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Long-ranged correlations in large deviations of local clustering
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In systems of diffusing particles, we investigate large deviations of a time-averaged measure of clustering
around one particle. We focus on biased ensembles of trajectories, which realize large-deviation events. The
bias acts on a single particle, but elicits a response that spans the whole system. We analyze this effect through
the lens of macroscopic fluctuation theory, focusing on the coupling of the bias to hydrodynamic modes. This
explains that the dynamical free energy has nontrivial scaling relationships with the system size, in 1 and 2
spatial dimensions. We show that the long-ranged response to a bias on one particle also has consequences when

biasing two particles.
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I. INTRODUCTION

Simple systems of interacting particles with diffusive dy-
namics exhibit a wealth of dynamical fluctuation behavior
[1-10]. Of particular interest are large deviations, which in-
volve long-lived fluctuations [11-13], and are often associated
with collective behavior [5,7-9,14—-18]. Large deviations play
an important role in statistical physics, as a way to analyze
the thermodynamic limit in equilibrium systems [11], and the
convergence of time averages (ergodicity) [11-13].

In the dynamical context, an important role is played by
biased ensembles of trajectories, which reveal the mechanism
by which large deviations occur. One introduces a conjugate
field for the time-averaged quantity of interest, and studies the
response to this field. Singular responses can be interpreted
as dynamical phase transitions, which can be associated with
spontaneous symmetry breaking [5,7,14,19] and/or long-
ranged correlations [9,17,20]. An important class of biased
ensembles applies to systems with diffusive dynamics, which
can be analyzed by macroscopic fluctuation theory (MFT) [3].
In these systems, the response is controlled by hydrodynamic
modes, which can result in universal predictions that depend
only on the diffusivity and mobility, independent of model
details [1-3,17,21,22].

Biased ensembles have also been analyzed for large devia-
tions of the dynamical activity, which is particularly relevant
in glassy systems [23-27] as well as in diffusive systems
[9,17,21]. In the glassy context, a bias to low activity is asso-
ciated with phase transitions into dynamically arrested states;
in diffusive systems one more often observes transitions into
inhomogeneous (or phase-separated) states [17,22]. These
previous works have considered the total dynamical activity
in large systems, obtained by summing over all particles (or
all sites on a lattice). In this work we consider large deviations
of an activitylike quantity that involves just one or two tagged
particles, in a large system. (Specifically, we consider a mea-
sure of local clustering in place of a single-particle activity,
the relation between these quantities is explained below). In
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the associated biased ensembles, the field only couples to the
tagged particle(s), leading to a localized bias. We find that the
response to this local bias is long ranged, and spans the whole
system.

This result may be unexpected, particularly if one invokes
the analogy between thermodynamic ensembles and ensem-
bles of dynamical trajectories [11,25,28,29], where one may
expect a localized response to local biasing fields. This work
explains that the reason for this counterintuitive result is
the coupling of the bias to hydrodynamic modes. We ana-
lyze this coupling using MFT arguments, which we compare
with numerical results obtained by transition path sampling
(TPS) [23,30]. Overall, these results further emphasize ear-
lier insights that systems with hydrodynamic modes have
characteristic responses in biased ensembles [3,12], which
may not be predicted based on analogies with thermody-
namic ensembles [13]. These effects are particularly strong
in low-dimensional systems, including d = 1 and d = 2. As
a particular example, we show here that applying a weak bias
to two tagged particles (in d = 1) can cause them to localize
near each other, even in a very large system.

To place our results in context, we recall some previ-
ous work on large deviations of single-particle quantities
[8,31-34]. In one dimension, exact results are available for
large displacements of single tracer particles, which cannot
overtake their neighbors because of the hard-core interaction
[8,31,32], and for how locally induced current affects a system
[35]. Hence a large displacement of one particle necessarily
involves a large displacement of its neighbors, leading to a
long-ranged coupling. By contrast, the fluctuations consid-
ered here do not require a large displacement of the tagged
particle, only that its local environment should be nontypical.
We expand further on this distinction in later sections. Results
for active systems [33,34] indicate that large deviations for
single particles are correlated with the behavior of nearby
particles, but the issue of long-ranged correlations has not
been discussed in detail. We show here that such correlations
play an important role in the large-deviation behavior.
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The paper is organized as follows. In Sec. II we introduce
the different models of Brownian particles, and we define our
measures of clustering and the associated biased ensembles.
In Sec. III we discuss the one-dimensional version of the
model, including the variance of the clustering and its large
deviations; we also compare the results with predictions from
MFT. In Sec. IV we investigate the effects of biasing two
particles at once. Section V discusses clustering around one
particle in two dimensions. Finally, in Sec. VI we discuss the
implications and conclude.

II. DEFINITIONS
A. Model

We consider models of interacting particles in d spatial
dimensions, specifically d =1 and d = 2. The number of
particles is N and the position vector of the ith particle is
X;, which lies within a periodic box of volume L4. The mean
density is
N
7k (D

The overdamped Langevin equation governing the movement
of particle i is

Lo =

x; = —BDoV;U + /2Dyn;, 2)

where 3, is a Brownian white noise, Dy is the (bare) diffusion
constant of these particles, B the inverse temperature, and U
the interaction energy, which is of the form

U= Y vlx;—xl). 3)

1< j<k<N

Here v(r) is a short-ranged interaction potential.
For d =1 we take a hard-core interaction such that the
particles have size /:

0, X > l(),
0o, x <ly.

v(x) = { “)
The consistency of this potential with (2) is ensured by using
a Monte Carlo (MC) dynamics to approximate the Langevin
dynamics [36], as in Ref. [17]. The maximal step size for the
trial MC moves is a. We take a < [y so particles cannot pass
each other, and it is consistent to order their positions such that
X] < X < ..., modulo periodic boundaries. It is also useful to
define a reduced system size

L. =L — NI (5)

and a corresponding set of positions ¥; = x; — jlo such that
X <X% < ... and every %; € [0, L;). The relation between
the reduced system and the original one is discussed in
Ref. [17], a useful feature of the reduced system is that the
Boltzmann distribution for its equilibrium state has particles
distributed as an ideal gas (as long as the labels j are ignored).

For d =2 we consider a Weeks-Chandler-Andersen
(WCA) potential [37] of strength ¢ and range /y:

12 _ 6 1/6
vm:{g’e[(zo/r) Wrflre r <2

In this case we integrate the equation of motion (2) using the
Euler-Maruyama method [38]. For both cases, the natural time

unit is the Brownian time
2
2Dy

We explain below (Sec. III A) that the behavior discussed
here depends weakly on the specific shape of the potential,
and similar results would be expected for any system with
sufficiently strong short-ranged repulsive forces. For numer-
ical work we set the unit of length by taking [y = 1, but
for theoretical analysis we retain this quantity as an explicit
parameter. Likewise we set 8 = 1 in numerical work.

N

B

B. Time-averaged clustering around a tagged particle

As anticipated above, we focus on rare events where a sin-
gle tagged particle behaves in a nontypical way. Specifically,
we define measurements of clustering, which depend on the
local environment of the tagged particle, and are sensitive to
whether the local density is higher or lower than the average.
Supposing that the tagged particle has index i, we denote the
local clustering at time ¢ by c¢;(¢). Specific expressions are
given in (10), (14) below.

Now define the observation time f,,s, and the time-
averaged measure of clustering as

1 Tobs
c[x] = —/ ci(t)dt, (8)
obs JO

where the notation [x] indicates that this quantity depends
on the trajectory followed by the stochastic dynamics, over
the time period [0, fops]. AS fops — 00, this (random) quantity
obeys a large deviation principle (LDP), which means its
probability density scales as

P(Cltops, L) ~ e ontl©)] )

where I; (¢) is the rate function. (Note, the limit 7o, — 00 iS
being taken at fixed system size L).

The rate function determines the probability of rare events
where c[x] is nontypical, which means that the tagged particle
is in a region where the density deviates significantly from its
average, over a long time period. Previous work has consid-
ered large deviations of the dynamical activity [9,17,39,40],
which are closely related to large deviations of c[x]. In par-
ticular, trajectories with high clustering have low dynamical
activity.

However, we emphasize that the clustering considered here
is a single-particle quantity, in contrast to previous work on
the total activity of the system [9,17,39].

1. Clustering in one dimension

The clustering for the 1d model is measured over a length
scale a that is of the same order as the particle size [.
In numerical work we take (a/ly) = 0.1. The clustering is
defined as

cit)y=1—rf (10)
where we note that a is a label (not an exponent), and
1 . .
r = Z[mm(a’ |x; — Xit1] = lo) + min(a, |x; — xi—1| — lp)]

(11)
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is the fraction of free (unoccupied) space in a region of size
2a, centered on the tagged particle. (The parameter a is the
same as the maximal MC step, so that r{ coincides with
the probability that a trial move for particle i is accepted,
this allows a connection between clustering and dynamical
activity, see Ref. [17]. The activity of particle i considered
in that work corresponds to 1 — ¢; in the current notation).
Following Ref. [17], the equilibrium average of ¢; is
_ —pa
coglpy = 247 LT (12)
pa

At low density pa < 1, the clustering c.q ~ pa/2 < 1. For
high density (p — oo) then ceq — 1, which is the maximal
possible value.

2. Clustering in two dimensions

To measure clustering in two dimensions, we first define a
measure of proximity between particles i and j as

1 /!
L IXi —x;| < 3
Oij=1Ix—x;l/ly, % <xi—x;|<ly (13)

0, Ix; —x;| > Ip.

Considering the particles as discs with diameter [y, this mea-
sures the extent to which two particles overlap each other, with
a cutoff value of % when they get very close.

Then the clustering for particle i is

=y 0. (14)
J(F#D)

(The sum runs over all particles j except j = i).

C. Biased ensembles

We investigate the rare (large-deviation) events associated
with the distribution (9) using biased ensembles of trajecto-
ries, defined according to standard methods [12,29,41]. For
the natural (unbiased) dynamics of the system, the average of
an observable quantity O is denoted by

(0) = [ Dx O[x]e S (15)

which is a path integral over all possible trajectories of the
system, whose probabilities are given by the action Sy[x],
which is defined as

_ (i + BDo ViU )?
Solx] = Z/O BT (16)

Now consider an ensemble in which the probability of tra-
jectory X is biased according to its clustering. The probability
density for this trajectory is

1 StobsC[X]
Pi[x] = fPO[X]e o, (17)

S

where P, is the unbiased probability and the normalization
constant is

Z; = ("), (18)

Note that the biased ensemble (17) is defined so that s > O cor-
responds to larger clustering. Since clustering is anticorrelated

with dynamical activity, this means that s > O corresponds to
reduced activity, similar to Refs. [9,17,23,25,39,40].

By analogy with (15), averages in the biased ensemble are
given by

1
(0); = / Dx O[x]e oI Fstanclx], (19)

Investigating such biased ensembles provides insight into
the rare fluctuations of the unbiased ensemble. One can invoke
an analogy between these biased ensembles and canonical
ensembles in statistical mechanics, see Refs. [11,42] for a
discussion. This motivates us to define the dynamical free
energy,

1
Yr(s) = lim — InZ;. (20)
Lobs =™ 0 Lo
The rate function of (9) can be obtained from the free energy
by Legendre transform I;,(c) = sup,[sc — ¥(s)]. The dynam-
ical analog of the thermodynamic (average) energy density is

1
()= lim — f Dx c[x]e SolxFtstonelx] =27
Tobs—> 00 ZS

which satisfies (c); = v, (s). The average is over trajectories
of fixed length £, so this quantity depends implicitly on 7,
as well as the parameters of the model. The dynamical analog
of the specific heat capacity is the asymptotic variance of the
clustering

xu(s) = lim it ((c?)s = (€)7), (22)
which satisfies xz(s) = v (s). For future reference it is useful
to define the finite-time analog of this quantity

XL (S, Tobs) = Lobs () — (€)3). (23)

D. Biased ensembles in the thermodynamic limit:
Long-ranged correlations and hydrodynamics

The LDP (9) describes the probabilities of rare events in
the limit #,ps — 00. The rate function for this LDP depends on
the system size L. Our focus will be on the nature of these rare
events for large systems, that is L — oo with a fixed (overall)
density pg.

Recall that the clustering c¢; in (8) only depends on a single
particle and its local environment. In this case, one might
expect that the fluctuations of this particle are independent
of the system size, in which case there would be a nontrivial
limiting rate function I, (c) = lim;_,  I1.(c).

This paper shows that this (very natural) expectation is
wrong for the systems under consideration, and we argue
that this feature is rather general. Instead, the large-deviation
events associated with (9) depend significantly on the system
size and involve correlations of the tagged particle with all the
other particles in the system. In terms of the rate function, we
find ford = 1and L — oo

1
IL(c) ~ 71(c) (24)

with Z(c) = O(1), so large-deviation events are less rare in
larger systems. (The approximate equality is accurate when
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FIG. 1. Typical trajectories from biased ensembles in one dimension. (a) u = —48, biased to low clustering; (b) u = 0, unbiased dynamics;

(c) n = 48, biased to high clustering. The ensembles are biased by properties of a single tagged particle (shown in red), which elicits a system-
wide response. Systems have N = 28 particles at density py = 7/3. This same density is used for all numerical results in one-dimensional

systems. The time is in units of 7z and x is in units of /.

L is large.) The corresponding result for the dynamical free
energy is obtained by Legendre transform,

1
Yils) ~ - W), (25)

valid for sL = O(1) as L — oo.

Physically, these scaling forms appear because large-
wavelength density fluctuations in the system are associated
with very long (hydrodynamic) time scales, which couple
strongly to time-averaged quantities like (8). Since the hy-
drodynamic modes involve long-ranged correlations of the
density, this means that biased ensembles such as (17) are
characterized by systemwide responses to the bias, even
though c[x] is a single-particle quantity.

To see how hydrodynamic time scales affect the large de-
viations, note from (25) that x.(0) = v, (0) = O(L). Hence
by (22), the asymptotic variance of the clustering diverges in
large systems. Using (8) with (22) one sees that

XL(S):/ [(ci()ei(0))s — (c)?]dr. (26)

o0
The integrand is a correlation function that is always less than
unity, so the divergence of x;(0) as L — oo must be due
to slowly decaying correlations, which originate in hydrody-
namic modes, as we will see below.

III. BIASING ONE PARTICLE IN ONE DIMENSION

We consider the system in d = 1. On large scales, the
hydrodynamic behavior is that of a diffusing density field.
There is a corresponding hydrodynamic time scale

=z
T 2Dy’
which diverges with the system size. When considering biased

ensembles of trajectories, it is useful to define a dimensionless
observation time

179 27)

Tobs
Yobs = — -
TL

(28)

In numerical work, we compare different system sizes at fixed
Vobs (as well as fixed density pg). This requires very large

observation times fops When considering large systems, but
is essential for a meaningful finite-size scaling analysis. For
the large-deviation limits of (9) and (20), the parameter
should also be large. Anticipating the scaling form (25), it is
useful to define a rescaled (and dimensionless) biasing field

sL.a
Dy’

We present numerical results obtained by transition path
sampling (TPS), as implemented in Ref. [17]. This enables
sampling of representative trajectories from (17), for ensem-
bles with prescribed L, t,,s. Figure 1 shows representative
trajectories for different values of u, corresponding to cluster-
ing that is larger or smaller than average. It is clear that biasing
the tagged particle leads to a response that spans the whole
system—the particle is either embedded in a macroscopic
cluster of particles, or in a macroscopic void with very few
particles.

A. Hydrodynamic theory

To understand the behavior shown in Fig. 1, we outline a
fluctuating hydrodynamic theory for this system [1,9,17]. This
establishes the scaling of (25), and clarifies its relationship
with long-ranged density fluctuations.

The hydrodynamic theory is expressed in terms of a coarse-
grained density field, which is defined by averaging over a
mesoscopic spatial region of size €2:

1 x+Q/2
o =5 [ Y-y

—Q/2

(30)
i

Note we use coordinates in the reduced representation, so x €
[0, L;). The dynamics of p obeys a continuity equation

ap
L _v.i
ot J

Given the diffusive dynamics of the system, it it is consistent
to assume that

€2y

J=-D()Vp+

where D(p) and o(p) are a diffusivity and a mobility,
and n is a space-time white noise with mean zero and

20(p)n, (32)
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(n(x, n', ")) = 8(x — x')8(t — t'). These equations can be
derived by considering the empirical density and current and
taking the hydrodynamic limit [43].

In general, we note this hydrodynamic framework (which
comes from MFT) is a robust and general theory for diffusive
systems. The functions D, o depend on microscopic details of
the system (for example, the interaction potential between par-
ticles), but in many cases, the dependence of these functions
on p cannot be derived from first principles. However, one
may still derive and exploit generic predictions for hydrody-
namic behavior, so that many different aspects of the system
behavior can all be expressed in terms of these two functions.

When considering the density field, the particles are in-
distinguishable. As discussed in Ref. [17], this means (for
the specific system considered here) that trajectories in this
reduced representation are in one-to-one correspondence with
an ideal gas of diffusing particles, and hence

o(p) = pDy. (33)

Since this theory is valid on hydrodynamic time scales, it
is also convenient to define rescaled coordinates

D(p) = Dy,

X ~ t
A==, t=—, (34)
L, T
and a rescaled current j = jtz/L;. (Note, however, that the
density is not rescaled).

B. Hydrodynamic scaling for typical fluctuations

To connect this theory with fluctuations of ¢[x], it is useful
to decompose c;(t) into slow (hydrodynamic) and fast contri-
butions as

ci(t) = V(1) + 1), (35)

where c?"’w = Ceq(p(x;)) is the average clustering in a sys-

tem whose density is p(x;) [recall (12)], while ct s the
remainder. Writing p(x;) = po + §p(x;), the typical size of
the fluctuations is 8p = O(L~'/?). [We assume the meso-
scopic length 2 = O(L) as we take the hydrodynamic limit.]
Then cfl"w A Ceq(00) + 8 ,o(xl-)c/eq(,oo). For a simple analysis,

assume that ¢ and ¢V are statistically independent; then
(23) becomes
¢l (P0) s
XL(0, fops) = ———— Var [ / Sp(xi(t))dt}
obs 0
1 Tobs ]
+— Var [ / cfﬂ“(z)dt] (36)
Tobs 0

The object in the second line is a fast contribution, which is
independent of L, it increases as a function of 7, and saturates
to a limiting value xp. Such a contribution is present in all
systems and intuitively would be the only one present in a
simple system without slow hydrodynamic modes. By con-
trast, the first line is specific to systems with hydrodynamic
modes: The typical size of the density fluctuation is O(L~'/2)
so this contribution is O(1/L) for short and moderate ?qps,
hence negligible with respect to the fast term. However, the
slow (diffusive) relaxation of p means that the variance in the
first line is a scaling function of #,s/ 77, SO for fops — 00 it
scales as t;, x O(1/L) = O(L). This separation of time scales

(a) (b)

1071

1072

10—3

1072 10!
t()bh/Lf'

FIG. 2. Scaled variances of ¢[x] in unbiased dynamics, as defined
in (23), for increasing system sizes. (a) and (b) illustrate the slow
and fast scaling regimes of (37), respectively. The average density is
po =17/3.

is related to the onset of local equilibrium in fluids first re-
marked upon by Bogoliubov [44,45]. On time scales where
the average distance diffused by a particle is smaller than the
interparticle separation, local equilibrium is not established
yet and the variance follows c™'. When the average distance
diffused becomes larger than the interparticle separation, local
equilibrium is established. The particle then is affected by the
entire system and the clustering scales as ¢*'°”. Hence, indeed
x.(0) = O(L), consistent with (20), (22).

To summarize, the fast term dominates for f,,s = O(1)
while the slow term dominates at large times:

fobs = 0(1)7
Tobs = O(er)s

ffast (tnbs)a

erslow (tobs/TL ), (37)

XL(07 tobs) = {

where fras, faow are scaling functions. Figure 2 illustrates
these two scaling regimes.

The conclusion of this section is that understanding typical
fluctuations of c[x] already requires an analysis of hydrody-
namic modes. We have shown that the asymptotic variance
of this single-particle quantity diverges with system size. The
consequences of hydrodynamic modes for large deviations
will be discussed next.

C. Hydrodynamic theory of large deviations

We formulate a path integral for the density and current.
Since the system also includes a tagged particle, this has to
be considered separately in the path integral. However, since
particles cannot pass each other, the typical displacement of
the tagged particle is subdiffusive [8,32], and it is consistent
to treat that particle as stationary on the hydrodynamic scale,
with a fixed position X,. We also define p, = p(X,,) as the
density in the vicinity of the tagged particle, and we estimate
the time-averaged clustering as

c[x] =

Yobs R
[ caton (38)
0

Yobs
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MFT analytic solution

0.8 N=21 ot ey
N =28 *.,o-" '

061 ¢ N=35 ¥

< L W

50 100 150
1

FIG. 3. Mean clustering (c); = 1/ (s), plotted as a function of the
scaling variable p for different system sizes. [Here and throughout,
symbols show numerical results for the biased ensemble described
by (19).] The scaling collapse illustrates the form (25). The analytic
solution is based on the minimisation problem (41), which is solved
by minimizing (45), (48) over x and x;, respectively to obtain the
density profile p. Using this calculation the corresponding activity is
obtained from (12) with p = p,. We take yops = 0.07 and py = 7/3.

where ceq(0) was defined in (12) as the average clustering
for a particle in equilibrium at density p. The estimate (38)
is accurate in the hydrodynamic limit because the particle
explores its (locally equilibrated) environment on a time scale
that is fast compared with 7z. It amounts to replacing c; by
¥ which is valid because the slow modes are the dominant
source of fluctuations when 7y is large, recall (36).
Then, the path integral on the hydrodynamic scale, analo-
gous to (19), is

1 : dp
0)s = — [ D(p, j) Olp, jle " 7*ls( = +V .5,
(0), Zsf (0, J) Olp. jle (dt+ J)
(39)

where the § function restricts the integral to paths

that obey the continuity equation (31), and Z =
[ Dp, j) e‘s[p’j’xﬁ]S(fI—’tf + V - j) is a normalization constant.
Also
Yobs 2
Slpe, j,xp]l = / [ lJ +V,0/2| dxdf
C 20(p)
Yobs
ceq(pp)di, (40)

2a

where boundary terms have been neglected. The first line
of this expression is familiar from macroscopic fluctuation
theory [1], the second uses (38).

Note that (19) and (39) are different ways of defining
biased ensembles of trajectories: The first is used for particle
models and the second for hydrodynamic theories (MFT). To
the extent that the hydrodynamic theories represent accurately
the underlying particle models, we expect the two definitions
to result in the same behavior. The numerical simulations in
this work are all obtained for particle models, using (19). The
MEFT results consistently use (39). Several figures (including,
for example, Fig. 3) test the extent to which the two descrip-
tions agree with each other.

At hydrodynamic level, the dynamic free energy is ¥, (s) =
limy, 00 (1/to0s) In Z;, analogous to Eq. (20). For large L,

this may be obtained by a saddle-point method. For s = 0
the action is minimized by a constant density p = py with
j = 0. The bias s does not break time-reversal symmetry so
one has generally that j = 0 and that the optimal trajectory is
constant in time, but the optimal p may depend on x. Hence
by minimizing the action one has for large L that

-D, L Vpl?
0 min / | /0| d% — /‘Lceq(pp)
Lr p(R) 0 4,0 a

where we used (33) to substitute for o (p). The value of X, is
irrelevant for the minimization.

This minimization problem will be considered next, but it
is already clear from this expression that i, obeys the scaling
form (25). Numerical evidence for this scaling form is shown
in Fig. 3, which shows (c); = ¥/(s), which is indeed of the
form (c); = f.(u), where f,. is a scaling function and the
scaling variable u was defined in (29).

We now solve the variational problem (41). The position
% €[0, 1) is measured relative to the tagged particle, so X,=0.
Considering the functional derivative with respect to p(%) one
obtains (for & #£ 0):

Yi(s) = . (4D

Vi) Ve®)
O G 2

where x? is a Lagrange multiplier that ensures conservation
of the number of particles, fol p(X)dx = pg. For pu > 0, the
general solution of (42) is

p(%) = A[cosh(2x (B + %)) + 1] (43)

with integration constants A, B.

To gain insight into the minimization problem (41), it can
be useful [22] to draw an analogy between the spatial profile
p(x) and a trajectory of a particle in classical dynamics. The
analogy identifies x and p(x) with # and ¢(¢), where ¢ is a
time variable and g a position coordinate. So V p is identified
with the velocity ¢(z). Within this mapping then (41) becomes
the classical action for a dynamical system, expressed as the
time integral of a Lagrangian L£(q, ¢, t) where (assuming as
before that the probe particle is localized at the origin) the
explicit time dependence of the Lagrangian appears in a term
— M@ 54y,

a

Incorporating as before the normalization constraint on p
by the Lagrange multiplier x 2, the corresponding Hamiltonian
can be constructed as H(q, w,t) = g’ + x’q + “C%l(q)S(t)
where 7 = % = ¢/(2q) is the momentum variable conjugate
to g. Since the Hamiltonian only depends on ¢ via the §
function at t = 0, the energy is conserved along the trajectory
(except at ¢ = 0). Such an approach allows the second-order
differential equation (42) to be converted to first-order form,
with the value of the energy entering as one of the integra-
tion constants. The value of this energy can be obtained by
using the fact that the action is to be minimized over periodic
trajectories (with a period of unity), because of the periodic
boundaries of the original spatial model.

In the present context, this analogy with dynamical systems
provides one possible way to derive (and interpret) the general
solution (43), as well as the corresponding result (46) below,
which is relevant when x? < 0.
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With the solution (43) in hand, we next observe that the
minimizer of (41) is symmetric about X = % and has p(0) =
(1) from which we find B = —1/2. For u > 0 then p(0) >
00, which corresponds to x> > 0. Enforcing the constraint on
the mean density we find

PoX

= — (44)
X + sinh x
The object to be minimized in (41) becomes
———— = xA(sinh x — x)
LrtobsDO
Aacosh x — 1 + exp(—Aa cosh
+uja X p( x) 45)

Aacosh x

This expression can be minimized numerically over yx subject
to (44) and hence a density profile for p is found. (In the anal-
ogy with the classical Lagrangian, this minimization accounts
for the effects of the §-forcing term in H at ¢ = 0).

For 1 < 0 it is necessary to take x> < 0 so we define x; =
—iyx. (42) then becomes

p(&) = Afcos(2x1(B + X)) + 11. (46)
The equation for A becomes

 —_ - @7)

X1+ s x;

The expression for S with negative bias becomes
——— = X1A(x1 — sin 1)
LrtobsDO

Aacos x1 — 1 + exp(—Aacos x1)

+u/a . (48)
Aacos xi

A similar situation with cosine and cosh profiles was found
in Ref. [19] for the distribution of two particles that are biased
to be more or less frequently in contact with each other.

D. Comparison of analytic and numeric results

We now compare our analytical predictions with results
from simulations. We emphasize that our theoretical approach
requires that L is large (to justify the hydrodynamic approach)
and also that y,ps — 00, to ensure that trajectories are longer
than the relevant relaxation times (including t7), so that the
system is in the large-deviation regime. For numerical sim-
ulations, the results are obtained by TPS, which limits the
accessible values of L and y,ps. We perform finite-size scal-
ing in L with fixed density po and fixed yops: This already
necessitates trajectories of length 7,5 ~ L?, due to (28). In
these one-dimensional systems, we find that taking N = poL
in the range 2040 is sufficient to observe clear signatures of
hydrodynamic scaling. In all numerical results, we emphasise
that density pp is fixed, so that L and N are both increasing
together. Hence, finite-size scaling arguments can be equiva-
lently expressed in terms of increasing L or increasing N. For
the trajectory length, numerical results are obtained at yops =
0.07: While this is not numerically large, previous work [17]
found this value sufficient for semiquantitative agreement
with predictions of the hydrodynamic large deviation theory,
at manageable computational cost. Still, one should bear in

15.0
1251 MFT analytic solution x|
’ °
24 N=21 *
10.0 P e 4
= x N=28 %
T 7.5 2
[ J N=35 &
& tnd
=501 s N=42 2
25 ; o
0.0 o ®
Lo & xe@X [ e
—40 —90 0 20 40 60
(b) p =54 H
| 3
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» »
5.0
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FIG. 4. (a) Average density p, as a function of the bias p from
numerical simulations, compared with the analytic solution of the
variational problem (41), see (45) and (48). (b) The corresponding
density profiles: Numerical results have system size N = 42 and u =
54. In this figure we take X, = 0.5, the analysis in the main text uses
X, = 0, which can be recovered by a simple translation in space. We
take Yobs = 0.07 and Po = 7/3

mind that neither L nor y,,s are large enough to expect fully
quantitative agreement between theory and simulation.

Results for the dependence of (c); on s and L were shown
already in Fig. 3 above, showing the data collapse as a func-
tion of the scaling variable u from (29). Comparing now with
the hydrodynamic theory, the analytical results agree with the
data for small bias: There are small differences, which can be
attributed primarily to the finite values of L and y,s used in
the numerical simulations.

For larger positive bias, the agreement worsens: This may
be partly attributable to deviations from the hydrodynamic
theory when density gradients become too large, see, for ex-
ample, Ref. [17]. This effect is in addition to the finite-size
issues mentioned above, which are accentuated at larger u.
We also checked that the analytical results (43) and (46)
agree with direct numerical optimization of (25), via spatial
discretization of p(x).

Analytical and numerical results for the density in the
vicinity of the tagged (probe) particle are shown in Fig. 4,
including its dependence on w. The density profile is also
shown, as a function of the distance from the probe. There
is semiquantitative agreement between the numerical and an-
alytical results. As before, we attribute this to corrections
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from finite L and y,ps. An additional caveat is that the theory
assumes that the probe particle is stationary, and that the pres-
ence of the probe does not itself affect the local density. Both
of these assumptions should be valid in large enough systems,
but there will be deviations at finite L: These are examples of
effects that contribute to deviations between theoretical and
numerical results.

E. Discussion: Long-ranged response to localized bias

There are two important results of the analysis so far. First,
Eq. (41) and Fig. 3 show that the response to the bias s de-
pends on the scaling parameter ;. o sL. This means that v (s)
does not converge to a smooth (analytic) function as L — oo.
The second important result is Fig. 4(b), which shows the
physical reason for the scaling behavior: The bias acts on one
particle but it generates a response in the particle density that
covers the whole system, even as L — oo.

In the analogy between thermodynamic ensembles and
biased trajectory ensembles [11,25,29], v, (s) corresponds to
the free energy, which would be expected to have an analytic
limit as L — oo (unless the system is exactly at a phase
transition). Similarly, in thermodynamic systems, applying a
localized bias would be expected to yield a localized response,
except in unusual circumstances involving phase transitions or
phase coexistence.

Hence, our results show that properties of trajectory
ensembles cannot always deduced from the analogy with ther-
modynamics. In the dynamical context, hydrodynamic modes
can mediate long-ranged responses to localized bias, and to
nonanalytic free energies. For systems with such modes, we
conclude that some care is required when making analogies
between thermodynamic ensembles and biased trajectory en-
sembles. We are not aware of analogs of these hydrodynamic
effects in the thermodynamic context.

It is also useful to compare the results so far with trajectory
ensembles that are biased by the total activity [5,9,17,21],
instead of biasing a single particle. In that case the free energy
V¥ is a scaling function of sL? (instead of sL) and the scaling
function has an additional singularity, which corresponds to a
spontaneous symmetry breaking, where the system becomes
inhomogeneous. In the present context, translational symme-
try is explicitly broken by the choice of probe particle, and the
system becomes inhomogeneous as soon as i # 0. From our
results, the scaling function W in (25) does not appear to have
any singularity.

IV. BIASING TWO PARTICLES IN ONE DIMENSION

Given that long-ranged correlations appear on biasing a
single tagged particle, one may expect interesting collective
effects between multiple tagged particles, see also Ref. [46].
We illustrate this by considering two tags. Since particles
cannot pass each other in this one-dimesional system, it is
convenient to consider tags that can be transferred between
different particles. Specifically, if a tagged particle is sepa-
rated by less than a from an untagged particle, the tag is
transferred between them with rate Dy/I3. (This rate is chosen
so that the diffusive motion of the tag in a dense region of

the system is comparable to the diffusion constant of a single
particle in a dilute region).

Let the indices of the tagged particles be p;(¢) and p;(z),
SO ¢, (1)(t) is the analog of ¢;(¢) considered in Sec. III. Then
the analog of (8) is

Tobs
= [l + coiar. @)
Tobs Jo

Representative trajectories in ensembles biased by this c[x]
are shown in Fig. 5, which may be compared with Fig. 1.
For the unbiased (equilibrium) ensemble both the tags and
the particles diffuse freely. On biasing the tagged particles to
increased clustering, the tags tend to localize in a single dense
region, since this is an efficient way for both tagged particles
to have large c,. Similarly, on biasing the system to reduced
clustering, the two tags tend to localize in a single region of
low density, this has some similarities with Ref. [46].

A. MFT analysis

It is striking that the two tags evolve almost independently
in the unbiased system but they become strongly correlated
when the bias is introduced. To analyze this, we generalize
the action (40) to include the positions of the tagged particles:
the resulting action is S = [ Ldf with

1 /2 C 2
P (J+Vp/2)* . Lu
ﬁ[p,J,Xl,Xz]er/ U Vol2y 4o Lk c(p1, p2)
0 2p 2a

Dy

D, (X7 +X5). (50)

+
where X; and X, are the (hydrodynamically rescaled) posi-
tions of the tags that diffuse, c(p1, 02) = Ceq(01) + Ceq(02)
and p; 2 = p(X12); also Dy is the tag diffusion constant, and
the dots indicate time derivatives (with respect to 7). The tags
can diffuse either by particle diffusion or by transfer of the
tag between particles; for simplicity we take D, as a simple
constant, independent of density.

In contrast to the one-particle case, the tagged particle
motion cannot be neglected, so obtaining the dynamical free
energy requires integration over the trajectories for p, j and
also the tag trajectories. As in the one-particle case, the den-
sity and current integrals can be performed by the saddle-point
method; we assume for simplicity that the density and current
do not depend on time (consistent with Fig. 5). This leads to a
path integral for the tag positions Z, = | DX, X>)e™% with

Yos 'Do a0 49 o
S> =/0 [2_1),(X' +X7) + LV, (X, —Xz):|df, (51)

where

1,2
v, =igf[ /0 'ng) " gz - ;‘—acm,pz)] (52)
only depends on the separation of the particles X; — X5, by
translational invariance.

The action (51) describes a biased ensemble of trajec-
tories for two tags with positions X;, that diffuse freely.
The corresponding biased ensemble is similar to (17) with
reweighting factor exp[—s f V(Xi(t) — X(t))dt]. Instead of
analyzing this system via the path integral, the dynamical
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FIG. 5. Typical trajectories for different levels of bias with two tagged particles in a system with N = 42 at (a) u = —10.6, (b) u = 0, and
(c) u = 10.6. (a) With large negative bias the tags on the particles are localized in a region of low density. (b) With no bias the tags diffuse
freely around the system. (c) With large positive bias the tags diffuse in a very dense region. The density of the system is py = 7/3 and we

take Yops = 0.07. The time is in units of g and x is in units of /.

free energy Y (s) obeys an eigenvalue problem based on the
underlying Fokker-Planck equation [13], which in this case is

—g—;P”(y) + LV, ()PY) = Yr()P(y), (53)
where y = X — X, is the particle separation and P(y) is the
eigenvector.

The periodic boundary conditions mean that the tags can
be considered as moving on a circle, and the separation is
measured clockwise from particle 1 to particle 2, hence 0 <
y < 1. The tags cannot pass through each other so y(¢) has
reflecting boundary conditions at y =0 and y = 1. Hence,
(53) is to be solved subject to P'(0) =0 = P'(1) [47]. The
symmetry of the problem means that the dominant eigenvector
has P(y) = P(1 —y), it is sufficient to solve on the domain
0<y< % withP/(%) =0.

Equation (53) has the form of a (time-independent)
Schrodinger equation in which the potential is multiplied by
a large parameter L. For the unbiased dynamics s =0 (so
n = 0) then V,, = 0 and the eigenvector P(y) = 1 is constant.
On the other hand, for s # 0, the expected behavior from
Fig. 5 is that the tags tend to localize near y =0 or y = 1.
This effect is independent of the sign of s : The reason is that
the two tagged particles can both benefit from the same region
of reduced (or increased) density, so both kinds of bias cause
them to colocalize.

The function V), could be computed numerically, but the
qualitative behavior of the system can be deduced by the
following simple argument: V,, has a minimum at y = 0 and
can be approximated as V,,(y) = _V;? + yVli (0) + O(y*) with
V/?, Vli(O) > 0 both dependent on u. As L, — oo, the tags
localize near y = 0 (or y = 1) so this approximate form of V,,
is sufficient to determine the eigenvector. In particular Eq. (53)
reduces to the Airy equation and the dominant eigenfunction
is the Airy function of the first kind [48]

DoL.V,\ '
C 9
D, ) y+ 2]

where Cj, C, are constants. Similar distributions appear in
other large-deviation problems, for example Refs. [49-51].
For these, C, is determined by the boundary condition

P(y)=0C Ai[( (54)

P'(0)=0, which requires that the rightmost maximum of the
Airy function is at y =0 [49]; then C; is determined by
normalization. One sees from this eigenfunction that if V,, =
O(1) [corresponding to ; = O(1)] then the typical distance y
between the tags is y = O(L™'/3).

B. Discussion and numerical comparison

The physical content of the preceding analysis is as fol-
lows. From Fig. 1, it is clear that biasing the behavior of
a single particle causes it to localize inside a macroscopic
cluster of particles (u > 0) or a macroscopic void (1 < 0).
On biasing two particles, Fig. 5 illustrates that the tagged par-
ticles tend to colocalize inside a single macroscopic cluster (or
void). An alternative scenario would be that in large systems,
the tagged particles get localized in two separate clusters,
but this is not observed in practice. Our theoretical analysis
shows that colocalization in a single cluster (or void), is ex-
pected on taking L — oo at any fixed value of u (except for
u=0).

We now compare this theory with numerical results.
Figure 6(a) shows the behavior of the tag separation z =
|X; — X2|. In contrast to y, this distance is measured in the min-
imal image convention so 0 < z < (1/2). For uncorrelated
tag positions then (z) = (1/4), which is the case for u = 0.
Both positive and negative biasing fields lead to small particle
separations, consistent with the theory.

Figure 6(b) shows that the small distance between the par-
ticle scales as (z), = O(L~'/?), which is also consistent with
theoretical predictions. This corresponds to a separation of
order L*/3 when measured in the original coordinates (before
hydrodynamic rescaling), see also Ref. [50]. Finally, Fig. 7
shows the activity in this biased ensemble, which again shows
a scaling form (c); = f(u), consistent with the theory.

V. BIASING ONE PARTICLE IN TWO DIMENSIONS

We now consider a system in d = 2, using a biased ensem-
ble as in (17). Configurations from representative trajectories
are shown in Fig. 8, which illustrate either increased or re-
duced clustering around the tagged particle. In contrast to
Fig. 1, it is not clear whether the response to the bias is
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FIG. 6. Numerical results for the average distance between two
tagged particles, z = |%; — X,| where the system is periodic with size
1 and we use the minimal image convention for the distance, so
z € [0, 0.5]. Results are obtained by simulation of the particle model
and are shown at different levels of bias x. The two panels show a
transition between two regimes, where the separation is order L (so
z = 0(1) at small bias) or of order L?/* (so z = O(L™'/) at large
bias). We take yos = 0.07 and py = 7/3.

localized around the probe, or if it might be long ranged. We
will show that in fact the response spans the whole system.

A. Typical fluctuations

As in one dimension, the role of hydrodynamic effects
is already apparent at the level of the variance of c[x], via
the scaling of x;(0) with L. The density p is defined by
generalizing (30) to d = 2. The result (36) is still applicable
in d = 2: Assuming that the slow contribution dominates in
large systems leads to

oo

x2(0) ~ Céq(po)Z/ (Bp(xp(1), )3 p(x,(0), 0))dr,  (55)
—0o0

where the approximate equality is accurate for large L. (The

neglect of the fast contribution will be discussed below). We
introduce the Fourier transform of the density

pu) =L [ pexnyexp(-ia-xa'x (56

withqg = ZT” (m, n) where n, m are integers. Then the hydrody-
namic scaling behavior of (55) can be obtained by evaluating

1.6 4  N=21 o
f o N=28 {
1.41
" ¢ N=35 #
T12{ t N=42 ¥
1.0
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~10 =5 0 5

1

FIG. 7. The mean clustering around the two traveling tags for dif-
ferent system sizes, obtained by numerical simulation of the particle
model. The clustering is a continuous function of © and confirms that
in this system we still have a scaling function vy, = %F (w), similar to
(25). Error bars are shown except where they are smaller than symbol
sizes. We take yops = 0.07 and pg = 7/3.

the correlation function with x,(¢) = x,(0), which yields
(o) [ o
xu(0) = ST [_ } ? (PP oO)dr.  (57)

The sum over wave vectors is restricted to |q| < Q with Q =
21 /2, because of (30).

At the level of macroscopic fluctuation theory (or fluctuat-
ing hydrodynamics) one has

(Pq(t)P—q(0)) =

In contrast to the one-dimensional case, the functions o (p)
and D(p) are not known. These quantities depend on micro-
scopic details of the system, including the specific choice of
interaction potential between the particles (which we take here
as a WCA potential). However, an important feature of MFT is
that it makes generic predictions, independent of the detailed
dependence of o, D on p. For example, (57), (58) yield

Ceq(,Oo)sz(Po)
X (0) ~ LZZ Do (59)

(o /D)ePlarll, (58)

The summation may be approximated by an integral, see
Ref. [19] for a detailed discussion [specifically Eq. (E14) of
that work]. The result is

1 cuq(0)*0 (po)
47 D(po)?

where xo.o = O(1). The key result is that the hydrodynamic
modes lead to a logarithmic divergence of y;—this is the dom-
inant contribution in large systems. The neglect of fast terms
in (55) is justified a posteriori since these would contribute
t0 Xoo but they do not affect the dominant (diverging) term.
The values of x.o, D(pp), 0(pp), etc. depend on microscopic
details of the system, but the scaling of x;(0) with logL is a
robust MFT prediction, independent of microscopic details.
Figure 9 shows the behavior of yz (0, fops) from numeri-
cal simulations. As 7,5 — 00, there is good evidence for a
logarithmic dependence of x; on L, which signals that hydro-
dynamic modes dominate typical fluctuations, just as they do

x(0) ~ InL + Xcos (60)
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(a) Negative s (b) No bias (c) Positive s
FIG. 8. Snapshots of the system under different levels of bias: (a) negative s (s = —4) and lower levels of clustering, (b) no bias at all, and

(c) positive s (s = 18) and higher levels of clustering around the selected particle. From a cursory glance it seems that only local effects are
caused by this biasing, but we show below that long-range effects are also at play. The density is py ~ 0.47 throughout this section.

in one dimension. [It is notable that the analysis of (55)—(59)
is easily generalized to d > 3; one finds that fast contributions
then dominate x; in that case. More precisely, the sum in
(59) scales as L>~? so this hydrodynamic contribution to x;
vanishes as L. — oo for d > 3. On the other hand, (36) has a
contribution of order unity from fast modes, which determines
the value x;.]

B. Large deviations

We now turn to large deviations. The equivalent expression
to (40) in d dimensions (assuming that diffusion and mobility
are isotropic) is

Vs Doj + D(p)Vp/21? .
S[P,j,xplzLd/ / 1Doj +DOIVP/2F ag i
0 [0,1]¢ 2Dgo (p)

st Yobs

- <o (p)df, 61
Dy /. Ceq(P) (61)
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FIG. 9. Variance of the clustering in two dimensions divided by
In L, obtained by numerical simulation of the particle model. This
demonstrates the scaling predicted in (60). We apply a diffusive
scaling to the observation time to observe a collapse of the curves.
The density is pg &~ 0.47

where Dy is the diffusion coefficient at p = 0, also X is the
position vector in d-dimensional space (after hydrodynamic
rescaling) and we recall that y,p, = ’% = % .

Comparing the relative sizes of the terms in the first and
second lines of (61), there is a strong dependence on dimen-
sionality. For d = 1 then it is necessary to take s o< 1/L in
order that the biasing term (proportional to s) has the same
L dependence as the first (hydrodynamic) term. Hence, the
response to the bias is controlled by the scaling variable
o sL, as defined in (29). For d = 2 then the biasing term
has the same scaling as the hydrodynamic one for s of order
unity. In this case one should expect such a bias to generate
a long-ranged (hydrodynamic) response in the density: This
will be verified below. For d > 3 then one would require
s o« L?~2 in order for the two contributions in (61) to have
the same scaling. However, such large biases are outside the
scope of the hydrodynamic theory. [To see this, note that bias-
ing fields of order unity already induce significant responses
in the fast modes of the system, leading to changes in the
local (microscopic) structure. For large bias (s oc LY~2), the
microscopic structure will be completely different from its
equilibrium state, contrary to the assumptions of the hydro-
dynamic theory.] In practice, we expect interesting behavior
for d > 3 and bias s of order unity, due to the response of
fast modes to the bias. That is, a local biasing field—acting
on a single probe particle—should significantly increase the
density in the vicinity of that particle. This response will be
short ranged and cannot be computed by the hydrodynamic
theory.

Figure 10 shows the behavior of (c); = ¥ (s) in this two-
dimensional system. The logarithmic divergence of x; in (60)
raises a question as to the analog of (25) in this case. One
possibility that is consistent with (c); = O(1) as well as a
logarithmic divergence of x; is

1
Yi(s) ¥ - W(sInL). (62)

This would suggest that sInL is a useful scaling variable,
similar to sL in the one-dimensional case. We do not have
any mathematical argument in favor of (62) but Fig. 10 shows
that data for several system sizes collapse when plotted as a
function of this variable. [This is consistent with the scaling
of x,, derived in (60) and shown in Fig. 9.]
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FIG. 10. Results for the clustering in two dimensions, as a func-
tion of bias u, obtained by numerical simulation of the particle
model. The data collapse as a function of slnL is consistent with
¢ ~ F(sInL), which corresponds to (62). Here and for the rest of
this section yops = 0.08.

Finally, we return to Fig. 8 and the question of whether the
bias on a single particle elicits a systemwide response. We first
investigate the response to the bias of the Fourier components
of the density

d
75 Pa®))s = (Pq(t)clx]), (63)

where we used (19). Now use the definition of the clustering
of a trajectory (8), split the clustering into its slow and fast
contributions [as in (35)] and neglect the fast contribution.
Performing a Taylor expansion of the slow contribution to the
clustering in terms of the Fourier components yields

d 1 o0 o
AP = T ) [ PO o0y 1)
-

(64)

The only nonzero components of the sum have ¢ = —¢q
since all other Fourier components are uncorrelated and do
not contribute. Considering this on the level of macroscopic
fluctuations, working near equilibrium and using (58) this
expression reduces to

o (Po)ceq(p0) €Xp(—iq - X))
D(po)*q>L4/?

Pq(t)) = ; (65)

ds<
where the mobility and diffusion were approximated by their
equilibrium values.

This result is already sufficient to verify the general argu-
ments from above, about conditions for observing macroscop-
ically inhomogeneous systems, as a function of dimension
d. To see this, note the normalization convention in (56),
which means that a homogeneous system with Gaussian fluc-
tuations has (typically) p, of order unity, as L — oo. For
macroscopically inhomogeneous systems (o (X) — po)s should
be of order unity, corresponding to pg of order L%, (This
assumes macroscopic wave vectors, |g| of order L™"). Under
these assumptions (65) predicts for d = 1 that the system will
be macroscopically inhomogeneous as soon as s = O(1/L).

In d = 2 the corresponding condition is s = O(1). Ford > 3
then a bias s of order unity is not sufficient to create a macro-
scopically inhomogeneous system.

For a comparison with numerics, it is convenient to con-
sider the structure factor, defined as

Ss(q) = (bqb—q)s- (66)

Recalling again (56), this quantity is of order unity in a homo-
geneous system. For an inhomogeneous system, one expects
(BqP—q)s = 1(Pq)s|* ~ L¢. Hence, while snapshots such as
those of Fig. 8 do not provide a clear distinction between
macroscopic and microscopic (finite) clusters, computation of
Ss(q) can be combined with a finite-size scaling analysis.

To this end,we focus on the structure factor associated with
the smallest allowed wave vector, which has modulus 27 /L.
From (65), the leading contribution (in s) to the structure fac-
tor at this wave vector is predicted as follows: For d = 1 then
Ss(q1) o u’L, corresponding to macroscopic inhomogeneity
assoon as i = O(1). For d = 2 the corresponding result from
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FIG. 11. (a) Plot of the structure factor at s = 0 and s = 8 for
different system sizes in two dimensions. At s = 8 the first few
Fourier components are increased. This indicates that the response
to the bias is long ranged and ¢ dependent. (b) Plot of the structure
factor of the first Fourier component and its dependence on the bias
s. The data collapses when plotted in this way, consistent with (67).
(All results in this figure were obtained by numerical simulation of
the particle model.)
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(65) is

Ss(ar) — So(q) ~

L2 [6(00)chy (P0)
an? | D(po)?

which predicts macroscopic inhomogeneity as soon as s =
O(1). [For d > 4 the corresponding contribution vanishes as
L — oo so hydrodynamic modes are irrelevant at this limit.
For d = 3 then S;(q;) o s>L, which indicates that the system
is macroscopically homogeneous, but has anomalous density
fluctuations. We restrict our discussion heretod = 1 and d =
2, but higher dimensions such as d = 3 could be of interest in
future work.]

Similar to the logarithmic scaling in (60), MFT leads to
a robust prediction (67), for the dependence of Ss(q) on s
and L. This prediction is independent of microscopic de-
tails such as the interaction potential between particles; it
is also straightforward to test numerically. From TPS sim-
ulations, we estimate the Fourier transform of the density
as pg = L™%? 3", e7'9%. Figure 11(a), shows that in a two-
dimensional system S;(q) responds most strongly to s at the
smallest wave vectors. [A local response would mean that
Ss(q) responds only for wave vectors ¢ = O(1), but here the
response is large for very small wave vectors ¢ = O(L™").]
Figure 11(b) shows the response at the smallest allowed wave
vector. The result is consistent with (67), showing that the
numerical and analytical approaches are once again consistent
with one another.

2
] , (67)

VI. CONCLUSION

We have discussed large deviations of clustering around
tagged particles, and associated collective behavior. All the
systems considered show collective responses to the bias, on
length scales that are comparable to the system size.

In d = 1 the response depends on a scaling variable p o
sL; for d = 2 the corresponding variable is sln L. We have
also found that the dynamical free energy has the scaling form
(25) in one dimension, and our corresponding conjecture in
two dimensions is (62). The systems can be analyzed through
the lens of MFT under the assumption that (41) captures the
relevant fluctuations. From these we obtain information about
the density profile (44) and (47) and the associated clustering
around the single particle, which we plot in Figs. 4 and 3,
respectively. Combining these results with Fig. 2, we observe
long-range correlations in this system, which are caused by
hydrodynamic effects.

One can understand these as local correlations in the
rescaled MFT system with £ € [0, 1] and € [0, 1]. Hence,
we can explain these long-range correlations, even if they are
not expected from the analogy between dynamical large devi-
ations and thermodynamics. A key strength of this approach
is that MFT provides robust predictions for the scaling of
different observable quantities with system size L and bias
s. That is, the results do not depend on microscopic details
of the system, such as the interaction potential. This can be
appreciated by the fact that the scaling predictions of MFT

are accurate both for hard particles in one dimension and for
WCA particles in three dimensions. Quantitative predictions
depend on knowledge of the functions D(p) and o (p), and on
a joint limit of L, yops — ©0. In this work, the functions D, o
are known in d = 1 but not in d = 2. The range of L, yyps
that can be considered numerically also hinders quantitative
matches between theory and numerics. Still, the numerical
results are consistent with MFT scaling, and the predictions
in one dimension are semiquantitative.

Compared with previous work where ensembles were
biased by quantities that depend on all particles at once
[5,9,14,17,22], we bias here one or two particles. This explic-
itly breaks the translational symmetry of the system. Hence,
this symmetry cannot be spontaneously broken, in contrast
to Refs. [17,22]. Comparing with Refs. [33,34], our results
accentuate that very large time scales (of order L?) should
be considered when analyzing large deviations in systems
with hydrodynamic modes, even for single-particle quantities.
The coupling of these modes to large deviation events is
important as f,,s —> 00, but this can easily be missed, even
if the values used for 7, are larger than all microscopic time
scales: Values of order L? are required. Consistent with other
studies of large deviations of local quantities [8,31-34,46,52],
our results illustrate a rich phenomenology that appears in
biased ensembles, including dynamical free energies that have
scaling forms for large L. In particular, it is not safe to assume
that local biases result in local responses, in these ensembles
of trajectories.

Finally, we note that since previous work considered biases
acting on all particles [17] and we considered here biases
on one or two particles, a natural question would be what
happens for a bias on an intermediate number. For example,
what about tagging a finite fraction of particles? We have not
investigated such situations, but we offer some preliminary
remarks. First, biasing a finite fraction of particles would
change the scaling (with L) of the bias term in (61), leading
to a situation similar to Refs. [17,39], where all particles were
biased. In that sense, biasing a finite fraction of particles is
more similar to biasing all of them, and less similar to the
situation considered here. Second, the nature of any clustering
transitions would be different when biasing a finite fraction
of particles—the most appropriate analogy might be that of
demixing of tagged and/or untagged species, as distinct from
clustering of a single species. Such effects might be usefully
investigated in future work.

The data underlying this publication will be available
shortly after publication at Ref. [53].
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