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We probe the superconducting gap in the zero-temperature ground state of an attractively interacting spin-
imbalanced two-dimensional Fermi gas with diffusion Monte Carlo simulations. A condensate fraction at
nonzero pair momentum evinces a spatially nonuniform superconducting order parameter. Comparison with
exact diagonalization studies confirms that the nonzero condensate fraction across a range of nonzero fermion
pair momenta is consistent with nonexclusive pairing between majority and minority fermions, an extension
beyond Fulde-Ferrell-Larkin-Ovchinnikov theory.

DOI: 10.1103/PhysRevA.100.063602

I. INTRODUCTION

One of the successes of condensed-matter physics is
the description of the phenomenon of superconductivity by
Bardeen, Cooper, and Schrieffer (BCS) [1] which described
Cooper pair (an up and down-spin fermion) formation close
to the Fermi surface in a many-body context. While only
applicable for a certain class of systems, specifically those
with an equal number of spin-up and spin-down fermions,
BCS theory well describes many superconducting materials
ancient [2,3] and modern [4,5], and so naturally numerous
extensions have been proposed and considered.

For example, for systems under the influence of a strong
magnetic field, a partial alignment of the fermion spins leads
to a population imbalance and a shift in the sizes of the Fermi
surfaces. While in the BCS theory such a strong magnetic
field would suppress superconductivity entirely [1], numerous
proposals and extensions have arisen since then that might
allow for such exotic pairing. For example, the minority-spin
species could pay the kinetic energy cost to promote fermions
up to the Fermi level of the majority species, breaching the
so-called Chandrasekhar-Clogston limit [6,7], also referred
to as the Pauli limit. Alternatively, pairing might form at
the minority species Fermi level, leaving the fermions of the
majority species above unpaired as in breached superconduc-
tivity [8–10]. Yet another possibility was proposed by Fulde
and Ferrell (FF) [11] and Larkin and Ovchinnikov (LO) [12]
where fermions remain at their respective Fermi levels and
then pair from opposite sides, resulting in a Cooper pair with
net momentum. The superconducting gap then oscillates at the
concomitant wave vector with the FF phase having a single
wave vector and the LO phase having two equal but opposite
wave vectors.

Recent work extended the idea of pairing at nonzero net
momentum further with the introduction of the communal
pairing state [13,14] where the superconducting gap has
peaks at multiple nonzero momenta. The key distinction be-
tween communal pairing theory and the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) family of pair density wave theories is

that communal pairing theory by construction heavily features
nonexclusive pairing between fermions at the Fermi surfaces
of the minority and majority spin-species. This allows all of
the fermions to participate in pairing, reducing the overall
energy of the system through the contribution of correlation
energy, compared with FFLO where pairing is one-to-one
so not all the fermions on the majority spin-species are
involved, presenting an opportunity to variationally include
additional fermion states. Therefore, the optimal ratio of
majority- to minority-spin fermions in the communal pairing
phase is naturally predicted to be the ratio of the densities
of states in momentum space at the Fermi surface, N↑/N↓ =
ν↑/ν↓ [14].

While the formulation of BCS theory was preceded by
the experimental observations of Onnes in 1911 [15,16],
observation of spatially nonuniform pairing superconducting
states in spin-imbalanced systems remains an experimental
challenge despite considerable effort across a wide range
of physical systems, including heavy fermion systems [17],
iron-based superconductors [18–21], asymmetric d-wave su-
perfluids [22], layered organic superconductors [23–26], lay-
ered superconductor-ferromagnet hybrid structures [27], qua-
sicrystals [28], and ultracold atomic gases [29,30].

Organic superconductors in particular have been a key
system of interest, emerging as the leading candidate for ob-
servation of spatially modulated superconductivity owing to
their crystals growing relatively cleanly and thus granting the
superconducting pairs a long mean free path compared with
their coherence length [31], their high degree of customiz-
ability by attaching various functional groups in addition to
doping, and their inherently quasi-two-dimensional structure,
because low dimensionality is expected to enhance FFLO
physics [32]. However, recent experimental developments in
the field of ultracold atomic gases [33] promise new routes to
the realization of and deep insight into the spatially nonuni-
form pairing state, with the technique already being used to
probe Fermi gases with and without a strong spin imbalance
[34,35]. The precise level of control and ability to impose spin
imbalance without an applied magnetic field that may disrupt
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superconductivity make ultracold atomic gases particularly
attractive systems.

Another recent material that shows potential is the lan-
thanum superhydrides [36], conventional superconductors
with high critical temperature and thus high critical field
which may support superconducting states even with a spin
imbalance and thereby manifest spatially nonuniform pairing.
Beyond terrestrial experiments, theories of more exotic matter
such as neutron superfluids in the crust of magnetars [37]
and quark matter [38] also support the existence of super-
conducting states with spatially nonuniform pairing, and in-
deed the high-energy physics and quantum chromodynamics
communities have long known of and been searching for such
states [39].

Furthermore, the ongoing increase in computing speed and
power has made it possible to simulate many-body quantum
systems, affording us a fresh avenue of investigation into
the pairing structure of these exotic systems. In the present
study we focus exclusively on two-dimensional systems as
low dimensionality is thought to enhance the stability of
FFLO-like phases [40–42] and is the lowest dimension in
which states different from FFLO but with a space varying
gap parameter are predicted [13].

Diffusion Monte Carlo (DMC) simulations offer a fast
method to study spin-imbalanced fermion gases [43–45]. It
is exact except for a fixed node approximation and so includes
all orders of correlators and loop diagrams. Furthermore,
the temperature of the system can be kept constant, even at
absolute zero, and so the fermion spins can be prevented
from relaxing. Using this technique, we investigate fermion
pairing at nonzero pair momenta, demonstrating a spatially
nonuniform superconductor. Furthermore, the distribution of
the condensate fraction in momentum space is similar to that
predicted by communal pairing theory [14] and markedly
different from that predicted by FFLO theory. This provides
evidence that nonexclusive pairing is the ground state of the
spin-imbalanced superconductor.

In the next section we introduce the Hamiltonian for the
problem and summarize the numerical methods employed
for this study; namely, variational Monte Carlo (VMC) and
DMC. Results obtained for both the spin-balanced and spin-
imbalanced cases are then presented in Sec. III, followed by
a discussion of the effects of changing various simulation
parameters. Conclusions are presented in Sec. IV.

II. QUANTUM MONTE CARLO

We use the CASINO code [46] to perform our quantum
Monte Carlo study of the Hamiltonian

H =
∑

i

∇2
i

2
+

∑

i, j

V (ri − r j ), (1)

where i and j index the fermions, ri is the position vector of
fermion i, and V is the interaction potential. The fermions are
of equal mass and we work in a combination of natural and
Hartree units so h̄ = c = e = m = 1.

A. Pseudopotential

We use an ultratransferable pseudopotential (UTP) [47], a
continuous, differentiable, piecewise defined polynomial that

can be optimized to match the scattering phase shift of a
known target potential over a range of incident momenta. The
UTP is defined such that it is nonzero for distances less than
a cutoff length Lc and zero beyond. Lc thus controls the extent
of the potential in real space and in the Appendix is chosen
to be equal to rs, the average interparticle separation and the
typical length scale above which a fermion could erroneously
feel a potential from two other fermions simultaneously. The
scattering length was chosen to be such that the superconduct-
ing coherence length was less than the simulation cell size and
the effective range was fixed at zero.

B. Trial wave function

We follow after previous work [43] and employ a Slater-
Jastrow trial wave function of the form �T = e−J det[φ(si, j )].
The determinant ensures the correct fermionic spin symme-
try. The pairing orbital φ(si, j ) comprises plane-wave and
polynomial expansions in the fermion separations si, j . The
plane-wave part of the pairing wave function equals the exact
Hartree-Fock ground-state wave function for the noninteract-
ing fermion gas, and in the presence of attractive interactions,
the polynomial component of the pairing orbital can shift the
nodal surface to smoothly transform to a superconducting
wave function. To capture additional fermion correlations,
we include the Jastrow factor J which is a function of all
opposite-spin fermion separations comprising a short-range
isotropic u term, anisotropic p terms [48], and a ν term [49]
that reflects the simulation cell symmetry.

C. Monte Carlo and expectation values

VMC is used to optimize the trial wave function by finding
the minimum energy with respect to its variational parameters.
The trial wave function optimized by VMC was the starting
point for DMC [46,50,51], which treats the Schrödinger equa-
tion as a diffusion equation in imaginary time and evolves the
wave function to project out our best estimate of the ground
state [52].

We probe the superconducting state by measuring the ex-
pectation values of the momentum density and the condensate
fraction. The momentum density is the Fourier transform
of the one-body density matrix and is defined as nk,σ ≡
〈c†

k,σ ck,σ 〉. The condensate fraction is a modified form of
the two-body density matrix and is defined explicitly as
fq ≡ ∑

k(〈c†
k,↑c†

q−k,↓cq−k,↓ck,↑〉 − nk,↑nq−k,↓). For the BCS

wave function, it evaluates to fq = δq,0
|�|
8π

(tan−1 μ

|�| + π
2 ) →

δq,0
|�|
8 for μ 	 |�|, providing an estimate of the supercon-

ducting gap |�|.

D. Simulation setup and convergence

With the simulation methodology in place, the final step is
to set up the system. The major considerations are the size
and shape of the simulation cell that could lead to finite-
size errors. Discussion of other simulation parameters includ-
ing scattering length, pseudopotential cutoff length, DMC
time step, and number of DMC walkers is deferred to the
Appendix.
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FIG. 1. Plot of condensate fraction in pair-momentum space for
the spin-balanced case with 37 fermions of each species. The wave
vectors are scaled in units of the reciprocal-lattice vector G and black
lines denote the q-space grid.

We employed two forms of simulation cell; a rhomboidal
and square box, giving triangular and square tilings, respec-
tively, in momentum space. Both geometries gave quanti-
tatively similar results. A triangular lattice has the densest
possible tiling of momentum points in two dimensions (2D),
giving the closest to circular Fermi surfaces and thereby
minimizing finite-size effects [53,54]. This was confirmed
by varying the number of particles simulated in our DMC
studies varied from 26 to 164, which compares favorably with
DMC studies conducted on other systems [45,55]. Finally,
in the noninteracting and balanced system limits the results
obtained compared favorably to known analytical results in
the thermodynamic limit. Therefore, in these paradigmatic
systems our simulations were free of finite-size effects.

III. RESULTS

A. Spin-balanced BCS state

We start from the well-established spin-balanced BCS
system to confirm the accuracy of our simulations, and later
explore imbalance. To build our investigation from a solid
platform, we first study a spin-balanced system with 37 spin-
up and spin-down fermions. We select a scattering length
a = 5.6rs and effective range re = 0 to ensure that the su-
perconducting coherence length is less than the size of the
simulation cell.

The accumulated condensate fraction is shown in Fig. 1.
The condensate fraction at q = 0 was eight sample standard
deviations above zero while those at every other q point were
within two sample standard deviations of zero. The reduc-
tion in energy of the interacting system compared with the
noninteracting system meanwhile was 0.54EF, which agrees
with that obtained from analytic calculation [56,57] and other
numerical studies [58]. The results obtained for the spin-
balanced case are therefore in line with theoretical expecta-
tions of BCS theory [1] and we proceed with confidence in
the veracity of the simulations.
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FIG. 2. Momentum density n of the majority up (red) and mi-
nority down (blue) spin-species on the triangular lattice. The vertical
dashed lines indicate the respective Fermi momenta and the horizon-
tal black dashed line denotes n = 1. The finite slope at the Fermi
momenta are due to the finite resolution of the momentum space
lattice.

We note for completeness that the condensate fraction was
also gathered for pairs of the same spin species to confirm the
presence or absence of induced p-wave superfluidity [59]. The
values of the intraspin condensate fraction were more than
10 orders of magnitude smaller than those for the interspin
condensate fraction and were indistinguishable from zero at
all pair momenta for both the spin-balanced case presented
above and the spin-imbalanced cases discussed below.

B. Spin-imbalanced superconducting state

Having confirmed the accuracy of DMC simulations in
the spin-balanced case, we now turn to the simplest class of
spin-imbalanced systems with a 2 : 1 ratio of states on the
Fermi surfaces, and so communal pairing theory predicts a
(N↑, N↓) = (2, 1) communal pairing instability while FFLO
theory predicts pairs with nonzero net momentum. We con-
duct our study on the triangular lattice with 61 spin-up and 19
spin-down fermions, and on the square lattice with 25 spin-up
and 9 spin-down fermions. On both lattices we use a = 6.0rs

and re = 0.

1. Momentum density

We first examine the momentum density, with the results
on the triangular lattice in Fig. 2. Both spin-species have mo-
mentum density close to unity beneath their respective Fermi
momenta and close to zero above. A breached superfluid
[8–10] would have the majority species exhibit depletion at
the minority species Fermi momentum and a system crossing
the Chandrasekhar-Clogston limit [6,7] would have finite
momentum density of the minority species at the majority
species Fermi momentum, so it is clear that the system has not
relaxed into either of those possible states. Knowing this, we
can now move on to study the emergence of superconductivity
by examining the condensate fraction.

2. Condensate fraction

The condensate fraction for the spin-imbalanced system
with 61 majority and 19 minority species fermions is shown
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FIG. 3. Contour plot of the condensate fraction in momentum
space for the spin-imbalanced case with 61 and 19 fermions of the
majority and minority species respectively on the triangular lattice
and 25 and 9 on the square lattice. (a) Triangular lattice, (b) Square
lattice.

in Fig. 3(a). Six major peaks in the condensate fraction are
visible at the points 2G units away from the origin, where
G is the magnitude of the reciprocal-lattice vector. This is
an observation in a first-principles simulation of pairing at
finite momentum in two or more dimensions and so could
be numerical evidence of a FFLO or other exotic spatially
modulated pairing phase, but not the BCS phase. The result
is qualitatively consistent with the spatially modulated pairing
phase observed in experimental [30] and numerical studies of
one-dimensional systems [60], and with few-particle studies
[13,61]. We therefore now proceed to characterize the pairing
to understand the correlations in the ground state.

The condensate fraction exhibits the sixfold rotational
symmetry of the underlying momentum space lattice, in
agreement with low-temperature studies of spin-imbalanced
pairing [62,63] that predicts an increase in the number of
pairing momenta, q, in the ground state. However, a key
characteristic of the DMC results in Fig. 3(a) is that they show
statistically significant pairing at several momenta, q < 4G,
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FIG. 4. Plot of normalized condensate fraction fnorm for states
composed of pairs near the respective Fermi surfaces obtained by
using DMC (red) and predicted by using exact diagonalization
assuming (N↑, N↓) = (2, 1) (blue), (N↑, N↓) = (3, 1) (green), and
normal FFLO pairing with (N↑, N↓) = (1, 1) (gray) against the angle
of the pair-momentum vector. Inset shows a a copy of Fig. 3(a) with
the bright-green curve indicating the displayed states of the plot.

that are not at the optimal magnitude predicted by FFLO
theory, and decays radially. This is a significant departure
because the family of FFLO theories [11,12,62,63] predicts a
single optimal magnitude of pairing momenta and zero pairing
amplitude otherwise.

Similar results are seen in Fig. 3(b) where 25 majority
and 9 minority fermions have been placed in a square lattice.
The condensate fraction reflects the rotational symmetry of
the underlying momentum space lattice, a feature shared with
crystalline FFLO theories [62] and is nonzero beyond that
of the optimal pairing momenta predicted by FFLO theory.
While nonzero pairing at nonoptimal q is not present in FFLO
theory or any of its derivatives, it is however consistent with
communal pairing [14].

3. Characterization of the communal state

The condensate fraction indicates that the superconducting
correlations are consistent with communal pairing. To probe
the nature and number of fermions in the communal pairing
state, we follow the prescription of Ref. [13] and perform
exact diagonalization focusing on (N↑, N↓) = (2, 1) or (3,1)
fermions in a subset of the momentum states used in the DMC
study, specifically those at the Fermi surfaces of the respective
spin-species, and calculate the condensate fraction averaged
across pair momenta of fixed q as a function of q. The strength
of the contact interaction for the exact diagonalization study
was chosen to match that used in the DMC study. Results
are shown in Fig. 4 in the azimuthal direction and in Fig. 5
radially, along with the averaged results obtained by using
DMC.

The red curve in Fig. 4 shows the condensate fraction
obtained from DMC at the values of pair momentum indicated
by the bright green line in the inset. These values were chosen
as they are those which involve pairing of fermions at or near
their respective Fermi momenta. The red curve in Fig. 5 shows
the angle-averaged condensate fraction obtained from DMC,
where the average is taken over all pair momenta of equal
magnitude.
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FIG. 5. Plot of normalized condensate fraction fnorm obtained by
using DMC averaged over q (red) and condensate fraction predicted
by using exact diagonalization of the states beneath the respective
Fermi surfaces assuming (N↑, N↓) = (2, 1) (blue), (N↑, N↓) = (3, 1)
(green), and normal FFLO pairing with (N↑, N↓) = (1, 1) (gray)
against q. The dashed black line marks q = qFFLO, the optimal
magnitude of the pairing momentum as predicted by FFLO theory
and the only point on the FFLO curve where fnorm 
= 0.

The gray lines show the condensate fraction obtained when
only one up- and one down-spin fermion is allowed, as in the
family of FFLO theories. FF theory predicts a single peak at
a particular q [11], LO theory predicts two peaks at q and −q
[12], and crystalline FFLO theory predicts multiple peaks for
all |q| = qFFLO [62,63]. Our results confirm that having prese-
lected for a single up- and down-spin fermion, the crystalline
FFLO ground state is the most stable out of these, in line with
previous results [62,63], with the condensate fraction equally
shared by all symmetry-related pair-momentum vectors at this
magnitude, as seen in Fig. 4. In the specific system studied
here, qFFLO = 2G, as seen in Fig. 5. To make a fair compar-
ison between the DMC and exact diagonalization results, we
have normalized the condensate fraction obtained from exact
diagonalization so that the weighted squared deviation from
the DMC results is minimized.

If communal pairing is considered instead, the results
obtained from exact diagonalization of both (N↑, N↓) = (2, 1)
and (3,1) are quantitatively similar to those obtained from
DMC, with both sets of results exhibiting three key features.
First and foremost, both have a nonzero condensate fraction
at many values of q including q = 0, an essential feature of
communal pairing theory that is in contrast with the predic-
tions of FFLO theory. This is a direct consequence of con-
sidering nonexclusive communal pairing. Second, both DMC
and communal pairing have a global maximum at q = qFFLO
because this corresponds to the paired fermions being at their
respective Fermi levels and thereby minimizing their kinetic
energy. Finally, both DMC and communal pairing curves
exhibit a decay in the condensate fraction for q > qFFLO which
is due to the increasing kinetic energy cost of the fermion
pairs.

The quality of agreement between the communal pairing
exact diagonalization results and the DMC data can be quan-
tified by the ratio of the weighted sum of squared deviations
of the DMC results from either set of exact results in Fig. 4
(azimuthal) or Fig. 5 (radial), where the weights are the

sample variances of the DMC data. This test statistic shows
that the DMC results obtained are 27 times better described by
an underlying (N↑, N↓) = (3, 1) communal state and 38 times
better described by an underlying (N↑, N↓) = (2, 1) commu-
nal state than by FFLO pairing. This provides strong evidence
that the state observed in DMC is not only communal, but has
the appropriate values of (N↑, N↓) = (2, 1).

Similar results were obtained on performing exact diago-
nalization at the Fermi surface of the system with 25 and 9
fermions on the square lattice; FFLO theory predicts a four-
fold degenerate peak at qFFLO = √

2G and zero condensate
fraction otherwise, while the communal exact diagonalization
results for (N↑, N↓) = (2, 1) and (3,1) exhibited nonzero con-
densate over a range of momenta with a global maximum
at qFFLO. The test statistics obtained repeats the conclusion
that the system is best described by a communal state with
(N↑, N↓) = (2, 1).

The mismatch between the DMC and communal exact
diagonalization results, particularly at q = 0, may be due to a
number of factors. First, exact diagonalization only accounts
for a subset of the allowed momentum states without consid-
ering states above the Fermi surfaces and, second, that exact
diagonalization was carried out for only two (FFLO), three, or
four (communal) particles in total.

4. Changing spin imbalance

Following on from our analysis of the 61 up-spin and 19
down-spin system, we now study two examples of greater
spin-imbalance on the triangular lattice shown in Fig. 6. 37
majority and 7 minority fermions were used to create a 3 : 1
ratio at the Fermi surfaces with a = 5.6 and re = 0. Peaks
are clearly structured in a ring between q = √

3G and q =
2G at 10 sample standard deviations above zero. Similarly,
61 majority and 7 minority fermions were used to create a
4 : 1 ratio at the Fermi surfaces with a = 6.3 and re = 0,
and the condensate fraction once again forms a ring structure
peaked from q = √

7G to q = √
12G at 7 sample standard

deviations above zero. Pairing FFLO peaks cannot be seen,
and a BCS peak is even more strongly suppressed than in
the 2 : 1 imbalanced case. These systems both provide further
strong evidence of a spatially modulated superconducting
order parameter that is of the communal pairing rather than
FFLO phase. A similar characterization exercise to that de-
scribed above with comparison to exact diagonalization was
conducted on both systems and the communal state indices
determined. The system with a 3 : 1 ratio is most closely
described by a (N↑, N↓) = (3, 1) state and that with a 4 : 1
ratio by a (N↑, N↓) = (4, 1) state.

5. Relationship between N↑/N↓ and ν↑/ν↓

We have shown the results from four exemplar systems in
detail to demonstrate the emergence of spatially modulated
pairing and provided evidence that the form of the spatial
modulation observed is characteristic of communal pairing.
The analysis was also repeated for 14 systems with other
Fermi-surface ratios, for both the triangular and square lattices
and at different system sizes, and the results analyzed to
ascertain the communal state indices, N↑ and N↓. A summary
of the 18 sets of results obtained is shown in Fig. 7.
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FIG. 6. Condensate fraction in momentum space for different
ratios of majority to minority species fermions at the Fermi surfaces.
37 majority and 7 minority fermions create a 3 : 1 spin imbalance at
the Fermi surfaces and 61 majority and 7 minority fermions create a
4 : 1 spin imbalance.

The relationship between the ratio of communal state in-
dices N↑/N↓ and Fermi-surface density of states ratios ν↑/ν↓
is well described by the line N↑/N↓ = ν↑/ν↓, providing strong
evidence for the communal pairing [13,14] over FFLO. The
relationship is particularly strong when the ratio can be written
containing small integers [13] to minimize the product N↑N↓,
mitigating the energy penalty for states with high N↑N↓ [14].
The correlation coefficient between the gathered data and the
line N↑/N↓ = ν↑/ν↓ is R2 = 0.95.

IV. CONCLUSIONS

We have observed a spatially modulated superconducting
state using DMC. Furthermore, the state is qualitatively dif-
ferent from a FFLO state [11,12], having condensate frac-
tion peaks at multiple momenta, as opposed to the single
peak expected for FFLO. Exact diagonalization studies
provide corroborating evidence that the distribution of
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FIG. 7. Summary plot of the ratio of communal state indices
N↑/N↓ to the ratio of densities of states at the respective Fermi
surfaces, ν↑/ν↓. The red triangles indicate data taken on triangular
momentum-space lattices and the blue squares indicate data taken
on square momentum-space lattices. The bracketed number pairs
indicate particle numbers for selected systems, with the color cor-
responding to the respective lattice types. The line N↑/N↓ = ν↑/ν↓ is
in green.

condensate fraction with momenta is more indicative of com-
munal superconductivity [13,14] than traditional FFLO or
crystalline FFLO superconductivity [62,63]. We have con-
firmed convergence of the state with respect to choices of
system size, scattering length, pseudopotential cutoff length,
DMC time step, and DMC walker population.

This numerical evidence that builds on previous analytical
work [13,14] provides an interesting challenge for experi-
ments to observe the communal state in physical systems. In
real space the superconducting order parameter will exhibit
a beat pattern due to the interference between similar q
vectors, which could allow the identification of the particular
q vectors in the superconductor. The order parameter and its
spread in momentum could be determined in an ultracold
atomic gas experiment through density-density correlations
measured from time-of-flight experiments [64]. In contrast,
FFLO and crystalline FFLO theories predict sharp peaks in
the condensate fraction, as in spin-balanced BCS theory, at
fixed magnitude of the pairing momenta.

Additionally, because the communal number pair (N↑, N↓)
is a function of the spin imbalance, multiple phase transitions
through several superconducting phases should be observed
as the imbalance is increased. Each transition is expected
to be second order, so the communal superconducting phase
would be characterized by a series of singularities in the heat
capacity and the compressibility, which should be directly ob-
servable in ultracold atomic gases [65] as the spin-imbalance
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is changed. No such phase transitions are expected for the
FFLO phase at fixed temperature.

An orthogonal line of questioning that may be of concern in
real experiments is on the possible effects a nonzero effective
range might have on the obtained results. Previous work [66]
suggests that the obtained energy differences from the nonin-
teracting state should increase towards zero, the condensate
fraction should be constant over a wide range of scattering
lengths, and the momentum density should become more
sharply step-like.

Finally, the match with exact-diagonalization studies pro-
vides evidence that the elementary excitations above the pro-
posed ground state are well described by the few-fermion
analysis [13]. This should have novel consequences, espe-
cially concerning Andreev reflection experiments because the
strong correlations between a group of fermions held in a
communal state should result in multiple retroreflected holes
for a single incident fermion, in sharp contrast with the single
hole per fermion expected in normal FFLO theory.

Data used for this paper are available online [67].
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APPENDIX: SIMULATION PARAMETERS

It is of essential importance in any numerical study that
the underlying distribution sampled from is well behaved
to ensure the applicability of statistical measures such as
sample variance. Here, histograms of the accumulated energy
values from up to 107 samples did not reveal any evidence
of non-normal behavior and so the sample error is taken
to be a good estimate of the true statistical error. We now
explore the robustness of our conclusions against the choice
of simulation parameters, specifically the scattering length,
the pseudopotential cutoff length, the DMC time step, and the
number of DMC walkers. The system was selected to have 61
majority- and 19 minority-spin fermions.

(a) Scattering length. The condensate fraction was found
to be robust against large variation of the scattering length
and therefore of the interaction strength, with the ratio of the
condensate fraction held in the peaks of a given q to that of
the total condensate fraction summed over all q, fc, holding
roughly constant, despite the raw values of the condensate
fraction getting larger at higher interaction strengths. This is
shown in Fig. 8, where the constant fc indicates that the region
of stability for the states of finite q in 2D is much wider than
corresponding region in the three-dimensional (3D) phase
diagram [68,69].

(b) Pseudopotential cutoff length. The effect of altering
the cutoff length Lc of the UTP on the DMC energy was
investigated, with the results shown in Fig. 9. In contrast
with theoretical predictions, the DMC energy EDMC is shown
to vary considerably with Lc, with high EDMC at low Lc

and vice versa, with an intermediate plateau. All data were
gathered with a trial wave function that had the same number
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FIG. 8. Fraction of total condensate fraction fc contained in
the communal state (blue) and BCS (red) peaks against inverse
interaction strength ln kFã.

of variational parameters in the pairing orbital and the Jastrow
factor, optimized for the specific potentials, with all other
simulation parameters constant.

The high EDMC values obtained for low Lc are primarily
due to poor fit of wave function; because a low Lc leads to
a deep and rapidly varying UTP over a smaller region of
space, the trial wave function should also include higher-order
terms to reflect the rapid variation of the UTP. Limiting the
number of variational parameters in order to make the results
more easily comparable thus leads to a poorer fit of the
wave function as Lc decreases, resulting in the ground state
not being adequately projected by DMC and increasing the
energy. In addition, the deep, rapidly varying UTP results in
a greater spread of values for the local energy, leading to a
higher sample variance. For Lc = 0.125rs (not in figure), the
variation in local energies was wild enough that it eventually
led to extinction of all walkers through the DMC branching
factor, and as such no data could be gathered under the
simulation parameters selected for all other values of Lc.

The low EDMC values obtained for high Lc, in contrast,
are due to higher-order interactions beyond pairing, because
the UTP now extends over a large-enough region that the
formation of larger correlated structures is possible. These
higher-order interactions further decrease the energy and in-
dicate a breakdown of the UTP’s ability to emulate a contact
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FIG. 9. Graph of DMC energy EDMC against cutoff length Lc of
the pseudopotential. The energy is shown to vary considerably with
cutoff length.
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FIG. 10. Graph of DMC energy EDMC against DMC time step τ .
Raw data is presented in red with a best fit line for the linear regime
in dashed blue.

interaction, which should only result in pair point interactions
for a reasonable fermion density.

It is desirable to have an easily optimized wave function
with a low variance and no evidence of three-body effects.
Therefore, an intermediate value of Lc = rs was chosen for all
other tests and simulations.

(c) DMC time step. The DMC algorithm is only exact in
the limit of zero time step τ . However, the computational
effort required to achieve a given error bar scales as 1/τ ,
so it is not feasible to simply use infinitesimally small time
steps. For sufficiently small τ , the DMC energy varies linearly
with the time step, EDMC(τ ) = E0 + κτ where E0 is the
true ground-state energy. Hence, if the linear regime can be
identified, it is possible to extrapolate the DMC results down
to zero time step, and efficient algorithms have been proposed
for this [70–72].

We follow the algorithm in Ref. [71] to extrapolate to zero
time step by using the results shown in Fig. 10. Taking the
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FIG. 11. Graph of DMC energy EDMC against the Log of the
number of DMC walkers WDMC for a fixed product of the number
of walkers and number of steps, WDMCN = 2.5 × 107.

maximum time step of the linear regime to be τ2 = 0.20, we
set τ1 = τ2/4, and use a total number of steps T1 = 2.5 × 107

and T2 = T1/8 = 3.125 × 106, respectively, to obtain an en-
ergy of 0.48684(2).

(d) DMC walkers. The DMC algorithm makes use of
the drift-diffusion of a regulated number of walkers for a
specified amount of time to obtain expectation values of
physical observables. The total computation time T therefore
is a function of not only the time-averaged number of DMC
walkers, WDMC, but also of the number of time steps, N , as
T = WDMCN . The effect of varying WDMC while keeping T
constant was investigated and the results are shown in Fig. 11.
The DMC energy does not vary significantly even as WDMC

spans several orders of magnitude while the sample variance
decreases for WDMC > 2000. It is thus preferable to have
a high number of walkers propagated a few steps forward
in imaginary time than to have a small number of walkers
propagate for a long imaginary time.
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