries different from those encountered in their training data.

3In all domains considered in this thesis, Sin f ⊆ Sreq, though in general these two sets can be disjoint.
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INFORMABLE SLOTS: {
PRICE RANGE: [

cheap,
moderate,
expensive

],
AREA: [

centre,
north,
west,
south,
east

],
FOOD: [

Afghan, African, Afternoon Tea, Asian, Australian,
Austrian, Barbeque, Basque, Belgian, Bistro, Brazilian,
British, Cantonese, Caribbean, Catalan, Chinese,
Christmas, Corsican, Creative, Crossover, Cuban,
Danish, Dutch, English, Eritrean, French, Fusion ...

],
NAME: [

Ali Baba, Anatolia, Ask, Backstreet Bistro,
Bangkok City, Bedouin, Bloomsbury,
Caffe Uno, Cambridge Lodge, Charlie Chan,
Chiquito Restaurant Bar, City Stop Restaurant,
Clowns Cafe, Cocum, Cote, Curry Garden,
Curry King, Curry Prince, Curry Queen.....

]
}
REQUESTABLE SLOTS: [

Postcode,
Address,
Area,
Food,
Phone,
Price Range,
Signature,
Name

]

Figure 2.2 A subset of the domain ontology for the Cambridge Restaurants dialogue domain.
This is the underlying ontology for most dialogue datasets used in evaluation across this
thesis. The full ontology has 112 name values, 92 food values (including the special dontcare
value), 4 price range values, 6 area values and 8 requestable values.
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Good morning, how can I help?

Hi. I’m looking for a Chinese restaurant.

What area would you like?

How about something near Regent Street.

Szechuan is the only restaurant which serves Chinese

food near Regent Street.

What’s the address please?

Szechuan can be found at 15 - 21 Ganton Street.

Awesome, thanks for your help, bye!

Thank you, goodbye!

inform ( food = Chinese )

food = Chinese

inform ( area = Regent Street ) 

area = Regent Street

food = Chinese

request ( address )

simple-act ( goodbye )

Figure 2.3 User goals in a dialogue are represented as sets of constraints expressed by slot-
value pairs. The pink dialogue acts show the current SLU output, and the black text shows
the slot value constraints the model remembers from previous dialogue turns.

constraints, such as inform(food=Serbian), requesting information, such as request(address),
and performing simple dialogue acts such as saying hi, thank you and goodbye.

The dialogue state at any point of the dialogue consists of a number of dialogue acts
(with the corresponding semantic information given by slot value pairs). Figure 2.3 gives an
example conversation with the correct dialogue state annotation after each dialogue turn.

2.1.4 Uncertainty in Dialogue

Dialogue systems can be thought of in terms of analogies with computer networks, which
also facilitate noisy communication between two end-nodes (Kurose and Ross, 2002). In our
case, the two end-nodes are the user and the dialogue system. There are three communication
layers in the dialogue system, each corresponding to a different level of abstraction. As
shown in Figure 2.1, these layers are:
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1. Physical Speech: sound waveforms taken as input by the automated speech recognition
(ASR) module and produced as output by the text-to-speech (TTS) module.

2. Natural Language: textual representation of user queries produced by the speech
recogniser and passed to the language understanding module, which subsumes Spoken
Language Understanding (SLU) and Dialogue State Tracking (DST). Natural language
in the form of text is also produced as output by the Natural Language Generator
(NLG), which uses system acts produced by the Dialogue Manager (DM) as input.

3. Dialogue Acts: domain-specific meaning representations which provide a formal lan-
guage for expressing user goals and the produced system responses. This formalisation
allows the system to interface between the user’s intents and goals on one side, and the
external database which contains the required information on the other.

As in computer networking, moving to higher levels of abstraction introduces additional
uncertainty into the representation of user goals. There are two main sources of uncertainty
in dialogue systems: a) the uncertainty introduced by imperfect speech recognition, which
gets progressively worse as dialogue systems are deployed in noisy environments (e.g., cars
or public transport); and b) the noise introduced by the language understanding modules,
which may have difficulty handling linguistic variation or interpreting contextual feedback.

The language understanding component, which is the main focus of this thesis, is in-
strumental in dealing with and modelling both kinds of noise. We next discuss the speech
recogniser, spoken language understanding and the dialogue state tracking components,
focusing on the kinds of uncertainty introduced by each component.

2.2 Automatic Speech Recognition

The automatic speech recognition (ASR) module is the first component in the pipeline
architecture of spoken dialogue systems. The role of this module is to transform the recorded
waveform representations of user utterances into textual output.

Over the last two decades, most state-of-the-art ASR systems relied on Hidden Markov
Models (HMMs). These sequential statistical models provide an efficient framework for
estimating the most probable word sequence for the provided acoustic input (Gales and
Young, 2007). In recent years, these have been superseded by models based on deep neural
networks, both for estimating HMM state probabilities (Bourlard and Morgan, 1993; Dahl
et al., 2012; Hinton et al., 2012) and for end-to-end speech recognition using Recurrent
Neural Networks (RNNs) (Deng et al., 2013; Graves and Jaitly, 2014; Miao et al., 2015).
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The advent of deep learning in speech recognition has led to substantial improvements
in word error rates (WER). In fact, some systems already claim to achieve human parity on
well-known speech recognition datasets such as Switchboard Hub5 2000.4 However, spoken
dialogue systems are often deployed in very noisy environments (e.g., cars, public transport,
loud workplaces), where the word error rates are significantly higher, ranging from 8.9% to
23.4% (Alam et al., 2015). Coupled with the fact that non-English ASR systems are still
lagging behind English (Ghoshal et al., 2013), it is clear that handling ASR noise remains a
pertinent challenge for the construction of spoken dialogue systems.

The speech recognition component of the dialogue system can be bootstrapped using
publicly available third-party toolkits. Notable examples include the HTK toolkit (Young
et al., 2002), CMUSphinx (Walker et al., 2004) and more recently Kaldi (Povey et al., 2011).
In the Dialog State Tracking Challenge 2, speech recognition Word Error Rates ranged from
22.4% to 40.4%, highlighting the importance of handling noisy speech input for the design
of robust spoken dialogue systems (Henderson et al., 2014a).

2.2.1 Forms of ASR Output

ASR models assign posterior probabilities to words in an utterance given its recorded
acoustics (Jurafsky and Martin, 2009). The ASR output is often inaccurate, as it is affected by
factors like outside noise, variation between different users, imperfections of the equipment
used to record the waveforms, and many others.

Different forms of ASR system output vary in how well they approximate the full posterior
distributions over the ASR hypotheses. Popular output encodings include:

• N-best lists: this form of output approximates the full posterior distribution by return-
ing the top N most probable hypotheses with their respective probabilities. The top N
hypotheses are typically very similar, with the low-scoring words unlikely to feature in
any of them.

• Word lattices are directed acyclic graphs with weighted edges encoding the scores of
recognised words (Murveit et al., 1993). Each path through the word lattice encodes
an utterance hypothesis (and can be used to compute its score).

• Word Confusion Networks are restricted forms of word lattices: all paths from the
start to the end node must pass through all the nodes (Mangu et al., 2000). The

4As of February 2018, software companies like IBM (5.5%), Microsoft (5.1%) and Capio (5.0%) have
reported conversational word error rates on par or better than humans (5.9%) on the Switchboard Hub5 2000
evaluation dataset (Han et al., 2018; Saon et al., 2017; Xiong et al., 2017).
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constrained structure of the confusion network allows for efficient computation of
posterior probabilities for any given word sequence.

The more informative the summary of the posterior distribution over the words in an
utterance is, the better the subsequent language understanding models can represent the
uncertainty about the possible user utterances. For instance, Henderson et al. (2012a)
showed that the use of full posterior distributions over ASR hypotheses (encoded using
word confusion networks) results in significant performance gains for the task of semantic
decoding (converting ASR output to turn-level dialogue act representations).

The work presented in this thesis is limited in scope to ASR systems which produce
N-best lists as output. Combining predictions for this form of output is straightforward: given
the prediction for each hypothesis, a linear combination of N predictions weighted by the
ASR confidence scores provides the final output. The performance of the proposed methods
would certainly benefit from modelling uncertainty using richer ASR output. However, the
primary focus of the presented work is modelling aspects of uncertainty introduced by the
next pipeline component, when textual representations of natural language are converted into
ontology-defined dialogue acts.

2.3 Spoken Language Understanding

At the highest level of communication, the user and the dialogue system are conveying intents,
exchanging information and suggesting actions to each other. These intents are represented
using dialogue acts, which use an abstract language (defined by the ontology) to describe the
current application domain (see Section 2.1.3).

The role of the Spoken Language Understanding (SLU) module, also known as the
semantic decoder, is to convert ASR output into dialogue acts. The subsequent Dialogue
State Tracking (DST) module uses these dialogue acts to update the system’s belief state,
which is a probability distribution over all possible states of the dialogue. This distribution is
then used by the dialogue manager to choose an appropriate system response.

Linguistic Uncertainty Translating the ASR output into abstract meaning representations
defined by the domain ontology propagates uncertainty introduced by the speech recogniser.
On top of that, the semantic decoding step introduces additional sources of uncertainty. The
first is related to the difficulty of interpreting natural language, that is by linguistic phenomena
difficult to model. Rephrasing is one example of these: the SLU model should learn that
an utterance such as “How about Sushi" should map to FOOD=Japanese. Another form of
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uncertainty is due to modelling context - if the user asks “Would you like Turkish food?” and
the user responds with “Why not?”, the semantic decoder should output FOOD=Turkish.

2.3.1 Overview of SLU Approaches

Historically, rule-based methods such as template matching and grammar-based methods
have been used for semantic decoding (Ward and Issar, 1994; Young and Proctor, 1989).
Such rules are hard to design, requiring a substantial amount of user testing before achieving
satisfactory performance in any given dialogue domain.

Unlike rule-based methods, data-driven ones can process long-range dependencies by
learning to parse spontaneous conversational input. By learning from annotated data, statisti-
cal models can learn to overcome erroneous speech recognition by recognising frequently
occurring ASR errors. Proposed data-driven methods make use of a plethora of techniques,
including Inductive Logic Programming (Zelle and Mooney, 1996a), Generative Proba-
bilistic Models (He and Young, 2005), Weighted Finite State Transducers (Jurčíček et al.,
2009), Support Vector Machines (Mairesse et al., 2009), Combinatorial Categorial Grammars
(Kwiatkowski et al., 2011; Zettlemoyer and Collins, 2007), and many others.

SLU for Spoken Dialogue Systems In the recent Dialogue State Tracking Challenges
(DSTC) (Williams et al., 2016), some systems used the output of template-based matching
systems such as Phoenix (Wang, 1994), which was provided as the baseline SLU model.
However, more robust and accurate statistical SLU systems have been used in spoken
dialogue system design. Many of these approaches train independent binary models that
decide whether each slot-value pair was expressed in the user utterance. Given enough data,
these models can learn which lexical features are good indicators for a given value and can
capture elements of paraphrasing (Mairesse et al., 2009). This line of work later shifted focus
to robust handling of rich ASR output (Henderson et al., 2012b; Tur et al., 2013).

SLU as Sequence Labelling SLU has also been treated as a sequence labelling problem,
where each word in an utterance is labelled according to its role in the user’s intent; standard
labelling models such as Conditional Random Fields (CRFs) or Recurrent Neural Networks
(RNNs) can then be used (Celikyilmaz and Hakkani-Tur, 2015; Liu and Lane, 2016a,b;
Mesnil et al., 2015; Peng et al., 2015; Raymond and Ricardi, 2007; Vu et al., 2016; Yao et al.,
2014; Zhang and Wang, 2016, i.a.). Other approaches adopt a more complex modelling
structure inspired by semantic parsing (Saleh et al., 2014; Vlachos and Clark, 2014).
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Most SLU methods have very substantial resource requirements. Models in the first
group are very data-hungry, as they learn independent parameters for each slot-value pair.
The second group of models relies on fine-grained, high-quality manual annotation at the
word level, which hinders scaling to larger, more realistic application domains.

2.4 Dialogue State Tracking

Models for probabilistic dialogue state tracking, or belief tracking, were introduced as
components of spoken dialogue systems in order to better handle noisy speech recognition
and other sources of uncertainty in understanding a user’s goals (Bohus and Rudnicky, 2006;
Williams and Young, 2007; Young et al., 2010). Modern dialogue management policies can
learn to use a tracker’s distribution over intents to decide whether to execute an action or
request clarification from the user.

The Dialogue State Tracking Challenge (DSTC) shared tasks have spurred research on
this problem and established standard evaluation paradigms. The first challenge provided
a corpus of dialogues in the Pittsburgh bus timetable information domain (Williams et al.,
2013). The second challenge used a restaurant search domain and incorporated user goal
changes which were not present in the first challenge (Henderson et al., 2014a). The third
challenge evaluated the models’ domain adaptation capabilities: a new tourist information
domain was used for evaluation, with the DSTC 2 data used for training along with a small
number of dialogues from the new domain (Henderson et al., 2014b).5 All dialogue corpora
used for evaluation in this thesis follow the shared DSTC 2/3 format, presented next.

Dialogue State Definition For slot-based systems, the dialogue state is represented by the
list of constraints that the user has expressed up to that point in time. In the Dialogue State
Tracking Challenges 2 and 3 (Henderson et al., 2014a,b), the task is defined by an ontology
that enumerates the goals a user can specify and the attributes of entities that the user can
request information about. In this setting, the dialogue state consists of:

1. Goal constraints for each of the informable slots s ∈ Sin f . Each goal constraint is either
a value v ∈Vs, or one of the special values: dontcare or none-specified. Examples of
such constraints in the restaurant search domain, following a user utterance such as

“How about a Greek place somewhere north” would be FOOD=Greek, AREA=north.

5More recently, Dialogue State Tracking Challenges 4 and 5 have taken place. However, the focus of
these challenges has shifted to modelling human-human conversation. DSTC 4 used Skype conversations
between tour guides and tourists (Kim et al., 2016c), while DSTC 5 focused on cross-lingual DST, using
English dialogues for training and Chinese ones for evaluation (Kim et al., 2016d).



2.4 Dialogue State Tracking 15

2. A subset of the requested slots S′ ⊆ Sreq, indicating which of the requested slots’ values
the user would like to know about. In the restaurant search domain, following a user
utterance such as “What are the address and phone number”, the set of requested
slots would be given by: {address, phone}. Requested slots represent questions about
previously suggested entities, and as such do not require belief tracking across turns.

3. The dialogue search method, which can be: 1) by constraints, if the user is specifying
target entity attributes; 2) by alternatives, if the user is asking for alternative venues
which meet the given constraints; 3) by name, if the user is asking for a specific venue;
and 4) finished, which means the user wants to end the conversation.

In traditional (modular) spoken dialogue systems, at each dialogue turn, the SLU com-
ponent extracts new (noisy) dialogue acts which represents the constraints expressed in the
new user utterance. The DST component uses the new dialogue acts to update the belief
state, which is the probability distribution over the possible dialogue states described above.
Figure 2.3 in Section 2.1 showed a sample dialogue with user utterances annotated with the
correct dialogue state. The role of the DST model is to infer the best possible estimate of the
dialogue state, given the history of user and system utterances in the current dialogue.

Propagating Uncertainty The belief state update incorporates all the sources of uncer-
tainty into the updated belief state. The uncertainty is propagated from the previous dialogue
turns (by using the previous belief state), as well as from the output of the ASR and the SLU
components operating on the current user input. The newly inferred belief state is then passed
on to the POMDP-based dialogue manager (discussed in Section 2.5), which can use the full
distribution to learn optimal policies for operating under varying levels of uncertainty.

Hand-Crafted Dialogue State Trackers

The early approaches to performing dialogue state tracking were based on hand-crafted
systems which used only the top SLU/ASR hypothesis to map the existing dialogue state
to a new dialogue state (Williams et al., 2016). An early example of this approach is the
Information State Update model, which used hand-crafted rules to maintain the information
state (Larsson and Traum, 2000). This was one of the first attempts to formalise the structure
of the input needed to perform dialogue management. Another example of hand-crafted
systems was MIT Jupiter (Zue et al., 2000), a weather information system which relied on
hand-made rules to update the system variables.

One advantage of hand-crafted dialogue state trackers is that they require no dialogue data
to tune their internal parameters. Moreover, they allow system designers to directly encode
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specific desirable behaviour which could override specific system failure modes caused by
imperfect ASR or SLU modules. However, a major drawback of early hand-crafted systems
was their inability to consider (and maintain) multiple hypotheses for the dialogue state, and
therefore model the uncertainty stemming from the preceding system components.

To overcome these issues, more recent rule-based approaches predict an updated dialogue
state for each of the hypotheses provided by the ASR/SLU pipeline, and then use another
hand-crafted rule to combine these estimates into a single belief state (Sun et al., 2014; Wang
and Lemon, 2013). However, these approaches still do not learn from available dialogue data;
in fact, their performance does not benefit in any way from the collected real-world dialogues.
As a result, these systems require careful fine-tuning whenever the ASR/SLU components is
modified, or whenever the system is deployed for a new dialogue domain. To overcome these
issues, Sun et al. (2016) use recurrent polynomial networks to incorporate prior knowledge in
the form of hand-crafted rules into a hybrid statistical framework. However, the performance
of this approach still hinges on the quality of the initial rule-based system and the reliability
of the SLU module, limiting its capacity for generalising to new dialogue domains.

The deficiencies of hand-crafted approaches have spurred research on data-driven DST
methods, which fall into two camps: generative and discriminative.

2.4.1 Generative Dialogue State Trackers

Historically, the most popular data-driven methods were based on generative Bayesian
networks. These methods model dialogue as a dynamic Bayesian network: the (true)
dialogue state st (at time t) is treated as a hidden random variable (Henderson, 2015b). The
system action at and the observed user action ot are the observed variables. At each dialogue
turn, Bayesian inference is used to obtain an updated estimate of the dialogue state st+1.
The dialogue state itself is one of s ∈ S, where S is the Cartesian product of all possible slot
values, requestable slots and the search methods. Adopting the notation of Williams and
Young (2007), let b′ denote the updated belief state (for time t+1), and let b denote the belief
state at time t. The belief state update can then be expressed as:

b′(st+1) = P(st+1 | ot+1,at ,b) (2.1)

=
P(ot+1 | st+1,at ,b)P(st+1 | at ,b)

P(ot+1 | at ,b)
(2.2)

=
P(ot+1 | st+1,at)∑s∈S P(st+1 | at ,b,s)P(s | at ,b)

P(ot+1 | at ,b)
(2.3)

=
P(ot+1 | st+1,at)∑s∈S P(st+1 | at ,s)b(s)

P(ot+1 | at ,b)
(2.4)
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In these equations, P(ot+1 | st+1,at) is the probability that the ASR/SLU pipeline produces the
output ot+1 given an underlying (true) state st+1 and following system act at . P(st+1 | at ,s)
is the probability of moving to state st+1 from state s (again, following system act at).
These equations show that the belief state at time t + 1 provides a sufficient statistic of
dialogue history given the previous system and user actions: it is Markovian with respect to
at ,ot ,at−1,ot−1, . . . ,a1,o1. Consequently, the belief state at time t +1 encompasses the full
dialogue history and as such provides a complete representation that subsequent planning
(dialogue management) algorithms need to choose the next system action at+1.

Equations 2.1 - 2.5 summarise the approach proposed by Williams and Young (2007).
Over the last ten years, many different factorisations of the Bayesian Network and its hidden
dialogue state have been proposed. For instance, DeVault and Stone (2007) use a Bayesian
Network which models both the observed user action and the underlying intention separately,
using separate terms to capture common-sense relationships between intentions, actions and
likely dialogue states. A common feature of these approaches is that the system designer
encodes his knowledge of conversational dynamics into the employed Bayesian network. Its
parameters are then learned from data, using approaches such as Expectation Maximisation
(Syed and Williams, 2008) or Expectation Propagation (Thomson et al., 2010).

The basic form of the update equation is quadratic in the number of dialogue states.
As such, it makes the naïve version of this approach infeasible for systems with a large
number of dialogue states (i.e., real-world domain ontologies with many slots). This issue
is exacerbated by the fact that such systems are deployed in real-time applications. The
approaches proposed to overcome this drawback fall into two camps: 1) those that introduce
additional factorisations which further limit the kinds of behaviour that the Bayesian network
can model (Bui et al., 2009; Thomson and Young, 2010; Williams and Young, 2007); and
2) those that maintain a list (i.e., a beam) of the most likely dialogue states at each point of
the conversation. Notable examples of the latter approach include the Hidden Information
State model (Gašić and Young, 2011; Young, 2010a; Young et al., 2007), Mixture Model
POMDPs (Henderson and Lemon, 2008), Probabilistic Ontology Trees (Mehta et al., 2010),
and Dynamic Probabilistic Ontology Trees (Raux and Ma, 2011). Lee and Kim (2016)
recently proposed a generative model which uses Long-Short Term Memory (Hochreiter and
Schmidhuber, 1997) networks to model dialogue history, extending their previous approach
which used a weighted softmax function to predict the dialogue state (Lee et al., 2014).

Despite the substantial body of work on making generative DST models tractable, these
models still cannot scale to consider large numbers of (potentially) useful features from ASR,
SLU and dialogue history. This is because all dependencies between features are modelled
explicitly, which requires infeasible amounts of dialogue data (Williams et al., 2016). On



18 Statistical Spoken Dialogue Systems

the other hand, the tractable variants of these models make independence assumptions or
approximations which affect learning adversely. One instance of such assumptions is that
the errors are drawn independently from a uniform distribution, which is clearly false. In
the case of ASR, a request for Serbian food is more likely to be confused with Siberian or
Syrian, rather than with requests for Czech, Romanian or Taiwanese food. These limitations
of generative models led to increased interest in discriminative DST models.

2.4.2 Discriminative Dialogue State Trackers

Unlike generative models, discriminative models directly estimate the conditional probability
P(st | f), where f is the set of (arbitrary) features representing ASR, SLU and dialogue history.
The relation between these features need not be specified by the system designer: instead,
they are learned directly from labelled dialogue data. This allows discriminative models to
consider very large sets of potentially correlated features.

Until recently, very few discriminative models were suggested, with the notable exception
of the maximum entropy model proposed by Bohus and Rudnicky (2006). This method used
a generalized linear model to determine which of the many hand-crafted features are most
relevant for the belief state update. The Dialogue State Tracking Challenges saw a variety of
novel discriminative approaches. These can be broadly split into models which treat dialogue
state tracking as a turn-by-turn classification problem, and those that model dialogue as a
sequential process.

DST as Turn-by-Turn Classification

Dialogue State Tracking can be framed as a classification problem, where the task of the
classifier is to estimate P(st | f1, . . . , ft), i.e., the most probable dialogue state at time t
given the collection of SLU, ASR and system act features up until the current dialogue
turn (Henderson, 2015c). The main appeal of this static classification approach is that
any classification paradigm can be applied once the sequence of observations f1, . . . , ft is
turned into a fixed-length summary representation. Given this succinct summary of the
preceding dialogue turns, a plethora of approaches can be used to predict the new dialogue
state. These include maximum entropy models (Lee and Eskenazi, 2013; Metallinou et al.,
2013; Williams, 2012a, 2013), neural networks (Casanueva et al., 2016a,b; Henderson et al.,
2013) or web-style ranking (Williams, 2014), which achieved the best accuracy in the second
Dialogue State Tracking Challenge.
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Summary Feature Functions The central research question of approaches based on static
classification is that of specifying feature functions which map the sequence of actions and
observations f1, . . . , ft into a single fixed-length representation for the current dialogue turn.
For each slot S in the dialogue ontology, this representation usually consists of: 1) a general
set of features f∗t which aims to represent dialogue history up to turn t; and 2) a collection
of slot-value dependent features fv

t for all slot values v ∈ S. As an example of the former,
Metallinou et al. (2013) use manually-specified general features which include:

• the number of distinct SLU predictions up to turn t;

• the entropy of probabilities assigned by the SLU module up to turn t;

• the size and entropy of the SLU confidence scores at turn t;

• the mean and variance of the length of the SLU N-best list across all previous turns;

• the posterior probabilities of the ASR hypotheses.

As an example of slot-value specific features fv
t , which capture information which the model

can use to decide whether a specific value v ∈ S is part of the belief state (i.e. that st = v),
Henderson et al. (2013) use features which include:

• SLU score: the probability that st = v, assigned by the SLU module;

• Rank score: 1
r , where r is the rank of st = v in the SLU N-best list, or 0 otherwise;

• Affirm score: the probability assigned to an affirm action if the system just asked the
user whether st = v, or 0 otherwise;

• Negate score: the probability assigned to a negate action if the system just asked the
user whether st ̸= v, or 0 otherwise.

To deal with the fact that there are different feature vectors for each value v ∈ S, static
classifiers typically tie the subsequent parameters which interact with each feature vector
fv
t . This facilitates value-independent behaviour which allows these models to deal with

unseen data. For example, if S is the AREA slot and v=centre, and if the SLU probability for
AREA=centre is high, the DST module should recognise that the user is asking for a venue in
the city centre, even though it may not have seen this example during training.6

6Note that this approach leaves the responsibility for deciding that AREA=centre to the SLU module. This
may be simple when an exact match with the given value is provided (e.g., if the user asks for a place in the
centre), but less so when the user asks for something central or downtown.
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Dialogue as a Sequential Process

In contrast to the previous group of approaches, this group of methods casts Dialogue State
Tracking as a sequence labelling problem. Ren et al. (2014a,b) use the previous belief
state as a feature in the framework of discriminative Markov Models. Alternatively, linear
Conditional Random Fields (Lafferty et al., 2001) can be used to model the conditional
distribution P(st ,st−1, . . . ,s1 | f1, . . . ft) (Lee, 2013; Ma and Fosler-Lussier, 2014; Ren et al.,
2013). This conditional distribution over the sequence of states can then be marginalised to
obtain the belief state estimate for the latest turn.

Both kinds of approaches use features akin to those used by the static classifiers, differing
in that the value-specific features fv

ti for ti = 1 . . . t are all considered when estimating the
belief state at time t (rather than just fv

t , as in the case of static classifiers). As noted by
Henderson (2015c), all DST approaches based on these methods proposed in the literature
assume discrete features. This means that many of the (hand-crafted) SLU/ASR features must
be quantised, exacerbating the DST models’ dependence on manual feature engineering.

Delexicalisation-Based DST Models To overcome these issues, Henderson et al. (2013;
2014c; 2014d) have proposed approaches based on deep and later Recurrent Neural Networks
(Hochreiter and Schmidhuber, 1997; Hopfield, 1982; Jain and Medsker, 1999). Their models
operate over continuous feature vectors representing the current user utterance and previous
dialogue history. Such delexicalisation-based DST models have two major advantages over
past approaches: 1) they eliminate the need for feature engineering on the DST front; and 2)
they can entirely remove the dependence on (domain-specific) SLU modules.7

Initial word-based DST models used non-sequential models (such as deep neural net-
works) to produce continuous user utterance representations which were then used by sequen-
tial DST models to update the belief state. Approaches such as that of Žilka and Jurčíček
(2015) and Vodolán et al. (2017) further advance this paradigm by using Long Short-Term
Memory (LSTM) networks (Hochreiter and Schmidhuber, 1997) over user utterances to pro-
duce continuous user utterance representations which better model word order and long-term
dependencies. Another research direction is that proposed by (Liu and Perez, 2017; Perez
and Liu, 2017), who frame dialogue state tracking as a question answering problem and use
End-to-End Memory Networks (Sukhbaatar et al., 2015; Weston et al., 2014) to train DST
models with more advanced reasoning capabilities.

7Henderson et al. (2014d) refer to their model as the word-based dialogue state tracker, as the model relies
on finding exact matches of words in the user utterance with the respective ontology values. For notational
clarity, this family of models is referred to as delexicalisation-based throughout this thesis.



2.4 Dialogue State Tracking 21

Joint Learning of SLU and DST Another way to categorise prior discriminative ap-
proaches is by their reliance (or otherwise) on a separate SLU module for interpreting user
utterances.8 Traditionally, SLU and DST components were separate, with the DST module
operating on SLU output to update the belief state. Models based on the word-based DST
paradigm integrate SLU and DST into a single component which uses the ASR output to
directly update the belief state without an intermediate semantic decoding step. Combining
the two components enables joint learning, allowing both components to make use of the in-
formation expressed in previous dialogue turns. The next chapter presents this state-of-the-art
model in more detail. The following sections give an overview of the dialogue management
and natural language generation components.

Relation to Semantic Parsing The tasks of spoken language understanding and dialogue
state tracking in many ways resemble semantic parsing, the task of converting natural
language into computer-executable formal meaning representations for domain-specific
applications (Kate and Wong, 2010). Well-known semantic parsing tasks include the Air
Traffic Information Service (ATIS), Robocup Coach Language (CLang), and Geoquery, a
Database Query Application (Chen et al., 2003; Hemphill et al., 1990; Zelle and Mooney,
1996b). Similarly to Dialogue State Tracking models, semantic parsers are typically domain-
specific, with the Meaning Representation Language (MRL) designed by application creators.
Since semantic parsers provide natural language interfaces for computational systems, one
could consider the SLU/DST pipelines of task-based dialogue systems an instance of semantic
parsing models. Contrary to most semantic parsers, the role of the language understanding
pipeline in dialogue systems is not to produce a full meaning representation of a particular
sentence, but rather the full representation of the user’s intent, expressed over a number
of dialogue turns while interacting with the dialogue system. The dialogue act slot-filling
paradigm used in DST resembles the meaning representations of early semantic parsing
tasks such as the Air Traffic Information Service. However, the dialogue act formalism is
considerably simpler than that of more recent semantic parsing tasks, which rely on the
strongly typed syntax of grammar formalisms such as Combinatory Categorical Grammars
(CCGs) (Reddy et al., 2016) or dependency structures such as Stanford Dependencies
(de Marneffe and Manning, 2008) and Universal Dependencies (Nivre et al., 2016).

8The best-performing models in DSTC 2 all used both raw ASR output and the output of (potentially more
than one) SLU decoders (Williams, 2014; Williams et al., 2016). This does not mean that those models are
immune to the drawbacks identified here for the two model categories; in fact, they share the drawbacks of both.
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2.5 Dialogue Management

The role of the dialogue manager is to choose an appropriate system response following the
latest user utterance. To do this, the dialogue manager uses the dialogue system’s internal
estimate of the dialogue state (the belief state) to produce the system action, which is the
dialogue act representation of the dialogue system’s response to the user utterance.

The evolution of research on dialogue management and its relation to the DST component
resembles the evolution of DST with respect to the SLU module. Historically, dialogue
managers kept a single (top) hypothesis for the dialogue state and used it to choose the next
system action. These approaches were based on form filling systems (Goddeau et al., 1996),
flowcharts (Lucas, 2000; McTear, 2002; Sutton et al., 1996), and logical inference (Larsson
and Traum, 2000). A common trait of these approaches is that system behaviour was not
learned from dialogue data or from user interactions. Instead, the system designers manually
specified the desired system behaviour, which limited the applicability of early systems to
complex dialogue domains with many possible system actions.

The next generation of dialogue managers used Markov Decision Processes (MDPs) to
allow the dialogue policy to be learned from data using reinforcement learning (Biermann
and Long, 1996; Levin and Pieraccini, 1995; Singh et al., 1999). The learned dialogue policy
π : s → a maps the current dialogue state hypothesis s to one of the system actions a ∈ A,
where A stands for the set of potential system actions.

The MDP-based approaches allow the system to learn from user interactions. However,
the learned policy uses only the top dialogue state hypothesis to choose the next system action.
This means that its performance does not benefit from modelling the uncertainty introduced
by the previous components of the dialogue system pipeline. An early method which
incorporated (some of) the uncertainty information was that of Bohus and Rudnicky (2005),
who add additional features to represent uncertainty about the top DST hypothesis. Similar
to the early DST approaches, this approach is heavily hand-crafted, with supplementary
features dependent on specific properties of preceding ASR, SLU and DST modules.

2.5.1 Partially Observable Markov Decision Processes

Over the past decade, the statistical dialogue modelling literature has been increasingly
focused on modelling dialogue as a Partially Observable Markov Decision Process (POMDP)
(Roy et al., 2000; Thomson and Young, 2010; Williams and Young, 2007; Young et al., 2010).
This approach combines statistical approaches to learning and handling uncertainty, making
the system more robust to errors in ASR and SLU decoding, as well as allowing the dialogue
policy to be optimised using reinforcement learning.
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A key distinction of POMDP-based dialogue management models is that the (true)
dialogue state s is treated as a hidden variable. Instead of the top DST hypothesis, the
estimated distribution over dialogue states b(st), i.e., the full belief state at turn t, is used
to choose the next system action. To learn the policy, a reward must be assigned to each
dialogue turn; it is usually assumed to be a function of the current dialogue state and the
subsequent system action (written as r(st ,at)).9 Learning the policy involves maximising the
expected cumulative reward.10 For a dialogue of T turns, this is given by:

E (R(s1:T ,a1:T )) = E

(
T

∑
t=1

r(st ,at)

)
(2.5)

Several assumptions about the environment are made to facilitate this (otherwise intractable)
computation (Thomson, 2009). An important one is that belief state transitions are assumed
to be Markovian (i.e. to depend only on the previous belief state and system action). The
policy π(bt ,at) is considered stochastic, defining the probability of taking action at in belief
state bt . The expected future reward can then be expressed as:

V π(bt) = ∑
a

π(bt ,a)r(bt ,a)+∑
a

∫
bt+1

π(bt ,a)P(bt+1 | bt ,a)V π(bt+1) (2.6)

Estimating the Q-function, which represents the the expected future reward if action a is
taken in state s, is one of the key problems in reinforcement learning. In a POMDP, the state
is not observable, so the state-action Q-function does not suffice to estimate the expected
future reward. Instead, the Q-function must map from a belief state and an action to the
expected future reward:

Qπ(bt ,a) = r(bt ,a)+
∫

bt+1

P(bt+1 | bt ,a)V π(bt+1) (2.7)

Learning to estimate the Q-function usually requires hundreds of thousands of dialogues.
One line of work addressing this problem relied on building user simulators which could
automatically generate large dialogue corpora (Jurčíček et al., 2011). Alternatively, Gaussian
Processes can be used to model the Q-function, allowing online policy learning with as few
as several hundred dialogues (Casanueva et al., 2015; Gašić et al., 2013, 2010; Su et al.,

9There is a substantial body of work on defining/learning appropriate reward functions, which typically try
to reward successful dialogue completion and favour concise dialogues which achieve user goals quickly.

10It is important to note that this cumulative reward deviates from the standard discounted return, where a
discounting factor is used to assign less value to high-reward actions that happen in the distant future. Dialogue
management is an episodic task, which means it is guaranteed to complete in a finite number of steps. This
eliminates the need for using discounting factors to ensure that the conversation eventually terminates.
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2016b). Recently, Su et al. (2017) showed that neural network models can be used in place
of Gaussian Processes, achieving comparable performance in low-data scenarios.

Neural Networks for Dialogue Management More recently, neural network approaches
to dialogue management have gained popularity. For instance, Su et al. (2016a) combine a
supervised learning approach for learning the policy from offline dialogues with an online
reinforcement learning method for fine-tuning neural network performance in interaction
with real users. Williams et al. (2017) extend this line of work, combining supervised and
reinforcement learning to train Hybrid Code Networks which incorporate external domain-
specific knowledge in the form of software and system-action templates.

2.6 Response Generation

This section gives a short overview of the two final components of the modular dialogue
system pipeline: the natural language generator (NLG), which transforms the system action
produced by the dialogue manager into natural language, and the text-to-speech (TTS)
generator, which creates the audio representation of the NLG output.

Natural Language Generation

The natural language generator (NLG) takes the system acts produced by the dialogue
manager and converts them into natural language. For instance, given a system action
inform(ADDRESS=Portugal Street 8, PARKING=True), the NLG could produce output such
as “The address is Portugal Street 8, and parking is available.” The NLG methods used in
dialogue systems broadly fall into two categories:

1. Template-based NLG The simplest method for bootstrapping NLG for dialogue is using
hand-crafted templates for the given dialogue domain (Cheyer and Guzzoni, 2007; Reiter
and Dale, 2000; Van Deemter et al., 2005). In a restaurant search domain, one such template
could be: POSTCODE=X → The postcode is X, where X is the postcode of the target entity.
A more complex template would be FOOD=X, NAME=Y, TYPE=Z → Y is a Z serving X food
(e.g., “The Maypole is a pub serving Italian food”). The key weakness of such approaches is
that different values sometimes require different contextualisations (e.g., “there is one venue
which meets your criteria” versus “there are two venues which meet your criteria”). This is
especially problematic for morphologically rich languages where, for example, the suffixes
of words could depend on word gender or declension.
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2. Data-Driven NLG Learnable methods for performing NLG in dialogue systems include
the supervised learning approaches of Walker et al. (2001) and Stent et al. (2004), the
reinforcement learning ones of Rieser and Lemon (2010), and the factored language models
of Mairesse et al. (2007; 2014). More recently, Wen et al. (2015a; 2016; 2015b) showed how
to train statistical language generators based on different deep neural network structures.

Text-to-Speech

The Text-to-Speech (TTS) engine is the final component of the modular dialogue system
pipeline, taking the output of the NLG component and inducing its audio representation.
Early approaches to this problem were based on unit selection, concatenating pre-recorded
speech segments into audio output representing the given word sequence (Black and Lenzo,
2001; Clark et al., 2004; Taylor et al., 1998).

The unit selection approach has since been superseded by data-driven methods, which
produce more naturally-sounding output by modelling sentence- and dialogue-level context.
Similar to automated speech recognition, the first generation of statistical TTS was based on
Hidden Markov Models (Tsiakoulis et al., 2014; Zen et al., 2007), with more recent systems
moving on to recurrent neural networks (Zen et al., 2014, 2013).





Chapter 3

Word-Based Belief Tracking: The Pros
and Cons of Delexicalisation

The first part of this chapter presents current state-of-the-art neural network approaches for
belief tracking. These methods are based on delexicalisation, a technique which treats all
user intents defined by the domain ontology using the same model parameters, relying on
little more than exact matching and context to perform belief tracking.

The second part of the chapter shows how this idea can be extended to train multi-
domain belief tracking models, as well as to bootstrap models for new dialogue domains. A
substantial part of this chapter is based on work published in Mrkšić et al. (2015).

3.1 Word-Based Dialogue State Tracking

Belief tracking models capture users’ goals given their utterances. Goals are represented as
sets of constraints expressed by slot-value mappings such as FOOD=chinese or WIFI=available.
The set of slots S and the set of values Vs for each slot make up the ontology for an application
domain. The ontology is domain-dependent and expresses the properties of database entities
which users can ask about in the given dialogue domain.

The word-based framework for belief tracking was introduced by Henderson et al. (2014c;
2014d). Following each user utterance, this model outputs a distribution over all goal slot-
value pairs defined by the ontology. To model dialogue state transitions, the model uses
a single-hidden-layer recurrent neural network, maintaining a memory vector that stores
internal information about dialogue context. The input for each user utterance consists of
the ASR hypotheses, the last system action, the current memory vector and the previous
belief state. Rather than using a semantic decoder to convert this input into a meaning
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representation, the system uses the turn input to extract a large number of word n-gram
features (see lexical features in Figure 3.1). These features capture some of the dialogue
dynamics but are not ideal for sharing information across different slots and domains.

Delexicalised n-gram features To overcome this problem, the word-based model relies
on another set of features, collected by replacing all references to slot names and values with
two generic symbols (SLOT and VALUE) and extracting delexicalised n-gram features (see
Figure 3.1). Lexical n-grams such as [want cheap price] and [want Chinese food] map to
the same delexicalised feature, represented by [want VALUE SLOT]. Such features facilitate
transfer learning between slots and allow the system to operate on unseen values or even
entirely new slots. As an example, [want available internet] would be delexicalised to [want
VALUE SLOT] as well, a useful feature even if there is no training data available for the
INTERNET slot. The delexicalised model learns the belief state update corresponding to this
feature from its occurrences across the other slots and domains. Subsequently, it can apply
the learned behaviour to unseen slots, or even to entirely new domains.

RNN-based Belief State Update The system maintains a separate belief state for each
slot s, represented by the distribution ps over all possible slot values vs

i ∈ Vs. The model
input at turn t, xt , consists of the previous belief state pt−1

s , the previous memory state mt−1.
The one-hot feature vectors fl and fd,vs

i
represent the lexical and value-specific delexicalised

features extracted from the turn input (see Figure 3.1).1 The belief state of each slot s is
updated for each of its slot values vs

i ∈Vs. The updates are as follows:

xt
vs

i
= ft

l ⊕ ft
d,vs

i
⊕ mt−1 ⊕ pt−1

vs
i

⊕ pt−1
/0 (3.1)
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(
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xt +Ws
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mt−1) (3.4)

where ⊕ denotes vector concatenation, pt−1
vs

i
the previous probability for the given value and

pt
/0 the probability that the user expressed no constraint up to turn t. Matrices Ws

0, Ws
m0

, Ws
m1

and the vector ws
1 are the (slot-specific) RNN weights, and bs

0 and bs
1 are the hidden and

output layer RNN bias terms. For training, the model is unrolled across turns and trained
using backpropagation through time and stochastic gradient descent (Graves, 2012).

1Henderson’s work distinguished between three types of features: delexicalised features fs and fvs
i

are here
subsumed by the delexicalised feature vector fd,vs

i
. The turn input f corresponds to the lexical feature vector fl .
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Score / Weight
Transcription Best Serbian restaurant downtown? -

ASR Hypothesis 1 Best Serbian restaurant downtown? 0.84
ASR Hypothesis 2 Best Siberian restaurant downtown? 0.16

fl : Lexical n-gram features

Lexical Unigrams

Best 1.0
restaurant 1.0
downtown 1.0

Serbian 0.84
Siberian 0.16

Lexical Bigrams

restaurant downtown 1.0
Best Serbian 0.84

Serbian restaurant 0.84
Best Siberian 0.16

Siberian restaurant 0.16

Lexical Trigrams

Best Serbian restaurant 0.84
Serbian restaurant downtown 0.84

Best Siberian restaurant 0.16
Siberian restaurant downtown 0.16

fd,v: Delexicalised n-gram features

for v = Serbian

VALUE 0.84
Best VALUE 0.84

VALUE restaurant 0.84
Best VALUE restaurant 0.84

VALUE restaurant downtown 0.84

for v = Siberian

VALUE 0.16
Best VALUE 0.16

VALUE restaurant 0.16
Best VALUE restaurant 0.16

VALUE restaurant downtown 0.16
for v ̸= Serbian, Siberian <EMPTY LIST> -

Figure 3.1 An illustration of feature extraction performed by the word-based belief tracking
model. In this example, an ASR N-best list of length 2 is used to extract lexical and
delexicalised n-gram features for n = 1,2,3. Delexicalised feature vectors are value-specific
and different for each slot value that appears in the ASR hypotheses. In this example, two
food values are featured: Serbian and Siberian (often confused both by ASR systems and
those lacking geographic knowledge). In this case, the same delexicalised features are active
for both values. However, they are assigned different weights by the ASR system, which the
word-based belief tracking model can use to choose the more likely value.
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Learning Value-Specific Parameters The original RNN architecture proposed by Hen-
derson et al. (2014d) used a second neural network component to learn mappings from lexical
n-grams to specific slot values. This means that a separate set of weights w1

s,vs
i and bs,vs

i
1 is

learned for each slot value vs
i ∈Vs, allowing the model to capture specific rephrasings which

occur in the training dataset (e.g., that the bigram moderately priced is a strong indicator for
PRICE=MODERATE). Including these parameters transforms equation 3.2:

gt
vs

i
= ws

1 ·σ
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Ws
0xt

vs
i
+bs

0

)
+bs

1 +ws,vs
i

1 ·σ
(
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0xt

vs
i
+bs

0

)
+bs,vs

i
1 (3.5)

This modelling step turns the core delexicalisation-based model into a hybrid model which
can learn value-specific rephrasings. However, it also leads to a very substantial increase in
the number of model parameters (proportional to the number of slot values).2 In their further
work on applying pre-trained models to an extended version of the original dialogue domain,
Henderson et al. (2014c) do not use this part of the network.

3.2 Beyond Domain-Specific Dialogue State Tracking

Modern dialogue systems are typically designed with a well-defined domain in mind, e.g.,
restaurant search, travel reservations or shopping for a new laptop. The goal of building
open-domain dialogue systems capable of conversing about any topic remains far off.

Domain Adaptation in Dialogue It is well-known in machine learning that a system
trained on data from one domain may not perform as well when deployed in a different
domain. Researchers have investigated methods for mitigating this problem, with NLP
applications in parsing (McClosky et al., 2006, 2010), sentiment analysis (Blitzer et al., 2007;
Glorot et al., 2011) and many other tasks. There has been a small amount of previous work
on domain adaptation for dialogue systems. Tur et al. (2007) and Margolis et al. (2010)
investigated domain adaptation for dialogue act tagging. Walker et al. (2007) trained a
sentence planner/generator that adapts to different individuals and domains. Dialogue State
Tracking Challenge 3 (Henderson et al., 2014b) explored the ability of models to adapt to an
extended version of the dialogue domain they were trained on. Models trained on data from
DSTC 2 (Cambridge Restaurants) were evaluated on the tourist information domain, which
contains information about restaurants, pubs, hotels and coffee shops.

2Interestingly, not including this component leads to a relatively small decrease in DSTC2 performance: the
joint goal accuracy falls from 76.8 → 74.4. This shows that the core delexicalisation-based network accounts
for most of the word-based belief tracking model’s performance.



3.3 Multi-Domain Dialogue State Tracking 31

Towards Open-Domain Dialogue As the next step towards the goal of open-domain
dialogue, this chapter shows how to build dialogue state tracking models which can operate
across entirely different domains. As explained in previous sections, word-based belief
tracking models powered by recurrent neural networks are well suited to dialogue state
tracking, since their ability to capture contextual information allows them to model and
label complex dynamic sequences. The word-based RNN models have shown competitive
performance in both DSTC 2 and DSTC 3 (Henderson et al., 2014c,d). This approach is
particularly well suited to the goal of building open-domain dialogue systems, as it does not
require hand-crafted domain-specific resources for semantic interpretation.3

3.3 Multi-Domain Dialogue State Tracking

A method for training multi-domain RNN dialogue state tracking models is proposed next.
A hierarchical training procedure first uses all the data available to train a general belief
tracking model. This model learns the most frequent and general dialogue features present
across the various domains. The general model is then specialised for each domain, learning
domain-specific behaviour while retaining the cross-domain dialogue patterns learned during
the initial training stages. These models show robust performance across all the domains
investigated, typically outperforming trackers trained on target-domain data alone. The proce-
dure can also be used to initialise dialogue systems for entirely new domains. The subsequent
evaluation shows that multi-domain initialisation always improves performance, regardless
of the amount of the in-domain training data available. To the best of my knowledge, this
work was the first to address the question of multi-domain belief tracking.

3.3.1 Hierarchical Model Training

Delexicalised features allow transfer learning between different slot values and between entire
slots. This approach can be extended to achieve transfer learning between entire domains:
a model trained to talk about hotels should have some success talking about restaurants, or
even laptops. If features learned across disparate domains can be incorporated into a single
model, this model should be able to track belief state across all of these domains.4

Shared Initialisation The training procedure starts by performing shared initialisation:
the training datasets for all dialogue domains considered are combined into a single multi-

3Note that this does not mean that these models can fully emulate the capabilities of models which do use
domain-specific semantic decoders. These limitations will be the focus of study of subsequent chapters.

4To move towards domain-independence, the value-specific part of the word-based RNN is not used.
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domain training dataset. Next, all slot value occurrences for all slots across the different
domains are replaced with a generic VALUE tag.5 The word-based RNN parameters for all
slots (across all domains) are tied, and the slot-agnostic delexicalised dialogues are used to
learn the parameters of a single shared RNN model.

Slot Specialisation The shared RNN model is trained with the purpose of extracting a
very rich set of lexical and delexicalised features which capture general dialogue dynamics
and keyword contexts potentially applicable across multiple domains. While these features
are general, the RNN parameters are not, since not all of the features are equally relevant
for different slots and/or domains. For example, [eat VALUE food] and [near VALUE] are
clearly features related to FOOD and AREA slots respectively. To ensure that the model learns
the relative importance of different features for each of the slots, slot specific models are
trained for each slot across all the available domains. To train slot-specialised models, the
shared RNN’s parameters are replicated for each slot and specialised further by performing
additional runs of stochastic gradient descent using only slot-specific training dialogues (i.e.,
those dialogues where at least one user utterance contains a mention of the given slot).

3.3.2 Experimental Setup

The experimental setup follows that of the Dialogue State Tracking Challenges 2 and 3.
The key metric used to measure the success of belief tracking models is goal accuracy,
which represents the ability of the system to correctly infer user goals expressed via slot-
value constraints. The evaluation reports the joint goal accuracy, which is the marginal test
accuracy across all slots. This measure represents the proportion of dialogue turns in the test
set where all user constraints expressed up to that dialogue turn were decoded correctly.

Datasets The evaluation considers six dialogue domains, varying across topic and geo-
graphical location (Table 3.1). The Cambridge Restaurants data is the data from DSTC 2.
The San Francisco Restaurants and San Francisco Hotels datasets were collected during the
Parlance project (Gašić et al., 2014). The Tourist Information domain is the DSTC3 dataset:
it contains dialogues about hotels, restaurants, pubs and coffee shops. The Michigan Restau-
rants and Laptops datasets are collections of dialogues sourced using Amazon Mechanical
Turk. The Laptops domain contains conversations with users instructed to find laptops with
certain characteristics. This domain is substantially different from the other ones, making it
particularly useful for assessing the quality of the multi-domain models trained.

5Similarly, all mentions of slot names (across all domains) are replaced with a single SLOT name tag.
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Dataset / Model Domain Train Test Slots Size of Slots (Values per Slot)
Cambridge Restaurants Restaurants 2118 1117 4 [112, 92, 6, 4]
SF Restaurants Restaurants 1608 176 7 [240, 155, 60, 40, 5, 4, 3]
Michigan Restaurants Restaurants 845 146 12 [727, 124, 6, 5, 4, 3, 3, 3, 3, 3, 3, 2]
All Restaurants Restaurants 4398 - 23 Union of Datasets Above
Tourist Information Tourist Info 2039 225 9 [164, 53, 29, 15, 5, 4, 3, 3, 3]
SF Hotels Hotels Info 1086 120 7 [183, 156, 28, 5, 3, 3 , 3]
R+T+H Model Mixed 7523 - 39 Union of Datasets Above
Laptops Laptops 900 100 6 [5, 4, 4, 4, 4, 3]
R+T+H+L Model Mixed 8423 - 45 Union of Datasets Above

Table 3.1 Datasets used in the experiments presented in this chapter. Where applicable, slot
value counts include the special dontcare value.

Three combined datasets are introduced (see Table 3.1) and used to train increasingly
general belief tracking models:

1. All Restaurants: trained using combined dialogues from three restaurant domains;

2. R+T+H: trained on all dialogues related to restaurants, hotels, pubs and coffee shops
(five datasets; Cambridge, Michigan and SF restaurants, SF Hotels and DSTC 3);

3. R+T+H+L model: the most general model, trained using all the available dialogue
data (six combined datasets; R+T+H plus the laptops domain).

Model Training and Hyperparameters Following Henderson et al. (2014c,d), stochastic
gradient descent (SGD) is used to train the Recurrent Neural Networks, with the (constant)
learning rate set to 0.1. The number of delexicalised features (i.e., the size of the fd,vs

i
vector

in equations 3.1-3.4) is set to 50, and the number of lexical features (i.e., the size of fl in
equations 3.1-3.4) is set to 4000. Surprisingly, increasing the number of delexicalised features
above 50 did not result in improved performance, despite the fact that these features are the
main driver of delexicalisation-based model’s performance. This shows that the presence of
the slot value in an utterance is the main signal that the delexicalisation-based model uses to
update the belief state (rather than the context surrounding the slot value occurrence).

The model was trained for 70 epochs, with the mini-batch size set to 10 examples. L2
regularisation is used to penalise the norms of all RNN weights, with the L2 regularisation
constant set to 1.0. Gradient clipping is used to deal with exploding gradients, bounding
the gradients to the [−1.0,1.0] interval. The model was implemented and trained using the
Theano deep learning framework (Al-Rfou et al., 2016).
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Model / Domain Cam Rest SF Rest Mich Rest Tourist SF Hotels Laptops Geo. Mean
Cambridge Rest. 75.0 26.2 33.1 48.7 5.5 54.1 31.3
SF Restaurants 66.8 51.6 31.5 38.2 17.5 47.4 38.8
Michigan Rest. 57.9 22.3 64.2 32.6 10.2 45.4 32.8
All Restaurants 75.5 49.6 67.4 48.2 19.8 53.7 48.5

Tourist Info. 71.7 27.1 31.5 62.9 10.1 55.7 36.0
SF Hotels 26.2 28.7 27.1 27.9 57.1 25.3 30.6
R+T+H 76.8 51.2 68.7 65.0 58.8 48.1 60.7
Laptops 66.9 26.1 32.0 46.2 4.6 74.7 31.0

R+T+H+L 76.8 50.8 64.4 63.6 57.8 76.7 64.3

Table 3.2 Goal accuracy of the six domain-specific and the three general shared models
trained using different subsets of dialogue domains. All figures show the performance of
ensembles of 12 models which differ only in the random initialisations of model parameters.
As the geometric mean represents an agglomerative measure of model performance across
six large test sets, additional statistical significance tests are not performed.

3.3.3 Evaluation

To evaluate the shared multi-domain models trained, three combinations of the six dialogue
domains are used to train increasingly general belief tracking models. The domain-specific
models trained using only data from each of the six dialogue domains provide the baseline per-
formance for the three general models. Subsequently, the general models are slot-specialised
to maximise their performance for each of the individual domains. In the last part of the
evaluation, the general shared models are used to initialise high-performance belief tracking
models for entirely new domains given a limited number of in-domain training dialogues.

Training General Models Training the shared RNN models is the first step of the training
procedure. Table 3.2 shows the performance of shared models trained using dialogues from
the six individual and the three combined domains. The joint accuracies are not comparable
between the domains as each of them contains a different number of slots. The geometric
mean (sixth root of the product of the six joint goal accuracies) is calculated to determine
how well these models operate across the different dialogue domains.

The parameters of the three multi-domain models are not slot- or even domain-specific.
Nonetheless, all of them improve over the domain-specific model for all but one of their
constituent domains. The R+T+H model outperforms the R+T+H+L model across four
domains, showing that the use of laptops-related dialogues decreases performance slightly
across other more closely related domains. However, the latter model is much better at
balancing its performance across all six domains, achieving the highest geometric mean and
still improving over all but one of the domain-specific models.
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Model Cambridge Restaurants SF Restaurants Michigan Restaurants
Shared Model Slot-specialised Shared Model Slot-specialised Shared Model Slot-specialised

Domain Specific 75.0 75.4 51.6 56.5 64.2 65.6
All Restaurants 75.5 77.3 49.6 53.6 67.4 65.9

R+T+H 76.8 77.4 51.2 54.6 68.7 65.8
R+T+H+L 76.8 77.0 50.8 54.1 64.4 66.9

Tourist Information SF Hotels Laptops
Shared Model Slot-specialised Shared Model Slot-specialised Shared Model Slot-specialised

Domain Specific 62.9 65.1 57.1 57.4 74.7 78.4
R+T+H 65.0 67.1 58.8 60.7 - -

R+T+H+L 63.6 65.5 57.8 61.6 76.7 78.9

Table 3.3 Impact of slot specialisation on performance across the six dialogue domains.

Slot Specialising the General Model

Specialising the shared model for individual slots allows the training procedure to learn the
relative importance of different delexicalised features for each slot in a given domain. Table
3.3 shows the effect of slot-specialising the domain-specific and the three shared models
across the six dialogue domains. Moving down in these tables corresponds to adding more
out-of-domain training data and moving right corresponds to slot-specialising the shared
model for each slot in the current domain.

Slot specialisation improved performance in the vast majority of the experiments. All
three slot-specialised general models outperformed the word-based RNN model’s perfor-
mance reported in DSTC 2.6

Out of Domain Initialisation

The hierarchical training procedure can exploit the available out-of-domain dialogues to
initialise improved shared models for new dialogue domains. In these experiments, one of
the domains is chosen to act as the new domain, while dialogues from the remaining domains
serve as out-of-domain data. The number of in-domain dialogues available for training is
increased at each stage of the experiment and used to train and compare the performance of
two slot-specialised models. The two models are slot-specialised versions of two different
general models. The first one is trained using only the available in-domain data, while the
second one uses all in-domain and out-of-domain training data.

6Note that this refers to the 74.6 score achieved by the word-based model without the value-specific part
of the network. Since the considered dialogue domains have different slots and/or slot values, this part of the
network cannot be generalised to learn value-specific rephrasings across different domains without introducing
additional slot-dependent parameters (which runs against the generality of shared models introduced here).
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Figure 3.2 Joint goal accuracy on Michigan Restaurants (left) and the Laptops domain (right)
as a function of the number of in-domain training dialogues available to the training procedure
(ensembles of four models).

Two Unseen Domains The two experiments vary in the degree of similarity between the
in-domain and out-of-domain dialogues. In the first experiment, Michigan Restaurants act
as the new domain and the remaining R+T+H dialogues are used as out-of-domain data. In
the second experiment, Laptop dialogues are the in-domain data and the remaining dialogue
domains are used to initialise the more general shared model.

The two plots in Figure 3.2 show how the performance of the two differently initialised
models improves as additional in-domain dialogues are introduced. In both experiments,
the use of out-of-domain data helps to initialise the model to a much better starting point
when the in-domain training dataset is small. The out-of-domain initialisation consistently
improves performance: the joint goal accuracy is improved even when the entire in-domain
dataset becomes available to the training procedure.

Discussion These results are not surprising in the case of the system trained to talk about
Michigan Restaurants. Dialogue systems trained to help users find restaurants or hotels
should have no trouble finding restaurants in alternative geographies. In line with these
expectations, the use of a shared model initialised using R+T+H dialogues results in a model
with strong starting performance. As additional in-domain dialogues are introduced, the
model shows relatively minor performance gains over the domain-specific one.

The results of the Laptops experiment are more compelling, as the difference in per-
formance between the differently initialised models becomes larger and more consistent.
There are two factors at play here: exposing the training procedure to substantially different
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out-of-domain dialogues allows it to learn delexicalised features not present in the in-domain
training data. These features are applicable to the Laptops domain, as evidenced by the
very strong starting performance. As additional in-domain dialogues are introduced, the
delexicalised features not present in the out-of-domain data are learned as well, leading to
consistent improvements in belief tracking performance.

Leveraging Out-of-Domain Dialogue Data In the context of these results, it is clear that
the out-of-domain training data can be even more beneficial to tracking performance than
data from relatively similar domains, especially if the model is to be applied to previously
unseen domains. This is especially the case when the available in-domain training datasets
are too small to allow the procedure to extract the appropriate delexicalised features.

3.4 Limitations of Delexicalisation-Based Models

This chapter has shown that delexicalisation-based models offer an effective and inexpensive
way to bootstrap DST models for new dialogue domains with very limited training data.
However, these models rely on exact string matching to detect slot-value mentions in user
utterances. In practice, this means that human effort is required to handle the different ways
in which a user may articulate her intent at test time. Consequently, the previous role of
SLU modules is relegated to system designers, who must now account for linguistic variation
by manually specifying potential rephrasings in the form of semantic dictionaries (the term
semantic lexicon is used interchangeably in the literature, and in this thesis).

Domain-Specific Semantic Dictionaries Most domains considered in spoken dialogue
system research are relatively small, which means system designers can typically hand-craft
semantic dictionaries without much effort. Figure 3.3 shows a subset of the dictionary
constructed for the Laptops domain (Vandyke et al., 2015). These dictionaries are not only
domain-specific; they often cater to the specific dataset/environment that the researcher
focuses on. For example, the lexicon shown in Figure 3.3 defines 21 potential rephrasings
for PRICE RANGE=moderate, but none for DRIVERANGE=medium and only two for WEIGH-
TRANGE=medium. This provides insight into the system development process: the users and
the system (i.e. the policy learned by the dialogue manager) spent far more time talking about
price than about other laptop characteristics. Subsequently, the system designers focused on
handling all possible ways in which the user can ask for a reasonably priced laptop.
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INFORMABLE SLOTS: {
PRICE RANGE: [

BUDGET: inexpensive, cheap, budget
MODERATE: average priced, mid priced, reasonable range, moderate price,

mid range, mid price range, average range, reasonable priced,
medium price range, reasonable price range, medium range,
moderately priced, medium price, moderate price range,
medium priced, moderately, moderate range, mid price,
average price, reasonable price, reasonably priced

EXPENSIVE: costly, expensive, dear
],
WEIGHTRANGE: [

HEAVY: heavy
MIDWEIGHT: mid, mid weight
LIGHTWEIGHT: light, light weight

],
DRIVERANGE: [

LARGE: large
MEDIUM: medium
SMALL: small

],
ISFORBUSINESSCOMPUTING: [

1: for business computing, for business
0: for play, for gaming, for fun

],
...

}
REQUESTABLE SLOTS: [

BATTERYRATING: battery range, battery rating, battery capacity
DRIVE: hard drive, drive
DIMENSION: how big, dimension, size
WEIGHTRANGE: weight range, weight
PRICE: prices, price
ISFORBUSINESSCOMPUTING: for play, for gaming, for business computing,

for fun, for business
...

]

Figure 3.3 A subset of the semantic dictionary for the Laptops domains hand-crafted by
Vandyke et al. (2015).
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Handling Non-Categorical Slots Figure 3.3 illustrates another important feature of se-
mantic dictionaries: they are often used to encode domain-specific logic for interacting with
the application ontology. For instance, the ISFORBUSINESSCOMPUTING slot has two values,
1 and 0, which indicate whether laptops are suitable for commercial use. Such boolean slots
are particularly difficult to handle, since their expression in user utterances often depends on
context and does not usually involve explicit verbalisations of the implicit slot value. The
user might say: I’m looking for a hotel with wifi or I’d prefer a non-smoking restaurant.

High-quality semantic dictionaries are essential for robust language understanding in
non-trivial dialogue domains. The process of constructing such dictionaries is currently hand-
crafted and relies on skilled system designers familiar with all components of the dialogue
system pipeline. This manual design process becomes untenable as dialogue systems scale to
larger and more sophisticated application domains. The next chapter focuses on removing
system designers from the loop by constructing semantic dictionaries automatically.





Chapter 4

Inducing Semantic Lexicons for Belief
Tracking

This chapter shows how pre-trained word vector space representations, also known as word
embeddings, can be used to induce semantic lexicons for belief tracking models. The first
part of the chapter gives an overview of unsupervised methods for inducing word vector
spaces. The second part of the chapter shows that such general word vector collections
can be calibrated to capture semantic similarity. Finally, the semantically specialised word
vectors are used to show that semantic dictionaries for arbitrary dialogue domains can be
constructed automatically. The chapter concludes with a discussion of the limitations of
delexicalisation-based models powered by domain-specific semantic lexicons.

4.1 Inducing Word Vectors from Textual Corpora

Many popular methods that induce vectorial representations for words rely on the distri-
butional hypothesis, which assumes that semantically similar or related words appear in
similar contexts (Firth, 1957; Harris, 1954). This hypothesis supports unsupervised learn-
ing of meaningful word representations from large corpora (Curran, 2003; Mikolov et al.,
2013b; Ó Séaghdha and Korhonen, 2014; Pennington et al., 2014). Word vectors trained
using these methods have proven useful for many downstream tasks such as Part-of-Speech
(POS) tagging (Collobert et al., 2011), machine translation (Devlin et al., 2014; Zou et al.,
2013), dependency and semantic parsing (Ammar et al., 2016; Bansal et al., 2014; Chen and
Manning, 2014; Johannsen et al., 2015; Socher et al., 2013a), sentiment analysis (Socher
et al., 2013b), named entity recognition (Guo et al., 2014; Turian et al., 2010), and many
others. An overview of existing approaches for inducing word embeddings is presented next.
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4.1.1 Historical Approaches for Inducing Word Representations

Prior methods for learning word vector space representations can be split into three categories.
These correspond to the different research communities they originated from: 1) information
retrieval; 2) computational linguistics; and 3) artificial neural networks (deep learning).

1. Approaches Developed for Information Retrieval Vector space models for words
(and documents) have been widely used in NLP for the last thirty years. One of the first
approaches, proposed in the context of information retrieval, was that based on Latent
Semantic Analysis / Indexing (LSA/LSI) (Deerwester et al., 1990; Landauer et al., 1998).
These methods start from the distributional hypothesis, assuming that similar words will
appear in similar documents. They use a simple mathematical representation of documents:
a term-document matrix, where rows represent different words and columns contain the term
(word) counts per each document. Subsequently, Singular Value Decomposition (SVD) is
used to construct a low-rank approximation of this matrix (the number of columns stays
the same and the ‘dimension’ of document representations is reduced). There are several
reasons for computing the low-rank approximation: the original term-document matrix
may be intractably large, overly noisy (some words may rarely feature in certain kinds of
documents), or overly sparse (words related to particular documents may not have occurred
in any of the documents provided). Using the low-rank approximations of the bag-of-words
document representation helps alleviate these issues, since the compression step retains
mostly the meaningful information. Subsequently, the cosine products between the words’
and/or documents’ lower-dimensional representations can be used to discern how similar
these are to one another. These models were the precursor to more complicated topic models,
including the widely used Latent Dirichlet Allocation (LDA) model (Blei et al., 2003).

2. Count-based Distributional Semantic Models In computational linguistics, researchers
focused on models based on word co-occurrences, encoding the core assumption of the dis-
tributional hypothesis (‘You shall know a word by the company it keeps’, (Firth, 1957)).
Unlike models used in information retrieval, distributional semantic models (DSMs) do
not model the relation between individual words and the documents these words feature in.
Instead, they derive a high-dimensional distributed representation of a word by looking at
other words that the given word co-occurs with. Given a textual corpora, DSMs operate
over co-occurrence matrices, which count how many times any pair of words appears close
together. The ‘neighbourhood’ of a word is usually defined as the set of all words that appear
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at least k words away from the given word.1 The (square) co-occurrence matrices are usually
very large, as their size grows with the size of the word vocabulary. DSM models produce
lower-dimensional transformations of these matrices, where each row becomes a (more)
compact representation of a word’s distribution across different contexts.

Early examples of distributional semantic models include the Word Space (Schütze, 1993)
and the Hyperspace Analogue to Language (HAL) models (Lund and Burgess, 1996). In the
Word Space model, large-scale linear regression is used to induce semantic representations
of words that are subsequently used to perform word sense disambiguation. The HAL
model (known as the semantic memory model in cognitive science), uses a structured context
representation, distinguishing between words that appear before or after the target word. The
model takes the distance between word pairs into account: the further away two words are,
the weaker their association in the co-occurrence matrix is. The HAL model subsequently
inspired more sophisticated DSM models, including random indexing (Kanerva et al., 2000),
the BEAGLE model (Jones and Mewhort, 2007), and many others.

3. Neural Word Embeddings At roughly the same time, neural network research started
using contextual information to learn representations of words as well. Similar to DSM
models, neural methods use surrounding words, rather than entire documents, to infer the
words’ distributed representations. Early examples of these methods include Self-Organising
Maps (Kohonen et al., 2001) and Recurrent Neural Networks, which later evolved into Neural
Language Models (Bengio et al., 2003). This line of work coined the term word embedding,
for distributed representations of words which were learned jointly with the parameters of the
language model itself. Collobert and Weston (2008) demonstrate the usefulness of pre-trained
word vectors in a multi-task setting, using a single Convolutional Neural Network to perform
predictions across several NLP tasks (POS tagging, chunking, named entity recognition,
semantic role labelling, etc.). Five years later, Mikolov et al. (2013b) proposed WORD2VEC,
a neural net toolkit which facilitated rapid training and deployment of word embeddings,
cementing their role as one of the main pillars of modern NLP research.

Methods such as neural language models (Bengio et al., 2003) compute word embeddings
in the first layer of the neural network. The word embeddings of the previous n words
are concatenated, and the subsequent network layers (learn to) model the word sequence,
with the final softmax layer predicting the next word in the sequence. The softmax layer
(which normalises the probability distribution) is the main obstacle to scaling this model,
as its complexity grows with the size of the vocabulary (which can include millions of

1The best / right size for the context window has been the subject of much research. Standard values in the
literature range from 2 to 20 words left and right of the target word.
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words). Moreover, the intermediate fully-connected hidden layers are also computationally
expensive: the number of their parameters grows quadratically with the size of the word
context considered, hampering the ability of these models to handle long-term dependencies.2

4.1.2 The Word2Vec Model

WORD2VEC is a comparatively simple neural network architecture for inducing word embed-
dings. It foregoes the use of large, computationally expensive hidden layers, allowing the
model to take wider word context into account. In the seminal paper introducing this model,
Mikolov et al. (2013b) propose two different learning strategies:

1. Continuous Bag-of-Words (CBOW) Language models use the preceding n words
wk−n, . . . ,wk−1 to estimate the probability distribution over the next word, wk. Namely, the
language model estimates P(wk = vi | wk−n, . . . ,wk−1) for each word vi in the vocabulary. To
learn non-task-specific embeddings useful across a plethora of tasks, the CBOW method
instead learns to predict the word wk given the n words preceding and following the target
word. Instead of concatenating the word embeddings of these 2n words, the CBOW model
sums them together (ignoring word order) and uses the combined embedding to estimate
which word is most likely to appear in that (unordered) context. For a sentence of length T ,
the CBOW cost function can be expressed as:

Eθ =
1
T

T

∑
t=1

logP(wt | wt−n, . . . ,wt−1,wt+1, . . . ,wt+n) (4.1)

where θ are the parameters of the neural net predicting the central word, ‘out-of-sentence’
words are replaced with zero vectors, and, unlike in language modelling, word order does not
matter (as the context is represented using the sum of the 2n surrounding words’ vectors).

2. Skip-Gram with Negative Sampling (SGNS) The Skip-Gram WORD2VEC model
moves further away from the language modelling objective. Instead of predicting the central
word given its context, the model tries to predict all the context words given the central word.
For a sentence of length T , its objective can be expressed as:

Eθ =
1
T

T

∑
t=1

∑
i∈[−n,...,−1,1,...,n]

logP(wt+i | wt) (4.2)

2The multi-task neural network used by Collobert and Weston (2008) for multi-task learning does not
involve the softmax computation, but is in a similar way limited to using narrow word context windows.
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where θ stands for the parameters of the neural network’s projection layer. This model
conditions only on the (input) word vector wt . The final layer of the model is a softmax layer
which predicts the probability that each word in the vocabulary is in the input word’s context
window. This model directly implements the distributional hypothesis: words with similar
contexts should produce similar predictions, which means that the learned inputs (the word
embeddings themselves) will become very similar.

Negative Sampling This model is trained by feeding pairs of words which may or may not
frequently feature in each others’ context windows. The model itself has many parameters:
V ×D, where V is the vocabulary size and D the size of word embeddings. Each training
example (which consists of one word pair) updates each of these parameters, leading to
very slow training times. For the example pair (Los, Angeles), the output softmax should
predict a 1 for Angeles (given Los as input), and 0 for most other words in the vocabulary.
To avoid very expensive updates, the model chooses a small number of negative examples
(typically 2-20), chosen at random according to their frequency in the text. The embeddings
(i.e., network parameters) for these words are the only ones updated, leading to very fast
training times even for very large textual corpora. The Skip-Gram model making use of
negative sampling3 is often referred to as SGNS, and is the most popular method for learning
word embeddings from textual corpora in use today.

Global Vectors (GloVe) Another popular method for inducing word embeddings is GloVe
(Pennington et al., 2014), who go one step further in trying to decipher word meaning from
the co-occurrence statistics in large textual corpora. The authors posit that the relative ratios
of word co-occurrence probabilities, and not the word co-occurrence probabilities themselves,
contain the signal which encodes the true meaning of words. In their evaluation, they show
that GloVe outperforms WORD2VEC over a wide array of representative tasks: word analogy,
word similarity, and named entity recognition. Moreover, GloVe operates directly over the
co-occurrence matrix and not over individual context windows, allowing the model to train
substantially faster than WORD2VEC.

Theoretical and Empirical Differences between different Methods There has been
much work on discovering which word embedding model yields the best pre-trained word
vector collection for use across a wide array of NLP tasks. For instance, Baroni et al. (2014)

3Other tricks are very important for achieving robust performance with WORD2VEC. These include
subsampling frequent words to avoid overfitting, treating common phrases as single words, smoothing the
sampling distribution for negative samples, and many others. For a full overview of these and an analysis of
their effect on the embeddings, see (Levy and Goldberg, 2014; Mikolov et al., 2013b).
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claim that models which do prediction (i.e., neural network models such as WORD2VEC)
outperform traditional count-based models used in distributional semantics. Levy et al. (2015)
show there is little theoretical grounding in such claims, and that performance differences
between neural and count-based models are mostly due to improved model hyperparam-
eters. For instance, they show that pointwise mutual information (PMI) factorisations of
co-occurrence matrices can produce word embeddings of similar quality as WORD2VEC once
a similar kind of context distribution smoothing is applied to the PMI matrices.

4.2 The Drawbacks of the Distributional Hypothesis

A major drawback of learning word embeddings from co-occurrence information in textual
corpora is that this approach tends to coalesce the notions of semantic similarity and concep-
tual association (Hill et al., 2015). Furthermore, even methods that can distinguish similarity
from association (e.g., based on syntactic co-occurrences) will generally fail to tell synonyms
from antonyms (Mohammad et al., 2008). For example, words such as east and west or
expensive and inexpensive appear in near-identical contexts, which means that distributional
models produce very similar word vectors for such words. Examples of such anomalies in
GloVe vectors can be seen in Table 4.1, where words such as cheaper and inexpensive are
deemed similar to (their antonym) expensive.

The second obstacle to using distributional embeddings for building language under-
standing models for task-oriented dialogue systems is that similarity and antonymy can be
application- or domain-specific. For example, a DST module for the restaurant search domain
needs to detect whether the user wants a cheap or an expensive restaurant. Being able to
distinguish between semantically different, yet conceptually related words (e.g., cheaper
and pricey) is critical for the performance of the dialogue system. In particular, a statistical
dialogue system can be led seriously astray by false synonyms.

Past the Distributional Hypothesis The remaining part of this chapter presents a method
that addresses these two drawbacks by fine-tuning distributional word vectors using syn-
onymy and antonymy relations drawn from either (or both): 1) general lexical resources; or
2) domain-specific dialogue ontologies. The method, termed counter-fitting, is a lightweight
post-processing procedure in the spirit of retrofitting (Faruqui et al., 2015). The second row
of Table 4.1 illustrates the results of counter-fitting: the nearest neighbours capture true
similarity much more intuitively than the original GloVe vectors.
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east expensive British

Before

west pricey American
north cheaper Australian
south costly Britain

southeast overpriced European
northeast inexpensive England

After

eastward costly Brits
eastern pricy London
easterly overpriced BBC

- pricey UK
- afford Britain

Table 4.1 The effects of counter-fitting: nearest neighbours for three target words using
GloVe word vectors before and after counter-fitting.

Counter-fitting improves word vector quality regardless of the initial word vectors pro-
vided as input.4 In fact, applying counter-fitting to Paragram word vectors (Wieting et al.,
2015) achieves the new state-of-the-art performance on SimLex-999, a dataset designed to
measure how well different models judge semantic similarity between words (Hill et al.,
2015). As will be shown in the latter part of this chapter, counter-fitting can also inject
knowledge of dialogue domain ontologies into word vector space representations. The
modified vector spaces can then be used to automatically construct semantic dictionaries,
improving DST performance across two different dialogue domains.5

4.2.1 Related Work

Most work on improving word vector representations using lexical resources has focused
on bringing words which are known to be semantically related closer together in the vector
space. Some methods modify the prior or the regularization of the original training procedure
(Bian et al., 2014; Kiela et al., 2015; Yu and Dredze, 2014). Wieting et al. (2015) use
the Paraphrase Database (Ganitkevitch et al., 2013) to train word vectors which emphasise
word similarity over word relatedness. Recently, there has been interest in lightweight post-
processing procedures that use lexical knowledge to refine off-the-shelf word vectors without
requiring large corpora for (re-)training as the aforementioned “heavyweight" procedures do.
Faruqui et al.’s (2015) retrofitting approach uses similarity constraints from WordNet and
other resources to pull similar words closer together.

4In this context, “improving” refers to improving the vector space for a specific purpose. There is no reason
to expect that a vector space fine-tuned for semantic similarity will give better results on semantic relatedness.
As Mohammad et al. (2008) observe, antonymous concepts are related but not similar.

5The tool and the produced word vectors are available at: github.com/nmrksic/counter-fitting.
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The complications caused by antonymy for distributional methods are well-known in the
semantics community. Most prior work focuses on extracting antonym pairs from text rather
than exploiting them (Hashimoto et al., 2012; Lin et al., 2003; Mohammad et al., 2008, 2013;
Turney, 2008). The most common use of antonymy information is to provide features for
systems that detect contradictions or logical entailment (de Marneffe et al., 2008; Marcu and
Echihabi, 2002; Zanzotto et al., 2009). To the best of my knowledge, there is no previous
work on exploiting antonymy in dialogue systems.

Past approaches closest in spirit to counter-fitting are: 1) Liu et al. (2015), who use
antonymy and WordNet hierarchy information to modify the WORD2VEC training objective;
2) Yih et al. (2012), who use a Siamese neural network to improve the quality of vectors
produced using Latent Semantic Analysis; 3) Schwartz et al. (2015), who build a standard dis-
tributional model from co-occurrences based on symmetric patterns, with specified antonymy
patterns counted as negative co-occurrences; and 4) Ono et al. (2015), who use thesauri and
distributional data to train word embeddings specialised for capturing antonymy.

4.3 Counter-fitting Word Vectors to Linguistic Constraints

The starting point of the procedure is an indexed set of word vectors V = {v1,v2, . . . ,vN},
with one vector for each word in the vocabulary. Counter-fitting injects semantic relations
into this vector space to produce new word vectors V ′ = {v′1,v′2, . . . ,v′N}.

As input, the counter-fitting procedure takes two sets of linguistic constraints, S and
A. These sets consist of example word pairs (i.e., constraints) that stand in synonymy and
antonymy relations, respectively. The elements of each set are pairs of word indices; for
example, each pair (i, j) in S is such that the i-th and j-th words in the vocabulary are
synonyms. The objective function used to counter-fit the pre-trained word vectors V to the
sets of linguistic constraints A and S contains three different terms:

1. Antonym Repel (AR): This term serves to push antonymous words’ vectors away from
each other in the transformed vector space V ′:

AR(V ′) = ∑
(u,w)∈A

τ
(
δ −d(v′u,v

′
w)
)

where d(vi,v j) = 1− cos(vi,v j) is a distance derived from cosine similarity and τ(x) ≜
max(0,x) imposes a margin on the cost. Intuitively, δ is the “ideal” minimum distance
between antonymous words. In the experiments presented in this chapter, δ is set to 1.0,
which corresponds to imposing vector orthogonality.
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2. Synonym Attract (SA): The counter-fitting procedure seeks to bring word vectors of
known synonymous word pairs closer together:

SA(V ′) = ∑
(u,w)∈S

τ
(
d(v′u,v

′
w)− γ

)
where γ is the “ideal” maximum distance between synonymous words (γ = 0 is used in this
chapter; the procedure tries to make the representations of synonyms as similar as possible).

3. Vector Space Preservation (VSP): The topology of the original vector space describes
relationships between words in the vocabulary captured using distributional information
from very large textual corpora. The VSP term bends the transformed vector space towards
the original one as much as possible in order to preserve the useful semantic information
contained in the original vectors:

VSP(V,V ′) =
N

∑
i=1

∑
j∈N(i)

τ
(
d(v′i,v

′
j)−d(vi,v j)

)
For computational efficiency, the distances between every pair of words in the vocabulary are
not calculated repeatedly as the procedure transforms the vector space. Instead, for each word
vi, the VSP term is applied to its neighbourhood N(i), which denotes the set of words within
a certain radius ρ around the i-th word’s vector in the original vector space V . Counter-fitting
is relatively insensitive to the choice of ρ , with values between 0.2 and 0.4 showing little
difference in performance. The value of ρ = 0.2 is used throughout this chapter.6 The full
counter-fitting cost function is given by the weighted sum of the three terms:

C(V,V ′) = k1AR(V ′)+ k2SA(V ′)+ k3VSP(V,V ′)

where k1,k2,k3 ≥ 0 are hyperparameters that control the relative importance of each term. In
all experiments presented in this chapter, these are set to be equal: k1 = k2 = k3 = 0.1 (the
value of 0.1 results in fastest convergence). To minimise the cost function for a set of starting
vectors V and produce counter-fitted vectors V ′, stochastic gradient descent (SGD) is run for
twenty epochs, which suffices for the new word vector estimates to converge.7

6Since the SimLex-999 dataset only has an evaluation set, the WordSim-353 gold-standard association
dataset was used to tune the neighbourhood radius ρ (Finkelstein et al., 2002). The values of synonymy and
antonymy margins correspond to enforcing vector similarity or orthogonality and as such were not tuned.

7For each synonymy and antonymy constraint, the counter-fitting procedure translates both words’ vectors
along the gradient of the defined cost function. The norms of word vectors are renormalised after every epoch
of SGD. The full implementation of the procedure is available at: github.com/nmrksic/counterfitting.
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4.3.1 Injecting Dialogue Domain Ontologies into Vector Spaces

Dialogue state tracking (DST) models capture users’ goals given their utterances. Goals
are represented as sets of constraints expressed by slot-value pairs such as FOOD=Indian
or PARKING=allowed. The set of slots S and the set of values Vs for each slot make up the
ontology of the dialogue domain. As explained in the previous chapter, the recurrent neural
network (RNN) framework for dialogue state tracking proposed by Henderson et al. (2014c,d)
does not use spoken language understanding (SLU) decoders to convert user utterances into
meaning representations. Instead, this model operates directly over the n-gram features
extracted from the automated speech recognition (ASR) hypotheses.

A drawback of this approach is that the RNN model can only perform exact string
matching to detect the slot names and values mentioned by the user. It cannot recognise
synonymous words such as pricey and expensive, or even subtle morphological variations such
as moderate and moderately. To mitigate this problem, one can use semantic dictionaries:
lists of rephrasings for the values in the ontology. Manual construction of dictionaries is
highly labour-intensive; however, if one could automatically detect high-quality rephrasings,
this capability would come at no extra cost to the system designer.

To obtain a set of word vectors which can be used for creating a semantic dictionary, the
domain ontology must be injected into the vector space. This can be achieved by introducing
antonymy constraints between all the possible values of each slot (i.e., Chinese and Indian,
Chinese and Thai, expensive and cheap, etc.). The remaining linguistic constraints can come
from semantic lexicons: the richer the sets of injected synonyms and antonyms are, the better
the resulting word representations should become.

4.4 Experiments

4.4.1 Word Vectors and Semantic Lexicons

Initial Word Vectors Two different collections of pre-trained word vectors are used as
input to the counter-fitting procedure:

1. GloVe Common Crawl 300-dimensional vectors made available by Pennington et
al. (2014), and trained on a very large corpus consisting of 840 billion tokens. The
word vectors were induced using the GloVe procedure, presented earlier in this chapter.

2. Paragram-SL999 300-dimensional vectors made available by Wieting et al. (2015).
These vectors are specialised for semantic similarity using synonymous (but not
antonymous) word pairs to fine-tune the initial (distributional) GloVe word vectors.
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Source of Linguistic Constraints The sets of synonymy and antonymy constraints S and
A were obtained from two well-known semantic lexicons:

1. PPDB 2.0 (Pavlick et al., 2015): the second release of the Paraphrase Database
(PPDB). A new feature of this version is that it assigns relation types to its word pairs.
The Equivalence relation is used extract synonyms, while the Exclusion constraint
provides antonyms. The largest available (XXXL) version of the PPDB database is
used in all experiments, and only single-token terms are considered.

2. WordNet (Miller, 1995): WordNet (WN) is a well known semantic lexicon which
contains vast amounts of high quality human-annotated synonym and antonym pairs.
Any two words in the vocabulary which had antonymous word senses were considered
antonyms; WordNet synonyms were not used.

In total, the two lexicons yielded 12,802 antonymy and 31,828 synonymy pairs for the
vocabulary, which consisted of 76,427 most frequent words in English OpenSubtitles.8

4.4.2 Improving Lexical Similarity Predictions

The experiments in this section investigate whether counter-fitting pre-trained word vectors
with linguistic constraints improves their usefulness for judging semantic similarity. The
principal metric reported is Spearman’s rank correlation with the SimLex-999 dataset (Hill
et al., 2015). SimLex contains 999 word pairs ranked by a large number of annotators
instructed to consider only semantic similarity (but not relatedness) between words. The
annotators (sourced through Amazon Mechanical Turk) were instructed to give each word
pair a rating between 0 and 10, corresponding to the similarity of the two words’ meaning.
Before starting the annotation process, they were shown examples of synonymous words (e.g.,
cup and mug, glasses and spectacles), examples of similar, but not synonymous words (e.g.,
love and affection, frog and toad), and examples of related but non-similar words (e.g., car
and crash, tyre and car). Each word pair was scored by 50 different annotators. Subsequently,
the 999 word pairs were sorted by their average similarity score.

Table 4.2 contains a summary of recently reported competitive scores for SimLex-999, as
well as the performance of the unaltered, retrofitted and counter-fitted GloVe and Paragram-
SL999 word vectors. To the best of my knowledge, the 0.685 figure reported for the latter
was the previous SimLex-999 high score. This figure is above the average inter-annotator
agreement of 0.67, which has been referred to as the ceiling performance in most prior work.

8The vocabulary was downloaded from: invokeit.wordpress.com/frequency-word-lists/
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Model / Word Vectors ρ

Neural MT Model (Hill et al., 2014) 0.52
Symmetric Patterns (Schwartz et al., 2015) 0.56
Non-distributional Vectors (Faruqui and Dyer, 2015) 0.58
GloVe vectors (Pennington et al., 2014) 0.41
GloVe vectors + Retrofitting 0.53
GloVe + Counter-fitting 0.58
Paragram-SL999 (Wieting et al., 2015) 0.69
Paragram-SL999 + Retrofitting 0.68
Paragram-SL999 + Counter-fitting 0.74
Inter-annotator agreement 0.67
Annotator/gold standard agreement 0.78

Table 4.2 SimLex-999 performance. Retrofitting uses the code provided by the authors.

However, the average inter-annotator agreement is not the only meaningful measure
of ceiling performance. An alternative way to estimate the highest attainable SimLex-999
performance is to compare: a) the average rank correlation of the ranking produced by the
model and the gold standard ranking to: b) the correlation that individual human annotators’
rankings achieved with the gold standard ranking. The SimLex-999 authors informed me that
the average annotator agreement with the gold standard is 0.78. This figure is now reported
as a potentially fairer ceiling performance for SimLex-999 on the dataset’s official webpage
(www.cl.cam.ac.uk/ fh295/simlex.html). As shown in Table 4.2, the reported performance of
all the models and word vectors falls well below this figure.

Retrofitting pre-trained word vectors improves GloVe vectors, but not the already seman-
tically specialised Paragram-SL999 vectors. Counter-fitting substantially improves both sets

Semantic Resource Glove Paragram
Baseline (no linguistic constraints) 0.41 0.69
PPDB− (PPDB antonyms) 0.43 0.69
PPDB+ (PPDB synonyms) 0.46 0.68
WordNet− (WordNet antonyms) 0.52 0.74
PPDB− and PPDB+ 0.50 0.69
WordNet− and PPDB− 0.53 0.74
WordNet− and PPDB+ 0.58 0.74
WordNet− and PPDB− and PPDB+ 0.58 0.74

Table 4.3 SimLex-999 performance when different sets of linguistic constraints are used for
counter-fitting (for two different collections of word vectors).
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Figure 4.1 SimLex-999 score as a function of the proportion of the linguistic constraints
injected into GloVe word vectors.

of vectors, showing that injecting antonymy relations goes a long way towards improving
word vectors for the purpose of making semantic similarity judgements.

Table 4.3 shows the effect of injecting different subsets of linguistic constraints. GloVe
vectors benefit from all three sets of constraints, whereas the quality of Paragram vectors,
already exposed to PPDB, only improves with the injection of WordNet antonyms. Figure
4.1 shows how the SimLex score of GloVe vectors improves with the number of introduced
constraints. The effect of adding additional constraints becomes weaker as more constraints
are added. However, the improvements do not saturate, with performance steadily improving
as additional constraints are injected into the vector space.

Table 4.4 illustrates how incorrect similarity predictions based on the original (Paragram)
vectors can be fixed through counter-fitting. The table presents eight false synonyms and

False Synonyms Fixed False Antonyms Fixed
sunset, sunrise ✓ dumb, dense
forget, ignore adult, guardian

girl, maid polite, proper ✓✓
happiness, luck ✓✓ strength, might

south, north ✓ water, ice
go, come ✓ violent, angry ✓✓

groom, bride cat, lion ✓✓
dinner, breakfast laden, heavy ✓✓

- - engage, marry

Table 4.4 Top word pair outliers in counter-fitted vectors (compared to the SimLex gold
standard ranking). A word pair is included in this list if its assigned rank is in the top/bottom
200 pairs and its position in the gold standard ranking differs by more than 500 positions.
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Dataset Train Dev Test #Slots
Restaurants 1612 506 1117 4

Tourist Information 1600 439 225 9

Table 4.5 Number of dialogues in the dataset splits used for the DST experiments.

nine false antonyms: word pairs with predicted rank in the top (bottom) 200 word pairs and
gold standard rank 500 or more positions lower (higher). Eight of these errors are fixed by
counter-fitting: the difference between predicted and gold-standard ranks is now 100 or less.
Interestingly, five of the eight corrected word pairs do not appear in the sets of linguistic
constraints; these are indicated by double ticks in the table. This shows that secondary
(i.e., indirect) interactions through the three terms of the cost function do contribute to the
semantic content of the transformed vector space.

4.4.3 Improving Dialogue State Tracking

Table 4.5 shows the dialogue state tracking datasets used for evaluation. These datasets come
from the Dialogue State Tracking Challenges 2 and 3 (Henderson et al., 2014a,b).

Four different sets of word vectors were used to construct semantic dictionaries: the
original GloVe and Paragram-SL999 vectors, as well as versions counter-fitted to each domain
ontology. The constraints used for counter-fitting were all those from the previous section as
well as antonymy constraints between the slot values for each slot. All vocabulary words
within some radius t of a slot value were treated as its rephrasings. The optimal value of t
was determined using a grid search: a dictionary was generated and a DST model was trained
(using that dictionary) for each potential t. These models were evaluated on the development
set, and the highest-performing dictionary was used in the subsequent evaluation.9

Table 4.6 shows the performance of RNN models which used the constructed dictionaries.
The dictionaries induced from the pre-trained vectors substantially improved tracking perfor-
mance over the baselines (which used no semantic dictionaries). The dictionaries created
using the counter-fitted vectors improved performance even further. Contrary to the SimLex-
999 experiments, starting from the Paragram vectors did not lead to superior performance
(compared to GloVe + counter-fitting), which shows that injecting the application-specific
ontology is at least as important as the quality of the initial word vectors.

9The best performing thresholds t across all eight experiments were in the interval between 0.35 and 0.55,
with development set performance showing relatively little variance between values in that interval.



4.5 Conclusion 55

Word Vector Space Restaurants Tourist Info
Baseline (no dictionary) 68.6 60.5
GloVe 72.5 60.9
GloVe + Counter-fitting 73.4 62.8
Paragram-SL999 73.2 61.5
Paragram-SL999 + Counter-fitting 73.5 61.9

Table 4.6 Performance of RNN belief trackers (ensembles of 4 models) which use: a) no
semantic dictionary; b) dictionaries generated using the four sets of word vectors.

4.5 Conclusion

This chapter presented the counter-fitting method for injecting linguistic constraints into word
vector space representations. The method efficiently post-processes word vectors to improve
their usefulness for tasks which involve making semantic similarity judgements. Its focus on
separating vector representations of antonymous word pairs led to substantial improvements
on genuine similarity estimation tasks. Moreover, counter-fitting can tailor word vectors for
the downstream task of dialogue state tracking by injecting antonymy constraints derived
from dialogue ontologies into the word vector space. As shown in the evaluation, such
specialised word vectors can be used to construct semantic dictionaries which improve the
language understanding capabilities of spoken dialogue systems.

4.5.1 Drawbacks of Semantic Lexicons

There are several reasons why the approach of defining explicit string mappings for partic-
ular slot values does not promise to scale as statistical dialogue systems are deployed in
increasingly complex dialogue domains.

1. Morphology-Rich Languages: word morphology induced by word gender, verb
cases, declension and other linguistic phenomena can lead to a proliferation of word
forms through their different inflections. For instance, the German word for Scottish
(Schottisch) can take alternative inflectional word forms Schottische, Schottisches,
Schottischem, Schottischer, Schottischen, while the Serbian adjective jeftin (cheap) can
take word forms jeftin, jeftina, jeftine, jeftino, jeftini, jeftinom, jeftinog, jeftinim, and
jeftinih depending on word gender and its use/position in the sentence. Any word-based
model making use of semantic lexicons would require the system designer to specify
these inflections to achieve robust performance in the target language.
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2. Scaling to Large Dialogue Domains: large, more complex dialogue domains could
potentially contain conflicting, context-dependent slot values. An example of these
would be mid-priced laptops versus mid-range hard drive sizes, both of which may be
referred to with a plethora of similar expressions (medium, moderate, average, etc.).

Despite these drawbacks, this chapter has shown that semantically specialised word
vectors can improve DST performance when used to induce domain-specific semantic
lexicons. In order to move towards a more data-driven paradigm, the next chapter presents a
novel language understanding model which reasons entirely over word vectors, moving past
the dependency on delexicalised n-grams, exact matching and semantic lexicons.



Chapter 5

The Neural Belief Tracker

This chapter presents the Neural Belief Tracker (NBT), presented in Mrkšić et al. (2017a);
Mrkšić and Vulić (2018). The NBT is a language understanding model designed to move past
the word-based delexicalisation paradigm and allow language understanding models to scale
to linguistically rich user input across disparate dialogue domains and different languages.

5.1 Motivation

The dialogue state tracking (DST) component of a spoken dialogue system serves to interpret
user input and update the belief state, which is used by the downstream dialogue manager to
decide which action the system should perform next. The Dialogue State Tracking Challenge
(DSTC) series of shared tasks provided a common evaluation framework accompanied by
labelled DST datasets (Williams et al., 2016). In this framework, the dialogue system is
supported by a domain ontology which describes the range of user intents the system can
process. The ontology defines a collection of slots and the values that each slot can take.
The system must track the search constraints expressed by users (goals or informable slots)
and questions the users ask about search results (requests), taking into account each user
utterance (input via a speech recogniser) and the dialogue context (e.g., what the system just
said). The example in Figure 5.1 shows the true state after each user utterance in a three-turn
conversation. As can be seen in this example, DST models depend on identifying mentions
of ontology items in user utterances. This becomes a non-trivial task when confronted with
lexical variation, the dynamics of context and noisy speech recognition output.

Historically, statistical approaches to building dialogue systems relied on separate Spoken
Language Understanding (SLU) modules to address lexical variability within a single dia-
logue turn. However, training such models requires substantial amounts of domain-specific
annotation. As seen in the previous two chapters, turn-level SLU and cross-turn DST can
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User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown
inform(price=cheap, food=Thai, area=centre)

System: The House serves cheap Thai food
User: Where is it?
inform(price=cheap, food=Thai, area=centre);
request(address)

System: The House is at 106 Regent Street

Figure 5.1 Annotated dialogue states in a sample dialogue. Underlined words show rephras-
ings which are typically handled using semantic dictionaries.

be coalesced into a single word-based DST model to achieve superior belief tracking per-
formance. As explained in Chapter 3, joint models typically rely on a strategy known as
delexicalisation, whereby slots and values mentioned in the text are replaced with generic
labels. Once the dataset is transformed in this manner, one can extract a collection of
template-like n-gram features such as [want tagged-value food]. To perform belief tracking,
the shared model iterates over all slot-value pairs, extracting delexicalised feature vectors
and making a separate binary decision regarding each slot value pair.

The Limits of Delexicalisation Delexicalisation introduces a hidden dependency that is
rarely discussed: how can the model identify slot/value mentions that are not exact string
matches with the values specified in the domain ontology? For toy domains, one can
manually construct semantic dictionaries which list potential rephrasings for all slot values.
Figure 5.2 gives an example of such a dictionary for three slot-value pairs in the DSTC2
dialogue domain. The use of such dictionaries is essential for the performance of existing
delexicalisation-based models. In a way, these dictionaries reintroduce a more opaque version
of domain-specific SLU modules. Unlike SLU modules, semantic dictionaries are not even
learned from data, instead requiring (expensive) manual effort by the system designer.

FOOD=CHEAP: [affordable, budget, low-cost, low-priced, inexpensive, cheaper, ...]

RATING=HIGH: [best, high-rated, highly rated, top-rated, cool, chic, popular, trendy, ...]

AREA=CENTRE: [center, downtown, central, city centre, midtown, town centre, ...]

Figure 5.2 An example semantic dictionary with rephrasings for three ontology values.
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The counter-fitting approach presented in Chapter 4 showed that domain-specific semantic
lexicons can be constructed automatically, saving substantial human effort. However, the
proposed approach is still fundamentally limited by the delexicalisation paradigm, which
relies on exact matching of predefined rephrasings with ontology-defined slot values. It
ignores linguistic phenomena such as morphology, multi-sense words, or contextual sentence
meaning which can only be disambiguated by considering the entire dialogue history. For
this reason, word-based models powered by semantic dictionaries do not promise to scale to
more complex dialogue domains with large domain ontologies.

The primary motivation of the work presented in this chapter is to overcome the limitations
that delexicalisation imposes on belief tracking models. Two new models are introduced,
collectively called the Neural Belief Tracker (NBT) family. The proposed models couple
SLU and DST, efficiently learning to handle variation without requiring any hand-crafted
resources. To do that, NBT models move away from exact string matching and instead
reason entirely over pre-trained word vectors. The vectors making up the user utterance and
preceding system output are first composed into intermediate distributed representations.
These representations are then used to decide which of the ontology-defined intents have
been expressed by the user up to that point in the conversation. The NBT model efficiently
learns from the available data by: 1) leveraging semantic information from pre-trained
word vectors to resolve lexical/morphological ambiguity; 2) maximising the number of
parameters shared across ontology values; and 3) having the flexibility to learn domain-
specific paraphrasings and other kinds of variation that make it infeasible to rely on exact
matching and delexicalisation as a robust strategy.

To the best of my knowledge, NBT models are the first to successfully use pre-trained
word vector spaces to improve the language understanding capability of belief tracking
models. Evaluation on two datasets shows that: a) NBT models match the performance
of delexicalisation-based models which make use of hand-crafted semantic lexicons; and
b) the NBT models significantly outperform those models when such resources are not
available. Consequently, this framework is better-suited to scaling belief tracking models for
deployment in real-world dialogue systems operating over sophisticated application domains
where the creation of such domain-specific lexicons would be infeasible.

5.2 The Neural Belief Tracker

The Neural Belief Tracker (NBT) is a model designed to detect the slot-value pairs that
make up the user’s goal at a given turn during the flow of dialogue. Its input consists of the
system dialogue acts preceding the user input, the user utterance itself, and a single candidate
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Figure 5.3 Architecture of the NBT Model. The implementation of the three representa-
tion learning subcomponents can be modified, as long as these produce adequate vector
representations which the downstream model components can use to decide whether the
current candidate slot-value pair was expressed in the user utterance (taking into account the
preceding system act).

slot-value pair that it needs to make a decision about. For instance, the model might have to
decide whether the goal FOOD=Italian has been expressed in ‘I’m looking for good pizza’. To
perform belief tracking, the NBT model iterates over all candidate slot-value pairs (defined
by the ontology), and decides which ones have just been expressed by the user.

Figure 5.3 presents the flow of information in the NBT models. The first layer in the
NBT hierarchy performs representation learning given the three model inputs, producing
vector representations for the user utterance r, the current candidate slot-value pair c and
the system dialogue acts tq, ts, tv. Subsequently, the learned vector representations interact
through the context modelling and semantic decoding submodules to obtain the intermediate
interaction summary vectors dr,dc and d (the full definitions of these will be provided in
the following sections). These are used as input to the final decision-making module which
decides whether the user expressed the intent represented by the candidate slot-value pair.

5.2.1 Representation Learning

For any given user utterance, system act(s) and candidate slot-value pair, the representation
learning submodules produce vector representations which act as input for the downstream
components of the model. All representation learning subcomponents make use of pre-
trained collections of word vectors. As shown in the previous chapter, specialising word
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Figure 5.4 NBT-DNN MODEL. Word vectors of n-grams (n = 1,2,3) are summed to obtain
cumulative n-grams, then passed through another hidden layer and summed to obtain the
utterance representation r.

Figure 5.5 NBT-CNN Model. L convolutional filters of window sizes 1,2,3 are applied
to word vectors of the given utterance (L = 3 in the diagram, but L = 300 in the system).
The convolutions are followed by the ReLU activation function and max-pooling to produce
summary n-gram representations. These are summed to obtain the utterance representation r.
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vectors to express semantic similarity rather than relatedness is essential for improving
belief tracking performance. For this reason, semantically-specialised Paragram-SL999
word vectors (Wieting et al., 2015) are used throughout this chapter. The NBT training
procedure keeps these vectors fixed: that way, at test time, unseen words semantically related
to familiar slot values (i.e. inexpensive to cheap) will be recognised purely by their position
in the original vector space (see Rocktäschel et al. (2016)). This means that the NBT model
parameters can be shared across all values of the given slot, or even across all slots.

Let u represent a user utterance consisting of ku words u1,u2, . . . ,uku . Each word has an
associated word vector u1, . . . ,uku . Two model variants which differ in the method used to
produce vectorial representations of u are investigated: NBT-DNN and NBT-CNN. Both
act over the constituent n-grams of the utterance. Let vn

i be the concatenation of the n word
vectors starting at index i, so that:

vn
i = ui ⊕ . . .⊕ui+n−1 (5.1)

where ⊕ denotes vector concatenation. The simpler of the two models, termed NBT-DNN,
is shown in Figure 5.4. This model computes cumulative n-gram representation vectors r1,
r2 and r3, which are the n-gram ‘summaries’ of the unigrams, bigrams and trigrams in the
user utterance:

rn =
ku−n+1

∑
i=1

vn
i (5.2)

Each of these three vectors is then non-linearly mapped to intermediate representations of
the same dimension:

r′n = σ(W s
n rn +bs

n) (5.3)

where the weight matrices and bias terms map the cumulative n-grams to vectors of the same
dimensionality and σ denotes the sigmoid activation function. A separate set of parameters
is maintained for each slot (indicated by superscript s). The three vectors are then summed to
obtain a single representation for the user utterance:

r = r′1 + r′2 + r′3 (5.4)

The cumulative n-gram representations used by this model are just unweighted sums of
all word vectors in the utterance. Ideally, the model should learn to recognise which parts of
the utterance are more relevant for the subsequent classification task. For instance, it could
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learn to ignore verbs or stop words and pay more attention to adjectives and nouns which are
more likely to express slot values.

NBT-CNN The second model draws inspiration from successful applications of Con-
volutional Neural Networks (CNNs) for language understanding (Collobert et al., 2011;
Kalchbrenner et al., 2014; Kim, 2014). These models typically apply a number of convolu-
tional filters to n-grams in the input sentence, followed by non-linear activation functions
and max-pooling. Following this approach, the NBT-CNN model applies L = 300 different
filters for n-gram lengths of 1,2 and 3 (Figure 5.5). Let Fs

n ∈ RL×nD denote the collection of
filters for each value of n, where D = 300 is the word vector dimensionality. If vn

i denotes the
concatenation of n word vectors starting at index i, let mn = [vn

1;vn
2; . . . ;vn

ku−n+1] be the list of
n-grams that convolutional filters of length n run over. The three intermediate representations
are then given by:

Rn = Fs
n mn (5.5)

Each column of the intermediate matrices Rn is produced by a single convolutional filter of
length n. The summary n-gram representations are then obtained by pushing the intermediate
representations through a rectified linear unit (ReLU) activation function (Nair and Hinton,
2010) and then max-pooling over time (i.e., columns of the matrix) to get a single feature for
each of the L filters applied to the utterance:

r′n = maxpool(ReLU(Rn +bs
n)) (5.6)

where bs
n is a bias term broadcast across all filters. Finally, the three summary n-gram

representations are summed to obtain the final utterance representation vector r (as in
Equation 5.4). The NBT-CNN model is (by design) better suited to longer utterances, as its
convolutional filters interact directly with subsequences of the utterance, and not just their
noisy summaries given by the NBT-DNN’s cumulative n-grams.

5.2.2 Semantic Decoding

The NBT diagram in Figure 5.3 shows that the utterance representation r and the candidate
slot-value pair representation c directly interact through the semantic decoding module. This
component decides whether the user explicitly expressed an intent matching the current
candidate pair (i.e., without taking the dialogue context into account). Examples of such
matches would be ‘I want Thai food’ with FOOD=Thai or more demanding ones such as ‘a
pricey restaurant’ with PRICE=expensive. This is where the use of high-quality pre-trained
word vectors comes into play: a delexicalisation-based model could deal with the former
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example but would be helpless in the latter case, unless a human expert had provided a
semantic dictionary listing all potential rephrasings for each value in the domain ontology.

Let the vector space representations of a candidate pair’s slot name and value be given by
cs and cv (with vectors of multi-word slot names/values summed together). The NBT model
learns to map this tuple into a single vector c of the same dimensionality as the utterance
representation r. These two representations are then forced to interact in order to learn a
similarity metric which discriminates between interactions of utterances with slot-value pairs
that they either do or do not express:

c = σ
(
W s

c (cs + cv)+bs
c
)

(5.7)

d = r⊗ c (5.8)

where ⊗ denotes element-wise vector multiplication. The dot product, which may seem like
the more intuitive similarity metric, would reduce the rich set of features in d to a single
scalar. The element-wise multiplication allows the downstream network to make better use
of its parameters by learning non-linear interactions between sets of features in r and c.1

5.2.3 Context Modelling

This ‘decoder’ does not yet suffice to extract intents from utterances in human-machine
dialogue. To understand some queries, the belief tracker must be aware of context, that is
the flow of dialogue leading up to the latest user utterance. While all previous system and
user utterances are important, the most relevant one is the last system utterance, in which the
dialogue system could have performed (among others) one of the following system acts:

1. System Request: The system asks the user about the value of a specific slot Tq. If the
system utterance is: ‘what price range would you like?’ and the user answers with

‘any’, the model should know that the user is talking about PRICE RANGE, and not
about other slots such as AREA or FOOD.

2. System Confirm: The system asks the user to confirm whether a specific slot-value
pair (Ts,Tv) is part of their desired constraints. For example, if the user responds to

‘how about Turkish food?’ with ‘yes’, the model must be aware of the system act in
order to update the belief state with the correct slot value.

1An alternative approach would be to concatenate r and c and pass that vector to the downstream decision-
making network. However, this set-up led to very weak performance since the relatively small datasets used in
evaluation did not suffice for the network to learn to model the interaction between the two feature vectors.
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If one makes the Markovian decision to only consider the last set of system acts, context
modelling can be incorporated into the NBT by adding another hierarchical component. Let
tq and (ts, tv) be the word vectors of the arguments for the system request and confirm acts
(zero vectors if none). The model computes the following measures of similarity between the
system acts, candidate pair (cs,cv) and utterance representation r:

mr = (cs · tq)r (5.9)

mc = (cs · ts)(cv · tv)r (5.10)

where · denotes dot product. The computed similarity terms act as gating mechanisms which
only pass the utterance representation through if the system asked about the current candidate
slot or slot-value pair. This type of interaction is particularly useful for the confirm system
act: if the system asks the user to confirm, the user is likely not to mention any slot values,
but to just respond affirmatively or negatively. This means that the model must consider the
three-way interaction between the utterance, candidate slot-value pair and the slot value pair
offered by the system. If (and only if) the latter two are the same should the model consider
the affirmative or negative polarity of the user utterance when making its binary decision.

Binary Decision Maker The intermediate representations for semantic decoding and
context modelling are passed through another hidden layer and combined to make the final
decision. If φdim(x) = σ(Wx+b) is a layer which maps input vector x to a vector of size
dim, the input to the final binary softmax (which represents the decision) is given by:

y = φ2
(
φ100(d)+φ100(mr)+φ100(mc)

)
(5.11)

5.2.4 Rule-Based Belief State Updates

In spoken dialogue systems, belief tracking models operate over the output of automatic
speech recognition (ASR). Despite improvements to speech recognition, the need to make
the most out of imperfect speech recognition will persist as dialogue systems are deployed to
increasingly noisy environments.

In this work, a simple rule-based belief state update mechanism is defined and applied
to ASR N-best lists. For dialogue turn t, let syst−1 denote the preceding system output,
and let ht denote the list of N ASR hypotheses ht

i with posterior probabilities pt
i. For any

hypothesis ht
i, slot s and slot value v ∈Vs, NBT models estimate P(s,v | ht

i,syst−1), which is
the (turn-level) probability that (s,v) was expressed in the given hypothesis. The predictions
for N such hypotheses are then combined using the following expression:
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P(s,v | ht ,syst−1) =
N

∑
i=1

pt
i P
(
s,v | ht

i,syst) (5.12)

This turn-level belief state estimate is then combined with the (cumulative) belief state up to
time (t −1) to get the updated belief state estimate:

P(s,v | h1:t ,sys1:t−1) = λ P
(
s,v | ht ,syst−1)+ (1−λ ) P

(
s,v | h1:t−1,sys1:t−2) (5.13)

where λ is the coefficient which determines the relative weight of the turn-level and previous
turns’ belief state estimates.2 For slot s, the set of its detected values at turn t is given by:

V t
s = {v ∈Vs | P

(
s,v | h1:t ,sys1:t−1)≥ 0.5} (5.14)

For informable (i.e. goal-tracking) slots, the value in V t
s with the highest probability is chosen

as the current goal (if V t
s ̸= { /0}). For requests, all slots in V t

req are deemed to have been
requested. As requestable slots serve to model single-turn user queries, they require no belief
tracking across turns.

5.2.5 Statistical Belief State Updates

The NBT model eschews the use of semantic lexicons by relying on semantically-specialised
vector space representations to deal with linguistic variation. To emulate the principal
advantage of delexicalisation-based approaches, which can deal with slot values not seen
in the training data, the NBT models decompose the (per-slot) multi-class value prediction
problem into many binary ones. The model iterates through all slot values defined by the
ontology and decides which ones have just been expressed by the user. These can then be
combined with the previous belief state using a rule-based update, as shown in the previous
section. This approach comes at a cost: the NBT is little more than an SLU decoder capable
of modelling the preceding system acts. Its parameters do not learn to handle the previous
belief state, which is essential for probabilistic modelling in POMDP-based dialogue systems
(Thomson and Young, 2010; Young et al., 2010). This section shows how the NBT framework
can be extended to (learn to) perform statistical belief state updates.

Problem Definition For any given slot s, let bt−1
s be the true belief state at time t −1 (this

is a vector of length |Vs|+2, accounting for all slot values and two special values, dontcare
and NONE). At time t, let the intermediate representations representing the preceding system

2The coefficient was tuned on the DSTC 2 development set; the best performance was achieved at λ = 0.55.
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Figure 5.6 The architecture of the NBT Model with the learned statistical belief state update.
Rather than just producing separate turn-level estimates for all values (yt), this model learns
to combine these predictions with the previous belief state bt−1.

acts and the current user utterance be mt and rt . When the NBT model decides about slot
value v ∈Vs, it uses the intermediate candidate slot-value representation for the value, ct

v, to
implicitly parametrise the model for making a decision about that value.

In the previous section, the binary decision making module of the rule-based NBT models
produced independent estimates for each slot value. In the case of statistical belief state
updates, the turn-level estimates for all values are still produced separately, yielding a vector
of turn-level predictions yt

s. However, this vector is then combined with the previous belief
state estimate for slot s, bt−1

s , to estimate the new belief state bt
s:

bt
s = φ(yt

s,b
t−1
s ) (5.15)

In line with the NBT framework, the only criteria for the belief state update mechanism φ are:
a) that it is a differentiable function that can backpropagated through during NBT training;
and b) that it produces a valid probability distribution bt

s as output. Figure 5.6 shows the
NBT architecture expanded with the belief state update component.

From Binary Decisions to Probability Distributions The rule-based update used sepa-
rate estimates for each slot value, choosing the most likely value as the current prediction. An
advantage of that approach is that it implicitly models the probability that no value had been
expressed. If P(s,v|rt,mt)< 0.5) for all slot value pairs, the belief state remains unchanged.
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Modelling the belief state jointly means that a separate NONE value must be added to the
set of candidate slots to capture the probability that no value had been expressed up to that
dialogue turn. As all slot values are still predicted using the same set of parameters (producing
a pre-softmax feature vector of size equal to number of slot values), an additional constant
scalar feature is appended to the vector to represent the NONE value.3 The remaining |V |
features, produced by NBT decoders with tied parameters, are learned jointly and implicitly
parametrised by the values’ word vector representations.

Variants of the Statistical Belief State Update

Two different approaches for combining the previous belief state bt−1
s with the new turn-level

prediction yt
s are presented next.

1. Learned Markovian Update: the previous belief state bt−1
s and the current turn-level

estimate yt
s are combined using a one-step belief state update:

bt
s = so f tmax

(
Wcurryt

s +Wpastbt−1
s
)

(5.16)

where the Wcurr and Wpast matrices learn to combine the two signals into a new belief state.
This model violates the NBT design paradigm: each row of the two matrices learns to operate
over specific slot values. This means the model will not learn to predict or maintain slot
values as part of the belief state if it has not encountered these values during training. Even
though turn-level NBT output yt

s may contain the right prediction, the parameters of the
corresponding row in Wcurr will not be trained to update the belief state, since its parameters
(for the given value) will not have been updated during training. Similarly, the same row in
Wpast will not learn to maintain the given slot value as part of the belief state.

To overcome the data sparsity and preserve the NBT model’s ability to deal with unseen
values, one can use the fact that there are fundamentally only two different actions that a
belief tracker needs to perform: 1) maintain the same prediction as in the previous turn; or 2)
update the prediction given strong indication that a new slot value has been expressed. To
facilitate transfer learning between different ontology values, the second belief state update
model introduces additional constraints for the one-step belief state update.

3Appending values of 0 or 1 produced the same results, as the remaining feature estimates scaled to larger
values to indicate whether other slot values had been expressed.
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2. Constrained Markovian Update: this model constrains the two matrices so that each
of them contains only two different scalar values. One scalar value populates the diagonal
elements, and the other one is replicated for all off-diagonal elements:

Wcurr,i, j =

acurr, if i = j

bcurr, otherwise
Wpast,i, j =

apast , if i = j

bpast , otherwise
(5.17)

where the four scalar values are learned jointly with the NBT parameters. The diagonal
values learn the relative importance of propagating the previous value (apast) or of accepting
a newly detected value (acurr). The off-diagonal elements learn how turn-level signals (bcurr)
or past probabilities for other values (bpast) impact the predictions for the current belief state
(i.e., how hard it is to overwrite any value from the belief state with a different value). The
parameters acting over all slot values are in this way tied, ensuring that the model can deal
with slot values it did not encounter during training.

The two versions of the learned belief state update are compared to the rule-based update
presented in the previous section. Unlike that update, both variants of the statistical update
require no tuning, and as such deliver fully data-driven belief tracking.

5.3 Experiments

5.3.1 Datasets

Two datasets were used for training and evaluation. Both consist of user conversations
with task-oriented dialogue systems designed to help users find suitable restaurants around
Cambridge, UK. The two corpora share the same domain ontology, which contains three
informable (i.e., goal-tracking) slots: FOOD, AREA and PRICE. The users can specify values
for these slots in order to find restaurants which best meet their criteria. Once the system
suggests a restaurant, the users can ask about the values of up to eight requestable slots
(PHONE NUMBER, ADDRESS, etc.). The two datasets are:

1. DSTC 2: This experiment uses the transcriptions, ASR hypotheses and turn-level
semantic labels provided for the Dialogue State Tracking Challenge 2 (Henderson
et al., 2014a). The official transcriptions contain various spelling errors which were
corrected manually.4 The training data contains 2207 dialogues and the test set consists
of 1117 dialogues. The NBT models are trained on transcriptions but tested on the
ASR hypotheses provided in the original challenge.

4The cleaned version of the dataset is available at mi.eng.cam.ac.uk/ nm480/dstc2-clean.zip
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2. WOZ 2.0: Wen et al. (2017) performed a Wizard of Oz style experiment in which
Amazon Mechanical Turk users assumed the role of the system or the user of a task-
oriented dialogue system based on the DSTC 2 ontology. Users typed instead of using
speech, which means performance in the WOZ experiments is more indicative of
the model’s capacity for semantic understanding than its robustness to ASR errors.
Whereas in the DSTC 2 dialogues users would quickly adapt to the system’s (lack of)
language understanding capability, the WOZ experimental design gave them freedom
to use more sophisticated language. For these experiments, the original WOZ dataset
from Wen et al. (2017) was expanded, using the same data collection procedure,
yielding a total of 1200 dialogues. These dialogues were divided into 600 training, 200
validation and 400 test set dialogues.5

Training Examples The two corpora are used to create training data for two separate
experiments. For each dataset, each training set utterance is used to generate one example
for each of the slot-value pairs in the ontology. An example consists of a transcription, its
context (i.e., a list of preceding system acts) and a candidate slot-value pair. The binary label
for each example indicates whether or not its utterance and context express the example’s
candidate pair. For instance, ‘I would like Irish food’ would generate a positive example for
candidate FOOD=Irish, and a negative example for every other slot value in the ontology.

Evaluation Two key evaluation metrics introduced by Henderson et al. (2014a) are used to
assess the quality of the trained models:

1. Goals (‘joint goal accuracy’): the proportion of dialogue turns where all the user’s
search goal constraints were correctly identified;

2. Requests: similarly, the proportion of dialogue turns where user’s requests for infor-
mation were identified correctly.

5.3.2 Models

Two NBT model variants are evaluated: NBT-DNN and NBT-CNN. The Adam optimizer
(Kingma and Ba, 2015) with cross-entropy loss is used to train the models, backpropagating
through all the NBT subcomponents while keeping the pre-trained word vectors fixed (in
order to allow the model to deal with unseen words at test time). The model is trained
separately for each slot. Due to the high class bias (most of the constructed examples are
negative), a fixed number of positive examples is included in each mini-batch.

5The WOZ 2.0 dataset is available at mi.eng.cam.ac.uk/ñm480/woz_2.0.zip.
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Baseline Models For each of the two datasets, the NBT models are compared to:

1. Delexicalisation-Based Models A baseline system that implements a well-known
competitive delexicalisation-based model for that dataset. For DSTC 2, the model is
that of Henderson et al. (2014c; 2014d). This model is an n-gram based neural network
model with recurrent connections between turns (but not inside utterances) which
replaces occurrences of slot names and values with generic delexicalised features. For
WOZ 2.0, the NBT models are compared to a more sophisticated belief tracking model
presented in (Wen et al., 2017). This model uses an RNN for belief state updates and a
CNN for turn-level feature extraction. Unlike NBT-CNN, their CNN operates not over
vectors, but over delexicalised features akin to those used by Henderson et al. (2014c).

2. Delexicalisation + Dictionary The same baseline model supplemented with a task-
specific semantic dictionary (produced by the baseline system creators).6 The DSTC 2
dictionary contains only three rephrasings. Nonetheless, the use of these rephrasings
translates to substantial performance gains (see Table 5.1). This result supports the
claim that the vocabulary used by Mechanical Turkers in DSTC 2 was constrained
by the system’s inability to cope with lexical variation and ASR noise. The WOZ
dictionary includes 38 rephrasings, showing that the unconstrained language used by
Mechanical Turkers in the Wizard-of-Oz setup requires more elaborate lexicons.

Both baseline models map exact matches of ontology-defined intents (and their lexicon-
specified rephrasings) to one-hot delexicalised n-gram features. This means that pre-trained
vectors cannot be incorporated directly into these models.

NBT Hyperparameters Model hyperparameters were tuned on the respective validation
sets. The initial Adam learning rate was set to 0.001, and 1

8 th of positive examples were
included in each mini-batch. The batch size did not affect performance: it was set to 256 in
all experiments. Gradient clipping (to [−2.0,2.0]) was used to handle exploding gradients.
The dropout technique (Srivastava et al., 2014) was used for regularisation (with 50% dropout
rate on all intermediate distributed representations). Both NBT models were implemented in
the TensorFlow framework (Abadi et al., 2015).

6The two dictionaries are available at mi.eng.cam.ac.uk/ñm480/sem-dict.zip
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DST Model DSTC2 WOZ 2.0
Goals Requests Goals Requests

Delexicalisation-Based Model 69.1 95.7 70.8 87.1
Delexicalisation-Based Model + Semantic Dictionary 72.9* 95.7 83.7* 87.6
NEURAL BELIEF TRACKER: NBT-DNN 72.6* 96.4 84.4* 91.2*
NEURAL BELIEF TRACKER: NBT-CNN 73.4* 96.5 84.2* 91.6*

Table 5.1 DSTC2 and WOZ 2.0 test set accuracies for: a) joint goals; and b) turn-level
requests. The asterisk indicates statistically significant improvement over the baseline
trackers (paired t-test; p < 0.05).

5.4 Results

Table 5.1 shows the performance of NBT models trained and evaluated on DSTC 2 and WOZ
2.0 datasets. The NBT models outperformed the baseline models in terms of both joint goal
and request accuracies. For goals, the gains are always statistically significant (paired t-test,
p < 0.05). Moreover, there was no statistically significant variation between the NBT and the
lexicon-supplemented models, showing that the NBT can handle semantic relations which
otherwise had to be explicitly encoded in semantic dictionaries.

While the NBT models perform well across the board, one can compare their performance
on the two datasets to understand the strengths of this framework. The improvement over the
baseline is greater on WOZ 2.0, which corroborates the intuition that the NBT’s ability to
learn linguistic variation is vital for this dataset containing longer sentences, richer vocabulary
and no ASR errors. By comparison, the language of the subjects in the DSTC2 dataset is less
rich, and compensating for ASR errors is the main hurdle: given access to the DSTC2 test set
transcriptions, the NBT models’ goal accuracy rises to 0.96. This indicates that future work
should focus on better ASR compensation if the model is to be deployed in environments
with challenging acoustics.

5.4.1 The Importance of Word Vector Spaces

The NBT models use the semantic relations embedded in the pre-trained word vectors to
handle semantic variation and produce high-quality intermediate representations. Table 5.2
shows the performance of NBT-CNN7 models making use of three different word vector
collections: 1) ‘random’ word vectors initialised using the XAVIER initialisation (Glorot
and Bengio, 2010); 2) distributional GloVe vectors (Pennington et al., 2014), trained using
co-occurrence information in large textual corpora; and 3) semantically specialised Paragram-

7The NBT-DNN model showed the same performance trends. For brevity, only NBT-CNN is shown here.
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Word Vectors DSTC2 WOZ 2.0
Goals Requests Goals Requests

XAVIER (No Info.) 64.2 81.2 81.2 90.7
GloVe 69.0* 96.4* 80.1 91.4

Paragram-SL999 73.4* 96.5* 84.2* 91.6

Table 5.2 DSTC2 and WOZ 2.0 test set performance (joint goals and requests) of the NBT-
CNN model making use of three different word vector collections. The asterisk indicates
statistically significant improvement over the baseline XAVIER (randomly initialised) word
vectors (paired t-test; p < 0.05).

SL999 vectors (Wieting et al., 2015), which are obtained by injecting semantic similarity
constraints from the Paraphrase Database (Ganitkevitch et al., 2013) into the distributional
GloVe vectors in order to improve their semantic content.

The results in Table 5.2 show that the use of semantically specialised word vectors leads
to considerable performance gains: Paragram-SL999 vectors (significantly) outperformed
GloVe and XAVIER vectors for goal tracking on both datasets. The gains are particularly
robust for noisy DSTC 2 data, where both collections of pre-trained vectors consistently
outperformed random initialisation. The gains are weaker for the noise-free WOZ 2.0
dataset, which seems to be large (and clean) enough for the NBT model to learn task-specific
rephrasings and compensate for the lack of semantic content in the word vectors. For this
dataset, GloVe vectors do not improve over the randomly initialised ones. A potential
explanation for the drop in performance could lie in the fact that distributional models
keep related, yet antonymous words close together (e.g., north and south, expensive and
inexpensive), offsetting the useful semantic content embedded in this vector spaces.

5.4.2 Learning the Belief State Update

Table 5.3 shows the performance of the two variants of the statistical belief state update,
comparing them to the rule-based update used in previous experiments.8 The performance of
statistical updates varies across the two datasets. For DSTC 2, the rule-based update tuned
on the DSTC 2 development set consistently outperforms the statistical updates, showing
that the end-to-end learning mechanism implemented by statistical update mechanisms can
not cope with the speech recognition errors.9 The discrepancy in performance is likely due

8The Paragram-SL999 vectors were used for these experiments. Similar drops in performance as those in
Table 5.2 are observed when the other two word vector collections are deployed.

9The DSTC 2 model is again trained using the training set transcriptions provided in the original challenge.
At test time, the joint prediction for the 10 ASR hypotheses is given by the weighted sum of predictions for
each of the individual ASR hypotheses.



74 The Neural Belief Tracker

Model Variant DSTC 2 WOZ 2.0
Markovian Belief State Update 67.8 82.1
Constrained Markovian Belief State Update 68.4 84.8
Rule-Based Belief State Update 73.4 84.2

Table 5.3 The joint goal accuracy of the two variants of the statistical belief state update,
compared to the hand-tuned, rule-based belief state update (average performance of four
models). This table omits the performance on requests, reported in all previous experiments
in this chapter. That metric showed the performance for single-turn questions, and these are
not affected by changes to the belief state update mechanism employed by the model.

to the fact that the rule-based update is tuned using the performance over speech recognition
hypotheses, whereas the statistical update has no access to the speech recognition output
during training (or during hyperparameter optimisation).

For the WOZ 2.0 dataset, the statistical updates come closer to the performance of the
rule-based update. Interestingly, the constrained Markovian update outperforms both the
value-specific Markovian update and the rule-based update. This shows that the transfer
learning between values facilitated by the constrained model (which uses only four scalar
values as parameters) is more important for belief tracking performance than the substantially
larger set of parameters used by the value-specific update mechanism.

The results in Table 5.3 make a wider point about the relative importance of intra-turn
Dialogue State Tracking and turn-level Spoken Language Understanding. In environments
with high ASR noise, the quality of the learned dialogue state tracking rules is essential
for overall language understanding performance. Conversely, in environments with no
speech recognition errors (such as text-based chat interfaces), the quality of the SLU module
determines how well the system can cope with linguistic variation, while more elaborate
DST mechanisms have limited impact on the overall language understanding performance.

5.5 Conclusion

This chapter presented a novel neural belief tracking (NBT) framework designed to over-
come current obstacles to deploying dialogue systems to real-world dialogue domains. The
NBT models offer the known advantages of coupling Spoken Language Understanding
and Dialogue State Tracking, without relying on hand-crafted semantic lexicons to achieve
state-of-the-art performance. The presented evaluation demonstrated these benefits: the NBT
models match the performance of models which make use of such lexicons and vastly outper-
form them when these are not available. Finally, the performance of NBT models improves
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with the semantic quality of the underlying word vectors. To the best of my knowledge, this
work was the first to move past intrinsic evaluation and show that semantic specialisation
boosts performance in downstream language understanding tasks.

The work presented in subsequent chapters will show how the coupling between semantic
specialisation and data-driven language understanding performed by NBT models can be
used to train belief tracking models which work across different languages, offsetting the
problems caused by linguistic phenomena such as word gender, compounding or declension.
To do that, the next chapter revisits the notion of semantic specialisation proposed in Chapter
4, showing how existing semantic lexicons can be used to craft high-quality semantic word
vector spaces across many languages. The subsequent chapter will then show how such
vector spaces can be used to bootstrap high quality language understanding models for
lower-resource languages.





Chapter 6

Exploiting Lexical Resources

This chapter presents my work on semantic specialisation, first explored in Chapter 4. The
work on counter-fitting showed that semantic lexicons can be produced by injecting linguistic
constraints into word vector spaces and then using words’ neighbours as their rephrasings.
The work on the Neural Belief Tracker showed that use of such vectors substantially boosts
the performance of data-driven language understanding models. This chapter focuses on the
semantic specialisation paradigm in more detail, showing that external linguistic constraints
can be used to induce semantically specialised vectors across a plethora of different languages.

6.1 Introduction

Word representation learning has become a research area of central importance in mod-
ern natural language processing. The common techniques for inducing distributed word
representations are grounded in the distributional hypothesis, relying on co-occurrence
information in large textual corpora to learn meaningful word representations (Levy and
Goldberg, 2014; Mikolov et al., 2013b; Ó Séaghdha and Korhonen, 2014; Pennington et al.,
2014). Recently, methods which go beyond stand-alone unsupervised learning have gained
increased popularity. These models typically build on distributional ones by using human- or
automatically-constructed knowledge bases to enrich the semantic content of existing word
vector collections. Often this is done as a post-processing step, where the distributional word
vectors are refined to satisfy constraints extracted from a lexical resource such as WordNet
or the Paraphrase Database (Faruqui et al., 2015; Mrkšić et al., 2016; Wieting et al., 2015).
Throughout this thesis, this approach is termed semantic specialisation.

The work presented in this chapter advances the semantic specialisation paradigm in
a number of ways. A novel algorithm for semantic specialisation, ATTRACT-REPEL, is
presented first. Similar to counter-fitting, ATTRACT-REPEL uses synonymy and antonymy
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Figure 6.1 Nearest neighbours for three example words across Slavic, Germanic and Romance
language groups (with English included as part of each word vector collection). Semantically
dissimilar words have been underlined.

constraints drawn from lexical resources to tune word vector spaces using linguistic infor-
mation that is difficult to capture with conventional distributional training. The presented
evaluation shows that ATTRACT-REPEL outperforms previous methods which make use of
similar lexical resources, achieving state-of-the-art results on two word similarity datasets:
SimLex-999 (Hill et al., 2015) and SimVerb-3500 (Gerz et al., 2016).

Subsequently, ATTRACT-REPEL is deployed in a multilingual setting, using semantic
relations extracted from BabelNet (Ehrmann et al., 2014; Navigli and Ponzetto, 2012), a
cross-lingual lexical resource, to inject constraints between words of different languages into
the word representations. The use of these constraints allows the procedure to embed vector
spaces of multiple languages into a single vector space, exploiting information from high-
resource languages to improve the word representations of lower-resource ones. Table 6.1
illustrates the effects of cross-lingual ATTRACT-REPEL specialisation by showing the nearest
neighbours for three English words across three cross-lingual spaces. In each case, the vast
majority of each words’ neighbours are meaningful synonyms/translations.1

While there is a considerable amount of prior research on joint learning of cross-lingual
vector spaces (see Section 6.2.2), to the best of my knowledge this work is the first to apply
semantic specialisation to this problem.2 The efficacy of this approach is demonstrated with
state-of-the-art results on the four languages in the Multilingual SimLex-999 dataset (Leviant

1Some (negative) effects of the distributional hypothesis do persist. For example, nl_krieken (Dutch for
cherries), is identified as a synonym for en_morning, presumably because the frequently used idiom ‘het
krieken van de dag’ translates to ‘the crack of dawn’.

2This approach is not suited for languages for which no lexical resources exist. However, many languages
have some coverage in cross-lingual lexicons. For instance, BabelNet 3.7 automatically aligns WordNet to
Wikipedia, providing accurate cross-lingual mappings between 271 languages.
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and Reichart, 2015). In order to show that this approach yields semantically informative
vectors for lower-resource languages, intrinsic evaluation datasets for Hebrew and Croatian
are collected. Subsequent evaluation shows that cross-lingual specialisation significantly
improves word vector quality even for these two (comparatively) low-resource languages.3

6.2 Related Work

6.2.1 Semantic Specialisation

The usefulness of distributional word representations has been demonstrated across many
application areas: Part-of-Speech (POS) tagging (Collobert et al., 2011), machine translation
(Devlin et al., 2014; Zou et al., 2013), dependency and semantic parsing (Ammar et al.,
2016; Bansal et al., 2014; Chen and Manning, 2014; Johannsen et al., 2015; Socher et al.,
2013a), sentiment analysis (Socher et al., 2013b), named entity recognition (Guo et al.,
2014; Turian et al., 2010), and many others. The importance of semantic specialisation for
downstream tasks is relatively unexplored, with improvements in performance so far observed
for dialogue state tracking (Mrkšić et al., 2016, 2017a), spoken language understanding (Kim
et al., 2016a,b) and judging lexical entailment (Vulić et al., 2016).

Semantic specialisation methods (broadly) fall into two categories: a) those which train
distributed representations ‘from scratch’ by combining distributional knowledge and lexical
information during training; and b) those which inject lexical information into pre-trained
collections of word vectors. Methods from both categories make use of similar lexical
resources. Common examples of these include WordNet (Miller, 1995), FrameNet (Baker
et al., 1998) or the Paraphrase Databases (PPDB) (Ganitkevitch and Callison-Burch, 2014;
Ganitkevitch et al., 2013; Pavlick et al., 2015).

Learning from Scratch Some methods modify the prior or the regularisation of the origi-
nal training procedure using the set of linguistic constraints (Aletras and Stevenson, 2015;
Bian et al., 2014; Kiela et al., 2015; Xu et al., 2014; Yu and Dredze, 2014). Other ones modify
the skip-gram (Mikolov et al., 2013b) objective function by introducing semantic constraints
(Liu et al., 2015; Yih et al., 2012) to train word vectors which emphasise word similarity
over relatedness. Osborne et al. (2016) propose a method for incorporating prior knowledge
into the Canonical Correlation Analysis (CCA) method used by Dhillon et al. (2015) to learn
spectral word embeddings. While such methods introduce semantic similarity constraints

3All resources relating to this chapter are available at: www.github.com/nmrksic/attract-repel. These include:
1) the ATTRACT-REPEL source code; 2) bilingual word vector collections combining English with 51 other
languages; 3) Hebrew and Croatian intrinsic evaluation datasets collected for this work.
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extracted from lexicons, approaches such as the one proposed by Schwartz et al. (2015)
use symmetric patterns (Davidov and Rappoport, 2006) to push away antonymous words in
their pattern-based vector space. Ono et al. (2015) combine both approaches, using thesauri
and distributional data to train embeddings specialised for capturing antonymy. Faruqui and
Dyer (2015) use many different lexicons to create interpretable sparse binary vectors which
achieve competitive performance across a range of intrinsic evaluation tasks.

In theory, word representations produced by models which consider distributional and
lexical information jointly could be as good (or even better) than representations produced
by post-hoc fine-tuning of distributional word vectors. However, their performance has not
surpassed that of fine-tuning methods. The SimLex-999 dataset web page lists models with
state-of-the-art performance, none of which learn representations jointly.4

Fine-Tuning Pre-trained Vectors Rothe and Schütze (2015) fine-tune word vector spaces
to improve the representations of synsets/lexemes found in WordNet. Faruqui et al. (2015)
and Jauhar et al. (2015) use synonymy constraints in a procedure termed retrofitting to
bring the vectors of semantically similar words close together, while Wieting et al. (2015)
modify the skip-gram objective function to fine-tune word vectors by injecting paraphrasing
constraints from PPDB. The counter-fitting procedure, presented in Chapter 4, builds on
the retrofitting approach by jointly injecting synonymy and antonymy constraints (Mrkšić
et al., 2016); the same idea is reassessed by Nguyen et al. (2016). Kim et al. (2016a) further
expand this line of work by incorporating semantic intensity information for the constraints,
while Recski et al. (2016) use ensembles of rich concept dictionaries to further improve a
combined collection of semantically specialised word vectors.

ATTRACT-REPEL belongs to the second family of models, providing a portable, light-
weight approach for injecting external knowledge into arbitrary vector spaces. ATTRACT-
REPEL outperforms previously proposed post-processors, setting the new state-of-art perfor-
mance on the SimLex-999 word similarity dataset. Moreover, starting from distributional
vectors allows ATTRACT-REPEL to use existing cross-lingual resources to tie distributional
vector spaces of different languages into a unified vector space which benefits from positive
semantic transfer between its constituent languages.

6.2.2 Cross-Lingual Word Representations

Most existing models which induce cross-lingual word representations rely on cross-lingual
distributional information (Huang et al., 2015; Klementiev et al., 2012; Soyer et al., 2015;
Zou et al., 2013, inter alia). These models differ in the cross-lingual signal/supervision they

4www.cl.cam.ac.uk/ fh295/simlex.html
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use to tie languages into unified bilingual vector spaces. Some models learn on the basis of
parallel word-aligned data (Coulmance et al., 2015; Luong et al., 2015a) or sentence-aligned
data (Chandar et al., 2014; Gouws et al., 2015; Hermann and Blunsom, 2014a,b). Other ones
require document-aligned data (Søgaard et al., 2015; Vulić and Moens, 2016), while some
learn on the basis of available bilingual dictionaries (Duong et al., 2016; Faruqui and Dyer,
2014; Lazaridou et al., 2015; Mikolov et al., 2013a; Vulić and Korhonen, 2016b).

The inclusion of cross-lingual information results in shared cross-lingual vector spaces
which can: a) boost performance on monolingual tasks such as word similarity (Faruqui and
Dyer, 2014; Rastogi et al., 2015; Upadhyay et al., 2016); and b) support cross-lingual tasks
such as bilingual lexicon induction (Duong et al., 2016; Gouws et al., 2015; Mikolov et al.,
2013a), cross-lingual information retrieval (Mitra et al., 2016; Vulić and Moens, 2015), and
transfer learning for resource-lean languages (Guo et al., 2015; Søgaard et al., 2015).

However, prior work on cross-lingual word embedding has tended not to exploit pre-
existing linguistic resources such as BabelNet. In this chapter, cross-lingual constraints
derived from such repositories are used to induce high-quality cross-lingual vector spaces
by facilitating semantic transfer from high- to lower-resource languages. The presented
experiments show that cross-lingual vector spaces produced by ATTRACT-REPEL consistently
outperform a representative selection of five strong cross-lingual word embedding models for
both intrinsic and (in the subsequent chapter) extrinsic evaluation across several languages.

6.3 The ATTRACT-REPEL Model

The ATTRACT-REPEL procedure builds on the Paragram (Wieting et al., 2015) and counter-
fitting procedures (Mrkšić et al., 2016), both of which inject linguistic constraints into existing
vector spaces to improve their ability to capture semantic similarity.

Let V be the vocabulary, S the set of synonymous word pairs (e.g., intelligent and
brilliant), and A the set of antonymous word pairs (e.g., vacant and occupied). The opti-
misation procedure operates over mini-batches of synonym and antonym pairs BS and BA

(which list k1 synonym and k2 antonym pairs). For ease of notation, let each word pair
(xl,xr) in these two sets correspond to a vector pair (xl,xr), so that a mini-batch is given by
BS = [(x1

l ,x
1
r ), . . . ,(x

k1
l ,xk1

r )] (similarly for BA).
Next, let TS = [(t1

l , t
1
r ), . . . ,(t

k1
l , tk1

r )] and TA = [(t1
l , t

1
r ), . . . ,(t

k2
l , tk2

r )] be the pairs of neg-
ative examples for each synonymy and antonymy example pair in mini-batches BS and BA.
These negative examples are chosen from the word vectors present in BS or BA so that:
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Figure 6.2 ATTRACT-REPEL procedure acting on two mini-batches of synonymous and
antonymous word pairs (mini-batch size is 3 in this animation, but 50 in the experiments).

• For each synonymy pair (xl,xr), the negative example pair (tl, tr) is chosen from the
remaining in-batch vectors so that tl is the one closest (cosine similarity) to xl and tr is
the in-batch word vector closest to xr.

• For each antonymy pair (xl,xr), the negative example pair (tl, tr) is chosen from the
remaining in-batch vectors so that tl is the one furthest away from xl and tr is the
in-batch word vector furthest away from xr.

These negative examples are used to: a) force synonymous pairs to be closer to each other
than to their respective negative examples; and b) to force antonymous pairs to be further
away from each other than from their negative examples. Figure 6.2 provides a geometric
animation of the ATTRACT-REPEL procedure. The first term of the cost function pulls
synonymous words together:

S(BS,TS) =
k1

∑
i=1

[
τ
(
δsyn +xi

lt
i
l −xi

lx
i
r
)
+ τ

(
δsyn +xi

rt
i
r −xi

lx
i
r
)]

(6.1)

where τ(x) = max(0,x) is the hinge loss function and δsyn is the similarity margin which
determines how much closer synonymous vectors should be to each other than to their
respective negative examples. The second part of the cost function pushes antonymous word
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Specialisation Method Attract Term Repel Term Regularisation
RETROFITTING Geometric None L2

COUNTER-FITTING Geometric Geometric Pairwise
PARAGRAM Context Sensitive None L2

ATTRACT-REPEL Context Sensitive Context Sensitive L2

Table 6.1 Theoretical comparison of the four state-of-the-art vector specialisation methods
discussed in this chapter. Retrofitting and counter-fitting use geometric Attract and Repel
terms which update word vector pairs without considering their relation to other words.
Conversely, PARAGRAM and ATTRACT-REPEL implement more sophisticated fine-tuning
which considers the relation of each word to other vectors in its neighbourhood. For regulari-
sation, counter-fitting uses computationally expensive pairwise terms to preserve each word’s
neighbourhood. The other three methods use (computationally efficient) L2 regularisation to
pull each word towards its initial distributional word vector.

pairs away from each other:

A(BA,TA) =
k2

∑
i=1

[
τ
(
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i
l
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+ τ

(
δant +xi
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r −xi
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i
r
)]

(6.2)

In addition to these two terms, an additional regularisation term is used to preserve the
abundance of high-quality semantic content present in the initial (distributional) vector space,
as long as this information does not contradict the injected linguistic constraints. If V (B) is
the set of all word vectors present in the given mini-batch, then:

R(BS,BA) = ∑
xi∈V (BS∪BA)

λreg ∥x̂i −xi∥2 (6.3)

where λreg is the L2 regularisation constant and x̂i denotes the original (distributional) word
vector for word xi. The full cost function is given by the sum of all three terms:

C(BS,TS,BA,TA) = S(BS,TS) + A(BA,TA) + R(BS,BA) (6.4)

Comparison to Prior Work ATTRACT-REPEL draws inspiration from three methods: 1)
retrofitting (Faruqui et al., 2015); 2) PARAGRAM (Wieting et al., 2015); and 3) counter-
fitting (Mrkšić et al., 2016). Table 6.1 summarises the main differences between these
specialisation methods and ATTRACT-REPEL. Whereas retrofitting and PARAGRAM do
not consider antonymy, counter-fitting models both synonymy and antonymy. ATTRACT-
REPEL differs from this method in two important ways:
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1. Context-Sensitive Updates: Counter-fitting uses attract and repel terms which pull
synonyms together and push antonyms apart without considering their relation to other
word vectors. For example, the method’s attract term is given by:

Attract(S) = ∑
(xl ,xr)∈S

τ(δsyn −xlxr) (6.5)

where S is the set of synonyms and δsyn is the synonymy margin. Conversely, ATTRACT-
REPEL fine-tunes vector spaces by operating over mini-batches of example pairs,
updating word vectors only if the position of their negative example implies a stronger
semantic relation than that expressed by the position of its target example. Importantly,
ATTRACT-REPEL makes fine-grained updates to both the example pair and the negative
examples, rather than updating the example word pair but ignoring how this affects its
relation to all other word vectors.

2. Regularisation: Counter-fitting preserves distances between pairs of word vectors in
the initial vector space, trying to pull the words’ neighbourhoods with them as they
move to incorporate external knowledge. The radius of this initial neighbourhood
introduces an opaque hyperparameter to the procedure. Conversely, ATTRACT-REPEL

implements standard L2 regularisation, which pulls each word’s vector towards its
initial distributional word vector.

The subsequent evaluation provides a thorough comparison of these methods, showing
that ATTRACT-REPEL outperforms counter-fitting in both mono- and cross-lingual setups.

Optimisation ATTRACT-REPEL treats the word embeddings for all words in the vocabulary
like the first layer of a neural network, backpropagating into them to optimise the cost function
defined in Equations 6.1 - 6.4. Following Wieting et al. (2015), the AdaGrad algorithm
(Duchi et al., 2011) is used to train word vectors for five epochs, which suffices for the
magnitude of the parameter updates to converge.5

Early Stopping Similar to Faruqui et al. (2015), Wieting et al. (2015) and Mrkšić et al.
(2016), the training procedure does not rely on early stopping. By not making use of language-

5The use of alternative optimisation algorithms (i.e., Adam (Kingma and Ba, 2015) or Adadelta (Zeiler,
2012)) resulted in substantially weaker performance across all experiments.
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specific validation sets, the ATTRACT-REPEL procedure can induce semantically specialised
word vectors for languages with no intrinsic evaluation datasets.6

Hyperparameter Tuning To optimise model hyperparameters, ATTRACT-REPEL uses
Spearman’s correlation of the final word vectors with the Multilingual WordSim-353 gold-
standard association dataset (Leviant and Reichart, 2015). The ATTRACT-REPEL procedure
has six hyperparameters: the regularisation constant λreg, the similarity and antonymy
margins δsim and δant , mini-batch sizes k1 and k2, and the size of the PPDB constraint set
used for each language (larger sizes include more constraints, but also a larger proportion
of false synonyms). These parameters were tuned separately for each of the four SimLex
languages, choosing the hyperparameters which achieved the best final WordSim-353 score.7

6.4 Experimental Setup

6.4.1 Distributional Vectors

Sixteen experimental languages are used for evaluation: English (EN), German (DE), Italian
(IT), Russian (RU), Dutch (NL), Swedish (SV), French (FR), Spanish (ES), Portuguese (PT),
Polish (PL), Bulgarian (BG), Croatian (HR), Irish (GA), Persian (FA) and Vietnamese (VI).
The first four languages are those of the Multilingual SimLex-999 dataset.

For the SimLex languages, four well-known, high-quality word vector collections are
used in the experiments: a) The Common Crawl GloVe English vectors from Pennington et
al. (2014); b) German vectors from Vulić and Korhonen (2016a); c) Italian vectors from Dinu
et al. (2015); and d) Russian vectors from Kutuzov and Andreev (2015). Additionally, for
each of the 16 languages, the skip-gram with negative sampling variant of the word2vec
model (Mikolov et al., 2013b) was trained on the latest Wikipedia dump of each language,
inducing 300-dimensional word vectors.8

6Many languages are present in semi-automatically constructed lexicons such as BabelNet or PPDB (see
the discussion in Section 6.4). However, intrinsic evaluation datasets such as SimLex-999 exist for very few
languages, as they require expert translators and skilled annotators.

7The grid search was run over λreg ∈ [10−3, . . . ,10−10], δsim,δant ∈ [0,0.1, . . . ,1.0], k1,k2 ∈
[10,25,50,100,200] and over the six PPDB sizes for the four SimLex languages. λreg = 10−9, δsim = 0.6,
δant = 0.0 and k1 = k2 ∈ [10,25,50] consistently achieved the best performance (k1 = k2 = 50 is used across
all experiments for consistency). The PPDB constraint set size XL was best for English, German and Italian,
and M achieved the best performance for Russian.

8The frequency cut-off was set to 50: words that occurred less frequently were removed from the vocabular-
ies. Other word2vec parameters were set to the standard values (Vulić and Korhonen, 2016a): 15 epochs, 15
negative samples, global (decreasing) learning rate: 0.025, subsampling rate: 1e−4.
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English German Italian Russian
syn ant syn ant syn ant syn ant

English 640 5 246 11 356 24 196 9
German - - 135 2 277 13 175 6
Italian - - - - 159 7 220 11
Russian - - - - - - 48 1

Table 6.2 Linguistic constraint counts (in thousands). For each language pair, the two figures
show the number of injected synonymy and antonymy constraints. Monolingual constraints
(the diagonal elements) are underlined.

Multi-Sense Embeddings Compounding different word senses into a single word vector
can adversely impact the models making use of these word vector collections for various
downstream tasks (Li and Jurafsky, 2015). However, adding an additional word sense
disambiguation step would introduce more uncertainty into the spoken dialogue system
pipeline. Consequently, all word vector collections used in this thesis assign each word in
the vocabulary a single vectorial representation.

6.4.2 Linguistic Constraints

Table 6.2 shows the number of monolingual and cross-lingual constraints for the four SimLex
languages extracted for the vocabularies of the four well-known word vector collections. The
sources of these constraints are discussed next.

Monolingual Similarity The Multilingual Paraphrase Database (Ganitkevitch and Callison-
Burch, 2014) is used as the source of these constraints. This resource contains paraphrases
automatically extracted from parallel-aligned corpora for ten of the sixteen experimental
languages. The remaining six languages (HE, HR, SV, GA, VI, FA) serve as examples of
lower-resource languages, as they have no monolingual synonymy constraints.

Cross-Lingual Similarity BabelNet is used as the source of all cross-lingual constraints
in the experiments. BabelNet is a multilingual semantic network automatically constructed
by linking Wikipedia to WordNet (Ehrmann et al., 2014; Navigli and Ponzetto, 2012). It
groups words from different languages into Babel synsets. Two words from any (distinct)
language pair are considered synonymous if they belong to (at least) one set of synonymous
Babel synsets. BabelNet word senses tagged as conceptual were used, but those tagged as
Named Entities were ignored across the presented experiments.

Given a large collection of cross-lingual semantic constraints (e.g., the translation pair
en_sweet and it_dolce), ATTRACT-REPEL can use them to bring the vector spaces of different
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languages together into a shared cross-lingual space. Ideally, sharing information across
languages should lead to improved semantic content for each language, especially for those
with limited monolingual resources.

Antonymy BabelNet is used to extract both mono- and cross-lingual antonymy constraints.
Following Faruqui et al. (2015), who found PPDB constraints more beneficial than those
from WordNet, BabelNet is not used as a source of monolingual synonymy constraints.

Availability of Resources Both PPDB and BabelNet are created automatically. However,
PPDB relies on large, high-quality parallel corpora such as Europarl (Koehn, 2005). In total,
Multilingual PPDB provides collections of paraphrases for 22 languages. On the other hand,
BabelNet uses Wikipedia’s inter-language links and statistical machine translation (Google
Translate) to provide cross-lingual mappings for 271 languages. The presented experiments
investigate whether PPDB and BabelNet can be used jointly to improve word representations
for lower-resource languages by tying them into bilingual spaces with high-resource ones.
This claim is validated on Hebrew and Croatian, which act as ‘lower-resource’ languages
because of their lack of any PPDB resource and their relatively small Wikipedia sizes.9

6.5 Evaluation

6.5.1 Datasets

Spearman’s rank correlation with SimLex-999 (Hill et al., 2015) acts as the intrinsic eval-
uation metric throughout the experiments. Unlike other gold standard resources such as
WordSim-353 (Finkelstein et al., 2002) or MEN (Bruni et al., 2014), SimLex contains word
pairs scored by annotators instructed to discern between semantic similarity and conceptual
association, so that related but non-similar words (e.g., book and read) have a low rating.
Spearman’s correlation with SimVerb-3500 (Gerz et al., 2016) is reported as well. This is a
novel semantic similarity dataset which focuses on verb pair similarity.

Multilingual SimLex-999 Leviant and Reichart (2015) translated SimLex-999 to German,
Italian and Russian, crowd-sourcing the similarity scores from native speakers of these
languages. This is the principle resource used for multilingual intrinsic evaluation in this

9Hebrew and Croatian Wikipedias (which are used to induce their BabelNet constraints) currently consist of
203,867 / 172,824 articles, ranking them 40th / 42nd by size.
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chapter.10 To further investigate the portability of this approach to lower-resource languages,
the same experimental setup was used to collect SimLex-999 datasets for Hebrew and
Croatian (Mrkšić et al., 2017b). The 999 word pairs and the annotator instructions were
translated into Hebrew and Croatian by native speakers and then scored by 10 (native)
annotators. The inter-annotator agreement scores (Spearman’s rank correlation) were 0.77
(pairwise) and 0.87 (mean) for Croatian, and 0.59 (pairwise) and 0.71 (mean) for Hebrew.11,12

6.5.2 Experiments

Monolingual and Cross-Lingual Specialisation Starting from the four distributional vec-
tors for the SimLex languages, semantic specialisation is performed using: a) monolin-
gual synonyms; b) monolingual antonyms; and c) the combination of both. Cross-lingual
synonyms and antonyms are next added to these constraints and used to induce a shared
four-lingual vector space for these languages.

Comparison to Baseline Methods Both mono- and cross-lingual specialisation was per-
formed using ATTRACT-REPEL and counter-fitting, in order to conclusively determine which
of the two methods exhibits superior performance. Retrofitting and PARAGRAM methods
only inject synonymy, and their cost functions can be expressed using sub-components
of counter-fitting and ATTRACT-REPEL cost functions. As such, the performance of the
two investigated methods when they make use of similarity (but not antonymy) constraints
illustrates the performance range of the two preceding models.

Importance of Initial Vectors Three different sets of initial word vectors are used to
assess the importance of the starting point for the specialisation procedure. These are: a) the
four well-known distributional word vector collections for the original SimLex languages; b)
distributional vectors trained on the latest Wikipedia dumps; and c) word vectors randomly
initialised using the XAVIER initialisation (Glorot and Bengio, 2010).13

10 Leviant and Reichart (2015) also re-scored the original English SimLex. Results on their version are
reported in this chapter, but numbers for the original dataset are also reported for comparability.

11The Hebrew and Croatian SimLex-999 datasets are available at: www.github.com/nmrksic/attract-repel
12 Homonyms (different words with the same spelling) occur frequently in modern Hebrew because vowels

are omitted in writing. This is the likely reason for the lower inter-annotator scores for this language.
13The XAVIER initialisation populates the values for each word vector by uniformly sampling from the

interval [−
√

6√
d
,+

√
6√
d
], where d is the vector dimensionality. This is a typical initialisation method in neural

network research (Bengio et al., 2013; Goldberg, 2015).
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Specialisation for Lower-Resource Languages In this experiment, bilingual vector spaces
are constructed by starting from distributional vector spaces for two languages and using
linguistic constraints to tie them into a shared cross-lingual vector space. The languages com-
bined are: a) one of the four SimLex languages; with b) each of the other twelve languages.14

Since each pair contains at least one SimLex language, one can analyse the improvement over
monolingual specialisation to understand how robust the performance gains are across differ-
ent language pairs. Finally, the newly collected SimLex datasets for Hebrew and Croatian are
used to evaluate the extent to which bilingual semantic specialisation using ATTRACT-REPEL

and BabelNet constraints can improve word representations for lower-resource languages.

Comparison to State-of-the-Art Bilingual Spaces The English-Italian and English-German
bilingual spaces induced by ATTRACT-REPEL are compared to five state-of-the-art methods
for constructing bilingual vector spaces: 1. (Mikolov et al., 2013a), re-trained using the
constraints used by ATTRACT-REPEL; and 2.-5. (Gouws et al., 2015; Hermann and Blunsom,
2014a; Vulić and Korhonen, 2016a; Vulić and Moens, 2016). The latter models use various
sources of supervision (word-, sentence- and document-aligned corpora), which means they
cannot be trained using the same set of constraints. For these models, competitive setups
proposed in Vulić and Korhonen (2016a) are replicated. The goal of this experiment is to
show that vector spaces induced by ATTRACT-REPEL exhibit better intrinsic and extrinsic
performance when deployed in language understanding tasks.

6.5.3 Results and Discussion

Table 6.3 shows the effects of monolingual and cross-lingual semantic specialisation of four
well-known distributional vector spaces for the SimLex languages. Monolingual speciali-
sation leads to very strong improvements in the SimLex performance across all languages.
Cross-lingual specialisation brings further improvements, with all languages benefiting from
sharing the cross-lingual vector space. German and Italian in particular show strong evidence
of effective transfer (+0.19 / +0.11 over monolingual specialisation), with Italian vectors’
performance coming close to the top-performing English ones.

Comparison to Baselines Table 6.3 gives an exhaustive comparison of ATTRACT-REPEL

to counter-fitting: ATTRACT-REPEL achieved substantially stronger performance in all
experiments. I believe these results conclusively show that the fine-grained updates and

14ATTRACT-REPEL hyperparameters used are: δsim = 0.6, δant = 0.0 and λreg = 10−9, which achieved the
best performance when tuned for the original SimLex languages. The largest available PPDB size was used for
the six languages with available PPDB (French, Spanish, Portuguese, Polish, Bulgarian and Dutch).
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Word Vectors English German Italian Russian
Monolingual Distributional Vectors 0.32 0.28 0.36 0.38
COUNTER-FITTING: Mono-Syn 0.45 0.24 0.29 0.46
COUNTER-FITTING: Mono-Ant 0.33 0.28 0.47 0.42
COUNTER-FITTING: Mono-Syn + Mono-Ant 0.50 0.26 0.35 0.49
COUNTER-FITTING: Cross-Syn 0.46 0.43 0.45 0.37
COUNTER-FITTING: Mono-Syn + Cross-Syn 0.47 0.40 0.43 0.45
COUNTER-FITTING: Mono-Syn + Mono-Ant + Cross-Syn + Cross-Ant 0.53 0.41 0.49 0.48
ATTRACT-REPEL: Mono-Syn 0.56 0.40 0.46 0.53
ATTRACT-REPEL: Mono-Ant 0.42 0.30 0.45 0.41
ATTRACT-REPEL: Mono-Syn + Mono-Ant 0.65 0.43 0.56 0.56
ATTRACT-REPEL: Cross-Syn 0.57 0.53 0.58 0.46
ATTRACT-REPEL: Mono-Syn + Cross-Syn 0.61 0.58 0.59 0.54
ATTRACT-REPEL: Mono-Syn + Mono-Ant + Cross-Syn + Cross-Ant 0.71 0.62 0.67 0.61

Table 6.3 Multilingual SimLex-999. The effect of using the COUNTER-FITTING and
ATTRACT-REPEL procedures to inject mono- and cross-lingual synonymy and antonymy
constraints into the four collections of distributional word vectors. The best results set the
new state-of-the-art performance for all four languages.

L2 regularisation employed by ATTRACT-REPEL present a better alternative to the context-
insensitive attract/repel terms and pair-wise regularisation employed by counter-fitting.

State-of-the-Art Wieting et al. (2016) note that the hyperparameters of the widely used
Paragram-SL999 vectors (Wieting et al., 2015) are tuned on SimLex-999, and as such are
not comparable to methods which hold out the dataset. This implies that further work which
uses these vectors (e.g., (Mrkšić et al., 2016; Recski et al., 2016)) as the starting point does
not yield meaningful high scores either. The English score of 0.71 on the Multilingual
SimLex-999 reported here corresponds to 0.751 on the original SimLex-999. As such, it
outperforms the 0.706 score reported by Wieting et al. (2016) and sets a new high score for
this dataset. Similarly, the SimVerb-3500 score of these vectors is 0.674, outperforming the
current state-of-the-art score of 0.628 reported by Gerz et al. (2016).

Word Vectors EN DE IT RU
Random Initialisation (No Information) 0.01 -0.03 0.02 -0.03

ATTRACT-REPEL: Monolingual Constraints 0.54 0.33 0.29 0.35
ATTRACT-REPEL: Mono + Cross-Lingual Constraints 0.66 0.49 0.59 0.51

Distributional (Wikipedia) Vectors 0.32 0.31 0.28 0.19
ATTRACT-REPEL: Monolingual Constraints 0.61 0.48 0.53 0.52

ATTRACT-REPEL: Mono + Cross-Lingual Constraints 0.66 0.60 0.65 0.54

Table 6.4 Multilingual SimLex-999. The effect of injecting linguistic constraints into: 1)
random vectors initialised using the XAVIER initialisation (Glorot and Bengio, 2010); or 2)
distributional WORD2VEC vectors trained on the latest Wikipedia dumps.
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Mono. SimLex Languages PPDB available No PPDB available
Spec. EN DE IT RU NL FR ES PT PL BG HR HE GA VI FA SV

English 0.65 - 0.69 0.70 0.70 0.70 0.72 0.72 0.70 0.70 0.68 0.70 0.66 0.65 0.67 0.68 0.70
German 0.43 0.61 - 0.58 0.56 0.55 0.60 0.59 0.56 0.54 0.52 0.53 0.50 0.49 0.48 0.51 0.55
Italian 0.56 0.69 0.65 - 0.64 0.67 0.68 0.68 0.66 0.66 0.62 0.63 0.59 0.60 0.58 0.61 0.63
Russian 0.56 0.63 0.59 0.62 - 0.61 0.61 0.62 0.58 0.60 0.61 0.59 0.56 0.57 0.58 0.58 0.60

Table 6.5 SimLex-999 performance. Tying the SimLex languages into bilingual vector
spaces with 16 different languages. The first number in each row represents monolingual
specialisation. All but two of the bilingual spaces improved over these baselines. The EN-FR
vectors set a new high score of 0.754 on the original (English) SimLex-999.

Starting Distributional Spaces Table 6.4 repeats the previous experiment with two differ-
ent sets of initial vector spaces: a) randomly initialised word vectors; and b) skip-gram with
negative sampling vectors trained on the latest Wikipedia dumps. The randomly initialised
vectors serve to decouple the impact of injecting external knowledge from the informa-
tion embedded in the distributional vectors. The random vectors benefit from both mono-
and cross-lingual specialisation: the English performance is surprisingly strong, with other
languages suffering more from the lack of initialisation.

When comparing distributional vectors trained on Wikipedia to the high-quality word
vector collections used in Table 6.3, the Italian and Russian vectors in particular start from
substantially weaker SimLex scores. The difference in performance is largely mitigated
through semantic specialisation. However, all vector spaces still exhibit weaker performance
compared to those in Table 6.3. This shows that the quality of initial distributional vectors is
important, but can in large part be compensated for through semantic specialisation.

Bilingual Specialisation Table 6.5 shows the effect of combining the four original Sim-
Lex languages with each other and with twelve other languages. Bilingual specialisation
substantially improves over monolingual specialisation for all language pairs. This indicates
that the effect of positive semantic transfer is language independent to a large extent.

Interestingly, even though no monolingual synonymy constraints are used for the six
right-most languages, combining them with the SimLex languages still improved word vector
quality for these four high-resource languages. The reason why even resource-deprived
languages such as Irish help improve vector space quality of high-resource ones such as
English or Italian is that they provide implicit indicators of semantic similarity. English
words which map to the same Irish word are likely to be synonyms, even if those English
pairs are not present in the PPDB datasets (Faruqui and Dyer, 2014).
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Distributional Vectors + English + German + Italian + Russian
Hebrew 0.28 0.51 0.46 0.52 0.45
Croatian 0.21 0.62 0.49 0.58 0.54
English 0.32 - 0.61 0.66 0.63
German 0.28 0.58 - 0.55 0.49
Italian 0.36 0.69 0.66 - 0.63
Russian 0.38 0.56 0.52 0.55 -

Table 6.6 Bilingual semantic specialisation for: a) Hebrew and Croatian; and b) the original
SimLex languages. Each row shows how SimLex scores for that language improve when its
distributional vectors are tied into a bilingual space with the four high-resource languages.

Lower-Resource Languages The previous experiment showed that bilingual speciali-
sation further improves the (already) high-quality estimates for high-resource languages.
However, it does little to show how much (or if) the word vectors of lower-resource languages
improve during bilingual specialisation. Table 6.6 investigates this proposition using the
newly collected SimLex datasets for Hebrew and Croatian.

Tying the distributional vectors of these two languages (which have no monolingual
synonymy constraints) into cross-lingual spaces with high-resource ones (which do, in this
case from PPDB) leads to substantial improvements in SimLex performance. Table 6.6 also
shows how the distributional vectors of the four SimLex languages improve when tied to other
languages (in each row, monolingual constraints are used only for the ‘added’ high-resource
language). Hebrew and Croatian exhibit similar trends to the original SimLex languages:
tying to English and Italian leads to stronger gains than tying to the morphologically more
complex languages like German and Russian.

Public Repository of Specialised Word Vectors Across all experiments in this chapter,
tying other languages’ word vector spaces to semantically specialised English word vectors
resulted in strong SimLex-999 performance. This shows that bilingual ATTRACT-REPEL

specialisation with English promises to produce high-quality vector spaces for many lower-
resource languages which have coverage among the 271 BabelNet languages (but are not
available in monolingual resources such as PPDB). To make such resources readily available,
I produced bilingual vector space collections which combine English with 51 other languages:
the 16 presented in this chapter and another 35 world languages. To produce these specialised
bilingual word vector collections, cross-lingual constraints drawn from BabelNet were
combined with monolingual English constraints from PPDB. These bilingual word vector
spaces are publicly available at: www.github.com/nmrksic/attract-repel
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Model EN-IT EN-DE
EN IT EN DE

(Mikolov et al., 2013a) 0.32 0.28 0.32 0.28
(Hermann and Blunsom, 2014a) 0.40 0.34 0.38 0.35
(Gouws et al., 2015) 0.25 0.18 0.25 0.14
(Vulić and Korhonen, 2016a) 0.32 0.27 0.32 0.33
(Vulić and Moens, 2016) 0.23 0.25 0.20 0.25
Bilingual ATTRACT-REPEL 0.70 0.69 0.69 0.61

Table 6.7 Comparison of the intrinsic quality (SimLex-999) of bilingual spaces produced
by the ATTRACT-REPEL method to those produced by five state-of-the-art methods for
constructing bilingual vector spaces.

Existing Bilingual Spaces Table 6.7 compares the SimLex-999 performance of bilingual
English-Italian and English-German vectors produced by ATTRACT-REPEL to five previously
proposed approaches for constructing bilingual vector spaces. For both languages in both
language pairs, ATTRACT-REPEL achieves substantial gains over all of these methods. The
next chapter will investigate whether these differences in intrinsic performance lead to
substantial gains in downstream dialogue state tracking evaluation.

6.6 Conclusion

This chapter presented a novel ATTRACT-REPEL method for injecting linguistic constraints
into word vector spaces. The procedure semantically specialises word vectors by jointly
injecting mono- and cross-lingual synonymy and antonymy constraints, creating unified cross-
lingual vector spaces which achieve state-of-the-art performance on the well-established
SimLex-999 dataset and its multilingual variants. ATTRACT-REPEL can also induce high-
quality vectors for lower-resource languages by tying them into bilingual vector spaces with
high-resource ones. The next chapter investigates whether the substantial gains in intrinsic
performance translate to gains in the downstream task of dialogue state tracking.





Chapter 7

Belief Tracking across Languages

Language understanding methods for dialogue systems have traditionally focused on English
as the lingua franca of the research community. Consequently, the problem of deploying
existing spoken dialogue system frameworks to other languages is relatively underexplored.
This chapter delves into this problem, investigating the important factors for applying research
presented in previous chapters to two new languages: Italian and German. The first part of
the chapter studies the interplay between semantic specialisation of word embeddings and
downstream language understanding performance; this work was first presented in Mrkšić
et al. (2017b). The second part of the chapter goes further, investigating the importance of
modelling morphological phenomena for achieving robust performance in languages with
complex morphology; this work was first presented in Vulić, Mrkšić, et al. (2017).

7.1 Motivation

An important motivation for training word vectors is to improve the lexical coverage of
supervised models for language understanding tasks such as question answering (Iyyer et al.,
2014) or textual entailment (Rocktäschel et al., 2016). In this chapter, dialogue state tracking
(DST) acts as the extrinsic task for evaluating word vector quality. Dialogue State Tracking
involves understanding the goals expressed by the user and updating the system’s distribution
over such goals as the conversation progresses and new information becomes available. As
such, any model which relies on word embeddings as the building blocks of DST models
depends on the quality of their embedded semantics to make correct decisions.1

1As shown in Chapter 4, representation models that do not distinguish between synonyms and antonyms
can have grave implications in downstream language understanding applications such as dialogue state tracking.
For instance, a user looking for ‘an affordable Chinese restaurant in west Cambridge’ does not want a
recommendation for ‘an expensive Thai place in east Oxford’.
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English

PRICE RANGE

cheap
moderate
expensive

AREA

centre
north
west
south
east

FOOD

English
Italian
German
French
...

Italian

PREZZO

economico
moderato
caro

AREA

centro
nord
ovest
sud
est

CIBO

Inglese
Italiano
Tedesco
Francese
...

German

PREISKLASSE

Billig
Mäßig
Teuer

GEGEND

Zentrum
Norden
Westen
Süden
Osten

ESSEN

Englisch
Italiänisch
Deutsch
Französisch
...

Figure 7.1 Subsets of the Cambridge Restaurants domain ontology in three languages.

Figure 7.2 Example dialogues in three languages (EN, IT, DE), showing that belief states are
independent of language, but instead grounded by the underlying domain ontology.
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Language-Agnostic DST Model To detect intents in user utterances, most existing models
rely on either (or both): 1) Spoken Language Understanding models which require large
amounts of annotated training data; or 2) hand-crafted, domain-specific lexicons which try to
capture lexical and morphological variation. The Neural Belief Tracker (NBT), presented in
Chapter 5, overcomes both issues by reasoning purely over pre-trained word vectors (Mrkšić
et al., 2017a). The NBT learns to compose these vectors into intermediate utterance and
context representations. These are then used to decide which of the ontology-defined intents
(goals) have been expressed by the user.

The NBT training procedure keeps the initial word vectors fixed. That way, at test time,
unseen words semantically related to familiar slot values (i.e., affordable or cheaper to cheap)
are recognized purely by their position in the original vector space. Thus, it is essential that
deployed word vectors are specialized for semantic similarity, as distributional effects which
keep antonymous words’ vectors together can be very detrimental to DST performance (e.g.,
by matching northern to south or inexpensive to expensive). In this chapter, DST performance
of the NBT model powered by different word vector collections is used as the principal
measure of the vectors suitability for downstream language understanding tasks.

7.1.1 The Multilingual WOZ 2.0 Dataset

The downstream evaluation in this chapter is based on the WOZ 2.0 dataset collected by
Wen et al. (2017) and Mrkšić et al. (2017a). The dataset is based on the same ontology used
for the second Dialogue State Tracking Challenge (Henderson et al., 2014a). It consists
of 1,200 Wizard-of-Oz (Fraser and Gilbert, 1991) dialogues in which Amazon Mechanical
Turk users assumed the role of the dialogue system or the caller looking for restaurants in
Cambridge, UK. Since users typed instead of using speech and interacted with intelligent
assistants, the language they used was more sophisticated than in case of DSTC2, where
users would quickly adapt to the system’s inability to cope with complex queries.

For the experiments in this chapter, the ontology and all 1,200 dialogues were translated
to Italian and German using gengo.com, a web-based human translation platform. Figures
7.1 and 7.2 show subsets of the translated ontology, as well as an example dialogue across
three languages. The translation was performed by 24 professional translators, instructed to
consider full dialogue context, rather than to translate specific utterances without considering
the preceding dialogue turns. This means that the performance across languages is directly
comparable, with the DST models’ performance acting as an indicator of the models’ (and
the employed word vectors’) suitability for each of the target languages.2

2The Italian and German DST datasets created for this work (henceforth refered to as the Multilingual WOZ
2.0 dataset) are available at www.github.com/nmrksic/attract-repel.
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The evaluation metric used across all DST experiments is the joint goal accuracy, which
represents the proportion of test set dialogue turns where all the search constraints expressed
up to that point in the conversation were decoded correctly.

7.2 The Importance of Semantics

The work on semantic specialisation in Chapter 6 showed that large-scale semantic lexicons
such as BabelNet can be used to craft monolingual or cross-lingual vectors of high semantic
quality. As an intrinsic measure of semantic quality, previous experiments reported Spear-
man’s average rank correlation with the SimLex-999 gold standard dataset. The experiments
in this section investigate two different propositions:

1. Intrinsic versus Downstream Performance As mono- and cross-lingual semantic
specialisation improves the semantic content of word vector collections according
to SimLex-999, one could expect that the NBT model would perform higher-quality
belief tracking when it makes use of the specialised word vectors. This experiment in-
vestigates the difference in DST performance for English, German and Italian when the
NBT model employs the following word vector collections: 1) distributional word vec-
tors; 2) monolingual semantically specialised vectors; and 3) monolingual subspaces of
the cross-lingual semantically specialised EN-DE-IT-RU vectors (presented in Chapter
6). For each language, the experiments compare the reported NBT performance to
the performance the NBT model achieves using five state-of-the-art bilingual vector
spaces used as baselines in Chapter 6 (Gouws et al., 2015; Hermann and Blunsom,
2014a; Mikolov et al., 2013a; Vulić and Korhonen, 2016a; Vulić and Moens, 2016).

2. Training a Multilingual DST Model The values expressed by the domain ontology
(e.g., cheap, north, Thai, etc.) are language independent. If one assumes common
semantic grounding across languages, the ontologies can be decoupled from the
dialogue corpora, and a single ontology (i.e., its values’ vector representations) can be
used as the source of target labels across all languages. Since high-performing English
DST is attainable, the Italian and German ontologies (i.e., all slot-value pairs in these
ontologies) are replaced by the original English ontology (see Figure 7.2). The use
of a single ontology coupled with cross-lingual vectors allows one to combine the
training data for all languages and train a single NBT model capable of performing
belief tracking across all three languages at once. Given a high-quality cross-lingual
vector space, combining the languages effectively increases the training set size and
should therefore lead to improved performance across all languages.
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Word Vector Space English Italian German
EN-IT/EN-DE (Mikolov et al., 2013a) 78.2 71.1 50.5
EN-IT/EN-DE (Hermann et al., 2014a) 71.7 69.3 44.7
EN-IT/EN-DE (Gouws et al., 2015) 75.0 68.4 45.4
EN-IT/EN-DE (Vulić and Korhonen, 2016a) 81.6 71.8 50.5
EN-IT/EN-DE (Vulić et al., 2016) 72.3 69.0 38.2
Monolingual Distributional Vectors 77.6 71.2 46.6
A-R: Monolingual Specialisation 80.9 72.7 52.4
A-R: Cross-Lingual Specialisation 80.3 75.3 55.7
Multilingual Model: English Ontology Grounding 82.8 77.1 57.7

Table 7.1 NBT model accuracy across three languages. Each figure shows the performance
of the model trained using the subspace of the given vector space corresponding to the target
language. For the English figures, the stronger of the EN-IT / EN-DE figures is shown.

7.2.1 Results and Discussion

Importance of Underlying Word Vectors The DST performance of the NBT model
on English, German and Italian WOZ 2.0 datasets is shown in Table 7.1.3 The first five
rows show the performance when the model employs the five baseline word vector spaces.
The subsequent three rows show the performance of: a) distributional word vectors; b)
monolingual semantically specialised variants of these vectors; and c) their EN-DE-IT-RU
cross-lingual specialisation. The last row shows the performance of the multilingual DST
model. In this experiment, the training data for all three languages is combined and used to
train a single model which uses cross-lingual vectors coupled with the English ontology to
do belief tracking across all three languages. As can be seen in Table 7.1, the multilingual
model improves over all previous monolingual models across all three languages.

The results in Table 7.1 show that both types of specialisation improve over DST per-
formance achieved using the distributional vectors or the five baseline bilingual spaces.
Interestingly, the bilingual vectors of Vulić and Korhonen (2016a) outperform the specialised
vectors for English (but not Italian or German) despite their weaker SimLex performance,
showing that intrinsic evaluation does not capture all relevant aspects pertaining to word
vectors’ usability for downstream tasks.

Bootstrapping DST Models Figure 7.3 investigates the usefulness of multilingual training
for bootstrapping DST models for new languages with less data: the two figures display the

3All DST experiments in this chapter use an NBT-CNN model with the rule-based belief state update.
As seen in Chapter 5 (Section 5.4.2), the performance of the statistical belief state update shows substantial
variance across datasets. To mitigate this factor and better understand the impact of the underlying word vectors
on language understanding performance, all experiments in this chapter use the rule-based belief state update.
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Figure 7.3 Joint goal accuracy of the NBT-CNN model for Italian (left) and German (right)
WOZ 2.0 test sets as a function of the number of in-language dialogues used for training.

Italian / German performance of models trained using different proportions of the in-language
training datasets. The top-performing dash-dotted curve shows the performance of the model
trained using the language-specific dialogues and all of the English training data.

The multilingual DST models offer substantial performance improvements over the
monolingual ones, with particularly large gains in the low-data scenarios investigated in
Figure 7.3 (dash-dotted purple line). This figure also shows that the difference in performance
between mono- and cross-lingually specialised vectors is not very substantial. Again, the
large disparity in SimLex scores induced only minor improvements in DST performance.

Conclusions In summary, these results show that: a) semantically specialised vectors
benefit DST performance; b) large gains in SimLex scores do not always induce large down-
stream gains; and c) high-quality cross-lingual spaces facilitate transfer learning between
languages and offer an effective method for bootstrapping DST models for lower-resource
languages. Finally, German DST performance is substantially weaker than both English and
Italian, corroborating the intuition that linguistic phenomena such as cases and compounding
make German DST very challenging. The second part of this chapter delves deeper into
this problem, showing that language-specific morphology can be modelled through the
underlying word vector space, leading to substantial gains in downstream performance for
morphologically rich languages such as German.
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7.3 The Importance of Morphology

Morphologically rich languages, in which “substantial grammatical information... is ex-
pressed at word level” (Tsarfaty et al., 2010), pose specific challenges for NLP methods.
This is not always considered when techniques are evaluated on languages such as English
or Chinese, which do not have rich morphology. In the case of distributional vector space
models, morphological complexity brings two challenges to the fore:

1. Estimating Rare Words: A single lemma can have many different surface realisations.
Naively treating each realisation as a separate word leads to sparsity problems and a
failure to exploit their shared semantics. On the other hand, lemmatising the entire
corpus can obfuscate the differences that exist between different word forms even
though they share some aspects of meaning.

2. Embedded Semantics: Morphology can encode semantic relations such as antonymy
(e.g., literate and illiterate, expensive and inexpensive) or near-synonymy (e.g., north,
northern, northerly, northernmost, etc.).

7.3.1 Morph-Fitting

The two challenges can be tackled jointly by introducing a resource-light vector space
fine-tuning procedure termed morph-fitting. Unlike the work on semantic specialisation
presented in the previous chapter, the proposed method does not require curated knowledge
bases or gold lexicons. Instead, it makes use of the observation that morphology implicitly
encodes semantic signals pertaining to synonymy (e.g., German word inflections katalanisch,
katalanischem, katalanischer denote the same semantic concept in different grammatical
roles), and antonymy (e.g., mature vs. immature), capitalising on the proliferation of word
forms in morphologically rich languages. Morph-fitting is steered by a set of linguistic
constraints derived from simple language-specific rules which describe (a subset of) mor-
phological processes in a language. The constraints emphasise similarity on one side (by
extracting inflectional morphological synonyms), and antonymy on the other (by extracting
derivational morphological antonyms). Morph-fitting is illustrated in Figure 7.4.

The key idea of the fine-tuning process is to pull synonymous examples described by the
constraints closer together in the transformed vector space, while at the same time pushing
antonymous examples away from each other. The injection of morphological constraints
enables: a) the estimation of more accurate vectors for low-frequency words which are
linked to their high-frequency forms by the constructed constraints, tackling the data sparsity
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rispettoso

rispettosa

rispettosi

irrispettoso

irrispettosa

irrispettosi

Figure 7.4 Morph-fitting in Italian. Representations for rispettoso, rispettosa, rispettosi (EN:
respectful), are pulled closer together in the vector space (solid lines; ATTRACT constraints).
At the same time, the model pushes them away from their antonyms (dashed lines; REPEL

constraints) irrispettoso, irrispettosa, irrispettosi (EN: disrespectful), obtained through
morphological affix transformation captured by language-specific rules.

problem;4 and b) specialising the distributional space to distinguish between similarity and
relatedness, supporting language understanding tasks such as dialogue state tracking.

As in the previous chapter, the focus is on four languages with varying levels of morpho-
logical complexity: English (EN), Italian (IT), German (DE) and Russian (RU). The starting
point is a comprehensive list of word tokens for each language: vocabularies Wen, Wde, Wit ,
Wru are compiled by retaining all word forms from the four Wikipedias with word frequency
over 10, as shown in Table 7.2. The next step is extracting sets of linguistic constraints from
these vocabularies using a set of simple language-specific if-then-else rules. Examples of
generated constraints are shown in Table 7.3.5 These constraints are then used as input for
the ATTRACT-REPEL algorithm, presented in the previous chapter.

7.3.2 Language-Specific Rules and Constraints

The ATTRACT-REPEL procedure is entirely driven by the input ATTRACT and REPEL sets
of constraints. As shown in Chapter 6, these can be extracted from a variety of semantic
databases such as WordNet (Miller, 1995) or BabelNet (Ehrmann et al., 2014; Navigli
and Ponzetto, 2012). Morph-fitting takes an alternative approach, extracting constraints
without curated knowledge bases in a spectrum of languages by exploiting inherent language-

4For instance, the vector for the word katalanischem, which occurs only 9 times in the German Wikipedia
will be pulled closer to the more reliable vectors for katalanisch and katalanischer, with frequencies of 2097
and 1383, respectively.

5A native speaker can easily come up with these sets of morphological rules (or at least with a reasonable
subset of them) without any linguistic training. What is more, the rules for DE, IT, and RU were created by
non-native, non-fluent speakers with a limited knowledge of the three languages, exemplifying the simplicity
and portability of the approach.
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Language Vocabulary Size Synonym Count Antonym Count
English 1,368,891 231,448 45,964
German 1,216,161 648,344 54,644
Italian 541,779 278,974 21,400

Russian 950,783 408,400 32,174

Table 7.2 Vocabulary sizes and counts of ATTRACT (synonym) and REPEL (antonym)
constraints generated by the language-specific rules for each language.

specific properties related to the morphology of each language. This relaxation ensures wider
portability to languages and domains without readily available or adequate resources.

The core difference between inflectional and derivational morphology can be summarised
as follows: the former refers to a set of processes through which the word form expresses
meaningful syntactic information, e.g., verb tense, without any change to the semantics of
the word. On the other hand, derivational morphology refers to the formation of new words
with semantic shifts in meaning (Cotterell and Schütze, 2017; Haspelmath and Sims, 2013;
Lazaridou et al., 2013; Schone and Jurafsky, 2001; Zeller et al., 2013).

Extracting ATTRACT Pairs To synthesise ATTRACT constraints, morph-fitting uses in-
flectional morphology rules which preserve the full meaning of a word, modifying it only
to reflect grammatical roles such as verb tense or case markers (e.g., (en_read, en_reads)
or (de_katalanisch, de_katalanischer)). English is widely recognised as a morphologi-
cally simple language (Avramidis and Koehn, 2008; Cotterell et al., 2016). Consequently,
morph-fitting uses only two inflectional rules for this language:

1. (R1) If w1,w2 ∈ Wen, where w2 = w1 + ing/ed/s, then add (w1,w2) and (w2,w1) to
the set of ATTRACT constraints A. This rule yields pairs such as (look, looks), (look,
looking), (look, looked), and many others.

2. (R2) Let w[: −1] denote a function which strips the last character from word w. Then,
if w1 ends with the letter e and w1 ∈Wen and w2 ∈Wen, where w2 = w1[: −1] + ing/ed,
then add (w1,w2) and (w2,w1) to A. This rule creates pairs such as (create, creating),
(create, created), and many others.

The other three languages, with more complicated morphology, require a larger number
of rules. In Italian, the set of rules spans: 1) the regular formation of plural (libro / libri);
2) regular verb conjugation (aspettare / aspettiamo); 3) regular formation of past participle
(aspettare / aspettato); and 4) rules regarding grammatical gender (bianco / bianca). In addi-
tion to these, another set of rules is defined for German and Russian: 5) regular declension:
(de_asiatisch / de_asiatischem), (ru_трава / ru_траве), (ru_травa / ru_травой), etc.
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Language Constraint Relation Rule

EN

(sunflower, sunflowers) SYN Singular-Plural
(suffer, suffered) SYN Past Participle
(ambiguous, unambiguous) ANT Derivational Antonymy
(regular, irregular) ANT Derivational Antonymy

IT

(zucchero, zuccheri) SYN Singular-Plural
(vincere, vincono) SYN Conjugation
(rapido, rapida) SYN Gender
(visibilità, invisibilità) ANT Derivational Antonymy

DE

(Kategorie, Kategorien) SYN Singular-Plural
(kaufst, kauft) SYN Conjugation
(katalanisch, katalanischem) SYN Declension
(dokumentiert, undokumentiert) ANT Derivational Antonymy

Table 7.3 Example synonymous (inflectional) and antonymous (derivational) constraints
generated by the morph-fitting approach across three languages.

Extracting REPEL Pairs As another source of implicit semantic information, morph-
fitting synthesises a set of plausible derivational antonyms. These consist of pairs of words
that denote concepts with opposite meaning, generated through a derivational process. To
generate potential antonyms, a standard set of English antonymy prefixes is used: APen =

{dis, il, un, in, im, ir, mis, non, anti} (Fromkin et al., 2013). The antonym generation rule is
simple: If w1,w2 ∈Wen, such that w2 is generated by adding a prefix from APen to w1, then
add (w1,w2) and (w2,w1) to the set of REPEL constraints R. This rule generates pairs such
as (advantage, disadvantage) and (regular, irregular). An additional rule replaces the suffix
-ful with -less, extracting antonyms such as (careful, careless).

Following the same principle for the other languages, the following sets of antonymy
prefixes are used: APde = {un, nicht, anti, ir, in, miss}, APit = {in, ir, im, anti}, and APru = {не,
анти}. For instance, the procedure generates Italian pairs (rispettoso, irrispettoso), (rispet-
tosa, irrispettosa) and (rispettosi, irrispettosi) (see Figure 7.4). For German, another rule
targeting suffix replacement is used: -voll is replaced by -los (geschmackvoll / geschmacklos).

The set of REPEL constraints is expanded further by transitively combining antonymy
pairs from the previous step with inflectional ATTRACT pairs. This step yields additional
constraints such as (rispettosa / irrispettosi, rispettoso / irrispetosa, etc.) (see Figure 7.4).
The final Attract and Repel constraint counts are shown in Table 7.2. Table 7.3 gives an
overview of the kinds of constraints generated by the morph-fitting procedure.
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Use of Existing Morphological Resources The use of morphological resources to im-
prove the representations of morphemes and words is an active area of research. The majority
of proposed architectures encode morphological information, provided either as gold standard
morphological resources (Sylak-Glassman et al., 2015), who use CELEX (Baayen et al.,
1995), or as an external analyser such as Morfessor (Creutz and Lagus, 2007). This informa-
tion is combined with distributional information at training time in the language modelling
objective function (Bhatia et al., 2016; Botha and Blunsom, 2014; Cotterell and Schütze,
2015; Luong et al., 2013; Qiu et al., 2014, i.a.). The key idea is to learn a morphological
composition function (Cotterell and Schütze, 2017; Lazaridou et al., 2013) which synthesises
the representation of a word given the representations of its constituent morphemes. Contrary
to morph-fitting, these approaches typically rely on external morphological resources.

7.3.3 Experimental Setup

Starting Word Vectors For each of the four languages, the skip-gram with negative
sampling (SGNS) model (Mikolov et al., 2013b) is trained on the latest Wikipedia dump of
each language. 300-dimensional word vectors are induced, with the frequency cut-off set to
10. The vocabulary sizes for each language are shown in Table 7.2. Other SGNS parameters
were set to their standard values: 15 epochs, 15 negative samples, global learning rate: .025,
subsampling rate: 1e−4. These vectors are henceforth referred to as SGNS-LARGE.

To assess its dependence on the initial distributional vectors, morph-fitting is also applied
to six well-known distributional spaces across three languages (EN, IT and DE), available
from prior work (Dinu et al., 2015; Luong et al., 2015b; Mikolov et al., 2013a; Pennington
et al., 2014; Vulić and Korhonen, 2016a).

Morph-fitting Variants Two different morph-fitting variants are investigated: 1) MFIT-
A, which uses only the ATTRACT constraints generated using rules based on inflectional
morphology; and 2) MFIT-AR, which includes the derivational REPEL constraints as well.

Morph-fixed Vectors Morph-fixing is a simple baseline method which uses the same
knowledge as morph-fitting. This approach fixes the vector of each word to the distributional
vector of its most frequent inflectional synonym, tying the vectors of low-frequency words to
their more frequent inflections. For each word w1, the set of M+1 words Ww1 is constructed,
consisting of the word w1 itself and all M words which co-occur with w1 in the generated
ATTRACT constraints. The word w′

max with the maximum frequency in the training data is
then chosen as the pivot, and all other word vectors in Ww1 are replaced with this vector. The
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Initial Vector Space Distrib. Vectors + MFIT-A + MFIT-AR
EN: GloVe-6B (300)

0.324 0.376 0.438
(Pennington et al., 2014)
EN: SG-BOW2-PW (300)

0.339 0.385 0.439
(Mikolov et al., 2013a)
DE: SG-DEPS-PW (300)

0.267 0.318 0.325
(Vulić and Korhonen, 2016a)

DE: BiSkip-DE (256)
0.354 0.414 0.421

(Luong et al., 2015b)
IT: SG-DEPS-PW (300)

0.237 0.351 0.391
(Vulić and Korhonen, 2016a)

IT: CBOW5-Wacky (300)
0.363 0.417 0.446

(Dinu et al., 2015)

Table 7.4 Results on multilingual SimLex-999 (EN, DE, IT) with two morph-fitting variants.

morph-fixed vectors (MFIX) serve as the primary baseline, since they outperformed another
baseline method based on stemming across all intrinsic and extrinsic experiments.

7.3.4 Intrinsic Evaluation

Experiments Across Languages Both morph-fitting variants are tested across all lan-
guages. The results are summarised in Table 7.4, where six well-known distributional vector
spaces for EN, DE and IT are morph-fitted using morphological constraints for their vocab-
ularies. The scores in this table confirm the effectiveness and robustness of morph-fitting
across languages, suggesting that the idea of fitting to morphological constraints is indeed
language-agnostic, given the set of language-specific rule-based constraints.

Figures 7.6a-7.6d show the same trends in performance for the morph-fitted SGNS-LARGE

vectors. The figure also demonstrates that morph-fitted vector spaces consistently outperform
the morph-fixed ones. The comparisons between MFIT-A and MFIT-AR show that both sets
of constraints are important for the fine-tuning process. MFIT-A yields consistent gains over
the initial spaces, and (consistent) further improvements are achieved by also incorporating
the antonymous REPEL constraints.

Comparison to Other Specialisation Methods Other specialisation models can be used
in place of ATTRACT-REPEL, driven by the same set of morphological constraints. Figure
7.5 compares ATTRACT-REPEL to retrofitting (Faruqui et al., 2015) and counter-fitting
(presented in Chapter 4). The results show that ATTRACT-REPEL substantially outperforms
these methods across all languages. In line with the results presented in Chapter 6, the
context-sensitive vector space updates again make far better use of the available semantic
constraints than the context-insensitive global updates performed by retro- and counter-fitting.



7.3 The Importance of Morphology 107

en:GloVe en:BOW2 de:DEPS de:BiSkip it:DEPS it:CBOW5
Word Vector Space

0.20

0.25

0.30

0.35

0.40

0.45
Sp

ea
rm

an
’s

ρ
co

rr
el

at
io

n
sc

or
e

Distrib
RF
CF
MFit-AR

Figure 7.5 A comparison of ATTRACT-REPEL (the MFIT-AR variant) with retrofitting (RF)
and counter-fitting (CF). The same six distributional word vector spaces from Table 7.4 are
used as the starting points for all three procedures.

7.3.5 Downstream Evaluation

The Neural Belief Tracking (NBT) models for English, German and Italian are trained using
the four variants of the SGNS-LARGE vectors: the initial distributional vectors, the morph-
fixed vectors, and the two variants of the morph-fitted vectors (MFIT-A and MFIT-AR).

Previous experiments showed that semantic specialisation of the employed word vectors
benefits DST performance across all three languages. However, large gains on SimLex-999
did not always induce correspondingly large gains in downstream performance. The following
experiments investigate the extent to which morph-fitting improves DST performance, and
whether these gains exhibit stronger correlation with intrinsic performance.

Results and Discussion The dark bars (against the right axes) in Figure 7.6 show the
DST performance of NBT models making use of the four word vector collections. Italian
and German benefit from both kinds of morph-fitting: Italian performance increases from
74.1 → 78.1 (MFIT-A) and German performance rises even more: 60.6 → 66.3 (MFIT-
AR), setting new state-of-the-art scores for both datasets. The morph-fixed vectors do not
enhance DST performance, probably because fixing word vectors to their highest-frequency
inflectional form eliminates useful semantic content encoded in the original vectors. On the
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Figure 7.6 An overview of the results (Spearman’s rank correlation) for four languages on
SimLex-999 (grey bars, left y axis) and the downstream DST performance (dark bars, right y
axis). The four-by-two bars for each language correspond to the SGNS-LARGE vectors, their
morph-fixed variant, and the two morph-fitted versions of these vector collections. Note that
there are no DST datasets available for Russian.
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other hand, morph-fitting makes use of this information, supplementing it with semantic
relations between different morphological forms. These conclusions are in line with the
SimLex gains, where morph-fitting outperforms both distributional and morph-fixed vectors.

Intrinsic versus Downstream Performance English performance shows little variation
across the four word vector collections investigated in the experiments. This corroborates
the intuition that, as a morphologically simpler language, English stands to gain less from
fine-tuning the morphological variation for downstream applications. This result again points
at the discrepancy between intrinsic and extrinsic evaluation: the considerable gains in
SimLex performance do not necessarily induce similar gains in downstream performance.
Additional discrepancies between SimLex and downstream DST performance are detected for
German and Italian. Despite the slight drop in SimLex performance with German MFIT-AR
vectors compared to the MFIT-A ones, their relative performance is reversed in the DST task.
The opposite trend is observed in Italian, where the MFIT-A vectors score lower than the
MFIT-AR vectors on SimLex, but higher on the DST task.

In summary, these results show that SimLex is not a perfect proxy for downstream
performance in language understanding tasks. Regardless, its performance does correlate
with downstream performance to a large extent, providing an efficient indicator for the
usefulness of specific word vector collections for extrinsic tasks such as dialogue state
tracking.

7.4 Conclusion

This chapter used two novel non-English Dialogue State Tracking (DST) datasets (in German
and Italian) to show that semantically rich cross-lingual vectors facilitate language transfer
in DST, providing an effective method for bootstrapping belief tracking models for new
languages. The cross-lingual vectors can be used to train a single model that performs DST
in all three languages, in each case outperforming the monolingual model. To the best of my
knowledge, this is the first work on multilingual training of any component of a statistical
dialogue system. The results indicate that multilingual training holds great promise for
bootstrapping language understanding models for other languages, especially for dialogue
domains where data collection is very resource-intensive.

In the second part of the chapter, simple morphological rules for the four languages were
used to improve the semantics of existing word vector collections by relying on semantic
content embedded in sub-word level information. As shown in the DST evaluation, using
this information to further expand the lexical coverage of word vector collections has a very
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strong effect on downstream performance. In fact, improving the semantic content through
morphology had a stronger impact than embedding information from large-scale semantic
lexicons such as BabelNet or PPDB.

Future Work The results in both parts of this chapter highlight the lack of strong correla-
tion between the popular intrinsic evaluation datasets such as SimLex-999 and downstream
language understanding performance in tasks such as dialogue state tracking. An interesting
direction for future work would be to uncover which properties/features of word embeddings
used as building blocks for data-driven language understanding models are the most useful
indicators of strong downstream performance.



Chapter 8

Conclusion

This thesis proposed a data-driven paradigm for performing language understanding in
task-oriented spoken dialogue systems. Even though the investigated dialogue domains are
limited in scope, existing word-based models rely on exact matching supplemented with
hand-crafted semantic lexicons to perform robust language understanding. The proposed
Neural Belief Tracking (NBT) models forsake this delexicalisation paradigm in favour of
reasoning over vectorial representations of words, also known as word embeddings. The
NBT model is fully data-driven: it makes use of the semantic content embedded in word
vectors without making use of any hand-crafted rules or lexicons to infer user goals.

The data-driven approach used by the Neural Belief Tracker is entirely dependent on
the semantic quality of the underlying word vector space. Consequently, a major part
of this thesis investigated the problem of semantic specialisation, where external lexical
information is used to improve the semantic content of word vector collections. Semantic
specialisation is first used to improve the semantic content of monolingual word vectors,
leading to improved performance both when these vectors are used to induce semantic
lexicons for delexicalisation-based models, and when they are used to power the data-driven
Neural Belief Tracker. Subsequently, semantic specialisation is used to induce cross-lingual
vector spaces, facilitating the training of multilingual data-driven language understanding
models. The multilingual models improve over monolingual ones, providing an effective
method for bootstrapping language understanding models for lower-resource languages.

8.1 Summary of Contributions

The presented research on data-driven language understanding models powered by semanti-
cally specialised word vectors offers several important takeaways, summarised next.
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The Power of Delexicalisation The word-based delexicalisation framework proposed by
Henderson et al. (2014c; 2014d) is considered to be the state-of-the-art approach for perform-
ing language understanding in task-oriented spoken dialogue systems. This framework rests
on identifying the occurrences of onotology-defined slot values to extract useful features
for predicting user intent (the belief state). The research presented in this thesis first demon-
strated the power of delexicalisation by extending this approach to construct multi-domain
belief tracking models. These models can use data from disparate dialogue domains for
training, producing a single model which achieves superior performance across all constituent
domains. Moreover, the proposed multi-domain training procedure yields an effective way to
train models for low-resource domains by using knowledge from resource-rich domains to
boost language understanding performance in low-resource ones.

The Limitations of Delexicalisation The presented research next shifts focus to the defi-
ciencies of delexicalisation-based models, scrutinising their dependence on semantic lexicons,
which are lists of rephrasings specified by the system designer to deal with linguistic variation.
For instance, the system designer for a dialogue system built to help users purchase laptops
might hand-code direct mappings from (sequences of) words in user input to specific ontology-
defined intents. An example list of rephrasings for ontology value PRICE=MODERATE

contains potential rephrasings such as: average, reasonable, mid priced, mid range, and 15
others. The construction of such lexicons is an arduous process requiring many iterations
between users and system designers. Even this short list of rephrasings hints at the compli-
cations which permeate the construction of semantic lexicons: specifying a mapping from
mid to moderate introduces a conflict with another slot value, DRIVERANGE=MIDDLE. The
system designer can only decide which rephrasing to use after observing user behaviour with
both and deciding which rephrasing led to higher success rates and user satisfaction.

Inducing Domain-Specific Semantic Lexicons To reduce the human cost of constructing
domain-specific lexicons, the counter-fitting procedure uses pre-trained word vector spaces to
induce lists of potential rephrasings for ontology values. This work highlights the ineptitude
of standard distributional word vector spaces (such as WORD2VEC or GloVe) for this task.
These models are based on the distributional hypothesis, inducing similar representations for
words that occur in similar contexts. While this usually leads to words with similar semantics
being clustered together, it also means that words like expensive and inexpensive become
close neighbours, which is very detrimental for the downstream language understanding task.
The counter-fitting procedure introduces antonymous relations between ontology values,
supplementing the fine-tuning process with similarity and antonymy relations from large-
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scale lexical resources such as the Paraphrase Database (Ganitkevitch et al., 2013). The
resulting vector spaces can be used to induce semantic lexicons which boost the performance
of delexicalisation-based models across two different dialogue domains. However, the
introduction of the expensive counter-fitting procedure breaks the end-to-end learning pipeline
of Henderson’s word-based model, motivating the development of an alternative framework
which can make use of pre-trained word vectors directly.

Data-Driven Language Understanding using Word Vectors The focus of the thesis
next shifts to showing that word vectors can be used as sole building blocks for language
understanding models. The presented Neural Belief Tracking (NBT) models introduce a
novel data-driven framework for language understanding. The data flows from user and
system input to the predicted belief state, starting with fixed word vector representations for
words in the system and user utterance, and using a complex hierarchical neural network
model to predict the new belief state. The model makes use of the semantics embedded in pre-
trained word vector collections to resolve lexical ambiguity, with the internal neural network
parameters capturing domain-specific rephrasings which users employ in the given dialogue
domain. The proposed framework achieves performance superior to the delexicalisation-
based models and removes the need for hand-crafted system components.

Semantic Specialisation improves Downstream Performance The NBT models’ perfor-
mance showed that improving the semantic content of the underlying word vector collections
led to improved performance in downstream language understanding tasks. This motivated
the development of an improved semantic specialisation procedure, which could inject
information about synonymous or antonymous word pairs to boost the semantic content of
pre-trained word vector collections. The ATTRACT-REPEL procedure takes an approach
different from counter-fitting, using a fine-grained tuning procedure which pulls synonyms
close and pushes antonyms away until they are closer (or further) from each other than other
randomly sampled word vectors. The ATTRACT-REPEL procedure can use existing lexical
resources to produce word vector spaces which achieve state-of-the-art performance on word
similarity tasks across different languages.

Cross-Lingual Vector Spaces Semantic specialisation can also use existing lexical cor-
pora to induce high-quality cross-lingual vector spaces. If translation pairs extracted from
cross-lingual semantic lexicons such as BabelNet (Navigli and Ponzetto, 2012) are used
as synonyms, the ATTRACT-REPEL procedure can tie the distributional vector spaces of
multiple languages into a single cross-lingual vector space. The unified vector space achieves
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superior performance on word similarity tasks across all of its constituent languages, showing
evidence of positive semantic transfer from high to lower-resource languages. Interestingly,
for the investigated word similarity tasks, cross-lingual specialisation produces bilingual
vector spaces which substantially outperform a representative suite of existing methods for
inducing cross-lingual vector spaces. To show that gains in semantic content persist for
lower-resource languages, new intrinsic evaluation datasets are collected for Hebrew and
Croatian, two languages with very limited monolingual resources. BabelNet constraints
are then used to tie these two languages into bilingual vector spaces with English, showing
performance gains similar to higher-resource languages such as Italian or German.

Belief Tracking across Languages The thesis next explores the problem of deploying
statistical dialogue systems to languages other than English. Two new datasets (for Italian
and German) are created and used to show that these languages present challenges that are
not investigated in existing English-centric spoken dialogue systems research. Neural Belief
Tracking models are trained for these two languages, powered by different word vector
collections. The models’ performance reiterates the importance of semantic specialisation,
with both Italian and German belief tracking performance benefiting from semantic speciali-
sation more than the English DST performance did. Finally, the induced cross-lingual vector
spaces are used to train multilingual belief tracking models which can perform language
understanding across all three languages at once. This is enabled by the data-driven nature
of NBT models, which use word embeddings of ontology labels in place of traditional
language-specific class labels. Given high-quality cross-lingual vector spaces, the trained
multilingual models outperform the monolingual ones, yielding an effective method for
bootstrapping belief tracking models for lower-resource languages.

The Importance of Morphology Given the complex morphology of Italian and German
(compared to English), their downstream performance shows a greater dependence on
high-quality word vector estimates for low-frequency words. To validate this claim, the
proposed morph-fitting procedure uses simple language-specific rules instead of lexicons
such as BabelNet to supervise the ATTRACT-REPEL procedure. Morph-fitting brings the
morphological variants of the same word (e.g., mature, matured, matures and maturing)
closer together, while pushing derivational antonyms (e.g., mature and immature) further
away. The morph-fitted vectors induce substantial gains in intrinsic word similarity and the
downstream belief tracking performance. However, the scale of these improvements is very
different from previous semantic specialisation experiments. Whereas morph-fitting induces
relatively small gains in intrinsic SimLex-999 performance, it results in substantially larger
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gains in downstream belief tracking performance. This reveals a disparity between intrinsic
and extrinsic evaluation: large intrinsic gains do not always induce substantial improvements
in dialogue state tracking, and vice versa.

8.2 Future Directions

The thesis concludes by presenting further research questions posed by the presented work.

Application to Real-World Domains The presented Neural Belief Tracking models do
not rely on semantic lexicons, removing one important obstacle to scaling existing task-
oriented dialogue systems to larger, more sophisticated dialogue domains. However, the
real-world validation of the proposed paradigm can only come through successful application
of this model to industry-scale domain ontologies and in evaluation with real users. As
shown by the contrasting performance between DSTC 2 and WOZ 2.0 experiments, the
experimental setup can greatly affect the way users speak to dialogue systems, with the
quality of automated speech recognition and the systems’ language understanding capability
determining the way users choose to speak to spoken dialogue systems.

Robustness to Different Failure Modes Data-driven black-box neural networks (of which
the NBT is an instance) can be hard to interpret. Their end-to-end learning nature often
leads to surprising failure modes that can be difficult to handle in real-time applications.
Despite their flaws and limitations, semantic lexicons provide a relatively elegant way for
the system designer to circumvent frequently encountered failure modes. It remains to be
seen how robust the NBT is when deployed in real-world systems, and how much harder it
becomes to deal with unexpected failure modes now that all hand-crafted components have
been surgically removed from the language understanding pipeline.

Data-Driven Understanding across Multiple Domains The word-based delexicalisation
model can train using data from disparate dialogue domains, learning to transfer useful
features from high-resource to resource-poor dialogue domains. This thesis has shown that
the Neural Belief Tracking model outperforms delexicalisation-based models deprived of
their hand-crafted semantic lexicons. Both the rule-based and the statistical update variants of
the NBT model support the same kind of multi-domain training. If multi-domain NBT models
outperform domain-specific ones, this would provide further evidence that the proposed
data-driven framework could supersede existing delexicalisation-based models.
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Uncovering Language-Specific Particularities The presented work on Italian and Ger-
man revealed the dependency of language understanding performance on modelling mor-
phology, not made apparent even by intrinsic evaluation of vector spaces in those languages.
Morphologically rich languages such as Russian or Polish are likely to mirror the trends ob-
served for German, and their language understanding performance is likely to improve when
the underlying vector space is transformed to model language-specific morphology. Non
Indo-European languages such as Arabic, Chinese or Swahili would present more substantial
challenges to the proposed language understanding paradigm. For instance, Chinese and
Japanese segment sentences, but not words, whereas written tokens in Vietnamese represent
syllables. Extending the data-driven paradigm to these languages presents an interesting
challenge, since the model would have to learn to segment sentences into words if it were to
benefit from semantically specialised word vectors. Alternatively, the models could oper-
ate over pre-segmented sentences produced by third-party models, which would break the
data-driven pipeline. Such third-party segmentation tools are typically language-specific,
hindering the elegance of the proposed approach which could scale across Indo-European
languages using word-level supervision from lexical resources such as BabelNet.

Disparity between Intrinsic and Downstream Performance Intrinsic word similarity
datasets such as SimLex-999 (Hill et al., 2014) or SimVerb-3500 (Gerz et al., 2016) were
developed to assign numeric estimates for the semantic quality of word vector collections.
As such, it is expected that performance on intrinsic datasets could be used to predict down-
stream performance in tasks which make use of the semantics embedded in the employed
word vectors. The experiments presented in this thesis showed that SimLex-999 performance
does correlates with downstream language understanding performance. However, large
gains in intrinsic performance do not always induce correspondingly large improvements in
downstream belief tracking. An interesting direction for further work would be to investigate
which aspects of pre-trained word vector collections are most important for extrinsic perfor-
mance. One way to do this would be to incorporate the proposed semantically specialised
word vector spaces into other language understanding architectures (e.g., those for question
answering or textual entailment) and measure their impact on downstream performance.
Another approach would be to develop alternative data-driven models for belief tracking to
ensure that the discrepancies between intrinsic and extrinsic performance persist, and are not
specific to the experimental setup used by the Neural Belief Tracker.
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Henderson, M., Gašić, M., Thomson, B., Tsiakoulis, P., Yu, K., and Young, S. (2012b).
Discriminative Spoken Language Understanding Using Word Confusion Networks. In
IEEE Spoken Language Technology Workshop.

Henderson, M., Thomson, B., and Wiliams, J. D. (2014a). The Second Dialog State Tracking
Challenge. In Proceedings of SIGDIAL.

Henderson, M., Thomson, B., and Wiliams, J. D. (2014b). The Third Dialog State Tracking
Challenge. In IEEE Spoken Language Technology Workshop.

Henderson, M., Thomson, B., and Young, S. (2013). Deep Neural Network Approach for the
Dialog State Tracking Challenge. In Proceedings of SIGDIAL.

Henderson, M., Thomson, B., and Young, S. (2014c). Robust dialog state tracking using
delexicalised recurrent neural networks and unsupervised adaptation. In IEEE Spoken
Language Technology Workshop.

Henderson, M., Thomson, B., and Young, S. (2014d). Word-based dialog state tracking with
recurrent neural networks. In Proceedings of SIGDIAL.

Hermann, K. M. and Blunsom, P. (2014a). Multilingual Distributed Representations without
Word Alignment. In Proceedings of ICLR.

Hermann, K. M. and Blunsom, P. (2014b). Multilingual models for compositional distributed
semantics. In Proceedings of ACL.

Hill, F., Cho, K., Jean, S., Devin, C., and Bengio, Y. (2014). Embedding word similarity with
neural machine translation. CoRR, abs/1412.6448.

Hill, F., Reichart, R., and Korhonen, A. (2015). SimLex-999: Evaluating semantic models
with (genuine) similarity estimation. Computational Linguistics, 41(4):665–695.

Hinton, G., Deng, L., Yu, D., Dahl, G., rahman Mohamed, A., Jaitly, N., Senior, A.,
Vanhoucke, V., Nguyen, P., Sainath, T., and Kingsbury, B. (2012). Deep Neural Networks
for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups.
IEEE Signal Processing Magazine, 29(6):82–97.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,
9(8):1735–1780.



124 Bibliography

Hopfield, J. (1982). Neural Networks and Physical Systems with Emergent Collective
Computational Abilities. Proceedings of the National Academy of Sciences, 79(8):2554–
2558.

Huang, K., Gardner, M., Papalexakis, E., Faloutsos, C., Sidiropoulos, N., Mitchell, T.,
Talukdar, P. P., and Fu, X. (2015). Translation invariant word embeddings. In Proceedings
of EMNLP.

Iyyer, M., Boyd-Graber, J., Claudino, L., Socher, R., and Daumé III, H. (2014). A Neural
Network for Factoid Question Answering over Paragraphs. In Proceedings of EMLNP.

Jain, L. and Medsker, L. (1999). Recurrent Neural Networks: Design and Applications. CRC
Press, Boca Raton, Florida, USA, 1st edition.

Jauhar, S. K., Dyer, C., and Hovy, E. H. (2015). Ontologically grounded multi-sense
representation learning for semantic vector space models. In Proceedings of NAACL.

Johannsen, A., Martínez Alonso, H., and Søgaard, A. (2015). Any-language frame-semantic
parsing. In Proceedings of EMNLP.

Jones, M. N. and Mewhort, D. J. K. (2007). Representing Word Meaning and Order
Information in a Composite Holographic Lexicon. Psychological Review, 114(1):1–37.

Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing (2nd Edition).
Prentice-Hall, New Jersey, USA.
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Tsiakoulis, P., Breslin, C., Gašić, M., Henderson, M., Kim, D., Szummer, M., Thomson,
B., and Young, S. (2014). Dialogue context sensitive HMM-based speech synthesis. In
Proceedings of ICASSP.

Tur, G., Deoras, A., and Hakkani-Tur, D. (2013). Semantic Parsing Using Word Confusion
Networks With Conditional Random Fields. In Proceedings of Interspeech.

Tur, G., Guz, U., and Hakkani-Tür, D. (2007). Model adaptation for dialog act tagging. In
IEEE Spoken Language Technology Workshop.

Turian, J., Ratinov, L.-A., and Bengio, Y. (2010). Word representations: A simple and general
method for semi-supervised learning. In Proceedings of ACL.

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59:433–460.

Turney, P. D. (2008). A uniform approach to analogies, synonyms, antonyms, and associations.
In Proceedings of COLING.

Upadhyay, S., Faruqui, M., Dyer, C., and Roth, D. (2016). Cross-lingual models of word
embeddings: An empirical comparison. In Proceedings of ACL.

Van Deemter, K., Krahmer, E., and Theune, M. (2005). Real Versus Template-Based Natural
Language Generation: A False Opposition? Computational Linguistics, 31(1):15–24.
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Wen, T.-H., Gašić, M., Mrkšić, N., , M. Rojas-Barahona, L., Su, P.-H., Vandyke, D., and
Young, S. (2016). Multi-domain Neural Network Language Generation for Spoken
Dialogue Systems. In Proceedings of NAACL-HLT.
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