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Abstract
RNA molecules undergo a vast array of chemical post-transcriptional modifications (PTMs) that
can affect their structure and interaction properties. In recent years, a growing number of PTMs
have been successfully mapped to the transcriptome using experimental approaches relying on
high-throughput sequencing. Oxford Nanopore direct-RNA sequencing has been shown to be
sensitive to RNA modifications. We developed and validated Nanocompore, a robust analytical
framework that identifies modifications from these data. Our strategy compares an RNA sample
of interest against a non-modified control sample, not requiring a training set and allowing the
use of replicates. We show that Nanocompore can detect different RNA modifications with
position accuracy in vitro, and we apply it to profile m6A in vivo in yeast and human RNAs, as
well as in targeted non-coding RNAs. We confirm our results with orthogonal methods and
provide novel insights on the co-occurrence of multiple modified residues on individual RNA
molecules.

Introduction
RNA post-transcriptional modifications (PTMs) are a pervasive feature common to all domains
of life. They arise from covalent alteration or isomerisation of nucleotides, typically involving
the addition of chemical groups to different positions of the nitrogenous bases or the ribose
cycle.  To date, over 150 modifications have been found throughout all classes of RNAs, with the
most common modification being methylation1. PTMs are deposited and catalytically removed
by specific enzymes and can be recognized by specific ‘reader’ proteins. Overall, PTMs
influence fundamental properties and functions of RNAs, including their stability, structure,
intermolecular interactions and cellular localization2,3.

N6-Methyladenosine (m6A) is the best characterised PTM and the most abundant in mRNAs and
long non-coding RNAs (lncRNAs). It is deposited mainly by the METTL3/METTL14/WTAP
complex and has a variety of functions such as regulation of nuclear export, translation and
degradation of RNAs4,5. Other modifications, including Inosine (I), 5-methylcytosine (m5C),
pseudouridine (Ψ) N6,N6-dimethyladenosine (m6,2A), 1-methylguanosine (m1G), 2'-O
methyladenosine (2’-OMeA) and 7-methylguanosine (m7G), are increasingly recognized as
important for the regulation of different RNAs in physiological and pathological contexts,
including cancer6,7.

The majority of current methods for mapping PTMs rely on RNA immunoprecipitation,
chemoselective alteration or specific signatures resulting from reverse transcription (RT), and
despite being the current gold standard have certain limitations, such as (1) the need to
develop ad hoc protocols for each PTM, (2) cross reactivity or low sensitivity of antibodies or
chemical reactions and (3) biases induced by the complex multi-step experimental protocols8,9.

The recent advances in Nanopore direct RNA sequencing (DRS) have allowed, for the first time,
direct sequencing of full-length native RNA molecules without the need for RT or amplification.
Importantly, a number of studies have shown that DRS data intrinsically contain information
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about RNA modifications10–12. In Nanopore DRS, a single RNA molecule is ratcheted by a
molecular motor through a protein pore embedded in a synthetic membrane. The passage of
nucleobases through the narrowest section of the pore (reader-head) alters the flow of ions across
the membrane, depending on the chemical composition of the bases. At any given point in time,
approximately 5 nucleotides (commonly referred to as a kmer) reside within the reader-head of
R9 pores, leading to a strong kmer specific signal alteration. Crucially, the presence of nucleotide
modifications can induce discernible shifts in current intensity and in the time the nucleic acid
sequence resides inside the pore (dwell time)7,10.

In recent years, the scientific community has devoted substantial resources toward the
development of experimental and analytical strategies for the detection of RNA modifications.
These efforts have generated a number of algorithms and software packages, which have been
extensively reviewed elsewhere13. The current approaches for modification detection based on
Nanopore data can be divided into two categories: those based on the detection of
modification-induced basecalling errors and those based on the analysis of the electrical signal.
The first strategy, which is implemented in tools such as Epinano14, DiffErr15, Eligos16 and
Drummer17, has shown interesting results despite not considering the effects of RNA
modification on the raw electrical signal; however, modern basecalling models tend to become
more insensitive to common PTM, with the risk that methods of this group could quickly become
ineffective at detecting modifications. On the other hand, methods based on raw signal space
analyses (such as Tombo18, Mines19, xPore20, nanom6A21, nanoRMS22, nanoDoc23, Yanocomp24

and Penguin25) can lead to richer comparative analyses, but are more complicated and come with
steeper computational costs. The methods described above can be further classified into two
groups: : de novo detection methods, that use a trained model to identify modifications, and
comparative methods, where differences between two samples are evaluated to infer the presence
of a modification. At present, de novo strategies are often hindered by the difficulty to generate a
training set containing all kmer contexts with and without modifications. For this reason, the
majority of existing methods instead undertake a comparative approach, where the sample of
interest is compared to a reference sample devoid of modifications. Here we introduce
Nanocompore, a flexible and versatile analysis method dedicated to the detection of RNA
modifications from DRS datasets in signal space. To identify potential modification sites,
Nanocompore uses a model-free comparative approach based on a 2 components Gaussian
mixture model, where an experimental RNA sample is compared against a sample with fewer or
no modifications. Potentially, this can be applied to any modification, provided that an
appropriate control depleted of the modification is available, and that the modification
significantly alters the current signal. We demonstrate this for seven different RNA modifications
in synthetic oligonucleotides, as well as extensively for m6A in coding and noncoding native
RNAs in yeast and mammalian cells. Nanocompore includes several unique features: (1) robust
signal realignment based on Nanopolish, (2) modelling of the biological variability, (3) ability to
run multiple statistical tests, (4) prediction of RNA modifications using both signal intensity and
duration (dwell time) and (5) availability of an automated pipeline that runs all the preprocessing
steps. Finally, the results generated by Nanocompore can also be leveraged to infer RNA
modifications at single molecule resolution.
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Results

Nanocompore data preparation and statistical basis
Nanocompore detects potential RNA modifications by comparing DRS datasets from one
experimental test condition containing specific RNA modifications to one control condition
containing significantly fewer or no modifications. Ideally, the control RNA is isolated from a
cell harbouring either a knock-down (KD) or a knock-out (KO) of a gene encoding an RNA
modifying enzyme. Alternatively, for small scale comparison, it is also possible to use either
an in vitro transcribed or synthetic RNA containing canonical RNA bases only. We have
developed an automated Nextflow pipeline (https://github.com/tleonardi/nanocompore_pipeline)
that automatically runs the entire analysis from preprocessing of raw Nanopore data (Fig. 1A), to
modified-base detection with Nanocompore (https://github.com/tleonardi/nanocompore, Fig
1B). Firstly, reads are grouped by reference transcript and transcripts with coverage above a
user-specified threshold are used for subsequent analyses. Then, two parameters - the median
signal intensity and the log10(dwell time) - are collected from each read and aggregated at the
transcript position level. The aggregated data are compared in a pairwise fashion, one position at
the time. For the identification of modified positions, Nanocompore supports robust univariate
pairwise tests on current intensity or dwell time (Kolmogorov-Smirnov test, KS). In addition, we
implemented a more advanced bivariate classification method based on 2 components Gaussian
mixture model (GMM) clustering followed by a logistic regression test (logit) to determine if
there is a significant difference in the distribution of reads into the two clusters between
conditions. Furthermore, we and others observed that DNA and RNA modifications can have an
intrinsic effect on the local signal upstream or downstream of the modification position. Thus, to
evaluate the effect of modifications on the proximal sequence context, Nanocompore offers the
option to use Hou’s method to combine the non-independent p-values of neighbouring kmers
(see Materials and Methods)26.  The p-values are then corrected for multiple tests using
Benjamini-Hochberg’s procedure27 and the results are stored in a lightweight database. Users can
obtain a tabular text dump of the database or use the extensive Nanocompore API to explore the
results and generate ready-to-publish plots.

In silico and in vitro validation
We first tested Nanocompore on in silico data that simulated the presence of RNA modifications.
This technical control confirmed Nanocompore’s capacity to detect alterations in current
intensity and/or dwell time between two samples (see Supplementary Information and Fig S1,
S2).

To further validate the ability of Nanocompore to detect RNA modifications in real Nanopore
data, we designed 3 oligonucleotides carrying multiple modifications including m6A in three
different sequence contexts, I, m5C, Ψ, m6,2A, m1G and 2’-OMeA (see Materials and Methods).
The data generated from the modified oligos was then analysed with Nanocompore using an
unmodified oligo as the reference condition. These results show that Nanocompore can detect all
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modifications tested (Fig. 2A and Fig. S3), including the m6A modification both in the
canonical DRACH motif and non-DRACH sequence contexts28. Of all modifications tested,
m1G was the only one that instead of being detected in one of the modification-containing kmers
gave a significant signal peak 1 kmer downstream. However, also for the other modifications we
observed that the intensity shift at modified sites spreads to adjacent kmers containing the m6A
residue (Fig. S3). This  shows that a modification can alter the signal locally and supports the
rationale of combining the p-values of neighbouring kmers.

To better gauge the accuracy of Nanocompore at coverage levels representative of real
experiments, we generated 100 subsampled datasets containing random samples of 32 to 4096
reads, doubling at each step. By analysing such datasets with Nanocompore, we observed that
the GMM-logit method had lower sensitivity but higher specificity than the non-parametric tests
on intensity or dwell time (Fig 2B). This was also reflected in the GMM-logit test having the
best F1 score at coverage greater than 512 reads (Fig 2C-E). Overall, at a p-value cutoff of 0.05
and 512 reads coverage, the GMM-logit test had a mean accuracy of 94.48% at detecting m6A
and 89.8% at detecting other modifications.

We then reasoned that the results obtained with these modified oligos are only representative of
the extreme situation where 100% of the RNA is modified in the condition under study whereas
the modification is completely absent from the control condition. In order to evaluate the
performance of our method under conditions more representative of real experimental scenarios,
we generated in silico datasets by mixing known proportions of modified and unmodified reads.
Such datasets where generated for each intersection of 3 possible factors: 1) % of modified reads
in experimental condition (ranging from 0% to 100% in steps of 10%, effectively simulating
modification stoichiometry); 2) % of modification reduction in control condition (100%, 80% or
50% reduction, effectively simulating knock-down efficiency), and 3) read coverage (from 16 to
4096 reads per dataset). For each combination of these three factors we generated 100
independent datasets that were then analysed with Nanocompore, for a total of 80,000 runs (Fig
3A). By knowing the ground-truth modification state in each run we could measure accuracy and
produce ROC curves for all conditions tested (Fig S4, S5, S6). As expected, we observed that the
accuracy varied greatly according to the coverage as well as to the relative fraction of modified
reads in the test and control conditions (Fig S7). For example, at coverage levels below 128
reads we found that Nanocompore could hardly detect modified sites unless the modification
stoichiometry and/or knock-down efficiency were high. On the other hand, at a coverage of 4096
reads, we could detect 75% of m6A sites when as little as 20% of the reads are modified (Fig.
S7).

These simulations also allowed us to better investigate the performance of the different tests
implemented in Nanocompore. We observed that the KS tests on current intensity or dwell time
achieved the highest sensitivity at the cost of lower specificity, in particular at high levels of
coverage. On the other hand, the GMM logit test has the lowest False Positive Rate overall and
the best balance between precision and sensitivity (i.e. highest F1 score) at high coverage (Fig.
3B, S6 and S7). Additionally, our data show that different modifications and/or different
sequence contexts have heterogeneous effects on the current intensity and/or dwell time of
Nanopore data (Fig. S3), and the GMM test is the only one that simultaneously captures both.
Therefore the GMM-logit test is the most suitable choice to analyse RNA modifications in

https://paperpile.com/c/EUd1FU/UAcFc


complex transcriptomes, where the sequencing coverage is heterogeneous between transcripts
and where the effect of the modification on current and dwell time is not known. For all these
reasons, all the analysis in this article will make use of the GMM-logit test unless otherwise
stated.

As a further control for Nanocompore sensitivity, we re-analysed DRS dataset of 16S rRNA
from Escherichia coli strain MRE600 knock-out for RsmG or RsuA, which are responsible for an
m7G residue at position G527 and Ψ at position 516 respectively12. In both cases, Nanocompore
was able to detect the modified nucleotides as highly significant (Fig. S8, p-value<10-300 for both
sites).

Benchmarking Nanocompore with Metacompore
Having validated the accuracy of Nanocompore on simulated and synthetic data, we sought to
compare the in vivo performance of Nanocompore with that of other methods based on Nanopore
sequencing. We first focused on the m6A modification in yeast, a species with a relatively small
transcriptome and with a comprehensive annotation of known m6A sites based on techniques
orthogonal to Nanopore sequencing. We generated a Saccharomyces cerevisiae strain KO for
IME4 (ime4Δ), the only known m6A methyltransferase in yeast. We then used DRS to sequence
the polyA+ transcriptome in Wild Type (WT) cells as well as ime4Δ cells. We sequenced three
biological replicates per condition in individual flowcells, generating a total of 14,554,547 reads
and obtaining a coverage above 30x for 2,523 genes (40% of the total annotated transcriptome).
Nanocompore analysis of such a dataset identified 15,961 significant kmers in 1,510 distinct
transcripts (FDR 1%, Fig. S9A). Since a single modification can affect the signal of multiple
neighbouring kmers, we refined our predictions with a peak calling algorithm, finding 10,217
peaks with a median of 3 peaks per transcript. In line with current knowledge on m6A, we found
that Nanocompore peaks were enriched in proximity to the stop codon of mRNAs (Fig. S9B) and
were also enriched for the canonical DRACH motif (Fig S9C). To assess the accuracy of
Nanocompore’s results we measured the overlap between the predicted m6A sites identified and
known m6A sites annotated in an orthogonal reference set of yeast m6A sites 29,30 (see Materials
and Methods). This analysis revealed that 21% (124/602) of known m6A sites overlap with a
Nanocompore peak, whereas 8% (124/1549) of the sites identified by Nanocompore were also
supported by a peak in the orthogonal reference set  (Fig. S9D,E).

In order to compare our results with those obtained through other tools, we developed
Metacompore, a software pipeline written in the Snakemake language 31 that automatically runs 6
different algorithms for modification detection, namely: Nanocompore, Tombo, Eligos, Diff_err,
Epinano and MINES (see Materials and Methods and Supplementary Table 1 for a
comparison of their features). We then used the collection of m6A sites in the orthogonal
reference set as a ground truth, and used it to calculate the sensitivity, specificity and precision of
each method. Since Epinano and MINES are designed to only detect m6A sites within the
DRACH motif, we performed two separate analyses, one that considered all kmers but excluded
Epinano and MINES and another one that only considered DRACH kmers and included Epinano
and MINES.

https://paperpile.com/c/EUd1FU/7dxyH
https://paperpile.com/c/EUd1FU/CBhOs+zKjiU
https://paperpile.com/c/EUd1FU/pkFJ0


When considering all kmers, we found that Eligos2 had the highest sensitivity (45.8%) of all
methods tested, while Nanocompore’s GMM method and GMM context 2 method had a
sensitivity of only 16% and 5.5% respectively (Fig. S10A, nominal FDR threshold 1%, log odds
ratio threshold 0.5). On the other hand, Nanocompore had the highest specificity of all methods
tested (98.3% and 99.7% for GMM and GMM context 2 respectively) whereas Tombo had the
lowest (26.8%, Fig. S10B). We then used the F1 score to measure the balance between
sensitivity and specificity, finding that Nanocompore achieved the best overall score (0.0994,
Fig. S10C) closely followed by diff_err (0.0969). Similarly, in terms of precision (fraction of
True Positive m6A sites out of all sites predicted as m6A) Nanocompore GMM context 2
achieved the best result (Fig. S10D), with an 1.8-fold increase over the second most precise
method diff_err (F1 scores of 0.153 and 0.084 for Nanocompore and diff_err, respectively).

We then repeated a similar analysis only considering DRACH kmers but including Epinano and
MINES in the comparisons. This time we found that Eligos achieved the best balance of
sensitivity and specificity with an F1 Score of 0.287, whereas Nanocompore had the second best
score of 0.180 (Fig. S10E-G). However, also in this case Nanocompore GMM context 2
achieved highest precision at the cost of lower sensitivity, with 43.8% of its predicted m6A sites
being confirmed by the orthogonal reference set (Fig. S10H).

Nanocompore, similarly to Eligos and diff_err, also reports the odds ratio of modified sites,
which indicates the magnitude of the effect (see Materials and Methods). We therefore also
measured the sensitivity and specificity of Nanocompore at a stringent log odds ratio threshold.
As expected, we found that more stringent filtering increased specificity at the cost of lower
sensitivity, with an overall increase in precision (Figure S10I-L). Finally, we also found that the
KS tests on intensity or dwell time alone had worse performance compared to GMM both in
terms of F1 score and precision, further supporting our approach of combining intensity and
dwell time through Gaussian Mixture Modeling.

Transcriptome-wide m6A profiling in mammalian cells
We then sought to study the m6A modification in mammalian cells, where METTL3-METTL14
heterodimers form a N6-methyltransferase complex that methylates adenosine residues at the
N(6) position of specific RNAs. Since m6A is required for development and maintenance of
acute myeloid leukemia32,33, it is of particular importance to accurately map it in leukemia cells.
We therefore used DRS to profile the poly-A+ transcriptome of human MOLM13 cells with
inducible shRNA-mediated knock-down (KD) of METTL3, as well as control Wild Type (WT)
MOLM13 transfected with a scrambled shRNA. We sequenced RNA from two biological
replicates per condition on independent Minion flow cells after 4 days of induced KD of
METTL3, yielding a total of 3,768,380 reads. After applying a 30X coverage threshold, we
obtained data for 751 unique transcripts robustly expressed in all samples (Fig. S11A-C).
Overall, we observed a high correlation of expression levels between samples showing the
consistency of the datasets (R2 of 0.969, Fig. S11D-F). We then used Nanocompore to map the
location of METTL3-dependent m6A sites in human transcripts from MOLM13 cells and found
11,995 significant kmers (FDR 1%), corresponding to 1570 peaks in 216 transcripts, with a
median of 3 peaks per transcripts (Fig. 4A, Fig. S12). As an example, we found 40 peaks (337
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kmers with p-value<0.01, Fig. 4C) in the β-actin (ACTB, ENST00000646664) mRNA.
Interestingly, the 3 most significant β-actin hits are “GGACU” kmers, perfectly matching the
canonical m6A DRACH motif (Fig. 4C-F). On a transcriptome-wide scale, we reproduced
previous observations showing that METTL3-dependent m6A sites are enriched in the
immediate vicinity of mRNA stop-codons (Fig. 4B) 4,34. Additionally, we used Sylamer 35 to
identify enriched kmers in the Nanocompore significant kmers, finding a 4.3 fold enrichment for
the consensus GGACU motif in the Nanocompore sites with p-value<0.01 (hypergeometric
p-value=4.3x10-21, Fig. 4G). Lastly, we generated miCLIP datasets from MOLM13 cells targeted
with METTL3 CRISPR gRNAs to compare the results obtained with Nanocompore with an
orthogonal high-resolution method. We found that 54% of Nanocompore sites were supported by
miCLIP in WT cells (Fig. 4H,I) and Nanocompore positive sites also showed a significant
reduction of miCLIP crosslink sites upon METTL3 KO (p-value=7.90x10-11, Mann-Whitney
test, Fig. 4H and Fig. S13). Overall, these results show that Nanocompore  is capable of
identifying enzyme-specific RNA modifications transcriptome-wide and that these findings are
in agreement with previous techniques.

The identification of RNA modifications outlined so far operates at consensus level, i.e. looking
at the distribution of signal across the entire population of reads. However, the information
obtained from GMM clustering at the population level can be leveraged to calculate the
probability of each read to belong to the modified or unmodified cluster. Hence, it is possible to
assign modification probabilities at the single-molecule, single-site level. As a proof of concept,
we calculated the single-molecule modification probabilities of the three β-actin high-confidence
m6A sites previously described (Fig. 4C-F). We found that these three sites are methylated at
different degrees: 45% of β-actin molecules methylated with high-confidence (probability >0.75)
at position A652, 23% at position A1324 and 49% at position A1535. As expected, we also
found that the fraction of methylated molecules decreased at all three sites in the METTL3 KD
condition (26%, 14% and 27% of molecules methylated at A652, A1324 and A1535 respectively,
Fig. 5A-C). We further asked whether the presence of an m6A modification at one of these three
sites influences the probability that the same molecule is modified at the other sites. Taking into
account the underlying frequency of modification at each site, we calculated the conditional
probabilities for all possible combinations of 0, 1, 2 or 3 modifications to co-occur in the same
molecule (Fig. 5D). This analysis showed that the observed and expected modification
frequencies do not differ significantly, suggesting that methylation of these three sites are
independent events (p-value=0.4, see Materials and Methods).

Modification mapping in snRNA 7SK by high coverage targeted
sequencing
Using the same inducible METTL3 KD and control cells as above, we next performed
high-coverage targeted DRS of the human non-coding snRNA 7SK. To do so, we designed a
custom nanopore sequencing adapter targeting the 3’ end of 7SK (see Materials and Methods
and Table 2). With this approach we achieved consistently high coverage in all the samples
(average of 4,844 reads per sample). 7SK is a highly structured RNA with numerous binding
sites for interacting proteins, which together form the 7SK snRNPs (Fig. 6A). Nanocompore
analysis of 7SK in METTL3 KD cells identified 24 significant kmers across its entire sequence
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(p-value<0.01, Fig. 6A,B). The most significant hit falls in the UGAUC kmer at position 41
(Fig. 6A-D), which corresponds to the 5’ palindrome of the double-stranded and structurally
conserved binding site for HEXIM136,37. Interestingly, the 3’ GAUC palindrome at position 64 is
also a significant site (Fig. 6A,B,D). These results suggest that the two central adenosines of the
double stranded HEXIM1 binding site (A43 and A65) are both methylated by METTL3.  We
also identified 5 significant overlapping kmers between positions 229 and 250 in the terminal
loop of hairpin 3 (HP3) (Fig. 6A,B). This region was recently shown to be the binding site for
RNA-binding motif protein 7 (RBM7), which mediates the activation of P-TEFb by releasing it
from 7SK snRNP, as well as for the structure- and context-specific binder hnRNP A1/A238,39. We
validated the presence of m6A in 7SK by RNA immunoprecipitation and qRT-PCR on the
nuclear RNA fraction, finding a significant reduction of m6A enrichment upon METTL3 KD
(Fig. 6E and Fig. S14).

We next sought to extend our investigation of 7SK to include other modifications in addition to
m6A. To this end we used IVT to generate large amounts of 7SK RNA devoid of all
modifications. We then sequenced this IVT 7SK by DRS and analysed the resulting data with
Nanocompore, using the dataset from targeted sequencing of WT MOLM13 cells as the
reference condition. This approach potentially allows mapping of all RNA modifications in
targeted RNAs, albeit without revealing the type of each modification. We identified 68
significant kmers spread across the entire 7SK sequence (1% FDR, Fig. S15A). The most
significant region identified is ~10nt long and is located at the stem-loop boundary of HP3 (Fig.
S15B). This region encompasses the m6A site identified at position A245 by the analysis of
METTL3-KD, as well as a known Ψ site at position U250 (Fig. S15C)40. We also observed a
significant change between IVT and WT RNA samples at A43 (UGAUC kmer, p-value=0.0608)
and A65 (GCUGA and CUGAU kmers, p-values=0.0839 and 0.0346, respectively), supporting
the presence of the two m6A sites that we identified above in the double stranded HEXIM1
binding site.

Discussion
In recent years substantial progress has been made in our understanding of the roles and
functions of RNA PTMs. The diverse range of RNA PTMs biological roles are mediated by their
capacity to dynamically regulate the physical and chemical properties of RNA molecules, for
example by creating or masking binding sites, altering RNA structure or modulating expression
and subcellular distribution41,42. However, fully understanding the breadth and scope of RNA
modifications as well as their dynamic regulation in physiological and pathological contexts
requires efficient and accurate methods to detect their presence and to map them to the respective
RNA sequence contexts.

In this paper we introduce Nanocompore, a robust and versatile method for the identification of
multiple types of RNA modification from Nanopore DRS data. Nanocompore performs a signal
level comparison between two conditions, allowing identification of significant changes
indicative of the presence/absence of RNA modifications (Fig. 1). Our approach has several
advantages over alternative RNA PTM mapping methods. First, it is based on Nanopore DRS, a
technique which is seeing rapid adoption and that, unlike previous genome-wide strategies, is not
affected by reverse transcription or PCR amplification biases. Second, it maps RNA
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modifications in the context of long reads, giving critical information on RNA PTMs on
individual gene isoforms. Third, our comparative strategy does not require any training and can
be applied as-is to different RNA modifications, as long as a modification-depleted reference
sample is available. Fourth, the approach implemented in Nanocompore is paving the way for
future works to study RNA modifications at single molecule resolution. Finally, we implemented
analysis pipelines in the Nextflow Domain Specific and Snakemake Languages, allowing
automatic execution of all processing steps, from raw data up to the execution of Nanocompore
and other RNA modification tools, thus greatly simplifying the bioinformatics work.

We extensively validated the performance of Nanocompore in silico, in vitro and in vivo in both
ime4Δ yeast cells as well as METTL3 KD human cells (Fig. 2- 5). In both human and yeast, we
were able to recapitulate previous observations on the distribution of m6A and provide new
interesting insights. For example, we found m6A to be enriched toward mRNA stop codons as
well as for the short motif DRACH. Furthermore, we confirmed with orthogonal techniques that
m6A is enriched at the sites identified by Nanocompore both in human and in yeast. However -
despite being greater than 20% in yeast - the overlap between Nanocompore and orthogonal
techniques is incomplete, likely due to a combination of biological variability between samples
as well as technical biases that affect the two technologies in different ways. In this regard, more
work is still required in order to generate a reliable ground-truth annotation of m6A sites.

As an additional proof-of-concept, we performed high coverage targeted sequencing of
non-polyadenylated ncRNAs, identifying multiple putative modification sites in the 7SK snRNA
(Fig. 6). In addition to METTL3-dependent m6A sites we were also able to profile the overall
modification landscape of 7SK by comparing our sample with an IVT control.

Through the creation of thousands of artificial datasets, we showed that Nanocompore performs
well with mixed populations of modified/unmodified reads in the control and experimental
samples. Although it is currently unsuitable for the identification of very low-frequency
modifications, our benchmarks show that for abundant transcripts we achieve high sensitivity
where as little as 20% of reads are modified. However, these simulations also show that the
sensitivity is highly influenced by a) expression level, b) modification stoichiometry, and c)
efficiency of modification reduction in control. These observations strengthen the importance of
having good control conditions (such as high efficiency knock-downs, knock-outs or IVT
samples) and high depth of sequencing. In our experiments, to profile m6A in yeast we achieved
a median coverage of 120 reads per transcript. The True Positive Rate for m6A detection at this
sequencing depth is ~48%, highlighting the fact that the low throughput of individual MinION
flowcells currently does not provide enough coverage to resolve RNA modifications
transcriptome wide. However, newer releases of DRS kits provide constant improvements in
terms of throughput. Furthermore, when cost and amount of RNA are not limiting factors, users
have the option of pooling multiple MinION flowcells or using a PromethION to achieve higher
coverage. A further limitation that emerged from our benchmarks, which is intrinsic to the
methods that directly use electrical signals to identify modifications, is the spatial resolution of
modification calling. Since the reader head of the pore contains ~5 nucleotides, a single modified
nucleotide can potentially affect the signal of up to 5 consecutive kmers, making it hard to
resolve modification position with single nucleotide precision.



An additional feature of Nanocompore is that by analysing knock-down or knock-out samples it
intrinsically assigns RNA modifications to specific writer enzymes, thus allowing to discern the
individual roles of multiple enzymes that catalyse the same modification. It will also be of great
interest to assess the effects of pharmacological inhibition of enzymes that regulate or deposit
RNA modifications, for example in cancer, viral infections and potentially other diseases43–45.
However, an important caveat to be considered when pursuing this approach - as well as any
other method based on loss-of-function of catalytic enzymes - is that compensation between
different enzymes or functional interactions between neighbouring modifications could be a
confounding factors for Nanocompore analysis and currently cannot be accurately resolved
solely with our method, in particular for long periods of inhibition of the RNA modifying
enzymes. Because of this intrinsic inability of comparative methods to directly assign
modifications, it is currently not possible to study multiple types of modifications at the same
time.

An intrinsic feature of Nanocompore is its ability to assign modifications to specific isoforms,
although this implies that Nanocompore requires either a well-annotated transcriptome or a
custom transcriptome annotation generated from the DRS data. In addition, it is becoming
increasingly important to obtain information about modification stoichiometry and
combinatorics. Although Nanocompore currently does not allow measuring stoichiometry, one of
its major advantages is the ability to detect RNA modifications at single molecule resolution. As
a proof of concept we applied our analysis to the most significant m6A sites found by
Nanocompore in β-actin mRNA and found that multiple methylated residues are present in the
same molecule independently of one another at a given time. Although this type of analysis can
not currently be applied transcriptome-wide, and although these results are still not quantitative
in nature, they suggest the presence of highly site-selective intramolecular deposition and/or
removal of m6A. This is the first observation of this kind to date, and it will need to be
cross-validated when other methods enabling the same level of resolution become available.

The last few years have seen a remarkable increase in the number of methods available for
modification detection from Nanopore data. The majority of these focus on the identification of
only one type modification (typically m6A) whereas others, such as Nanocompore, NanoRMS,
Epinano and Eligos have been tested on a larger number of distinct modifications. The tools
available also differ greatly in terms of methodology employed: for example, certain tools use
machine learning algorithms (e.g. nanom6A, MINES, nanoDoc, Penguin, nano-ID, Epinano)
whereas others apply clustering techniques and statistical testing (e.g. Tombo, Nanocompore,
xPore, nanoRMS, Yanocomp, DiffErr, DRUMMER and Eligos). At the same time, these
methods also differ in terms of strengths and shortcomings, which have been extensively
reviewed in recent works13. Here we have benchmarked the performance of Nanocompore at
detecting m6A against a small set of representative tools (namely Differr, Eligos2, Tombo,
EpiNano and MINES), finding that in most situation Nanocompore achieves very high accuracy
at the cost of lower sensitivity. Although this benchmark was done in yeast, we expect similar
results for other species. However - as we and others20 have observed - low sequencing coverage
negatively impacts modification detection. For this reason, a lower sensitivity can be expected
for complex transcriptomes such as the human one. In addition, our experiments with synthetic
RNAs also show that performance metrics are heavily influenced by modification stoichiometry
and relative reduction of the modification in the control condition. Despite these observations,
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the field is still lacking a systematic comparison of the performance of all the methods available,
of how it is impacted by the factors mentioned above and how it varies between different
modifications or model species. For this reason, we recommend users seeking to detect RNA
modifications from Nanopore data to test multiple methods that implement different approaches
and to carefully assess the impact of coverage and knock-down/knock-out efficiency under their
experimental settings.

In conclusion, Nanocompore offers a versatile, robust and practical method to readily identify
RNA modifications from Nanopore DRS experiments. Its adoption by the scientific community
has already benefited a number of studies and should continue shedding light on the distribution
and function of RNA modifications at high resolution, helping to reveal the currently hidden life
of RNAs.

Methods

Cell culture and KD/KO experiments

The RNA from WT and METTL3 KD MOLM13 cells was obtained from Barbieri et al32.
Briefly, cells were cultured in RPMI1640 (Invitrogen) supplemented with 10% FBS and 1%
penicillin/streptomycin/glutamine. Conditional knock-downs (KD) using METTL3-targeting or
scrambled shRNAs were performed as previously described 32. For lentivirus production, 293T
cells were transfected with PLKO.1 lentiviral vector containing the shRNA sequences (Table
S2), together with the packaging plasmids psPAX2 (Addgene Plasmid #12260), and VSV.G
(Addgene Plasmid #14888) for METTL3 KD or Pax2 (Addgene Plasmid #35002), at a 1:1.5:0.5
ratio, using Lipofectamine 2000 reagent (Invitrogen) according to the manufacturer’s
instructions. Supernatant was harvested 48 and 72 h after transfection. 1 × 106 cells and viral
supernatant were mixed in 2 ml culture medium supplemented with 8 μg/ml polybrene
(Millipore), followed by spinfection (60 min, 900g, 32°C) and further incubated overnight at
37°C. The medium was refreshed on the following day and the transduced cells were cultured
further. MOLM13 cells (5 × 105) were infected using PLKO-TETon-Puro lentiviral vectors
expressing shRNAs. 24h after infection, the cells were replated in fresh medium containing
1 μg/ml of puromycin and kept in selection medium for 7 days. shRNA expression was induced
by treatment with 200 ng/ml doxycycline for 4 days for METTL3 KD. Near complete loss of
METTL3 RNA and protein was confirmed by Western Blot and qPCR by Barbieri et al32. For
METTL3 knock-out (KO) experiments, lentiviruses were produced in HEK293 cells using
ViraPower Lentiviral Expression System (Invitrogen) according to manufacturer's instructions.
MOLM13 cells stably expressing Cas9 were transduced with lentiviral gRNA vectors expressing
either empty or METTL3 gRNAs (Table S2) and selected with puromycin from day 2 to day 5.
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At day 5 post-transduction, the cells were suspended in fresh medium without puromycin. At day
6, cells were harvested for RNA extraction.

The diploid S. cerevisiae strains used for generating the ime4Δ mutant were derived from the
SK1 background. The ime4Δ strain was generated using the one-step gene replacement method
described previously46.

RNA purification and in vitro transcription

Total RNA was isolated from MOLM13 cells using the RNeasy midi kit (Quiagen) and polyA+
RNA was purified from 30μg total RNA using the Dynabeads mRNA Purification Kit (Thermo
Fisher Scientific) according to the manufacturer’s instructions. For production of unmodified
7SK RNA, synthetic double stranded DNA template for in vitro transcription (IVT) was
produced by hybridization of synthetic Megamer® Single-Stranded DNA Fragments (IDT)
containing the 7SK sequence downstream of a T7 promoter (Table S3). 500ng of double
stranded DNA template were used in 20μl IVT reactions for 1h using the TranscriptAid T7 High
Yield Transcription Kit (Thermo Fisher Scientific), following the manufacturer’s instructions.
The RNA product was purified using the RNA Clean & Concentrator kit (Zymo Research). Wild
Type and ime4Δ yeast cells were collected after 4h in sporulation medium and total RNA was
extracted with acid phenol:chloroform:isoamyl alcohol as previously described47. polyA+ RNA
was purified from total RNA using the Dynabeads mRNA Purification Kit (Thermo Fisher
Scientific) as above.

miCLIP

miCLIP was performed in duplicates with RNA isolated from wild type and METTL13 KO
MOLM13 cells. The protocol is conceptually related to the original m6A miCLIP protocol48, but
uses total RNA as input and follows a more recent variant of iCLIP protocol49. 4μg of total RNA
were fragmented with RNA fragmentation reagents (ThermoFisher) following the
manufacturer’s instructions. Fragmented RNA was then incubated with 2.5μg anti-m6A antibody
(Abcam, ab151230) in IP buffer (50mM Tris-HCl pH 7.4, 100mM NaCl, 0.05% NP-40) at 4°C
for 2 hours, in rotation. Subsequently, the solution was placed in 6-well plates on ice and
irradiated twice with 0.3 J cm−2 UV light (254 nm) in a Stratalinker crosslinker. 30μl protein G
beads (Dynabeads) per sample were washed twice with IP buffer and then incubated with the
RNA-antibody solution at 4°C for 1.5 hours, in rotation. After the IP, the RNA-antibody-beads
complexes were washed twice with High-Salt Wash buffer (50mM Tris-HCl pH 7.4, 1M NaCl,
1mM EDTA, 1% Igepal CA-630, 0.1% SDS, 0.5% sodium deoxycholate), once with IP buffer
and once with PNK Wash buffer (20mM Tris-HCl pH 7.4, 10mM MgCl2, 0.2% Tween-20). The
beads then proceeded to 3’ dephosphorylation and the rest of the iCLIP protocol. The 3’ adapters
for on-bead ligation carry the sequences found in Table S4. Samples were mixed after the
adapter removal step. Following the SDS-PAGE gel, the membrane was cut from 45kDa to
185kDa and RNA was extracted. The following sequence of the RT primer was used: /5Phos/
WWW CGTAT NNNN AGATCGGAAGAGCGTCGTGAT /iSp18/ GGATCC /iSp18/
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TACTGAACCGC. cDNA libraries were sequenced with single end 100bp reads on Illumina
HiSeq4000.

Nanopore direct-RNA sequencing (DRS)
RNA sequencing was performed following the instruction provided by Oxford Nanopore
Technologies (Oxford, UK), using R9.4 chemistry flowcells (FLO-MIN106) and direct-RNA
chemistry sequencing kits (SQK-RNA001 or SQK-RNA002). For polyA+ transcriptome
sequencing, we followed the conventional DRS protocol using the provided polyT (RTA)
adapter. For the targeted sequencing, we ordered custom reverse transcription adapters
complementary to the 3’ end of 4 selected noncoding RNAs, and followed the sequence-specific
DRS protocol (Table S5). For library preparation, we used 500ng of unmodified synthetic 7SK
RNA using the adapter complementary to the 3’end of 7SK.

m6A RNA immunoprecipitation and qRT-PCR
Cell nuclei were obtained from MOLM13 WT (six independent biological replicates) or
METTL3-KD cells (six independent biological replicates for each shRNA) six days after
doxycycline administration. Cell lysis was performed in 10 mM TRIS pH = 7.8, 140 mM NaCl,
1.5 mM MgCl2, 10 mM EDTA, 0.5% NP40 and RNase inhibitor (RNaseOUT™, Thermo Fisher
Scientific, 10777019, lot # 2232786) for 30 min on ice followed by centrifugation at 3,000 x g
for 3 minutes. Nuclear RNA fraction was then purified using the RNAeasy midi kit (Qiagen).
Successively, 4μg of nuclear RNA were fragmented for 3 minutes and 30 second at 70°C using
the RNA fragmentation Reagents (Thermo Fisher Scientific, AM8740, lot # 00786992).
Fragmented nuclear RNA was then purified using the RNA Clean & Concentrator™-5 kit (Zymo
Research, R1016). meRIP qRT-PCR was performed as previously described50 with some
modifications. Briefly, for each immunoprecipitation reaction 1μg of fragmented nuclear RNA
was incubated 2 h at 4°C in rotation with anti-m6A (Abcam, ab151230, lot #GR3319501-1) or
anti-GFP Antibodies (Abcam, ab290, lot #GR3321575-1) in a final volume of 1ml RIP Buffer
(RIP buffer 5X, ddH2O, RNaseOUT™)50, and subsequently incubated 2h at 4°C in rotation with
50 µL of BSA-coated Dynabeads G (Thermo Fisher Scientific, 10004D). 5% of each
immunoprecipitation reaction was saved as input control. To elute RIP-RNA, beads were
incubated twice 30 minutes at 37°C in a thermo-shaker (1100rpm) in 40μl of elution buffer (RIP
buffer 1X, 6.7mM N6-Methyladenosine 5'-monophosphate (Santa Cruz Biotechnology,
sc-215524, lot # L1820), RNaseOUT™). Input and RIP samples were finally purified using the
RNA Clean & Concentrator™-5 kit (Zymo Research, R1016). cDNA was obtained using the
high-capacity cDNA reverse transcription kit (Thermo Fisher Scientific, 4368814). The levels of
7SK were measured using a QuantStudio 6 Flex real-time PCR machine and PowerUp™
SYBR™ Green PCR master mix (Thermo Fisher Scientific, A25780) according to the
manufacturer’s instructions. Statistical testing for differences between KD and Control was done
with the one-tailed Welch’s t test.

qRT-PCR primers
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7sk (22-73): Fwd 5’-GCGACATCTGTCACCCCATT-3’; Rev
5’-CAGCCAGATCAGCCGAATCA-3’.

7sk (50-160): Fwd 5’-GGGTTGATTCGGCTGATCT-3’; Rev
5’-GGGGATGGTCGTCCTCTT-3’

7sk (258-308): Fwd 5’-CGTAGGGTAGTCAAGCTTCCA-3’; Rev
5’-CAGCGCCTCATTTGGATGTG-3’

Western blotting
Western blot experiments were performed as previously described (Barbieri, Nature 2017) using
the following antibodies: anti-METTL3 (Abcam, ab195352, lot #GR3247121-3) and anti-beta
Actin (Abcam, ab8227, lot #GR3255609-1).

In silico simulated datasets

Unmodified RNA model

We used an in vitro transcribed human RNA DRS dataset released by the Nanopore WGS
consortium as a ground truth for non-modified RNA bases
(https://github.com/nanopore-wgs-consortium/NA12878). This dataset contains all possible
5-mers on average 58,307 times. The reads were aligned on gencode release 28 human reference
transcriptome with Minimap2 v2.14 and we realigned the signal to the reference sequence
using Nanopolish eventalign v0.10.1 followed by NanopolishComp Eventalign_collapse v0.5 .
Next, we collected the median intensity and dwell time data for each 5mers and tried to fit 44
different distributions. We selected distributions minimising the sum of square root error for all
kmers between the observed and modeled data. In addition, we also based our selection on the
possibility to easily change the parameters of the distributions to simulate the presence of
modifications. We selected the Wald distribution and the Logistic distribution for dwell time and
median intensity, respectively. Finally, we generated a model file containing the parameters of
the observed and model distributions for each 5-mer. The up-to-date model file is distributed
with Nanocompore. The detailed analysis is available in the following Jupyter
notebook: https://github.com/tleonardi/nanocompore_paper_analyses/blob/master/in_silico_datas
et/01_IVT_Kmer_Model.ipynb.

Simulated reference sequence

We generated a set of in silico reference sequences. In order to maximise the sequence diversity
and kmer coverage we used a “guided” random sequence generator. In brief, the sequences are
generated base per base using a random function, but the program keeps track of the number of
times each kmer was already used. The sequence is extended, based on a random function with a
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weighted probability for each kmer inversely proportional to their occurrence in the sequences
already generated. This ensures that all kmers are represented as uniformly as possible, but it
leaves some space to randomness. We generated a set of 2000 sequences 500 bases long each
maximising the 9-mers coverage. We excluded any homopolymers longer than 5 bases, as they
are likely to be miscalled in nanopore data. Kmer coverage in the final sequence set are
summarised in Table S6 . The detailed analysis is available in the following Jupyter notebook:
https://github.com/tleonardi/nanocompore_paper_analyses/blob/master/in_silico_dataset/02_Ran
dom_guided_ref_gen.ipynb.

Simulated modified and unmodified datasets

Nanocompore comes with a companion tool called SimReads which can generate simulated read
data based on a fasta reference and a kmer model file. Essentially, SimReads walks along the
reference sequence and generates intensity and dwell time values corresponding to each 5-mers.
To do so, it uses a probability density random generator using the kmer model values (location
and scale) bounded by the extreme observed values. This tool can also offset the model mean by
a fraction of the distribution standard deviation to simulate the effect of RNA modifications. This
can be done for all the reads or only on a subpopulation of reads. SimReads generates files
similar to the output of NanopolishComp EventalignCollapse. This means that the datasets can
be directly used as input for NanoCompore SampComp. Using Nanocompore v1.0.0rc3 with the
previously described simulated reference sequence set  we generated 144 in silico datasets with
various amplitude of modification of the median signal intensity and the dwell time (0, 1, 2, 3
and 4 standard deviation) as well as different fractions of modified reads (10%, 25%, 50%, 75%,
90% and 100%). All the datasets were simulated in duplicate with a uniform coverage depth of
100 reads. The detailed analysis is available in the following Jupyter
notebook: https://github.com/tleonardi/nanocompore_paper_analyses/blob/master/in_silico_datas
et/03_Simulated_dataset_gen.ipynb.

Analysis of simulated datasets

We compare the 144 datasets containing simulated modifications against the reference dataset
generated from the unmodified model with Nanocompore v1.0.0rc3 (See Nanocompore section
after). The analysis was performed with all the statistical methods supported by Nanocompore
using a sequence context of 2 nucleotides
(https://github.com/tleonardi/nanocompore_paper_analyses/blob/master/in_silico_dataset/04_na
nocompore.sh). The result database was subsequently parsed and the predicted modified sites
were compared with the position of the known simulated positions. A hit was considered true
positive (TP) when we found a significant p-value within 3 nucleotides of a known modified
position. A significant hit outside of this window was counted as a false positive (FP). Finally,
we plotted the Receiver Operating Characteristic (ROC) curves corresponding to the TP rate
compared with the FP rate for every Nanocompore comparison performed
(https://github.com/tleonardi/nanocompore_paper_analyses/blob/master/in_silico_dataset/05_cal
c_roc.sh).
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Sequencing and analysis of synthetic modified oligos
The four PAGE-purified, synthetic oligonucleotides of 100nt were ordered through Horizon
Discovery LTD at a concentration of 0.2 µmol. Oligo1, 2 and 3 carried 3 modified nucleotides
each, whereas Oligo4 was the unmodified control. All the oligonucleotides have the same
sequence, but they contain different modifications sufficiently spaced (23 bases) to avoid
interactions between modifications. The sequence was chosen in order to combine all the know
consensus of the modifications in a single oligo sequence in order to be able to use a single
non-modified reference for all oligos:

● m6A: GGACU (strong DRACH consensus)
● m6A: CGACC (Weak NRACH consensus)
● m6A: CUAGC (Anti DRACH consensus)
● Inosine: UUAGC (loose motif in editing-enriched regions (EERs) – from Blango and

Bass 2016, and Eggington et al. 2011).
● PseudoU: UGUAG (from Pus7’s UGΨAR motif, and 7SK IVT peak…)
● m62A: GUGAACC (from the 18S rRNA modified sequence)
● m5C: CCCGGG (from Huang et al. 2019)
● m1G: CAGGTCG (from the tRNA m1G37 position)
● 2'OmeA: GAGAGAA (from rRNA doi: 10.1093/nar/gkw810)

The motifs were all expanded to 7 bases and combined in a sequence separated by a randomly
generated buffer of 9 bases. We generated all possible permutations of the blocks and 1000
different versions of the randomly generated buffer sequences (disallowing homopolymers),
totalling 216,000 candidate sequences. We then computationally folded all of the candidate
sequences using RNAfold v2.4.15 from the Vienna package. Finally, we calculated a combined
score taking into account the folding score and the base composition balance and picked the best
candidate:

m6A_strong-Inosine-m62A-m6A_anti-m5C-m1G-m6A_weak-PseudoU-2OmeA|seed=802
>control
AUACUCGACAUAGAUAGGACUCUUUAGCUAGUGAACCCUAGCCUCCGGAGACAGG
UCGCGACCUGUGUAGAUGAGAGAACUGAGUGCACAAAAAAAAAAA
>mod_set_1
AUACUCGACAUAGAUAGG(m6A)CUCUUUAGCUAGUGAACCCU(m6A)GCCUCCGGA
GACAGGUCGCG(m6A)CCUGUGUAGAUGAGAGAACUGAGUGCACAAAAAAAAAAA
>mod_set_2
AUACUCGACAUAGAUAGGACUCUUU(I)GCUAGUGAACCCUAGCCUC(m5C)GGAGA
CAGGUCGCGACCUGUG(PseudoU)AGAUGAGAGAACUGAGUGCACAAAAAAAAAAA
>mod_set_3



AUACUCGACAUAGAUAGGACUCUUUAGCUAGUG(m62A)ACCCUAGCCUCCGGAGA
CAG(m1G)UCGCGACCUGUGUAGAUGAG(2'OmeA)GAACUGAGUGCACAAAAAAAAA
AA

The full design analysis is now provided in the online companion analysis repository
https://github.com/tleonardi/nanocompore_paper_analyses/tree/master/control_oligos_design

DRS libraries were prepared from 500ng of each oligo using the SQK-RNA002 kit (ONT) and
following the standard protocol. Libraries were then sequenced in individual FLO-MIN106
flowcells on a GridION instrument. The data was then basecalled with Guppy (v3.2.10) with
default parameters. A known limitation of DRS is the poor data normalisation for short reads. To
overcome this limitation and reduce noise, we only retained for further analysis the Guppy pass
reads of at least 100nt in length (i.e. full length oligos and fusion reads). Filtered reads were then
mapped to the reference unmodified sequence using minimap2 (-k 9 -m 5), the signal data was
then resquiggled with Nanopolish and the aligned events table was collapsed with
NanopolishComp as outlined before. The filtered datasets for Oligo1, 2 and 3 were then analysed
with Nanocompore (v1.0.0rc3, --min_coverage 30, --downsample_high_coverage 5000). The
Nanocompore signal peaks were generated as described in Peak Calling section using a p-value
threshold of 0.01.

We then generated artificial datasets containing variable fractions of unmodified and modified
reads, covering all possible combinations of 3 factors:

1. f, the fraction of modified reads in experimental condition, ranging from 0 to 1 in 0.1
increments

2. r, the fraction of modification reduction in control condition. Values 1, 0.8 or 0.5
3. n, the read coverage ranging from 16 to 4096 and doubling at each step.

For each dataset to be generated, we created 4 NanopolishComp index files:

1. A file referencing a random sample of n*f reads from the dataset containing the
modification

2. A file referencing a random sample of n*(1-f) reads from the unmodified dataset
3. A file referencing a random sample of n*f*r reads from the dataset containing the

modification
4. A file referencing a random sample of n*(1-f*r) reads from the unmodified dataset

This procedure was repeated 100 times for each combination of n, f and r and analysed in 81.000
distinct Nanocompore runs using the combined files 1 and 2 as the experimental sample and the
combined files 3 and 4 as the reference sample. We then analysed the results of Nanocompore in
order to calculate, for each combination of n, f and r, the mean number of True Positives, False
Positives, True Negatives and False Negatives identified. For this purpose, True positives were
defined as the number of known modification sites with at least 1 significant kmer; False
positives were defined as the number of significant kmers outside of the known modification
sites; True negatives as the number of known unmodified sites that didn’t have any significant
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kmer and False negatives as the number of known modification sites not supported by any
significant kmer.

Direct-RNA datasets analysis

Reference files

For this study we used the following Human reference files all obtained from Ensembl:

• Human Genome reference: Human genome assembly GRCh38.p12

• Human Annotation reference: Ensembl Gene build release-97

• Yeast SK1 Genome Reference: http://cbio.mskcc.org/public/SK1_MvO/

Data preprocessing

All the datasets were preprocessed using an automated analysis NextFlow pipeline, before
running Nanocompore (https://github.com/tleonardi/nanocompore_pipeline). Raw reads FAST5
files were basecalled with ONT Guppy v3.1.5 and the basecalled reads were saved in FASTQ
format. A post-basecalling quality control was performed with pycoQC (v2.2.4) 51 to verify the
consistency of the sequencing runs. A transcriptome reference FASTA file was created from the
annotation BED file and genome FASTA file with Bedparse (v0.2.2) 52. Reads were then aligned
on the transcriptome reference with Minimap2 (v2.16) 53  in unspliced mode (-x map-ont). The
resulting aligned reads were filtered with samtools (v1.9) 54 to keep only primary alignments
mapped on the forward strand (-F 2324) and the raw signal was realigned on reads using
Nanopolish eventalign (v0.11.1) 55. Finally, the data was processed by NanopolishComp
Eventalign_collapse (v0.6.2) 56 to generate a random access indexed tabulated file containing
realigned median intensity and dwell time values for each kmer of each read.

Signal comparison with Nanocompore
Nanocompore is a Python3 package dedicated to comparative analysis of DRS nanopore
sequencing raw signal in order to identify potential RNA modification sites. Signal analysis and
complex statistical tests are generally resource-intensive, but Nanocompore takes advantage of a
multiprocessing architecture to process transcripts in parallel and has a relatively small memory
footprint.  Nanocompore requires at least 1 indexed tabulated file generated with
NanopolishComp Eventalign_collapse for each of the 2 conditions to compare. The program will
run with a single replicate per condition, but we recommend at least 2 to take full advantage of
the advanced statistical framework. The analysis flow is divided in three steps: 1) white-listing of
transcripts with sufficient coverage, 2) parallel processing and statistical testing of transcripts
position per position, 3) post-processing and saving.

https://www.ensembl.org/Homo_sapiens/Info/Index
http://cbio.mskcc.org/public/SK1_MvO/
https://github.com/tleonardi/nanocompore_pipeline
https://paperpile.com/c/EUd1FU/PLSNq
https://paperpile.com/c/EUd1FU/Zkeym
https://paperpile.com/c/EUd1FU/jI8of
https://paperpile.com/c/EUd1FU/WtEic
https://paperpile.com/c/EUd1FU/Jnz2u
https://paperpile.com/c/EUd1FU/NMfA7


Transcripts whitelisting

In order to reduce the computational burden, Nanocompore first filters out transcripts with
insufficient coverage. This is achieved by a rapid tally of reads mapped per transcripts followed
by selection of transcripts having at least 30 reads mapped in all of the samples provided.  Users
can modify the threshold but the default value allows to get reproducible results. Optionally, one
can provide a custom list of transcripts to include or exclude.

Statistical analysis

White-listed transcripts are processed in parallel to take advantage of multi-threaded architecture.
First, the data corresponding to the reads mapped on each transcript is loaded in memory and
transposed in the transcript space in a position-wise fashion. The current implementation of
Nanocompore only uses the median signal intensity and the scaled log10 transformed dwell time,
but the framework is flexible enough to aggregate more variables, such as the error rate or
additional Nanopolish HMM states.  The 2 experimental conditions are compared positions per
position using a range of statistical tests. We included the Kolmogorov-Smirnov (KS) test as a
robust univariate pairwise statistical test on current intensity and dwell time. These tests are
performed independently on the median intensity and the dwell time.  We also implemented
a Gaussian mixture model (GMM) clustering-based method. For a given position we fit a
bivariate 2 components GMM to all the data points observed (x=median intensity, y=dwell time),
irrespective of the sample label. We then assign each data point to one of the two clusters and test
for differences in the distribution of reads between clusters across conditions. To this purpose,
testing is implemented in two ways: 1) by default, we fit a Logit model to the data using the
formula predicted_cluster~1+sample_label and report the coefficient’s p-value. 2) As an
optional alternative we do a one-way ANOVA test comparing the log odds of data points
belonging to cluster one between the two conditions. After testing, it’s optionally also possible to
aggregate the p-values of neighbouring kmers to account for the fact that modified bases affect
the signal of multiple kmers. To this end, and due to the fact that neighbouring p-values are
non-independent, we implemented in python a method that extends the Fisher’s statistic
X=-2log( P1

w1 P2
w2 … Pk

wk) to approximate the distribution of the weighted combination of
non-independent probabilities26. The combined p-values are computed all along the sequence
using a sliding window of a given length. This method greatly reduces the prediction noise (false
positive rate) at the expense of spatial resolution, while giving more weight to sites for which the
effect of RNA modifications on the signal is spread over several kmers.

Post-processing, saving and data exploration with Nanocompore interactive
plotting API

Results generated by the statistical module are collected and written in a simple key/value
GDBM database. Although this data structure has limitations in terms of portability and
concurrent access, it is natively supported by python and allows storing complicated data
structures. For each test previously performed p-values are temporarily loaded in memory and
corrected for multiple tests with the Benjamini-Hochberg procedure. Users can then obtain a
tabulated text dump of the database containing all the statistical results for all the positions in the
transcripts space or a BED file with the positions of significant hits found by Nanocompore

https://paperpile.com/c/EUd1FU/TcJL


converted in the genome space.  Finally, we provide a convenient python wrapper over the
GDBM database, allowing users to interactively access simple high level functions to plot and
export the results (https://nanocompore.rna.rocks/demo/SampCompDB_usage/). The wrapper
was initially developed for Jupyter but can essentially work with any python IDE. At the time of
publication the wrapper allows to generate 6 different types of publication ready plots for a given
transcript including (1) the distribution of  p-values, (2) the distribution of signal intensity and
dwell time, (3) the overall coverage per sample, (4) the nanopolish HMM states, (5) the kernel
density of the signal and dwell time for a specific position and (6) the sharkfin plot of the
p-values compared with Log Odds Ratio (for the GMM method).

Downstream analyses
The code for all generic analyses, plots and metrics is available at
https://github.com/tleonardi/nanocompore_paper_analyses/. The transcript intersection plot for
the MOLM13 polyA dataset had been generated with UpsetR 57,58.

Peak calling

Given that a single modification can affect the signal for multiple overlapping kmers, we
developed a peak calling method to refine our predictions. Briefly, we first converted p-values in
-log10 so that peaks correspond to positions with higher probability of being modified. We then
defined a dynamic threshold per transcripts corresponding to the median of all the values above 2
(p-values <0.01). In the case where no significant p-values were found, the threshold was set to
2. Peaks were called using scipy.signal.find_peaks using the dynamic threshold described before
as a minimal height and a minimal distance of 9 between 2 peaks (5 overlapping 5-mers).
Examples can be found in Figure S12.

Metagene m6A coverage

The metagene m6A coverage analysis was done considering all nanocompore kmers with GMM
logit p-value<0.01 and a log odds ratio >0.5. The plot was produced in R/Bioconductor with the
Guitar package using the TxDb.Hsapiens.UCSC.hg38.knownGene package for the human
transcriptome annotation and the SK1 reference transcriptome GFF for the yeast annotation.

Motif enrichment analysis of m6A sites

For the motif enrichment analysis of m6A sites identified by Nanocompore analysis of METTL3
KD, we extracted the sequence of all kmers tested by Nanocompore and having a p-value<0.5
(GMM-logit). The sequences were then sorted by p-value and analysed with Sylamer for the
identification of over-represented words, using a word size of 5 and a growth parameter of 100.
The Sylamer results were then imported in R for plotting. To produce a combined profile of the
DRACH motif, the per-window p-values of all DRACH kmers were combined using Fisher’s
method. For visualisation purposes, the final plot only reports the lines for the top 100 motifs
with the greatest area under the sylamer curve, with the top one represented in colour.

https://nanocompore.rna.rocks/demo/SampCompDB_usage/
https://github.com/tleonardi/nanocompore_paper_analyses/
https://paperpile.com/c/EUd1FU/AEh3i+bGNh5


Single molecule identification of m6A sites

To assign an m6A probability at A652, A1324 and A1535 for each read covering the β-actin
transcript, we developed a dedicated post-processing script available at
https://github.com/tleonardi/nanocompore_paper_analyses/m6acode/parse_sampcomdb.py.
Briefly, for each of the three positions of interest, we extract the GMM model saved in
sampCompDB, and for each read we then predict the probability that it belongs to each of the
two clusters. To define which of the two clusters corresponds to m6A modified reads, we
consider which of the two clusters has negative log odds of data points belonging to it in the KD
condition (i.e., we consider which of the two clusters shrinks in the KD condition). To test the
independence of the methylation events at these three sites, we performed a chi-squared test of
independence comparing the expected number of molecules for each of the 8 combinations of
modifications to the observed number of molecules. The results reported are obtained using a
probability threshold of 0.75 (as predicted by the GMM) to consider a read as methylated.
However, to ensure robustness of these results, the chi-squared test was repeated for all
thresholds between 0.1 and 1 (0.05 steps) and p-values were adjusted accordingly using the
Benjamini–Hochberg procedure. Adjusted p-values were >0.39 for all thresholds used.

7SK structures

The 7SK multiple alignments and consensus secondary structure were obtained from Rfam
(RF00100). Secondary structure plots were produced with R2R49,59 and a custom python script to
annotate p-values as color shading (available at
https://github.com/tleonardi/nanocompore_paper_analyses/blob/master/ncRNAs_structures/creat
e_annotations.py)

miCLIP analysis
miCLIP data and corresponding input data was analysed using the iMaps web server
(https://imaps.genialis.com/). Briefly, raw reads were demultiplexed and trimmed (for adaptors
and quality), before being mapped to a tRNA and rRNA index using STAR (v2.4.0.1)60.
Unmapped reads were then mapped to GRCh38 GENCODE primary assembly, using
GENCODE annotation v30. STAR parameter --alignEndsType Extend5pOfRead1 was used to
ensure no soft clipping of cDNA start sites. PCR duplicates were removed based on unique
molecular identifier (UMI) and mapping position. cDNA start -1 positions were taken as
crosslink sites. Significant Nanocompore clusters were determined by merging overlapping
kmers with a GMM_logit_contex_2 p-value < 0.001 using bedtools merge (v2.28.0). Control
sites were selected as those with a context 2 p-value of 1 and split into those that did or did not
contain DRACH within a 100nt window around the center of the cluster. Due to large differences
in library size, miCLIP crosslinks were first filtered to remove intergenic and ncRNA sites and
then subsampled using GNU coreutils shuf, to generate libraries equal in size to the smallest
library, totalling 47,012 crosslinks. Crosslink counts were divided by gene TPMs calculated from
either WT or KO mock miCLIP samples. BigWig files were generated from the normalised
bedgraphs, which were used as the input to deepTools61 (v3.3.0) computeMatrix and
plotHeatmap to generate metaprofiles -1000 to +1000bp around the center of Nanocompore

https://github.com/tleonardi/nanocompore_paper_analyses/m6acode/parse_sampcomdb.py
https://paperpile.com/c/EUd1FU/pNYE4+zZ9OB
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clusters with a bin size of 2bp. The resulting tabular output was further analysed in R. Shaded
regions on the plot represent the mean +/- the standard deviation at each position in the profile
(WT miCLIP n=4, KO n=2). Both the mean and bounds were smoothed using loess regression
with a span of 0.6. In order to test for a significant difference between WT and KO profile, mean
values from WT and KO miCLIP between positions -20 to +20 around nanopore sites were
subjected to a Mann–Whitney U test.

Modification prediction Comparison with MetaCompore
In order to compare Nanocompore against most of the other tools available for RNA
modification detection in a reproducible way, we wrote a snakemake pipeline called
MetaCompore (https://github.com/a-slide/MetaCompore). For this study, we used MetaCompore
v0.1.2, which includes the latest version of following tools : Epinano 1.2.0, Eligos 2.0.0, Tombo
1.5.1, differr_nanopore_drs (latest version), Mines (latest version) and Nanocompore 1.0.3.
MetaCompore preprocess the data for all the tools, including Basecalling with ONT-Guppy 4.2.2
(except for Epinano which required the older 3.1.5 version), read alignment to the reference
transcriptome with Minimap2 2.17, alignments filtering with pyBiotools 0.2.7 and signal
realignment with f5c 0.6. For portability and reproducibility reasons, every module of
MetaCompore is provided within its own singularity container and all the options used for a run
are tracked in a YAML configuration file. Nanocompore and Epinano are the only tools to
support experimental replicates. For all the other tools we merged the data obtained from
replicates. Since every tool outputs a different kind of statistics/format, MetaCompore filters the
data following the respective authors recommendations and when possible converts the result in
a similar format containing the significant site associated with their pValue and Effect size. For
Nanocompore and Tombo which both work in signal space, we added a peak calling denoising
step to narrow down the results.

For the comparison in this paper we used a Yeast SK1 dataset comparing 2 replicates of WT
yeast against 2 replicates of an IME4 KO mutant (m6A writer in Yeast). We used the Yeast SK1
reference transcriptome (https://www.yeastgenome.org/strain/SK1). Prior to modification
detection, we ran an optional pipeline step to filter out any reference transcript with less than 30
reads in all replicates. The command line options used for all the tools are available in the
MetaCompore configuration file provided as supplementary material.

Benchmarks of MetaCompore results against known yeast m6A sites
We compiled an orthogonal reference set of m6A sites from SK1 yeast by taking m6A-Seq sites
from Schwartz et al.30 and MAZTER-seq sites from Garcia-Campos et al.29. The sites and
surrounding sequence were mapped to the MvO SK1 genome fasta to obtain the equivalent
genomic coordinates. ACA sites annotated with MAZTER-seq confidence group > 1 or
supported by m6A-Seq were taken as single nucleotide positions. Non-ACA sites were taken
from m6A-Seq. If an m6A-Seq window overlapped with one or more single nucleotide sites it
was removed from the reference set. In total this produced a set of 882 single nucleotide
positions, and 415 80nt windows, amounting to 1297 reference m6A positions.

https://github.com/a-slide/MetaCompore
https://github.com/enovoa/EpiNano/tree/Epinano1.2.0
https://gitlab.com/piroonj/eligos2/-/tree/master
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https://github.com/nanoporetech/tombo/tree/1.5.1
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https://github.com/YeoLab/MINES
https://github.com/tleonardi/nanocompore/tree/v1.0.3
https://github.com/lh3/minimap2/tree/v2.17
https://github.com/a-slide/pyBioTools/tree/0.2.7
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The comparison of each method in MetaCompore with this orthogonal reference dataset was
based on our S. cerevisiae DRS data and limited to transcripts with a coverage of at least 30
reads. The calculations of the TPR/FPR/F1 score/Precision of each method was done at a p-value
threshold of 0.01. For each method we constructed a confusion matrix using the following
criteria:

● True Positives: the number of ground-truth m6A sites overlapping at least one significant
kmer according to the given method. The True Positive Rate was further defined as the
number of True Positives divided by the total number of m6A sites in the ground-truth
set.

● True Negatives: the number of not significant DRACH kmers in the transcriptome
(limited to transcripts presented in the DRS dataset)

● False Positives: the number of significant kmers that do not overlap a ground-truth m6A
site. The False Positive Rate was further defined as the number of False Positives divided
by the sum of False Positives and True Negatives.

● False Negatives: the number of ground-truth m6A sites not overlapped by any significant
kmer

For the purposes of the calculations above, we used the results tables produced by each method
(prior to Metacompore postfiltering) and applied the following criteria to consider a kmer as
significant:

Eligos2: reported p-value<=0.01 and odds ratio>1.2 (as recommended by the authors)

Diff_err: reported p-value<0.01 (diff_err results are already filtered by p-value and G-test)

MINES: all sites (MINES only reports significant sites)

Epinano: sites classified as modified (modification probability >0.5)

Tombo: reported p-value<0.01 after Benjamini-Hochberg adjustment

Nanocompore: reported p-value<0.01 and GMM log odds ratio>0.5 (for GMM method only)

For the benchmarks above, the single nucleotide sites identified by each method were extended
to 10nt prior to overlapping them with the ground-truth set.

Data availability
The direct RNA and miCLIP datasets data generated in this study have been deposited in the
European Nucleotide Archive database under accession codes PRJEB44511 and PRJEB35148.

Code availability
The computational methods and custom scripts used for this paper are available in the following
Github repository: https://github.com/tleonardi/nanocompore_paper_analyses. The code of the

https://www.ebi.ac.uk/ena/browser/view/PRJEB44511
https://www.ebi.ac.uk/ena/browser/view/PRJEB35148
https://github.com/tleonardi/nanocompore_paper_analyses


Metacompore pipeline is available in the following Github repository:
https://github.com/a-slide/MetaCompore
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Figure Legends
Figure 1) Overview of data preparation and Nanocompore steps. A: Raw fast5 reads from 2
conditions are basecalled with Guppy, filtered with Samtools and the signal is then resquiggled
with Nanopolish eventalign. The output of Nanopolish is then collapsed and indexed at the kmer
level by NanopolishComp Eventalign_collapse. B: Nanocompore aggregates median intensity
and dwell time at transcript position level. The data is compared in a pairwise fashion position
per position using univariate tests (KS, MW,  t-tests) and/or a bivariate GMM classification
method. The p-values are corrected for multiple tests and these data are saved in a database for
further analyses. The signal graph is as an illustration not representative of all possible kmers.

Figure 2) Nanocompore benchmarks with synthetic modified oligonucleotides. A:
Nanocompore p-values (GMM logit method, y-axis) reported at each position (x-axis) along
three oligonucleotides of 100nt carrying multiple modifications at defined positions. Oligo1:
three m6A sites in different sequence contexts; Oligo2: I, m5C and Ψ; Oligo3: m6,2A, m1G and
2’-OMeA Kmers shown in blue represent the peaks identified through Nanocompore’s peak
calling procedure. Shaded areas contain the 5 consecutive kmers that contain each modification.
Each oligonucleotide was sequenced in a separate flowcell, producing on average 648,543.5
reads after quality filtering. The dotted horizontal lines correspond to a p-value of 0.01. B:
Nanocompore ROC curves for m6A detection (Oligo1) at varying levels of coverage and using
different statistical tests (GMM logit test, KS test on intensity or KS test on dwell time). C: F1
score for m6A detection (Oligo1) with the GMM logit test, KS test on intensity or KS test on
dwell time at varying levels of coverage. Nominal p-value threshold of 0.05. D,E: True Positive



(D) and False Positive (E) rates for m6A detection (Oligo1). The values reported are the means
of n=100 artificial samples generated as described (see Materials and Methods). The error bars
show the 95% confidence interval. TPR and FPR were calculated at a nominal p-value threshold
of 0.05.

Figure 3: Nanocompore benchmarks with simulated modification stoichiometry and knock
down efficiency. A: Diagram illustrating the procedure used to generate in silico datasets at
varying levels of coverage, modification stoichiometry and knock down efficiency. B: Plots
showing the F1 score for m6A detection (Oligo1) with the various tests implemented in
Nanocompore at varying levels of 1) coverage (x-axis), 2) modification reduction in control
(columns) and 3) percentage of modified reads (rows). Nominal p-value threshold of 0.05.

Figure 4) m6A profiling in MOLM13 cells. A: Sharkfin plot showing the absolute value of the
Nanocompore logistic regression log odd ratio (GMM logit method with context 2, x-axis)
plotted against its p-value (-log10, y-axis, see Material and Methods). Each point represents a
specific kmer of a transcript. Red points are DRACH kmers. B: Metagene plot showing the
distribution of significant m6A sites identified by Nanocompore (blue) and miCLIP (red). C:
Genome browser screenshot showing METTL3-dependent m6A sites in the ACTB transcript.
The p-value track reports the Nanocompore GMM+Logistic regression method (see Material and
Methods). D-F: As in C but showing the three most significant β-actin sites at higher
magnification. The sequence reported at the bottom corresponds to the RNA sequence in the 3’
to 5’ orientation, as the ACTB transcript is encoded on the minus strand. The m6A consensus
GGACU sequences are highlighted in red. G: Sylamer plot showing kmer enrichment in
Nanocompore significant sites. The x-axis reports all Nanocompore sites with p-value<0.5
ranked from the most to the least significant. The y-axis reports the uncorrected Sylamer
hypergeometric p-value of enrichment (one-sided test) of a certain motif in the first x
Nanocompore sites vs the rest. The vertical dotted line delineates Nanocompore sites with
p-value<0.01 (to the left of the line). The red line corresponds to the combined p-value (Fisher’s
method) of all DRACH kmers. H: m6A miCLIP coverage of clusters of significant
Nanocompore sites (GMM logit (context 2) p-value<0.01). The y-axis shows the mean
input-normalised miCLIP counts across sites. Shaded regions on the plot represent the mean +/-
the standard deviation at each position in the profile (WT miCLIP n=4, KO n=2). Both the mean
and bounds were smoothed using loess regression with a span of 0.6. The difference between
WT and KO in the windows 0+/-20nt is statistically significant (p-value=7.90x10-11,
Mann-Whitney test). I: Plot showing the fraction of Nanocompore significant peaks supported
by a varying number of miCLIP reads (x-axis) in WT MOLM13 cells.

Figure 5) Single molecule identification of m6A sites. A: Heatmap organised by hierarchical
clustering showing the probability of A652, A1324 and A1535 in the β-actin gene to be modified
in the WT and METTL3 KD samples. Each column corresponds to a single molecule. B: Scatter
plot with overlaid kernel density estimates showing the scaled median intensity vs the scaled
log10 dwell time for each read covering A652, A1324 and A1535. Data points are color coded



according to the probability that the read belongs to the cluster of m6A modified reads. For
visualisation purposes the x- and y- axis were limited to the +/-3 range. C: Density plot showing
the distribution of modification probability for A652, A1324 and A1535 of β-actin in WT (blue)
and KD (red). D: Bar chart showing the number of molecules identified in each of the 8 possible
m6A configurations for the A652, A1324 and A1535 sites of β-actin. Each site was considered
modified if the modification probability was >0.75. The shaded blue areas indicate the expected
number of molecules in each given configuration under the null hypothesis of independence of
the three modifications.

Figure 6) m6A identification in 7SK RNA. A: On the left, the secondary structure of 7SK
showing positions of known protein binding sites and structural conservation. On the right, the
secondary structure of 7SK with the Nanocompore p-value (METTL3-KD vs WT, GMM-logit
test) overlaid as a color scale. For each nucleotide the color indicates the lowest p-value among
those of the 5 kmers that overlap it. Only p-values<0.01 are shown in color. B: m6A profile of
7SK, showing the Nanocompore GMM-logit p-value (y axis, -log10) across the transcript
length. C: Scatter plot showing the scaled median intensity vs the scaled log10 dwell time for
each read covering kmer 41 of 7SK. Each point shows data for a distinct read color coded
according to the sample. The contour lines show the kernel density estimates for the two
samples. For visualisation purposes the x- and y- axis are truncated at -4 and +3 respectively.
D: Violin plots showing the distributions of median intensity (top) and scaled log10 dwell time
(bottom) for the Hexim1 binding sites and neighbouring kmers.  All coordinates refer to the first
nucleotide of each kmer relative to ENST00000636484. The cross mark indicates the intensity
and dwell time value of the kmer according to the unmodified model. E: m6A RIP-qPCR results
in three non-overlapping regions of 7SK in WT and METTL3 KD MOLM13 cells. Bars show
the mean of 6 independent experiments. Vertical bars show the standard error of the mean. The
p-values were calculated using a one-sided Welch’s t-test. Full uncropped scans of Western Blots
confirming METTL3 KD are shown in Figure S14.


