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Abstract 

Predicting the source areas for Antarctic Bottom Water (AABW) requires knowledge of how cold, 

dense water masses form and move from the Antarctic shelves to the continental slope. Here we use 

a review of nearly 50 years of direct hydrographic observations to infer the main broad-scale 

influences on the distribution of dense shelf-water (DSW) overflows that cascade down the 

continental slope around Antarctica. The dynamics and distribution of large ice shelves, coastal 

polynyas and the physiography of the Antarctic continental shelves are each considered. The 

catalogue we present increases the number of DSW observations to 27, adds 20 additional stations 

where this process is likely to have occurred, and identifies 41 areas where DSW appears to be absent. 

Our pan-Antarctic, multi-decadal review enhances the understanding of the formation and export of 

DSW and highlights the variability and complexity of ice-ocean systems on high-latitude continental 

margins. The study also provides a context for understanding recent episodes of Antarctic ice-shelf 

instability, and how the relationship between DSW and AABW may evolve with climatic and 

oceanographic changes.  

 

 

1. Introduction 

The downslope transport of dense shelf-water (DSW) plays an important role in Earth’s climate 

system and biogeochemical cycles (Ivanov et al., 2004; Shapiro, 2003). In Antarctica, cold DSW 

overspills the continental shelf and cascades down the slope as an underflow that becomes Antarctic 

Bottom Water (AABW), a major component of the global deep-ocean circulation (Baines and Condie, 

1998; Jacobs, 2004; Orsi et al., 1999). The primary mechanism for DSW generation over the Antarctic 

continental shelf is enhanced sea-ice production and consequent salt-rejection in recurrent coastal 

polynyas (Jacobs et al., 1970). These virtually ice-free zones are generated by a combination of strong 

katabatic winds and physical barriers that block the inflow of sea ice and allow its continuous 

production, mainly during autumn and winter (Morales Maqueda et al., 2004; Nicholls et al., 2009). 

Ice-ocean interactions at the base of floating ice-sheet fed ice shelves also represent a substantial 

source of DSW, although this source is generally colder, fresher and less dense than that produced in 

polynyas (Foster and Carmack, 1976; Jacobs et al., 1970).  

DSW formation around Antarctica has been studied extensively by physical oceanographers for 

several decades. The first comprehensive catalogue of DSW cascades from the shelf down the 

continental slope around Antarctica, also known as DSW overflows, was presented by Baines and 

Condie (1998). Killworth (1983) had made a similar survey several years before but mainly focused 

on open-ocean deep convection areas. Ivanov et al. (2004) added several additional observations to 

the inventory by Baines and Condie (1998). Yet, despite the increasing number of DSW cascade 

studies and advances in observational techniques, these compilations have not been significantly 
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updated since their publication. Our study therefore represents the first expanded, up-to-date review 

of modern DSW cascades in over a decade. We report observations spanning the circum-Antarctic 

continental slope (Fig. 1 and Table 1), addressing both the presence and absence of DSW in varying 

oceanographic and physiographic settings. 

Comprehensive mapping of coastal polynyas and sea-ice production (Fig. 1) is now possible using 

advanced processing of satellite microwave radiometer data. The resulting maps reveal areas of open 

water and thin sea ice, the latter even in winter conditions when polynyas show little surficial 

expression (Nihashi and Ohshima, 2015; Ohshima et al., 2016, 2013, Tamura et al., 2016, 2008). 

These inferred polynyas are found along the continental shelf around Antarctica, although only a few 

show conditions favourable for the generation of DSW cascades and the production of AABW 

(Ohshima et al., 2016; Orsi et al., 1999). 

The Weddell Sea and Ross Sea are considered to be the main producers of AABW (Orsi et al., 2002). 

In addition to large ice shelves and highly productive polynyas – especially in the Ross Sea – both 

regions exhibit deep and wide continental shelves with large cross-shelf depressions that have the 

capacity to accumulate and export large volumes of DSW (Foldvik et al., 2004; Gordon et al., 2004; 

Killworth, 1983; Livingstone et al., 2012). More recently, new areas capable of exporting DSW to 

form AABW have been identified along narrower continental shelves with more limited storage 

capacity, such as the regions off the Adélie Coast (Williams et al., 2016, 2008), Prydz Bay (Yabuki 

et al., 2006) and Vincennes Bay (Kitade et al., 2014) in East Antarctica (Fig. 1). These areas, which 

together may generate an appreciable fraction of AABW (Ohshima et al., 2016), bring into question 

the dominant role that shelf storage plays in generating sufficient negative buoyancy for DSW export. 

This question is addressed here through a thorough study of Antarctic continental-shelf physiography. 

 

1.1. Observations of DSW cascades 

Before the advent of modern instruments to measure conductivity/salinity and temperature 

continuously with depth (CTDs) in the late 1960s, DSW flows were scarcely observed in-situ, due 

mainly to the fact that they rarely exceed 300-400 m in vertical thickness (Baines and Condie, 1998; 

Budillon et al., 2002; Ohshima et al., 2013). The first observations of active DSW flows down 

Antarctic slopes were made during the late 1960s and early 1970s in the southern Weddell Sea (Foster 

et al., 1987; Foster and Carmack, 1976; Seabrooke et al., 1971) and in the Ross Sea (Gordon, 1975; 

Gordon et al., 2015; Jacobs et al., 1985, 1970; Smith Jr et al., 2012). In 1974 a cascade event in East 

Antarctica was first monitored at the shelf break 370 km north of Prydz Bay (Jacobs and Georgi, 

1977). During the early 1990s new studies also confirmed the presence of DSW cascades in the 

Larsen C region of the northwestern Weddell Sea (Fahrbach et al., 1995; Muench and Gordon, 1995) 

and later and more recently in the d’Urville Sea, near Mertz Glacier (Fukamachi et al., 2000; Snow 

et al., 2018). More recently, additional discoveries have taken place mainly in East Antarctica, in 

areas including Prydz Bay (Ohshima et al., 2013; Williams et al., 2016), Vincennes Bay, and off the 

Wilkes Land coast (Kitade et al., 2014). 

The Antarctic DSW catalogue of Baines and Condie (1998) was based on published and unpublished 

cross-slope temperature and salinity sections, all derived from CTD casts. Of the 59 hydrographic 

sections reviewed, 12 documented positive evidence of DSW cascade occurrence, 27 showed no 

evidence at all, and 20 showed indirect evidence of DSW cascades with near-bottom water densities 

and temperatures suggesting recently active flows and/or flows adjacent to the site of measurement. 

Baines and Condie (1998) named these three types of observations as A (Active), N (Nil) and P 



 3 

(Passive), respectively. In this paper we use their terminology. For obvious logistical reasons most of 

these observations belonged to the austral summer and autumn seasons (December-May), whereas 

downslope flows tend to be more frequent (and thus observable) in winter when the offshore-directed 

katabatic winds drained from the continent are generally stronger and colder (Baines and Condie, 

1998; Lacarra et al., 2014). The first winter CTD observations were made during challenging ice-

drifting surveys that lasted several months including the freezing midwinter period (Gordon, 1993; 

Muench and Gordon, 1995). More recently, the deployment of moored instruments (CTD, ADCP, 

current meters) at specific sites along the Antarctic margin has provided year-round, continuous 

measurements (Jensen et al., 2013; Ohshima et al., 2013; Williams et al., 2016), adding valuable 

information on the variability and magnitude of DSW cascades and their relationship to atmospheric, 

oceanographic and cryospheric forcing. Another recent source of measurements has come from seals 

fitted with instruments, providing hydrographic data in what would otherwise be inaccessible regions 

and seasons (Kitade et al., 2014; Ohshima et al., 2016). 

The worldwide inventory of DSW cascades by Ivanov et al. (2004) increased the number of type A 

observations to 17 for Antarctica, although 2 of these were observations at abyssal depths in the 

Weddell Sea, far beyond the shelf edge. The updated catalogue we present increases the number of 

positive DSW cascade observations to 27, and also includes 20 passive occurrences and 41 negative 

findings, all of them placed at or near the shelf break and covering almost the entire Antarctic 

continental margins (Fig. 1 and Table 1).  

 

2. Methods 

In this study we use bathymetry from the International Bathymetric Chart of the Southern Ocean 

(IBCSO) Version 1.0 (Arndt et al., 2013). The IBCSO provides a 500 m resolution digital bathymetric 

model of circum-Antarctic waters south of 60º (Fig. 2), although the resolution of the gridded source 

data varies depending on the available sounding information. On the continental shelf and upper 

slope, the focus of this study, ~28% of the IBCSO grid is constrained with high-resolution 

bathymetric data, acquired mainly by multibeam echo-sounders (Jakobsson et al., 2016). The rest of 

the grid is based on low-resolution interpolation between measurements (Arndt et al., 2013). 

We digitised the shelf break manually using ArcGIS 10.4 at a spatial scale of 1:300,000. This was 

carried out with the guidance of bathymetric contours at 50 m intervals and slope-gradient maps. In 

areas permanently covered by ice, the shelf break was linearly interpolated between the two closest 

ice-free points. The coastline used in this study is from the SCAR Antarctic Digital Database. 

For our analysis, the Antarctic continental shelf was divided into 10 different zones based on spatial 

and physiographic coherence (Fig. 2). The segmentation used here is broadly similar to other large-

scale subdivisions found in the literature (Paolo et al., 2015). For each zone, a series of statistics were 

calculated using ArcGIS and the R statistical package (Table 2 and Fig. 3a). The maximum, minimum 

and mean continental-shelf width were calculated by measuring the closest distance from the shelf 

break to the coastline at 1 km intervals along the shelf break, as undertaken previously by Harris and 

Macmillan-Lawler (2016). Our calculation neglects the presence of islands on the shelf smaller than 

2 km2 and the cavities under ice shelves. For volume measurements (Table 2 and Supplementary Fig. 

1), the IBCSO grid was first converted to a triangular irregular network (TIN) surface. The mean 

Antarctic continental-shelf depth (460 m) was then used as a reference polygon for the ArcGIS 

Polygon Volume tool. 
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Polygons delineating the ice shelves were obtained from the SCAR Antarctic Digital Database, and 

those representing the polynyas were digitised from Nihashi and Ohshima (2015) (Fig. 1). The 

distance between the DSW downslope observations and the main ice shelves (5) and coastal polynyas 

(13) was calculated using the ArcGIS tool Cost Distance. This method allowed determination of the 

least costly path of a hypothetical dense-water particle sourced near the major ice shelves and 

polynyas to reach the observation points. 

To assess the major factors influencing DSW cascades (Fig. 3b), all the hydrographic observation 

points were relocated to the closest shelf-break position. Where several observations of salinity, 

temperature and flux existed for the same DSW cascade event, only that closest to the shelf break 

was taken into account. The latitudes of observations reported as cross-slope temperature and salinity 

sections (Baines and Condie, 1998; Martinson and McKee, 2012) were obtained by referencing the 

profiles to the digitized shelf break. 

 

3. Results 

3.1. Physiography of the Antarctic continental shelf  

Each of the 10 continental-shelf zones defined in this study shows a distinctly different morphometry 

(Fig. 3a, Table 2). The widest shelves are observed on the Ronne-Filchner and Ross Sea continental 

shelves, with a mean of 272 ± 4 km and 238 ± 3 km, respectively. These shelf widths are more than 

double the mean for the whole Antarctic continental shelf (114 ± 1 km), and only the Bellingshausen, 

Amundsen and East Antarctic Peninsula sectors are more than half as wide as the Ronne-Filchner and 

Ross Sea shelves. Correspondingly, the maximum shelf widths were also found in the Ronne-Filchner 

(423 km) and Ross Sea (399 km) sectors. The narrowest shelf is East Antarctica 1, from Riiser-Larsen 

Ice Shelf to Kemp Land, with a maximum shelf width of 87 km and a mean of 31 ± 0.5 km. The 

Ronne-Filchner and Ross Sea sectors also have quite similar continental-shelf areas, at 379,710 km2 

and 384,060 km2, respectively. The differences between the Ronne-Filchner and Ross Sea continental 

shelves emerge when comparing their depths and physiography. On average, the Ross Sea is deeper 

(507 m) than the Ronne-Filchner sector of the Weddell Sea (471 m); 63% of the Ross sector is under 

460 m, which is the mean depth for the entire Antarctic continental shelf, whereas for the Ronne-

Filchner sector this ratio is only 41%. At the shelf break the mean depth is 588 m for the Ross Sea 

shelf – the deepest of all 10 studied zones – and 492 m for the Ronne-Filchner segment. This 

difference is explained by numerous large bathymetric cross-shelf troughs that reach the shelf edge 

in the Ross Sea area in comparison to only three less extensive depressions observed in the Ronne-

Filchner sector (Fig. 1, 2). Interestingly, the deep-water areas below 460 m are interconnected along 

the Ross Sea shelf but are separated by shallow ridges in the Ronne-Filchner area. However, the 

largest and deepest depression in the Ronne-Filchner sector, the Filchner Trough, shows a storage per 

km2 of 242 km3 between the seafloor and the 460 m contour (ice cavities excluded), whereas the 

storage per km2 of all the Ross Sea depressions together is 129 km3 (see Supplementary Fig. 1).  

Only the Amundsen Sea shelf is deeper than the Ross Sea shelf. It has an average depth of 541 m, 

with 70% of its area and 66% of its shelf break deeper than 460 m. These values stand out as extremes 

in our analysis, far exceeding the Antarctic-wide averages of 48% and 29%, respectively (Table 2a). 

The Bellingshausen Sea sector shows a similar range to the Amundsen Sea although it is notably 

shallower, with a mean water depth of 493 m. Contrasting with the Amundsen Sea, the East Antarctica 

1 sector has the shallowest mean depth (331 m), the minimum proportion of area deeper than 460 m 

(12%) and the minimum proportion of shelf break below 460 m (8%). The Western Antarctic 
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Peninsula area is the zone most comprehensively surveyed by multibeam echo-sounders (32%) 

(Arndt et al., 2013) and displays both the second shallowest mean depth (388 m) and the second-

lowest proportion of shelf break below 460 m (13%). 

Zone East Antarctica 3, from Queen Mary Land to Oates Land, is the longest (4,990 km) and largest 

(484,235 km2) segment we examined. Its mean shelf width is relatively narrow (103 ±1 km); it is only 

wider than the East Antarctica 1 and 2 sectors and that offshore of Marie Byrd Land. The East 

Antarctica 3 segment contains the largest volume deeper than 460 m water depth (37,610 km3), 

representing 21% of the total in Antarctica. This value is unsurprising given the large area covered 

by East Antarctica 3, but it should be noted that this zone is poorly covered (6%) by high-resolution 

bathymetry (Arndt et al., 2013), so the position of the shelf break is less certain and the bathymetric 

grids likely contain artefacts. 

 

3.2. Distribution of DSW cascades 

The 88 hydrographic observations compiled are all located at or near the shelf break and cover all 10 

zones under study (Fig. 1 and Table 2b). Confirmed DSW cascade observations (A) are 27 in total 

and are located in zones East Antarctica 2, East Antarctica 3, Ross, East Antarctic Peninsula and 

Ronne-Filchner. The 20 inferred (P) observations, all of them compiled by Baines and Condie (1998), 

are found in zones East Antarctica 1, 2, 3 and Ross. Negative (N) observations (41) are distributed 

mainly along the Pacific side of the continent, mostly between zones Marie Byrd Land and West 

Antarctic Peninsula, but also in East Antarctica 1 and Ronne-Filchner. 

Observations of both active and passive DSW cascades coincide with the presence of ice shelves, the 

only exceptions being East Antarctica 1 and 3 (Fig. 3b and 4a). Four of the five main ice shelves in 

Antarctica – the Ross, Ronne-Filchner, Larsen and Amery – are associated with wide continental 

shelves (207-423 km), and all of them show active DSW cascades (Fig. 3 and Table 2a). Only the 

eastern side of the Filchner Trough, in the Ronne-Filchner zone, shows negative observations on the 

shelf edge. The Riiser-Larsen Ice Shelf (zone East Antarctica 1) is linked to a very narrow, in places 

apparently non-existent, continental shelf with no observed DSW flows. In contrast, East Antarctica 

3 has the highest number (19 in total) of active and passive observations. These observations are 

located at the furthest mean distance from any of the main ice shelves (Table 2b), but are near 

productive coastal polynyas that, in some cases, extend out to the continental-shelf edge (Fig. 1 and 

Table 2b). The remaining set of active and passive observations are also located near polynyas (Fig. 

3b, 4b and 5c,d). The most distant observations from polynyas are the ones located on the largest 

continental shelves, i.e. Ross and Ronne-Filchner. Only observations 8, 9 and 10 (Fig. 1 and Table 

1), all of them passive, appear unrelated to either ice shelves or polynyas (Fig. 4a,b). 

 

4. Discussion 

4.1 Controls on dense shelf-water cascades 

DSW overflows at the shelf edge, leading to down-slope cascades, have been reported from several 

rather different modern settings around the Antarctic continental margin. The presence of ice shelves 

and polynyas are generally considered to be the main factors influencing the occurrence of these 

dense flows, together with the generally large and deep Antarctic shelves that favour the accumulation 

and propagation of dense water from source areas to shelf edge (Baines and Condie, 1998; Ivanov et 
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al., 2004; Killworth, 1983). Here we test this assertion by using the available observational data and 

we place it into its oceanographic context. It should be pointed out, however, that other regional 

factors like seasonal winds and strong tides are omitted in our broad-scale study although they can 

enhance, diminish or divert the cold bottom-currents, especially along wide continental shelves like 

those of the Weddell and Ross seas (Foldvik et al., 2004; Gordon et al., 2010, 2009; Padman et al., 

2009). 

The first active DSW cascade observations were reported in zones Ronne-Filchner, Ross, East 

Antarctica 2 and East Antarctic Peninsula (Table 1), all of them associated with large ice shelves and 

active polynyas (Fig. 4a,b) and adjacent to extensive continental shelves (Fig. 1 and 3), with only one 

exception (observation 11 in East Antarctica 2). These areas have long been considered as the only 

regions capable of generating sufficient negative buoyancy in local DSW for export to AABW (Foster 

and Carmack, 1976; Jacobs et al., 1970; Killworth, 1983). Their wide, deep and landward-sloping 

continental shelves favour the accumulation of cold and dense water between the shelf edge and the 

ice shelves grounding-line (Fahrbach et al., 1994; Ivanov et al., 2004) (Fig. 6). The numerous troughs 

spanning these shelves, roughly highlighted by the 460 m bathymetric contour (Fig. 1 and 

Supplementary Fig. 1), act as efficient drainage conduits for the transport of DSW to the shelf edge 

(Bergamasco et al., 2002; Lacarra et al., 2014). This observation is in agreement with the depth of the 

isotherm delineating the boundary of DSW reported in Ronne-Filchner (Darelius et al., 2014; Foldvik 

et al., 2004), Ross (Gordon et al., 2004) and East Antarctica 2 (Yabuki et al., 2006). In fact, the 

maximum DSW cascading fluxes calculated with the available current data from Antarctica are 

associated with the outlets of the largest depressions in Ronne-Filchner (i.e. Filchner Trough) and 

Ross (i.e. Drygalski Trough), with estimates of 1.6 ± 0.5 Sv (Foldvik et al., 2004) and 0.8 Sv (Gordon 

et al., 2009), respectively. These two settings also register the highest DSW outflow speeds with mean 

values of 0.45 m s-1 in Ronne-Filchner (Foldvik et al., 2004) and 0.6 m s-1 in Ross (R. Muench et al., 

2009). The fact that active DSW cascades are observed only on the western side of the Filchner 

Trough outlet is due to the Coriolis force, which also explains the accumulation of dense-water 

cascades in the western Ross Sea. 

The occurrence of DSW cascades discovered after the mid-1990s near the highly productive Mertz 

Polynya, in zone East Antarctica 3, broadened our understanding of potential source areas (Foster, 

1995; Rintoul, 1998; Williams et al., 2010, 2008). The continental shelf in this area is relatively 

narrow, has limited DSW storage capacity, and is not close to any large ice shelf (Fig. 3). Over the 

last two decades new DSW cascades have been recorded in similar settings which have highly 

productive polynyas, such as zones East Antarctica 2 and 3, both important for the ventilation of the 

deep Indian and Pacific Ocean (Fukamachi et al., 2000; Kitade et al., 2014; Nakano and Suginohara, 

2002; Ohshima et al., 2013; Williams et al., 2016; Yabuki et al., 2006). Today we observe that it is 

actually the presence of polynyas, not ice shelves per se, that is most strongly correlated with DSW 

cascades (active or passive) (Fig. 5b,d and Supplementary Fig. 2). Moreover, some of the 

observations near polynyas that were flagged as passive in Baines and Condie (1998) have now been 

confirmed to be active (see observations 16 and 17, 24 and 25 in Fig.1 and Table 1). The calculated 

fluxes of DSW export to the continental slope in these “polynya-only” zones are surprisingly high 

considering their limited storage capacity. Note, for instance, that the annual-averaged volume 

transport sourced from the Mertz Polynya (before the calving of 78 x 35 km of the Mertz Glacier 

tongue in 2010) was 0.1 to 0.5 Sv (Williams et al., 2008); in Vincennes Bay Polynya (zone East 

Antarctica 3) it was 0.16 ± 0.25 Sv; and in Cape Darnley Polynya, today the second most productive 

polynya in Antarctica after the Ross Ice Shelf Polynya (Fig. 1), it is 0.52 ± 0.26 Sv (Ohshima et al., 
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2013). More findings of active DSW production are anticipated from the still little studied regions of 

the East Antarctica margin. 

 

4.2 Waxing and waning of modern DSW cascades 

The aforementioned Mertz Glacier calving event in February 2010 affected the Mertz Polynya, 

causing a rapid weakening of DSW and AABW production (Kusahara et al., 2011; Lacarra et al., 

2014; Menezes et al., 2017; Shadwick et al., 2013; Snow et al., 2018, 2016). This event highlights 

the uncertainty in defining polynya-based DSW regions (i.e. zones East Antarctica 2 and 3). As 

another example, observational data in Prydz Bay (Observation 12 in zone East Antarctica 2) recently 

demonstrated a progressive DSW waning in the ice shelf-polynya system. In this case, the weakening 

of DSW flux was due to increased freshwater input from greater melting of the Amery Ice Shelf 

(Williams et al., 2016).  

The thinning of ice shelves has been attributed mainly to basal melt by relatively warm and saline 

ocean waters entering sub-ice shelf cavities. The most rapid thinning, grounding-line retreat, and 

acceleration of glacier flow speeds has been observed in the Amundsen Sea (Paolo et al., 2015; Rignot 

et al., 2013). Here, similarly to the Bellingshausen Sea, wind forcing, upwelling and vertical mixing 

drive warm (over 1ºC) Circumpolar Deep Water (CDW) onto the continental shelf (Thoma et al., 

2008), where it flows through the numerous bathymetric depressions until it reaches the base of the 

ice shelves (e.g. Walker et al., 2007) (Fig. 6f,g and Supplementary Fig. 1). This inflow process is 

favoured by the close proximity of CDW flows to the continental margin in the south east Pacific 

sector of Antarctica (Pritchard et al., 2012; Walker et al., 2013, 2007). These incursions are most 

pronounced in the deep shelf regions (541 m on average) observed on the Amundsen Sea continental 

shelf (Fig. 3a and Table 2a). Here DSW formed in the Amundsen Polynya, the second largest polynya 

in West Antarctica in terms of ice production (Fig. 1), is probably inhibited by the geostrophically 

driven outflow generated from basal melt under the floating margins of Pine Island and Thwaites 

glaciers, as suggested by (N) observations 44 to 48 (Table 1). A similar explanation can be offered 

for the (N) observations in the Bellingshausen Sea, the zone with the second highest percentage of 

area and shelf edge deeper than 460 m after the Amundsen Sea sector (Fig. 3a and Table 2a). In 

Western Antarctic Peninsula and Marie Byrd Land, the incursion of relatively warm ocean waters 

(Fig. 6e,h) and the lack of polynyas and ice shelves also appear to prevent the present-day formation 

of DSW (Fig. 4a,b), whereas in zone East Antarctica 1 the absence of DSW is probably related to the 

lack of coastal polynyas and the narrowness of its continental shelf (Fig. 3, 4c and 6a). Observations 

8 to 10 in East Antarctica 1 are documented as passive in Baines and Condie (1998) although the 

analysis of broad-scale controlling factors we present here (Fig. 3b and Fig. 5b) suggests that these 

are probably inactive under current conditions. 

Although ice shelves in East Antarctica experience relatively low rates of basal melt (Rignot et al., 

2013), one clear exception has been observed recently on the East Antarctica 3 shelf adjacent to 

Dalton Polynya (Rintoul et al., 2016; Silvano et al., 2017). Modified CDW reaches the bases of the 

nearby Totten and Moscow University ice shelves, probably by means of uncharted troughs, resulting 

in basal melt rates comparable to those in the Amundsen and Bellingshausen zones. The meltwater 

generated likely inhibits the formation of DSW, as indicated by the relatively low rates of sea-ice 

production at Dalton Polynya (Silvano et al., 2017). Hence, Observation 19 in Table 1 registered as 

passive (P) in March 1996 is now known to be negative (N). Whether or not this reflects a change in 
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ocean-ice shelf interaction in this area is unclear but it does suggest that East Antarctica could be 

more exposed to warm CDW incursions than was previously thought. 

The dual role of deep shelf-crossing troughs as conduits for DSW export and CDW inflows is critical 

to our understanding of ice-sheet behaviour and AABW formation. It is hypothesized that the Filchner 

Trough, today an efficient route for DSW flowing out from the eastern Ronne-Filchner shelf (Fig. 

6j), is likely to channelize the cyclonic warm CDW underneath the Filchner-Ronne Ice Shelf during 

the second half of the twenty-first century (Hellmer et al., 2012). This scenario, based on a regional 

ice-ocean simulation model, would likely lead to severe mass-balance deficit across the second largest 

Antarctic ice shelf and a substantial reduction in the export of DSW cascades and AABW formation 

in the whole Ronne-Filchner zone in the Weddell Sea.Hydrographic lines from the Southern Ocean 

(Purkey and Johnson, 2010), specifically in the Indian sector (Menezes et al., 2017) and Weddell Sea 

(Fahrbach et al., 2011), reveal the progressive freshening and warming of the AABW observed over 

the last decade, which might be related to the weakening of DSW formation. 

Sediment records on the Amundsen Sea shelf provide geochemical evidence of variability in CDW 

inflows during the Holocene (Hillenbrand et al., 2017). By contrast, the changing nature of seafloor 

bedforms, observed in sediment cores from the shelf of East Antarctica 2, suggest variability in DSW 

outflows during the last 10,000 years or so (Harris, 2000). It has also been suggested that some of the 

drainage morphologies, especially gullies and shelf-edge canyons, observed on the upper slope of the 

Antarctic continental margin could have been shaped by the action of modern and/or past DSW 

cascades (Amblas et al., 2017; Dowdeswell et al., 2006; Gales et al., 2014). Like deep troughs on the 

continental shelf, submarine shelf-edge canyons and gullies allow for bidirectional transport on the 

continental slope by either channelling seaward DSW fluxes or delivering warm CDW onto shelves, 

the latter often triggered by eddies (Allen and Durrieu de Madron, 2009; Kämpf, 2005; Martinson 

and McKee, 2012; Stewart and Thompson, 2015). 

 

4.3 Cascading dense water during Quaternary full-glacial periods 

The absence of DSW cascades in East Antarctica 1, where the modern grounding-lines of the ice 

shelves lie unusually near the shelf break (Fig. 1), prompts the question of how AABW was produced 

during Quaternary full-glacial periods (Smith et al., 2010), when most of the grounded ice in 

Antarctica advanced to the continental-shelf edge (Bentley et al., 2014). In this extended position, 

relatively warm water was therefore in close proximity to the ice sheet, implying melting at the base 

of the ice shelves at rapid enough rates to negate the salt released by surface freezing in the polynyas 

(Fahrbach et al., 1994). Clearly the decline of continental shelf areas free of grounded ice during 

glacial periods (e.g. Bentley et al., 2014) also prevented the accumulation of large volumes of cold 

and dense water in source areas on the shelf. 

The lack of controlling factors (i.e. large ice shelves, coastal polynyas and large cross-shelf 

depressions) currently identified in zones Ronne-Filchner, Ross, East Antarctic Peninsula and East 

Antarctica 2 and 3 requires an alternative explanation. A possible candidate for dense-water 

production during full-glacials may be open-ocean polynyas produced when deep-ocean convection 

injects relatively warm water into the surface layer, inhibiting sea-ice formation (Gordon et al., 2007). 

This process is rare in the present-day Southern Ocean, although a prominent example – the Weddell 

Polynya (3 x 105 km2) – was observed during the austral winters of 1974 to 1976 seaward of zone 

East Antarctica 1 (Gordon et al., 2007; Weijer et al., 2017). Another possibility is that the Antarctic 

Ice Sheet only partially covered the continental shelf in some areas that are today dominated by ice 
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shelves, such that AABW production was similar to that observed today. This has been suggested by 

some authors for parts of the Weddell Sea (Hillenbrand et al., 2014), the Amundsen Sea (Klages et 

al., 2017) and Prydz Bay (Domack et al., 1998), which may therefore have had full-glacial AABW 

production processes similar to those operating today. This last hypothesis is controversial and does 

not account for AABW generated in polynya-only settings despite these standing out as important 

sources of cascading DSW today.  

 

5. Conclusions 

This pan-Antarctic and nearly 50 years long compendium of hydrographic observations has allowed 

the analysis of the main broad-scale factors, both cryospheric and physiographic, that explain the 

distribution of DSW cascades around Antarctica. The relatively recent discovery of DSW cascades 

on the narrow continental shelves of East Antarctica highlighted the role of coastal polynyas in the 

formation of these dense-water flows. In our analysis a clear relationship between the distribution of 

polynyas and DSW cascades around Antarctica is observed, whereas cascades appear to be less 

closely related to the presence of large ice shelves or vast continental shelves, both previously 

considered to be necessary for the formation of large volumes of DSW. Even though the current 

dataset indicates that the maximum fluxes of DSW cascades are found at the outlets of Ronne-

Filchner and Ross embayment zones, we note the surprisingly high fluxes of DSW export to the 

continental slope observed in “polynya-only” zones, especially considering their limited storage 

capacity. 

The few decades of available DSW cascading records reviewed in this study are enough to observe a 

reduction of DSW export in some areas. This weakening of DSW formation in the Antarctic 

continental shelves may partly explain the observed progressive AABW weakening, warming and 

volume reduction. This highlights the variability of these complex ice-ocean systems and their 

vulnerability in the face of rapid climate change. Major causes of the weakening of DSW fluxes are 

considered to be: a) the collapse of glacier ice tongues that lead to the dramatic waning of polynyas 

(e.g. Mertz Polynya); and b) the incursion of warm CDW into sub-ice shelf cavities causing the 

increased basal melt of ice shelves and a relative rise in freshwater inputs that reduce (e.g. Prydz Bay) 

or even halt (e.g. Amundsen Bay) the downslope export of DSW. We have demonstrated how this 

last phenomenon is largely determined by the physiography of continental shelves; essentially the 

mean shelf depth, the depth of the shelf edge and the presence of cross-shelf troughs that either 

facilitate the export of DSW or the channelization of CDW inflows. The role played by drainage 

morphologies on the continental shelf (cross-shelf troughs) and slope (submarine canyons and gullies) 

in the propagation and concentration of DSW fluxes and their influence on the formation of AABW 

is currently under study. The mechanisms for DSW and AABW formation during Quaternary full-

glacial periods, when most of the Antarctic ice-sheet margin was grounded at or near the continental-

shelf edge (Bentley et al., 2014) and therefore more exposed to CDW, remains unclear. 
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Figure Captions 

 

Table 1. Compendium of water column observations, including observation number (N), location, 

type of observation (T; A: active, P: passive, N: Nil), date of observation, method of acquisition and 

reference. Different publications that refer to the same station site are grouped under the same 

observation number while stations separated by less than 1º of arc are coded with the same number 

but different letter. B&C (following Baines and Condie, 1998). ADCP is Acoustic Doppler Current 

Profiler; LADCP is Lowered ADCP; CTD is Conductivity Temperature Depth; XCTD is expandable 

CTD; XBT is Expandable Bathy Thermograph; SACM is Smart Acoustic Current Meter (suspended 

through the ice); CTD-ES is CTD installed on elephant seals. Moorings include current meters, and 

temperature and salinity sensors (Gordon et al., 2004; R. D. Muench et al., 2009 also include sediment 

traps). For details about the instrumentation see the original references. 

Table 2. a) Summary of physiographic statistics for the Antarctic continental shelf listed by zones 

(Fig. 2), all zones (excluding the shelves surrounding the Bransfield Strait, South Shetland Islands 

and South Orkney Islands) and as a global average for the whole Antarctic continental shelf (ANT). 

b) Number and type of DSW observations for each of the zones, as well as their mean distance to the 

main ice shelves and coastal polynyas. Brown and green colours show minimum and maximum 

values for each parameter. Volume under 460 m refers to the total volume between the seafloor and 

the 460 m bathymetric contour. See Fig. 3 for the graphical representation of these data.  

Figure 1. Location of water column observations showing the presence or absence of dense shelf-

water downslope flows around Antarctica (see observation details in Table 1). The coastline and ice 

shelf areas are derived from the SCAR Antarctic Digital Database. The 460 m contour and the 

continental shelf break are based on IBCSO v. 1.0 (Arndt et al., 2013). The major coastal polynyas 

and values of mean annual sea ice production are taken from Nihashi and Ohshima (2015). The size 

of the grey circles is proportional to the polynyas sea ice production. IS is ice shelf; P is polynya.  

Figure 2. Bathymetric map of the Southern Ocean (IBCSO v. 1.0, Arndt et al., 2013). Solid white 

lines show the borders between the segments used for the morphometric analysis of the Antarctic 

continental shelf. Note that the shelves surrounding the Bransfield Strait, South Shetland Islands and 

South Orkney Islands are not considered in the analysis. Red and yellow lines mark the continental 

shelf break above (red) and below (yellow) 460 m, which is the mean depth of the Antarctic 

continental shelf.  

Figure 3. Synthetic graphs showing: a) the main morphometric values that describe each of the 

Antarctic continental shelf zones identified in Fig. 2. Vertical dotted lines mark the mean values for 

the whole Antarctic shelves; b) the distance from each of the DSW cascade observations (Table 1) to 

the main polynyas, ice shelves and the coastline (see Supplementary Fig. 2 for details on the 

calculation method).Green and grey vertical dotted lines show, for each of the shelf zones, the mean 

distance from polynyas and ice shelves to each of the 1 km-spaced measures at the shelf break (see 
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“Material and methods” for details). EA1 is East Antarctica 1; EA2 is East Antarctica 2; EA3 is East 

Antarctica 3; MBL is Marie Byrd Land; Amu is Amundsen; Bel is Bellingshausen; WAP is West 

Antarctic Peninsula; EAP is East Antarctic Peninsula; R/F is Ronne-Filchner. 

Figure 4. Box-and-whisker plots showing the distribution of the distance to a) major polynyas and 

b) larger ice shelves for all the DSW cascade observations for each of the Antarctic shelf zones (see 

mean distance values at Table 2b). Whiskers have a range of 1.5 IQR. Outliers are plotted as 

individual points.  

Figure 5. a,b) Box-and-whisker plots showing the distribution of active, passive and nil DSW 

cascade observations for the distance to large ice shelves (a) and to major polynyas (b). Whiskers 

have a range of 1.5 IQR and outliers are plotted as individual points. c,d) Frequency distribution of 

the DSW cascade observations for the distance to larger ice shelves (c) and to major polynyas (d) at 

250 km intervals. The correlation between the distribution of DSW cascade observations (active or 

passive) and the presence of polynyas is relatively stronger than for ice shelves (Fig. 5b,d). 

Figure 6. Sketch of the modern set up of DSW cascades (in blue) and CDW inflows (in purple) in 

the different Antarctic sectors considered. The distribution of DSW and CDW is based on the 

reviewed observations (Fig. 1 and Table 1) and on the estimated average sea-floor potential 

temperatures map published in Pritchard et al. (2012), respectively. The topographic and bathymetric 

profiles have been calculated from the IBCSO v1.0 grid (Arndt et al., 2013) and the subglacial bed 

elevation from the Bedmap2 grid (Fretwell et al., 2013). The profiles follow main ice-sheet flow 

directions, cross-shelf trough axes and slope drainage morphologies, whenever present. The sub-ice 

shelf cavity delineations are approximate. 

 

Supplementary Figure 1. Areas below the 460 m depth contour (mean Antarctic continental shelf 

depth) showing the main troughs (> 100 km2) in the Antarctic continental shelves. The colour scale 

represents the total volume between the seafloor and the -460 m contour for each of the troughs (see 

the volume values for zones in Table 2). Note that connected troughs are considered a single polygon 

in terms of volume calculations.  Grey circles illustrate the mean water storage per area for the main 

troughs or cluster of connected troughs. Location of water column observations (Table 1) are included 

for reference. 

Supplementary Figure 2. Matrix plot relating the water column observations (Table 1) to the 

distance to major coastal polynyas (a), distance to larger ice shelves (e) and continental shelf width 

(i), which are considered to be the main factors controlling the distribution of DSW cascades. The 

distance between the DSW downslope observations and the main ice shelves is calculated from the 

ice front. The Pearson correlation coefficient (r) is included for each pair of variables. A is Active; P 

is Passive; N is Nil. 
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N Lat (º) Lon (º) T Date Method Reference Zone 

1 -72.48 -17.74 N Jan-Feb 09 ADCP Chavanne et al., 2010 

EA1 

2 -72.39 -17 N Mar 95 CTD (B&C) Heywood et al., 1998  

3 -71.12 -13 N Feb 73 CTD (B&C) Carmach and Foster 1975 

4 -70.27 -6 N Jan-Feb 77 CTD (B&C) Gordon 1978, 1982 

5 -70.19 -3 N Jan-Feb 77 CTD (B&C) Gordon 1978, 1982 

6 -69.89 9 N Jan-Feb 77 CTD (B&C) Gordon 1978, 1982 

7 -69.29 15 N Jan 77 CTD (B&C) Gordon 1982 

8 -68 33 P Jan-Feb 74 CTD (B&C) Hishida 1975 

9 -68.5 38 P Feb-Mar 74 CTD (B&C) Jacobs and Georgi 1977 

10 -68.1 40 P Jan-Feb 74 CTD (B&C) Hishida (1975) 

11 -66.87 61 A Feb-Mar 74 CTD (B&C) Jacobs and Georgi 1977  

12 -67 68 A May-July 09, 2011-13 mooring, CTD-ES Ohshima et al., 2013, Williams et al., 2016 

EA2 
13 -67 73 A Dec 97-Mar 98, 99-00, 01-02, 

03-04 

XCTD, CTD Yabuki et al., 2006 

14 -66.2 80 P Mar 96 CTD (B&C) Bindoff (unpubl) 

15 -65 94 P Mar 96 CTD (B&C) Bindoff (unpubl) 

EA3 

16 -64.28 105.11 A June-Nov 2011  mooring, CTD, CTD-ES, 

Argo floats 

Kitade et al., 2014 

17 -65.16 105 P Mar 96 CTD (B&C) Bindoff (unpubl) 

18 -65.42 112 P Mar 96 CTD (B&C) Bindoff (unpubl) 

19 -65.52 120 P Mar 96 CTD (B&C) Bindoff (unpubl) 

20 -65.28 128 P Mar 96 CTD (B&C) Bindoff (unpubl) 

21 -65.16 139.98 A Dec 94-Jan 95, Jan-Feb 96 

(CTD) / Jan 95-Mar 96 

(mooring) 

mooring, CTD Fukamachi et al., 2000 

22 -65.64 140 A Sept 96 CTD (B&C) Rintoul (unpubl) 

23a -66 143 A Jan 01, Oct 04 (CTD) / Apr 

98-Feb 00 (mooring) 

mooring, CTD Williams et al., 2008, 2010 

23b -66 143 A 199-99, 2008, 2011-14 mooring, CTD Snow et al., 2018 

24 -66 146 A Jan 2001, Oct 2004 (CTD) / 

Apr 98 to Feb 2000 (mooring) 

mooring, CTD Williams et al., 2010 

25 -65.94 147 P Feb-Mar 85, Apr 93 CTD (B&C) Foster 1995; Rintoul 1998 

26 -66.07 149 P Feb-Mar 85 CTD (B&C) Foster 1995 

27 -65.96 150 P Mar 96 CTD (B&C) Bindoff (unpubl) 

28 -66.14 151 P Feb-Mar 85 CTD (B&C) Foster 1995 

29 -66.43 152 P Feb-Mar 85 CTD (B&C) Foster 1995 

30 -66.68 154 P Feb-Mar 85 CTD (B&C) Foster 1995 

31 -66.9 156 P Feb-Mar 85 CTD (B&C) Foster 1995 

32 -68.59 158 P Jan-Feb 71, Feb-Mar 85 CTD (B&C) Carmack and Killworth 1978 

33a -71.5 172 A 2003-04 (austral summer) LADCP Muench et al., 2009 

Ross 

33b -71.5 172 A 2003 mooring, CTD Gordon et al., 2004, Whitworth et al., 2006 

33c -71.5 172 A 2003-04 (austral summer)  mooring, CTD Gordon et al., 2009, Visbech and Thurnherr 2009 

33d -71.53 172 P Jan-Feb 84 CTD (B&C) Trumbore et al., 1991 

33e -71.45 172.3 A 2007-11 mooring, CTD Gordon et al., 2015 

34 -72.04 173 A Jan 67, Jan 68 CTD (B&C) Gordon 1975 

35 -73 174 A Jan-Feb 68 CTD, current meter Jacobs et al., 1970 

36 -73 177 A Feb 95 mooring, CTD Budillon et al., 2002 

37 -75.15 -176.38 A Jan-Feb 98 CTD Bergamasco et al., 2002 

38 -75.23 -176 A Jan-Feb 78, Jan-Feb 89 CTD (B&C) Jacobs et al., 1985, Jacobs 1991, Trumbore et al., 1991 

39 -75.81 -173 P Dec 76-Jan 77, Jan-Feb 84 CTD (B&C) Jacobs et al., 1985, Trumbore et al., 1991 

40 -76.22 -163 P Des 76 CTD (B&C) Jacobs and Haines 1982 

41 -75.7 -150 N Feb 94 CTD (B&C) Jacobs et al., 1994 

MBL 42 -74.21 -140 N Feb 94 CTD (B&C) Jacobs et al., 1994 

43 -73.07 -128 N Feb 94 CTD (B&C) Jacobs et al., 1994 

44 -72.28 -119 N Feb 94 CTD (B&C) Jacobs et al., 1994 

Amu 

45 -72 -118.5 N Dec10-Jan11 CTD Randall-Goodwin et al., 2015 

46a -71.6 -113.1 N 2012-14 mooring Webber et al., 2017 

46b -71.45 -113.5 N 2011-12 mooring Webber et al., 2017 

47 -71.1 -105 N Feb 08 XBT, CTD Antipov et al., 2009 

48 -71.28 -102 N Mar 94 CTD (B&C) Jacobs et al., 1994, Hellmer et al., 1998 

49 -70.62 -93 N Mar 94 CTD (B&C) Jacobs et al., 1994  

50 -70.65 -92 N Mar 94 CTD (B&C) Jacobs et al., 1994 

Bel 

51 -70.5 -88 N Mar 94 CTD (B&C) Jacobs et al., 1994 

52 -69.17 -79 N Apr 94 CTD (B&C) Jacobs et al., 1994 

53 -68.84 -77.07 N Jan 93-10 CTD Martinson and McKee 2012 

54a -68.18 -75 N May 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

54b -68.17 -75 N Jan 93-10 CTD Martinson and McKee 2012 

55 -67.81 -74 N May 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

56 -67.44 -73.76 N Jan 93-10 CTD Martinson and McKee 2012 

WAP 

57a -66.79 -72 N May 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

57b -66.8 -72.08 N Jan 93-10 CTD Martinson and McKee 2012 

58a -66.28 -71 N Apr 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

58b -66.04 -70.71 N Jan 93-10 CTD Martinson and McKee 2012 

58c -66.12 -70.51 N Jan 08- Jan 10 mooring Martinson and McKee 2012 

59 -65.38 -69.17 N Jan 93-10 CTD Martinson and McKee 2012 

60 -65.3 -69 N Apr 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

61 -64.62 -67.89 N Jan 93-10 CTD Martinson and McKee 2012 

62a -63.86 -66 N Apr 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

62b -64.05 -66.33 N Jan 93-10 CTD Martinson and McKee 2012 

63 -63.58 -65 N Apr 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

64 -63.11 -63 N Apr 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

65 -62.5 -62 N Mar 93 CTD (B&C) Hofmann et al., 1993, Hofmann and Klinck 1998 

66 -68.91 -56.28 A 1990-92 mooring, CTD Fahrbach et al., 1995 

EAP 67 -67.7 -55.5 A Nov 04-Jan 05 CTD Huhn et al., 2008 

68 -67.4 -54.65 A Feb-June 92 CTD, SACM (ice station) Muench and Gordon 1995 

69 -74.16 -40 A Feb 73 CTD (B&C) Foster and Carmack 1976 

R/F 

70 -74.11 -39.3 A 1968 mooring, CTD Foldvik et al., 2004 

71 -74.27 -39 A Feb 73 CTD (B&C) Foster et al., 1987 

72 -74.51 -36.6 A 1998 mooring, CTD Foldvik et al., 2004 

73a -74.36 -36.01 A 2010 mooring Darelius et al., 2014 

73b -74.59 -36 A Jan-Feb 77, Jan-Feb 79 CTD (B&C) Foldvik et al., 1985,a,b 

74 -74.06 -35.75 A 1985 mooring, CTD Foldvik et al., 2004 

75 -74.44 -31 N Feb-Mar 69 CTD (B&C) Seabrooke et al., 1971 

76 -74.5 -30.16 N Feb 09-Feb 10 mooring Jensen et al., 2013 

77 -74.7 -29 N Feb 73 CTD (B&C) Foster and Carmack 1976 
 

Table 1 



 Zones All 

zones ANT  
EA1 EA2 EA3 Ross MBL Amu Bel WAP EAP R/F 

A.             

Shelf break length 

(km) 
3770 1735 4989 1490 1070 1017 1148 920 1011 1076 18228 20678 

Shelf area            
(km2) 

116780 190396 484235 384061 79187 214866 299522 158048 188344 379708 2495152 2567891 

Mean shelf width  

(km) 
31.2 

±0.3 

102.6 

±1.2 

103.8 

±0.7 

238.1 

±3.0 

69.9 

±0.7 

168.6 

±2.4 

196.8 

±1.8 

111.5 

±1.6 

152.5 

±1.0 

272.3 

±3.8 

119.6 

±0.7 

114.4 

±0.6 

Maximum shelf 

width (km) 
87 207 251 399 122 296 321 186 221 423 423 423 

Minimum shelf 
width (km) 

0 14 8 10 27 36 83 3 82 0 0 0 

Shelf break length 

(km) per area (km2)  
0.0323 0.0091 0.0103 0.0039 0.0135 0.0047 0.0038 0.0058 0.0054 0.0028 0.0073 0.0081 

Mean depth             

(m) 
331 421 473 507 490 541 493 388 407 471 465 460 

Mean depth at shelf 

break (m) 
434 472 543 588 423 509 517 425 505 492 488 495 

Area under 460 m 
(km2) 

14267 72477 234510 240493 42909 150733 183974 58671 56696 155745 1210476 1229517 

Area under 460 m  

(%) 
12.2 37.9 48.5 62.6 54.2 70.2 62.8 35.6 30.1 41.0 48.5 47.9 

Volume under 460 

m (km3) 
1572 11259 37606 30855 6620 23607 23748 14442 3743 21844 175298 179685 

Volume under 460 
m vs total ANT (%) 

0.8 6.2 20.9 17.1 3.6 13.1 13.2 8.0 2.0 12.1 97.5 - 

Shelf break cut by 

lows > 460 m (km) 
291.8 332.3 1692.5 509.3 220.4 667.7 681.0 122.4 497.2 459.3 5473.9 5991.5 

Shelf break cut by 

lows > 460 m (%) 
7.7 19.1 33.9 34.1 20.6 65.6 59.3 13.3 49.1 42.6 30.0 28.9 

B.             

Number and type of 
DSW Observations 

3P, 7N 3A, 1P 5A, 13P 8A, 3P 3N 6N 8N 14N 3A 7A, 3N 
26A, 20P, 

41N 

26A, 20P, 

41N 

Mean distance of 

observations to main 
ice shelves (km) 

803 

±228 

326 

±76 

1805 

±91 

504 

±50 

403 

±211 

1750 

±95 

1771 

±127 

1042 

±54 

182 

±8 

259 

±33 

1060 

±74 
- 

Mean distance of 

observations to main 
polynyas (km) 

1665 

±135 

124 

±61 

184 

±34 

381 

±22 

641 

±114 

237 

±36 

457 

±25 

927 

±62 

751 

±51 

614 

±30 

609 

±53 
- 

 

 

Table 2 
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