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Abstract
Introduction As the demand for rehabilitation in orthopaedics increases, so too has the development in advanced rehabilitation
technology. However, to date, there are no review papers outlining the broad scope of advanced rehabilitation technology used
within the orthopaedic population. The aim of this study is to identify, describe and summarise the evidence for efficacy for all
advanced rehabilitation technologies applicable to orthopaedic practice.
Methods The relevant literature describing the use of advanced rehabilitation technology in orthopaedics was identified from
appropriate electronic databases (PubMed and EMBASE) and a narrative review undertaken.
Results Advanced rehabilitation technologies were classified into two groups: hospital-based and home-based rehabilitation. In
the hospital-based technology group, we describe the use of continuous passive motion and robotic devices (after spinal cord
injury) and their effect on improving clinical outcomes. We also report on the use of electromagnetic sensor technology for
measuring kinematics of upper and lower limbs during rehabilitation. In the home-based technology group, we describe the use
of inertial sensors, smartphones, software applications and commercial game hardware that are relatively inexpensive, user-
friendly and widely available. We outline the evidence for videoconferencing for promoting knowledge and motivation for
rehabilitation as well as the emerging role of virtual reality.
Conclusions The use of advanced rehabilitation technology in orthopaedics is promising and evidence for its efficacy is generally
supportive.
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Introduction

With an ageing population, the number of patients affected by
orthopaedic conditions that either require rehabilitation alone
or surgical intervention and subsequent rehabilitation are on
the rise [1, 2]. As the demand for rehabilitation increases,
advanced rehabilitation technology has also developed, but
its role and efficacy are not always appreciated by surgeons

or therapists. Rehabilitation in orthopaedics often aims to im-
prove range of motion (ROM) and muscle strength around
joints. Devices with sensors [3] or robotic technology [4] that
enable quantitative measurements of these parameters in three
dimensions have been designed and applied in the clinical
setting. Feedback and patient self-monitoring have been
strongly associated with improved outcomes [5], and these
technologies make monitoring and feedback more accessible.

Some advanced rehabilitation technology is bulky, costly
and complex and mainly useful for rehabilitation in hospital.
However, rehabilitation after many surgical interventions
takes place in a patient’s own home [6]. Adherence to home
musculoskeletal rehabilitation protocols has been shown to be
poor with some studies reporting rate of non-compliance to be
50–65% [7]. With the accessibility of high-speed Internet,
teleconferencing has been made possible [8] improving con-
tact in orthopaedic rehabilitation and potentially improving
compliance. The use of gaming consoles and other widely
available gaming hardware [9] to interact with patients may
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also improve compliance. In addition, use of this technology
may aid therapists to diagnose, treat, and monitor patients’
progress remotely. The therapist may then ensure correct per-
formance of exercises and increase motivation resulting in
improved patient adherence [10]. Use of advanced rehabilita-
tion technology in this way enhances home-based rehabilita-
tion and may be a time and cost-efficient alternative to con-
ventional clinical or home-based face-to-face sessions.

Although there has been growing interest in the use
of advanced rehabilitation technologies in orthopaedics,
an initial scoping review of the literature failed to iden-
tify a paper offering a broad overview of this technolo-
gy used within an orthopaedic population. Therefore,
the purpose of this narrative review is to explore the
broad variety of technologies that are currently being
used in orthopaedic rehabilitation and determine the ex-
tent to which these technologies can support and com-
plement traditional services such as physiotherapy.

Materials and methods

A literature search of journal articles using the PubMed
(MEDLINE) and EMBASE databases was conducted in
September 2019. No date restrictions were placed. Relevant
literature describing rehabilitation technology utilized in or-
thopaedics was identified from the above appropriate clinical
databases and a narrative review was undertaken.

Rehabilitation technology

This review paper considers advanced rehabilitation tech-
nology into two sections: hospital-based rehabilitation and

home-based rehabilitation (see Table 1 for summary). It
describes each advanced technology and details the cur-
rent evidence for its use.

Hospital rehabilitation

Continuous passive motion (CPM)

The use of CPM in orthopaedic rehabilitation has been around
for two decades and is most commonly reported following
total knee replacement (TKR) and has been primarily advo-
cated to improve knee flexion recovery [11, 12]. Naylor et al.
reported that greater knee ROM at discharge after TKR was a
significant predictor of improved ROM after rehabilitation
[13]. A recent meta-analysis provided statistically significant,
moderate evidence, indicating that CPM reduced pain, re-
stored knee ROM and enhanced functional recovery after
TKR regardless of follow-up duration [14]. It has been sug-
gested that CPM leads to positive biological effects on tissue
healing, oedema and haemarthrosis [11, 15]. CPM is widely
used in hospitals in the post-operative period allowing thera-
pists to streamline their workload and improve their capacity
to see other patients [6]. CPM has also been used for the
rehabilitation of other knee conditions such as ligament recon-
struction surgery in both adults [16] and children [17]. CPM is
also being trialled for the treatment of other joints, such as the
elbow [18] and shoulder [19], but so far, no advantage to CPM
has been definitively reported. Smart, user-friendly program-
mable machines are becoming the norm [20].

Electromagnetic sensors

The electromagnetic tracking system (ETS) is a six degrees-
of-freedom measuring device that simultaneously records the

Table 1 Summary of advanced
rehabilitative technologies. TKR,
total knee replacement; 3D, 3-
dimensional; ROM, range of
movement

Primary location of
use

Technology Features

Hospital-based
technologies

Continuous passive motion Well established after TKR. Has also been
tried in the home setting.

Robotic devices Support body weight, particularly after
spinal cord injury.

Electromagnetic sensors Measures 3D kinematics, but cumbersome
outside the gait lab.

Home-based
technologies

Inertial sensors Collect 3D motion data. Inexpensive and
portable.

Software applications Can be used on a smartphone or tablet.
Used for measurement of movement and
patient feedback.

Commercial gaming
technology

Detects subtle changes in balance, co-ordination
and ROM during functional activities.

Videoconferencing Allows remote diagnosis, treatment and
monitoring.
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three-dimensional (3D) position and orientation of multiple
electromagnetic sensors attached to body segments using a
transmitter [3, 21, 22]. The reliability of ETS for measuring
kinematics (e.g. ROM) of the upper and lower limbs has been
reported [3, 22]. Nakagawa et al. demonstrated that it can be
used to accurately evaluate 3D kinematics such as single leg
squat and stepping [21]. The ETSmay also be used tomeasure
kinematic changes in a patient over time, which is useful for
assessment of rehabilitation interventions. The disadvantage
of ETS is that it is cumbersome and unable to be easily used
outside of a laboratory or clinical-based setting. Recently,
however, a more clinically friendly device that measures knee
kinematics using only two electromagnetic sensors (on the
thigh and shank) has been reported [23, 24]. This compact
ETS also enables quantitative evaluation of the pivot shift test
pre- and post-anterior cruciate ligament (ACL) reconstruction.

Robotic devices

Rehabilitation in patients with spinal cord injury (SCI), who
have reduced or absent sensorial input and motor output, is
challenging [25]. Particularly, the support of the patient’s
body weight during rehabilitation leads to physical exhaustion
of the therapist [26]. To overcome this, robotic supportive
devices have been developed that may reduce the physical
demands on the therapist [26, 27]. Several studies have dem-
onstrated that robotic-assisted gait training in SCI patients
promotes body compensation and neuroplasticity, leading to
improvements in cardiorespiratory, urinary, musculoskeletal,
neuronal and somatosensory systems [28–32]. A systematic
review evaluating robotic assisted gait for SCI also showed
similar results [26].

Recently, portable robots such as the ARGO (ARGO
Xtreme Terrain Robotics, ON, Canada), EKSO (EKSO
Bionics, CA, USA), Indego (Parker Hannifin Corp., OH,
USA), ReWalk (ReWalk Robotics, Inc., MA, USA) and
WPAL (Fujita Health University, Aichi, Japan) have also
been developed, and can perform gait training not only in-
doors but also outdoors. Hybrid Assistive Limb (HAL;
University of Tsukuba, Ibaraki, Japan) has a hybrid system
allowing both a voluntary and an autonomous mode of action
to support gait training. HAL uses control algorithms and
supporting devices that control each knee and hip separately.
A systematic review reported that although HAL had benefi-
cial effects on gait, function and independence in walking, no
study provided conclusive data on differences between HAL
gait-training compared to the other forms of gait-training [33].
On the other hand, Cheung et al. performed a meta-analysis of
randomised controlled trials (RCTs) or quasi-RCTs that com-
pared robotic-assisted lower limb training to a control of other
treatment approaches or no treatment in SCI patients [4]. They
concluded that the robotic-assisted training group showed

better improvement in walking independence and endurance
than other training methods.

The effect of robotic devices on upper limb rehabilitation in
SCI patients is less established. Zarffa et al. reported no dif-
ference in the improvement in functional scores for patients
receiving Armeo Spring® (Hocoma AG, Switzerland) train-
ing on one arm compared to the arm that did not have robotic-
assisted rehabilitation, both at discharge and follow-up assess-
ment [34]. To date, only a few studies have evaluated the
effects of upper limb robot training after SCI and the evidence
for their use is not robust. However, the use of upper extremity
robotic rehabilitation devices in persons with SCI has gained
increasing research interest, with aims to achieve enhanced
functional ability via promotion of neuroplasticity [35].

Koller-Hodac et al. introduced a robot-assisted knee device
that can be used at home to acquire a full ROM and joint
flexibility after knee surgery [1]. A narrative review by
Sicuri et al. suggested that it was reasonable to consider ro-
botic rehabilitation of the shoulder for instability, stiffness,
joint replacement, rotator cuff tear or other tendon ruptures
[36]. A single-joint training robot, NeXOS (The Nexus
Project, University of Abertay Dundee, UK; Bradley et al.
[37]) was designed as a prototype to aid individualised lower
limb rehabilitation, allowing progression from passive mo-
tion, through to active-assisted and on to resistance training.
The automated system was also designed to record the pa-
tient’s movement, enabling the therapist to comprehensively
analyse the effectiveness of exercises and adjust these as re-
quired for optimal joint recovery. Various other single joint
training robots have been designed [38], but there are few
clinical outcome studies to guide specific recommendations
for their use in the clinical setting.

Robotic devices face a number of challenges including the
pressure of the suit in certain areas, skin irritation, training-
related pain, excessive energy consumption due to device use
and high costs [26, 33]. Using robotic devices for rehabilita-
tion after SCI may improve motor learning and promote
neuroplasticity, possibly reducing secondary complications.
This is a very active area of research and development, and
it is likely that we will continue to see rapid growth in this
field.

Home-based rehabilitation

Inertial sensors

Inertial sensors such as accelerometers, magnetometers and
gyroscopes collect 3D motion data, which they communicate
to a computer for analysis by accompanying software. This
allows them to be used to accurately measure and assess the
movement of a patient’s joint during a variety of functional
exercises [39]. Saber-Sheikh et al. compared an inertial sensor
system (utilising a combination of accelerometers,
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magnetometers and gyroscopes) to an ETS system to deter-
mine their relative abilities to evaluate functional activities
such as walking [40]. The accuracy of the two methods were
comparable. However, the inertial sensor system had the ad-
vantage that it was relatively inexpensive, portable and user-
friendly. The inertial sensor system can feasibly be used in a
patient’s home or workplace, rather than its use being con-
fined to the laboratory or clinical environment. Kumar et al.
demonstrated comparable ROM measurements between a
wireless wearable automated inertial sensory system and tra-
ditional goniometry [41]. They proposed that the measure-
ments recorded by the sensor system were more reliable, as
they were not subject to the variability or subjectivity of prac-
titioner’s use of the goniometer. The combination of both
symptomatic and asymptomatic participants and variety of
upper and lower extremity applications of the inertial sensors
in their series demonstrates that inertial sensor technology is
an effective method of quantifying dynamic ROM. However,
Tulipani et al. suggested that the inertial sensor system
overestimated lumbar flexion compared to the motion camera
system [42]. This loss of accuracy may be due factors such as
position of sensor placement, reliability of skin attachment or
an interaction effect with the sensors. This underlines the im-
portance of standardisation of sensor placement with reliable
skin attachment skills together with improved inertial sensor
algorithms to optimise the accuracy of the system. The studies
cited above show that inertial sensors are useful to assess the
impact of treatment modalities, but do not demonstrate their
use which delivers improved outcomes.

Application software (Apps)

There are many medical Apps available, with some offering
knowledge of medical conditions, anatomy, drug information
or other treatments [43]. The reliability and validity of
Smartphone Apps for measuring ROM or position sense in
different joints has been explored in several studies including
the cervical spine [44], lumbar spine [45], shoulder [46], el-
bow [47], knee [48] and ankle [49]. In addition to static ROM
evaluation, smartphone-based accelerometers have been
deemed to be an equally valid way of measuring dynamic
knee ROM compared with a laboratory-based isokinetic dy-
namometer [50]. Hoshino et al. created an iPad (Apple Inc.,
Cupertino, CA) App that can process video images and pro-
vide data on the translation of the lateral compartment of knee
in almost real time [51]. They demonstrated the potential of
this App to classify the pivot shift in ACL-deficient patients
[51, 52]. Matera et al. combined the accelerometer with
smartphone global positioning system (GPS) to create an
App that is able to detect, measure and record essential move-
ments of the hand and wrist [43] that can automatically be sent
to a medical professional at the end of a therapy session.
Twenty participants underwent a four week wrist motion

rehabilitation using this App after wrist surgery, which includ-
ed plate fixation of distal radius fractures and arthroscopic
repairs of triangular fibrocartilage complex. They demonstrat-
ed significantly improved ROM in every plane of wrist
motion.

Apps are also useful for patient feedback. One technology
that provides real-time feedback is a sensor called
BandCizerTM (BandCizer Aps, Odense, Denmark) for elastic
band exercises. It can quantify contraction time, the number of
repetitions performed and the force used to stretch the elastic
band by measuring the thickness of the band [53].
BandCizerTM can send data to an iPad, and the
BandCizerTM App provides users with real-time feedback on
exercises [53, 54]. Rathleff et al. reported that 40 adolescents
with patellofemoral pain were randomized to treatment with
real-time BandCizerTM-iPad feedback on contraction time or
not. The App significantly improved compliance to the reha-
bilitation [55]. As elastic exercise bands are a versatile tool
used for a range of upper and lower extremity exercises,
BandCizerTM application could be utilised across multiple
areas of orthopaedic physiotherapy rehabilitation [56].

However, Stove et al. emphasised that subtle variations
exist in the quality of measurements depending on the
smartphone manufacturer and also that updates of application
software complicate the validity of the findings and may lead
to inconsistencies in the assessment of measurement such as
ROM [50]. Therefore, before clinical utilisation, the accuracy
of each application needs to be evaluated and this should be
repeated each time the software is updated.

Videoconferencing

Videoconferencing (VC) has the potential to play an impor-
tant role in the management of orthopaedic patients. VC could
allow therapists to diagnose, treat and monitor patients’ prog-
ress remotely as telerehabilitation in orthopaedic setting.

Eriksson et al. investigated patients’ experiences of partic-
ipating in therapy via VC at home for 2 months after shoulder
joint replacement [10]. This study reported that the access to
the guided exercises via VC and the immediate feedback from
the physiotherapist led to better knowledge about the body
and the surgery, and also improved motivation for daily exer-
cises. Furthermore, patients saw their therapist as expert and
problem-solver in the first phase after the surgery allowing
them to transition from being dependent and passive, to being
independent and active whilst remaining at home.

Tousignant et al. reported on satisfaction with VC for pa-
tients following a RCT post TKR [8]. Although high satisfac-
tion rates were noted with the technology, no significant dif-
ference was observed when VC was compared to traditional
face-to-face rehabilitation. The same research group conduct-
ed semi-structured interviews about patients’ perceptions re-
garding telerehabilitation services [2] and reported that
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patients were satisfied with most of the aspects of their expe-
rience including access to services, their relationship with their
therapist, the exercises program, the technology and the sup-
port provided by the technical team.

VC promotes the relationship between patients and thera-
pists, knowledge and motivation for rehabilitation, and may
reduce costs [57]. However, a recent systematic review con-
cluded that although VC may be acceptable to patients, the
day to day workability of VC in clinical practice from a clini-
cian perspective is not always practical [58].

Commercial gaming technology

Commercially available gaming systems (CAGS) can detect
subtle changes in balance, coordination, strength and ROM of
a joint during functional activities [59]. CAGS may serve as a
relatively inexpensive and clinician-friendly tool to assess ob-
jective functional measurements of patients. CAGS have been
reported to promote motivation for therapeutic activities [60]
and are an enjoyable method of encouraging physical exercise
[61]. The most commonly described CAGS in the rehabilita-
tion setting are the Nintendo Wii with Balance Board (WBB)
(Nintendo, Kyoto, Japan) and theMicrosoft Xbox with Kinect
(Microsoft, Redmond, WA, USA). They utilise several differ-
ent technologies including integrated accelerometers, infrared
detection and movement tracking. Users can access a number
of software applications for balance and motion training. The
CAGS can also be used to assess postural control and general
quality of motion while performing various movement tasks
[59]. These devices have the advantage of being marker-less
and portable, able to be used in the outpatient clinic, rehabil-
itation room and at home [62]. CAGS can use therapeutic
training protocols that track a patient’s progress, reporting
on objective functional measures during rehabilitation stages.

Many studies have shown Microsoft Xbox with Kinect to
have an excellent correlation and reliability when compared to
a gold-standard motion detection system such as the Vicon
MZ motion analysis system (Kverneland Group UK Ltd, St
Helens , UK) [63, 64]. However, the Kinect accuracy is re-
ported to be dependent on movement and user position: e.g.,
the accuracy decreases when the user is sitting [65]. Wochatz
et al. evaluated the reliability and validity of the Kinect in
lower extremity rehabilitation exercises and reported that the
variability was acceptable for joint angles and joint position
during the squat, but not during the lunge [62]. Furthermore,
there are problems reported with the accuracy of hand tracking
[66]. Notwithstanding these limitations, a systematic review
of motor rehabilitation using Kinect demonstrated improve-
ments in clinical outcomes such as balance, posture, sensory
information and ROM [66].

Yamada et al. reported that the score of Wii Fit (Nintendo,
Kyoto, Japan) and Basic Step game correlated with Dual Task
Lag of Timed Up-and-Go in older women, which

demonstrated association with a real-life outcome [67]. A
RCT study showed that Nintendo Wii Fit program versus
the conventional rehabilitation after ACL reconstruction had
comparable result for knee strength, balance, proprioception,
coordination and response time at 8 and 12 weeks [68]. In
another RCT study on TKR patients, the rehabilitation using
Wii Fit achieved the same ROM, balance and function as the
conventional exercise at discharge [9].

CAGS have the potential to make an important contribu-
tion in orthopaedic rehabilitation but their role in this context
is still in development. Whilst most studies are favourable,
some studies have not shown the effectiveness of CAGSwhen
compared to the gold standard [69]. Strong conclusions re-
garding the reliability and validity of CAGS in the orthopaedic
setting cannot be made at this stage [59].

The future

Many advanced rehabilitation technologies relevant to ortho-
paedics are still in development. Virtual reality (VR) technol-
ogy, which includes an interactive computer environment or
games that appear and feel real may also have a role. In phys-
ical rehabilitation, VR can be used to personalise treatment,
motivate patients, improve compliance and track progress.
Currently, there is a lack of strong evidence to support its
use. Clinical trials have assessed VR effectiveness in patients
with orthopaedic pathology such as ACL injury, frozen shoul-
der and chronic neck pain. Most of them used off-the-shelf
console games such as NintendoWii Fit, making it difficult to
differentiate from rehabilitation using CAGS [70].

Electromyography (EMG) muscle stimulation devices
have shown significant improvements in outcome for patients
after TKR [71]. Currently, compact and wireless EMG stim-
ulation devices such as Myo-Ex (Biometrics Ltd., Newport,
UK) can be used and have shown rehabilitation benefits in
stroke patients [72].

To date, a number of protocol papers for advance rehabil-
itation technology RCTs have been published in the orthopae-
dic field [73–75]. As these studies mature, they will provide
the high-level evidence needed, when deciding which of these
technologies will be useful in the clinical setting.

Conclusion

This narrative literature review describes the variety of ad-
vanced rehabilitation technologies that are currently used in
orthopaedics. It outlines the evidence for the extent to which
these technologies can support and complement traditional
therapy.

Hospital-based technology, such as robotic devices, is
widely used mainly in SCI, and it is expected that they will
be utilised for other conditions in the future. The reliability of
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ETS for measuring kinematics of upper and lower limbs has
been reported, but the challenge is to develop compact and
user-friendly devices. Unlike hospital-based advanced reha-
bilitation technology, home-based technologies such as iner-
tial sensor, application, and CAGC are relatively inexpensive
and user-friendly, making themmore accessible. A number of
these modalities have been shown to be effective measure-
ment tools in orthopaedics through accurate quantification of
patient physical activities such as dynamic ROM and function.
VC, a method of telerehabilitation, is acceptable to most pa-
tients, and it promotes the patient-therapist relationship and
the patient’s knowledge and motivation for rehabilitation.

The use of advanced rehabilitation technology in orthopae-
dics shows a lot of promise, particularly to support and com-
plement traditional rehabilitation services, and its use is
gaining in popularity. These technologies are dependent on
the device accuracy and reliability. There remains a paucity
of high-level published evidence as to efficacy. Further re-
search is needed to determine the usability, cost-
effectiveness and efficacy of advanced rehabilitation technol-
ogy in high-quality randomised cohorts of orthopaedic
patients.
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