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Abstract

Thermal runaways in exothermic batch reactors present major safety and economic issues for industry.

Control systems currently used are not capable of detecting thermal runaway behaviour and achieve

nominally safe operation by carrying out the reaction at a low temperature. Recently, improvements

in safety and process intensity have been achieved by using Model Predictive Control (MPC) with

embedded stability criteria. The reliance of this approach on accurate model predictions makes plant-

model mismatch a crucial issue. The most common source of plant-model mismatch is uncertainty

of model parameters. Scenario-based MPC and worst case MPC are used with stability criterion K

and Lyapunov exponents in this work. The effect of all uncertain parameters on thermal runaway

potential can be identified easily for simulations in this work. Hence, worst case MPC results in a

computationally more efficient control scheme than scenario-based MPC, whilst ensuring the same

extent of safety and process intensification.
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1. Introduction1

Batch processes account for a large fraction of industry due to the flexible nature of such processes.2

Many batch processes are exothermic in nature and hence generate heat during the reaction. If3

more heat is generated than can be removed, the temperature and pressure increase uncontrollably4

resulting in thermal runaway behaviour. This potentially causes the release of hazardous chemicals5

into the environment as well as unsafe working conditions in the plant (Theis, 2014). Furthermore,6

interruptions in normal operation due to thermal runaways also have detrimental effects on the ecology7

of industrial plants. Identifying when thermal runaways occur hence presents an important task for8

industry in order to avoid such events.9
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Most batch processes in industry are run at a constant temperature with Proportional-Integral-10

Differential (PID) control (Winde, 2009; Stephanopoulos, 1984) to avoid thermal runaways. The11

reactor temperature can be increased during the process in a safe manner, if the system stability is12

known. This potentially reduces the reaction time significantly, making the batch processes safer and13

more efficient. In this work the term “batch intensification” hence refers to the reduction in batch14

duration obtained by an increase in reaction temperature throughout the process.15

For continuous stirred tank reactors (CSTRs) stability criteria found in literature work well, e.g.16

the theory of heat explosion (Semënov, 1940), the Barkelew criterion (Barkelew, 1959), the Balakotaiah17

criterion (Balakotaiah, 1989), the Baerns criterion (Baerns and Renken, 2004), the Frank Kamine�tskĩı18

criterion (Frank-Kamene�tskĩı, 1969), and the Routh-Hurwitz criterion (Anagnost and Desoer, 1991;19

Stephanopoulos, 1984; Hurwitz, 1895; Routh, 1877). All of the above criteria, except the Routh-20

Hurwitz criterion, are based on the Semënov theory of heat explosions (Rupp, 2015). Hence, if the21

Semënov criterion predicts the thermal stability of batch processes unreliably, the Barkelew, Balako-22

taiah, Baerns and Frank-Kamine�tskĩı criterion are not appropriate for such systems, either.23

Stability criteria based on Lyapunov functions were implemented in systems operating at steady24

state. A good review for such systems is given by Albalawi et al. (2018). Good results were obtained25

for continuous industrial systems, which have a clearly defined steady state, with such an approach26

(Zhang et al., 2018; Albalawi et al., 2017, 2016). Since batch reactors are inherently non-steady state,27

this approach cannot be extended to such systems easily.28

For batch reactors other stability criteria for predicting thermal runaway behaviour exist, one29

of which is the divergence criterion (Bosch et al., 2004; Strozzi and Zald́ıvar, 1999). In Kähm and30

Vassiliadis (2018d) it was shown that for some batch processes the divergence criterion systematically31

over-predicts the system instability. Hence it cannot be used to intensify such batch processes. Thermal32

stability criterion K (Kähm and Vassiliadis, 2018c,d) and Lyapunov exponents (Kähm and Vassiliadis,33

2018a,b) are shown to work reliably for batch processes. Thermal stability criterion K results in34

less computational time than Lyapunov exponents. Furthermore, Lyapunov exponents require careful35

tuning to make them reliable for batch processes (Kähm and Vassiliadis, 2018b).36

With Model Predictive Control (MPC) it is possible to incorporate stability detection within a37

control framework. MPC continuously evaluates the reactor temperature set-point whilst taking into38

account system constraints, including the system stability (Chuong La et al., 2017; Anucha et al., 2015;39

Mayne, 2014; Christofides et al., 2011). PID control cannot take such constraints into account (Winde,40

2009; Stephanopoulos, 1984). A fundamental requirement for the application of MPC to industrial41

systems is the reliable and quick detection of stability during the process and evaluation of control42

actions to be applied.43

MPC requires the use of a process model, according to which the optimal sequence of control inputs44
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are evaluated. In industry it is rarely possible to find process models which are 100% accurate for such45

purposes. Parameters within the model can be uncertain (Kalmuk et al., 2017; Sirohi and Choi, 1996)46

or the model might have the wrong structure, often called model-plant mismatch (Hong et al., 2012;47

Badwe et al., 2010). Uncertainty in the process model can have significant effects on process control if48

not taken into account. The ability to keep a process under control whilst experiencing uncertainties49

is called robust control.50

The structure of models for chemical reactor systems can often be found from first principle tech-51

niques. The biggest issue becomes the estimation of the parameters within the model (Dochain, 2003).52

From plant measurements the parameters can be estimated, but uncertainty will still be present.53

For chemical reactor systems the effect of each parameter can often be identified, e.g. an increase54

in enthalpy of reaction ∆Hr will increase the amount of heat released. This property enables the55

identification of the worst set of parameters for the system model, i.e. the set of parameters that56

makes the process as unstable as possible. This idea led to the development of the open-loop min-57

max MPC approach (Campo and Morari, 1987). This approach assumes the most unstable set of58

parameters for which a stable system is obtained. If the most unstable process can be kept under59

control, the real process will be kept stable as well. This results in overly conservative control since60

feedback of the MPC throughout the process is not taken into account (Mart́ı et al., 2015; Lucia et al.,61

2014).62

One approach to deal with uncertainty is the continuous estimation of the process model with63

the use of Gaussian processes (Kocijan et al., 2004; Jones et al., 1998). This method uses the maxi-64

mum likelihood estimator of the process model with samples from the process to find the most likely65

model. Several case studies in literature were considered using this approach (Bradford et al., 2018;66

Maciejowski and Yang, 2013; Likar and Kocijan, 2007). Other approaches to overcome the limitation67

of the open-loop control are closed-loop min-max MPC (Rakovic et al., 2011; Rawlings and Animit,68

2009; Mayne et al., 2005) and tube-based MPC (Muñoz-Carpintero et al., 2016). These methods take69

into account that new information will be available as the process occurs, but issues with respect to70

overly conservative control and computational cost arise.71

To avoid the overly conservative nature of closed-loop min-max MPC, a multistage MPC framework72

was developed (Mart́ı et al., 2015; Lucia et al., 2013; Bernadini and Bemporad, 2009; Scokaert and73

Mayne, 1998). This method assumes that the uncertainty within the system can be represented by74

multiple scenarios with state variables x, each representing a possible set of parameters in the model.75

For parametric uncertainty only one stage is required, because a value for each uncertain parameter76

can be sampled independently. Each set of parameter values can then be used as a single scenario. This77

work addresses the issue of parametric uncertainty on the K stability criterion, as well as Lyapunov78

exponents.79
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When using thermal stability criteria with MPC this implies that the effect of uncertainty on these80

stability measures has to be identified in detail. Once it is observed how each stability criterion behaves81

under model-plant mismatch, an MPC framework incorporating thermal stability criteria can be used.82

This work focuses on achieving the following goals:83

• verify the validity of the Semënov and Routh-Hurwitz criterion for batch processes84

• examine the effect of uncertainty on reliable stability measures85

• develop a robust MPC framework using suitable thermal stability criteria86

• intensify batch processes safely with the proposed control framework87

Achieving these goals results in a novel approach to reduce the reaction time for batch processes88

in a safe manner, whilst considering parametric uncertainty.89

This paper is organised as follows: in Section 2 the batch reactor model used for all simulations90

is presented. The Semënov and Routh-Hurwitz criteria are examined in Section 3. In Section 4 the91

robustness of thermal stability criterion K and Lyapunov exponents are examined. A robust MPC92

scheme incorporating these stability criteria is presented and examined in Section 5. The key results93

and future work required are summarised in Section 6.94

2. Batch reactor model95

To carry out dynamic simulations of batch reactors in this work, all mass and energy balances96

with all process parameters are necessary. These equations and parameter values are presented in the97

following sections.98

2.1. Mass and energy balances99

To model the processes occurring within a batch reactor, all relevant mass and energy balances100

have to be formulated. The following irreversible exothermic chemical reaction is considered in this101

work:102

A + B −→ C (1)

The rate of reaction corresponding to Equation (1) is given by an Arrhenius expression (Davis and103

Davis, 2003):104

r = k0 exp

(
−Ea

RTR

)
[A]

nA [B]
nB (2)
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where r is the rate of reaction, k0 is the Arrhenius pre-exponential factor, Ea is the activation energy,105

R is the universal molar gas constant, TR is the reactor temperature, [A] and [B] are the concentrations106

of reagents A and B, respectively, and nA and nB are the orders of reaction with respect to A and B,107

respectively.108

Using the reaction kinetics the mass balances for components A, B and C can be found:109

d [A]

dt
= −r (3a)

d [B]

dt
= −r (3b)

d [C]

dt
= +r (3c)

where r is given by Equation (2) and t is the time of simulation.110

Since an exothermic reaction is present, heat is generated during the batch process. The generation111

of heat will cause a change in temperature, determined by the relevant energy balances. The energy112

balance of the reactor contents is given by:113

d

dt
(VR ρR Cp,R TR) = r (−∆Hr) VR − U A (TR − TC) (4)

where VR is the reactor volume, ρR is the density of the reactor contents, Cp,R is the heat capacity114

of the reactor contents, ∆Hr is the enthalpy of reaction, U is the heat transfer coefficient between115

the coolant and the reactor contents, A is the heat transfer area between the cooling jacket and the116

reactor, and TC is the coolant temperature.117

A stirrer is present in the batch reactor, but its contribution to the total heat generation is negligible118

in comparison to the heat generated by the exothermic reaction.119

Since cooling is applied, the temperature of the coolant is subject to change with time. The energy120

balance of the cooling jacket is given by:121

d

dt
(VCρCCp,CTC) = qCρCCp,C (TC,in − TC) + UA (TR − TC) (5)

where VC is the cooling jacket volume, ρC is the coolant density, Cp,C is the coolant heat capacity, qC122

is the coolant flow rate, and TC,in is the coolant inlet temperature. With Equations (2)−(5) the batch123

reactor dynamics can be simulated.124

2.2. Batch reactor parameters125

Batch reactors are a major part of the polymer and pharmaceutical industry. This is due to their126

flexibility in reaction conditions, enabling to achieve high yields for good quality products.127
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The reaction is initiated after all reagents are added. Usually the reagents are heated up after128

being added to a batch reactor. The time required to heat up the reagents is neglected for simplicity.129

Once the target conversion is achieved, the products are removed and the reactor is prepared for the130

next batch process. A schematic of the batch reactor model in this work is shown in Figure 1.131

Coolant

Batch feed

Product outlet

Computer system

Measurements

Figure 1: Batch reactor diagram for simulated systems.

In Figure 1 it is seen that a cooling jacket is present which is used to control the temperature132

within the reactor. This control can either be achieved by PID control (Winde, 2009; Stephanopoulos,133

1984), or MPC (Chuong La et al., 2017; Rawlings and Mayne, 2015; Christofides et al., 2011). The134

coolant flow rate through the cooling jacket is controlled by a valve which is open if maximum cooling135

is required, or completely closed if no cooling is necessary. Measurements of the reactor temperature136

and all concentrations give feed back on how close the system is to the specified set-point. This will137

set the cooling valve position for both PID control and MPC.138

A stirrer is also present in order to make sure good mixing is present within the reactor. Strong139

mixing ensures that all physical properties in the reacting mixture can be assumed to be uniform.140

In industry various sizes of batch reactors exist for particular chemical reactions. A total of six141

reactions are considered in this work:142

1. 5 example reactions according to which the reliability of stability criteria is examined, called143

processes P1 − P5144

2. the nitration of toluene, for which the robust MPC frameworks are applied and their performance145

assessed146
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The data of the different reactor settings used for each reaction in this work are shown in Table 1.147

Table 1: Batch reactor parameters for the processes considered.

Process VR

[
m3
]

VC

[
m3
]

A
[
m2
]

qC,max

[
m3 s−1

]
U
[
W m−2 K−1

]
P1 − P5 20 1.4 36 0.030 600

Nitration of toluene 8.0 0.50 20 0.023 500

The values of VR shown in Table 1 represent the volume of the reagents and not the volume of148

the whole reactor. This is the case because the stirring action and potential foam formation requires149

additional space within the reactor.150

The data for all chemical reactions considered in this work are given in Table 2.151

Table 2: Batch reactor parameters for the processes considered in this work.

Process k0 nA;nB ∆Hr × 10−3 Ea/R [A] [B][
m3n−3 kmol1−n s−1

]∗
[−]

[
kJ kmol−1

]
[K]

[
kmol m−3

] [
kmol m−3

]
P1 2.76× 106 1;0 -75.0 9525 13 21

P2 5.00× 103 1.5;0 -110 9480 13 13

P3 2.20× 102 3;1 -250 9525 13 18

P4 9.70× 104 1.5;1 -130 9550 8.0 12

P5 3.00× 105 1;1 -100 9525 10 8.0

*n = nA + nB

The system dynamics were simulated using ode15s (Shampine et al., 1999) within MATLABTM,152

using an adjusted time step Runge-Kutta method (Cellier and Kofman, 2006). MATLABTM was used153

due to its simplicity of developing code. For the solution of the recurring optimal control problem the154

SQP optimisation algorithm within MATLABTM is used. The simulations presented in this work were155

carried out on an HP EliteDesk 800 G2 Desktop Mini PC with an Intel R© Core i5-65000 processor156

with 3.20 GHz and 16.0 GB RAM, running on Windows 7 Enterprise.157

2.3. Industrial case study: Nitration of toluene158

Additionally to the simple reaction scheme outlined in the previous section, a more complex case159

study is considered in this work. The nitration of toluene is a relevant process in industry, consisting160

of endothermic and exothermic reactions (Halder et al., 2008). Thermal runaways can occur still,161
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Table 3: Process parameters for the nitration of toluene reaction network (Chen et al., 2008; Luo and Chang, 1998;
Mawardi, 1982; Sheats and Strachan, 1978).

Reaction k0,i Ea,i ∆Hr,i n1,i n2,i

i
[
m3 mol−1 s−1

] [
kJmol−1

] [
kJmol−1

]
[−] [−]

(1) 2.00× 103 76.5 +30.0 1.00 1.00

(2) 109 12.5 -122 2.27 0.293

(3) 67.3 12.5 -122 2.27 0.293

(4) 5.46 12.5 -122 2.27 0.293

because the process is exothermic overall. The reaction is initiated by the formation of a nitronium162

ion
(
NO+

2

)
, followed by 3 parallel reactions with toluene (C7H8) (Mawardi, 1982):163

HNO3 + H2SO4 →NO+
2 + HSO−

4 + H2O Reaction (1) (6a)

NO+
2 + C7H8 + H2O→o− C7H7NO2 + H3O+ Reaction (2) (6b)

NO+
2 + C7H8 + H2O→p− C7H7NO2 + H3O+ Reaction (3) (6c)

NO+
2 + C7H8 + H2O→m− C7H7NO2 + H3O+ Reaction (4) (6d)

where the letters o-, p- and m- stand for ortho, para and meta positions of the nitronium ion on164

toluene, respectively. The reactions in Equations (6) are referred to as reactions (1)− (4) hereafter.165

Each individual reaction can be described by Arrhenius rate expressions, given by:166

r1 =k0,1 exp

(
−Ea,1

RTR

)
[HNO3]

n1,1 [H2SO4]
n2,1 (7a)

r2 =k0,2 exp

(
−Ea,2

RTR

)[
NO+

2

]n1,2
[C7H8]

n2,2 (7b)

r3 =k0,3 exp

(
−Ea,3

RTR

)[
NO+

2

]n1,3
[C7H8]

n2,3 (7c)

r4 =k0,4 exp

(
−Ea,4

RTR

)[
NO+

2

]n1,4
[C7H8]

n2,4 (7d)

Important to note is that reactions (2) − (4) each produce a H3O+ ion, which will combine with167

HSO−
4 to form H2SO4. Hence the sulphuric acid in this reaction network acts as a catalyst. The data168

used for this reaction network are given in Table 3.169
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The initial concentrations of each reagent are given by:170

[HNO3]0 = 6.0 kmol m−3 (8a)

[H2SO4]0 = 1.0 kmol m (8b)

[C7H8]0 = 5.5 kmol m−3 (8c)

These initial concentrations are used throughout all case studies for the nitration of toluene. The171

reactor dimensions for this system are given in Table 1.172

3. Analysis of Semënov and Routh-Hurwitz criteria173

3.1. Batch process with PI control174

For the analysis of reliable stability measures in this section a PI controller is used. A PI controller175

is mathematically described by the following equation:176

u (t) = KP ε (t) +
1

τI

∫ tf

t0

(ε (t) dt) (9)

where u (t) is the control variable given by the coolant flow rate, ε (t) is the error at time t given177

by the temperature deviation, KP is the proportional constant of the PI controller, and τI is the178

integral constant of the PI controller. KP and τI define how the PI controller behaves for the process,179

and are set to KP = 10 m3 K−1 s−1 and τI = 1000 K s2m−3. No systematic tuning methods such as180

Ziegler-Nichols (Yucelen et al., 2006), Cohen-Coon (Joseph and Olaiya, 2018), or Nyquist (Chen and181

Seborg, 2003) are applied to the PI controller in this work. The PI controller in this work is used to182

obtain thermal runaway behaviour. Identifying when each process becomes unstable sets the basis for183

verifying the reliability of the thermal stability criteria examined.184

To analyse how the Semënov and the Routh-Hurwitz criterion behave in a dynamic batch reac-185

tion, PI controlled simulations of processes P1 − P4 are considered. To identify where the system186

becomes unstable and when the criteria identify an unstable system, an initially stable batch reaction187

is made unstable by a step-wise increase in the reaction set-point temperature. Once the temperature188

increases uncontrollably, thermal runaway behaviour is obtained. The resulting temperature profiles189

for processes P1 − P4 are shown in Figure 2.190

9



xx

x

x

+

+

++

Figure 2: Temperature profiles of PI controlled processes P1 − P4 with a step-wise increase in reaction set-point tem-
perature. The dashed lines indicate the temperature set-points of the PI controller. The vertical dotted lines show the
points in time when each respective process becomes unstable. The x’s and +’s indicate when Lyapunov exponents and
criterion K indicate thermal runaway behaviour, respectively.

As can be seen in Figure 2 the temperature profiles initially follow the set-point temperatures. As191

the set-point temperature increases a second time, each process becomes unstable, resulting in thermal192

runaway behaviour. The points in time when each process becomes unstable are indicated by vertical193

dotted lines in Figure 2. These times are identified in the following manner: for each process shown194

in Figure 2 the same simulation is carried out with a smaller second increase in set-point temperature.195

The maximum second increase in set-point temperature still resulting in a stable process found. Up196

until the times indicated by the vertical dotted lines in Figure 2 the two simulations are identical.197

The times indicated are hence the first points in time for processes P1−P4 at which thermal runaway198

behaviour is unavoidable. It is noted that the cooling valve should have been opened fully before the199

times indicated by the vertical dotted lines to avoid thermal runaway behaviour.200

In the following two sections the reliability of thermal runaway prediction of the Semënov and the201

Routh-Hurwitz criterion is examined. If no reliable identification of the system stability results, these202

criteria cannot be used for batch process intensification.203

3.2. Semënov criterion204

The first quantification of stability occurred in 1940, when the theory of thermal explosions by205

Semënov was introduced (Semënov, 1940). In this work the heat generation of the reaction system206

was compared to the available cooling capacity in order to formulate this stability criterion.207

Consider the batch reactor system shown in Section 2. In this system heat is generated by an208

exothermic reaction, denoted by Qgen, and heat is removed with the cooling jacket, denoted by Qrem.209
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Figure 3: Heat generation (black, dashed line) and heat removal (solid lines) for different coolant inlet temperatures.
For the coolant inlet temperatures of 200 K, 300 K, and 350 K, heat transfer coefficient values of 800 W m−2 K−1, 500
W m−2 K−1, and 50 W m−2 K−1, respectively, were used.

The conditions of stability according to Semënov are given by the following two expressions:210

Qgen ≤ Qrem (10a)

dQgen

dt
≤ dQrem

dt
(10b)

This can also be represented graphically for an exothermic reaction. Consider a single reaction, as211

shown in Equation (1), generating heat according to Equation (4), subjected to cooling according to212

Equation (5). The equations used to analyse how Qgen and Qrem change with reactor temperature are:213

Qgen = k0 exp

(
−Ea

RTR

)
[A]

nA [B]
nB (−∆Hr)VR (11a)

Qrem = U A (TR − TC) (11b)

The resulting heat generation and removal rates with respect to reactor temperature, as given in214

Equation (11), are shown for process P1 in Figure 3.215

The region to the left of the intersection for each solid and the dashed line gives the stable tem-216

perature range for the batch reactor at a single point in time. The analysis of stability according to217

Semënov only gives steady-state results of stability, which is a major limitation.218

In Figure 3 several interesting features can be observed: if the coolant inlet temperature is too219
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high, in this case 350 K, then the system is stable only when no heat is generated. As the coolant220

inlet temperature decreases, the feasible temperature range of operation increases. As the coolant221

inlet temperature is decreased from 350 K to 300 K and 200 K, the heat transfer coefficient values222

are increased from 50 W m−2 K−1 to 500 W m−2 K−1 to 800 W m−2 K−1. These values for the heat223

transfer coefficients are constant and do not vary with temperature. This can be seen by the increase224

in gradient of the heat removal lines, again increasing the range of feasible reactor temperatures. Once225

the solid lines in Figure 3 cross the dashed line, the value for Qgen will always be larger than that of226

Qrem due to the exponential nature of the heat generation. Therefore, once the solid lines and the227

dashed line cross the stable region of a stationary process can be identified according to Equation (10a).228

No discussion on the dynamic nature of the process is possible according to Equation (10b) with the229

results given in Figure 3.230

For the verification of the Semënov criterion with respect to dynamic systems, the temperature231

profiles in Figure 2 are considered. To see how well the Semënov criterion describes the transition232

to unstable operation, the corresponding profiles of the ratio Qgen/Qrem,max, where Qrem,max is the233

maximum cooling capacity, are plotted in Figure 4.234

Figure 4: Ratio of heat generation to heat removal, Qgen/Qrem,max, for processes P1 − P4 shown in Figure 2. The
vertical dotted lines show the points in time when each respective process becomes unstable.

The second condition of the Semënov criterion in Equation (10) with respect to heat generation235

and removal rates,
dQgen

dt /dQrem

dt , is shown for processes P1 − P4 in Figure 5.236
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Figure 5: Ratio of heat generation to heat removal rate,
dQgen

dt
/dQrem

dt
, for processes P1−P4, the temperature profiles of

which are shown in Figure 2. The vertical dotted lines indicate the points in time when each respective process becomes
unstable.

According to Equation (10) an unstable system is present once the system reaches
Qgen

Qrem,max
> 1237

and/or
dQgen

dt /dQrem

dt > 1. This means that as long as
Qgen

Qrem,max
≤ 1 and

dQgen

dt /dQrem

dt ≤ 1 a stable238

system is present.239

In Figure 4 it is seen that the criterion
Qgen

Qrem,max
according to Semënov does not give very good240

predictions of system stability: thermal runaway behaviour occurs while
Qgen

Qrem,max
< 1, as can be seen241

by the vertical dotted lines showing when thermal runaways occur.242

The second condition of the Semënov criterion
dQgen

dt /dQrem

dt for processes P1, P2 and P4, given243

in Figure 5, is always smaller than 1 hence predicting stable operation throughout. The value of244

dQgen

dt /dQrem

dt for process P3 starts larger than 1, drops below 1 and increases abruptly with increases245

in set-point temperature. Clearly, the profiles for the second Semënov criterion given in Figure 5 do246

not give a reliable prediction of thermal stability according to Equation (10b).247

Therefore using the Semënov criterion for nonlinear, non-steady-state systems would result in248

unreliable prediction of thermal runaway behaviour.249

3.3. Routh-Hurwitz criterion250

The Routh-Hurwitz criterion (Anagnost and Desoer, 1991; Hurwitz, 1895; Routh, 1877) uses the Ja-251

cobian of the underlying Differential Algebraic Equations (DAEs) to quantify system stability. Hence,252

in order to use the Routh-Hurwitz criterion, first the Jacobian of the batch reactor equations presented253
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in Section 2 is derived. Consider the following general set of differential equations:254

ẋ1 = f1 (x, t) (12a)

ẋ2 = f2 (x, t) (12b)

...
...

ẋN = fN (x, t) (12c)

where N is the number of differential variables x, and f (x, t) is a generic function depending on x255

and time t.256

For nonlinear systems, a linear approximation of the set of equations can be obtained by using a257

Taylor series expansion (James et al., 2007). Hence, Equation (12) can be rewritten by the following258

linear approximation:259

ẋ = Jx (13)

where J is the Jacobian matrix including all first order derivatives with respect to x. The entry at row260

j and column l, Jjl, is evaluated by the following expression:261

Jjl =
∂fj
∂xl

(14)

The eigenvalues of the Jacobian matrix are then found (Chatelin, 2012), giving rise to the stability262

of the system. If any of the eigenvalues are positive, an unstable system according to the Routh-263

Hurwitz criterion is present (Routh, 1877; Hurwitz, 1895). Hence, the Routh-Hurwitz criterion for a264

stable system is given by:265

eig [J] ≤ 0 (15)

where the operator eig [J] finds the eigenvalues of matrix J.266

The performance of this criterion is tested with processes P1−P4, as was done in Section 3.2 for the267

Semënov criterion. The temperature profiles for these processes are shown in Figure 2. The system268

simulated contains 5 differential variables. This leads to the Jacobian to have at most 5 distinct269

eigenvalues. The linearisation of the system to obtain the Jacobian is carried out in each point in270

time. This is necessary since a single linearisation cannot capture the whole system dynamics as time271

proceeds. For clarity, the largest eigenvalue of the Jacobian for each process P1 − P4 is shown as the272

stability criterion. If the maximum value of all eigenvalues is below zero, a stable system is indicated.273
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Figure 6: Routh-Hurwitz criterion for processes P1 − P4. The temperature profiles for these processes are shown in
Figure 2. The vertical dotted lines show the points in time when each respective process becomes unstable.

The transition from stable to unstable operation has to be identified with this criterion in order to274

show its reliability. The resulting Routh-Hurwitz criterion profiles for processes P1 − P4 are shown in275

Figure 6.276

In Figure 6 it is seen that for each process unstable operation is predicted throughout. This is277

wrong because initially every process is under control due to the PI controller present. Only after the278

second increase in set-point temperature does each process become unstable. Since batch reactors are279

never at steady-state, the Routh-Hurwitz criterion gives an unreliable stability prediction for these280

types of systems. Therefore a different stability criterion is required for this purpose.281

3.4. Thermal stability criteria for batch processes282

As outlined in the introduction, two reliable thermal stability criteria exist in the literature for283

batch processes: criterion K and Lyapunov exponents. A brief background on each thermal stability284

measure is given here for completeness.285

Thermal stability criterion K is based on the divergence criterion (Bosch et al., 2004). Since286

the divergence criterion is too conservative (Kähm and Vassiliadis, 2018d) a correction function E287

is introduced. The correction function E predicts the divergence at the boundary of stability, hence288

resulting in the following equation for criterion K:289

K = div [J]− |E| (16)

If the value of K becomes positive, an unstable process is identified. More detail on the derivation290
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of criterion K and the correction function E can be found in Kähm and Vassiliadis (2019).291

Lyapunov exponents, on the other hand, require a parallel simulation to be carried out. For each292

state variable x the nominal trajectory is perturbed at initial time t0 by a small positive amount δx.293

The distance between the trajectories is measured after a certain time frame tlyap in the following294

manner:295

Λ(t0, x0) =
1

tlyap
ln

(
|x (t0 + tlyap, x0 + δx)− x (t0 + tlyap, x0) |

δx

)
(17)

If the Lyapunov exponent in Equation (17) becomes positive, an unstable process is predicted. A296

more detailed discussion on how Lyapunov exponents are used and how values for tlyap and δx are297

determined can be found in Kähm and Vassiliadis (2018b).298

3.5. Discussion of results299

The Semënov criterion and Routh-Huriwtz criterion work well in identifying the stability of con-300

tinuous processes with a clear stationary point, e.g. for CSTRs. From the stability criterion profiles in301

Sections 3.2 and 3.3 it is clear that these criteria do not give reliable predictions of thermal stability302

in batch processes. As mentioned in the introduction, this also means that the Barkelew, Balakotaiah,303

Baerns and Frank-Kamine�tskĩı criteria are not applicable to batch processes either. The +’s and x’s304

in Figure 2 indicate when criterion K and Lyapunov exponents identify thermal runaway behaviour,305

respectively. As can be seen, the thermal runaway predictions are before the actual loss of thermal306

stability hence giving a degree of conservativeness. Nevertheless, criterion K and Lyapunov exponents307

result in reliable thermal runaway prediction (Kähm and Vassiliadis, 2018b,c). Hence in the further308

analysis of robust thermal stability criteria only Lyapunov exponents and criterion K are considered.309

4. Robustness of criterion K and Lyapunov exponents310

The accuracy of a stability criterion is of utmost importance when the system state is close to311

the boundary of instability. Hence, the sensitivity with respect to parametric uncertainty of thermal312

stability criterion K and Lyapunov exponents is investigated for process P5 controlled by a PI controller313

in similar manner to processes P1 − P4. The resulting temperature profile of process P5 is shown in314

Figure 7.315

To adequately compare parameters and the effect of uncertainty, a 95% confidence region for each316

parameter is assumed. This gives the region where the Lyapunov exponent and criterion K for the317

system would lie 95% of the time if each parameter (a normally distributed random variable) was318

sampled many times. The comparison of the confidence regions allows the comparison of the impact319

between parameters.320
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Figure 7: Temperature profiles of PI controlled process P5 with a step-wise increase in reaction set-point temperature.
The dashed line indicate the temperature set-point of the PI controller.

It is assumed that uncertainties in the reactor and cooling jacket volumes, as well as the heat transfer321

area are known well enough such that they are 100% certain. The order of reaction is assumed to be322

restricted to integers. Process disturbances as well as measurement noise are not considered at this323

stage. Therefore, confidence intervals of K and Lyapunov exponents were calculated for the following324

model parameters: ρR, ρC, Cp,R, Cp,C, k0, Ea, ∆Hr, and U . For all but one, a relative standard325

error (RSD) of 5% was used as an upper limit of an acceptable empirical result. An exception had to326

be made for the activation energy Ea with 1% RSD being used. The fact that the activation energy327

appears within an exponential for the reaction rate (Equation (2)) means deviations of 5% RSD would328

result in extremely different system behaviour.329

In Section 2 it is assumed that strong mixing is present in all processes. This is equivalent to330

assuming infinitely large diffusion coefficient values. For a complete consideration of parametric un-331

certainty the uncertainty in diffusion coefficients would have to be included as well. This would only332

be necessary if uncertainty in diffusion coefficients might result in non-turbulent mixing. In industry333

turbulent mixing can be guaranteed for reacting mixtures with a low and known viscosity. Therefore334

in this work parametric uncertainty with respect to diffusion coefficients is omitted.335

The probability distribution used for the analysis of robustness with respect to the enthalpy of336

reaction ∆Hr for process P5 is given by:337

∆Hr ∼ N
(
µ∆Hr , σ

2
∆Hr

)
(18a)

where µ∆Hr
is the mean and σ∆Hr

is the standard deviation of ∆Hr, given numerically by:338
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µ∆Hr = − 100 kJ mol−1 (18b)

σ∆Hr
= 2.55 kJ mol−1 (18c)

The standard deviation is obtained in the following manner: for 95% certainty in the mean value of339

the enthalpy of reaction given a 10% range, equivalent to 5% RSD, the z-value of a normal distribution340

is given by (Rasmussen and Williams, 2006):341

1.96 =
0.95µ∆Hr

− µ∆Hr

σ∆Hr

(19a)

σ∆Hr =
−0.05µ∆Hr

1.96
(19b)

σ∆Hr = 2.55 kJ mol−1 (19c)

The normal distribution parameters for all remaining parameters are evaluated in a similar manner,342

and summarised in Table 4. These values are used for all the sensitivity analyses for criterion K and343

Lyapunov exponents in the following sections.344

Table 4: Normal distribution parameters for all uncertain parameters.

∆Hr Ea/R k0 × 10−3 U ρR ρC Cp,R Cp,C[
kJ

mol s

]
[K]

[
m3

kmol s

] [
W

m2 K

] [
kg
m3

] [
kg
m3

] [
kJ
kg

] [
kJ
kg

]
µ -100 9525 300 600 950 1000 2330 4180

σ 2.55 48.6 7.65 15.3 24.2 25.5 59.4 107

4.1. Effect of parametric uncertainty on criterion K345

Figure 8 shows results for the reaction mixture density, which equally hold for the reaction mixture346

heat capacity. It can be seen that the impact of the parameters on the stability criterion K changes347

depending on the system state. It follows from Equation (4) that a reduction in the reaction mixture348

density/heat capacity increases the magnitude of the rate of change of reactor temperature. The349

change in sign of the rate of change of temperature is closely associated with a transition to thermal350

instability thus causing the behaviour observed. Based on low sensitivity of K to the reaction mixture351

density/heat capacity at the boundary of instability and the fact these properties can be measured352

easily with good accuracy, density and heat capacities are not considered further.353

Results for the enthalpy change of reaction and the pre-exponential constant are presented in354
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Figure 8: Sensitivity of the stability criterion K to uncertainty in reaction mixture density, ρR, with 5% RSD. Identical
results were obtained for reaction mixture heat capacity Cp,R.

Figures 9 and 10. It can be seen that the uncertainties in the two parameters have near identical impacts355

on the stability criterion K. This observation is explained by the similarities in their contributions to356

system behaviour, in particular to the rate of heat generation, as seen in Equation (11a).357

Results for the heat transfer coefficient are shown in Figure 11. Sensitivity of K with respect to the358

heat transfer coefficient U is observed to vary significantly depending on the runaway potential of the359

current system state. This feature is explained by the reduction in the fraction of heat being removed360

from the system as thermal runaway proceeds, which is evident from Equation (5).361

In Figure 12 the results for the activation energy are shown. Despite a smaller RSD being used, the362

most significant effect on criterionK is observed for uncertainty in the activation energy. This is the case363

because the rate of heat generation is proportional to the exponential of Ea, as mentioned previously.364

The high sensitivity observed indicates that for stability criterion K to be reliable, activation energy365

of the reaction has to be known with high accuracy.366
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Figure 9: Sensitivity of the stability criterion K to uncertainty in the pre-exponential constant, ∆Hr, with 5% RSD.

Figure 10: Sensitivity of the stability criterion K to uncertainty in the Arrhenius pre-exponential factor, k0, with 5%
RSD.
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Figure 11: Sensitivity of the stability criterion K to uncertainty in the heat transfer coefficient, U , with 5% RSD.

Figure 12: Sensitivity of the stability criterion K to uncertainty in the activation energy, Ea, with 1% RSD.

Based on the above results it is identified that there are four parameters with the most significant367

impact on the stability criterion K: the activation energy, Ea, the enthalpy change of reaction, ∆Hr,368

the Arrhenius pre-exponential factor, k0, and the heat transfer coefficient, U .369

4.2. Effect of parametric uncertainty on Lyapunov exponents370

As done for criterion K, the effect of uncertainty in the reaction mixture heat capacity on the371

Lyapunov exponents is considered first. For this purpose, the same normal distributions and standard372
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deviations as outlined in Table 4 are used. The profiles of the Lyapunov exponent with respect to373

temperature, Λlyap,T , with respect to uncertainty in ρR and Cp,R for an RSD of 5% is shown in374

Figure 13.375

Figure 13: Sensitivity of the Lyapunov exponent with respect to reactor temperature, Λlyap,T to uncertainty in reaction
mixture heat capacity, Cp,R, with 5% RSD. Identical results were obtained for reaction mixture density ρR.

As observed for criterion K, uncertainty in the reaction mixture heat capacity, as well as density,376

has little effect on the Lyapunov exponent values. The points in time when instability is predicted377

only varies to a negligible extent. Therefore, these parameters are excluded for the further analysis of378

uncertainty for Lyapunov exponents.379

The effect of uncertainty in the enthalpy of reaction and the Arrhenius pre-exponential factor on380

Lyapunov exponents, each with 5% RSD, is shown in Figure 14 and 15.381

Similarly to the results for criterion K, uncertainty in the reaction enthalpy and the Arrhenius382

pre-expontnial influence the Lyapunov exponent in a nearly identical manner. As was described for383

criterion K, this is due to the form in which these parameters appear in the overall energy balance of384

the system, given in Equation (4). The effect of uncertainty in these two parameters is hence important385

when considering robust MPC techniques.386

How uncertainty in the heat transfer coefficient effects thermal stability prediction using Lyapunov387

exponents is shown in Figure 16.388

In Figure 16 it is seen that uncertainty in the heat transfer coefficient U significantly affects the389

predictions made by Lyapunov exponents about system stability. The smaller the value of the heat390

transfer coefficient used with Lyapunov exponents, the earlier unstable system behaviour is predicted.391

This is the case, because a smaller heat transfer coefficient results in less cooling.392
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Figure 14: Sensitivity of the Lyapunov exponent with respect to reactor temperature, Λlyap,T to uncertainty in enthalpy
of reaction, ∆Hr, with 5% RSD.

Figure 15: Sensitivity of the Lyapunov exponent with respect to reactor temperature, Λlyap,T to uncertainty in Arrhenius
pre-exponential factor, k0, with 5% RSD.
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Figure 16: Sensitivity of the Lyapunov exponent with respect to reactor temperature, Λlyap,T to uncertainty in heat
transfer coefficient, U , with 5% RSD.

Lastly, the effect of uncertainty in the activation energy is considered. Again, 1% RSD is used393

because a deviation of 5% RSD, as was done for all other parameters, would result in extremely394

different system dynamics. Such large deviations would not be beneficial when considering the use of395

robust MPC techniques. The profiles for the Lyapunov exponents with respect to deviated activation396

energy values are shown in Figure 17.397

Figure 17: Sensitivity of the Lyapunov exponent with respect to reactor temperature, Λlyap,T to uncertainty in activation
energy, Ea, with 1% RSD.

As expected, even a 1% RSD results is large deviations in the Lyapunov exponent value. Important398
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to note is that a negative deviation results in faster reaction dynamics. A negative deviation of 1%399

RSD results in the initial operating point being classified as unstable. A positive deviation of 1% RSD400

only results in thermal runaway prediction at the end of the time frame considered in the simulation.401

Hence, the value of the activation energy should be known to a high degree of accuracy, confirming402

the results obtained for criterion K.403

4.3. Results of sensitivity analysis404

From the analysis of parametric uncertainty above for criterion K and Lyapunov esponents, similar405

results are obtained:406

1. uncertainty densities and heat capacities have a negligible effect on thermal stability prediction407

2. uncertainty in the enthalpy of reaction, Arrhenius pre-exponential factor, and heat transfer408

coefficient are included with a deviation of 5% RSD within the 95% confidence interval409

3. the value of activation energy has to be known to a high degree to obtain a sensible range of410

potential system behaviours. Hence, a deviation of 1% RSD within the 95% confidence interval411

is used412

The following section will use these results to formulate robust MPC frameworks using uncertainty413

in the outlined parameters embedded with thermal stability prediction.414

5. Process intensification with robust MPC415

Intensifying batch processes can be achieved by constantly increasing the reactor temperature416

during the process. This results in shorter reaction times to achieve a certain target conversion. While417

the reactor temperature is increased, the process must not enter an unstable regime. Such a stability418

constraint can be embedded within an MPC framework and cannot be achieved with PID control.419

Model Predictive Control (MPC) is a control formulation which allows the addition of system420

constraints, as well as an objective to be optimised. At every MPC step an Optimal Control Problem421

(OCP) is solved. This OCP involves a control horizon tc and a prediction horizon tp. During the422

control horizon a specified number of control steps are free to vary in order to satisfy the system423

constraints and optimise the objective. Beyond the control horizon and within the prediction horizon424

the last control input found is assumed to be applied.425

The MPC algorithm is largely defined by the control horizon tc and the prediction horizon tp. The426

control horizon sets the time frame over which the MPC algorithm finds the optimal control inputs427

such that the system follows a given reference trajectory. The prediction horizon is used to simulate428

the model used for MPC to predict how the system will behave for the control inputs found, assuming429

the last control input within the control horizon is kept constant. The MPC framework used in this430

25



work uses a control horizon of tc = 30 s with 3 control steps of same length, and a prediction horizon431

of tp = 70 s. Since only the first control step is implemented after which the optimisation procedure432

is repeated, the algorithm has 10 s to evaluate the optimal sequence of control inputs. This presents433

an upper bound on the computational time which must not be exceeded.434

The intensification of batch processes requires the full nonlinear model as there is no steady-state435

operating point. This condition presents issues with respect to defining stable operating points, which436

is why a different solution to this issue is required. In Kähm and Vassiliadis (2018a,b,c,d) it is shown437

how stability criteria can be incorporated into standard MPC frameworks as nonlinear constraints. To438

account for uncertainty within the system, two robust MPC frameworks are considered here: scenario-439

based MPC and worst case MPC.440

For completeness, the nonlinear constraints embedded within MPC are given by:441

K ≤ 0 (20a)

Λlyap ≤ 0 (20b)

where in Equation (20b) all relevant Lyapunov exponents are included. Only one of the constraints442

given in Equation (20) is used at one time. If, at any time, the constraint used becomes positive, an443

unstable process is identified. More details of how Lyapunov exponents and criterion K are evaluated444

for the use with MPC can be found in Kähm and Vassiliadis (2018b) and Kähm and Vassiliadis (2018c),445

respectively.446

The nitration of toluene is used as the case study for the robust MPC frameworks. The MPC447

frameworks embedded with criterion K and Lyapunov exponents are compared by considering the448

effect on stability, intensification and computational time. The initial temperature of the process449

is set to 450 K. The main product is chosen to be o-nitrotoluene, with a target concentration of450

2.5 kmol m−3. Sample temperature and concentration profiles of batch process intensification for the451

nitration of toluene using MPC embedded with Lyapunov exponents are shown in Figure 18, taken452

from Kähm and Vassiliadis (2018b).453

As can be seen in Figure 18, process intensification using MPC with measures of thermal stability454

enable a continuous increase in reactor temperature until the upper temperature limit is reached. Any455

process exceeding the maximum temperature is considered as unstable in the following analysis.456

5.1. Scenario-based MPC457

In the previous section it was shown that uncertainty in the enthalpy of reaction, Arrhenius pre-458

exponential factor, activation energy and heat transfer coefficient indeed affect the prediction of thermal459
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(a) Temperature profiles for intensified processes of the nitration of toluene. The solid line relates to initial temperatures
of TR0 = 450 K, the dashed line relates to TR0 = 440 K and the dash-dotted line relates to TR0 = 430 K. The dotted line
indicates the maximum allowable temperature of Tchem = 510 K.

(b) Concentration profiles for the nitration of toluene reaction system. The profiles are obtained by control with MPC
framework 1. The dotted line indicates the target concentration for o-nitrotoluene.

Figure 18: Results for the intensification of the nitration of toluene using MPC embedded with Lyapunov exponents at
different starting temperatures TR0 (Kähm and Vassiliadis, 2018b).
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stability using criterion K and Lyapunov exponents. To ensure safe operation of industrial processes,460

it is therefore of utmost importance that the MPC framework employed takes this uncertainty into461

consideration.462

As was discussed in the introduction, several methods of dealing with parametric uncertainty exist463

in the literature. In a similar manner to the analysis in Section 4, several sets of parameters can be464

sampled from normal distributions of each individual parameter. For each set of parameters a scenario465

is created, which is included within the MPC framework. This method is called scenario-based MPC.466

Unlike standard formulations of MPC problems (Rawlings and Mayne, 2015; Christofides et al.,467

2011) the optimisation and constraints of the MPC algorithm are not considered for the nominal model,468

but for several scenarios with sampled parameter values. Hence, the modified formulation is as follows:469

min
u

100∑
z=1

∫ t
(s)
0 +tp

t
(s)
0

Φz dt (21a)

subject to:

fz (x, yz, u, t) =ẋ z = 1, 2, . . . , S (21b)

hz (x, yz, u, t) =0 z = 1, 2, . . . , S (21c)

gz (x, yz, u, t) ≤0 z = 1, 2, . . . , S (21d)

t
(s)
0 ≤ t(s) ≤t(s)

0 + tp (21e)

where the subscript z indicates each individual scenario, Φz is the objective function for each scenario,470

and it is assumed that S scenarios are simulated for each MPC step (s).471

Thermal stability criterion K and Lyapunov exponents are used as stability criteria for the MPC472

formulation in Equation (21). The performance of scenario-based MPC is investigated using the nitra-473

tion of toluene. The implementation of scenario-based MPC is schematically shown in Figure 19.474
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P
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z=1

S

Overall objective
and constraints:

Figure 19: Schematic showing scenario-based MPC with sampling of parameter values to obtain the overall problem
solved by the MPC algorithm.

The performance of scenario-based MPC embedded with criterion K and Lyapunov exponents is475

assessed by simulating the nitration of toluene for different numbers of scenarios, each using a sample476

of parameters ∆Hr, k0, Ea and U according to Figure 19.477

As the number of scenarios increases, the number of parameter sets samples increases. Therefore,478

with an increasing number of scenarios it is more likely to obtain a set of parameters which would result479

in a more unstable system than the real system being controlled. The MPC framework is required to480

ensure that each scenario with its set of sampled parameters is stable. Therefore, as the number of481

scenarios increases, the probability of the MPC framework having to control more unstable processes482

than the nominal system increases. Hence, it is expected that the number of simulations resulting in483

thermal runaway behaviour decreases as the number of scenarios increases.484

100 simulations are carried out with 1, 2, 3, 5, 8 and 10 scenarios for the nitration of toluene using485

MPC embedded with criterion K and with Lyapunov exponents. The fraction of processes that are486

unstable with this control scheme for each number of scenarios S is shown in Figure 20.487

When using 3 or more scenarios a reduction of thermal runaway behaviour to 0% is achieved with488

criterion K. Lyapunov exponents embedded within the scenario-based MPC framework results in no489
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Figure 20: Fraction of simulations for the nitration of toluene resulting in thermal runaway behaviour for each number
of scenarios. The percentages are evaluated based on 100 simulations carried out for each control scheme.

thermal runaways if 2 or more scenarios are included. As previously mentioned, these percentages are490

taken from 100 simulations carried out for each stability criterion embedded within MPC. Important491

to note is that using 3 or more scenarios does not guarantee stable operation without thermal runaway492

behaviour. In this work only 100 simulations are carried out, based on which the percentage of thermal493

runaway reactions are found. If a larger number of processes are to be carried out it is expected that494

thermal runaway behaviour will occur even when using more than 3 scenarios.495

The processing times treac to reach the target concentration of o-nitrotoluene of 2.5 kmol m−3 are496

shown in Figure 21.497
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Figure 21: Processing times treac to reach the target concentration of o-nitrotoluene for the nitration of toluene with
each number of scenarios.

As the number of scenarios increases, the time required to reach the final concentration increases.498

Compared to the deterministic results for the intensification of nitration of toluene with initial temper-499

ature of 450 K shown in Kähm and Vassiliadis (2019), the average processing time to reach the target500

concentration is 0.4 h larger if using a single scenario with MPC with thermal stability criterion K. In501

Kähm and Vassiliadis (2018b) it is further shown that constant temperature MPC results in process-502

ing times of approximately 13 h. Hence, even with 10 scenarios and criterion K, a 2-fold reduction in503

processing time can be achieved. Therefore, the conservative nature of scenario-based MPC does not504

hinder the ability to intensify processes.505

Similar results are observed when embedding Lyapunov exponents within the scenario-based MPC506

framework. The processing times using Lyapunov exponents are shorter than those with criterion507

K. Furthermore, as the number of scenarios employed increases, the control scheme becomes more508

conservative hence resulting in longer processing times.509

Interesting to note is the apparent reduction in processing time when using Lyapunov exponents510

with up to 3 scenarios, as opposed to the nominal case shown in Figure 18: in the deterministic case511

there will always be the same extent of conservativeness which leads to a certain batch duration. When512

sampling different values for the set of uncertain parameters, it is possible to obtain a set of model513

parameters less likely resulting in thermal runaway behaviour. Hence less conservative process control514

can be achieved with even up 3 scenarios, as shown in Figure 21. Once more scenarios are used, it now515

becomes less and less likely to obtain a set of model parameters which predict the system to be less516

exothermic than it actually is. Therefore the batch duration starts to exceed that of the nominal case.517
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The increase in computational time due to the increased number of scenarios used for MPC is518

extremely important for this case study, as an industrial process is considered. The average computa-519

tional times per MPC step obtained using scenario-based MPC are shown in Figure 22.520

Figure 22: Computational times t̄comp per MPC step for the nitration of toluene with each number of scenarios. The
horizontal dashed line indicates the upper limit of the computational time available for the MPC framework used.

With criterion K, for 1 to 3 scenarios used the computational time is approximately 4 s. If more521

than 5 scenarios are used the computational time increases significantly. This feature is most likely522

observed due to 4 cores being available for each simulation. As the number of scenarios used exceeds523

4, significant lag times are present for the evaluation of the additional scenarios. If up to 4 scenarios524

are present, the increase in computational time is most likely caused by an increase in communication525

time between the cores for the overall MPC algorithm. Using up to 5 scenarios results in an MPC526

framework which leaves enough time for data processing.527

When using Lyapunov exponents a more significant increase in computational time per MPC step528

is observed. Therefore, if using more than 2 scenarios, the 10 s limit given by the MPC algorithm is529

exceeded. If larger systems were to be controlled with scenario-based MPC embedded with Lyapunov530

exponents, an even larger number of exponents would be required, further increasing the computational531

time. Hence, significant speed-up of the MPC framework with Lyapunov exponents is required for532

potential application in industry with the scenario-based approach.533

5.2. Worst case MPC534

In the introduction the worst case approach was briefly introduced. For the processes considered in535

this work it can easily be observed how a change in the identified parameters leads to higher potential536
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Figure 23: Schematic showing the sampling procedure to obtain the worst value of k0 for the worst case MPC algorithm.

of thermal runaway behaviour:537

• increase in ∆Hr → increased heat generation538

• increase in k0 → faster reaction rate → increased heat generation539

• decrease in Ea → faster reaction rate → increased heat generation540

• decrease in U → decreased rate of heat removal541

Therefore, given a range of values each parameter is allowed to take, the worst set of parameters542

can be found easily. Since process stability is of utmost importance the worst case MPC method will543

be used also.544

Similarly to the scenario-based MPC analysis the nitration of toluene is considered below. MPC545

embedded with criterion K and with Lyapunov exponents are both used. The performance of each546

control scheme is compared in terms of number of processes causing thermal runaways, processing time547

and computational time per MPC step.548

Unlike the analysis for scenario-based MPC, the mean values of each uncertain parameter are549

sampled using the distributions similar to those shown in Table 4. The key difference is the range in550

values chosen to be the 95% confidence interval: in Table 4 it was assumed that a range of 5% RSD is551

within the 95% confidence interval. The worst case is chosen to be at the boundary of this confidence552

interval, but the deviation from the mean is varied. Hence, the 95% confidence interval is used for a553

deviations of 1%, 3%, 5%, 8% and 10% of the mean value. This procedure is schematically shown for554

the Arrhenius pre-exponential factor k0 in Figure 23.555

Consider process P5, for which the mean and standard deviation of k0 are shown in Table 4. For a556
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deviation of 8% from the mean the following worst case value would be used:557

k0 ∼N
(
µk0

, σ2
k0

)
(22a)

k0 ∼N
(
3.00× 105, 5.85× 107

)
(22b)

A random sample from the above distribution yields:558

(µk0
)worst =2.60× 105 (23)

The worst case scenario mean, (µk0
)worst, is used to find the standard deviation of the new distri-559

bution, including the required 8% deviation from the mean which sets the 95% confidence interval:560

σworst =
(µk0

)worst

1.96
× 0.08 (24a)

σworst =1.06× 104 (24b)

An increase in the Arrhenius pre-exponential factor will result in a faster reaction. Hence, the561

worst case value for k0 from the new distribution, whilst staying within the 95% confidence interval,562

is given by:563

(k0)worst = (µk0)worst + σworst (25a)

(k0)worst =2.60× 105 + 1.06× 104 (25b)

(k0)worst =2.71× 105 (25c)

The same procedure is carried out for all remaining parameters. It is expected that as the deviation564

from the mean values increases, the resulting control system becomes more conservative. As the565

processes become more conservative the number of thermal runaway reactions decreases, and processing566

times increase.567

100 simulations are carried out for the nitration of toluene with the worst case MPC approach568

embedded with criterion K and Lyapunov exponents. The fraction of processes resulting in thermal569

runaway behaviour is shown in Figure 24.570
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Figure 24: Fraction of simulations for the nitration of toluene resulting in thermal runaway behaviour for each percentage
perturbation resulting in the worst case model.

In Figure 24 it is seen that an increase in the change of parameter values results in fewer thermal571

runaway processes. This is the case because the parameters obtained with a larger perturbation in572

their respective values results in a model with higher thermal runaway potential. As the potential573

of thermal runaway of the model used increases, the likelihood of keeping the nominal process under574

control increases. For a 3% change in the parameter values no thermal runaway behaviour is observed575

for the simulations carried out with both criterion K and Lyapunov exponents. The effect of increasing576

the thermal runaway potential of the model used on the processing time is shown in Figure 25.577

As the percentage change in parameter values increases, a higher processing time treac is required578

to reach the target concentration. This is as expected, because an overall more conservative control579

scheme is obtained as the percentage change in parameter values increases. Important to note is the580

longer processing time when using criterion K with worst case MPC. For each set of simulations it is581

found that approximately 1 h more is required when stability criterion K is used instead of Lyapunov582

exponents. How the two different MPC schemes compare in terms of computational time required per583

MPC step, t̄comp, is shown in Figure 26.584

As the percentage change in parameter values increases, still a single scenario is simulated to585

evaluate each stability criterion. Hence no increase in computational time is observed. Due to the586

computational cost of evaluating Lyapunov exponents for each reagent and the reactor temperature,587

the computational cost per MPC step when using Lyapunov exponents is approximately double that588

of using criterion K with MPC. Using worst case MPC with Lyapunov exponents is close to the upper589

limit of 10 s available for each MPC iteration. Therefore significant speed-up of this control scheme590
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Figure 25: Processing times treac to reach the target concentration of o-nitrotoluene for the nitration of toluene for each
percentage perturbation resulting in the worst case model.

Figure 26: Computational times t̄comp per MPC step for the nitration of toluene for each percentage perturbation
resulting in the worst case model.
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would be required for industrial implementation. The MPC framework using worst case scenarios and591

criterion K on the other hand takes approximately 4 s per MPC step and therefore enough time for592

data processing at each MPC iteration is available.593

6. Conclusions and further work594

The goal of this work was the development of robust MPC frameworks for the safe intensification595

of batch processes using thermal stability criteria.596

It is shown that stability criteria for systems with a clearly defined steady-state operating point,597

commonly found in literature, cannot be applied to batch processes. Such criteria include the Semënov598

criterion and the Routh-Hurwitz criterion. Therefore thermal stability criterion K and Lyapunov599

exponents, shown in literature to work for batch processes, are used as the basis for the robust MPC600

frameworks developed.601

Parametric uncertainty is identified as the main source of uncertainty, assuming the model structure602

is accurate. The effect of uncertainty in most system parameters are examined, and 4 key parameters603

are identified: the enthalpy of reaction, the Arrhenius pre-exponential factor, the activation energy, and604

the heat transfer coefficient. Since an Arrhenius rate expression is used to describe the reaction rates,605

the uncertainty in the activation energy will have the largest effect on the thermal stability prediction.606

Assuming normal distributions for each parameter value, a 1% RSD is used for the activation energy607

and 5% RSD for the remaining 3 parameters is assumed. With these values robust MPC frameworks608

are examined.609

Scenario-based MPC and worst case MPC are used for the purpose of robust MPC. The normal610

distributions for each parameter outlined above are applied to each MPC framework. The nitration of611

toluene is used as the case study for the purpose of comparing each robust MPC framework. It is found612

that each MPC framework results in safe processes, whilst intensifying the reaction by increasing the613

reactor temperature throughout.614

As the number of scenarios used for scenario-based MPC, the computational time required per615

MPC step increases significantly. Since an upper limit of 10 s is present within the MPC algorithm,616

only a limited number of scenarios can be used. Worst case MPC, on the other hand, does not suffer617

from this issue: to achieve more conservative operation the worst set of parameters can be changed,618

whilst still requiring a single scenario to be simulated. Therefore the same extent of stability and619

process intensification as for scenario-based MPC can be achieved without a considerable increase in620

computational time. This can be done for the processes considered in this work, because it is obvious621

what set of values for the uncertain parameters results in higher thermal runaway potential.622

Future work includes an analysis of a combination of the two approaches used here: multiple worst623
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case scenarios. Such an approach can potentially result in reduced computational times whilst reducing624

the number of unstable processes. Additionally the assessment of the effect of model-plant mismatch625

with respect to model structure has to be investigated. Furthermore, the effect of measurement noise626

on the thermal stability prediction with criterion K and Lyapunov exponents is required for potential627

application in industry. In real plants state variables such as concentrations might not be directly628

measurable. Hence, estimation techniques such as Kalman filters are necessary to simulate how the629

robust MPC algorithm presented here would work in such a framework. Lastly, larger case studies630

have to be considered if such an MPC framework were to be applied in industry.631
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