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Abstract

Despite increasing interest, real-time prognostics (failure prediction) is still not
widespread in industry due to the difficulties of existing systems to adapt to
the dynamic and heterogeneous properties of real asset fleets. In order to
address this, we present an Industrial Multi Agent System for real-time dis-
tributed collaborative prognostics. Our system fulfils all six core properties of
Advanced Multi Agent Systems: Distribution, Flexibility, Adaptability, Scala-
bility, Leanness, and Resilience. Experimental examples of each are provided for
the case of prognostics using the C-MAPPS engine degradation data set, and
data from a fleet of industrial gas turbines. Prognostics are performed using the
Weibull Time To Event - Recurrent Neural Network algorithm. Collaboration
is achieved by sharing information between agents in the system. We conclude
that distributed collaborative prognostics is especially pertinent for systems
with presence of sensor faults, limited computing capabilities or significant fleet
heterogeneity.

Keywords: Multi Agent Systems; Distributed Systems; Recurrent Neural
Networks; Prognostics; Networks; Asset Management.

1. Introduction

Manufacturing companies are increasingly focused on servitization: instead
of selling assets, they sell the services that these assets provide [1]. In this
new business model, clients may not own the assets any more, but instead pay
for the right of using them. An example of this are bicycle sharing services, in
which the bicycle is owned by the operator and clients pay for the right of using
it for a period of time [2].

Servitisation makes companies responsible for the maintenance and upkeep
of the assets, and hence have to bear the associated costs. This is providing
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manufacturers the impetus to develop more reliable, smarter products with
reduced whole-life costs [3]. At the same time, the steady drop in the price of
Internet of Things (IoT) technologies has resulted in the widespread deployment
of sensors in high-value assets, making real-time diagnostics (failure detection
and classification) the state of the art in a wide range of industries [4]. These
technological advances have resulted in a significant reduction of inspection costs
and have helped furthering our understanding of the behaviour of asset fleets.
Ultimately, this has decreased maintenance costs through the development of
more sophisticated preventive maintenance strategies [5, 6].

The popularization of servitization, combined with the improvements in
sensor-based diagnostics mentioned above, has resulted in a growing interest
in real-time prognostics: prediction of failures. Albeit not yet at the adoption
level of diagnostics, real-time prognostics applications exist for assets governed
by well understood physical processes or assets with a very high intrinsic value
such as wind turbines and semiconductor devices [5, 7, 8].

Achieving widespread deployment of real-time prognostics largely depends
on the implementation of scalable, resilient and dynamic systems able to deal
with the heterogeneity present in industrial asset fleets. For the case of in-
dustrial applications, Multi Agent Systems [9] and holonic systems [10] have
been postulated to fulfil these properties. Multi Agent Systems are distributed
systems of independent agents that cooperate or compete to achieve a certain
objective [11]. In this paper, we pay special attention to Advanced Multi Agent
Systems, and present a system of this kind especially designed for distributed
real-time prognostics.

Described in 2015 by Rainer Unland, Advanced Multi Agent Systems can be
seen as the archetype of Multi Agent Systems and are defined as Distributed,
Flexible, Adaptable, Scalable and Lean [9]. In comparison, the state-of-the-
art is that often prognostics implementations avoid considering a Multi Agent
architecture, choosing instead to perform prognostics with a single piece of cen-
tralised software.

The development and deployment of distributed real-time asset management
systems may have been hampered by the fact that most prognostics scenarios
considered by researchers are small enough with regards to its data and asset
population that a distributed approach can be deemed unnecessary. Despite
this, heuristic-based Multi Agent Systems aimed to solve a variety of tasks
within asset health management have been proposed and tested for different
scenarios (see, for example [12, 13, 14]). For the specific case of distributed real-
time prognostics, the examples that have been presented do not yet exhibit all
the properties of Advanced Multi Agent Systems (see Appendix 6). Concepts
such as industrial [15], social [16], and other intelligence-enabled assets have
been proposed but seldom demonstrated besides for the case of some simple
simulation scenarios [17].

In prognostics, the shift towards distributed systems has been driven by the
observation by a few researchers that larger heterogeneous populations often
require a subset of differently-trained models to conform to the population het-
erogeneity. A good example of this is the medical field, where the realisation



that different population segments reacted differently to the same treatments
led to the development of personalized medicine. This has led to differences
in sensory allocation [18], and in some cases even medication choice [19] for
different population segments. In the same way, distribution allows to tailor
prognostics models to each particular machine, instead of using a single model
to manage the whole asset population.

This new approach towards handling heterogeneous asset fleets has been
named independently by two groups of researchers as “collaborative prognos-
tics”. These are Shuai Hang’s group from the university of Washington [18, 20,
21] and us [17]. Both focus on the aforementioned considerations of population
heterogeneity but define collaboration differently. Hang et al. define collabo-
ration as a different machine learning approach to develop prognostic models
within a population with no consideration to multi agent deployment or real-
time prognostics, while we see it as the result of providing assets with a certain
degree of agency, similar to the concept of intelligent and cooperative agents
described in literature [22, 23]. In order to avoid confusion, we refer to our
approach as distributed collaborative prognostics to emphasize its multi agent
nature. In this paper, collaboration is restricted to the concept of sharing data
(experiences) between the agents of the system (as, for example, done in [24]).
This is one of the simplest typologies of cooperation, but it suffices to exhibit
all the desired properties of Multi-Agent Systems.

We present an Advanced Multi Agent System design and implementation
for real-time distributed prognostics. This means a system that is Distributed,
Flexible, Adaptable, Scalable and Lean. In order to achieve many of the char-
acteristics of Advanced Multi Agent Systems we rely on the concept of collab-
orative prognostics: the ability of the agents to share information with each
other to improve their prognostics capability. Architecturally, we build on our
previous work [25, 16] and propose a modified hierarchical architecture. In
the proposed implementation, each asset is associated with a Digital Twin, an
agent that processes asset data and performs prognostics. This Digital Twin
is also able to connect to the root node of the hierarchical architecture, an
agent known as the Social Platform. This agent collects data from other Digital
Twins and enables inter-asset communication. The prognostics algorithm im-
plemented in the Digital Twins is based on Weibull Time To Event Recurrent
Neural Networks (WITE-RNN) [26]. The WTTE-RNN approach combines
survival analysis theory with Recurrent Neural Networks in order to train a
Weibull probability distribution of the remaining time to event. The algorithm
is chosen for its simplicity and versatility, and because it is fit for the purpose
of discrete event prediction.

This paper commences by describing the system proposed as an Advanced
Multi Agent System (Section 2). The description of the system is divided in
three parts: a brief discussion on Advanced Multi Agent Systems (Section 2.1),
a description of the employed architecture (Section 2.2), and a section describ-
ing the methodology to implement collaborative prognostics (Section 2.3). After
the system description, its implementation for the case of the C-MAPPS turbine
degradation data set is presented in detail in Section 3. Firstly, the process of



data preparation is discussed (Section. 3.1), including a detailed description of
the experiments run to benchmark this implementation against the properties
of Advanced Multi Agent Systems (Section 3.1.3). This is followed by a de-
scription of the employed algorithms (Section 3.2). The section concludes with
a presentation and discussion of the results obtained with the C-MAPPS data
set (Section 3.3) where the system’s conformance to the properties of Advanced
Multi Agent Systems is proven (in Section 3.3.5, data from a real industrial
scenario is also used). The paper concludes with a discussion and a summary
of future work proposed by the authors (Section 4).

2. System Description

2.1. Advanced Multi Agent Systems

The ideal properties of industrial Multi Agent Systems have been postulated
by several researchers [10, 9]. Although differences exist, there seems to be a
certain degree of consensus, summarized by Unland’s definition of Advanced
Multi Agent Systems [9]. In order to avoid redundancy, we decide to closely
follow his definition. With this, an Advanced Multi Agent System is one that
tulfil the following characteristics (adapted from [9]):

1. Distributed: the system is designed to exhibit a decentralised structure.
Decision making, control, and optimisation are all performed locally by
the agents.

2. Flexibility: the system can adapt continuously to changes in the environ-
ment and the agents.

3. Adaptability/System learning: due to the learning properties of the agents,
operation plans are continuously updated and refined according to envi-
ronmental changes and human requirements.

4. Scalability: due to their decentralised nature, Advanced Multi Agent Sys-
tems are easily scalable. A new device can be added to the network with-
out any need of a change in the central configuration of the system.

5. Leanness: ideally, Advanced Multi Agent Systems are formed by many
equally designed agents. In practice, the number of sub-categories of
agents must be limited as low as possible in order to keep the system
scalable and lean. Differences between these categories of agents should
be kept as small as possible in order to obtain a swarm-like [27] population.

6. Resilience: due to the distributed and lean nature of the system, an agent
fault never provokes a whole-system fault.

2.2. Architecture

The architecture used in this paper is a modified hierarchical architecture
with three layers: Virtual Assets, Digital Twins, and a Social Platform (see
Fig. 1) [9, 25]. In the sections that follow, we describe how we have designed
the Virtual Assets, Digital Twins and Social Platform in order to adapt them
to perform distributed collaborative prognostics in an Advanced Multi Agent



System. The original architecture, designed to facilitate a more general case
of distributed collaborative learning, is described in more detail in [25]. To
describe our agent types, we have used H. S. Nwana’s widely used classification
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Figure 1: Block diagram of the architecture used in this paper. Black arrows indicate commu-
nications between its elements. Human agents and assets are not considered to be part of the
software architecture, as they are elements in the physical world. The architecture is extracted
from [25]. The thickness and size of the arrows indicate the size of the data exchange.

2.2.1. Virtual Asset

As the lowest-level blocks of the system’s architecture, the Virtual Assets are
designed to standardize the data coming from their corresponding assets. This
enables the Digital Twins and the Social Platform to conform to a lean design,
with nearly no heterogeneity across industrial scenarios, despite any variabil-
ity in the physical assets themselves. Another function of these architectural
elements can be to simulate assets operating in real time using an existing prog-
nostics data set [25, 29]. In this case, the Virtual Assets load the data from



a data file, convert it into the system’s standard format and send it at fixed
time intervals to their assigned Digital Twins. Virtual Assets can be classified
as Autonomous, Static (always assigned to the same Asset) and Reactive (see
[28]). The data originating from the Virtual Assets is divided in three main
components: a set of features (sensor time-series), a set of timed events (related
to asset failures or warnings), and an asset identifier. This identifier must be
designed so that it contains all the information related to the asset not directly
included in the feature and event data (for example, machine make, country of
deployment, etc). It is assumed that the format and content of these compo-
nents will be standardised for widespread industrial implementation.

The Virtual Assets are formed by two building blocks: a Standardizer, dedi-
cated to standardize the data coming from the Assets, and an Output manager,
that controls the communications with their assigned Digital Twin (see Fig. 1).

2.2.2. Digital Twin

Each Virtual Asset is assigned a Digital Twin, an agent consisting of three
building blocks: a Data Repository, an Output Manager, and an Analytics En-
gine. The Analytics Engine of the Digital Twin is responsible for performing
prognostics, data preprocessing, and analysing the events received from the Vir-
tual Asset to discern between failure events and other events unrelated to prog-
nostics. The Output Manager is responsible for managing the communication
between the Digital Twin and the other components of the system’s architec-
ture. Finally, the Data Repository stores and manages the data generated by
the Analytics engine and the Output Manager. This data is divided in five main
sets: the three sets of data generated by the Virtual Assets mentioned in the
previous paragraph, a set of variables defined by the Social Platform, and a set
of variables generated by the prognostics algorithm.

It is important to mention that collaborative prognostics will involve data
sharing between assets. Therefore, the data used in the Analytics Engine of
the Digital Twins consists also of data coming from other collaborating Digi-
tal Twins. Note that for real-world implementation, there is no presumption
regarding the location of the data repository. This could be in a single central
location or distributed. In fact there is no similar presumption regarding the
physical location of the Digital Twin. The twin might reside within the asset,
or all the Digital Twins of a fleet might be co-located.

Collaboration allows to classify Digital Twins as Smart Agents. Because each
Digital twin is always connected to the same Virtual Asset, they can be also be
technically classified as Static agents according to the classification presented
in [28]. Their ability to react to their environment makes them also Reactive
Agents (they do not conform to the deliberative thinking paradigm).

Only a subset of the data generated by the prognostics algorithm is kept
permanently in the Twin’s Data Repository: the prognostics model at each
time step, and the model predictions. Some of the data stored in the Twin’s
repository originates in the Social Platform: the events for which predictions
must be computed, the similarity distances between the twin’s asset and each
other asset in his groups of collaborating assets, and the features to be used in



the prognostics algorithm. Some of these variables, for example the events that
the prognostics algorithm will predict, are human defined requirements.

2.2.8. Social Platform

As the node of the system’s modified hierarchical architecture, the Social
Platform is responsible for enabling and regulating communication between Dig-
ital Twins, and to pass down human requirements to the rest of the agents.
Additionally, the Social Platform runs enterprise-level algorithms. These algo-
rithms are aimed at (1) forming groups of collaborating assets, and (2) retriev-
ing and plotting enterprise-level information. These properties make it a Static,
Reactive, and Interface agent according to the classification published in [28].

The Social Platform uses features, event information and asset identifiers
from the Digital Twins in order to form groups of collaborating assets. To
form these groups, the Social Platform runs (in parallel, and in real-time) a
clustering algorithm. The identities of the assets corresponding to each group
are saved in a matrix, featuring also distances between assets, that can be used
to evaluate and weight inter-asset collaboration. This is known as the Friendship
Matriz. These distances can be calculated as per definition of the asset manager,
from simple euclidean distances including only continuous attributes, or from
heterogeneous distances including also discrete asset attributes such as the asset
identifier.

The Social Platform is formed by three building blocks: a Data Reposi-
tory, containing the Friendship Matrix, and the results of the enterprise-level
algorithms, a Communication Manager, that controls communication with the
Digital Twins, and an Analytics Engine responsible for computing enterprise-
level algorithms (see Fig. 1).

The Social Platform regulates communication as follows: the Digital Twins
can send messages to the Platform at any time, these messages are taken in
and, if they contain new information, are stored within the Social Platform’s
Data Repository. The Social Platform decides which Digital Twins share data
with each-other at any time by reading from the Friendship Matrix. Upon this
decision, it sends information to the Digital Twins in the fleet from other Digital
Twins that belong to the same cluster (see Fig. 7, and Section 3.2.1).

2.3. Real-time collaborative prognostics

This section is dedicated to describe real-time collaborative prognostics and
its implementation in an Advanced Multi Agent System. Distributed collabora-
tive prognostics relies on clustering groups of similar assets in real time accord-
ing to their similarities, and enabling data sharing among these asset groups in
order to improve prediction accuracy. In the section that follows, we describe
these algorithms and in the subsequent section we describe how collaboration is
enabled within the framework of the proposed multi agent system.

2.83.1. Prognostics
In order to perform real-time prognostics, we choose to implement a machine
learning approach known as Weibull Time To Event - Recurrent Neural Net-



works (WTTE-RNN) proposed by Egil Martinsson [26]. This approach has the
benefit that it is designed to solve multivariate time to event prediction prob-
lems using both censored and uncensored data. For the sake of completeness we
provide a brief description here. The reader is referred to [26] for full details.

Recurrent Neural Networks are chosen for prognostics because they are de-
signed to handle patterns containing all the characteristics typically encountered
in industrial failure data: non-linearity, noise, and time-dependency. In theory,
RNN’s are Turing complete and thus can learn complex temporal patterns [30].
The caveats of using Recurrent Neural Networks are that they require more
computational resources than other regression methods, and that they have a
tendency towards overfitting. In this paper, the first problem is addressed in
Section 3.3.4, and over-fitting is controlled for through early-stopping and a
network with few free parameters.

The WTTE-RNN approach combines techniques from survival analysis and
Recurrent Neural Networks. In WTTE-RNN, a bespoke log-likelihood loss func-
tion is used to train a Recurrent Neural Network to provide the two parameters
of a Weibull probability distribution of the Time To Event for a vector of multi-
sensor feature data. The proposed log-likelihood function to be maximized by
the Recurrent Neural Network is:

3

N
log(£) =) > uplog [Pr (Y, = yi'lag,)]+(1 — uf) log [Pr (V" > yp'lag,)].,
n=1
(1)

where u} indicates whether the observation at time ¢ is censored (the real
failure time, u* = 0 has not yet been observed). The first term in the right
hand side of the equation is u} log[Pr (V" = y*|«}.,)], which simply means:
in case that the real time to failure (u} = 1, uncensored) has been observed,
mazimise the probability of the predicted time to failure Y;* being equal to the
real time to failure yi* given the known values of the sensor value time series
before time t, z{.,. The second term, (1 — u})log [Pr (Y;* > yi'|x{.,)] means: if
the real time to failure (uj = 0, censored) has not been observed, mazimise
instead the probability of the predicted time to failure Y,* being bigger than time
left until the time at which we know that there has been no failure yet (yi').
The summations 25:1 220 account for the summation over all the recorded
failure trajectories (N) and over all the time-steps of each trajectory (T,,). A
trajectory is defined as the set of sensor time-series contained in between each
of the recurrent failures of an asset. In order to clarify what we mean with that,
we have included a sketch of the matrix fed to the Recurrent Neural Network
(see Fig. 2)
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Figure 2: Sketch showing the training data matrix fed to the asset’s Recurrent Neural Network
for the case of no collaboration. For collaboration, additional trajectories from different assets
in the fleet will be added to the training data matrix. Masked data refers to a fill-in number
used to let the algorithm know that the values attached are not to be taken in account when
training the Recurrent Neural Network.

The probabilities appearing in Eq. (1) can be obtained by means of survival
analysis, in essence for the discrete case it can be shown that:

log(£) = ulog (ed(t) - 1) —A(t+1). (2)

Where A(t) is known as the cumulative hazard function and d(t) = A(t+1)—A(t)
is the step cumulative hazard function. A(t) is defined as the integral of the
hazard function (A(t)):

At) = / A(w)duw; 3)

P T < T
A(®) = lim rt<T<t+eT>1)

e—0 €

Where T is a positive random variable. If one assumes that T follows a Weibull
distribution!, the cumulative hazard is:

At) = (t>ﬁ. (4)

Where « is the scale parameter and [ is the shape parameter. Combining
Egs. (2) and (4) the discrete log-likelihood (added over all trajectories and all

IWith the following parametrization: f(t) = g (é)ﬁPl exp [— (é)ﬁ]



time-steps, and using the concept of Recurrent Cumulative Hazard Function as
shown in [26]) can be shown to be:

N T,
log(Lq) = Z Z (uf log {exp
n=1

t=0

Where af, 8" are the parameters of the Weibull distribution and y;* is the
time to event or failure at each time-step ¢ and trajectory n. Note that the
left term will appear when there is no censoring, and for 5 — oo, the Weibull
distribution corresponds to the Dirac delta function at ¢ = af. This is the
expected behaviour as the ideal prediction is a probability distribution centred
at the real time to event with zero variance.

The unconstrained optimization problem to be solved by the Recurrent Neu-
ral Network can be then summarized in finding the weights w that maximize
log(L4). A comprehensive description can be found in the original source [26].

The dependency of the shape of a Weibull distribution (and more specifically
its variance) with its defining parameters, a and 3, make solving this optimiza-
tion problem often numerically difficult. Eq. (5) features some opportunities
for numerical instabilities: negative values of the logarithm’s argument and ex-
ploding gradients being the most common. Reducing numerical instabilities was
specially relevant in order to perform the experiments presented in this paper
in which all agents operated using the same computer. Due to this, the compu-
tational resources assigned to each agent were limited and failure to converge
to a stable solution compromised their operability. To solve this we clipped the
norm of the gradients to a maximum value, and we followed the suggestions in
[26].

1. Setting up a maximum for allowed 8. If not capped by a superior limit,
the optimization algorithm has a tendency to drive 8} to very large values,
as this corresponds to a nearly perfect prediction. This tends to cause
exploding gradients or over-fitting. An effect of bounding ;" is that close-
to-event predictions tend to converge to low values of beta, as this is
the most effective way that the optimization algorithm has to reduce the
variance of the predicted distribution for low values of of.

2. Initialization of oy, and S;*. The values at which the parameters of the
Weibull distribution are initialized have a big influence on numerical sta-
bility and on convergence to a desirable solution. In this paper, we follow
the suggestion by [26] and initialize our parameters as a geometric initial-
ization. This corresponds to 3 =1, and o} = ——— L1 where g is

o)
the mean time to failure at t =0, y; = % >l

To perform prognostics, each Digital Twin in the asset fleet implements a
Recurrent Neural Network training algorithm in order to maximise Eq. (5),
and predict further failures. While prognostics are performed in real time, the
Recurrent Neural Network can be trained at larger time intervals T in order to
reduce computational costs. This is known as the Digital Twin training time.
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2.3.2. Collaboration

In this work, inter-agent collaboration is defined as the sharing of infor-
mation between agents assigned to similar assets. This data is then used to
train asset-specific prognostics algorithms. In order to allow collaboration, the
assets in the fleet must be clustered according to a method that incorporates
an inter-asset difference metric djj, where ¢ and j are indexes of the assets i
and j within the fleet. For non-trivial cases, a measure of clustering tendency
should be calculated first in order to assess whether the asset population has
any grouping structure [31]. Measures such as the multidimensional Cox-Lewis
and Hopkins statistics [32, 33] are good examples of metrics allowing for efficient
estimation of the clustering tendency. If this tendency is found to be strong, the
number of clusters in the fleet should be determined by a combination of expert
input and existing methods such as the Minimum Description Length, Aikaike
Information Criterion, Bayes Information Criterion etc. Other methods such as
the silhouette score [34] or Density-based spatial clustering of applications with
noise (DBSCAN) can also be considered for the same purpose [35].

A crucial characteristic of distributed collaborative prognostics is that it
is updated in real time, thus adapting to changes in the system’s assets. In
practice, this means that the number of clusters, and the assets belonging to
each cluster are updated through the system’s life-cycle. Once the clusters have
been determined, each Digital Twin obtains feature and event data from other
Digital Twins in the fleet through communication with the Social Platform. This
data is then used in the training of the Recurrent Neural Network to improve
its accuracy. The data can be incorporated in the neural network’s training
either weighting the trajectories according to the inter-asset difference metric
d;j, or directly without modification (see Fig. 2). In this paper, we implement
the latter.

3. Implementation in the C-MAPPS data set

3.1. Data preparation

In order to implement the proposed approach, we use the Turbofan Engine
Degradation Simulation Data Set [36] (from now on, referred as C-MAPPS data
set, in reference to the software used to generate it). C-MAPPS is a MATLAB-
based software designed to simulate the behaviour of a commercial turbofan
engine. The advantage of C-MAPPS is that it allows for control of environ-
mental, operational and failure parameters. This is done by varying parameters
such as the altitude where the engine is operating (between 0 and 40000 ft), the
Mach number (constricted to sub-sonic flight), and the temperature at sea level
(comprehending all range of temperatures in which such an engine is expected to
operate). The turbofan engines simulated by C-MAPPS are formed by several
interdependent sub-systems, including regulators, limiters and control systems.
These limiters resemble the mechanisms typically present in industrial machin-
ery, that prevent machines from exceeding pre-set tolerances. In C-MAPPS,
there are limiters for the core speed, the engine-pressure ratio, for the High
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Pressure Turbine (HPT) exit temperature, and for the static temperature at
the High-Pressure Compressor (HPC). A comprehensive description and a dia-
gram of the turbines simulated by C-MAPPS can be found in [36]

The parameters of the simulation include a set of health-parameter inputs
that are designed to simulate deterioration and fault. This can be done for any
of the engine’s rotating components. The C-MAPPS data set used in this paper
includes degradation in the HPC and Fan modules. For each failure, the data
set includes time-series variables that feature parameters such as sub-system
temperatures, fan and core speeds, engine pressure ratio, bleed enthalpy, etc. A
detailed list can be recovered in [36].

The framework proposed in this paper is specially relevant for machines
that experience recursive failures. Instead, the C-MAPPS data set features tra-
jectories to failure unique to every machine in the data set. In order to use
this data for our approach, we must treat several trajectories to failure as if
they correspond to the same asset. To do so, we cluster the turbines accord-
ing to their operational setting and to their failure modes. This heterogeneity
contained in the data set is especially conducive to test whether the proposed
system fulfils the properties introduced in Section 2.1, because it can be used
to simulate machines operating in varying environments and failure types. The
C-MAPPS data set only includes a general description of the characteristics of
each simulated failure trajectory, and therefore we had to carefully separate the
many trajectories included in the data set. We describe how we did this in the
following Sections 3.1.1 and 3.1.2.

8.1.1. Classification of failure type

The C-MAPPS data set used in this paper includes two different kinds of
failures: one related to High Pressure Compressor (HPC) degradation and an-
other to fan degradation. Although the data set does not explicitly indicate
which assets experience each kind of failure, it is easy to classify them when the
machines are operating in sea level conditions (that is for the FD001 and FD003
training sub-sets of C-MAPPS). In order to do so, we realised that the values
of sensor 7 had a very strong positive tendency for the case of fan degrada-
tion failures and a negative tendency for the case of High Pressure Compressor
degradation. Therefore, by simply applying a rolling average? of the sensor’s
data together with a majority rule we were able to classify trajectories in these
data sets according to their failure type with 100% accuracy (see Fig. 3).

2With a window size of 40.
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Figure 3: A subset of trajectories to failure extracted from the FDO003 data set, featuring
raw values of the s7 sensor (black line), its rolling average (red line), and their classification
as High Pressure Compressor (HPC) degradation or fan degradation according to a simple
majority rule. Majority of positive values on the first derivate of the rolling average correspon
to fan degradation, majority of negative values correspond to HPC degradation.

8.1.2. Classification of operational settings

In order to check that the proposed system fulfils the properties of Advanced
Multi Agent Systems, we need to test it against varying operational settings.
It is therefore useful to find which of the six operational settings included in
the data set each asset goes through in order to design experiments in which
an asset is made to change operational settings in between recurrent failures.
Luckily C-MAPPS trajectories allow for easy classification in six major opera-
tional settings (see Fig. 4). After analysing the data, there is a subset of assets
that remain static in the same operational condition while other vary their oper-
ational setting across each degradation trajectory. In practice, this means that
there are two types of assets in the data set: those that remain at sea level, and
those that vary their operational level along their life-cycle (see Fig. 5).
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Figure 4: Six major operational settings of the C-MAPPS data set, colored according to
the sub-sets of C-MAPPS. Barely visible because of their overlap, all data sets are shown to
contain units that operate at certain point in sea level. FD001 and FD003 (blue) have only
units that operate in Sea level and no units operating in any other opeational setting. Once
controlling for the unit’s lifecycles one observes that all units belonging to FD002 and FD004
(red) found to operate in sea level also operate in at least one of the other settings (see Fig.

5).
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Figure 5: Mean operational settings in the C-MAPPS data set. Note how FD001 and FD003
(blue circle) operate at all time in sea level conditions, while the rest of units vary their oper-
ational setting accross their lifecycles (red cross). To show how the averages are constructed,
a sample unit belonging to FD002 is plotted across its lifecycle (green crosses) where it tran-
sitions from sea level to other operational settings. The filled black square shows the mean of

its operational settings.

8.1.3. Ezxperiments
In this Section, we describe the experiments performed to test the system

against the properties of Advanced Multi Agent Systems, presented in Section.
2.1.

e Distribution: distribution is a characteristic of the system by design. Con-
cretely, this is achieved by running independent python scripts that share
information with each other using the websocket protocol [37]. Thus, the
agents of the architecture are executed by default as a distributed system,
regardless of them being hosted within a single or several computers. In
practice, this means that all the experiments presented in this paper are
a test of the distributed property of the system. As an initial proof of
concept, we present an experiment with two fleets of different assets that
showcases the standard behaviour of the system under stable asset and
environmental properties. To do so, we only use trajectories belonging to
turbines operating at sea level, and divide them in 10 sets of 20 trajec-
tories, each set representing a virtual machine, linked to a Virtual Asset.
Clustering in the data set is made possible by the fact that some of these
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machines include failures due to fan degradation, and some other feature
failures due to HPC degradation (see Fig. 6).

Flexibility/Adaptability/System learning: an important property of Ad-
vanced Multi Agent Systems is their capacity to continuously adapt to
changes in the environment and in the agents. In order to test whether
our system fulfils these characteristics, we construct our data set to repre-
sent two experimental scenarios: a system with assets with changing asset
properties (failure types), and a system with assets with changing opera-
tional settings (for example, an asset that starts operating at sea-level and
then moves to higher altitudes). On top of that, the real-time nature of
the prognostics algorithm means that the system is adaptable by default
to changes in the sensor readings as the agent’s models are continuously
updated.

Scalability: to test the system against this property, we expand the C-
MAPPS data set with data from the PHMO08 prognostics data challenge,
expanding the size of our asset fleet to 45 assets undergoing recurrent
failures in several different operational conditions.

Resilience: in order to investigate the resilience of the system, we provoke
faults both in the agents and in their data quality and observe whether
these faults are propagated across the asset fleet. We test for both sys-
tem and sensor faults: (1) we abruptly stop one of the agent’s processing
without properly closing its socket connection with the platform (as if for
example the corresponding asset would have suffered a catastrophic fail-
ure), and (2) we corrupt the data corresponding to one of the assets with
some typical sensor reading errors: constant (or flat reading) errors, short
(or outlier) errors, and drift. Scaling and noise errors are skipped because
the Recurrent Neural Network is supposed to deal with the first automat-
ically, and noisy data is already incorporated in C-MAPPS [38, 39, 40].

Leanness: to investigate the leanness of the proposed system, we describe
which changes are required in order to apply it to a different prognostics
case, concretely for the fleet of industrial gas turbines of a major interna-
tional manufacturer. As for the case of Distribution, Leanness is a design
property of the architecture of the system.

3.2. Real-time distributed collaborative prognostics algorithm

In this section, we present our algorithm written in pseudocode. In practice,
the implementation has been done using Python. Concretely, we use Keras [41],
Tensorflow [42] and the wtte-rnn Python package [43] for the machine learning
implementation. We have chosen this over Multi Agent software frameworks to
ensure its deployability in real industrial systems and to conform to state-of-the-
art machine learning practices that commonly use the aforementioned libraries.
We have used the websocket library to enable communication in between agents
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Figure 6: Sketch of the re-structuring to the C-MAPPS and PHMO0S8 data sets in order to
conform to the different experimental scenarios described in this section. Each experiment
involves 10 Virtual Assets. Each cluster of squares represents an asset going through 20
recursive failures. Each different background colour represents a different operational setting.
Each square represents a failure trajectory. Filled squares represent a machine failing due
to fan degradation, and empty squares due to High Pressure Compressor degradation. Half-
filled squares represent trajectories with an unknown failure type. Squares with a black cross
represent trajectories where a sensor failure has been induced.
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together with the asyncio library and Threads to ensure asynchronism and par-
allelism. The algorithm is designed so that it can be run both in a single terminal
(through a bespoke bash script) and in a physically distributed way. In any case,
the memory spaces of each agent are always separated.

To reduce bugs stemming from the loss of coupling between each agent’s
internal clock, the algorithm is designed such that different communication tasks
are allocated to different parallel loops. In essence, send and receive loops are
separated and use different ports. Each Virtual Asset - Digital Twin couple uses
two ports, and two more ports are used to connect all the Digital Twins to the
platform, acting as server. Digital Twins are programmed to act as websocket
clients.

In a real prognostics scenario, the time period of the asset’s recurrent failures
will be larger than the training time of the agent’s machine learning algorithms.
However, when running the proposed system using Virtual Assets, the frequency
of sensor reading is not limited by physical constrains, and the agent’s commu-
nication loops are able to process the entire data set extremely fast. This does
not allow the relatively slower deep learning prognostics algorithm to complete
its training in time in between the occurrence of failures. In order to address
this, we have incorporated the analytics engine of the Digital Twin in the same
loop in which it receives data from the Virtual Asset instead of running it in a
parallel thread. This allows to stop the reading of the Virtual Asset’s data until
the prognostics algorithm in the Digital Twin is complete, therefore replicating
the behaviour of the system in a real industrial scenario. Such a modification is
not needed in the Social Platform, where enterprise level algorithms are run in
real time and in parallel with the communication loops.

With regards to the data flow, a system of inset Python dictionaries is used.
Agent data increases in size and complexity as it travels up through the hierarchy
of the Multi Agent System. In the Virtual Asset, the main data component is
the data of the machine ¢ recorded in the time interval At (data(i, At)). This
component is then sent to the Digital Twin together with the machine’s id
and is concatenated in a dictionary (Dict(i, At)) that contains the data of the
machine until the time ¢t = ) At where ¢ is the current lifetime of the Digital
Twin. By means of its analytics engine, the Digital Twin produces another
dictionary, (PreDict(i, At)), that contains prognostics data (event predictions
and recorded accuracies). These two higher order dictionaries are then sent to
the Social Platform where they are saved together with the dictionaries coming
from all the other Digital Twins in a dictionary of the Social Platform called
‘machine data’. Together with this dictionary, in the Social Platform there
are two other dictionaries: ’glob data’ (global data) and ’control variables’.
‘glob data’ contains variables such as the Friendship Machine (the output of
the clustering algorithm) and the accumulation of prognostics scores reported
from the Digital Twins. ’control variables’ contains the variables needed for the
normal functioning of the Social platform such as human inputs and information
about the number of agents active in the system.

In our implementation, the trajectories shared among groups of similar assets
are not weighted according to their clustering distances, but directly incorpo-
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Figure 7: UML diagram of the system’s algorithms, including the major tasks performed by
each block of the architecture (see Fig. 1). Black arrows are used to signify communication
using the websocket protocol. The variable len., indicates the amount of machines connected
to the Social Platform.

rated. In addition, censored trajectories are not included in the training of the
Recurrent Neural Network. This has been done to enable faster computation,
as it reduces the number of trajectories included in the training matrix.

Agents in Multi Agent Systems typically communicate using an Agent Com-
munication Language [44]. In our system, this can be achieved through pykqml
[45], a python library that allows writing messages following the Knowledge
Query and Manipulation Language (KQML) [46]. Concretely, in our system
agents convert the Python’s dictionaries into a KQMLList and then send it
through the websocket protocol.

8.2.1. Clustering

Among the desired properties of the proposed system are leanness and adapt-
ability. Thus, we use standard clustering methods already available in literature.
Finding a clustering algorithm able to simultaneously process environmental and
failure type changes proved to be challenging. This was largely due to the small
number of assets in the experiments compared with the number of sensors rep-
resenting each asset, also known as curse of dimensionality [47]. We found that
DBSCAN, K-Means clustering and Hierarchical clustering all provided good
insights. We chose DBSCAN because (1) it was much more accurate in predict-
ing the number of clusters, (2) it transferred well across experiments, and (3)
scalable extensions of this clustering algorithm, able to handle large population
scenarios, are available [48]. The clustering algorithm used in our experiments
is shown in Algorithm 1. For our experiments, we used a standard euclidean
distance. However, distances based on the Manhattan and fractional distance
metrics should be also considered in scenarios where the number of assets is of
the order of the number of features representing each asset, as they have shown
to produce better results for high dimensional data [49].
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Algorithm 1 Clustering algorithm

collect un-censored trajectories from each asset

for last N trajectories do take the mean for each feature across all time-steps
end for

append the means in a matrix containing all asset’s in the fleet

normalise across the matrix using sklearn’s MinMax scaler

calculate euclidean distances between the assets of the population

retrieve the maximum distance D

compute the clusters using Python’s DBSCAN with epsilon=5D divided by

the number of assets in the fleet and min samples equal to one.

3.8. Results and discussion

3.3.1. Initial parameters
In all cases, we run the algorithm shown in Fig. 7 with the following initial
parameters:

Each asset starts with six trajectories to event as previous experience.
The training time of the Digital Twins, T is set to the time at which a
Digital Twin records a new failure.

The Recurrent Neural Network has a LSTM architecture of 26 x 24 x 10 x 2
being the layer with 24 neurons the only recurrent layer. We use tanh as
activation function for all layers except for the last two-neurons custom
output layer. No Dropout, or regularisation are used.

The Adam optimizer [50] is used with learning rate 0.01 and norms clipped
at 10 to avoid exploding gradients (see Section. 2.3.1 for a further discus-
sion on stability).

The maximum number of epochs for the neural network is 400 except for
the experiment where scalability is tested. Early stopping is implemented
through the validation loss to limit over fitting. The patience is 50 and
the minimum delta is 0.05. The split is 5/6 training 1/6 validation.

For the clustering algorithm, N=2 (the last two uncensored trajectories
are considered).

In order to asses prognostics accuracy, we use the mean square error of the
predicted times to failure. The analysis thread of the Social Platform is pro-
grammed to average over fleet scores in real time and plot them. However, for
the results presented here we use bespoke algorithms that import the results of
an experiment from the agent’s databases. The agents are programmed so that
if running as an experiment they periodically save their variable space in the
server memory, so that these results can be accessed at any time. Experiments
were performed on DIAL’s high performance center ’optimusprime’.
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3.3.2. Distributed

In order to test the Distributed property of the system we perform the
experiment proposed in Section. 3.1.3. Assets were quickly clustered in two
fleets of different assets according to their failure type, and the Digital Twins
were able to estimate their failure times in real time and with a good degree of
accuracy.

To assess the validity of the idea of real-time distributed collaborative prog-
nostics, we compared the results of a fleet of assets sharing data only with sim-
ilar assets versus a fleet of assets randomly sharing data. From the results, the
collaborative strategy is found to outperform the non-collaborative (random)
strategy. The clustering algorithm performed by the Social Platform manages
to cluster assets properly for every time step, with the exception of assets num-
ber 9 and 10 that are clustered properly 80% of the times (see Figs. 8 and
9)

Machine 1 Sensor data (s7)
. —— Predicted TTE (random)
—— Predicted TTE (collab)
§ —— Actual Time to Event
Machine 9
600 -
Machine 10
400 A
200
0 T T T T T T T 1
0 250 500 750 1000 1250 1500 1750 2000

time

Figure 8: Output from three of the Digital Twins in the asset fleet featuring predicted times
to failure for an experiment enabling collaborative learning (green) and another one allocating
each asset’s friends randomly (red). Overlayed, scaled measurements of the seventh sensor of
their corresponding assets (pink). Note how especially for the Digital Twins corresponding
to assets enduring fan degradation failures (assets 9 and 10), collaborative predictions often
outperform non-collaborative predictions significantly (true time to failure shown in black).
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Figure 9: Difference in percentage in accuracy scores between random and collaborative learn-
ing in the asset fleet. Shaded in red, timesteps when random allocation underperforms collab-
orative learning. Overlayed, clusters to which each machine of the asset fleet were assigned
as the experiment advanced. Note how assets 9 and 10 were properly clustered together for
most of the experiment, as they are the only ones featuring fan degradation failures only.

3.3.8. Flexible/Adaptable/System Learning

Two scenarios were devised to test the system flexibility and adaptability,
and its ability to learn in real time; one in which the failure type of some of the
fleet’s assets changed across time, and another one in which their operational
setting was set to vary (see Section. 3.1.3).

e Scenario 1: in this scenario, one of the assets that formerly only featured
HPC degradation failures starts experiencing fan degradation failures to-
wards the end of the experiment. The system reacts as follows: (1) the
platform clusters this asset with the other assets in the fleet that share
the same failure type (Fig. 10), (2) the Digital Twin incorporates this
knowledge in its forthcoming predictions (Fig. 11).
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Figure 10: Output from the Social Platform for Scenario 1. The cluster to which each asset
belongs at each timestep is indicated by its colour. Note shortly after asset number 8 starts
experiencing a new kind of failures, it is clustered together with its peers. The clustering
algorithm works well with the exception of a couple of short-term glitches.
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Figure 11: Output from the Digital Twin of Asset nr. 8 in Scenario 1. Note how the twin
is able to learn the new failure type thanks to the data from its peers even if its own data
consists of just a couple of trajectories.

e Scenario 2: in this scenario, the failure type of the assets in the fleet is kept
constant (data from FD001/2 contains solely fan degradation failures).
However, the operational setting of one of the assets vary moving from
sea level to a varied environmental condition. The system rapidly reacts
to these changes and clusters this asset with the other assets operating
under similar conditions (see Figs. 12 and 13).
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Figure 12: Output from the system’s platform data for Scenario 2. The cluster to which each
asset belongs at each timestep is indicated by its colour. Note that inmediately after asset
number 5 changes its environment, it is clustered together with the rest of the fleet.
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Figure 13: Output from the Digital Twin of asset nr. 5 in Scenario 2. Note how inmediately
after switching environment, the asset is able to learn from its new environment thanks to the
data from its peers even if its own data is scarce.

3.8.4. Scalable

To test the system scalability, we designed an experiment in which we com-
puted as many agents as it was possible without repeating any of the agent’s
data and whilst yielding enough trajectories per asset to represent an interesting
machine learning scenario. Here, simulations are run in a central server while
in reality they could also be run in a physically distributed way. Combining the
C-MAPPS data set with the PHMOS prognostics data set, one obtains 926 in-
dependent trajectories to failure that once divided in sets of 20 end up yielding
a total of 46 assets (see Fig. 6). In Fig. 14 and 15, one can observe how the
system was able to process all assets properly. Scalability, in theory, should be
ensured by the websocket protocol, where a websocket server is able to service
hundreds of thousands of clients without significant lag. However, when running
experiments in a central server as we do in this paper, the computational cost
of distributed Recurrent Neural Networks must be taken into account. In our
case, we set the maximum number of epochs of the Recurrent Neural Network
to 100.

In a real industrial scenario, the real-time functionality of the system is
guaranteed by the fact that the training time of the Recurrent Neural Network
is much lower than the time in between failures or events of interest of a typical
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industrial machine. This applies even if modest computational resources are
assumed (see [29] for an extended discussion).

16 17 18 9 20
>00 21 22 23 24 25

BN, SANRNNA
750 10001250
time

Figure 14: Output from 25 of the 46 assets in the data set with a number indicating the
identity of each asset. The pink line shows the scaled value of sensor 7, the green line shows
the predicted time to event and the black line shows the real time to event.
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Figure 15: Clusters formed for the assets in the data set. Note how clustering seems to be
strongly dominated by the environmental condition, and how the five machines corresponding
to FD001 and FDO0O03 (sea level) are clustered together. Environmental conditions cause the
algorithm to cluster together machines corresponding to the C-MAPPS and PHMO0S8 data sets
for a few time steps.

3.3.5. Lean

In order to test the system for leanness, a different prognostics scenario was
implemented to test how much of the architecture and code had to be changed
for the system to be able to process it. In this section, we summarize the
changes performed in the code and we present a first version of our results for
this experimental case. Concretely, we focused on predicting recurrent electronic
control unit faults in the gas turbines of a major international manufacturer.

As expected from the design of the architecture, the system was able to
operate by just modifying the code belonging to the Virtual Asset. This had to
be done in order to process the data, which came in a different format than for
the case of C-MAPPS.

Compared to the C-MAPPS case, the Virtual Asset agent required about
140 additional lines of code, programmed to execute the following tasks:

1. Basic import, sampling and standardization of gas turbine data.
2. Segmentation of gas turbine data according to different kinds of events.

3. Adaptability to new scenarios: some machines did not record any elec-
tronic control unit fault. This, in practice, meant that until data was
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shared from other turbines, their Digital Twins could not train their prog-
nostics algorithm.

No fine tuning was performed for the gas turbine prognostics and clustering
algorithms, and the same configuration as in C-MAPPS was used. Figs. 16 and
17 show the initial results.

. 1
i Machi Sensor TC1
N —— Predict. TTE
—— Actual TTE
Machine5
Machine9
200 A
100 A
0 T T T } T T
0 100 200 300 400 500 600 700

time

Figure 16: Output from the Digital Twins of asset nr. 2, 5 and 9 in a real industrial scenario:
note how despite no tuning is done in the training of the Recurrent Neural Network, the
Digital Twins are able to output some rudimentary predictions for electronic control unit
faults
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Figure 17: Clusters formed for the assets in the data set for the real industrial experiment.
From our qualitative knowledge of the asset fleet, we postulate what we think should be the
clustering structure. Note how the predicted structure does not differ too much from the one
that we finally obtain.

3.8.6. Resilient

Resilience was tested as described in Section. 3.1.3. The system was bench-
marked against several system-fault scenarios, all of them tested for Scenario
2 of Section. 3.3.3. Faults were introduced in sensors 2, 5, 7, 9, 11, and 14 in
assets 1 and 2.

1. Flat reading fault: assets were made to experience flat reading faults.
Asset 1 experienced its fault from the beginning of its operational cycle,
and asset 2 experienced it at about half-life. Fig. 18 shows how the assets
were clustered away from the rest of the fleet, and avoided contaminating
the rest of predictions. Despite flat reading faults, the fleet was still able
to replicate the flexible properties of Scenario 2.
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Figure 18: Clusters formed for the assets in the data set for the case of flat reading sensor
faults. Note how assets containing sensor faults are automatically separated from the rest
of the fleet, and how the normal fleet clustering is not affected. The areas shaded in gray
indicate the areas where the clustering algorithm failed to cluster some of the assets properly.

2. Outliers: regular outliers of 5000000 points were introduced every 30th
time step. The Social Platform was able to cluster assets with outliers
together properly for most of the time while maintaining the rest of the
clusters known to the fleet (see Fig. 19). Despite not using a quartile-based
scaler specially designed to remove outliers, the prognostics algorithm op-
erated well in their presence, generally returning similar predictions to
the case with no outliers. This could be caused by the outlier’s periodic
nature, likely to have been learnt by the Recurrent Neural Network.
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Figure 19: Clusters formed for the assets in the data set for the case of assets with recurrent
outliers. Note how assets containing sensor faults are automatically separated from the rest
of the fleet, and how the normal fleet clustering is not affected. The areas shaded in gray
indicate the areas where the clustering algorithm failed to cluster some of the assets properly.

3. Drift: a positive exponential drift with a cap at very large numbers was
introduced in the trajectories of the aforementioned assets. An exponential
drift was chosen because it represents the extreme case where the sensors
end up malfunctioning completely. The Social Platform reacted clustering
the assets presenting faulty sensors together and separating them from the
rest of the fleet (see Fig. 20). Other kinds of drift were also implemented
(linear, and quadratic), and the ability of the system to react to these
depended on the metric used in the clustering algorithm and the drift
magnitude.
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Figure 20: Clusters formed for the assets in the data set for the case of assets with exponential
drift. Note how assets containing sensor faults are automatically separated from the rest of
the fleet, and how the normal fleet clustering is not affected. The areas shaded in gray indicate
the areas where the clustering algorithm failed to cluster some of the assets properly.

Additionally, to test the system against complete agent failure, agents were
terminated at different levels of the hierarchy by killing their corresponding
Python processes. Terminating a Digital Twin or Virtual Asset resulted in the
loss of the ability of the system to output predictions for their corresponding
asset, but did not affect the behaviour of the other agents in the system. The
Social Platform automatically kept the last data received from the correspond-
ing Digital Twin and repeatedly used that data for clustering and data sharing.
Terminating the Social Platform had a different effect: the Digital Twins are
programmed to await platform input to continue with their prognostics algo-
rithm thus stopping the platform stops the system altogether.

4. Conclusion and future work

We present and rigorously test an Industrial Multi Agent System for real-
time distributed fleet prognostics. This system can adapt to the characteristics
of real asset fleets that make of prognostics a challenging problem: sensor faults,
asset heterogeneity, change of environmental and asset conditions, challenging
data preparation etc. We conclude that the presented system clearly shows the
benefits long postulated to be inherent to these systems, which can be sum-
marised as the ability of operating in dynamic and heterogeneous scenarios.
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Additionally, we test the approach known as distributed collaborative prognos-
tics, that is, the idea that by sharing data among similar assets more accurate
predictions can be achieved. We observe that this is the case especially when as-
set fleets exhibit a clear clustering tendency. However, we also observe that due
to the flexibility of Recurrent Neural Networks, including data from different
assets in the Digital Twin’s training is less damaging to the prediction accuracy
than it may be expected (for a fleet of 10 assets, the difference in accuracy peaks
at 256%). Distributed collaborative learning is found to be specifically pertinent
in scenarios that fulfil any of the following properties:

e Presence of sensor faults.
e Limited processing capabilities.
e Large fleet heterogeneity.

Which is the case of most continuously monitored large fleet of assets. From
a practical perspective, the only constraint on scalability is the computational
cost of Deep Learning Algorithms. Although this is not a problem from a
theoretical perspective (the system assumes a physically distributed fleet), from
an experimental perspective this is found to be a limiting factor for the size of
the experiments that can be tested in a single server.

4.1. Future work

Future work is derived directly from the limitations of the presented study,
that is from the fact that a simulated data set is used (C-MAPPS), and that a
relative low number of synthetic assets are dealt with (46). This number is low
with respect to real industrial fleets but very high compared to other published
research. Thus, further experimentation with larger and more varied fleets of
assets is advisable. Next steps are to optimize the proposed system for a real
industrial fleet with several failure types occurring at the same time, to test for
the efficacy of the presented clustering algorithm in different scenarios, and to
add a layer of preventive maintenance optimization in the Social Platform.
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Centre for Digital Built Britain. The authors would like to thank Andrew Ben-
ton and his colleagues at Rutgers University for their help in overcoming some
of the programming challenges encountered when running the experiments.
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Ref. Year | Distr. | Flex. | Adapt. | Scal. | Lean | Resil
[51] | Hadden G. D. et al. | 2002 | Y N N Y Y Y
[52] | Zhou J. et al. 2005 | 'Y Y Y Y N Y
[53] | Saha S. et al. 2008 |Y Y N Y Y Y
[54] | Ribot P. et al. 2008 |Y N N Y Y Y
[55] | Chen C. et al. 2012 | N Y N Y Y N
[56] | Luca Fasanotti 2014 | Y Y Y Y N Y
[57] | Desforges X. et al. 2014 | Y Y N Y N Y
[58] | Wang J. et al. 2015 | 'Y Y Y Y N Y
[59] | Yu L. et al. 2016 | N N Y Y Y N
[8] Canizo M. et al. 2017 | N Y Y Y Y N
[60] | Kiangala K. S. et al. | 2018 | Y Y N Y Y Y

Table 1: Table featuring articles that propose architectures, experiments or implementations
pertinent to distributed real-time prognostics. Note how Adaptability and Leanness are the
properties that appear in fewer implementations, whilst all of them are judged to fulfil scala-
bility (although only some of them demonstrate it experimentally).

6. Appendix: other studies

Table 1 features previous research pertinent to distributed, real-time prog-

nostics or general Multi Agent Architectures.
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