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ABSTRACT   

Higher-order modes are controllably excited in water-filled kagomè-, bandgap-style, and simplified hollow-core photonic 
crystal fibers (HC-PCF). A spatial light modulator is used to create amplitude and phase distributions that closely match 
those of the fiber modes, resulting in typical launch efficiencies of 10–20% into the liquid-filled core. Modes, excited 
across the visible wavelength range, closely resemble those observed in air-filled kagomè HC-PCF and match numerical 
simulations. These results provide a framework for spatially-resolved sensing in HC-PCF microreactors and fiber-based 
optical manipulation.  
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1. INTRODUCTION  
The controlled excitation of higher-order fiber modes has become an essential part in photonics research with a range of 
interdisciplinary applications. For example, spatial light modulator (SLM)-based wavefront shaping techniques [1] have 
enabled the controlled excitation of coherent mode superpositions in multimode fibers [2], with novel applications in 
lensless endoscopic imaging [2]-[4] and fiber-based optical trapping [5]. In fiber communication systems, mode-division 
multiplexing has been used to improve data transfer rates [6]-[9]. 

All this previous work aims to control the light field at the end-face of glass-core fibers. In hollow waveguides, on the 
other hand, well-defined modal intensity distributions can be used to study light-matter interactions within the core. In 
particular, hollow-core photonic crystal fiber (HC-PCF) has enabled the stable and low-loss transmission of modes along 
microchannels [10]. The main classes of HC-PCF include bandgap-type HC-PCFs, in which a narrow transmission 
window is supported by the formation of photonic bandgaps in the microstructured cladding, and kagomé- and simplified 
HC-PCFs [11], whose broadband guidance mechanism relies on anti-resonant reflection. It has previously been shown 
that spatial light modulators (SLM) can be used to dynamically change between different modes in air-filled hollow-core 
photonic crystal fibers (HC-PCFs) [12], with applications in optical trapping [13], Raman amplification [14], telecoms 
[15], and quantum optics [16].    
 
Here we extend this work to liquid-filled HC-PCFs, where guidance properties are preserved by infiltrating both the core 
and cladding channels [17]-[18]. Control over modal fields within these optofluidic waveguides would enable new fiber-
based sensing and optical manipulation approaches. 
  



2. EXPERIMENTAL SETUP 
We employ a method based on a spatial light modulation scheme recently presented by Flamm et al. [18]  to controllably 
excite higher order modes into the liquid-filled hollow-core photonic crystal fibers (HC-PCFs). This is achieved by creating 
an intensity and phase distribution [20] that matches the HC-PCF mode and projecting it onto the fiber’s end face. In 
Section A of Figure 2, light from a supercontinuum laser (NKT SuperK Compact, 450–2400 nm) is passed through a 
variable bandpass filter (NKT SuperK Varia, 400–840 nm), expanded and linearly polarized. A 30 cm long HC-PCF is 
mounted between two custom-made pressure cells (PCs), that are fitted with sapphire windows allowing for unobstructed 
optical access (Section C). A phase-only SLM (Meadowlark P512-480-850-DVI-C512x512) with broadband mirror 
coating shapes the beam and projects it in a 4-f configuration onto the fiber (Section B). Cam 2 measures the back-reflected 
light to help with the alignment process. With a microscope objective the transmitted mode is imaged onto Cam 3 (Section 
C). Cam1, in Section D, is used to verify the SLM generated intensity profiles, see examples in Figure 3. 

 

 
Figure 1. Setup schematic. Section A: filtering, expansion, and polarization of the input beam. Section B: modulation 
by phase-only SLM and projection onto the input-face of an HC-PCF. Section C: imaging of the end-face of the liquid- 
filled HC-PCF, enclosed by two pressure cells (PC). Section D: verification of the intensity distribution projected onto 
the HC-PCF. BE, beam expander; BS, beam splitter; Cam, camera; FM, flip mirror; Apert., aperture; P, polarizer; W, 
waste. Figure reproduced from [21]. 

  



 

3. MODE EXCITATION 

Efficient mode excitation was achieved with Laguerre-Gaussian beams (LG p
(ℓ)). The electric field distribution in the focus 

of an LG beam is given by [22]: 
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where ℓ and p denote the azimuthal and radial order of the modes respectively, 𝐿𝐿p
(|ℓ|) are the generalized Laguerre 

polynomials, 𝑟𝑟 and 𝜙𝜙 are polar coordinates in the focal plane and 𝑤𝑤 is the beam waist. To excite a specific mode, pairs of 
LG beams with an appropriate relative phase were chosen. For example, the predicted LP 31 mode (Fig. 2a) is well 
approximated by a superposition of LG 0

(3) and LG 0
(−3) beams (Fig. 2b). Mode-excitation experiments were performed in 

three different water-filled HC-PCFs including the bandgap HC-PCF, the kagomé HC-PCF, and the simplified HC-PCF. 
Figure 3 shows the measured intensity distribution of an LP11 mode excitation in each one of these fibers. Additional 
excited modes and a more detailed analysis can be found in [21]. 

 

 
Figure 2. Mode excitation example: (a) Simulated intensity profile of a LP31 core mode in the kagomé PCF. (b) Measured 

intensity of an LG
(3) 

+ LG
(−3) 

beam profile. (c) Measured intensity profile of the excited LP31 fiber mode. Radial- (d) 
and azimuthal (e) sections along the dashed curves in (a–c). Figure reproduced from [21]. 

 



 
Figure 3. Mode excitation in fibre: Measured intensity profile of a LP11 core mode (d)-(f) in the photonic bandgap HC-
PCF, kagomé HC-PCF and simplified HC-PCF (a)-(c).  

 

4. CONCLUSION AND OUTLOOK 
We demonstrate a spatial light modulation setup that can be used to efficiently excite higher-order modes in liquid-filled 
HC-PCFs. The setup was tested on three different types of water-filled HC-PCFs (bandgap, kagomé, and simplified). 
While the observed modes were relatively pure and launch efficiencies high (10–20%), further improvements could be 
made by correcting for aberrations in the optical system and using a more robust hologram optimization routine.  

The results provide a framework for new spatially-resolved sensing and optical manipulation experiments in liquid-filled 
hollow-core PCF. Measurements using different spatial modes would enable the probing of chemicals at varying distances 
from the core wall and thus provide a direct measurement of surface effects and microscale diffusive transport, both of 
which are rate-limiting factors in HC-PCF microreactors [23] and flow-chemistry in general. In optical manipulation 
studies, superpositions of higher-order modes can be used to create reconfigurable 3-D intensity patterns within the hollow 
core [13] that could be used to trap, transport, and separate micro- and nanoparticles along the fluid channel. 
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