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BACKGROUND: Cancer risk assessment of complex exposures, such as exposure to mixtures of polycyclic aromatic hydrocarbons (PAHs), is challeng-
ing due to the diverse biological activities of these compounds. With the help of text mining (TM), we have developed TM tools—the latest iteration
of the Cancer Risk Assessment using Biomedical literature tool (CRAB3) and a Cancer Hallmarks Analytics Tool (CHAT)—that could be useful for
automatic literature analyses in cancer risk assessment and research. Although CRAB3 analyses are based on carcinogenic modes of action (MOAs)
and cover almost all the key characteristics of carcinogens, CHAT evaluates literature according to the hallmarks of cancer referring to the alterations
in cellular behavior that characterize the cancer cell.

OBJECTIVES: The objective was to evaluate the usefulness of these tools to support cancer risk assessment by performing a case study of 22 European
Union and U.S. Environmental Protection Agency priority PAHs and diesel exhaust and a case study of PAH interactions with silica.

METHODS:Weanalyzed PubMed literature, comprising 57,498 references concerning priority PAHs and complex PAHmixtures, usingCRAB3 andCHAT.
RESULTS: CRAB3 analyses correctly identified similarities and differences in genotoxic and nongenotoxic MOAs of the 22 priority PAHs and
grouped them according to their known carcinogenic potential. CHAT had the same capacity and complemented the CRAB output when comparing,
for example, benzo[a]pyrene and dibenzo[a,l]pyrene. Both CRAB3 and CHAT analyses highlighted potentially interacting mechanisms within and
across complex PAH mixtures and mechanisms of possible importance for interactions with silica.
CONCLUSION: These data suggest that our TM approach can be useful in the hazard identification of PAHs and mixtures including PAHs. The tools can
assist in grouping chemicals and identifying similarities and differences in carcinogenic MOAs and their interactions. https://doi.org/10.1289/EHP6702

Introduction
Hazard identification is the first step in cancer risk assessment
and requires a thorough review of the literature for generating in-
formation on the carcinogenic potential of chemicals. An efficient
and reliable literature review is crucial to properly assess impact
on human health (Goodman and Lynch 2017). However, owing
to the exponential growth and complexity of the scientific litera-
ture, manual evaluation has become extremely challenging and
time consuming (Korhonen et al. 2012). While considering
human exposures to multitude chemical carcinogens and the pace
of current risk assessment practices, novel approaches need to be
introduced to evaluate cancer risks associated with these chemi-
cals. Therefore, we have developed text-mining (TM) tools for
literature review and to identify mechanistic information for can-
cer risk assessment of chemicals (Korhonen et al. 2012; Silins
et al. 2012). Although prior research has produced some tools to
support practical tasks such as literature curation and develop-
ment of semantic databases in biomedicine, none of these are
focused on chemical cancer risk assessment (Harmston et al.
2010; Rebholz-Schuhmann et al. 2012; Zhu et al. 2013).

Based on TM technology, we developed an open access
Cancer Risk Assessment using Biomedical literature (CRAB)
tool that automatically organizes and classifies literature accord-
ing to carcinogenic modes of action (MOAs) (Ali et al. 2016;

Korhonen et al. 2009, 2012; Silins et al. 2012). Our evaluations
have shown that the automatic classification results generated by
these tools are very accurate, often between 95% and 99%
(Korhonen et al. 2012). In addition, the CRAB tool can be used
to reveal similarities and differences between chemicals by, for
example, identifying similar MOAs shared by chemicals in mix-
tures. We have employed the tool in practice, including studies of
MOA analysis for groups of chemicals. For example, in a study
of polychlorinated biphenyls (PCBs), we analyzed literature pro-
files of dioxin-like- and non-dioxin–like PCBs and compared
them with those of their indicator PCBs (Ali et al. 2016). A com-
parison of carcinogenic MOAs identified by the CRAB tool with
a manual evaluation of PCBs found similar evidence on key char-
acteristics (Smith et al. 2016), associated with carcinogenicity of
these compounds. We also investigated carcinogenic MOAs of
pesticides in fruits and identified that CRAB-generated MOA
profiles of many pesticides were similar, containing evidence for
both genotoxic and nongenotoxic MOAs (Silins et al. 2014).
Together, these results suggest that the CRAB tool can be of
great use in effectively identifying groups of chemicals with simi-
lar MOAs and to evaluate the relevancy of a reference compound
for a group of chemicals.

In addition to the CRAB tool, we have developed a Cancer
Hallmarks Analytics Tool (CHAT) (Baker et al. 2017), primarily
intended to assist cancer researchers. CHAT provides detailed anal-
yses of literature by automatically organizing and classifying litera-
ture on the basis of the evidence on cancer hallmarks and associated
processes. CHAT consists of 37 distinct categories, which specify
the biological processes underlying each of the original eight cancer
hallmarks and two enabling characteristics (Hanahan andWeinberg
2000, 2011). CHAT analyses provide mechanistic information on
the biological processes involved in cancer development.

Exposures to chemicals occur in mixtures, and mixture risk
assessment is challenging (Gwinn et al. 2017). One such group
of chemicals comprises the polycyclic aromatic hydrocarbons
(PAHs), a family of more than 1,500 compounds with diverse
structural features, that is, ring configurations and substitutions
(NTP 2012). Based on the evidence on their carcinogenicity, the
International Agency for Research on Cancer (IARC) has
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classified the PAH benzo[a]pyrene (B[a]P) as a human carcinogen
and several other PAHs as possible or probable human carcinogens
(IARCWorking Group on the Evaluation of Carcinogenic Risks to
Humans 2010). Although the evaluation of carcinogenicity of
PAHs has been made based on their mutagenic and tumor-
initiating activities, data are limited on their tumor-promoting ac-
tivity (Asada et al. 2005; Sakai et al. 2010). Recently it was sug-
gested that some of the PAHs with relatively low carcinogenic
potential exhibit strong tumor-promoting activity (Misaki et al.
2016). Importantly, many complex mixtures containing PAHs
have been classified as human carcinogens—including coal tar,
diesel exhaust, and coke oven emission—and are of serious health
concern, not only for the general population, but also for those in
occupational settings (IARC 2016). Although sufficient data are
available to support the carcinogenicity of some PAH mixtures in
humans, there is a general lack of epidemiological data for individ-
ual PAHs, for example, B[a]P (Baan et al. 2009).

Cancer risk assessment of PAHs is principally based on one
of two approaches. One is based on B[a]P as a surrogate marker
for all PAHs and thus solely considers the environmental levels
of B[a]P to assess risks. This approach is used for assessing air-
borne PAHs within the European Union (WHO 2000). The other
approach considers the contribution from other PAHs by apply-
ing potency factors that describe the relative carcinogenic po-
tency to B[a]P (RPFs) and is used by, for example, the U.S.
Environmental Protection Agency (EPA) for assessing environ-
mental PAH pollution (U.S. EPA 1993). Although the latter
approach includes multiple PAHs, only a limited number of
PAHs have been assigned a RPF, and an extended list is currently
under evaluation (U.S. EPA 2010a). A potentially serious limita-
tion of both approaches is that they do not allow for taking inter-
action effects into account. A number of studies have shown that
PAH mixtures can induce nonadditive effects, resulting in antag-
onistic or synergistic genotoxic or carcinogenic effects (Jarvis
et al. 2014). Therefore, the development of new methodology
that will optimize the possibility of taking advantage of published
scientific databases is highly motivated.

In this article, we present a case study of 22 U.S. EPA and EU
priority PAHs and complex PAH mixtures that are of concern for
the general population and in occupational settings. We used the
CRAB3 tool (http://crab3.lionproject.net/)—the latest iteration of
the CRAB tool—and CHAT (http://chat.lionproject.net/) to ana-
lyze PAH literature and to evaluate the usefulness of these tools for
hazard identification. CHAT analyses complement those of the
CRAB3 tool, and to the best of our knowledge, for the first time
theywere used together.

Material and Methods

Research Question and Literature Gathering
We used the TM-based tools CRAB3 and CHAT to assess the use-
fulness of these tools to support cancer risk assessment and how
these tools can be used together to a) identify the primary carcino-
genic MOA of a group of chemicals, b) group these chemicals
according to their carcinogenic potential, and c) identify possible
interaction effects within and between complex mixtures. Our
motivation for choosing PAHs for a case study was mentioned
above. To answer these questions, we analyzed PubMed literature
(abstracts) concerning 22 priority PAHs listed by the European
Union and U.S. EPA (EC 2002; Jarvis et al. 2014; U.S. EPA
2010b), some complex mixtures containing these PAHs, and crys-
talline silica. The lists of PAHs and PAH mixtures evaluated are
shown in Tables 1 and 2, respectively. Literature on PAHs were
further grouped based on their relative potency factor (RPF) values
(Table 1), namely, Group 1, with low potency PAHs (RPF 0.001–

0.03); Group 2, with moderate potency PAHs (RPF 0.08–0.8); and
Group 3, with high potency PAHs (RPF 1–100, excluding B[a]P)
and compared between groups and with the MOA profile of B[a]P
(RPF= 1). We performed the literature analyses by using the
CRAB3 tool and CHAT separately given that these tools are not
coupled together, and the data cannot be automatically transferred
between them. The tools and associated analyses are described in
more detail below.

CRAB3 Analyses
The CRAB3 tool analyzes literature on the basis of the textual con-
tent of each title and abstract using natural language processing fol-
lowed by semantical classification using supervised machine
learning. The classification is based on type of scientific evidence
(human/epidemiology study, animal study, cell experiments and
study on microorganisms) and according to a carcinogenic MOA
taxonomy followedby an automated statistical analysis of the classi-
fied literature (Korhonen et al. 2012). The MOA taxonomy was
developed based on the genotoxic and nongenotoxic MOA classifi-
cation by Hattis et al. (2009) A unique feature of CRAB3 is that it
identifies argumentative zones in the abstract text, a scheme of infor-
mation structure that describes the rhetorical progression in scien-
tific articles, denoting the scientific discourse, namely, “Objective,”
“Background,” “Method,” “Results,” “Conclusion,” and “Future
Work” sections that appear in the abstract (Guo et al. 2014).
Furthermore, for comparison analysis between two chemicals, the
built-in feature “analyze data” can be used to visualize similarities
and differences in theMOAprofiles (Figure S1).

For the current MOA analyses of PAHs, we used the search
query function of CRAB3 by simply adding the name of individ-
ual PAHs (Table 1) to identify PubMed literature (available in
PubMed March 2019) on the 22 priority PAHs. An example is
shown in Figure 1. The comparison analysis function was used
for pairwise comparison of MOA profiles between different
unsubstituted and substituted PAHs. In addition, we queried the
following complex PAH mixtures: diesel exhaust, coal tar, coke
oven emission, and crystalline silica. For pyrene analysis, we
processed the CRAB3 data manually and excluded literature on

Table 1. Range of RPF values for the 22 priority PAHs listed by the U.S.
EPA and European Union (Jarvis et al. 2014).

PAHs RPF (range)

Naphthalene (NAP) 0–0.001
Acenaphthylene (ACY) 0.001
Acenaphthene (ACE) 0.001
Fluorene (FLO) 0.0005–0.001
Phenanthrene (PHE) 0 to <0:01
Pyrene (PYR) 0–0.001
Anthracene (ANT) 0–0.01
Benzo[ghi]perylene (B[ghi]Per) 0.009–0.03
Fluoranthene (FLA) 0.001–0.08
Benzo[k]fluoranthene (B[k]F) 0.03–0.1
Chrysene (CHR) 0.01–0.17
Benz[a]anthracene (B[a]A) 0.005–0.2
Cyclopenta[cd]pyrene (CP[cd]P) 0.012–0.4
Benzo[j]fluoranthene (B[j]F] 0.045–0.52
Benzo[b]fluoranthene (B[b]F) 0.1–0.8
Dibenzo[a,e]pyrene (DB[ae]P) 0.2–1
Benzo[a]pyrene (B[a]P) 1
5-Methylchrysene (meCHR) 7
Dibenzo[a,h]anthracene (DB[ah]A) 0.1–10
Dibenzo[a,h]pyrene (DB[ah]P) 0.9–11
Benzo[c]fluorene (B[c]F) 20
Dibenzo[a,l]pyrene (DB[al]P)a 1–100
Note: EPA, Environmental Protection Agency; PAHs, polyaromatic hydrocarbons; RPF,
relative potency factor.
aAlso known as dibenzo(def,p)chrysene.
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Table 2. An overview of the literature on 22 priority PAHs, complex PAH mixtures and crystalline silica available in PubMed (March 2019), and the percen-
tages of the literature classified as relevant to scientific evidence and mode of action (MOA) taxonomies by CRAB3 (Korhonen et al. 2012).

CRAB evaluation Total PubMed references (n) References in scientific evidence [n (%)] References in MOAs [n (%)]

22 Priority PAHs 53,944 22,657 (42) 22,031 (41)
Benzo[a]pyrene 11,887 9,236 (78) 7,797 (65)
Diesel exhaust 2,181 1,300 (56) 1,207 (55)
Coal tar 892 465 (52) 320 (36)
Coke oven emission 481 375 (78) 246 (51)
Crystalline silica 939 592 (63) 369 (39)

Note: CRAB3 was used to search PubMed for literature on 22 priority PAHs, complex PAH mixtures, and crystalline silica. Shown in the table are the total number of references the
CRAB3 tool identified, the number of references with available information on study design (e.g., human studies, animal studies, cell experiments), and the number of references with
information on carcinogenic modes of action. CRAB3, Cancer Risk Assessment using Biomedical literature tool 3; PAH, polycyclic aromatic hydrocarbon.

Figure 1. An overview of the CRAB3 user interface. By using the search query “benzo[a]pyrene,” the CRAB3 tool retrieved all references containing informa-
tion on benzo[a]pyrene from PubMed (accessed and retrieved in May 2020). The red oval-shaped marks are the distribution of literature according to the evi-
dence they contain. The first column on the left, shows the classification of literature according to the scientific evidence (human/epidemiology study, animal
study, in vitro cell experiments, and so on), the second column analyzes literature based on the evidence on carcinogenic MOAs (genotoxic and nongenotoxic
MOAs categories and subcategories), and the last column shows literature with information on toxicokinetics. Note: AhR, aryl hydrocarbon receptor; CRAB3,
Cancer Risk Assessment using Biomedical literature tool 3; MOA, mode of action; TNF, tumor necrosis factor.
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B[a]P because the CRAB3 tool automatically considered litera-
ture on B[a]P while searching for pyrene. For other chemicals,
such as anthracene, fluoranthene, and their related PAHs, we did
a manual curation of CRAB3 data for anthracene and did not find
major differences in the MOA categories (Excel Table S9). We
believe that with manual curation, there will be minor-to-
negligible changes on the proportions of MOA category, if any,
so we did not proceed with it further. It should also be noted that
other chemicals with similar parts of the name may have minor
contributions to the outcome, if any. This is because one of the
current limitations of CRAB3 is that it currently does not include
entity grounding for chemicals, that is, it lacks the ability to rec-
ognize name variations of the same chemical and different chemi-
cals with some similarity in names, such as pyrene and B[a]P.

A time–trend analysis of the literature concerning B[a]P was
performed by grouping the CRAB3 data into three groups based
on year of publication: 1970–2000, 2001–2010, and 2011–2019.
Furthermore, to test whether CRAB3-generated MOA profiles
were in line with IARC evaluations on evidence for key charac-
teristics of carcinogens, a comparison with their evaluations was
performed for B[a]P, dibenzo[a,l]pyrene (DB[al]P), benz[a]an-
thracene (B[a]A), dibenzo[a,h]anthracene (DB[ah]A, benzo[k]
fluoranthene (B[k]F), diesel exhaust, coal tar, and crystalline
silica (Krewski et al. 2019).

CHAT Analyses
The analysis of literature by CHAT is based on supervised
machine learning to classify all of the >160million sentences in
the PubMed database according to the hallmarks of cancer taxon-
omy (Baker et al. 2017). Using co-occurrence–based association
metrics, such as conditional probability (cprob), an association
profile of co-occurrence for the search query term and the 37 can-
cer hallmarks categories (Table S2) (Hanahan and Weinberg
2000, 2011) was generated (Figure S3) that can be used for fur-
ther comparison analyses with, for example, other chemicals.
Cprob describes the strength of association for CHAT analyses,
that is, the probability of a hallmark of cancer appearing in the lit-
erature given the occurrence of a chemical or a group of chemi-
cals of interest.

For the current CHAT analyses, we used the same search terms
as for CRAB3 for all the PAHs, PAH mixtures, and crystalline
silica in the CHAT search function (March 2019) and used cprob
as associationmetrics for co-occurrence analysis. Although CHAT
was last updated in 2018 as compared with the CRAB3 tool, which
is updated nightly, we believe that there were no major differences
in the overall literature retrieved and analyzed both by the CRAB3
tool and CHAT. CHAT also lacks entity grounding, but manual
curation was not possible with the feature of selecting and filtering
of abstracts because this feature does not exist in CHAT.

Statistical Analysis
Principal component analysis (PCA) and hierarchical clustering
analysis (HCA) were performed using SIMCA 16 software
(Sartorius-Stedim Biotech). The PCA included the 22 priority
PAHs with their respective MOA proportions. For each PAH, the
MOA categories were included only where articles were found to
contain the search term of interest. HCA calculated with Ward’s
method was performed on the obtained loading and score vectors.
Dendrograms were prepared based on PC2 for the loadings and
on PC1, -2, and -3 for the scores. The third component was added
to increase the explanation of variance. In CRAB3 analysis, the
tool used chi-squared test with Bonferroni correction to calculate
statistical differences. The MOA profiles for different chemicals
(individually or in groups) were compared, and statistically

significant differences were computed using the chi-squared ho-
mogeneity test for each individual MOA category (positive vs.
negative) and for each pair of chemicals (using a 2× 2 contin-
gency table). The individual p-values were then adjusted by a
Bonferroni correction for the entire profile’s p-values. A p<0:05
was considered significant for all statistical analyses.

Results

MOA Profiles and Cancer Hallmark Analyses for the 22
Priority PAHs
In total, the CRAB3 tool identified 53,944 references from PubMed
(March 2019) concerning the 22 priority PAHs and classified 42%
of abstracts/references (22,657 references of the total) as relevant
for scientific evidence (including information on human and animal
studies and on cell experiments) and 41% (22,031 references of the
total) as relevant for carcinogenicMOAs (Table 2). An overview of
the literature for individual PAHs is shown as Table S1. CRAB3-
generated literature profiles for individual PAHs, over the selected
carcinogenic MOAs, are shown in Figure 2A (Excel Table S2).
Yellow-highlighted bars represent the MOA profile of B[a]P. The
MOA profiles of individual PAHs show the literature heterogeneity
of this complex group of chemicals. On average, and as expected,
literature on genotoxic MOAs, including DNA adducts and muta-
tions, represented the largest proportions (Figure 2A).

We extended our analyses on the 22 priority PAHs and eval-
uated PubMed literature by using CHAT. We evaluated the
PubMed literature previously identified by the CRAB3 tool using
CHAT to identify relevant evidence in the text to classify each
reference according to the hallmarks of cancer taxonomy (Baker
et al. 2017). As expected, the analyses showed genomic instabil-
ity, namely, DNA damage, adducts, and mutations, as being the
most common cancer hallmarks associated with the priority
PAHs (Figure S4). Our data show that both CRAB3 and CHAT
analyzed and identified genomic instability as the most com-
monly described effect for the priority PAHs.

MOA Profiles for Three Groups of PAHs Based on RPF
Value
We tested whether CRAB3-generated MOA profiles could be use-
ful in grouping priority PAH into subgroups according to the
assigned RPF values (Collins et al. 1998; U.S. EPA 2010b).
Grouping of PAHs and an overview of the literature for each group
is shown in Table S1. CRAB3-generated MOA profiles for each
group are shown in Figure 2B. A comparison of MOA profiles
showed markedly higher proportions of literature in DNA adducts
and mutations for PAHs in Group 3 as compared with PAHs in the
two other groups (Figure 2B). In Group 1, oxidative stress and cell
proliferation were among the most common MOAs, which is in
line with their ability to rather function as tumor promoters than as
genotoxic carcinogens (Misaki et al. 2016).

The ability of the CRAB3 tool to group PAHs based on litera-
ture analyses was further evaluated by PCA followed by HCA
(see the “Material and Methods” section) and based on the MOA
proportions shown in Figure 2. The first two principal compo-
nents (PCs) explained 66.8% of the variance in the data. The
loading vectors from the PCA did not show a clear separation
between the genotoxic and nongenotoxic MOAs (Figure 3A).
HCA identified three clusters of MOAs, of which two contained
a mix of genotoxic and nongenotoxic MOAs (Figure 3B). For
example, the MOAs including oxidative stress, epigenetics,
strand breaks, adducts, aryl hydrocarbon receptor (AhR) activa-
tion, DNA repair, and transcriptional modification all belonged to
the largest cluster, suggesting an overlap between the two
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Figure 2. CRAB3 analysis of the literature for 22 priority PAHs. (A) CRAB3-generated mode of action (MOA) profiles of 22 polycyclic aromatic hydrocar-
bons (PAHs) identified under the U.S. EPA and European Union priority list (Jarvis et al. 2014). The MOA profile for reference compound benzo[a]pyrene (B
[a]P) is shown as yellow-highlighted bars (pointed out with arrow). (B) CRAB3-generated MOA profiles of three groups of priority PAHs based on their rela-
tive potency factor (RPF) values and the reference compound B[a]P (Excel Tables S2 and S3). Data are presented as proportions of total references identified
by CRAB3 in MOA categories, and the vertical dotted line separates the genotoxic and nongenotoxic MOA categories. Note: AhR, aryl hydrocarbon receptor;
CRAB3, Cancer Risk Assessment using Biomedical literature tool 3; EPA, Environmental Protection Agency; TNF, tumor necrosis factor.
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overarching types of MOAs. The only nongenotoxic MOA clus-
ter included cell proliferation, tumor necrosis factor-alpha
(TNFa) pathway activation, hormonal receptor-mediated, inflam-
mation, and immunosuppression.

The score plot of the two first components suggested a separa-
tion between low (0.001–0.03) and moderate (0.08–0.8) from high
(1–100) RPF PAHs in PC1, although with some overlap (Figure
3C). Similarly, the low RPF PAHs were separated from the moder-
ate in PC2, together indicating that the CRAB3 toolwas able to clus-
ter PAHs according to their carcinogenic potency. This clustering
was further supported by HCA, which suggested three clusters with
high dissimilarity (Figure 3D). One cluster included all the lowRPF
PAHs except anthracene (ANT). Similarly, one cluster included all
the moderate RPF PAHs and DB[ah]A, which had a wide range of
published RPF values spanning from moderate to high potency
(0.1–10) (Table 1). The final cluster included the majority of the
highRPF PAHs plusANT,which had anRPF range of 0–0.1 (Table
1). TheMOAswith the largest contribution to the score ofmost high
RPF PAHs were a mix of genotoxic and nongenotoxic MOAs,
whereas for benzo[c]fluorene and ANT, nongenotoxic MOAs
inflammation and the TNFa pathway activation were the largest
contributors. Together, the data from the PCA and HCA suggest
that the CRAB3 tool has the capacity to evaluate literature concern-
ing the complex group of PAHs and group them according to their
relative potencies.

Cancer Hallmark Analyses of Three Groups of PAHs Based
on RPF Value
We further analyzed the literature concerning three groups of pri-
ority PAHs, by using CHAT. The data from CHAT analyses
showed that genomic instability, namely, DNA adducts, damage,
and mutations, was the most common cancer hallmark associated
with PAH Group 3 (RPF>1) (Figure 4A). In contrast, tumor-
promoting inflammation, sustaining proliferating signaling, and
evading growth suppressor were more often reported with PAH
Groups 1 and 2 (RPF<1) (Figure 4B,C). CHAT data thus sup-
ports that PAHs with an RPF>1 act via genotoxic MOAs, that is,
through adducts and mutations to induce cancer, and PAHs with
an RPF<1 have tumor-promoting properties, acting via nongeno-
toxic MOAs, that is, through inflammatory responses, oxidative
stress, and cell proliferation to promote cancer (Misaki et al.
2016). Thus, CHAT data are in line with CRAB3. Furthermore,
the data also suggest that interactions between high and low po-
tency PAHs may occur, in a combined exposure setting.

Comparing MOA Profile for B[a]P with Dibenzo[a,l]pyrene
DB[al]P, also called dibenzo[def,p]chrysene, is one of the most
potent PAHs, with RPF values ranging up to 100 (Luch 2009).
DB[al]P is classified under Group 2A (probable human carcino-
gen) by the IARC (2016) but is very rarely included in
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environmental monitoring or human health risk assessment
(Andersson and Achten 2015). We analyzed the literature to test
whether the difference in the relative potencies between DB[al]P
and B[a]P can be identified by the CRAB3 tool and CHAT.

CRAB3 analyses of the amount of literature on scientific evi-
dence for carcinogenicity shows that, compared with B[a]P, DB
[al]P is much less studied (Figure 5A). The total number of
PubMed references for DB[al]P was 228, compared with 11,650

Figure 4. CHAT tool analyses of the literature concerning three groups of priority PAHs based on their relative potency factor (RPF) values. (A) Comparison
of a CHAT-generated literature profile on genomic instability and mutation for the three groups of priority PAHs based on their RPF values and the reference
compound benzo[a]pyrene (B[a]P); (B) comparison of CHAT-generated literature profile on selected cancer hallmarks, including evading growth suppressors,
resisting cell death, sustaining proliferative signaling and tumor-promoting inflammation, for the three groups of priority PAHs based on their RPF values and
the reference compound B[a]P; and (C) CHAT-generated literature profiles on all other selected cancer hallmarks and associated processes for the three groups
of priority PAHs and comparison with B[a]P. Summary data are shown in the supplemental Excel file Table S4. Data are presented as conditional probability
(cprob) showing the probability of a hallmark of cancer appearing in the literature given the occurrence of a particular chemical or a group of chemicals of in-
terest. Note: cc, cell cycle; CHAT, Cancer Hallmarks Analytics Tool; PAH, polycyclic aromatic hydrocarbon.

Environmental Health Perspectives 067008-7 129(6) June 2021



Figure 5. Comparison of the literature profile between benzo[a]pyrene (B[a]P) and dibenzo[a,l]pyrene (DB[al]P). (A) An overview of total PubMed literature
and the literature identified as scientific evidence and as MOA by the CRAB3 tool concerning B[a]P and DB[al]P; (B) CRAB3-generated MOA profiles for B
[a]P and the most potent PAH, DB[al]P; and (C) CHAT-generated literature profile on cancer hallmarks for B[a]P and DB[al]P. Data are presented as propor-
tions of total literature in MOA categories for CRAB3 analyses (a vertical dotted line separates the genotoxic and nongenotoxic MOA categories) and condi-
tional probability (cprob) as a strength of association for CHAT analyses (Excel Table S5), showing the probability of a hallmark of cancer appearing in
literature given the occurrence of a particular chemical or a group of chemicals of interest. Statistically significant differences were computed using the chi-
squared homogeneity test for each individual MOA category (positive vs. negative) and for each pair of chemicals (using a 2× 2 contingency table). The indi-
vidual p-values were then adjusted by a Bonferroni correction for the entire profile’s p-values. p<0:05 is considered significant”. #, p<0:05 significantly dif-
ferent from each other. Note: AhR, aryl hydrocarbon receptor; cc, cell cycle; CHAT, Cancer Hallmarks Analytics Tool; CRAB3, Cancer Risk Assessment
using Biomedical literature tool 3; MOA, mode of action; TNF, tumor necrosis factor.
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references for B[a]P. However, CRAB3-generated MOA profiles
showed that significantly higher proportions of the literature
(p>0:01) on adducts, strand breaks, mutations, DNA repair, and
cell proliferation are associated with DB[al]P as compared with
B[a]P (Figure 5B).

In addition, we performed time–trend analysis on the large
volume of literature concerning B[a]P (Figure S5). The analysis
demonstrated that research during 1970–2000 was more focused
on investigating genotoxic MOAs, whereas more recently, in
2001–2010 and 2011–2019, more emphasis has been on nonge-
notoxic MOAs. This suggests that the nongenotoxic MOAs of
B[a]P is a relatively neglected research area.

Furthermore, literature analyses by CHAT on cancer hall-
marks and associated cellular processes (Figure 5C) showed that
there was significantly higher probability (p<0:01) of the hall-
mark of cancer genomic instability and mutations appearing in
the literature on DB[al]P as compared with B[a]P. CHAT analy-
sis also highlights other differences with mechanistic details, for
example, in evading contact inhibition between these compounds.
Deregulation of contact inhibition has been proposed for nonge-
notoxic AhR ligands including PAHs; however, it is not known
whether genotoxic ligands may have similar effects (Dietrich and
Kaina 2010). Manual evaluation of the evading contact inhibition
node showed that DB[al]P induced epidermal hyperplasia that
may promote tumor development in vivo (Casale et al. 2000).
Our evaluation by CHAT suggesting that evading contact inhibi-
tion may be activated by genotoxic PAHs indicated that the data
is lacking in this area and need to be investigated further. In sum-
mary, the results from these analyses support and confirm the im-
portance of including DB[al]P in human health risk assessments.

Comparing MOA Profiles for Chrysene to 5-Methylchrysene
and Pyrene to 1-Nitropyrene
5-Methylchrysene is reasonably anticipated to be a human carcin-
ogen owing to its higher carcinogenic potential as compared with
chrysene (NTP 2016). We evaluated literature on chrysene and
5-methylchrysene (Figure 6A,B) to explore whether the differen-
ces in carcinogenic potency due to the presence of themethyl group
can be supported by CRAB3 and CHAT analysis. A comparison of
literature profiles (Figure 6A,B) shows that 5-methylchrysene had
significantly higher proportions of literature on adducts, strand
breaks, and mutations as compared with chrysene (p<0:01),
which is in line with the current understanding about the carcino-
genic potential of 5-methylchrysene as comparedwith chrysene.

Pyrene has been classified by the IARC under Group 3, mean-
ing that the evidence of carcinogenicity is inadequate in humans
and inadequate or limited in experimental animals (IARCWorking
Group on the Evaluation of Carcinogenic Risks to Humans 2010).
We analyzed the literature on pyrene and compared it with its
nitro-substituted derivative, 1-nitropyrene, which is classified by
the IARC under Group 2A as a probable human carcinogen (IARC
Working Group on the Evaluation of Carcinogenic Risks to
Humans 2010). A comparison of MOA profiles (Figure 6C,D)
shows that, compared with pyrene, there was a significantly higher
probability of genotoxic MOAs, including mutations, adducts, and
strand breaks, as well as nongenotoxic MOAs, including DNA
repair, oxidative stress, cell proliferation, and epigenetics, appear-
ing in the 1-nitropyrene literature. These data are consistent with
findings suggesting that 1-nitropyrene induces DNA damage and
oxidative stress and suppresses DNA repair in rats (Li et al. 2017).

Structural alterations, namely, substituting methyl or nitro
groups to PAHs, may increase the carcinogenic potential of the
parent compound, as is the case for 5-methylchrysene and
1-nitropyrene. Our data indicate that both CRAB3 and CHAT

analyses offered additional evidence that informs how these
chemicals could interact in mixture.

Evaluation of B[a]P as a Marker for PAHs in Complex Air
Emissions Using CRAB3 and CHAT
In the European Union, B[a]P is used as a surrogate marker for
PAHs in air. However, both the World Health Organization
(WHO) and the European Food Safety Agency (EFSA) have con-
cluded that the surrogate marker approach is likely to misestimate
the actual risk given that co-occurring substances are also carci-
nogenic (EFSA 2008; WHO 2000). The representativeness of
B[a]P for complex mixtures were tested by analyzing literature
(3,554 references) for air emissions containing complex PAH
mixtures, including diesel exhaust, and coke oven emission, and
the PAH mixture, coal tar, by using CRAB3 and CHAT analysis,
followed by a comparison with B[a]P.

Diesel exhaust is the most well-studied PAH mixture, with
more than 2,000 references included in the analyses (Figure 7A).
CRAB3- and CHAT-generated data showed that DNA strand
breaks, adducts, and chromosomal changes were significantly
more likely (p<0:05) to be associated with coke oven emission
literature, whereas oxidative stress, tumor-promoting inflamma-
tion, and immunosuppression were the most common carcino-
genic MOAs associated with diesel exhaust as compared with
B[a]P (Figure 7B,C). Although the MOA profile of coal tar
shows mutations, strand breaks, and adducts as the most common
MOAs, the literature proportions were much lower than those for
B[a]P. Furthermore, detailed analyses by CHAT (Figure 7D),
showed that immune response and evading contact inhibition
were more commonly associated with diesel exhaust and coal tar
literature, respectively, as compared with B[a]P. Considering the
individual components of each PAH mixture, which also includes
B[a]P, our evaluations suggest that the combined carcinogenic
potential of all PAHs in a mixture may be different (likely due to
additive or interactive effects) than what is estimated by using
B[a]P as a marker.

Comparison of CRAB3 vs. IARC Evaluation of Key
Characteristics
Furthermore, to test whether CRAB3-generated MOA profiles
are in line with the IARC evaluations on the evidence for key
characteristics of carcinogens (Krewski et al. 2019), we did a
comparison of their evaluations for several PAHs, including
B[a]P, DB[al]P, B[a]A, DB[ah]A, B[k]F, diesel exhaust, coal tar,
and crystalline silica (Table S3). Our evaluation showed that
CRAB3 analysis correctly predicted the evidence on key charac-
teristics as identified by the IARC regarding these PAHs. For
example, as shown in Table S3, seven key characteristics were
highlighted by the IARC in the evaluation of B[a]P (with evi-
dence from one or more human, animal, or in vitro sources), and
CRAB3 analysis correctly identified the evidence on all of the
key characteristics, namely, metabolic activation, genotoxicity,
oxidative stress, altered cell proliferation/cell death, epigenetic
alterations, immunosuppression, and receptor-mediated effects.
The agreement between CRAB3 and IARC evaluations adds fur-
ther strength to the applicability of our TM approach in hazard
identification.

Identification of Mechanisms of Potential Importance for
Interactions between Crystalline Silica and PAHs (B[a]P)
Using CRAB3 and CHAT
Exposure to airborne particles such as crystalline silica is a major
global environmental and occupational health hazard (Leung et al.
2012). It has been hypothesized that simultaneous exposure to
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known carcinogens, such as B[a]P, can possibly increase the carci-
nogenicity of crystalline silica (Downward et al. 2014; Vermeulen
et al. 2011). Therefore, we analyzed literature (935 references) on

crystalline silica and compared the results with those for B[a]P.
Both CRAB3- and CHAT-generated literature profiles showed
tumor-promoting inflammation, immunosuppression, and oxidative

Figure 6. Substitution ofmethyl or nitro group and the carcinogenicMOAof PAHs. (A,B) CRAB3- andCHAT-generated literature profiles of chrysene and 5-methyl-
chrysene on carcinogenic MOA and cancer hallmarks, respectively. (C,D) CRAB3- and CHAT-generated literature profiles of pyrene and 1-nitropyrene on carcino-
genic MOA and cancer hallmarks, respectively. Data are shown as proportions of total literature in MOA categories for CRAB3 analyses (a vertical dotted line
separates the genotoxic and nongenotoxicMOA categories) and conditional probability (cprob) as a strength of association for CHAT analyses (Excel Table S6), show-
ing the probability of a hallmark of cancer appearing in literature given the occurrence of a particular chemical or a group of chemicals of interest. Statistically significant
differences were computed using the chi-squared homogeneity test for each individual MOA category (positive vs. negative) and for each pair of chemicals (using a
2× 2 contingency table). The individual p-values were then adjusted by a Bonferroni correction for the entire profile’s p-values. p<0:05 is considered significant”. #,
p<0:05 significantly different from each other. Note: AhR, aryl hydrocarbon receptor; cc, cell cycle; CHAT, Cancer Hallmarks Analytics Tool; CRAB3, Cancer Risk
Assessment usingBiomedical literature tool 3;MOA,mode of action; PAH, polycyclic aromatic hydrocarbon; TNF, tumor necrosis factor.
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Figure 7. Literature analysis of complex PAH mixtures coal tar, diesel exhaust, and coke oven emission. (A) An overview of total PubMed literature and the
literature identified by the CRAB3 tool as scientific evidence and relevant for MOA, for coal tar, diesel exhaust, and coke oven emission; (B) CRAB3-gener-
ated MOA profiles concerning coal tar, diesel exhaust, and coke oven emission and comparison with the reference compound benzo[a]pyrene (B[a]P); and (C,
D) CHAT-generated literature profile on cancer hallmarks concerning coal tar, diesel exhaust, and coke oven emission and comparison with the reference com-
pound B[a]P. Data are shown as proportions of total literature in MOA categories for CRAB3 analyses (a vertical dotted line separates the genotoxic and non-
genotoxic MOA categories) and conditional probability (cprob) as a strength of association for CHAT analyses (Excel Table S7), showing the probability of a
hallmark of cancer appearing in literature given the occurrence of a particular chemical or a group of chemicals of interest. Statistically significant differences
are computed using the chi-squared homogeneity test for each individual MOA category (positive vs. negative) and for each pair of chemicals (using a 2× 2
contingency table). The individual p-values were then adjusted by a Bonferroni correction for the entire profile’s p-values. p<0:05 is considered significant.
Note: AhR, aryl hydrocarbon receptor; cc, cell cycle; CHAT, Cancer Hallmarks Analytics Tool; CRAB3, Cancer Risk Assessment using Biomedical literature
tool 3; MOA, mode of action; PAH, polycyclic aromatic hydrocarbon, TNF, tumor necrosis factor.
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stress as themost common outputs, with a significantly higher possi-
bility of being associated with the crystalline silica literature than
with the B[a]P literature (p<0:01) (Figure 8A,B). These findings
are in line with the current understanding about crystalline silica
(Satpathy et al. 2015). Our analyses indirectly support the notion
that, in a combined exposure to crystalline silica and B[a]P, crystal-
line silicamay lead to an enhanced carcinogenic potential of B[a]P.

Discussion
By using a combination of our TM tools CRAB3 and CHAT, we
present a case study of PAHs based on the PubMed literature (March
2019) and show that our tools can identify similarities and differen-
ces in carcinogenic MOAs. First, we analyzed the literature

concerning the 22 priority PAHs and tested whether the information
generated by the CRAB3 tool can be useful to classify PAHs into
subgroups. To evaluate the classification, we employed RPF values
assigned to these PAHs and found a correlation between CRAB3-
and CHAT-generated profiles and RPFs and that the CRAB3 tool
could group PAHs according to their potency. We also found that
differences in the carcinogenic potential of PAHs and PAH deriva-
tives, namely, methylated- or nitrated-PAHs, and of other chemicals,
for example, crystalline silica, can be identified. An unexpected find-
ing was that the tools revealed major mechanistic differences in the
characterization of naturally occurring PAH mixtures. These data
show that CRAB3 and CHAT analyses gave similar answers to our
questions and had the capacity to evaluate a large amount of litera-
ture concerning the complex group of PAHs. Moreover, comparison

Figure 8. Literature analyses of crystalline silica and benzo[a]pyrene (B[a]P). (A) CRAB3-generated literature profiles of crystalline silica and comparison
with the reference PAH B[a]P. (B) CHAT analyses of the literature on cancer hallmarks and associated processes, concerning crystalline silica and comparison
with B[a]P. Data are shown as proportions of total literature in the MOA categories for CRAB3 (a vertical dotted line separates the genotoxic and nongeno-
toxic MOA categories) and conditional probability (cprob) as a strength of association for CHAT analyses (Excel Table S8), showing the probability of a hall-
mark of cancer appearing in literature given the occurrence of a particular chemical or a group of chemicals of interest. Statistically significant differences are
computed using the chi-squared homogeneity test for each individual MOA category (positive vs. negative) and for each pair of chemicals (using a 2× 2 con-
tingency table). The individual p-values were then adjusted by a Bonferroni correction for the entire profile’s p-values. p<0:05 is considered significant. #,
p<0:05 significantly different from each other. Note: AhR, aryl hydrocarbon receptor; cc, cell cycle; CHAT, Cancer Hallmarks Analytics Tool; CRAB3,
Cancer Risk Assessment using Biomedical literature tool 3; MOA, mode of action; PAH, polycyclic aromatic hydrocarbon; TNF, tumor necrosis factor.
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of CRAB3 analyses with the IARC evaluation in identifying key
characteristics on carcinogens showed similar evidence and corre-
latedwith traditionally conducted assessments.

The classification of literature by each of these tools is based
on different taxonomies and TM techniques. Nevertheless, the
output data from CRAB3 and CHAT complemented each other
in this study. CRAB3 classification of literature is based on the
evidence for carcinogenic MOAs, and the tool was developed pri-
marily for cancer risk assessment purposes (Korhonen et al.
2012). CHAT analysis was developed primarily for cancer
researchers and for classifying cancer literature according to can-
cer hallmarks and associated processes (Baker et al. 2017).
CHAT analysis has the capacity to identify more detailed end
points not covered by the CRAB taxonomy. Because CHAT anal-
ysis is built on concepts employed in basic research, using CHAT
in combination with the CRAB3 tool might be particularly help-
ful for basic researchers interested in risk assessment issues.

Our data suggest that both TM tools can identify literature pro-
files that reflect potency and can, for example, support grouping
chemicals with similar relative potency. Comparing MOA profiles
for structurally related single chemicals within the PAH group and
with strongly differing potency, such as chrysene and 5-methylchry-
sene, complemented the analysis based on RPF values by showing
that both tools could differentiate literature on structurally similar
chemicals but withwidely differing potency. Even analysis of B[a]P
and DB[al]P, which are structurally related but have largely differ-
ing sizes of literature bases, revealed expected results with selec-
tively more data on DNA damage-related effects for the latter.
These results were based on PAHs, for which RPFs previously have
been developed, but suggest that these tools also could be used for
potency grouping of chemicals that lack potency factors.

Cancer risk assessment of a complex group of chemicals,
such as PAHs, is challenging because exposure to PAHs occurs
mainly in mixtures. Diesel exhaust, coal tar, and coke oven emis-
sion are among the most well-studied environmental PAH mix-
tures, and thus large volumes of literature are available for TM-
based analyses. These three natural mixtures of PAHs exhibit
quite different literature profiles. For example, the MOA profile
of coke oven emission shows a higher than expected co-
occurrence with strand breaks and chromosomal changes in the
text as compared with B[a]P. Similarly, data on diesel exhaust
show a higher than expected co-occurrence with oxidative stress,
inflammation, and immunosuppression in the text as compared
with B[a]P. Although all these mixtures are classified as human
carcinogens (IARC 2016; IARC Working Group on the
Evaluation of Carcinogenic Risks to Humans 2010), it is the lev-
els of only B[a]P alone that are used for controlling these emis-
sions and assuring air quality in relation to cancer risk for the
general population within the European Union. In addition, there
are diesel emission standards managed by, for example, the
European Union and the U.S. EPA for particulate matter, nitro-
gen oxides, and carbon monoxide to limit noncancer health
effects (Khalek et al. 2015). The progression of these emission
standards has resulted in the development of new-technology die-
sel engines with reduced emission levels, including PAHs
(Khalek et al. 2015). In addition, in 2019, the European Union
amended their directive on the protection of workers from expo-
sure to carcinogens to also include diesel exhaust, with a limit
value based on elemental carbon (EU 2019). Our findings suggest
that we may need to reevaluate the use of B[a]P as a marker for
the carcinogenic risk of PAH mixtures and warrant development
of new strategies, as has been discussed recently (Andersson and
Achten 2015; Jarvis et al. 2014).

In addition, the possibility that PAHs and crystalline silica
may interact was suggested by CRAB3 and CHAT analysis, as

have been proposed in previous studies (Downward et al. 2014;
Vermeulen et al. 2011). The toxicological profiles created by the
CRAB3 tool and CHAT respectively for crystalline silica were
similar, once again documenting that these two tools can be used
for confirming robustness for carcinogens other than PAHs. By
employing the CHAT tool and comparing the cancer hallmarks
profiles of B[a]P and crystalline silica, we hypothesize that in a
co-exposure setting, these chemicals could cause carcinogenic
synergies. They may act in accordance with experimental studies
employing initiation–promotion protocols (Cohen and Ellwein
1990; Solano et al. 2016). They may also act through different
and, presumably, complementing cancer hallmarks, as has been
evaluated in the Halifax project (Goodson et al. 2015).

Both CRAB3 and CHAT analysis have many advantages
when evaluating large volumes of textual data in abstracts; how-
ever, they have some limitations. One of the major limitations of
these tools is that they do not have the capacity to distinguish
between positive and negative findings or, for example, between
down- vs. up-regulation of inflammatory effects. The preferences
in the types of research performed, that is, the extent at which a
chemical has been studied, may also have an influence on the out-
put. However, it should be noted that the output from these tools
is based on available literature and the lack of literature does not
necessarily mean the lack of association of a particular MOA or
hallmark with the chemical. Furthermore, methodological differ-
ences in the study design, that is, dose, route of exposure, and so
on, need to be examined manually. Future development of these
tools includes features such as identification of positive vs. nega-
tive data, consideration of study design, and bibliometric indica-
tors. We plan to upgrade the tools such that chemicals identified
by the CRAB3 tool will be assigned a Chemical Abstracts
Service number. For classification of compounds with limited
amount of human or animal toxicity data, we also plan to inte-
grate structure–activity relationship modeling into our TM tools,
as suggested in our previous study (Papamokos and Silins 2016).

Conclusions
In summary, we show that our TM tools CRAB3 and CHAT can
be used for literature review in cancer risk assessment of groups
of chemicals. Using 22 priority PAHs and complex PAH mix-
tures, we observed that the similarities and differences between
the PAHs identified by our tools can be useful for grouping these
chemicals based on their RPF values. Moreover, these tools can
facilitate the identification of possible interactions within a group
of chemicals such as PAHs and between complex mixtures. A
surprising finding was that naturally occurring mixtures that
include PAHs exhibited different literature profiles. This case
study using PAHs suggests that our tools can be useful not only
for risk assessors handling groups of similar chemicals and mix-
tures but possibly also for cancer researchers addressing cancer
risk assessment issues, including gaps in knowledge.

We found that these tools rapidly give literature overviews
that complement and enrich the outputs. Used together, they can
effectively assist manual reading of the articles. Not only risk
assessors, but researchers can also benefit when addressing risk
assessment issues. By using these tools, researchers can get a bet-
ter understanding of how cancer risk assessment might gain from
using new and cutting-edge science.
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