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Abstract

Learning from data which associations hold and are likely to hold in the future is a funda-
mental part of scientific discovery. With increasingly heterogeneous data collection practices,
exemplified by passively collected electronic health records or high-dimensional genetic data
with only few observed samples, biases and spurious correlations are prevalent. These are
called spurious because they do not contribute to the effect being studied. In this context, the
modelling assumptions of existing statistical tests and causal inference methods are often found
inadequate and their practical utility diminished even though these models are increasingly
used as decision-support tools in practice. This thesis investigates how modern computational
techniques may broaden the fields of hypothesis testing and causal inference to handle the
subtleties of large heterogeneous data sets, as well as simultaneously improve the robustness
and theoretical understanding of machine learning algorithms using insights from causality and
statistics.

The first part of this thesis is concerned with hypothesis testing. We develop a framework for
hypothesis testing on set-valued data, a representation that faithfully describes many real-world
phenomena including patient biomarker trajectories in the hospital. Using similar techniques,
we develop next a two-sample test for making inference on selection-biased data, in the
sense that not all individuals are equally likely to be included in the study, a fact that biases
tests if not accounted for and if the desideratum is to obtain conclusions that are generally
applicable. We conclude this section with an investigation of conditional independence in high-
dimensional data, such as found in gene expression data, and propose a test using generative
adversarial networks. The second part of this thesis is concerned with causal inference and
discovery, with a special focus on the influence of unobserved confounders that distort the
observed associations between variables and yet may not be ruled out or adjusted for using
data alone. We start by demonstrating that unobserved confounders may bias substantially
the generalization performance of machine learning algorithms trained with conventional
learning paradigms such as empirical risk minimization. Acknowledging this spurious effect,
we develop a new learning principle inspired by causal insights that provably generalizes to



test data sampled from a larger set of distributions different from the training distribution. In
the last chapter we consider the influence of unobserved confounders for causal discovery.
We show that with some assumptions on the type and influence on the nature of unobserved
confounding one may develop provably consistent causal discovery algorithms, formulated as a
solution to a continuous optimization program.
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Chapter 1

Introduction

Symmetries are central to our understanding of nature. They define a certain invariance and
regularity in the behaviour of a system when observed from different viewpoints. For instance,
the ability to repeat experiments at different places and at different times is based on the
invariance of the laws of nature under space-time translations. Symmetry principles provide
structure and coherence to the laws of nature and by implication structure and coherence to
experimental observations.

In every day life, it may seem obvious that systems or objects should not change when we
change the perspective with which we observe them – and indeed we would be living in a very
different world if this weren’t the case – but the consequences with respect to the underlying
laws of nature reach much further, and in fact the concrete mathematical implications of
symmetries for the physical world were not shown until 1918. That year, Emmy Noether [123]
demonstrated that for each symmetry that exists in nature there must also exist a corresponding
quantity (such as the energy of a system or its momentum) that is conserved in time. In a
formal sense, symmetry principles dictate the form of the laws of nature, a fact that quickly
came to shape the discovery of new physical laws during the twentieth century. The attempt to
use symmetries in nature to infer the fundamental laws of physics proliferated, and with it the
hope that conserved quantities measured in experiments would allow one to work backward to
find out the underlying laws of nature. The concept has become so powerful that in the words
of Nobel laureate P. W. Anderson "It is only slightly overstating the case to say that physics is
the study of symmetry." [2].

A similar excitement permeates the fields of Statistics and Machine Learning today. The
fundamental relationships between different variables, when measured through independent
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Introduction

observations in well-designed experiments, leave a statistical footprint that characterizes the
underlying data generating system. For instance, the fact that lung cancer is more often
observed together with a history of smoking than otherwise suggests that there may be a
more fundamental dependency between the two. Statistical covariance or dependence between
measured variables may be used, just as symmetries in the natural world, to ground more
fundamental relationships between variables and the events they represent. The data gathered
may not only describe what happened in a finite number of experiments but transcend the
actual observations made and point to a general property of an underlying data generating
process, a property of the fundamental laws governing the system. Quantifying the evidence
for a particular dependency structure in the distribution of data, and separating it from chance
occurrences or coincidences, is the essence of hypothesis testing.

Hypothesis testing is the practice of defining a function of the data that provably discriminates
between two statistical hypotheses of interest, such as the hypothesis that lung cancer and
smoking are statistically independent variables, or the hypothesis that groups of smokers
and non-smokers have the same distribution of lung cancer outcomes, for example. When
hypotheses are well-posed and the data well-behaved, for instance having observations sampled
from a known distributional family or collected independently from a well-designed experiment,
hypothesis tests have demonstrated beyond reasonable doubt countless dependencies between
variables that inform our everyday decisions, such as refraining from smoking to avoid lung
lancer [26, 135].

However, even if the analogy between symmetries in physics and dependencies in data is
compelling, our present understanding of data and its underlying data generating mechanism
is rather incomplete. Beyond the difficulties of data recording and its inherent biases, not all
questions regarding the structure of the data generating process can necessarily be answered
with an estimated data distribution. Statisticians established an association between smoking
and lung cancer in the 1950s but were not able, from data alone, to say with certainty whether
forcing people to quit smoking subsequently reduces their risk for cancer. Questions of this
type refer to likely distributions of outcomes after interventions (e.g. the distribution of lung
cancer after forcing people to stop smoking), a system that may exhibit different dependencies
between variables that observed without intervening. This type of inference is fundamentally
not accessible without further assumptions on the causal relationships between variables.

Causal associations, as opposed to statistical association, describe a kind of relationship
between variables in a system that supports reasoning about the consequences of variable
manipulations, and about counterfactual scenarios. It is one that describes a system under
changing environments and one that supports human explanation as it mirrors the way humans
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1.1 Contributions

model the world (through cause and effect). A causal model can be thought of as a collection
of interventional or counterfactual distributions in contrast to statistical models that may be
defined as a collection of observational distributions. Data has much to contribute to the study
of causality. For instance, precise hypotheses may be clearly formulated in causal diagrams
whose consequences may be tested and compared to statistical constraints in observational
data [129]. For a given causal graph, one may build algorithms to quantify causal relationships
from data – adjusting for explicit confounding factors – and one may even discover the causal
structure from scratch with explicit assumptions on the relationship between statistical and
causal associations. The study of dependencies in data and its connections to causality is
increasingly important as data science is applied in decision-making contexts.

Just as symmetries revolutionized our understanding of physics, causal inference and hypothesis
testing conducted on increasingly large and heterogeneous datasets, from medicine, economics,
sociology or climate science, promise to uncover deeper insights about the nature of variable
interactions and underlying processes. An important challenge, however, is that modern datasets
do not lend themselves naturally to the requirements of current hypothesis testing and causal
inference methods. Modern datasets are passively collected, heterogeneous, and biased in a
myriad of ways with measurement errors, missingness and inconsistencies. Unless properly
accounted for, potential biases may call any data-driven conclusion into question even in the
infinite data regime.

1.1 Contributions

This dissertation advances the state of the art of hypothesis testing and causal inference.
It highlights some of these biases and develops tools and algorithms that ensure correct
conclusions in the presence of biased data. The motivation for the proposed techniques lie in
specific problems in medicine and biology, where these problems are acute, yet the potential
for improving care in a data-driven, individualized fashion is enormous.

In the following paragraphs I summarize the contributions presented in each of the subsequent
chapters, and list all author publications in Table 1.1. All chapters are self-contained, divided
into investigations of hypothesis testing in the first part of this dissertation and into investigations
of the causal structure of data and its benefits for robust prediction and inference in a second part.
Some overlap in the background covered in each chapter is present, but allows for reading each
chapter independently of each other and should not disturb the overall flow of the dissertation.
We invite the reader to explore each chapter in no particular order.
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1.1.1 Kernel hypothesis testing for set-valued data

In the second chapter, we present a general framework for kernel hypothesis testing on distri-
butions of sets of individual examples. Sets may represent many common data sources such
as groups of observations in time series, collections of words in text or a batch of images of a
given phenomenon. This observation pattern, however, differs from the common assumptions
required for hypothesis testing: each set differs in size, may have differing levels of noise,
and also may incorporate nuisance variability, irrelevant for the analysis of the phenomenon
of interest; all features that bias test decisions if not accounted for. We propose to interpret
sets as independent samples from a collection of latent probability distributions, and introduce
kernel two-sample and independence tests in this latent space of distributions. We prove the
consistency of these tests and observe them to outperform in a wide range of synthetic and real
data experiments, where previously heuristics were needed for feature extraction and testing.

1.1.2 A kernel two-sample test with sample selection bias

In the third chapter, we propose new test that acknowledges for bias in the data collection
mechanism. Hypothesis tests, like other data driven methods, may inherit biases embedded in
the data collection mechanism (some instances often being systematically more likely included
in our sample) and consistently reproduce biased decisions. Our contribution is a two-sample
test that adjusts for selection bias by accounting for differences in marginal distributions of
confounding variables. Our test statistic is a weighted distance between samples embedded in a
reproducing kernel Hilbert space, whose balancing weights provably correct for certain kinds
of bias. As in other chapters, we conclude with controlled experiments that highlight the benefit
of this adjustment and explore the use of our test on treatment effect studies from economics.

1.1.3 Conditional independence testing using adversarial neural networks

In the fourth chapter, we consider the hypothesis testing problem of detecting conditional
dependence, with a focus on high-dimensional feature spaces, such as may be encountered in
gene expression data. Our contribution is a new test statistic based on samples from a generative
adversarial network designed to approximate directly a conditional distribution that encodes
the null hypothesis, in a manner that maximizes power (the rate of true negatives). We show
that such an approach requires only that density approximation be viable in order to ensure
that we control type I error (the rate of false positives); in particular, no assumptions need to
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be made on the form of the distributions or feature dependencies. Using synthetic simulations
with high-dimensional data we demonstrate significant gains in power over competing methods.
In addition, we illustrate the use of our test to discover causal markers of disease in genetic
data.

1.1.4 Accounting for unobserved confounding in domain generalization

The fifth chapter starts the second part of this dissertation investigating the influence of bias
due to unobserved confounders on the prediction generalization performance of common
learning principles such as empirical risk minimization. We argue for defining generalization
with respect to a broader class of distribution shifts (defined as arising from interventions in
the underlying causal model), including changes in observed, unobserved and target variable
distributions. Our contribution is a new robust learning principle that may be paired with
any gradient-based learning algorithm. This learning principle has explicit generalization
guarantees, and relates robustness with certain invariances in the causal model, clarifying why,
in some cases, test performance lags training performance.

1.1.5 Scoring DAGs with dense unobserved confounding

Unobserved confounding is also one of the greatest challenges for causal discovery. The case in
which unobserved variables have a potentially widespread effect on many of the observed ones
is particularly difficult because most pairs of variables are conditionally dependent given any
other subset. In the sixth chapter we show that beyond conditional independencies, unobserved
confounding in this setting leaves a characteristic footprint in the observed data distribution that
allows for disentangling spurious and causal effects. Using this insight, we demonstrate that
a sparse linear Gaussian directed acyclic graph among observed variables may be recovered
approximately and propose an adjusted score-based causal discovery algorithm that may be
implemented with general purpose solvers and scales to high-dimensional problems. We find,
in addition, that despite the conditions we pose to guarantee causal recovery, performance in
practice is robust to large deviations in model assumptions.
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Table 1.1: Author publications and preprints.

Scoring DAGs with Dense Unobserved Confounding
A Bellot, M van der Schaar, 2020
Accounting for Unobserved Confounding in Domain Generalization
A Bellot, M van der Schaar, 2020
Kernel Hypothesis Testing with Set-valued Data
A Bellot, M van der Schaar. Conference on Uncertainty in Artificial Intelligence, 2021
AI-based Hypothesis Testing in Individuals with CF
A Bellot, R A Floto, M van der Schaar, Pediatric Pulmonology (Abstract) 2020
Logistic regression and machine learning predicted patient mortality from large sets of diagnosis codes comparably
Cowling, T. E., Bellot, A. , and others. Journal of Clinical Epidemiology, 2020
A Kernel Two-Sample Test for Unbiased Decisions
A Bellot, M van der Schaar, Conference on Uncertainty in Artificial Intelligence, 2021
One-year mortality of colorectal cancer patients: development and validation of a prediction model
Cowling, T. E., Bellot, A., Boyle, J., and others. British Journal of Cancer, 2020
Predicting the Risk of Inpatient Hypoglycemia With Machine Learning using Electronic Health Records
Y Ruan, A Bellot, Z Moysova, GD Tan, A Lumb, and others. Diabetes care, 2020
Flexible Modelling of Longitudinal Medical Data: A Bayesian Nonparametric Approach
A Bellot, M van der Schaar, ACM Transactions on Computing for Healthcare, 2020
Learning overlapping representations for the estimation of individualized treatment effects
Y Zhang, A Bellot, M van der Schaar, AISTATS, 2020
Learning Dynamic and Personalized Comorbidity Networks from Event Data using Deep Diffusion Processes
Z Qian, AM Alaa, A Bellot, J Rashbass, M van der Schaar, AISTATS, 2020
Conditional Independence Testing using Generative Adversarial Networks
A Bellot, M van der Schaar Advances in Neural Information Processing Systems, 2019
Boosting transfer learning with survival data from heterogeneous domains
A Bellot, M van der Schaar, AISTATS, 2019
Multitask boosting for survival analysis with competing risks
A Bellot, M van der Schaar, Advances in Neural Information Processing Systems, 2018
Boosted trees for risk prognosis
A Bellot, M van der Schaar, Machine Learning for Healthcare Conference, 2018
A hierarchical bayesian model for personalized survival predictions
A Bellot, M Van der Schaar, IEEE journal of biomedical and health informatics, 2018
Tree-based bayesian mixture model for competing risks
A Bellot, M van der Schaar, AISTATS, 2018
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Part I

Hypothesis Testing with Heterogeneous
Data
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Chapter 2

Kernel Hypothesis Testing with
Set-valued Data
In this chapter, we present a general framework for kernel hypothesis testing on distributions of
sets of individual examples. Sets may represent many common data sources such as groups
of observations in time series, collections of words in text or a batch of images of a given
phenomenon. This observation pattern, however, differs from the common assumptions required
for hypothesis testing: each set differs in size, may have differing levels of noise, and also may
incorporate nuisance variability, irrelevant for the analysis of the phenomenon of interest; all
features that bias test decisions if not accounted for. In this chapter, we propose to interpret
sets as independent samples from a collection of latent probability distributions, and introduce
kernel two-sample and independence tests in this latent space of distributions. We prove the
consistency of these tests and observe them to outperform in a wide range of synthetic and real
data experiments, where previously heuristics were needed for feature extraction and testing.

Introduction

Hypothesis tests are used to answer questions about a specific dependency structure in data
(e.g. independence between variables, equality of distributions between samples etc.). They
are used in applications across the sciences where they serve as an essential tool to summarize
experimental data and quantify the evidence for discoveries on the relationship of variables of
interest [103]. As a consequence, a growing body of work is constantly revisiting established
modelling assumptions to allow for consistent testing in increasingly heterogeneous data
sources. Examples include non-parametric tests formulated as distances in Hilbert space
[73, 72, 70, 198], tests based on neural network representations [108, 114, 11] and others that
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Figure 2.1: We consider an example from electronic health records to illustrate the proposed approach.
Right panel: we observe irregular, uncertain biomarker measurements over time in two groups of
patients (treated and control) colored with different shades of red and blue, the question being whether
these populations have the same trajectory in distribution. Middle panel: we encode the uncertainty
in each patient trajectory by a probability distributions on the space of observations. Left panel: The
two-sample problem is to test for equality in distribution on the space of patient-specific distributions,
rather than actual observations. This two-level hierarchy allows for noisy inputs and irregular input sizes.
A description of the notation and more details can be found in Section 2.2.1.

have significantly advanced the reach of hypothesis tests towards high-dimensional data of
unknown distribution.

Almost universally however, non-parametric tests require a fixed presentation of data (e.g. each
instance living in Rd) and do not account for non-homogeneous noise patterns across examples.
Many problems do exhibit these properties, for example with medical data, where each patient
has different levels of variation and have observations irregularly measured over time. A similar
pattern is observed in many other domains involving time series and bagged data (e.g. multiple
images of the same phenomenon).

Intriguingly, there exists an appropriate representation of data that naturally encodes a more
flexible observation pattern, namely each example represented as a set of observations (i.e. an
unordered collection of multivariate observations), each set of potentially irregular length and
sampled from potentially different distributions. In particular, sets do not presuppose a fixed
representation of data (sets may be of different length) and each set may be associated with
a unique distribution that encodes its particular variation pattern (potentially different from
other sets). Testing on sets implicitly shifts the question of interest from a hypothesis on groups
of actual observations to an hypothesis on groups of latent distributions assumed to represent
each observed example or set. See Figure 2.1 for an illustration of this interpretation for the
two sample problem. This set-up is common in regression problems where one seeks to learn
a mapping from distributions to associated labels [170, 171], but is unexplored in hypothesis
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testing. The goal of this chapter is to introduce kernel two-sample and kernel independence
tests defined on set-valued examples.

We will show that tests defined in this space appropriately encode individual-level heterogeneity,
are much more flexible, do not require heuristic pre-processing of data, and are found to be
more powerful than alternatives. We propose an approach applicable to any kernel-based test
that includes, in addition to two-sample and independence tests described here, conditional
independence tests and three-variable interaction tests.

The technical challenge to achieve consistency of test decisions is that latent distributions on
which tests are defined are not available (and instead are approximated with each available set
of observation). This introduces an additional layer of uncertainty that must be bounded to
derive well-defined asymptotic distributions for the proposed test statistics. For this reason, we
put emphasis also on the quality of finite-dimensional approximations of the proposed tests,
with approaches to minimize test statistic variance and to tune hyperparameters for maximum
power.

Our contributions are three-fold:

1. We formally describe tests on set-valued data, and to the best of our knowledge for the
first time.

2. We demonstrate the consistency of these tests for the two-sample and independence
testing problems.

3. We validate the proposed tests and optimization routines on simulated experiments
that show that one may consistently discriminate between hypotheses on data that was
previously not amenable to hypothesis testing.

2.1 Background

The tests presented in this chapter are formally defined on distributions. Testing on distributions
is the problem of defining a test statistic that maps distributions to a scalar that quantifies
the evidence for a hypothesis we might set on the relationships in data. However, we do not
have access to probability distributions themselves, but rather distributions are observed only
through sets of samples,

{x1, j}n1
j=1, ...,{xN, j}nN

j=1. (2.1)
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Each {xi, j}ni
j=1 is a set of ni individual observations xi, j (typically in Rd). We assume that

{xi, j}ni
j=1 are i.i.d samples from an unobserved probability distribution Pi. The probability

distributions {Pi}N
i=1 themselves have inherent variability, such as can be expected for example

from different medical patients. We assume each one of them to be drawn randomly from some
unknown meta-distributionMP defined over a set of probability measures P . We illustrate this
set-up in Figure 2.1 for the two-sample problem (more details in Section 2.2.1).

2.1.1 Embeddings of Distributions

Let X be a measurable space of observations. We use a positive definite bounded and mea-
surable kernel k : X ×X → R to represent distributions Pi on X , and independent samples
{xi, j}ni

j=1, as two functions µPi , and µ̂Pi respectively, called kernel mean embeddings [121].
Both are defined in the corresponding Reproducing Kernel Hilbert Space (RKHS)Hk by,

µPi :=
∫
X

k(x, ·)dPi(x), µ̂Pi :=
1
ni

∑
x∈{xi, j}

ni
j=1

k(x, ·).

To make inference on populations of distributions, the desiratum however is on defining useful
representations of distributionsMP on the space probability measures, rather than on the space
of observations. [38] showed that one may do so analogously to the definition of kernels on X
by treating mean embeddings µP themselves as inputs to kernel functions (replacing x ∈ X in
the conventional learning setting as inputs to k). See eq. (2.2) below.

Accounting for variance in embedding approximations. In practice, each set representation
µPi is limited to be approximated by irregularly sampled observations {xi, j}ni

j=1. Not all mean
embeddings µP are expected to provide the same amount of information about their underlying
distribution P. Indeed, the empirical mean embeddings µ̂Pi converge to their population
counterpart at a rate O(1/√ni) (see e.g. Lemma 1 in the Appendix of this chapter and also
[164]) in their set size ni. Rather than assuming access to a uniform sample of distributions
{Pi}N

i=1 from MP, like we did with the raw observations {xi, j}ni
j=1, we may account for

this irregularity and uncertainty in approximation by interpreting the set of distributions
as a weighted sample {(Pi,wi)}N

i=1 ∼MP. Each weight quantifying the accuracy of the
approximation of each distribution with the limited samples available. The corresponding
population and empirical mean embedding in this space may be written as,

µM :=
∫
P

K(µP, ·)dM(P), µ̂M :=
N

∑
i=1

wiK(µPi, ·). (2.2)
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We will make use of the Gaussian kernel between distributions defined K(µP,µQ) := exp(−||µP−
µQ||2HK

/2σ2) [38, 120]. Note that for kernels on X , their RKHS consists of functions X → R,
while the kernel K lives on the space of distributions on X , P(X ), and its RKHS consists of
functions P(X )→ R. We may use K to learn from samples that are individual distributions,
rather than individual observations [38].

Relationships with learning on distributions. With this construction (i.e. kernels evaluated
on mean embeddings) [170] investigated generalization performance in distributional regres-
sion: regressing to a real-valued response from a probability distribution. Results that were
subsequently extended to study distributional regression for causal inference [112] and for
transfer learning [24]. A technical contribution of this chapter is to extend these results to
demonstrate consistent hypothesis testing on distributions.

2.1.2 Hypothesis Testing with Kernels

The advantage for hypothesis testing of mapping distributionsM andM′ to functions in an
RKHS is that we may now say thatM andM′ are close if the RKHS distance ||µM−µM′||HK

is small [70]. This distance depends on the choice of the kernel K and k; a crucial property of
the embeddings is that for certain kernels the feature map is injective. These kernels are called
characteristic [165]. Probability distributions may be distinguished exactly by their images in
the RKHS, and also ||µM−µM′||HK is zero if and only if the distributions coincide [70]. From
the statistical testing point of view, this coincidence axiom is key as it ensures consistency of
comparisons for any pair of different distributions.

As a key property of the set-up we have introduced, in Theorem 2.2 [38] demonstrated that
for well known kernels, such as the Gaussian kernels, if used in both levels of the embedding
and defined on a compact metric space the resulting embedding is injective (i.e. kernels are
characteristic)1.

The empirical version of the RKHS distance, however, will not necessarily be exactly zero even
if the distributions do coincide. Some variability is to be expected due to the limited number of
samples, and in contrast to conventional kernel tests, in the case considered here also due to the
variability in the estimation of set embeddings. Instead of testing on an i.i.d. sample {µPi}N

i=1,
we are testing over the set {µ̂Pi}N

i=1. There is an additional level of uncertainty which must be
accounted for.

1Theorem 2.2 [38] technically shows that such kernels are universal, but universal kernels on compact metric
space are known to be characteristic, as shown in Theorem 1 [70].
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In practice, tests are constructed such that a certain hypothesis is rejected whenever a test
statistic exceeds a certain threshold away from 0 [103]. Then, short from achieving perfect
discrimination between two hypotheses, the goal of hypothesis testing is to derive a threshold
such that false positives are upper bounded by a design parameter α and false negatives are as
low as possible.

2.1.3 Related work

Two-sample and independence testing are two of the most commonly used of all statistical
procedures. Classical approaches to these problems apply to univariate data with high power
only on restricted classes of alternative hypotheses. These include for the two-sample problem:
Hotelling’s two-sample t-squared statistic [79], Kolmogorov-Smirnov two-sample test and
Pearson’s chi-squared test [132], and for the independence problem: Pearson’s correlation
(e.g. [140]) and Spearman’s rank correlation coefficient (e.g. [193]), among others. With
increasingly heterogeneous data collection practices and driven by a need to handle more
complex data types, a range of recent nonparametric tests have been developed, applicable to
multivarite and structured data, including tests based on distances in reproducing Kernel Hilbert
spaces [71, 69, 70], mutual information criteria using permutation techniques [18] and using
permutation techniques more generally [19]. Deep learning has also emerged as an alternative
for defining tests on structured objects. [114] define classifier two-sample tests and [108] use
deep kernels to embed structured objects. Tests in most of these cases, however, are defined
directly on the space of observations, it is not clear how to input examples of varying sizes, or
how to account for the uncertainty in individual observations especially if these change across
sets.

In the context of kernel methods, note that kernels defined on sets directly [95], measuring
the similarity between sets by the average pairwise point similarities between the sets, are not
known to be characteristic. Attempts have also been made to define kernels on the space of
distributions, including probability product kernel [84], the Fisher kernel [81], diffusion kernels
[98] and kernels arising from Kullback-Leibler divergences [119], none of them known to be
characteristic and in this case with the shortcoming that many of the above are parameterized
by a family of densities which may or may not hold in data.

We make a note that accommodating for input uncertainty has connections with robust hypoth-
esis testing. These tests attempt to explicitly enforce invariances in test statistics in a certain
uncertainty ball to remove irrelevant sources of variation [62, 75]. Other types of invariances
can also be enforced, for instance [101] use features designed to be invariant to additive noise
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and use distances between those representations for hypothesis testing. One may also use a
model-based approach to capture this uncertainty, for instance [15] use Gaussian processes
and compare posterior distributions. More generally, also work in the functional data analysis
literature [196, 126] uses a model-based approach to testing sets that represent functions.

2.2 Hypothesis Tests on Sets

In the following sections, we propose tests to evaluate two common hypotheses: the two sample
problem of testing equality of distributions in two samples, and the independence problem
of testing whether joint distributions in paired samples coincide with the product of their
marginals.

For both tests, the exposition mirrors well-known results in kernel hypothesis testing which we
will only briefly describe (see [70, 73] for more background). The contribution of this chapter
is to show that tests defined with a second level of sampling are consistent and to show that
correctly weighting representations according to their set size is most efficient.

Algorithm. We may summarize hypothesis testing in this context as follows:

1. Embed the distributions {Pi}N
i=1 into an RKHS using approximations of the mean em-

beddings {µ̂Pi}N
i=1 computed with independent samples {xi, j}ni

j=1 ∼ Pi.

2. Define test statistics on this feature representations to test for a certain hypothesis or
dependency structure inM.

2.2.1 The two sample problem

Consider a first collection of sets of observations, each i-th set denoted {xi,s}ni
s=1 ∼ Pi, for a

total of N such sets with distributions {Pi}N
i=1 ∼MP, and define similarly a second collection

of sets, each j-th set {y j,s}
n j
s=1 ∼Q j, for {Q j}M

j=1 ∼MQ. The problem we consider is to test
whether,

H0 :MP =MQ or else H1 :MP ̸=MQ, (2.3)

holds on the basis of the observations available in each set. We illustrate this problem in Figure
2.1. The proposed test statistic approximates the square of the RKHS distance between densities
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MP andMQ, also called Maximum Mean Discrepancy (MMD), which may be decomposed
as follows [70],

MMD2 := EP,P′∼MPK(P,P′)+EQ,Q′∼MQK(Q,Q′)−2EP∼MP,Q∼MQK(P,Q), (2.4)

where K is the kernel on distributions given after equation (2.2). We denote M̂MD
2

the
empirical estimator of the MMD2 with expectations replaced by averages, obtained from
independent samples {Pi}N

i=1 ∼MP and {Q j}M
j=1 ∼MQ. The proposed statistic is defined by

considering approximate mean embeddings of each distribution and considering the weighted
sample of their meta-distribution each of them represents,

R̂MMD
2

:=
N

∑
i, j=1

wPiwP jK(µ̂Pi, µ̂P j)+
M

∑
i, j=1

wQiwQ jK(µ̂Qi, µ̂Q j)−2
N,M

∑
i, j=1

wPiwQ jK(µ̂Pi, µ̂Q j).

R stands for robust. Assume for now that all weights are fixed wPi = 1/N,wQ j = 1/M for
all i, j. We return to the specification of weights in section 2.2.3. The asymptotic behaviour
of M̂MD

2
is well understood [70] and the test itself is extensively used in many applications

[109, 137]. However, these results do not extend trivially if each independent set exhibits an
additional source of variation due to the estimation of the mean embedding. In the following
proposition, we bound the contribution of this additional source of variation and show that under
the asymptotic regime where both the set sizes and number of sets grow larger, asymptotic
distributions are well defined.

Proposition 1 (Asymptotic distribution). Let two samples of data be defined as above and let
K be characteristic and LK-Lipschitz continuous. Then, under the null and alternative and
in the regime of increasing set size ni and increasing sample sizes N and M, the asymptotic
distributions of R̂MMD

2
coincides with that of M̂MD

2
.

Proof. All proofs are given in the Appendix.

In other words, the additional variability due to a second level of sampling converges to 0
asymptotically, and thus the asymptotic distribution converges to that of the well known MMD
two sample test of [70].

2.2.2 The independence problem

Independence tests are concerned with the question of whether two random variables are
distributed independently of each other. For this problem, we start with a collection of paired
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distributions {(Pi,Qi)}N
i=1 drawn from a joint distribution we denoteMPQ, and denote their

marginalsMP andMQ. The hypothesis problem is to determine whether,

H0 :MPQ =MPMQ or else H1 :MPQ ̸=MPMQ. (2.5)

Example. Consider an example from healthcare to illustrate this problem.

• A similar set-up as that given in Figure 2.1 may be used to illustrate independence testing
with set-valued data. A common problem is identify dependencies between biomarkers,
often observed irregularly over time in many patients. For instance cholesterol levels
{xi,t1, . . . ,xi,tni

} and blood pressure {yi,t1, . . . ,yi,tni
} may be observed over times t1, . . . , tni

in N individuals i = 1, . . . ,N. To formally test for dependencies between these samples
one must account for the irregularity in observation time and uncertainty in biomarker
reads. This can be done by considering instead distributions Pi and Qi and testing for
independence in this space directly.

As in the two-sample test, we may quantify the difference between distributions using the
RKHS distance ||µMPQ−µMP⊗µMQ||2HS. Kernels K, L are assumed characteristic; || · ||HS

is the norm on the space of HK →HL Hilbert-Schmidt operators, and ⊗ denotes the tensor
product, such that (a⊗b)c = a⟨b,c⟩. This distance is called the Hilbert Schmidt Independence
Criterion (HSIC) [71, 73].

Two empirical estimators can be written: one assuming access to independent samplesMPQ

and one with independent samples from each of the paired distributions sampled fromMPQ,

ĤSIC = Tr (KHLH)/N2, R̂HSIC = Tr (K̂HL̂H) ·N2, (2.6)

for kernel matrices with (i, j) entries Ki j =K(Pi,P j) = ⟨µPi,µP j⟩HK and Li j = ⟨µQi,µQ j⟩HL for
the population version and K̂i j =wPiwP j⟨µ̂Pi, µ̂P j⟩HK and L̂i j =wQiwQ j⟨µ̂Qi, µ̂Q j⟩HL with mean
embeddings replaced by their weighted finite sample counterparts for the robust alternative.
Assume for now that all weights are fixed wPi = 1/N,wQ j = 1/M for all i, j. The centering
matrix is defined by H = I− 1

N 11T and Tr is the trace operator.

Here, similarly to the two sample problem, approximations due to a second level of sampling
are well behaved and mirror those of the robust statistic for the two-sample problem. In
particular, that asymptotic distributions of the RHSIC and the HSIC coincide in the regime
with increasing set size and increasing sample size, making hypothesis testing with the R̂HSIC
consistent for the independence problem in equation (2.5).
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Proposition 2 (Asymptotic distribution). Let two samples of data be defined as above and let
K be characteristic and LK-Lipschitz continuous. Then, under the null and alternative and in
the regime of increasing set size ni and increasing sample size N, the asymptotic distributions
of R̂HSIC coincides with that of ĤSIC.

Independence testing with the ĤSIC has been studied in [73, 198, 85].

2.2.3 Practical remarks

We make a number of remarks on the practical application of our tests.

• Weights for high power. Set sizes in practice may be limited. In the asymptotic regime of
increasing number of sets but finite set size, the properties of the estimator may depend on
appropriately weighting sets for high power. The proposed weighting scheme addresses this
point.

Recall that each individual observation xi j is drawn independently from their respective
distributions Pi. Other factors of variations assumed to be common across sets, the variance
of the approximate embedding µ̂Pi is therefore proportional to 1/ni (i.e. the variation in
approximation of mean embeddings is due solely to diverging set sizes). When mean
embeddings have different variances, it is efficient to give less weight to mean embeddings
that have high variances. By efficient in this context, we mean highest asymptotic power of
tests based on mean embedding representations of sets.

For V -statistics the asymptotic power function is well known, and an argument involving
the delta method for differentiable kernels, expanded on in the Appendix, can be used to
determine the optimal weights to be given by wPi := ni/∑i ni for each i.

• Hyperparameters for high power. With a similar intuition, even though in theory we can
expect high power for any alternative hypothesis and any choice of kernel, with finite sample
size, some kernel hyperparameters will give higher power than others. The proposed tests
optimize the choice of kernels by choosing hyperparameters that minimize the asymptotic
variance under the alternative similarly to [169, 85]. But, in addition, we extend the optimiza-
tion to tune both the mean embedding to represent sets and the kernel used for comparisons
in Hilbert space. Please find more details in the Appendix.

• Low-dimensional approximations for large scale data. Testing on distributions as de-
scribed is often not scalable for even to large datasets, as computing each of the entries of the
relevant kernel matrices requires defining a high-dimensional mean embedding. To define
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test statistics on these representations we further embed the non-linear feature space Hk

defined by k into a random low dimensional Euclidean space using their expansion in Hilbert
space as a linear combination of the Fourier basis [146, 136]. If we draw m samples from the
Gaussian spectral measure, we can approximate the Gaussian kernel k by,

k(x,y)≈ 2
m

m

∑
j=1

cos(⟨ω j,x⟩+b j)cos(⟨ω j,y⟩+b j) = ⟨φ(x),φ(y)⟩,

where ω1, . . . ,ωm∼N (0,γ), b1, ...,bm∼U [0,2π], and φ(x)=
√

2
m [cos(ω1x+b1), ...,cos(ωmx+

bm)] ∈ Rm [136]. The mean embedding µP = EX∼Pφ(X) can then be approximated with
elements in the span of (cos(⟨ω j,x⟩+b j))

m
j=1. By averaging over the available ni samples in

Xi from the distribution Pi, the approximate finite-dimensional embedding is given by,

µ̂Pi,m =
1
ni

∑
x∈{xi j}

ni
j=1

√
2
m
(cos(⟨w j,x⟩+b j))

m
j=1 ∈ Rm.

2.3 Synthetic Data Experiments

The purpose of synthetic experiments will be to test power: the rate at which we correctly
reject H0 when it is false, as we increase the difficulty of the testing problems; and Type I
error: the rate at which we incorrectly rejectH0 when it is true.

In all experiments, α (the target Type I error) is set to 0.05, the number of time series is set to
N = 500, the number of observations made on each time series is random between 5 and 50,
and each problem is repeated for 500 trials.

Tests for empirical comparisons. To the best of our knowledge, no existing test naturally
accommodates for set-valued data with irregular sizes. Our approach to empirical comparisons
will be to coerce the data into a fixed dimensional vector in a well-defined manner, and evaluate
existing tests on this representation. To do so, we focus on time-series -like data which we
interpolate along the time axis with cubic splines and evaluate at a fixed number of time points.

• The following tests are evaluated for the two-sample problem. The MMD [70] with hyper-
parameters optimized for maximum power, two-sample classifier tests [114] which involve
fitting a deep classifier. We considered a recurrent neural network with GRU cells for
sequential data (C2ST-GRU) and the DeepSets approach of [192] modelling permutation
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Figure 2.2: Power (higher better) and Type I error (at level 0.05) on synthetic data. The rightmost panel
gives type I error with approximate control at the level α = 0.05 for all methods. Top row: two-sample
problem. Bottom row: independence problem. RMMD and RHSIC are the proposed tests.

invariance to be expected in sets (C2ST-Sets). We consider also the Gaussian process-based
test (GP2ST) by [15].

• For the independence problem we consider: the HSIC [73], the Randomized Dependence
Coefficient (RDC) [112] and Pearson Correlation Coefficient (PCC).

For all kernel-based tests, because their null distributions are given by an infinite sum of
weighted χ2 variables (no closed-form quantiles), in each trial we use 400 random permutations
to approximate the null distribution. All independence tests also use 400 random permutations
to approximate the null distribution. C2ST-based tests uses its asymptotic distributions under
the null for significance thresholds and GP2ST uses credible intervals. We give more details on
the implementation of each of these tests in the Appendix.

2.3.1 Two-sample problem

Experiment design. Each one of the two samples is defined by a family of N distributions
{Pi}N

i=1 we take to be Gaussian Pi = η sin(2πt)+N (0,σi +σ). The variability between the
{Pi}N

i=1 is specified by σi, drawn from a one-parameter inverse gamma distribution, which
mimics the behaviour of the meta-distribution and the observation pattern we may observe in
heterogeneous data. The difference between two populations of sampled distributions is the
mean amplitude η and/or shifts in baseline variance σ .
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2.3 Synthetic Data Experiments

Two-sample problems become harder whenever these parameters converge to the same value
in the two samples and are easier when they diverge. The sampled Gaussian distributions
themselves are not observable and, in turn, we have access to observations xi j ∼ Pi. Each xi j is
obtained by fixing t to t j ∼ U [0,1] and subsequently sampling from the Gaussian.

The result is two collections of noisy time series with non-linear dynamics. Each time series,
or set of observations, is irregularly sampled with noise levels that vary between sets.

Results. We report performance for the two sample problems in the top row of Figure 2.2.
Power is measured in three experiments: first, as we increase the difference in time series
amplitude (with equal variance σ = 0.1), second as we increase the observation variance (with
equal amplitude η = 1) between the two populations, and third as the dimension of each time
series increases (on data sampled with a single dimension with a difference in amplitude equal
to 0.25 and other dimensions with no difference). Type I error is shown as a function of the
number of samples.

All tests approximately control for type I error at the desired threshold. In terms of power,
we observe the RMMD to outperform across all experiments with an important contrast on
the difference in performance with the MMD. Even though using similar test statistics, the
RMMD much more faithfully captures the irregularity and uncertainty of every individual set
of observations. RMMD similarly outperforms C2ST-based tests, the strongest baselines, with
up to a two-fold increase in power for small differences in amplitude and variance.

2.3.2 Independence problem

Experiment design. We aim to construct pairs of distributions (Pi,Qi). Define the mean of
each distribution Pi as fi(t) := βi sin(2πt)+αit. Differently than in the two-sample problem,
the variability among the {Pi} appears in the amplitude and trend of the sine function, let
these be βi ∼ U [0.5,1.5] and αi ∼ U [−0.5,0.5]. Once these parameters are sampled, paired
distributions (Pi,Qi) are given by Pi = fi(t)+N (0,σ) and Qi = g( fi(t))+N (0,σ). Each
observation from this pair is obtained as in the two sample problem by fixing a random t and
sampling from the resulting distribution.

The difficulty of the problem is governed by two factors: g and σ . g determines the dependency
between the two functions. In every trial, g(x) is randomly chosen from the set of functions
{x2,x3,cos(x),exp(−x)}. Testing for dependency is hard also for increasing variance σ of
observations, as this makes the dependent paired samples appear independent. A sample of
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dependent sets of data using this data generating mechanism is given in the lower rightmost
panel of Figure 2.2.

Results. Power and type I error are shown in the bottom row of Figure . The bottom row of
Figure 2.2 gives performance results for the independence problem. In the first two leftmost
panels we evaluate power as we increase the variance of paired time series and as we increase
the dimensionality of each observation for a fixed variance σ = 0.5. The bottom rightmost
plot shows a sample of two dependent noisy time series, colored blue and red respectively, for
illustration.

The conclusions for this problem mirror the two-sample testing experiments, with however a
much larger increase in power over alternatives, all using less flexible data representations as
none of them avoids interpolating between observations before testing independence which we
hypothesize is one reason for their underperformance. This is consistent with the increasing
variance experiment, in this case increasing variance worsens interpolation performance.

2.4 Testing on lung function data of Cystic Fibrosis patients

For people with Cystic Fibrosis (CF), mucus in the lungs is linked with chronic infections
that can cause permanent damage, making it harder to breathe [90]. This condition is often
measured over time using FEV1% predicted; the Forced Expiratory Volume of air in the
first second of a forced exhaled breath we would expect for a person without CF of the same
age, gender, height, and ethnicity [174]. For example, a person with CF who has FEV1%
predicted equal to 50% can breathe out half the amount of air as we would expect from
a comparable person without CF. In this experiment, we work with data from the UK Cystic
Fibrosis Trust containing records from 10,980 patients with approximately annual follow ups
between 2008 and 2015, with the objective of better understanding the dependence of lung
function over time with other biomarkers. For this problem we found a significant influence of
Body Mass Index (BMI) over time and the number of days under intravenous antibiotics in a
given year; both already known to be associated with lung function [185, 91].

We use this information to create a set of problems under the alternativeH1 with an additional
twist. We increase heterogeneity among patients by artificially removing a proportion p of
densely sampled patients (here more than 4 recordings). The problem is to test for independence
between a patients two-dimensional trajectory of BMI and antibiotics measurements over time,
and their lung function trajectory over time. In this set-up, we expect the information content of
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2.5 Testing on Climate Data

the average patient to decrease, a scenario that lends itself to an importance-weighted approach
(more weight on densely sampled trajectories), such as described in section 2.2.3. In this section
we test this property, which we found advantageous for higher missingness data patterns, as
shown in Figure 2.3. In this case, power tends to be higher after weighting (RHSIC) versus
not weighting (RHSIC-weight). We report also type I errors, well controlled by all methods,
evaluated after shuffling the lung function trajectories between patients, such as to break the
associations between BMI and antibiotics, and lung function trajectories.

Figure 2.3: Power and Type I error on Cystic Fibrosis data.

2.5 Testing on Climate Data

This experiment explores the use of extensive weather data to determine whether the recent
rapid changes in climate associated with human-induced activities significantly differ from
natural climate variability. A number of variables are used to monitor the state of the climate
including precipitation, wind patterns, and atmospheric composition among others. It depends
on the latitude and longitude, and regions may vary and evolve differently over time [166].

Interpretation as set-valued data. We can think of the multivariate measurements in different
locations across the globe at a given time as a set of data points. Each set sampled from a
probability distribution that represents the global weather pattern of the climate. We follow
standard descriptions to define the climate as a collection of these sets observed over a period
of 20 years. The problem is to test for significant differences in climate, represented by the
evolution of bags of (multi-channel) images, over time (see Figure 2.4).

Experiment design. The data is publicly available, provided by the Copernicus Climate
Change Service2. We include a total of 12 climate variables identified as essential to characterize

2https://climate.copernicus.eu/.
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Figure 2.4: Illustration of the two-sample problem with global set-valued data versus local time series
data.

the climate3, including temperature, atmospheric pressure, observed over monthly periods
for the last 40 years across Europe. The available data thus consists of a two streams of sets
{xi, j}ni

j=1 and {yi, j}ni
j=1 for i = 1, . . . ,144 (12 months over 20 years). The first describes the

climate over the period 1979−1999, and the second set over the period 1999−2019. Both
contain measurements xi, j ∈R12 (yi, j respectively) in approximately ni = 250 different locations
(approximately because not all locations are consistently observed over time) which makes the
length of each set irregular. Existing tests would thus require some form of interpolation which
is not trivial over space and time in this case.

Problem. The problem is to test for the hypothesis of equally distributed climate data over the
past 4 decades. We make different test: on data from the European, African, North American,
South American and South-East Asian regions.

Results. RMMD rejects the hypothesis of equally distributed climate data over the past 4
decades in Europe (p-value 0.0002), Africa (p-value 0.0014), and South America (p-value
0.0001) but fails to reject at a level of 0.01 for North America (p-value 0.016) and South-East
Asia (p-value 0.036). In the case of Europe, we note that this result would be different if only
a particular location was considered (which could have been a viable reductionist strategy
to use existing tests). For instance, we found that the RMMD applied to climate data over
the same periods in London and Paris to not be significantly different (p-value 0.21). This
experiment demonstrates the potential benefits of using more flexible tests that better represent
available data to faithfully investigate complex phenomena such as climate that involve multiple
measurements over time and space.

3https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables
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2.6 Conclusions

2.6 Conclusions

In this chapter, we extended the toolkit of applied statisticians to do hypothesis testing on
set-valued data. We have shown that by appropriately representing each set of observations in a
Hilbert space, kernel-based hypothesis testing may be applied consistently. Specifically, we
introduced tests for the two-sample and the independence problem, derived their asymptotic
distributions and provided efficient algorithms and optimization schemes to analyse a wide
range of scenarios in an automatic fashion.
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Chapter 3

A Kernel Two-Sample Test with Sample
Selection Bias
Hypothesis testing can help decision-making by quantifying distributional differences between
two populations from observational data. However, these tests may inherit biases embedded in
the data collection mechanism (some instances often being systematically more likely included
in our sample) and consistently reproduce biased decisions. In this chapter, we propose a two-
sample test that adjusts for selection bias by accounting for differences in marginal distributions
of confounding variables. Our test statistic is a weighted distance between samples embedded
in a reproducing kernel Hilbert space, whose balancing weights provably correct for bias. We
establish the asymptotic distributions under null and alternative hypotheses, and prove the
consistency of empirical approximations to the underlying population quantity. We conclude
with performance evaluations on artificial data and experiments on treatment effect studies
from economics.

Introduction

The two-sample problem considers testing whether two independent samples are likely drawn
from the same distribution. Such tests have a long history in statistical inference but they are
also increasingly used in decision making scenarios. For example, two-sample tests have been
used to determine gender differences in academic achievements [80], gender differences in
criminal justice outcomes [68], gender differences in health issues [181], and also frequently
used in medicine to determine subgroups of patients that respond differently to medication and
establish treatment policies [22].
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Figure 3.1: The influence of selection bias. The left panel plots a sample from the observed data,
the middle panel shows the observed post-intervention income density for males and females, while
the right panel shows the income distribution obtained by adjusting for education levels (we partition
into homogeneous groups before aggregating their densities, see a description of the problem in the
introduction and details of the data generating mechanism in Appendix B.2). In this case, a conventional
two-sample test rejects the hypothesis of equal post-intervention income in male and female populations
due to the intervention, while our proposed test fails to reject.

In any data driven study, a first step is the collection of a series of observations about an
underlying phenomenon of interest before making an informed decision, for example assisted
by a hypothesis test, on this data. In most realistic scenarios, we do not have control on the
data collection process (e.g. participants volunteering for a study involving a new treatment
may differ systematically from the wider population), but we do implicitly condition on the
fact that participants entered into the study (S = 1).

This implicit conditioning may bias the conclusions of tests because two samples may differ
systematically prior to running any experiment and a hypothetical difference in distribution be
completely unrelated to the effect of interest.

The problem of selection bias and its influence on inference has attracted much recent interest
in the fairness literature [130, 88, 94, 51], one aspect of which involves mitigating indirect
discrimination e.g., section 3.1, point (2) in [204], in which algorithms make biased decisions
due to the correlation of the non-discriminatory items with the discriminatory ones. Selection
bias is also relevant in the causal inference literature [128]. [8] gave graphical conditions under
which the causal effect may be recovered from data with selection bias. A similar scenario
is considered under the rubric of treatment effect estimation, in which algorithms estimate
individualized, average and conditional treatment effects in data biased by confounders that
simultaneously influence treatment assignment and outcomes [186, 87, 199]. In epidemiology
[141] and econometrics [77], versions of this problem are also widely studied. Similarly,
hypothesis test for the significance of a measured association, and data-driven algorithms in
general, must account for sources of discrimination, confounding, and selection bias more
generally in the data.
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In fairness and causal inference however, while many methods exist attempting to predict
associations adjusting for selection bias, much less is known on the significance of effects
in the presence of selection bias. We cannot for instance say whether outcome distributions
in two groups significantly differ or not even if model predictions differ. The literature on
hypothesis testing is invested in such problems but so far hypothesis testing in the presence of
selection bias has been minimally considered. To illustrate the large impact of selection bias on
two-sample testing outcomes and the need for approaches that can adjust for these spurious
effects we consider an example described below and illustrated in Figure 3.1.

Example. Suppose a city government wants to understand the role of gender on the effective-
ness of a past employment program to better allocate their resources in the future. Its analyst
constructed datasets of volunteering (S = 1) men and women (T = 1 and T = 0) to be compared,
and included a number of relevant employment figures such as post-intervention earnings, type
of job, satisfaction, etc. (Y ). In this hypothetical example, highly educated men were more
likely to volunteer than women due to historical gender bias in education opportunities (X).
Such preferential selection creates a spurious association between T and Y , opening a path of
unblocked correlations through X , as shown in the causal diagram of Figure 3.1. It is called
spurious because it is not part of what we seek to estimate – the significance of the causal
effect of T on Y .

A test that ignores this bias tends to determine men and women to have different employment
program outcomes whereas in reality, once we account for differences in education (i.e. we
block the spurious open path), the program is found to perform equally in distribution across
men and women. In this example, higher program benefits are due to higher starting education
standards, not because people of different gender benefit differently. A decision based on a
plain two sample tests overrates the impact of an individual’s sex – in this case correlated
with education because we implicitly condition on S = 1. Please find a description of the data
generating mechanism in the Appendix.

Contributions. We develop a non-parametric test for differences in distribution of two sam-
ples biased by preferential selection driven by other observed quantities. Our proposal is a
generalization of two sample tests based on maximum mean discrepancies between probability
distributions [70, 39, 86, 194, 12] that incorporate importance sampling techniques to adjust
for distributional shift in covariates. The technical challenge is that adjustments made for
differences in the marginal confounding distributions between two samples are data-dependent,
and therefore invalidate existing asymptotic guarantees of tests based on the maximum mean
discrepancy.

29
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Our contributions are three-fold.

1. We propose a two-sample test statistic that, under certain conditions, provably adjusts for
selection bias.

2. We derive novel asymptotic distributions for the proposed test.

3. In the finite-sample case, we propose weight approximations for our test statistic, that we
show to be consistent with its population-level quantity.

3.1 Background

From the context of hypothesis testing, to understand the role of selection bias it is useful
to bring in knowledge of the causal mechanisms in data and augment a causal graph with a
variable S that represents the recruitment of individuals into the study. The assignment of
individuals into two groups T ∈ {0,1} is then correlated with confounding variables X ∈ X
through the fact that we condition on individuals to be included in the study (see Figure 3.1). We
call these confounding variables because they introduce spurious differences in the relationship
between outcome variables and the selection mechanism once we condition on S = 1. To
formalise hypothesis testing with biased data, we adopt the potential outcomes framework
of [145]. We assume to have observed independent samples from and outcome variable
Y = Y 1 ·T +Y 0 · (1−T ), the response variable Y is split into counterfactual variables, Y 0 and
Y 1, which appeal to the potential values of an individual were T = 0 and T = 1 respectively,
i.e. under a model where selection bias does not influence treatment assignment.

The hypothesis testing problem is formulated as evaluating the evidence for a difference in
distribution PY 1 and PY 0 in two groups of observations,

H0 : PY 1 = PY 0 versus H1 : PY 1 ̸= PY 0, (3.1)

but, unlike conventional two-sample problems, we have access to distributions PY 1 and PY 0

only via an (unknown) sampling policy T ∈ {0,1} that introduces bias due to the implicit
conditioning on S= 1, rather than directly through independent samples from PY 1 and PY 0 . S and
T create distributional shift, the assumption is that the available data is independently sampled
from distorted distributions conditional on T . The counterfactual distributions PY 0 and PY 1 we
are interested in differentiating are not directly observed and instead through available samples
we have access to PY |T=0 and PY |T=1, different from PY 0 and PY 1 because (Y 1,Y 0)⊥̸⊥ T |S = 1.
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3.1 Background

The same attributes X that correlate with the probability of group assignment T may also be
associated with the potential responses Y 0 and Y 1.

3.1.1 Preliminaries on Hypothesis Testing

The problem of hypothesis testing is to define a test statistic (a function of observational data) to
distinguish between two hypotheses on the distribution of observed samples. Short of perfectly
distinguishing between any two hypotheses we may pose due to the limited number of samples
available to characterize distributions, tests are constructed such that a certain hypothesis is
rejected whenever a test statistic exceeds a certain threshold away from 0 [103]. The goal of
hypothesis testing is to derive a threshold such that false positives are upper bounded by a
design parameter α and false negatives are as low as possible.

Our test statistic is characterized by distances in mean embeddings of distributions in a Re-
producing kernel Hilbert space Hk. The advantage of mapping distributions PY 0 and PY 1 to
functions in Hk is that we may now say that PY 0 and PY 1 are close if the RKHS distance
||µPY 0 − µPY 1 ||Hk is small, where µP :=

∫
X k(x, ·)dP(x) is the embedding of the probability

measure P to Hk. This distance is known as the Maximum Mean Discrepancy (MMD) [70]
and is particularly appealing because for certain choices of the kernel function k, the mean
embedding can be shown to be injective [165]. All properties of the distribution are conserved
with this map and one may distinguish between distributions by computing the MMD between
them.

MMD(PY 0,PY 1) = 0 if and only if PY 0 = PY 1, (3.2)

We focus our attention on the Gaussian kernel k(x,y) = exp(−||x− y||2/σ2) with bandwidth
parameter σ , that enjoys this property. The squared MMD is given by [70],

MMD2 := E
y,y⋆∼PY 1

k(y,y⋆)+ E
y,y⋆∼PY 0

k(y,y⋆)−2 E
y∼PY 1 ,y⋆∼PY 0

k(y,y⋆), (3.3)

and empirical estimates may be computed in practice.
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3.2 An Importance Weighted Statistic

With access only to samples from biased populations PY |T=1 and PY |T=0 estimating the above
distance with respect to counterfactual distributions PY 0 and PY 1 empirically is not possible. To
ensure identifiability of the hypothesis testing problem however, we may assume that (Y 0,Y 1)

and the data generating process satisfy ignorability: Y 0,Y 1 |= T |X ,S = 1, a common assumption
in the treatment effect estimation literature. It means that within any stratum of X , individuals
who would have one set of potential outcomes Y (0) = y0 and Y (1) = y1, are just as likely to be
in the control or treatment group as other individuals (with different potential outcomes) that
share characteristics X . If in addition we assume that 0 < Pr(T |X)< 1, then with knowledge
of the sample selection mechanisms e(x) := Pr(T = 1|X = x) we may recover the expectations
of interest with importance sampling,

E
(

Y
e(X)

∣∣∣ T = 1
)
= E

(
T ·Y 1

e(X)

)
= E

(
E
(

T ·Y 1

e(X)

∣∣∣ X
))

= E
(
Y 1) . (3.4)

This encourages us to define a weighted estimator of the MMD - called the WMMD - such that
the weights emphasize distances in areas of the support where the distributions of confounding
variables agree. Define w such that Pr(T = 1|X = x) ·w(x) = Pr(T = 0|X = x) and consider,

WMMD2 := E
PXY |T=1

w(x)w(x⋆)k(y,y⋆)+ E
PY |T=0

k(y,y⋆)−2 E
x,y∼PXY |T=1,

y⋆∼PY |T=0

w(x)k(y,y⋆), (3.5)

where the superscript ⋆ denotes an independent copy where appropriate. We show next that
this metric consistently distinguishes between null and alternative hypotheses at the population
level.

Proposition 1 For k a characteristic kernel and known weights w(x) > 0 for all x ∈ X ,
WMMD = 0 if and only if PY1 = PY 0 .

Proof. All proofs are given in the Appendix.

A kernel k is characteristic if the mean embedding µP is injective [70]. In practice, we have
access to an empirical estimate of the WMMD, defined as follows,

ŴMMD
2

:= ∑
i ̸= j:ti=t j=1

w(xi)w(x j)k(yi,y j)+ ∑
i ̸= j:ti=t j=0

k(yi,y j)−2 ∑
i, j:ti=1,t j=0

w(xi)k(yi,y j),

where the (yi, ti,xi) are realizations of the random variables (Y,T,X). Deviations from 0 (the
theoretical value under the null) are expected due to finite sample variation. Tests are then
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constructed such that the null hypothesis is rejected whenever ŴMMD
2

exceeds a certain
threshold. In the next section we will show how to consistently define such a threshold to
ensure a low margin of error.

3.2.1 Hypothesis testing with WMMD

As we have mentioned, from the statistical testing point of view, the coincidence axiom of the
WMMD is key, as it ensures consistency against any alternative hypothesisH1. Then, given a
significance level α for the two-sample test, a test can be constructed such thatH0 is rejected
when ŴMMD

2
> r.

The expected behaviour of ŴMMD
2

under the null which we might use to define r however
differs from conventional bounds used for U-statistics. The reason is that in practice weights
are data-dependent and have their own asymptotic behaviour which needs to be accounted for.
In this case, under mild conditions that ensure well defined limits for these weights, also the
asymptotic distributions are well defined. This result is given in Theorem 1 below.

Theorem 1 (Asymptotic distribution of WMMD). Assume that k has finite second moments
and that the weight matrix W ∈ Rn×n (Wi j = w(xi)w(x j)) be approximately diagonalizable
(made precise in Appendix B.1). Then, the following statements hold,

1. UnderH0, the asymptotic distribution of ŴMMD2 is given by a mixture of independent
χ2 random variables. We provide the exact terms in Appendix B.1.

2. UnderH1,
n1/2

(
ŴMMD2−WMMD2

)
d→ N

(
0,σ2

H1

)
.

We have used d→ to denote convergence in distribution. See Appendix B.1 for concrete
expressions of all terms involved and a proof that relies on an approximate eigen-decomposition
of the weight matrix and involves large-sample distributional approximations of quadratic
forms and U−statistics.

3.2.2 Approximating the weights in practice

While we have shown that our test statistic is consistent against all alternatives, in practice
simulating from the asymptotic null distribution can be challenging. The distribution under
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the null requires knowledge of the sample selection mechanism, that is the design densities of
the assignment variable T in the two populations, which is not available. A straightforward
solution is to estimate each function Pr(T = 1|X = x) and Pr(T = 0|X = x) separately, for
example with a classification algorithm, although this has been shown to result in unstable
estimates of the ratio Pr(T = 1|X = x)/Pr(T = 0|X = x) when the denominator is small [168]
and adds an additional computational burden to the test procedure. An alternative approach
is to use a plug-in estimate for the ratio directly. The approach we take is to estimate weights
ŵ(x) such that Pr(T = 1|X = x)≈ ŵ(x)Pr(T = 0|X = x) by matching feature representation
of both domains in a high-dimensional feature space [74].

We estimate weights ŵ such as to minimize the distance between mean embeddings in a RKHS
HK with kernel K that is defined implicitly by a feature map φ : X →HK of the confounding
variable distributions in the two populations,

ŵ := argmin
0<w<B

∣∣∣∣∣∣EPX |T=0w(x)φ(x)−EPX |T=1φ(x)
∣∣∣∣∣∣
HK

. (3.6)

This problem is convex. For injective mappings, minimizing (3.6) converges to Pr(T = 1|X =

x)/Pr(T = 0|X = x) and ŵ can be found with a quadratic program for which many efficient
solvers have been developed. In our implementation we use the Gaussian kernel with bandwidth
parameter set to the median Euclidian distance between values of the confounding variables.
Theorem 2 below guarantees that the density ratio estimation using (3.6) in the computation of
ŴMMD and of the asymptotic null distribution still yields a consistent test.

Theorem 2 (Consistency of ŴMMD). Let ŵ(x) be the empirical density ratio estimates of
w(x) – the underlying population value – derived by matching the kernel mean embeddings
of the observed distributions of confounding variables PX |T=1 and PX |T=0. Suppose the test
threshold is set to the upper α quantile of the distribution of the WMMD under H0. Then,
asymptotically, the false positive rate with estimated weights is α and its power converges to 1.

The proof, given in Appendix B.1, is based on the consistency of kernel mean matching to
approximate the likelihood ratio in the asymptotic regime. While importance weighting using
the likelihood ratio results in ŴMMD being an asymptotically unbiased estimator of the MMD,
the estimator may not concentrate well because the weights may be large or inaccurate due to
the finite samples available in practice. We now provide a concentration bound for ŴMMD for
the case where weights are upper-bounded by some maximum value.

Theorem 3 (Large deviation bound of ŴMMD). Let {yi, ti,xi}n+m
i=1 be i.i.d observations drawn

from the joint distribution of random variables (Y,T,X), n of them with ti = 1 and m with ti = 0.
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Assume the feature representation φ(x) ∈ HK be bounded above by R, w(x)≤ B for all x ∈ X ,
and that there exists an ε > 0 such that,∣∣∣∣∣

∣∣∣∣∣1n n

∑
i=1:ti=1

ŵ(xi)φ(xi)−
1
m

m

∑
i=1:ti=0

φ(xi)

∣∣∣∣∣
∣∣∣∣∣
HK

≤ ε.

Then, with probability at least 1−δ , the absolute difference in estimation of weighted estimator
ŴMMD in comparison to the MMD, |ŴMMD

2
−MMD2| is bounded above by,

2R(B+1)

(
ε +

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m

)
+R(B+1)2

√
1

2m2
log

1
δ
,

where m2 := ⌊m/2⌋.

Qualitatively, B measures the maximum allowed discrepancy between Pr(T = 1|X = x) and
Pr(T = 0|X = x) (and is a user defined parameter in practice, we set it to 10 as a default in our
experiments). A low value of B ensures robustness of the learned representations by limiting
the influence of individual observations, thus reducing the variance of the resulting estimator
and improving its concentration around the true estimate. However, with strong bias - the
discrepancy between Pr(T = 1|X = x) and Pr(T = 0|X = x) is large - limiting B will result in
higher ε which increases the bound. In turn, as expected, concentration improves with sample
size. Asymptotically in m and n with high probability, the concentration of the representation
depends only on matching confounding distributions in feature space HK . This shows that
unbiased two-sample testing is not possible unless enough comparable examples in the two
populations exist.

3.2.3 Connections with testing in regression models

There is a close connection between testing for distributional differences in two outcome
samples independent of confounding and the predictive power of those factors on the outcome.
In fact, adjustment is needed precisely because confounding variables are both predictive of
the outcome and predictive of the sample selection mechanism. In one approach, the source of
variation due to sample selection bias on the outcome y can be modelled explicitly, for example
by considering a regression model with random effects. Consider the following random effect
regression model [151] for the outcome y,

Yi = µ +Ziui + ε, ε ∼N (0,σ2), (3.7)
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where Zi ∈ {0,1} represents the assignment of example i into one of the two samples and
ui ∼N (0,σ2

u ). Under the null assumption, testing for variation in Y that is irrelevant of the sam-
ple selection mechanism (which is our goal) is then equivalent to testing the variance component
σ2

u = 0 [66, 107]. A score test statistic for this problem is given by S = ∑
n
i=1 ∑

n
j=1, j ̸=i ki jỸiỸ j +

∑
n
i=1 Ỹ 2

i where Ỹi := (Yi−µ)
σ

, see e.g Section 4 in [66]. The statistic S therefore has a high value
whenever the terms of the matrix K =(ki j) and the matrix ỸỸ T =(ỸiỸj) are correlated. Now con-
sider the case n = m and write yi,1 = yi such that ti = 1, and analogously for y j,0, i, j = 1, . . . ,n.
Let ki j be a column vector with entries

[
k(yi,1,y j,1),k(yi,0,y j,0),k(yi,1,y j,0),k(yi,0,y j,1)

]
and

let wi j have entries
[
w(xi)w(x j),1,−w(xi),−w(x j)

]
. Then we may write,

ŴMMD
2
=

1
n(n−1)

n

∑
i=1

n

∑
j=1, j ̸=i

wT
i jki j,

which can be interpreted as a non-linear alternative to the first term of S where the inner product
⟨a,b⟩= aT b is replaced by the inner product in feature space k (a,b).

3.3 Related work

Many empirical studies, especially those investigating treatments and effects from finite samples
require a notion of statistical significance to assess treatment outcomes. Classical tests for this
problem are mostly local in nature i.e., testing for significance of estimated parameters in a
regression model or concerned with average effects or average effects within defined subgroups
and not with differences in the outcome distribution as a whole as considered in this chapter.
Some examples include the weighted two-sample t-test (see e.g. [25]), the randomization test
of [49] and the nonparametric tests for treatment effect heterogeneity of [43]. Extensions of
other classical two-sample tests are also possible. One possible approach is using ANCOVA
(Analysis of Covariance) methods which proceed by regressing the outcome variable on
confounding variables before comparing the variation of the corresponding residuals between
the two populations to the variation of the residuals within each one of the two populations, for
example with an F-test [172]. These have the advantage of being more powerful in the settings
where they apply but also restrict the class of alternative hypotheses [103].

With respect to two-sample tests for differences in any moment of the distribution existing
tests, in some cases, may be adjusted to accommodate for selection bias. One extension to (full
distribution) two-sample testing that may be considered for this problem is to first, partition
the combined population into homogeneous subgroups (such that the feature distribution of
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confounding variables approximately agree in each subgroup, for example using the propensity
score) and second, compute two sample tests statistics in each subgroup before averaging
their results. Such tests would take the form of block tests or B-tests [194], proposed initially
as more efficient alternatives to conventional tests. In our experiments, we implement non-
parametric versions of some of these tests and refer the reader to Appendix B.3 for a more
detailed description of implementations in each case.

Outside the hypothesis testing literature, weighted statistics are frequent, often referred to
as importance sampling techniques and inverse probability weighting methods [168]. Using
importance weights with the MMD specifically has been used in generative models to sample
from modified distributions [48] and for unsupervised domain adaptation [190, 191].

3.4 Experiments

In this section we compare two-sample tests on both artificial benchmark data and real-world
data. The focus of our results will be on the evaluation of power: the rate at which we correctly
rejectH0 when it is false; and type I error: the rate at which we incorrectly rejectH0 when it
is true. α = 0.05 throughout.

Baseline Tests. The proposed test is denoted WMMD. Comparisons are made with three
tests. The ANCOVA F-test based on regression residuals from a random forest model. The
block-based approach where partitions are made based on the propensity score and two-sample
tests in each partition conducted with the MMD [194] (Block-MMD). The Block-MMD can
be seen as an alternative adjusting for selection bias in subsets of the data separately, rather
than continuously as with our approach and which we expect to have uncontrolled type I
error in heterogeneous data samples. And finally, the unweighted (conventional) MMD test
[70] that serves to measure the benefit of adjustments for selection bias as well as any loss in
performance by using the WMMD in data that is not biased.

For kernel-based tests, since their null distributions are given by an infinite sum of weighted
chi-squared variables (no closed-form quantiles), in each trial we use 400 random permutations
to approximate the null. Details of implementations are given in the Appendix.
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Figure 3.2: Type I error (lower better) and Power (higher better) of all tests on synthetic experiments.
The WMMD has simultaneously best control of type I errors and highest power.

3.4.1 Synthetic examples

The primary objective of our synthetic simulations will be to analyse the influence of the
sampling selection mechanism on performance. Here it will be particularly interesting to
understand our test’s behaviour on samples that appear different (in distribution) but only
because of an underlying mismatch in confounding variables that simultaneously influence the
distributions of interest. In this case we would expect conventional two sample tests to reject
the null hypothesis resulting in uncontrolled type I error (> α). And similarly for the case of
observed distributions that seem to match (in distribution) due to spurious correlations that we
show results in low power of traditional tests.

Experiment design. We consider the following data distributions for two samples of data
(T = 0 and T = 1) that exhibit a spurious dependence between their respective outcome
distributions Y |T = 0 and Y |T = 1 such as might occur due to selection bias,

X |T = 0∼N (0, I), X |T = 1∼N (µ,σ2I),

Y |T = i∼ gi(X)+N (0, I), i = 0,1.

With this data generating mechanism, units in our two samples (T = 0 and T = 1) have differing
confounder distributions X |T , a systematic difference which creates a spurious connection
between T and Y .

Recall that the hypothesis testing problem is to evaluate, with data sampled from the model
above, the evidence for a difference in distribution PY 1 and PY 0 ,

H0 : PY 1 = PY 0 versus H1 : PY 1 ̸= PY 0, (3.8)
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µ and σ2 determine selection bias, i.e. the extent of the dependence between X and T which
biases the dependence between T and Y . The distributions we are interested in discriminating
are PY 0 and PY 1 (which reduces to g0 = g1 under the null, and g0 ̸= g1 under the alternative),
which implicitly remove selection bias by breaking the dependency between X and T .

Performance with increasing bias

In a first experiment we investigate the influence of increasing selection bias with two problems:

1. Difference in means µ (with σ2 = 1) of confounding variables across the two samples.
Results in the two left-most panels of Figure 4.2.

2. Difference in variances σ2 (with µ = 0) of confounding variables across the two samples.
Results in the two right-most panels of Figure 4.2.

In each case the dimensionality of X and Y are set to 20, the number of samples in each
population to n = 400. UnderH0, g0(x) = g1(x) = x+x2, and underH1, g0(x) = x and g1(x) =
[sin(x1),x2, ...,x20]. This set-up is designed to be a challenging problem with moderately high-
dimensionality, non-linear dependencies and for the alternative hypothesis differences only in
the first dimension of X .

Results. Across experiments (Figure 4.2) WMMD is the only test that successfully adjusts for
selection bias, with controlled type I error even in relatively high bias settings (for instance for
µ = 1, only 60% of their densities overlap) while other alternatives underperform.

As anticipated, conventional two-sample test such as the MMD fail with the presence of
confounders, we omit plotting the MMD for the power results (beyond µ = 0 and σ2 = 1)
due to its poor type I error control. We notice also that the Type I error of the block-MMD
deteriorates substantially for the variance experiment, potentially because a coarse partition
may introduce artificial differences between samples that lead the test to reject the null more
often than desired. The panels describing power show good performance for all methods. It is
also expected that power increases with confounder distributional shift, as it results in more
divergent outcome distributions (and thus easier to distinguish). However, unless type I error
is controlled, those results lose their significance. Among methods that control type I error
(WMMD and Block-MMD for low bias settings i.e. first half of each panel approximately),
WMMD has higher or competitive power.

We make an important comparison also in the two power experiments in the absence of selection
bias (the point where the MMD in red is computed). The MMD and WMMD have comparable
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Figure 3.3: The two leftmost panels show the approximation error of the WMMD with increasing bias
and increasing sample size. The rightmost panel show type I errors in the presence of unobserved
confounders.

performance, which suggests that the WMMD is almost as efficient as the MMD in datasets
tailored to the latter (when no bias exists), while also having good performance in the presence
of bias. This is important because in most cases it is not known which variables confound the
association between group membership and outcome. What this result means is that we are not
worse-off using the WMMD even when there is no selection bias. In this sense the WMMD
generalizes the MMD.

Relating to our theoretical results

Even though performing competitively, we observe the WMMD to loosen control of type I error
as the strength of bias increases. In the following experiments we consider data generated under
H0 as described in the first paragraph of section 3.4.1. and investigate the estimated WMMD
statistic in comparison with optimal behaviour (defined as "True MMD", that is the MMD
computed from data with no unobserved confounding on distributions Y 0, Y 1 not accessible in
practice).

Results. With increasing confounding, we see in the leftmost panel of Figure 3.3 that the
WMMD departs from its optimal value. The reason is that matching distributions of confounders
gets harder with increasing confounding. Notice for instance the increasing value of ε in the
opposite vertical axis, that quantifies the difference between matched distributions introduced
in Theorem 3. The middle panel shows however that this discrepancy rapidly vanishes with
increasing sample size. Here, we have fixed µ = 1 and increased the sample size to see the
estimation error converging to zero.

The takeaway is that a larger number of samples can be expected to be required to successfully
control for type I errors to the desired threshold, while the number of samples depends on the
strength of the confounding bias among the two samples.

40



3.4 Experiments

What if confounding is unobserved?

We have assumed until now that the selection bias is completely driven by factors available to
the researcher. In most real applications this will not be the case. We simulate such a scenario
by including unobserved confounders in the sample selection mechanism under the null with
the same specifications considered above. To do so, we hide or remove from the observed data
a proportion p of variables X .

Results. The results, as a function of p, are shown in the rightmost panel of Figure 3.3.
Unobserved confounders introduce variation in the outcome distribution that cannot be adjusted
for since it is unobserved, which translates in uncontrolled type I errors for all methods. One
may not expect to consistent hypothesis testing in this scenario but we note that this criticism
extends to all methods with an assumption of ignorability, and in particular including most
treatment effect estimation algorithms.

Remark. Variables X , treated as confounders in our case, may play other roles in general
graphical models, for example as mediators or colliders (in both cases with an arrow from T
into X). For the purposes of two-sample testing of treatment effects however we may rule out
both of these cases because of temporal precedence, i.e. we cannot have an arrow going from
T into X because group (treatment) assignment is done after observation of X . In others, if T
represents a pre-existing characteristic of individuals (such as gender in the in the example of
the introduction) we must validate the causal graph to ensure correct conclusions.

3.4.2 Employment program evaluation

The problem is to determine the effectiveness of an employment program implemented in the
mid-1970s in the U.S. to individuals who had faced economic and social hardship [99]. The
outcome of interest is earnings two years after the end of the employment program. Our null
hypothesis is no difference in earnings with the program, with respect to earnings without
the program. Posterior earning in treated and control populations are not directly comparable
because the populations differ systematically in their education level, prior earnings, age,
ethnicity and marital status: all plausible confounders. The data contains 614 individuals, 185
of whom were included in the employment program.
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Table 3.1: Type I error at level α = 0.05 as a function of artificially introduced bias p.

p 0.05 0.10 0.15 0.20
MMD 0.95 1 1 1
Block-MMD 0.051 0.055 0.070 0.083
ANCOVA 0.045 0.040 0.056 0.096
WMMD 0.051 0.043 0.052 0.060

With real data, the ground truth relationship between two populations is unknown. To compare
the performance of our test, however, we can simulate a distribution under the null H0 by
shuffling all variables into two populations, and subsequently introducing bias by selectively
removing observations based on a set of confounding covariates. To remove observations, we
build a linear regression model to predict earnings based on confounding variables and remove
those observations with high predicted earnings in one group and those with low predicted
earning in the other group. After adjusting for this bias the two populations should be equal in
distribution and performance comparisons are then made in terms of type I error. A similar
approach is used for conventional two sample testing, see for example the experiments in [111].
Type I error as a proportion p of observations removed (that is increasing bias) is given in Table
3.1. On the original data, all tests returned significant earning difference. This is an important
result in its own right as it demonstrates an effect independent of confounding bias.

3.5 Conclusions

We have proposed a test statistic for the two-sample problem that expands the toolkit of
statisticians to make inference on treatment effects with selection-biased data. Bias in the
sample selection mechanism creates distributional shift which leads to bias in the treatment
effect if unaccounted for. Making inference on the significance of treatment effects in this
context is challenging and under-explored. To our knowledge, our test is the first to consider
two-sample testing in biased groups of data.

Our proposal is a generalization of the MMD to adjust for this bias. We have demonstrated
our test to be consistent in the presence of selection bias, derived its asymptotic distribution
and derived large deviation bounds of approximations in practice. In empirical comparisons,
we have shown our test to be more powerful than existing alternatives while controlling
approximately for type I error.
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3.5 Conclusions

The weighting strategy and proof techniques presented in this chapter are not specific to the
two sample problem and may be applied to kernel-based tests for other problems, such as
independence testing [69], conditional independence testing [197] and three variable interaction
testing [154]. Similarly, one may extend the proposed approach to test and adjust for selection
bias in other structured spaces where kernels are known to be characteristic such as other
compact metric spaces [12].
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Chapter 4

Conditional Independence Testing using
Generative Adversarial Networks
In this chapter, we consider the hypothesis testing problem of detecting conditional dependence,
with a focus on high-dimensional feature spaces. Our contribution is a new test statistic
based on samples from a generative adversarial network designed to approximate directly a
conditional distribution that encodes the null hypothesis, in a manner that maximizes power (the
rate of true negatives). We show that such an approach requires only that density approximation
be viable in order to ensure that we control type I error (the rate of false positives); in particular,
no assumptions need to be made on the form of the distributions or feature dependencies. Using
synthetic simulations with high-dimensional data we demonstrate significant gains in power
over competing methods. In addition, we illustrate the use of our test to discover causal markers
of disease in genetic data.

Introduction

Conditional independence tests are concerned with the question of whether two variables X
and Y behave independently of each other, after accounting for the effect of confounders Z.
Such questions can be written as a hypothesis testing problem:

H0 : X |= Y |Z versus H1 : X ⊥̸⊥ Y |Z.

Tests for this problem have recently become increasingly popular in the Machine Learning
literature [156, 197, 155, 147, 50] and find natural applications in causal discovery studies in
all areas of science [100, 131]. An area of research where such tests are important is genetics,
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where one problem is to find genomic mutations directly linked to disease for the design
of personalized therapies [203, 93]. In this case, researchers have a limited number of data
samples to test relationships even though they expect complex dependencies between variables
and often high-dimensional confounding variables Z. In settings like this, existing tests may be
ineffective because the accumulation of spurious correlations from a large number of variables
makes it difficult to discriminate between the hypotheses. As an example the work in [138]
shows empirically that kernel-based tests have rapidly decreasing power with increasing data
dimensionality.

In this chapter, we present a test for conditional independence that relies on a different set of
assumptions that we show to be more robust for testing in high-dimensional samples (X ,Y,Z).
In particular, we show that given only a viable approximation to a conditional distribution one
can derive conditional independence tests that are approximately valid in finite samples and
that have non-trivial power. Our test is based on a modification of Generative Adversarial
Networks (GANs) [67] that simulates from a distribution under the assumption of conditional
independence, while maintaining good power in high dimensional data. In our procedure, after
training, the first step involves simulating from our network to generate data sets consistent
with H0. We then define a test statistic to capture the X −Y dependency in each sample and
compute an empirical distribution which approximates the behaviour of the statistic underH0

and can be directly compared to the statistic observed on the real data to make a decision.

The chapter is outlined as follows. In section 4.1, we provide an overview of conditional
hypothesis testing and related work. In section 4.2, we provide details of our test and give our
main theoretical results. Sections 4.3 and 4.4 provide experiments on synthetic and real data
respectively, before concluding in section 4.5.

4.1 Background

We start by introducing our notation and review central notions of hypothesis testing. Through-
out, we will assume the observed data consists of n i.i.d tuples (Xi,Yi,Zi), defined in a potentially
high-dimensional space X ×Y×Z , typically Rdx×Rdy×Rdz . Conditional independence tests
statistics T : X ×Y ×Z → R summarize the evidence in the observational data against the
hypothesisH0 : X |= Y |Z in a real-valued scalar. Its value from observed data, compared to a
defined threshold then determines a decision of whether to reject the null hypothesisH0 or not
rejectH0. Hypothesis tests can fail in two ways:
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• Type I error: rejectingH0 when it is true.

• Type II error: not rejectingH0 when it is false.

We define the p-value of a test as the probability of making a type I error, and its power as
the probability of correctly rejecting H0 (that is 1 - Type II error). A good test requires the
p-value to be upper-bounded by a user defined significance level α (typically α = 0.05) and
seeks maximum power. Testing for conditional independence is a challenging problem. Shah
et al. [159] showed that no conditional independence test maintains non-trivial power while
controlling type I error over any null distribution. In high dimensional samples (relative to
sample size), the problem of maintaining good power is exacerbated by spurious correlations
which tend to make X and Y appear independent (conditional on Z) when they are not.

4.1.1 Related work

A recent favoured line of research has characterized conditional independence in a reproducing
kernel Hilbert space (RKHS) [197, 50]. The dependence between variables is assessed
considering all moments of the joint distributions which potentially captures finer differences
between them. [197] uses a measure of partial association in a RKHS to define the KCIT test
with provable control on type I error asymptotically in the number of samples. Numerous
extensions have also been proposed to remedy high computational costs, such as [167] that
approximates the KCIT with random Fourier features making it significantly faster. Computing
the limiting distribution of the test becomes harder to accurately estimate in practice [197], and
different bandwidth parameters give widely divergent results with dimensionality [138], which
affects power.

To avoid tests that rely on asymptotic null distributions, sampling strategies consider explicitly
estimating the data distribution under the null assumption H0. Permutation-based methods
[50, 147, 20, 156] follow this approach. To induce conditional independence, they select
permutations of the data that preserve the marginal structure between X and Z, and between Y
and Z. For a set of continuous conditioning variables and for sizes of the conditioning set above
a few variables, the "similar" examples (in Z) that they seek to permute are hard to define as
common notions of distance increase exponentially in magnitude with the number of variables.
The approximated permutation will be inaccurate and its computational complexity will not
be manageable for use in practical scenarios. As an example, [50] constructs a permutation P
that enforces invariance in Z (PZ ≈ Z) while [147] uses nearest neighbors to define suitable
permutation sets.
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We propose a different sampling strategy building on the ideas proposed by [30] that introduce
the conditional randomization test (CRT). It assumes that the conditional distribution of X
given Z is known under the null hypothesis (in our experiments we will assume it to be
Gaussian for use in practice). The CRT then compares the known conditional distribution to
the distribution of the observed samples of the original data using summary statistics. Instead
we require a weaker assumption, namely having access to a viable approximation, and give
an approximately valid test that does not depend on the dimensionality of the data or the
distribution of the response Y ; resulting in a non-parametric alternative to the CRT. [20] also
expands the CRT by proposing a permutation-based approach to density estimation.

Generative adversarial networks have been used for hypothesis testing in [155]. In this work,
the authors use GANs to model the data distribution and fit a classification model to discriminate
between the true and estimated samples. The difference with our test is that they provide only a
loose characterization of their test statistic’s distribution underH0 using Hoeffding’s inequality.
As an example of how this might impact performance is that Hoeffding’s inequality does not
account for the variance in the data sample which biases the resulting test. A second contrast
with our work is that we avoid estimating the distribution exactly but rather use the generating
mechanism directly to inform our test.

4.2 Generative Conditional Independence Test

Our test for conditional independence, the GCIT (short for Generative Conditional Indepen-
dence Test), compares an observed sample with a generated sample equal in distribution if and
only if the null hypothesis holds. We use the following representation underH0,

Pr(X |Z,Y ) = Pr(X |Z)∼ qH0(X). (4.1)

On the right hand side the null model preserves the dependence structure of Pr(X ,Z) but breaks
any dependency between X and Y . If actually there exists a direct causal link between X and Y
then replacing X with a null sample X̃ ∼ qH0 is likely to break this relationship.

Sampling repeatedly X̃ conditioned on the observed confounders Z results in an exchangeable
sequence of generated triples (X̃ ,Y,Z) and original data (X ,Y,Z) under H0. In this context,
any function ρ – such as a statistic ρ : X ×Y×Z → R – chosen independently of the values
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Figure 4.1: Illustration of conditional independence testing with the GCIT. A generator G is optimized
by adversarial training to estimate the conditional distribution X |Z underH0. We then use G to generate
synthetic samples of X̃ under the estimated conditional distribution. Multiple draws are taken for each
configuration Z and a measure of dependence between generated X̃ and Y , ρ̂ , is computed. The sequence
of synthetic ρ̂ is subsequently compared to the original sample statistic ρ to get a p-value.

of X applied to the real and generated samples preserves exchangeability. Hence the sequence,

ρ(X ,Y,Z),ρ(X̃ (1),Y,Z), . . . ,ρ(X̃ (M),Y,Z), (4.2)

is exchangeable under the null hypothesisH0, deriving from the fact that the observed data is
equally likely to have arisen from any of the above. Without loss of generality, we assume that
larger values of ρ are more extreme. The p-value of the test can be approximated by comparing
the generated samples with the observed sample,

M

∑
m=1

1+1{ρ(X̃ (m),Y,Z)≥ ρ(X ,Y,Z)}
M+1

, (4.3)

which can be made arbitrarily close to the true probability, EX̃∼qH0
1{ρ(X̃ ,Y,Z)≥ ρ(X ,Y,Z)},

by sampling additional features X̃ from qH0 . 1 is the indicator function. Figure 4.1 gives a
graphical overview of the GCIT.

4.2.1 Generating samples from qH0

In this section we describe a sampling algorithm that adapts generative adversarial networks
[67] to generate samples X̃ conditional on high dimensional confounding variables Z. GANs
provide a powerful method for general-purpose generative modeling of datasets by designing a
discriminator D explicitly used as an adversary to train a generator G responsible for estimating
qH0 := Pr(X |Z). Over successive iterations both functions improve based on the performance
of the adversarial player.
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Our implementation is based on Energy-based generative neural networks introduced in [200]
which if trained optimally, can be shown to minimize a measure of divergence between proba-
bility measures that directly relates to a theoretical bound shown in this section that underlies
our method. Pseudo-code for the GCIT and full details on the implementation are given in
Appendix C.4.

Discriminator. We define the discriminator as a function Dη : X ×Z → [0,1] parameterized
by η that judges whether a generated sample X̃ from G is likely to be distributed as its real
counterpart X or not, conditional on Z. We train the discriminator by gradient descent to
minimize the following loss function,

LD := Ex∼qH0
Dη(x,z)+Eṽ∼p(v)

(
1−Dη(Gφ (v,z),z

)
, (4.4)

where Gφ (z,v),v∼ p(v) is a synthetic sample from the generator (described below) and x∼ qH0

is a sample from the data distribution underH0. Note that in contrast to [200] we set the image
of D to lie in (0,1) and include conditional data generation.

Generator. The generator, G, takes (realizations of) Z and a noise variable, V , as inputs and
returns X̃ , a sample from an estimated distribution X |Z. Formally, we define G :Z× [0,1]d→X
to be a measurable function (specifically a neural network) parameterized by φ , and V to be
d-dimensional noise variable (independent of all other variables). For the remainder of the
chapter, let us denote x̃ ∼ q̂H0 the generated sample under the model distribution implicitly
defined by x̂ = Gφ (v,z),v∼ p(v). In opposition to the discriminator, G is trained to minimize

LG(D) := Ex̃∼q̂H0
Dη(x̃,z)−Ex∼qH0

Dη(x,z). (4.5)

We estimate the expectations empirically from real and generated samples.

4.2.2 Validity of the GCIT

The following result ensures that our sampling mechanism leads to a valid test for the null
hypothesis of conditional independence.

Proposition 1 (Exchangeability) Under the assumption that X |= Y |Z, any sequence of statistics
(ρi)

M
i=1 functions of the generated triples (X̃ (m),Y,Z)M

m=1 is exchangeable.
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Proof. All proofs are given in Appendix C.3.

Generating conditionally independent samples with a neural network preserves exchangeability
of input samples and thus leads to a valid p-value, defined in eq. (4.3), for the hypothesis of
conditional independence. Under the assumption that the conditional distribution qH0 can be
estimated exactly, this implies that we maintain an exact control of the type I error in finite
samples. In practice however, limited amounts of data and noise will prevent us from learning
the conditional distribution exactly.

In such circumstances we show below that the excess type I error - that is the proportion of
false negatives reported above a specified tolerated level α - is bounded by the loss function
LG; which, moreover, can be made arbitrarily close to 0 for a generator with sufficient capacity.
We give this second result as a corollary of the GAN’s convergence properties in Appendix C.3.

Theorem 1 An optimal discriminator D∗ minimizing LD exists; and, for any statistic ρ̂ =

ρ (X ,Y,Z), the excess type I error over a desired level α is bounded by LG(D∗),

Pr(ρ̂ > cα |H0)−α ≤ LG(D∗), (4.6)

where cα := inf{c ∈ R : Pr(ρ̂ > c) ≤ α} is the critical value on the test’s distribution and
Pr(ρ̂ > cα |H0) is the probability of making a type I error.

Theorem 1 shows that the GCIT has an increase in type I error dependent only on the quality of
our conditional density approximation, given by the loss function with respect to the generator,
even in the worst-case under any statistic ρ . For reasonable choices of ρ , robust to errors in
the estimation of the conditional distribution, this bound is expected to be tighter. The key
assumption to ensure control of the type I error, and therefore to ensure the validity of the GCIT,
thus rests solely on our ability to find a viable approximation to the conditional distribution
of X |Z. The capacity of deep neural networks and their success in estimating heterogeneous
conditional distributions even in high-dimensional samples make this a reasonable assumption,
and the GCIT applicable in a large number of scenarios previously unexplored.

4.2.3 Maximizing power

For a fixed sample size, conditional dependence H1 : X ⊥̸⊥ Y |Z, is increasingly difficult to
detect with larger conditioning sets (Z) as spurious correlations due to sample size make X
and Y appear independent. To maximize power it will be desirable that differences between
generated samples X̃ (under the model Pr(X |Z)) and observed samples X (distributed according
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to Pr(X |Z,Y )) be as apparent as possible. In order to achieve this we will encourage X̂ and X
to have low mutual information because irrespective of dimensionality, mutual information
between distributions in the null and alternative relates directly to the hardness of hypothesis
testing problems, which can be seen for example via Fano’s inequality (section 2.11 in [175]).
To do so, we investigate the use of the information network proposed in [10] and used in the
context of feature selection in [89]. [10] propose a neural architecture and training procedure
for estimating the mutual information between two random variables. We approximate the
mutual information with a neural network Tθ : X ×X → R, parameterized by θ , with the
following objective function (to be maximized),

LIn f o := sup
θ

E
p(n)x,x̃

[Tθ ]− logE
p(n)x ×p(n)x̃

[exp(Tθ )]. (4.7)

We estimate Tθ in alternation with the discriminator and generator given samples from the
generator in every iteration. We modify the loss function for the generator to include the mutual
information and perform gradient descent to optimize the generator on the following objective,

LG(D)+λLIn f o. (4.8)

λ > 0 is a hyperparameter controlling the influence of the information network. This additional
term (λLIn f o) encourages the generation of samples X̃ as independent as possible from the
observed variables X such that the resulting differences (between X̃ and X) are truly a con-
sequence of the direct dependence between X and Y rather than spurious correlations with
confounders Z.

To provide some further intuition, one can see why generating data different than the sample
observed in the alternativeH1 might be beneficial by considering the following bound (proven
in Appendix C.3),

Type I error+Type II error≥ 1−δTV (q̂H0,qH1), (4.9)

where q̂H0 is the estimated null distribution with the GCIT, qH1 is the distribution underH1 and
where δTV is the total variation distance between probability measures. This result suggests
that when emphasizing the differences between the estimated samples and true samples from
H1, which increases the total variation, can improve the overall performance profile of our test
by reducing a lower bound on type I and type II errors.

Remark. The GCIT aims at generating samples whose conditional distribution matches the
distribution of its real counterparts, but can be independent otherwise. It is that gap that the
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power maximizing procedure intends to exploit. In practice, there will be a trade-off between
the objectives of the discriminator and information network but we found that setting λ = 10
in our experiments achieved good performance. It should be noted also that hyperparameter
selection cannot be performed using cross-validation as we do not have access to ground
truth and so the hyperparameters must typically be fixed a priori. However, we can consider
artificially inducing conditional independence (X |= Y |Z) (by permuting variables X and Y such
as to preserve the marginal dependence in (X ,Z) and (Y,Z)) and choose hyperparameters that
best control for type I error. We explore this further in Appendix C.1 and test configurations of
λ with synthetic data in section 4.3.2.

4.2.4 Choice of statistic ρ

The bound on the type I error given in Theorem 1 holds for any choice of statistic ρ as it
depends solely on the conditional distribution estimation. For choices of ρ less sensitive to
spurious differences between generated and true samples when the null H0 holds, the type I
error is expected to be below this bound. We experimented with various dependence measures
(between two samples) as choices for ρ . We consider the Maximum Mean Discrepancy [70],
Pearson’s correlation coefficient, the distance correlation (which measures both linear and
nonlinear association, in contrast to Pearson’s correlation), the Kolmogorov-Smirnov distance
between two samples and the randomized dependence coefficient [112]. In our experiments we
use the distance correlation and analyze performance using all other measures in Appendix C.1.

4.3 Synthetic data example

In this section we analyse the performance of the GCIT in a controlled fashion with syn-
thetic data against a wide range of competing algorithms, illustrating the effects of different
components of our method. We consider the CRT [30] with pre-specified Gaussian sampling dis-
tribution, whose parameters are estimated from data; the kernel-methods KCIT [197] and RCoT
[167] with bandwith parameter estimated with the median of all pairwise distances between
X and Y , a common choice in the literature; and the CCIT [156], which does not make prior
assumptions on data distributions but was also not specifically designed for high-dimensional
data.

When testing at level α , type I error should be as close as possible to α even though this might
not be the case because of violated assumptions or approximations. An important consideration
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in our discussion of power as we increase the dimensionality of Z, is the choice of alternatives
H1. For instance, if the strength of the dependency between X and Y increases, the hypothesis
testing problem will be made artificially easier and bias our conclusions with regards to data
dimensionality, as observed also in [138]. In every synthetic experiment, we maintain the
mutual information between X and Y approximately constant by first generating data and
second estimating the mutual information before deciding to draw a new dataset, if the mutual
information disagrees with the previous draw, or otherwise proceed with testing. We estimate
the mutual information with a Gaussian approximation, MI(X ,Y ) =−1

2 log(1− ρ̂2), where ρ̂

is the linear correlation between X and Y .

4.3.1 Setup

We generate synthetic data according to the "post non-linear noise model" similarly to [197, 50,
167] that defines (X ,Y,Z) underH0 andH1 as follows,

H0 : X = f (A f Z + ε f ), Y = g(AgZ + εg), (4.10)

H1 : Y = h(AhZ +αX + εh). (4.11)

The matrix dimensions of A(·) are such that X and Y are univariate, matrix entries as well as
parameter α are generated at random in the interval [0,1], and lastly, the noise variables ε(·)
are 0 on average with variance 0.025. The distributions of X , Y and ε , and the complexity of
dependencies via f ,g and g will be tuned carefully to make performance comparisons in three
settings:

(1) Multivariate Gaussian
We set f ,g and h to be the identity functions which induces linear dependencies, Z ∼N (0,σ2),
and X ∼ N (0,σ2) under H1 which results in jointly Gaussian data under the null and the
alternative. Such a setting matches the assumptions of all methods and the interest of this study
will be to provide a baseline for more complex scenarios.

(2) Multivariate Laplace
Kernel choice has a large impact on power, as we demonstrate in this setting. In this case, we
set f ,g and h as before but use a Laplace distribution to generate Z and X . The RBF kernel in
this case overestimates the "smoothness" of the data. This study highlights the robustness of
the GCIT in comparison to kernel-based methods which is important since hyperparameters
cannot be tuned by cross-validation.
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Figure 4.2: Power results of the synthetic simulations. (Higher better). Left panel: (1) Multivariate
Gaussian, Middle panel: (2) Multivariate Laplace, Right panel: (3) Arbitrary distributions.

(3) Arbitrary distributions
We set f ,g and h to be randomly sampled from {x3, tanhx,exp(−x)}, resulting in more complex
distributions and variable dependencies. Here Z ∼ N (0,σ2), and X ∼ N (0,σ2) under H1.
This is our most general setting which most faithfully resembles the complexities we can expect
in real applications.

Results: Power as a function of the dimensionality of Z is shown in Figure 4.2. Each point on
the curves is computed by taking averages over 1000 random experiments with sample size
equal to 500 examples. The results from scenario (1) are consistent with our expectations; all
methods perform comparably, the CRT and kernel-based methods achieving high power in
lower dimensions while slightly under-performing in higher dimensions. In scenario (2) and
(3), the failure of the CRT and kernel-based methods is apparent while the GCIT maintains
high power, even with increasing dimensionality, which demonstrates the robustness of our
sampling mechanism to arbitrary complex data distributions. The CCIT outperforms kernel-
based methods in these cases also. An important contrast of the GCIT with respect to the CCIT
is our addition of the information network, which we argue contributes to the higher power
observed across all experiments. We analyze this empirically below.

Appendix C.2 shows that type I error is approximately controlled at a level α for all methods.
Observe also that even though the GCIT requires training a new GAN in every iteration, in
Appendix C.2 we show empirically that running times for the GCIT scale much better with
dimensionality and sample size in comparison with the best benchmark, the CCIT: its running
times are prohibitive in practice with more than 1000 samples or 500 dimensions in Z, with
each test taking over 600s versus 60s for the GCIT.
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Figure 4.3: Type I error and power for different values of λ .

4.3.2 Source of gain: consequences of the information network

The information network aims to encourage maximum power in high-dimensional data. We
control for its influence by varying λ in the loss function of the GCIT given in eq. (4.8). Higher
values of λ encourage the generation of independent samples which improves power even
though it might decrease the accuracy of the density approximation in the GAN optimization
when the null in fact holds. We notice this trade-off between power and type I error for higher
values of λ in Figure 4.3. The underlying data was generated from setting (1), each curve in
the two panels corresponds to a different value of λ . Lastly, we computed the lower-bound
from GCIT generated samples and observed samples (by numerical integration) in eq. (4.9) to
conclude that higher values of λ did decrease the lower bound, as expected.

4.4 Genetic data example

There is compelling evidence that the likelihood of a patient’s cancer responding to treatment
can be strongly influenced by alterations in the cancer genome [63]. We study the response of
cancer cell lines to an anti-cancer drug where the problem is to distinguish between genetic
mutations that influence directly the cancer cell line response from those that are not directly
relevant [9, 173]. We use the subset of the CCLE data [9] relating to the drug PLX4720; it
contains 474 cancer cell lines described by 466 genetic mutations. More details on the data can
be found in Appendix C.5.
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Figure 4.4: Genetic experiment results. Each cell gives the p-value or importance rank (where appropri-
ate) indicating the dependency between a mutation and drug response.

Evaluating conditional independence relations from real data is difficult as we do not have
access to the ground truth causal links. Instead we give our results in comparison to those of
[9], who proceeded by reporting discriminative features returned by the parameter values of a
fitted elastic net regression model (EN). This is common practice in genetic studies, see for
example also [63]. In addition, we compare with the rank of each feature given by a random
forest model importance scores (RF) and the p-value assigned by the CRT. The results for
10 selected mutations can be found in Figure 4.4. The first two rows give ranks of heuristic
methods and the last two rows give p-values of conditional independence tests. We distinguish
between the mutations where all methods agree (in the leftmost columns), and the mutations
where not all methods agree (in the rightmost columns).

The mutations on genes PIP5K1A and MAP3K5 are recognized to be discriminative by the
random forest model (high rank) and the GCIT (low p-value), which highlights the significance
of the GCIT for conditional independence testing, suggesting that non-linear dependencies
occur which are not captured by the elastic net or the CRT. For further evaluation, in this case
we were able to cross-reference with a previous study to find evidence of the PIP5K1A gene to
have a differential response on cancer cell lines when PLX4720 is applied [173]. The MAP3K5
gene has not previously been reported in the literature as being directly linked to the PLX4720
drug response, however [134] did find a proliferation of these gene mutations to be of BRAF
type in cancer patients. This is interesting because PLX4720 is precisely designed as a BRAF
inhibitor, and thus we would expect it to have an impact also on MAP3K5 mutations of the
BRAF type. FLT3 is an interesting gene, found to be dependent on cancer response by the
EN, RF and CRT, but not by the GCIT. This finding by the GCIT was confirmed however
by a posterior genetic study [35] that established no link between cancer response and FLT3
mutations in the presence of PLX4720. Such results encourage us to believe that the GCIT is
able to better detect dependence for these problems.

57



Conditional Independence Testing using Generative Adversarial Networks

4.5 Conclusions

We proposed a generative approach to conditional independence testing using generative
adversarial networks. We show this approach results in an approximately valid test for an arbi-
trary data distribution irrespective of the number of variables observed. We have demonstrated
through simulated data significant gains in statistical power, and we illustrated the application of
our method to discover genetic markers for cancer drug response on real high-dimensional data.
From a practical perspective, algorithms based on other generative models can be constructed
based on our proposed procedure that may be more adequate for different data modalities. In a
general sense, this work opens the door to principled statistical testing with more heterogeneous
data, and expands our ability to reason and test variable relationships in more challenging
scenarios.
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Part II

Causality with Heterogenous data
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Chapter 5

Accounting for Unobserved Confounding
in Domain Generalization
The ability to generalize from observed to new related environments is central to any form of
reliable machine learning, yet most methods fail when moving beyond i.i.d data. This chapter
argues that in some cases the reason lies in a misapreciation of the causal structure in data;
and in particular due to the influence of unobserved confounders which void many of the
invariances and principles of minimum error between environments presently used for the
problem of domain generalization. This observation leads us to study generalization in the
context of a broader class of interventions in an underlying causal model (including changes in
observed, unobserved and target variable distributions) and to connect this causal intuition
with an explicit distributionally robust optimization problem. From this analysis derives an new
proposal for model learning with explicit generalization guarantees that is based on the partial
equality of error derivatives with respect to model parameters. We demonstrate the empirical
performance of our approach on healthcare data from different modalities, including image,
speech and tabular data.

Introduction

Prediction algorithms use data, necessarily sampled under specific conditions, to learn cor-
relations that extrapolate to new or related data. If successful, the performance gap between
these two environments is small, and we say that algorithms generalize beyond their training
data. Doing so is difficult however, some form of uncertainty about the distribution of new data
is unavoidable. The set of potential distributional changes that we may encounter is mostly
unknown and in many cases may be large and varied. Some examples include covariate shifts
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[21], interventions in the underlying causal system [129], varying levels of noise [59] and
confounding [127]. All of these feature in modern applications, and while learning systems are
increasingly deployed in practice, generalization of predictions and their reliability in a broad
sense remains an open question.

A common approach to formalize learning with uncertain data is, instead of optimizing for
correlations in a fixed distribution, to do so simultaneously for a range of different distributions
in an uncertainty set P [14].

minimize
f

sup
P∈P

E(x,y)∼P[L( f (x),y)], (5.1)

for some measure of error L of the function f that relates input and output examples (x,y)∼ P.
Choosing different sets P leads to estimators with different properties. It includes as special
cases, for instance, many approaches in domain adaptation, covariate shift, robust statistics and
optimization [97, 21, 53, 55, 162, 189, 1, 54]. Robust solutions to problem (5.1) are said to
generalize if potential shifted, test distributions are contained in P , but also larger sets P result
in conservative solutions (i.e. with sub-optimal performance) on data sampled from distribution
away from worst-case scenarios, in general.

One formulation of causality is in fact also a version of this problem, for P defined as any
distribution arising from arbitrary interventions on observed covariates x leading to shifts in
their distribution Px (see e.g. sections 3.2 and 3.3 in [117]). The invariance to changes in
covariate distributions of causal solutions is powerful for generalization, but implicitly assumes
that all covariates or other drivers of the outcome subject to change at test time are observed.
Often shifts occur elsewhere, for example in the distribution of unobserved confounders, in
which case also conditional distributions Py|x may shift. Perhaps surprisingly, in the presence
of unobserved confounders, the goals of achieving robustness and learning a causal model can
be different (and similar behaviour also occurs with varying measurement noise).

There is, in general, an inherent trade-off in generalization performance. In the presence of
unobserved confounders, causal and correlation-based solutions are both optimal in different
regimes, depending on the shift in the underlying generating mechanism from which new
data is generated. We consider next a simple example, illustrated in Figure 5.1, to show this
explicitly.

Introductory example. We assume access to observations of variables (X1,X2,Y ) in two
training datasets, each dataset sampled with different variances (σ2 = 1 and σ2 = 2) from the
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Figure 5.1: The challenges of generalization. Each panel plots testing performance under different
shifts showing that there is an trade-off between causal and correlation-based solutions. The proposed
approach, Derivative Invariant Risk Minimization (DIRM), is a relaxation of the causal solution that
naturally interpolates between the causal solution and Ordinary Least Squares (OLS), and has, arguably,
a more desirable risk profile.

following structural model F,

X2 :=−H +EX2, Y := X2 +3H +EY , X1 := Y +X2 +EX1 ,

EX1,EX2 ∼N (0,σ2), EY ∼N (0,1) are exogenous.

1. In a first scenario (leftmost panel) all data (training and testing) is generated without
unobserved confounders, H := 0.

2. In a second scenario (remaining panels) all data (training and testing) is generated with
unobserved confounders, H := EH ∼N (0,1).

Each panel of Figure 5.1 shows performance on new data obtained after manipulating the
underlying data generating system; the magnitude and type of intervention appears in the
horizontal axis. We consider the following learning paradigms: Ordinary Least Squares (OLS)
learns the linear mapping that minimizes average training risk, Domain Robust Optimization
(DRO) minimizes the maximum training risk among the two available datasets, and the causal
solution, assumed known, is the linear model with coefficients (0,1) for (X1,X2). Two important
observations motivate this chapter.

1. Observe that Ordinary Least Squares (OLS) and Domain Robust Optimization (DRO)
absorb spurious correlations (due to H, and the fact that X1 is caused by Y ) with unstable
performance under shifts in p(X1,X2) but as a consequence good performance under shifts in
p(H). Causal solutions, by contrast, are robust to shifts in p(X1,X2), even on new data with
large shifts, but underperform substantially under changes in the distribution of unobserved
confounders p(H).
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2. The presence of unobserved confounding hurts generalization performance in general with
higher errors for all methods, e.g. contrast the y-axis of the middle and leftmost panel of
Figure 5.1.

To the best of our knowledge, the influence of unobserved confounders has been minimally
explored in the context of generalization of learning algorithms, even though, as Figure 5.1
shows, in this context different shifts in distribution may have important consequences for
predictive performance.

Our Contributions. Our objective is to define a learning principle (5.1) that is robust to a
wider set of distributions, accounting for the potential influence of unobserved confounders,
and thus with a more desirable risk profile.

We start with the assumption that multiple training environments are available during training
(e.g. patient data from multiple cohorts or hospitals). Using multiple environments, we
show that certain statistical invariances across environments are expected in the presence
of unobserved confounders, which motivate a new learning problem (5.1). Specifically, our
proposal defines P in (5.1) as an affine combination of training data distributions and may be
interpreted as an interpolation between purely correlation-based and causal-based solutions.

The practical benefits are threefold.

1. Solutions to this problem are provably robust to more general shifts in distribution, including
shifts in observed, unobserved, and target variables, depending on the properties of the
available training data distributions.

2. DIRM may be applied to any differentiable function.

3. We show significant out-of-sample performance gains and benefits for the reproducibility of
variable selection with DIRM.

5.1 Invariances in the presence of unobserved confounders

This section formally introduces the problem of out-of-distribution generalization. We describe
in greater detail the reasons that popular learning principles, such as Empirical Risk Minimiza-
tion (ERM), underperform in general, and define certain invariances to recover solutions that
generalize.

We take the perspective that all potential distributions that may be observed over a system of
variables arise from a causal modelM = (F,V,U), characterized by endogenous variables,
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V ∈ V , representing all variables determined by the system, either observed or not; exogenous
variables, U ∈ U , in contrast imposed upon the model, and a sequence of structural equations
F : U → V , describing how endogenous variables can be (deterministically) obtained from
the exogenous variables [129]. An example is given in Figure 5.1, V = (X1,X2,H,Y ) are
endogenous and U= (EX1,EX2,EH ,EY ) are exogenous variables.

Unseen data is generated from such a system M after manipulating the distribution of ex-
ogenous variables U, which propagates across the system shifting the joint distribution of all
variables V, whether observed or unobserved, but keeping the causal mechanisms F unchanged.
Representative examples include changes in data collection conditions, such as due to different
measurement devices, or new data sources, such as patients in different hospitals or countries,
among many others.

Our goal is to learn a representation Z = φ(X) acting on a set observed variables X ⊂V with the
ability to extrapolate to new unseen data, and doing so acknowledging that all relevant variables
in V are likely not observed. Unobserved confounders (for the task at hand, say predicting
Y ∈ V) simultaneously cause X and Y , confounding or biasing the causal association between
X and Y giving rise to spurious correlations that do not reproduce in general [127, 129]. We
present a brief argument below highlighting the systematic bias due to unobserved confounders
in ERM.

5.1.1 The biases of unobserved confounding

Consider the following structural equation for observed variables (X ,Y ),

Y := f ◦φ(X)+E, (5.2)

where f := f (·;β0) is a predictor acting on a representation Z := φ(X) and E stands for
potential sources of mispecification and unexplained sources of variability. For a given sample
of data (x,y) and z = φ(x), the optimal prediction rule β̂ is often taken to minimize squared
residuals, with β̂ the solution to the normal equations: ∇β f (z; β̂ )y = ∇β f (z; β̂ ) f (z; β̂ ), where
∇β f (z; β̂ ) denotes the column vector of gradients of f with respect to parameters β evaluated
at β̂ . Consider the Taylor expansion of f (z;β0) around an estimate β̂ sufficiently close to β0,
f (z;β0)≈ f (z; β̂ )+∇β f (z; β̂ )T (β0− β̂ ). Using this approximation in our first order optimality
condition we find,

∇β f (z; β̂ )∇β f (z; β̂ )T (β0− β̂ )+ v = ∇β f (z; β̂ )ε, (5.3)
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where v is a scaled disturbance term that includes the rest of the linear approximation of f
and is small asymptotically; ε := y− f (z; β̂ ) is the residual. β̂ is consistent for the true β0 if
and only if ∇β f (z; β̂ )ε → 0 in probability. This assumption is satisfied if E (all sources of
variation in Y not captured by X) are independent of X (i.e. exogenous) or in other words if all
common causes or confounders to both X and Y have been observed. Conventional regression
may assign significant associations to variables that are neither directly nor indirectly related to
the outcome, and in this case, we have no performance guarantees on new data with changes
in the distribution of these variables. Omitted variables are a common source of unobserved
confounding but we note in Appendix D.2 that similar biases also arise from other prevalent
model mispecifications, such as measurement error [32].

5.1.2 Invariances with multiple environments

The underlying structural mechanism F, that also relates unobserved with observed variables,
even if unknown, is stable irrespective of manipulations in exogenous variables that may give
rise to heterogeneous data sources. Under certain conditions, statistical footprints emerge from
this structural invariance across different data sources, properties testable from data that have
been exploited recently, for example [133, 64, 143].

Assumption 1. We assume that we have access to input and output pairs (X ,Y ) observed
across heterogeneous data sources or environments e, defined as a probability distribution Pe

over an observation space X ×Y that arises, just like new unseen data, from manipulations in
the distribution of exogenous variables in an underlying modelM.

Assumption 2. For the remainder of this section only, consider restricting ourselves to data
sources emerging from manipulations in exogenous EX (i.e. manipulations in observed vari-
ables) in an underlying additive noise model.

It may be shown then, by considering the distributions of error terms Y − f ◦ φ(X) and its
correlation with any function of X , that the inner product ∇β f (z;β0)ε , even if non-zero due to
unobserved confounding as shown in (5.3) it converges to a fixed unknown value equal across
training environments. Please see the Appendix for a precise statement of the assumptions
and context.

Proposition 1 (Derivative invariance). For any two environment distributions Pi and Pj gen-
erated under assumption 2, it holds that, up to disturbance terms, the causal parameter β0
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satisfies,

E
(x,y)∼Pi

∇β f (z;β0)(y− f (z;β0))− E
(x,y)∼Pj

∇β f (z;β0)(y− f (z;β0)) = 0. (5.4)

Proof. All proofs are given in the Appendix.

This invariance across environments must hold for causal parameters (under certain conditions)
even in the presence of unobserved confounders.

5.1.3 Remarks

A few remarks are necessary concerning this relationship and its extrapolation properties.

• The first is based on the observation that, up to a constant, each inner product in (5.4) is the
gradient of the squared error with respect to β . This reveals that the optimal predictor, in the
presence of unobserved confounding, is not one that produces minimum loss but one that
produces a non-zero loss gradient equal across environments.

Therefore, seeking minimum error solutions, even in the population case, produces estimators
with necessarily unstable correlations because the variability due to unobserved confounders
is not explainable from observed data. Forcing gradients to be zero then forces models to
utilize artifacts of the specific data collection process that are not related to the input-output
relationship; and, for this reason, will not in general perform outside training data.

• From (5.4) we may pose a sequence of moment conditions for each pair of available environ-
ments. We may then seek solutions β that make all of them small simultaneously. Solutions
are unique if the set of moments is sufficient to identify β ⋆ exactly (and given our model
assumptions may be interpreted as causal and robust to certain interventions).

In the Appendix, we revisit our introductory example to show that indeed this is the case, and
that other invariances exploited for causality and robustness (such as [5, 96]) do not hold in
the presence of unobserved confounding and give biased results.

• In practice of course only a set of solutions may be identified with the moment conditions in
Proposition 1 with no performance guarantees for any individual solutions, and no guarantees
if assumptions fail to hold.

Moreover, even if accessible, we have seen in Figure 5.1 that causal solutions may not always
be desirable under more general shifts (for example shifts in unobserved variables).

67



Accounting for Unobserved Confounding in Domain Generalization

5.2 A Robust Optimization Perspective

In this section we motivate a relaxation of the ideas presented using the language of robust
optimization.

One strategy is to optimize for the worst case loss across environments which ensures accurate
prediction on any convex mixture of training environments [14]. The space of convex mixtures,
however, can be restrictive. For instance, in high-dimensional systems perturbed data is likely
occur at a new vertex not represented as a linear combination of training environments. We
desire performance guarantees outside this convex hull.

We consider in this section problems of the form of (5.1) over an affine combination of training
losses, similarly to [96], and show that they relate closely to the invariances presented in
Proposition 1.

Let ∆η := {{αe}e∈E : αe ≥−η ,∑e∈E αe = 1} be a collection of scalars and consider the set of
distributions defined by P := {∑e∈E αePe : {αe} ∈ ∆η}, all affine combinations of distributions
defined by the available environments. η ∈ R defines the strength of the extrapolation, η = 0
corresponds to a convex hull of distributions but above that value the space of distributions
is richer, going beyond what has been observed: affine combinations amplify the strength
of manipulations that generated the observed training environments. The following theorem
presents an interesting upperbound to the robust problem (5.1) with affine combinations of
errors.

Theorem 1 Let {Pe}e∈E , be a set of available training environments. Further, let the parameter
space of β be open and bounded. Then, the following inequality holds,

sup
{αe}∈∆η

∑
e∈E

αe E
(x,y)∼Pe

L( f ◦φ(x),y)≤ E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)

+(1+nη) ·C ·
∣∣∣∣∣∣ sup

e∈E
E

(x,y)∼Pe
∇βL( f ◦φ(x),y)− E

(x,y)∼Pe,e∼E
∇βL( f ◦φ(x),y)

∣∣∣∣∣∣
L2
,

where || · ||L2 denotes the L2-norm, C is a constant that depends on the domain of β , n := |E| is
the number of available environments and e∼ E loosely denotes sampling indeces with equal
probability from E .

Interpretation. This bound illustrates the trade-off between the invariance of Proposition 1
(second term of the inequality above) and prediction in-sample (the first term). A combination
of them upper-bounds a robust optimization problem over affine combinations of training envi-
ronments, and depending how much we weight each objective (prediction versus invariance) we
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can expect solutions to be more or less robust. Specifically, for η =−1/n the objective reduces
to ERM, but otherwise the upperbound increasingly weights differences in loss derivatives
(violations of the invariances of section 5.1.2), and in the limit (η → ∞) can be interpreted to
be robust at least to any affine combination of training losses.

Remark on assumptions. Note that the requirement that F be fixed or Assumption 2, is not
necessary for generalization guarantees. As long as new data distributions can be represented
as affine combinations of training distributions, we can expected performance to be as least as
good as that observed for the robust problem in Theorem 1.

5.2.1 Proposed objective

Our proposed learning objective is to guide the optimization of φ and β towards solutions that
minimize the upperbound in Theorem 1. Using Lagrange multipliers we define the general
objective,

minimize
β ,φ

E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)+λ ·Var
e∼E

(
|| E
(x,y)∼Pe

∇βL( f ◦φ(x),y) ||L2

)
,

where λ ≥ 0. We call this problem Derivative Invariant Risk Minimization (DIRM).

This objective shares similarities with the objective proposed in [96]. The authors considered
enforcing equality in environment-specific losses, rather than derivatives, as regularization,
which can also be related to a robust optimization problem over an affine combination of errors.
We have seen in section 5.1.2 however that equality in losses is not expected to hold in the
presence of unobserved confounders.

Remark on optimization. The L2 norm in the regularizer is an integral over the domain of
values of β and is in general intractable. We approximate this objective in practice with norms
on functional evaluations at each step of the optimization rather than explicitly computing the
integral. We give more details and show this approximation to be justified empirically in the
Appendix.

5.2.2 Robustness in terms of interventions

As is apparent in Theorem 1, performance guarantees on data from a new environment depend
on the relationship of new distributions with those observed during training.
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Let f ◦φλ→∞ minimizeL among all functions that satisfy all pairs of moment conditions defined
in (5.4); that is, a solution to our proposed objective in (5.5) with λ → ∞. At optimality, it
holds that gradients evaluated at this solution are equal across environments. As a consequence
of Theorem 1, the loss evaluated at this solution with respect to any affine combination of
environments is bounded by the average loss computed in-sample (denoted L, say),

∑
e∈E

αe E
(x,y)∼Pe

L( f ◦φ(x),y)≤ L, for any set of αe ∈ ∆η . (5.5)

From the perspective of interventions in the underlying causal mechanism, this can be seen as
a form of data-driven predictive stability across a range of distributions whose perturbations
occur in the same direction as those observed during training.

Example. Consider distributions P of a univariate random variable X given by affine combina-
tions of training distributions P0 with mean 0 and P1 which, due to intervention, has mean 1 so
that, using our notation, EPX = α0EP0X +α1EP1X , α0 = 1−α1 ≥ −η . EPX ∈ [−η ,η ] and
thus we may expect DIRM to be robust to distributions subject to interventions of magnitude
±η on X and any magnitude in the limit η → ∞ (or equivalently λ → ∞). With this reasoning,
however, note that the "diversity" of training environments has a large influence on whether we
can interpret solutions to be causal (for which we need interventions on all observed variables
and unique minimizers) and robustness guarantees: for instance, with equal means in P0 and P1

affine combinations would not extrapolate to interventions in the mean of X . This is why we
say that interventions in test data must have the same "direction" as interventions in training
data (but interventions can occur on observed, unobserved or target variables).

Using our simple example in Figure 5.1 to verify this fact
empirically, we consider 3 scenarios corresponding to in-
terventions on exogenous variables of X ,H and Y . In each,
training data from two environments is generated with
means in the distribution of the concerned variables set
to a value of 0 and 1 respectively, everything else being
equal (σ2 := 1,H := EH ∼N (0,1)). Performance is eval-
uated on out-of-sample data generated by increasing the
shift in the variable being studied up to a mean of 5. In
all cases, we see in Figure 5.2 that performance is stable
to increasing perturbations in the system as long as the
heterogeneity in the data allows us to capture the direction
of the unseen shift.

Figure 5.2: Stability to general
shifts.
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5.2.3 Stability of certain optimal solutions

A special case may also be considered when the underlying system of variables and the available
environments allow for optimal solutions f ◦φλ→∞ and f ◦φλ=0 to coincide. In this case, the
learned representation φ(x) results in a predictor f optimal on average and simultaneously with
equal gradient in each environment, thus,

|| E
(x,y)∼Pe

∇βL( f ◦φ(x),y) ||L2 = 0, for all e ∈ E . (5.6)

For this representation φ , it follows that optimal solutions f learned on any new dataset sampled
from an affine combination of training distributions coincides with this special solution. This
gives us a sense of reproducibility of learning. In other words, if a specific feature is significant
for predictions on the whole range of λ with the available data then it will likely be significant
on new (related) data.

Contrat with IRM. The above special case where all solutions in our hyperparameter range
agree has important parallels with IRM [5]. The authors proposed a learning objective enforcing
representations of data with minimum error on average and across environments, such that
at optimum EPiY |φ⋆(X) = EPjY |φ⋆(X) for any pair (i, j) ∈ E . With unobserved confounding,
both learning paradigms agree but, with unobserved confounding, minimum error solutions
of IRM by design converge to spurious associations (see the discussion after equation (5.4))
and are not guaranteed to generalize to more general environments. For example, in the
presence of additive unobserved confounding H, irrespective of φ , we may have EPiY |φ⋆(X) =

φ⋆(X)+EPiH ̸= φ⋆(X)+EPjH = EPjY |φ⋆(X) if the means of H differ. The sought invariance
then does not hold.

5.3 Related work

There has been a growing interest in interpreting shifts in distribution to fundamentally arise
from interventions in the causal mechanisms of data. Peters et al. [133] exploited this link
for causal inference: causal relationships by definition being invariant to the observational
regime. Invariant solutions, as a result of this connection, may be interpreted also as robust
to certain interventions [117], and recent work has explored learning invariances in various
problem settings [5, 143, 96, 65]. Among those, we note the invariance proposed in [143],
the authors seek to recover causal solutions with unobserved confounding. Generalization
properties of these solutions were rarely studied, with one exception being Anchor regression
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[144]. The authors proposed to interpolate between empirical risk minimization and causal
solutions with explicit robustness to certain interventions in a linear model. In a related thread,
Bulhman et al. [118] considered potential shifts in the actual mechanisms relating cause and
effect and, maximize instead for relative performance over the worst varying-coefficient model.
The present work may be interpreted as a non-linear formulation of this principle with a more
general study of generalization.

Domain generalization represent one direction of out-of-sample generalization by explicitly
learning representations projecting out superficial environment-specific information. Recent
work on domain generalization has included the use data augmentation [184, 160], meta-
learning to simulate domain shift [106] and adversarially learning representations that are
environment invariant [61], even though explicitly aligning representations has important
caveats when label distributions differ, articulated for instance in [5]. Distributionally robust
optimization is a first related line of research that explicitly solves a worst-case optimization
problem (5.1). A popular approach is to define P as a ball around the empirical distribution P̂,
for example using f -divergences or Wasserstein balls of a defined radius [97, 53, 55, 162, 189,
1, 54]. These are general and multiple environments are not required, but this also means that
sets are defined agnostic to the geometry of plausible shifted distributions, and may therefore
lead to solutions, when tractable, that are overly conservative or do not satisfy generalization
requirements [55]. Transfer learning is a second related line of research that considers data from
both training and testing domains (and possibly labeled in the testing domain) to be available,
the challenge being how to most efficiently use training data to learn optimal hypotheses in the
testing domain. Bounds on the error in estimation have been developed in that setting using
a measure of discrepancy between training and testing distributions [44, 13] and consistent
estimation may be achieved if additional structure (e.g. covariate shift, label shift, etc.) can be
assumed [29, 116].

5.4 Experiments

Data linkages, electronic health records, and bio-repositories, are increasingly being collected
to inform medical practice. As a result, also prediction models derived from healthcare data are
being put forward as potentially revolutionizing decision-making in hospitals. Recent studies
[28, 180], however, suggest that their performance may reflect not only their ability to identify
disease-specific features, but also their ability to exploit spurious correlations due to unobserved
confounding (such as varying data collection practices): a major challenge for the reliability of
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decision support systems. In this section, we explore this pattern conducting a wide analysis of
domain generalization on image, speech and tabular data from the medical domain.

We consider the following baseline algorithms for performance comparisons.

• Empirical Risk Minimization (ERM) that optimizes for minimum loss agnostic of data
source.

• Domain Robust Optimization (DRO) [149] that optimizes for minimum loss across the worst
convex mixture of training environments.

• Domain Adversarial Neural Networks (DANN) [61] that use domain adversarial training to
facilitate transfer by augmenting the neural network architecture with an additional domain
classifier to enforce the distribution of φ(X) to be the same across training environments.

• Invariant Risk Minimization (IRM) [5] that regularizes ERM ensuring representations φ(X)

be optimal in every observed environment.

• Risk Extrapolation (REx) [96] that regularizes for equality in environment losses instead of
considering their derivatives.

All trained models use the same convolutional or fully-connected architecture, where appropri-
ate. Performance results are given in Table 5.1. Further experimental details and pseudo-code
for DIRM can be found in Appendix D.4.

5.4.1 Diagnosis of Pneumonia with chest X-ray data

In this section, we attempt to replicate the study in [195]. The authors observed a tendency
of image models towards exploiting spurious correlations for the diagnosis on pneumonia
from patient Chest X-rays that do not reproduce outside of training data. We use publicly
available data from the National Institutes of Health (NIH) [188] and the Guangzhou Women
and Children’s Medical Center (GMC) [92]. Differences in distribution are manifest, and can
be seen for example in the top edge of mean pneumonia-diagnosed X-rays shown in Figure 5.3.
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Table 5.1: Accuracy of predictions in percentages (%). Uncertainty intervals are standard deviations.
All datasets are approximately balanced, 50% performance is as good as random guessing.

Pneumonia Prediction Parkinson Prediction Survival Prediction
Training Testing Training Testing Training Testing

ERM 91.4 (± .7) 52.4 (± 1) 95.7 (± .5) 62.9 (± 1) 93.2 (± .4) 75.3 (± .9)
DRO 91.2 (± .5) 53.1 (± .6) 94.0 (± .3) 69.8 (± 2) 90.5 (± .4) 75.5 (± .8)
DANN 92.3 (± 1) 57.1 (± 2) 91.6 (± 2) 51.4 (± 5) 89.3 (± .8) 73.9 (± .9)
IRM 89.5 (± 1) 58.6 (± 2) 93.6 (± 1) 71.4 (± 2) 91.9 (± .6) 75.7 (± .8)
REx 87.7 (± 1) 57.9 (± 2) 92.0 (± 1) 72.4 (± 2) 91.3 (± .5) 75.0 (± .9)
DIRM 84.3 (± 1) 63.7 (± 3) 93.1 (± 2) 72.8 (± 2) 91.4 (± .6) 77.9 (± 1)

In this experiment, we exploit this (spurious) pathology
correlation to demonstrate the need for solutions robust
to changes in site-specific features. We construct two
training sets, in each case 90% and 80% of pneumonia-
diagnosed patients were drawn from the NIH dataset and
the remaining 10% and 20% of the pneumonia-diagnosed
patients were drawn from the GMC dataset; the reverse
logic (10%/90% split) was followed for the test set.

Figure 5.3: Average pneumonia X-
ray.

Our results show that DIRM outperforms, suggesting that the proposed invariance guides
solutions better towards robustness even to changes due to unobserved factors.

5.4.2 Diagnosis of Parkinson’s disease with voice recordings

Parkinson’s disease is a progressive nervous system disorder that affects movement. Symptoms
start gradually, sometimes starting with a barely noticeable tremor in a patient’s voice. This
section investigates the performance of predictive models for the detection of Parskinson’s
disease, trained on voice recordings of vowels, numbers and individual words and tested on
vowel recordings of unseen patients.

We used the UCI Parkinson Speech Dataset with given training and testing splits [150]. Even
though the distributions of features will differ in different types of recordings and patients, we
would expect the underlying patterns in speech to reproduce across different samples. However,
this is not the case for correlations learned with baseline training paradigms (Table 5.1). This
suggests that spurious correlations due to the specific type of recording (e.g. different vowels
or numbers), or even chance associations emphasized due to low sample sizes (120 examples),
may be responsible for poor generalization performance. Our results show that correcting for
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spurious differences between recording types (DIRM, IRM, REx) can improve performance
substantially.

5.4.3 Survival prediction with electronic health records

This section investigates whether predictive models transfer across data from different medical
studies – the MAGGIC studies [115] – all containing patients that experienced heart failure.
The problem is to predict survival within 3 years of experiencing heart failure from a total of
33 demographic variables. We introduce a twist however, explicitly introducing unobserved
confounding by omitting certain predictive variables. The objective is to test performance on
new studies with shifted distributions, while knowing that these occur predominantly due to
variability in unobserved variables.

Confounded data is constructed by omitting a patient’s age from the data, found in a preliminary
correlation analysis to be associated with the outcome as well as other significant predictors
such as blood pressure and body mass index. This example is constructed to be able to control
for how unobserved variables shift but note that we can expect similar phenomena in many
other scenarios, where for instance a prediction model is taken to patients in a different hospital
or country with fundamental shifts in the distribution of very relevant variables (e.g. socio-
economic status, ethnicity, diet, etc.) even though this information is not reported in the data.
Performance is tested on all studies of over 500 patients with balanced death rates, each having
slightly different age distributions. (We give more details in Appendix D.4). We found DIRM,
robust to changes in unobserved variables, to outperform all other methods.

Influential variables that reproduce across datasets. In the following, we tackle the problem
of reproducibility of learned influential features across different experiments. Reproducing con-
clusions of influential features in different studies with potential shifts in the distribution is an
important challenge, especially in healthcare where heterogeneity between patient populations
is high. We showed in section 5.2.3 that in the event that the optimal predictor is invariant as a
function λ ∈ [0,∞), optimal predictors estimated in every new dataset in the span of observed
distributions, should be stable.
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We consider here a form of diluted stability for feature
selection. For a single layer network, we consider signifi-
cant those covariates with estimated parameters bounded
away from zero in all solutions in the range λ ∈ [0,1].
Comparisons are made with ERM (conventional logistic re-
gression), both methods trained separately on 100 random
pairs of studies. Figure 5.4 shows how many features (in
the top 10 of predictive features) from each model intersect
across pairs of studies. In constrast to ERM, our objective
recovers significant features much more consistently.

Figure 5.4: Reproducible features.

5.5 Conclusions

We have studied the problem of out-of-sample generalization from a new perspective, grounded
in the underlying causal mechanism generating new data that may arise from shifts in observed,
unobserved or target variables. Our proposal is a new objective that is provably robust to
certain shifts in distribution, and is informed by certain statistical invariances in the presence
of unobserved confounders. Our experiments show that we may expect better generalization
performance and also better reproducibility of influential features in problems of variable
selection.

A limitation of our approach is that robustness guarantees crucially depend on the (unobserved)
properties of available data. Using the proposed approach, Derivative Invariant Risk Minimiza-
tion for prediction generally does not guarantee protection against unsuspected events. More
specifically, we can not expect robust prediction when the heterogeneity in test data sets is
different from the restricted set of shift interventions that have been observed on the training
data sets. For example, in Theorem 1, the supremum contains distributions that lie in the affine
combination of training environments, as opposed to arbitrary distributions.
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Chapter 6

Scoring DAGs with Dense Unobserved
Confounders
Unobserved confounding is one of the greatest challenges for causal discovery. The case in
which unobserved variables have a potentially widespread effect on many of the observed ones
is particularly difficult because most pairs of variables are conditionally dependent given any
other subset. In this chapter we show that beyond conditional independencies, unobserved
confounding in this setting leaves a characteristic footprint in the observed data distribution that
allows for disentangling spurious and causal effects. Using this insight, we demonstrate that a
sparse linear Gaussian directed acyclic graph among observed variables may be recovered
approximately and propose an adjusted score-based causal discovery algorithm that may be
implemented with general purpose solvers and scales to high-dimensional problems. We find,
in addition, that despite the conditions we pose to guarantee causal recovery, performance in
practice is robust to large deviations in model assumptions.

Introduction

Unmeasured confounding is a long-standing challenge for reliably drawing causal inferences
from observational data. This is because, in the presence of unobserved confounding, correla-
tions observed in data are compatible with many potentially contradictory causal explanations,
leaving the scientist unable to distinguish between them.

The problem of causal discovery is to define constraints in the data distribution (e.g. conditional
independencies) to infer the causal graph [129]. In the presence of unobserved confounding,
one popular way forward has been to seek an equivalence class of mixed graphical models,

77



Scoring DAGs with Dense Unobserved Confounders

Figure 6.1: a) A DAG with unobserved confounding; b) the corresponding MAG; c) the equivalence class
of MAGs representing the same conditional independences as the DAG (dots • indicate undetermined
causal direction). This example considers observed variables X1,X2,X3 and X4, confounded by H which
is unobserved. In genetics, these may represent the activity of a set of genes, confounded by the amount
of ozone in the air or patient variation over time [an example from 60]. Due to H most pairs of variables
are conditionally dependent given any subset of other variables and thus few edges in the inferred
equivalence class can be oriented.

called maximal ancestral graphs (MAGs), including directed, bidirected and undirected edges
representing different types of possible causal dependencies compatible with observed condi-
tional independencies [139]. This approach is compelling because it requires no assumptions
on the functional relationships between variables or even knowledge on the number or type of
unobserved confounders to consistently identify equivalence classes [163, 42, 40, 176, 178].

In some problems however, equivalence classes are largely uninformative as to the underlying
causal relationships between observed variables. In genetics for example, gene expression
measurements are often confounded by batch effects, degradation and other specifics of the
experiment, leaving most pairs of gene expression measurements conditionally dependent
given any subset of other measurements [60, 102]. A similar pattern occurs in finance with
asset prices driven by a common political climate or exogenous shocks even though these
events are often not explicitly recorded in data [34]. In these examples, graphically, unobserved
confounding, when dense in its effect on observables (i.e. unobserved variables having an
effect on many of the observed ones), leaves most edges in the equivalence class of MAGs
undetermined. See Figure 6.1 for a concrete example.

In this context, we show that we can make progress by restricting ourselves to learning the
directed edges among observed variables in a causal MAG (i.e. a directed acyclic graph (DAG)).
We study the setting of a high-dimensional system of variables X ∈ Rp, in an underlying linear
model whose causal interactions are specified by the non-zero entries of a sparse adjacency
matrix W ∈ Rp×p, in the presence of dense unobserved confounding H ∈ Rq,

X =WX +BH +E, (6.1)
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where E is an independent vector of errors but realizations of X may be confounded by H
through B ∈ Rp×q.

Contributions. A practical consequence of dense unobserved confounding is that the con-
tribution of the matrix of confounded contributions B to the matrix of observed correlations
Cov(X) is different (in a characteristic sense) from the contribution due to the matrix of causal
contributions W . We can then adjust for confounded contributions by analogizing DAG learning
to a regression problem involving a sparse plus dense superposition of matrices [31, 158, 33],
in this case interpreted as causal and confounded contributions respectively in the context of
unobserved confounding.

Specifically, we show that one can formulate DAG learning among p observed variables in the
presence of dense unobserved confounding as the solution of an optimization program:

minimize S(W ;X) such that W ∈ D, (6.2)

where D is the set of p× p matrices representing the weighted adjacency matrix of a DAG
and X ∈ Rn×p is the data. S is known as the score function. Estimators of this form have a
long history in causal discovery [4, 153, 37, 201, 27, 110], predominantly in the fully observed
setting.

Our contributions are three-fold.

1. We show that in high-dimensional (p≫ n) linear models (6.1) the spectrum of the con-
founded data matrix is characteristically different than would be expected without unob-
served confounding.

2. With this insight, we propose a score function S and problem (6.2) whose solution has
explicit finite-sample true positive guarantees.

3. We develop a practical two-stage algorithm, the Deconfounded Score (DECS) method,
leveraging standard gradient-based optimization solvers and algebraic acyclicity formula-
tions of DAGs that has the practical benefits of being much simpler and scaling better to
large samples and high-dimensional feature spaces than alternative independence-based
approaches.
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6.1 Related work

This chapter primarily engages with the literature on causal discovery in the presence of
unobserved confounding but also draws on insights from high-dimensional linear regression
and factor models.

We argue for exploiting properties of the spectrum of data matrix to recover a causal DAG
among observed variables in high-dimensional systems. We contrast this approach with
work that seeks conditional independencies as a route to causality, first presented in [163]
and subsequently widely extended and applied e.g., [42, 40, 41]. The authors developed
theoretically consistent algorithms for recovering an equivalence class of MAGs [139] which
may be linked to the underlying causal structure with an assumption of faithfulness. Examples
include the FCI, FCI+, RFCI and other variants that use (a polynomial number of) conditional
independence tests to iteratively recover the skeleton and some edge orientations. A second
class of algorithms instead propose to search greedily for graphs optimizing a score function
defining goodness of fit on the observed data. For instance, [176] proposed a greedy search
algorithm maximizing a penalized Gaussian likelihood score over the class of MAGs, [17]
proposed a greedy search over partial orderings of the variables, [58] use a decomposition of
the covariance matrix extending the GES algorithm [37] to unobserved confounding, [178]
proposed a hybrid combination of score and independence-based algorithms, among others that
consider bow-free acyclic graphs (a special case of MAGs) [124, 52].

We share the objective of seeking a consistent score function but instead aim to recover a DAG
among observed variables only and do so focusing on high-dimensional spaces from a penalized
regression perspective, relying instead on the principle of independent conditionals [82] to
link the spectrum of the data matrix to causality. This challenge is related to the literature on
identifiability in high-dimensional regression [36, 31, 158, 33] and estimation in linear factor
models [56, 57, 6, 57, 23]. For instance, in different variations of the underlying factor model
it is possible to consistently recover a decomposition of regression parameters or covariance
matrices into a sparse component and a dense or low-rank component separately. This chapter
applies this theory to extend (fully-observed data) score-based DAG learning consistency results
(e.g. [4, 3]) to a special case of unobserved confounding that could not be consistently analysed
before.
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6.2 Problem formulation

We use the language of structural causal models (SCMs) as our basic semantical framework to
enable us to specify functional relationships between variables.

We suppose a structural causal model describes a natural phenomenon of interest, partially
observed through a random vector X = (X1, . . . ,Xp) satisfying,

X =WX +BH +E, (6.3)

where W ∈ D specifies the causal variable relationships in X . H = (H1, . . . ,Hq) is a vector
of q unobserved Gaussian confounders that influence X through a dense1, fixed matrix B ∈
Rp×q. E = (E1, . . . ,Ep) a vector of independent sources of noise, also drawn from a Gaussian
distribution. We will denote X∈Rn×p as the data matrix, each row independently sampled from
(6.3) and we will assume p≫ n. W defines a DAG over the observed variables, if [W ]i j ̸= 0 we
will say that X j ∈ Pa(Xi) is a causal parent of Xi.

Our goal is to define a score function S : Rp×p→ R, involving only the observed data, that
provably attains a minimum at the weighted adjacency matrix W of the underlying DAG.

6.2.1 The challenge of high-dimensional data

In high-dimensional systems, defining a function that scores candidate adjacency matrices W is
intrinsically ill-posed without further structure. When Rank(X)< p, e.g. when p > n, there are
infinitely many solutions with minimum score. Given one solution W ⋆, the quantity W ⋆+ ε is
also a solution for any ε in the null space of X. Moreover, even if only signs are desired in the
underlying DAG (i.e. we seek to know whether each estimated causal effect raises or lowers the
probability of outcomes in children nodes), this type of non-uniqueness makes interpretation of
solutions cumbersome: for any i and at least one j ∈ {1, . . . , p}, we will have W ⋆

i j > 0 for one
solution, but W ⋆

i j < 0 for another solution. Constraining solutions to be sparse (i.e. few edges in
comparison to the number of variables involved) is one way to overcome this problem [76].

1e.g. we may consider B dense if all entries are drawn from a Gaussian distribution
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6.2.2 The challenge of confounded data

An assumption of sparsity on solutions to score-based optimization problems such as (6.2) is
not appropriate however. The inferred matrix of associations will typically be dense as a result
of confounding. We may write for instance,

X = (W +C)X +(BH−CX)+E, (6.4)

where C ∈ Rp×p is chosen such that Cov(BH−CX ,X) = 0 (interpreted as the covariance of
every pair of random variables in each of the two vector arguments to be zero). C is the scaled
projection of H on X : C = Cov(X)−1Cov(X ,H)B, and represents the bias introduced in the
estimation of W due to the contributions of unobserved confounding variables H. If we ignore
confounding, we shall have W +C as the target of score-based algorithms instead of W . And
as mentioned in section 6.2.1, it will typically not be accessible in high-dimensional systems.
The bias in estimation of W is potentially large if ||XC|| is large. We rename the error vector of
this model Ẽ := (BH−CX)+E, each entry independently distributed and independent of X
by construction.

6.3 Adjusted scoring of DAGs

In this section, we describe the principle of independent causal mechanisms which motivates
an adjusted score function that mitigates the contribution of unobserved confounding while
preserving the causality among observed variables.

6.3.1 The asymmetry of confounding

Confounded relationships between observed variables leave a characteristic statistical footprint
in the data distribution.

If we were to be given the underlying causal structure and all variables fully observed (H = 0),
we could write,

P(X1, . . . ,Xp) =
p

∏
i=1

P(Xi|Pa(Xi)), (6.5)
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where each P(Xi|Pa(Xi)) denotes the conditional distribution of Xi on its parents Pa(Xi). The
conditional distributions have the property of describing an invariant mechanism of nature
(e.g. in the same manner that physical laws are invariant to location and time), that should be
independent of the distribution of the causes P(Pa(Xi)) [82, 83]. Importantly, this independence
does not hold in the presence of unobserved confounders, since these variables induce a
correlation between Xi and its parents Pa(Xi).

Given that the underlying model of variable associations (6.3) is linear we may define this
independence criterion by associating each P(Xi|Pa(Xi)) with the set of parameters wi (i.e.
the ith row of W ). Following this reasoning, wi should be independent from the distribution
of its parents P(Pa(Xi)), in our case fully specified by the matrix of second moments of X .
Specifically, it would be unexpected to find wi aligned in any specific manner to large principal
components of X (i.e. large eigenvalues of Cov(X)).

In the presence of unobserved confounding, this changes, independence of causal mechanisms
is not expected to hold and will induce a statistical footprint in the distribution of the observed
data that is different than it should be without confounding. We will see that this holds
specifically in our model in the next subsection.

6.3.2 Adjusting for confounding

We have mentioned that the bias in estimation of W is potentially large if ||XC|| is large in
(6.4), but the direction of this contribution tends to be concentrated in specific vectors related
to the covariance matrix of X . Specifically, assuming Cov(H) = Cov(E) = I and W sparse,
each column in B in (6.3) tends to be approximately aligned with Cov(X) = (I−W )−1(BBT +

I)(I−W )−T since each column in B is an eigenvector of (BBT + I) with large eigenvalue (all
other eigenvectors have a corresponding eigenvalue equal to 0).

And therefore also the direction of the transformation C = Cov(X)−1Cov(X ,H)B, as a multiple
of B, must be aligned with large eigenvectors of Cov(X). Under the principle of independent
conditionals, such dependence or alignment between coefficients W of X (that define the
causal contribution) and its distribution is unlikely. We can expect therefore that shrinking
large principal components of X shrinks the contribution of C in our estimates but leaves
the contribution due to causal coefficients unchanged – as these are largely orthogonal to the
direction of large principal components of X.

One approach, originating in [56] in the context of high-dimensional regression, is thus to
remove or truncate large singular values of X leaving the direction of singular vectors unchanged.
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Let X=UDV⊺ be the singular value decomposition of X, where U∈Rn×r, D∈Rr×r, V∈Rp×r,
and where r = min(n, p) is the rank of X. We write d1≤ d2≤ ·· · ≤ dr for the diagonal elements
of D. We use the truncated form of the singular value decomposition, which uses only non-zero
singular values.

We define the adjusted matrix X̃ := FX as a transformation of X by F ∈ Rn×n that upper-
bounds each singular value to d̃ := median(d1, . . . ,dr): F := UD̃U⊺, where D̃ is diagonal with
each element on the diagonal equal to [D̃]ii := min(di, d̃)/di. As demonstrated in [33] for this
transformation matrix, without adjustments, the contribution due to unobserved confounding
||XC|| may be as large as ||HB|| which can be shown to be of the order of p

√
n||B|| while

||X̃C|| is of the order of p||B||, which is much smaller.

6.3.3 An adjusted score function

A score-based DAG estimator that derives from this approach is immediate, formulated as the
solution of a constrained optimization problem,

Ŵ ∈ argmin
W∈D

S(W ;X),

S(W ;X) :=
1

2n
||X̃− X̃W ||2F +λ ||W ||1, (6.6)

where X̃ = FX ∈ Rn×p is the linear transformation of the data matrix that truncates large
principal components. S is the penalized mean squared score function in Frobenius norm that
quantifies how well W agrees with observations, λ ||W ||1 is the scaled sum of the magnitude of
the entries in W , and λ > 0.

6.3.4 A guarantee on recovery of W

We are motivated by the prior that large principal components should align more closely with
correlations driven by unobserved confounding. An important question is whether solutions
to the adjusted optimization problem in fact converge, and if so, whether they converge to the
underlying causal structure W .

The problem in (6.6) can be interpreted as optimization over a family of neighbourhood
regression problems, each variable regressed on its non-descendants. This decomposition can
be used to derive uniform bounds on recovery error. In particular, [4] first showed that imposing
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sparsity on the true DAG substantially reduces the number of regressions, otherwise equal
to 2p−1 p (since the topological ordering of the DAG, or the set of non-descendants for each
variable is unknown a priori) and intractable in general. Penalized score-based learning without
unobserved confounding, they showed, efficiently and provably recovers a sparse DAG Wmin

with minimum conditional variance, also called minimum-trace DAG. If unique Wmin equals W ,
otherwise there is technically no truth to approximate from data, though penalized score-based
learning does converge to a sparse representative among the class of minimum-trace DAGs.
We refer to [4, 3] for more details.

In this section, we show that a similar strategy applies in our setting, with the difference
however that each neighbourhood regression problem, instead of being a penalized regression
problem, is formulated as the following adjusted, penalized regression problem,

arg min
wi∈Rp, supp(wi)⊂S

1
2n
||X̃i− X̃wi||22 +λ ||wi||1. (6.7)

S is a subset of all variables other that Xi that defines a neighbourhood of Xi. X̃i ∈ Rn is the
ith column of X̃, wi ∈ Rp is the ith column of W (i.e. the regression parameters defining the
parents of Xi) and supp(wi) denotes the support of wi.

To obtain uniform bounds on the error in DAG estimation as in [4, 3] it suffices to show that
each regression parameter wi can be recovered consistently. Bounds on the estimation of
wi (in l1 of l2 norms for example), exist in the high-dimensional regression literature once
we recognise wi as the sparse component in a sparse plus dense superposition of regression
parameters [e.g. Theorem 1 in 33]. Two conditions are needed for these bounds. First, we must
ensure that the perturbation C due to unobserved confounding on each individual estimated
parameter is not too large (specifically, a restriction on the order of the largest singular value
of Cov(X ,H) which holds as a consequence of confounding being dense). Second, we must
ensure the transformation F to be well-behaved, i.e. not shrink the causal signal too much
(specifically imposing a smallest restricted eigenvalue condition on the covariance matrix of
X̃) but consistently lower large singular vectors of X̃ . We refer to Appendix E.1 for a formal
statement of these regularity conditions.

For any A∈Rp×p, let τ(A) := min{|ai j| : ai j ̸= 0}. The quantity τ(Wmin) measures the smallest
nonzero weight in Wmin, which is a measure of the signal strength in the problem. Denote a ≳ b
to mean that a ≥C ·b for some constant C > 0, and σ := maxi(σi) where σi in the standard
deviation of adjusted error terms ẼiF (Ẽi defined in section 6.2.2). The following Theorem
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shows that the support of the minimum-trace DAG, i.e. the true edges in the underlying DAG,
is contained in the support of the estimated DAG with high-probability.

Theorem. Under regularity conditions and Wmin unique, for n ≳ s log p, λ ≳ σ
√

log p/n, and
τ(Wmin)≳ λ ,

supp(Wmin)⊆ supp(Ŵ ), (6.8)

with probability 1−O(ek log p), where k is the maximum in-degree of Wmin, i.e. the maximum
number of directed edges that point into any observed node, and s is the size of the support of
Wmin.

Proof. The proof is given in Appendix E.1.

Despite the presence of unobserved confounding, this result guarantees not to miss any causal
edges in the true network but we may (typically) have too many false positive selections in
the estimated DAG. This result is equivalent to the property of variable screening of the lasso
estimator. Results exist also to guarantee full support recovery of the lasso estimator [187].
In the DAG estimation setting however, this necessitates however much stronger conditions,
roughly speaking requiring that no parent of a given variable be highly correlated with "non-
parent" variables, known as the incoherence condition discussed by [3].

6.3.5 Practical algorithms

This section describes a practical algorithm to solve (up to stationarity) the constrained opti-
mization problem (6.6).

The practical challenge is to enforce efficiently the acyclicity constraint on W . One approach
is to transform the traditional combinatorial optimization problem into a continuous program,
using an equivalent formulation of acyclicity via the trace exponential function, due to [201].
W corresponds to an acyclic graph if and only if the function h(W ) = 0, where h(W ) :=
Tr(exp{W ⊙W})− p, exp{M} denotes the matrix exponential of a matrix M, ⊙ denotes the
element-wise matrix product, and Tr denotes the matrix trace operator. The optimization
problem becomes,

minimize
W∈Rd×d

1
2n
||X̃− X̃W ||2F +λ ||W ||1 such that h(W ) = 0, (6.9)
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which is non-convex but can be solved approximately with second-order methods. [201]
proposed to use an augmented Lagrangian method that we leverage here, with resulting
solutions often very close to the true global minimum in practice and that scale to modern
problem sizes with thousands of variables2.

Choosing the regularization parameter λ with cross-validation is different than in the standard
setting with no confounding. When using cross-validation, aiming for best prediction, the
chosen λ would be typically too small since the best prediction would also try to capture the
unwanted signal from XC in (6.4). To partially correct for this issue, cross-validation should be
run on the adjusted data X̃. This strategy should make the additional signal smaller and hence
cross-validation aiming for best prediction is expected to perform reasonably well.

We call this causal discovery approach the Deconfounded Score method (DECS).

6.4 Experiments on synthetic data

Our goal in this section is to measure causal discovery performance in extensive experiments,
and especially under violations of our assumptions.

Comparisons. We make comparisons with three causal discovery methods: the independence-
based Fast Causal Inference (FCI) [163], LGES [58] that uses a decomposition of the covari-
ance matrix followed by the GES algorithm, and Notears [201], the continuous optimization
approach without adjustments (it is not specifically designed for unobserved confounding but
serves to isolate the benefit / harm of adjusting for unobserved confounding with DECS). We
note that the performance of non-convex optimization programs in the context of DAG learning,
and the benefit of continuous-optimization formulations for DAG learning are well studied
[201, 122] – both noting significant gains over independence-based methods.

Metric. Note however that not all algorithms have the same output, FCI outputs an equivalence
class of MAGs, LGES outputs an equivalence class of DAGs, and Notears outputs a weighted
adjacency matrix.

For consistent performance comparisons, we chose to consider the skeleton (i.e. all directional-
ity omitted) of estimated graphs which is a common output across all algorithms. In a sense this
treats existing algorithms favourably by regarding undirected or undetermined edges as true
positives as long as the true graph has a directed edge in place of the undirected edge. (We give

2Recently, [122] found that enforcing h(W ) = 0 may not be necessary to recover a DAG in practice, and argue
for a soft constraint leading to much faster methods. One may extend the above in the same manner.
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more details on algorithm and metric implementation in the Appendix). We report the AUC
and SHD on estimated skeletons and both take into account false positives and false negatives.

We do make more detailed evaluations in the Appendix considering the error in weighted
adjacency recovery (W −Ŵ )2 (although comparisons there are limited to Notears which is the
only baseline outputting weighted adjacency matrices).

6.4.1 Experimental set-up

In each experiment, we generated a p-dimensional random graph G from a Erdös–Rényi random
graph model with p edges on average. Given G, we assigned uniformly random edge weights
to obtain a weighted adjacency matrix W ∈ Rp×p. Given W , we sampled X =WX +BH +E
repeatedly from different noise models for H ∈Rq and E ∈Rp, including Gaussian, Exponential
and Gumbel distributions, and B ∈ Rp×q with each entry independently sampled from N (0,1).
We fix the number of observations n = 100 in all experiments.

Task. The task is to recover the skeleton defined by W (i.e. the matrix W̄ such that [W̄ ]i j =

1{[W ]i j ̸= 0}) given n independent samples from X , available as data matrix X ∈ Rn×p. We
consider performance comparisons along the spectrum of five parameters:

1. The data distribution family.

2. The dimensionality p of X .

3. The dimensionality q of H.

4. The noise scale σ which when small implies a more pronounced perturbation of unob-
served confounding.

5. The denseness of B.

6.4.2 Results

(1) The data distribution family. Each column of Figure 6.2 refers to a different data dis-
tribution family. We can see that when the Gaussian assumption is satisfied DECS can
significantly improve in performance with respect to other methods, especially for relatively
high-dimensional graphs (top row). It is interesting however that relative performance does
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Figure 6.2: Performance on synthetic experiments. DECS is the proposed approach.

not vary with a change in distribution (Exponential of Gumbel) which suggests that DECS is
relatively robust to the underlying noise model.

(2) Dimensionality of observed variables. In the top row of Figure 6.2 we show performance
as a function of the dimensionality of the observables. Theoretically, DECS requires high-
dimensional data and we see that outperformance is strongest in this regime (the number of
samples here is 100) although DECS remains competitive otherwise.

(3 and 4) Dimensionality and strength of unobserved confounders. On the middle and bot-
tom rows we vary the dimensionality of unobserved confounders q and strength of confounding
(their variance σ ) respectively. When q = 0 the system is fully observed. An interesting
observation is that Notears and DECS perform similarly which suggests that there is nothing
lost by adjusting for unobserved confounders even when not present. As we increase q and the
strength of confounding DECS outperforms.

(5) Sparse unobserved confounders. In the Appendix we conduct an experiment to test the
sensitivity of DECS with respect to the level of denseness on B. The advantage of DECS
decreases in this case, though performance remains competitive.
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6.5 Experiments on Genetic Data

The study of gene regulatory networks is one area in genomics with the potential to uncover
the interactions of molecular regulators that govern the gene expression levels of messenger
RNA and proteins: the building blocks of all cell function.

Problem. In this section, we are interested in the problem of recovering the underlying network
from individual samples of gene expression. To validate performance on this task, we use
a number of gene expression simulation programs that have been constructed based on the
behaviour of known simple organisms, all publicly available in the bnlearn R package.

Data. We consider gene expression data from an E. coli
microorganism [152] (E. coli), gene expression data
describing starch metabolism of Arabidopsis thaliana
[125] (Starch), data from a scale-free network, found
to faithfully describe biological organisms [7] (Scale-
Free), and protein expression level data from human
immune system cells [148] (Sachs). All variables are
fully observed in all of the above. We consider induc-
ing unobserved confounding by explicitly removing a
number root nodes in the network after sampling data,
see Figure 6.3 for an example with the Starch network.
Networks, omitted variables, and other details for all
datasets can be found in the Appendix.

Figure 6.3: Starch network. Data from
each of the blue nodes in the starch net-
work is omitted thereby inducing spurious
correlations among their children.

Results. Performance results are given in Table 6.1. AUC and SHD figures on all datasets show
that DECS is competitive on all tasks. We make an additional comparison here considering true
positive (TPR) and false discovery (FDR) rates at a threshold chosen for minimum SHD. This
comparison is made to show the relatively good false discovery control of DECS even though
formal guarantees were not established. On all metrics, and particularly with the AUC that
considers performance along the whole threshold spectrum, DECS outperforms in most cases
which demonstrates its applicability in realistic genetic data scenarios where knowledge on
interactions between genes or gene products are typically not available without interventions.
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Table 6.1: Mean performance and standard deviations over 10 random trials on Ecoli (n = 100, p = 41),
Starch (n = 100, p = 104), Scale-Free (n = 100, p = 200) and Sachs (n = 7466, p = 10) data. Bold
indicates best performance. FCI returns a complete graph in almost all cases and we have omitted it
from these results.

E. coli Starch Scale-Free Sachs

TPR
Notears 0.39 ± 0.01 0.24 ± 0.01 0.18 ± 0.01 0.58 ± 0.02
LGES 0.57 ± 0.05 0.42 ± 0.03 0.15 ± 0.01 0.66 ± 0.05

DECS (ours) 0.34 ± 0.04 0.28 ± 0.05 0.21 ± 0.05 0.33 ± 0.05

FDR
Notears 0.59 ± 0.02 0.83 ± 0.05 0.12 ± 0.01 0.64 ± 0.05
LGES 0.66 ± 0.03 0.58 ± 0.03 0.82 ± 0.05 0.55 ± 0.05

DECS (ours) 0.32 ± 0.05 0.50 ± 0.06 0.20 ± 0.03 0.20 ± 0.04

SHD
Notears 39.0 ± 2.25 192 ± 10.0 40.0 ± 5.25 12.5 ± 1.50
LGES 51.0 ± 2.50 115 ± 7.00 23.0 ± 2.00 13.0 ± 1.50

DECS (ours) 26.0 ± 2.00 95.0 ± 3.00 14.0 ± 1.25 8.00 ± 1.00

AUC
Notears 0.60 ± 0.02 0.58 ± 0.03 0.65 ± 0.03 0.67 ± 0.03
LGES 0.62 ± 0.05 0.66 ± 0.06 0.59 ± 0.05 0.66 ± 0.04

DECS (ours) 0.65 ± 0.03 0.67 ± 0.04 0.70 ± 0.05 0.65 ± 0.05

6.5.1 DECS for reproducible discovery

This section considers reproducibility of causal discovery across environments.

If two datasets differ in the distribution of unmeasured variation, correlations between observ-
ables vary, and we cannot expect estimates of conventional causal discovery algorithms to be
reproducible. This is an important challenge because any two experiments most likely do differ
due to changes in environment, data collection practices, among other unmeasured factors.
The adjusted adjacency matrix from DECS, by definition removes sources of unmeasured
variation from the otherwise biased estimate. We can expect the estimated adjacency matrix to
be invariant in theory to changes in distribution of unobserved confounders, and therefore more
reproducible and stable across different experiments.

Experiment design. To test this feature, we adopt
the scale-free network and construct several datasets
while varying the extent of unobserved confounding to
simulate different environments. Specifically, we let
X =WX +BH +E, where matrices W and B, and the
distribution E ∼Np(0, I) are fixed, while H is drawn
from distributions N (0,σ) with varying σ (drawn at
random in the interval [0.25,2]). Different σ corre-
spond to different environments. The problem is to test
the agreement between recovered adjacency matrices
W in different environments.

Figure 6.4: Reproducibility experiments.
Higher values for larger number of envi-
ronments indicate higher levels of repro-
ducibility.
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Results. We report the number of edges that reproduce across different environments in Figure
6.4. Each point on the plot gives the proportion of estimated edges that intersect in any m
studies, m = 1, . . . ,10. For instance, approximately 15% of estimated edges (across all 10
environments) intersect in all 10 environments for DECS whereas only 1% do for Notears3.
This shows that adjusting for unobserved confounding improves the reproducibility of causal
discovery.

6.6 Conclusions

This chapter develops a score-based causal discovery algorithm in the presence of dense
unobserved confounding (unobserved variables with a widespread effect on observed ones).
The argument considers properties of the spectrum of the data matrix that allows DAG learning
(directed edges among observed variables) in the presence of dense confounding to be expressed
as a continuous optimization problem. Solutions to this problem have guarantees on the true
positive rate in the high-dimensional regime, the resulting score-based problem is much simpler
to implement than independence-based alternatives and it outperforms empirically across a
range of different experiments.

One may extend the proposed approach to model more general structural models. Specifi-
cally, structural models not constrained by a specific data distribution family or functional
relationships between variables. One may consider as an extension optimization problems of
the form,

arg min
f∈F

1
n

n

∑
i=1
L(x̃i, f (x̃i))+ρλ ( f ), (6.10)

where F is a more general space of functions f : Rp→ Rp that defines the causal structure
in the data through its partial derivatives with respect to its arguments, L : Rp×p → R is a
loss function (that may be chosen to model other data types, such as binary or count data)
and ρλ ( f ) is a regularization term that includes the acyclicity constraint. In this case, it takes
a different form but may be computed for large classes of functions by considering norms
on partial derivatives as in [202] and has already been shown to be successful for non-linear
models in the fully observed setting.

3This experiment considers adjacency matrix recovery but we make additional comparisons on the basis of
skeleton recovery with LGES in the Appendix.
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6.6 Conclusions

There is scope as well for considering other adjustment frameworks that control for the influence
of unobserved confounding. For instance, using different problem-dependent eigenvalue
thresholds in the adjusted data matrix or by optimizing simultaneously for matrices W and B
in the linear structural model with an l1 and l2 penalty respectively as [36] considered in the
regression setting.
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Appendix A

Appendix to Chapter 2

This appendix provides additional material to supplement the main body of this paper. It is
outlined as follows:

• Section A.1 provides the proofs for all statements made in the main body of this paper.

– Section A.1.1 gives the proof of the consistency of the RMMD.

– Section A.1.2 gives the proof of the consistency of the RHSIC.

• Section A.2 gives details on the approximations used to deal with irregular set sizes and
high-dimensional data.

• Section A.3 gives details on the implementation of baseline tests.

A.1 Proofs

A.1.1 Asymptotic distribution of R̂MMD
2

Our proof strategy consists of demonstrating convergence in probability of each inner product
K(µ̂P, µ̂Q) to its population counterpart K(µP,µQ), and take also into account approximations
to the embeddings themselves we might make such as with Fourier features. Given convergence
in probability (at a fast enough rate), the equivalence of their asymptotic distributions then
follows by convergence results of random variables.
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Background

All results in this section consider the asymptotic regime of increasing sample size N and
increasing set size ni for each i. We therefore make abstraction for notational simplicity of
our weighting mechanism, assumed fixed and each weight identical across sets asymptotically
which is equivalent to reverting to the equal weight scenario for our asymptotic results.

We start by recalling some definitions. The empirical statistic of the RMMD is given by,

R̂MMD
2

:=
1

N2

N

∑
i, j=1

K(µ̂Pi, µ̂P j)+
1

M2

M

∑
i, j=1

K(µ̂Qi, µ̂Q j)−
2

NM

N

∑
i=1

M

∑
j=1

K(µ̂Pi, µ̂Q j), (A.1)

while the MMD with population mean embeddings is given by,

M̂MD
2

:=
1

N2

N

∑
i, j=1

K(µPi,µP j)+
1

M2

M

∑
i, j=1

K(µQi,µQ j)−
2

NM

N

∑
i=1

M

∑
j=1

K(µPi,µQ j). (A.2)

We assume without loss of generality that N = M for notational simplicity.

Let us recall also the asymptotic distributions under the null and alternative of the M̂MD
2

given
by [70].

Theorem [70]. Assume that K has finite second moments. Then, the following statements
hold.

1. UnderH0, NM̂MD
2 d→ ∑

∞
l=1 λl(z2

l −2). zl is a sequence of Gaussian random variables
and λl are the eigenvalues solution to a certain eigenvalue problem.

2. UnderH1, N1/2
(

M̂MD
2
−MMD2

)
d→ N

(
0,σ2

H1

)
.

Please find the details of the eigenvalues and asymptotic variance in [70].

Now note that,

NR̂MMD
2
= NM̂MD

2
+(NR̂MMD

2
−NM̂MD

2
)

√
NR̂MMD

2
=
√

NM̂MD
2
+(
√

NR̂MMD
2
−
√

NM̂MD
2
).

The first term relates to the asymptotic distribution of the RMMD under the null and the second
term relates to the distribution of the RMMD under the alternative hypothesis.
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A.1 Proofs

We are interested in bounding the contribution of the second term in each case under the
null and alternative hypotheses asymptotically. The absolute differences we are interested in
bounding then under the null hypothesis given by,

∣∣∣NR̂MMD
2
−NM̂MD

2∣∣∣≤ 1
N

N

∑
i, j=1

∣∣K(µPi,µP j)−K(µ̂Pi, µ̂P j)
∣∣+ 1

N

N

∑
i, j=1

∣∣K(µQi,µQ j)−K(µ̂Qi, µ̂Q j)
∣∣

− 2
N

N

∑
i=1

N

∑
j=1

∣∣K(µPi,µQ j)−K(µ̂Pi, µ̂Q j)
∣∣ , (A.3)

and under the alternative hypothesis,

∣∣∣√NR̂MMD
2
−
√

NM̂MD
2∣∣∣≤ 1

N
√

N

N

∑
i, j=1

∣∣K(µPi,µP j)−K(µ̂Pi, µ̂P j)
∣∣

+
1

N
√

N

N

∑
i, j=1

∣∣K(µQi,µQ j)−K(µ̂Qi, µ̂Q j)
∣∣

− 2
N
√

N

N

∑
i=1

N

∑
j=1

∣∣K(µPi,µQ j)−K(µ̂Pi, µ̂Q j)
∣∣ . (A.4)

In both cases it suffices to show that inner products between population mean embeddings and
empirical counterparts converge in probability at a rate fast enough such that a union bound
over all terms in the summation scaled by 1/N and 1/(N

√
N) converges to 0. We note here that

we are considering two asymptotic regimes, once in the size of each set ni that is relevant in
the convergence of K(µ̂Pi, µ̂P j) to K(µPi,µP j) and one in N which is the number of sets. Each
may vary independently, and here we will assumed that the rate of growth of ni is sufficient to
ensure the weighted sums converge as N→ ∞.

Results

We will traverse the convergence of empirical kernels to their population counterparts in two
steps, first using results that show the convergence of empirical mean embeddings to their
population counterparts (Lemma 1) and second, using a Lipschitz condition to extend this to
inner products between mean embeddings (Lemma 2).

For this we will assume K to be a real-valued, shift invariant (K(x,x′) = K(x− x′,0)), and
LK-Lipschitz kernel,

|K(x,0)−K(x′,0)| ≤ LK|x− x′|, (A.5)
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also satisfying the boundedness condition |K(x,x′)|< 1 for all x,x′ ∈ X .

The following two Lemmas demonstrate our claim.

Lemma 1 (Bound on the empirical mean embedding [113]) Let the kernel K satisfy the
assumptions above. Then we have,

|µPi− µ̂Pi|HK
≤ 2

√
Ex∼PiK(x,x)

ni
+

√
2log 1

δ

ni
, (A.6)

with probability at least 1−δ over the randomness in the empirical sample from Pi. ni is the
number of samples from Pi.

Lemma 2 (Bound on kernels computed on empirical mean embeddings) Let K be defined as
above. The it holds that,

|K(µPi,µP j)−K(µ̂Pi, µ̂P j)| ≤ LK

4

√
1
η
+2

√
2log 1

δ

η

 , (A.7)

with probability at least 1−δ . As η := min(ni,n j)→ ∞ we get that K(µ̂Pi, µ̂P j) converges in
probability to K(µPi,µP j).

Proof. The proof is based on the Lipschitz condition and the error bound on empirical mean
embeddings with respect to their population counterparts.

|K(µPi,µP j)−K(µ̂Pi, µ̂P j)|=
∣∣K(µPi−µP j ,0)−K(µ̂Pi− µ̂P j ,0)

∣∣ (A.8)

≤ LK
∣∣µPi−µP j − (µ̂Pi− µ̂P j)

∣∣ (A.9)

≤ LK |µPi− µ̂Pi|+LK
∣∣µP j − µ̂P j

∣∣ (A.10)

≤ LK

2

√
Ex∼PiK(x,x)

ni
+

√
2log 1

δ

ni
+2

√
Ex∼P jK(x,x)

n j
+

√
2log 1

δ

n j

 (A.11)

≤ LK

4

√
1
η
+2

√
2log 1

δ

η

 , (A.12)

where η := min(ni,n j) and we have use the boundedness condition on K, Ex∼PiK(x,x)≤ 1.

The for a rate of of increase of ni fast enough in comparison to n, each term in equations (A.3)
and (A.4) converges to zero which implies that the asymptotic distributions of NR̂MMD

2
,√

NR̂MMD
2

and
√

NM̂MD
2
, NM̂MD

2
, coincide respectively.
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A.1 Proofs

Extension to approximations using random Fourier features

For completeness, in addition to considering convergence in distribution using empirical
embeddings, we extend our analysis to include Fourier feature approximations in the empirical
embeddings themselves and their asymptotic behaviour. To do so notice that we may write,

|k(µPi,µP j)−k(µ̂Pi,m, µ̂P j,m)| ≤∣∣k(µPi,µP j)− k(µ̂Pi, µ̂P j)
∣∣+ ∣∣k(µ̂Pi, µ̂P j)− k(µ̂Pi,m, µ̂P j,m)

∣∣ , (A.13)

by the triangle inequality.

The following two lemmas are similar to the first two above but instead related the empirical
mean embedding µ̂Pi with its random Fourier feature approximation µ̂Pi,m.

Lemma 3 (Bound on the randomized empirical mean embedding [113]) Let k be defined as
above. For a fixed sample of size ni from a probability distribution Pi on Rd and any δ > 0, we
have,

|µ̂Pi− µ̂Pi,m|L2(P) ≤
2√
m

(
1+
√

2logni/δ

)
, (A.14)

with probability larger than 1−δ over the randomness of the samples (ωi,bi)
m
i=1.

Lemma 4 (Bound on kernels computed on approximated empirical mean embeddings) Let k
be defined as above. Then for any ε > 0 it holds that,

∣∣k(µ̂Pi, µ̂P j)− k(µ̂Pi,m, µ̂P j,m)
∣∣≤ 2Lk√

m

(
2+2

√
2log(η/δ )

)
, (A.15)

m is the number of random features, ni and n j are the number of observations in time series Xi

and X j respectively, and η := min(ni,n j). If further we assume that min(ni,n j)exp{−m}→ 0
as ni,n j,m→ ∞, then k(µ̂Pi,m, µ̂P j,m) converges in probability to k(µ̂Pi, µ̂P j).
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Proof. The proof strategy is similar to Lemma 3, but for with a different bound on the difference
between mean embeddings. We proceed as follows,∣∣k(µ̂Pi, µ̂P j)− k(µ̂Pi,m, µ̂P j,m)

∣∣= ∣∣k(µ̂Pi− µ̂P j ,0)− k(µ̂Pi,m− µ̂P j,m,0)
∣∣ (A.16)

≤ Lk
∣∣µ̂Pi− µ̂P j − (µ̂Pi,m− µ̂P j,m)

∣∣ (A.17)

≤ Lk
∣∣µ̂Pi− µ̂Pi,m

∣∣+Lk
∣∣µ̂P j − µ̂P j,m

∣∣ (A.18)

≤ 2Lk√
m

(
2+
√

2log(ni/δ )+
√

2log(n j/δ )

)
(A.19)

≤ 2Lk√
m

(
2+2

√
2log(η/δ )

)
, (A.20)

where we have written η := min(ni,n j) and the inequalities hold with probability at least
(1−δ ) over the randomness of the samples (ωi,bi)

m
i=1.

A.1.2 Asymptotic distribution of R̂HSIC

The asymptotic distribution of the RHSIC follows a very similar procedure since it can similarly
bee decomposed in sums of kernels.

Proof. The R̂HSIC may be written as a sum of V -statistics as follows [73],

R̂HSIC =
1

N2

N

∑
i, j

K̂i jL̂i j +
1

N4

N

∑
i, j,q,r

K̂i jL̂qr−
2

N3

N

∑
i, j,q

K̂i jL̂iq, (A.21)

where to avoid cluttering the notation we have written K̂i j := K(µ̂Pi,m, µ̂P j,m) and L̂i j :=
L(µYi,m,µY j,m). Sums with two summation indices refer to double sums of all pairs of numbers
drawn with replacement from {1, ...,N}, and similarly for three and four summation indices
[73]. Similarly to the two sample problem, equality in asymptotic distribution may be shown
by considering the absolute differences in the product of population and empirical kernels. That
is, we are interested in bounding the following,

|K̂i jL̂qr−Ki jLqr|, (A.22)

for any quadruple of indices i, j,q,r.
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A.2 Approximations for high power

Assuming as above that kernels K and L are Lipschitz functions it follows that their product is
also Lipschitz,

|K(x,0)L(y,0)−K(x′,0)L(y′,0)|
≤ |(K(x,0)−K(x′,0))L(y,0)+(L(y,0)−L(y′,0))K(x′,0)|
≤ |K(x,0)−K(x′,0)| · ||L(y,0)||HL + |L(y,0)−L(y′,0)| · ||K(x′,0)||HK

≤ LK|x− x′|+LL|y− y′|.

The same arguments and lemmas used in the two-sample case apply which proves the equiva-
lence in asymptotic distributions of the R̂HSIC and ĤSIC.

A.2 Approximations for high power

A.2.1 Kernel hyperparameters

For the two sample problem, let N be the number of samples in both groups, which simplifies
the formulation of the asymptotic power of the R̂MMD

2
. The following procedure mirrors

[169].

Proposition 3 (Approximate power of R̂MMD
2
). UnderH1, for large N and fixed r, the test

power Pr(NR̂MMD
2
> r)≈ 1−Φ( r√

NσRMMD
−
√

N RMMD2

σRMMD
) where Φ denotes the cumulative

distribution function of the standard normal distribution, σ2
RMMD is the asymptotic variance

underH1 for the R̂MMD
2
.

Consider the terms inside the cdf of the normal. Observe that the first term r√
NσRMMD

=

O(N−1/2) goes to 0 as N → ∞, while the second term,
√

N RMMD2

σRMMD
= O(N1/2), dominates

the first one for large N. As an approximation, for sufficiently large N, the parameters that
maximize the test power are given by θ ∗= argmaxθ Pr(NR̂MMD

2
> r)≈ RMMD2

σRMMD
. In our case

θ includes the bandwidth parameter used to compute the mean embeddings and the bandwidth
parameter used to compute the test statistic. The empirical estimate of the variance σ̂RMMD

that appears in our objective is approximated up to second order terms, as in [169]. Similar
derivations hold for the power optimization of the HSIC with the exception that the definition
of the HSIC requires optimization of two kernels, one for each set in our paired samples: K
and L.
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Note that since RMMD and σRMMD are unknown, to maintain the validity of the hypothesis test

we divide the sample into a training set, used to estimate the ratio with R̂MMD
2

σ̂RMMD
and choose the

kernel parameters, and a testing set used to perform the final hypothesis test with the learned
kernels.

An analogous result holds for the approximate power of R̂HSIC.

A.2.2 Weighting scheme

Under the alternative hypothesis, the asymptotic variance of the proposed test statistics is well
defined and given by asymptotic theory of V -Statistics (up to scaling) equal to Var(EK(µPi,µP j)),
see e.g. Theorem 5.5.1 [157]. To specify the set of weights that maximize power we may use
the same reasoning to the section above and minimize the asymptotic variance.

With finite samples to approximate the mean embedding, assuming that all randomness comes
from the number of samples available to estimate mean embeddings, its variance is proportional
to 1/ni. The delta method (see e.g. [179]) may be applied on the bivariate sample (µPi,µP j)

with the function K to conclude that the variance of each K(µPi,µP j) is proportional to 1/(ni ·
n j). Now, with a finite number of sets, or in other words a finite number of distributions,
we approximate the expectation EK(µPi,µP j) with averages. Assuming that the covariance
between any pair K(µPi,µP j) and K(µPi,µPk) for any i, j,k does not vary by changing indices,
that is, is fixed, weighting each term K(µPi,µP j) with the inverse of its variance gives the lowest
attainable variance Var(EK(µPi,µP j)) in finite samples.

A.3 Additional details on experiments and implementation

A.3.1 Details on the data generation mechanisms

The inverse gamma distribution has appeared parameterized by one and two parameters. We
choose the one-parameter distributions with density,

f (x; µ) =
x−µ−1

Γ(µ)
exp(−1/x), (A.23)

where x≥ 0, µ > 0 and Γ is the gamma function.
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A.3 Additional details on experiments and implementation

A.3.2 RMMD and RHSIC

We create empirical kernel mean embeddings by concatenating data along each dimension.
Each embedding has random features sampled to approximate a Gaussian kernel with length
scale parameter σ2. σ2 is estimated by cross-validation on a grid of parameter values around
the median of squared pairwise distances of the stacked data. In practice, we set the number of
random features to m = 50 (larger amounts of random features show no significant performance
improvements). The parameters of the kernel used for testing are similarly optimized via
cross-validation by defining a grid of parameter values around the median of squared pairwise
distances of computed random features. In summary, for each random feature length-scale we
test with a number of test length-scales and choose the pair of parameters with best performance
according to our power criterion. A summary of these tests’ implementation is as follows.

1. For each observed set {xi, j}ni
j=1 ∼ Pi, compute its approximated mean embedding using

a Fourier basis, with elements in the span of (cos(⟨ω j,x⟩+b j))
m
j=1,

µ̂Pi,m =
1
ni

∑
x∈{xi j}

ni
j=1

(cos(⟨w j,x⟩+b j))
m
j=1 ∈ Rm.

2. Compute weights that describe the confidence we have in each of the above approx-
imations, wPi := ni/∑i ni for each i, that result in posterior test statistics with lowest
variance.

3. Compute two-sample or independence test statistics on this weighted representation of
the data to obtain a real-valued scalar t̂ that discriminates between the two hypotheses of
interest.

4. In practice, a test decision will be made based on a comparison of the computed value t̂
with an approximated null distribution obtained by repeated test statistic computation on
permuted data representations. If t̂ is greater than the α quantile of this approximated
null distribution, reject the null hypothesis, otherwise fail to reject.

A.3.3 GP2ST

The test developed by [15] was designed to test the equality of regression functions from
observed two-dimensional data (t1,y1) and (t2,y2) from two samples. They assume a GP
prior on the time series and compute posterior distributions by conditioning on each sample of
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observed data. Denote the posterior GPs by f1 and f2. With the assumption of gaussianity it
follows that ∆ f := f1− f2 is also a GP, and evaluations on a fine grid of regular times t in [0,1]
will be multivariate Gaussian with mean denoted ∆µ and covariance matrix ∆Σ. The hypothesis
of equality of data generating processes is then equivalent to testing departures of ∆ f from the
zero function. As a result, the two functions are equal with posterior probability 1−α if the
credible region for ∆ f includes the zero vector or, in other words, if:

∆µ
T

∆Σ
−1

∆µ ≤ χ
2
v (1−α). (A.24)

χ2
v (1−α) is the (1−α)-quantile of a χ2 distribution with v degrees of freedoms and v is the

number of positive eigenvalues of ∆Σ.

A.3.4 RDC

The Randomized Dependence Coefficient (RDC) measures the dependence between fixed-
dimensional random samples X and Y as the largest canonical correlation between k randomly
chosen nonlinear projections of their copula transformations. It is formally defined an analyzed
in [112], and given by,

ρ̂(x,y) := sup
α,β

PCC(αT
Φx,β

T
Φy),

where PCC is Pearson’s correlation coefficient and Φ are nonlinear random projections, such as
sine or cosine projections. To apply this function on irregularly observed data, we interpolate
as we do with the MMD and HSIC.

We conduct a test using this measure of dependence by repeatedly shuffling the paired time
series M times to induce an empirical distribution of {ρ̂m}M

m=1 under the null hypothesis of
independence. The p-value is then given by ∑

M
m=1 1{ρ̂m > ρ̂}/M where ρ̂ is the statistic

obtained from the observed data.
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A.3.5 PCC

The Pearson’s correlation coefficient (PCC) is a measure of linear correlation between two
variables. It is defined as,

ρ̂(x,y) :=
∑i(xi− x̄)(yi− ȳ)√

∑i(xi− x̄)
√

∑i(yi− ȳ)
.

Similarly to the RDC, we conduct a test using this measure of dependence by repeatedly
shuffling the paired time series M times to induce an empirical distribution of {ρ̂m}M

m=1 under
the null hypothesis of independence.

A.3.6 C2ST

We implemented the C2ST with tensorflow in python. We used a RNN with GRU cells in one
version and the deepset architecture (with the author’s implementation [192]) in the other. The
number of samples in each mini-batch is set to 64 the hidden layer size to 10. We optimize
model parameters with Adam, learning rate equal to 0.01, and all variables are initialized
with Xavier initialization. We use the elu activation functions for each layer and use sigmoid
activation for the output layer given that we perform classification.

Both tests proceeds as follows [114]:

Let {xi}n
i=1 and {yi}n

i=1 be two samples of observed time series that include their corresponding
time points in each case.

1. Construct the data set D = {(xi,0)}n
i=1∪{(yi,1)}n

i=1 =: {(zi, li)}2n
i=1.

2. Shuffle D at random and partition into a training set Dtr and a testing set Dte.

3. Fit a classifier g on the training set to predict the sample indicator l.

4. Compute test statistic as classification accuracy on Dte: t̂ := 1
nte

∑(zi,li)∈Dte 1{1{g(zi)>

1/2}= li}

5. If t̂ is greater that the α quantile of a N (1/2,1/(4nte)) rejectH0; otherwise acceptH0.

1 is the indicator function.
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Appendix to Chapter 3

This appendix provides additional material accompanying Chapter 3: "A Kernel Two-Sample
Test for Unbiased Decisions". It is outlined as follows:

• In section B.1 proofs of all propositions and theorems.

• In section B.2 a more detailed description of the example provided in the introduction.

• In section B.3 a detailed description of other tests and our implementations.

• In section B.4 a discussion of computational complexity and possible methods to speed
up computations.

B.1 Proofs

In this section we prove the propositions and theorems described in the main body of this
chapter.

B.1.1 Proof of Proposition 1

Assume that kernel k : Y ×Y → R is characteristic and that for all y, w(x) > 0 is bounded
above by W . A kernel is called characteristic, if the maximum mean discrepancy between
probability measures PY 0 and PY 1 induced by k is such that, MMD(PY 0,PY 1) = 0 if and only if
PY 0 = PY 1 . [69] showed that Gaussian kernels are characteristic.
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To prove the proposition we exploit the assumption Y 0,Y 1 |= T |X and recover expectations
with respect to the underlying random variables of interest (Y 0,Y 1). Assuming access to
the propensity score, e(x) = p(T = 1|X = x) = E(I(T = 1)|X = x), and for any measurable
function of our observed values Y , such as the kernel function k, we have that,

Ey,y⋆∼Y |T=1

(
k(y,y⋆)

e(X)e(X⋆)

)
= Ey,y⋆

(
T T ⋆k(y,y⋆)
e(X)e(X⋆)

)
= Ey,y⋆

(
I(T = 1)I(T ⋆ = 1)k(y1,y1⋆)

e(X)e(X⋆)

)
= Ex,x⋆

(
Ey,y⋆

(
I(T = 1)I(T ⋆ = 1)k(y1,y1⋆)

e(x)e(x⋆)
|y1,y1,⋆,x,x⋆

))
= Ey1,y1,⋆,x,x⋆

(
k(y1,y1⋆)

e(x)e(x⋆)
ET,T ⋆

(
I(T = 1)I(T ⋆ = 1)|y1,y1,⋆,x,x⋆

))
= Ey1,y1,⋆

(
k(y1,y1,⋆)

)
,

where recall that we use the notation y1 for a realization of the random variable Y 1. I is the
indicator function. This derivation shows that by taking weighted expectations with respect to
the observed distribution Y |T = 1 we can access expectations with respect to our distribution
of interest Y 1. Similar derivations follow for data observed under Y |T = 0 using the fact that
EY |T=0(

f (Y )
1−e(X)) = EY 0( f (Y 0)), for f any measurable function.

Now notice that the MMD(Y 0,Y 1) between Y 0 and Y 1 is defined in terms of expectations with
respect to the random variables Y 0 and Y 1,

MMD(Y 0,Y 1) := Ey0,y0,⋆k(y0,y0,⋆)+Ey1,y1,⋆k(y1,y1,⋆)−2Ey1,y0k(y0,y1).

Thus with the above derivation we get that each term in the definition of WMMD(Y |T =

0,Y |T = 1) is equal to each term in the definition of the MMD, which proves the proposition.

B.1.2 Proof of Theorem 1

Regularity conditions. The following notation is used in the statement on the regularity
conditions of Theorem 1. Let Bn = (bimn) and Wn = (Wi jn), for i, j = 1, ...,n;n,m : 1,2, ....
Here Wn is a matrix of weights in Rn×n and Bn is an orthogonal matrix in Rm×n such that
BT

n WnBn = Λn, where Λn is a diagonal matrix with λmn as the mth diagonal element. Assume

124



B.1 Proofs

limn→∞ λmn = λm and let δkm be the dirac delta function with δkm = 1 if k = m and zero
otherwise. Assume that the following regularity conditions hold,

1. max
1≤i≤n

|bimn| → 0 as n→ ∞ for each m.

2. ∑
n
i=1 bimnbikn→ δmk as n→ ∞ for all m,k.

3. ∑
n
i=1 ∑

n
j=1 w2

i jn→ ∑
∞
m=1 λ 2

m < ∞.

4. ∑
n
i=1 ∑

n
j=1 wi jnbiknb jkn→ λk as n→ ∞, for all m.

These conditions are sufficient by [46] for a square matrix of data-dependent weights W =

(wiw j) to be approximately diagonalizable, such that it admits an eigen-decomposition BTWB=

Λ.

Proof. Recall the definition of the empirical estimate of the WMMD2,

ŴMMD
2

:=
1

n(n−1) ∑
i ̸= j:ti=t j=1

wiw jk(yi,y j)+
1

m(m−1) ∑
i ̸= j:ti=t j=0

k(yi,y j)−

2
nm ∑

i, j:ti=1,t j=0
w(xi)k(yi,y j), (B.1)

where the (yi, ti,xi) are realization of the random variables (Y,T,X), and have assumed that
n observations are made with T = 1 and m with T = 0. w(xi) = Pr(Ti = 1|Xi = xi)/Pr(Ti =

0|Xi = xi) is the density ratio giving the likelihood of an example i being observed under one
population with respect to the other. We assume this ratio to be known (for now) and provide
approximation bounds for our proposed approximation in Theorem 2 and 3. Our proof is
presented in three parts, each one deriving the asymptotic behaviour of each one of the three
terms in (B.1).

Note first that we may write the square integrable (centered) kernel k as a weighted sum of
product of eigen-functions of the Hilbert-Schmidt operator defined by k [70],

k(yi,y j) =
∞

∑
k=1

αkψk(Yi)ψk(Yj). (B.2)
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Consider now the first term in (B.1), it follows that,

n

∑
i=1

n

∑
j=1, j ̸=i

w(xi)w(x j)k(yi,y j) =
n

∑
i=1

n

∑
j=1, j ̸=i

wi j

∞

∑
k=1

αkψk(Yi)ψk(Yj) (B.3)

=
∞

∑
k=1

αk

n

∑
i=1

n

∑
j=1, j ̸=i

wi jψk(Yi)ψk(Yj), (B.4)

where we have dropped the ti’s in the summation indices and have written wi j = w(xi)w(x j) for
brevity. Using the degeneracy of k (in the sense that Var[E[k(y,y′)]] = 0), the eigen-functions
ψk(Yi), i = 1, ...,n are zero mean independent random variables by the independence of the Yi.
Using the above and the regularity conditions, Theorem 1 in [182] yields,

1
n

n

∑
i=1

n

∑
j=1, j ̸=i

wi jψk(Yi)ψk(Y j)
d→

∞

∑
m=1

λm(Z2
km−1), (B.5)

where Zkm ∼N (0,1) are i.i.d..

The limiting distribution of the un-weighted term in (B.1) is that of a well-studied U-Statistic
whose derivation can be found in Section 5.5.2 of [157].

1
m

m

∑
i=1:ti=0

m

∑
j=1, j ̸=i:t j=0

k(Yi,Yj)
d→

∞

∑
k=1

αk(V 2
k −1). (B.6)

The limiting distribution of the cross term in (B.1) follows from a modification of the derivation
of Theorem 1 in [46] and is given by,

1√
nm

n

∑
i=1:ti=1

n

∑
j=1:t j=0

w′i jψk(Yi)ψk(Yj)
d→

∞

∑
m=1

λ
′
mZkmVkm, (B.7)

where the eigenvalues (λ ′m) correspond to those of the eigen-decomposition of the weight
matrix W ′ with W ′i j = w(xi) and where Vkm ∼ N (0,1) independently of Zkm ∼ N (0,1). We
prove (B.7) below.

We now combine these results. Define t =m+n, and assume limm,n→∞ m/t = ρy and limm,n→∞ n/t =
ρx := (1−ρy) for fixed 0 < ρx < 1. Then,

tŴMMD
2 d→ ρ

−1
x

∞

∑
k=1

αk

∞

∑
m=1

λm(Z2
km−1)+ρ

−1
y

∞

∑
k=1

αk(V 2
k −1)− 2

√
ρxρy

∞

∑
k=1

αk

∞

∑
m=1

λ
′
mZkmVkm.

(B.8)
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In the case that both samples have equal size with total sample size n, we have that underH0,

nŴMMD
2 d→

∞

∑
k=1

αk

∞

∑
m=1

λm(Z2
km−1)+

∞

∑
k=1

αk(V 2
k −1)−2

∞

∑
k=1

αk

∞

∑
m=1

λ
′
mZkmVkm. (B.9)

The case of P ̸= Q, underH1. The centered kernel k is non-degenerate since its expectation
under assumptionH1 is different from 0. The limiting distribution of WMMD can be derived
by considering each term in the sum separately. For the first and third terms,

(⋆) :=
1

n(n−1) ∑
i̸= j:ti=t j=1

w(xi)w(x j)k(yi,y j), (⋆⋆) :=
2

mn ∑
i, j:ti=1,t j=0

w(xi)k(yi,y j),

(B.10)

we get immediately by Theorem 2.1 from p. 4, [161] that their limiting distributions are normal
with mean E(⋆) and variance Var(⋆), and mean E(⋆⋆) and variance Var(⋆⋆), respectively.
The middle term 1

m(m−1) ∑i ̸= j:ti=t j=0 k(yi,y j) is an un-weighted U-statistic whose limiting
distribution is given by the results in section 5.5 [157]. As above, define t = m+ n, and
assume limm,n→∞ m/t = ρy and limm,n→∞ n/t = ρx := (1−ρy) for fixed 0 < ρx < 1. Collecting
these results, we get underH1,

t1/2
(

ŴMMD2−WMMD2
)

d→ N
(
0,σ2

H1

)
, (B.11)

where we write z=((y1, t = 1,x1),(y0, t = 0,x0)) for the joint sample under the two populations,
and h(z,z⋆) := w(x1)w(x⋆1)k(y1,y⋆1)+Ek(y0,y⋆0)− 2w(x1)k(y1,y⋆0). σ2

H1
:= Varz (Ez⋆h(z,z⋆))

[157, 70].

Proof of equation (B.7). The proof is a modification of the result of the convergence of
degenerate U statistics on p. 761 in [70] and of the derivation of Theorem 1 in [46].

Consider,

Tk :=
1√
nm

n

∑
i=1:ti=1

m

∑
j=1:t j=0

w′i jψk(Yi)ψk(Yj), (B.12)

and define for each k,

w∗i j :=
S

∑
s=1

λsbiskb jsk, T ∗k :=
1√
nm

n

∑
i=1:ti=1

n

∑
j=1:t j=0

w′i jψk(Yi)ψk(Yj). (B.13)

127



Appendix to Chapter 3

We will start by showing that ∑
n
i=1 ∑

m
j=1

(
wi j−w∗i j

)2
→ 0 as n,m→ ∞. Note that this implies

that Var(T ∗k −Tk)→ 0 and thus that the distributions of T ∗k and Tk coincide in the limit. We
will proceed by showing first the convergence of the sum of squares and then we derive the
distribution of T ∗k . Using the definitions above, write,

n

∑
i=1

m

∑
j=1

(
wi j−w∗i j

)2
=

n

∑
i=1

m

∑
j=1

w2
i j−2

S

∑
s=1

λs

n

∑
i=1

m

∑
j=1

wi jbiskb jsk+

S

∑
s=1

S

∑
t=1

λsλt

(
n

∑
i=1

biskbitk

)(
m

∑
j=1

b jskb jtk

)

=
n

∑
i=1

m

∑
j=1

w2
i j−

S

∑
s=1

λ
2
s −2

S

∑
s=1

λs

(
n

∑
i=1

m

∑
j=1

wi jbiksb jks−λs

)

+
S

∑
s=1

S

∑
t=1

λtλs

(
n

∑
i=1

biskbitk−δst

)(
m

∑
j=1

b jskb jtk−δst

)
+

2
S

∑
s=1

λ
2
s

(
n

∑
i=1

m

∑
j=1

b2
iks−1

)
, (B.14)

where we have removed the group allocation indices t for clarity. Note here that the first and
second term cancel each other by Assumption 1 of the regularity conditions, the third term is
O(1) by Assumption 4 and the fourth and fifth terms are also O(1) by Assumption 2 and the
properties of the dirac delta function.

Consider now T ∗k and rewrite it as,

T ∗k =
S

∑
s=1

λs

(
1√
n

n

∑
i=1:ti=1

biskψk(Yi)

)(
1√
m

m

∑
j=1:t j=0

b jskψk(Y j)

)
. (B.15)

Define the length K vectors Ψn and Ψ′m having kth entries,

Ψkn =

(
1√
n

n

∑
i=1:ti=1

biskψk(Yi)

)
, Ψ

′
km =

(
1√
m

m

∑
j=1:t j=0

b jskψk(Yj)

)
, (B.16)

respectively. These have mean and covariance,

E(Ψkn) = 0, Cov(Ψkn,Ψk′n) =

 1
m ∑

n
i=1 b2

isk = 1, if k = k′

0, otherwise.
(B.17)
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Moreover, the vectors Ψn and Ψ′m are independent. The results (B.7) then holds by the
Lindberg-Levy Central Limit Theorem [157], Theorem 1.9.1A.

B.1.3 Proof of Theorem 2

We assume that for increasing sample size, as n,m→ ∞, we can approximate arbitrarily well
the density ratio w(x), for all x in our training data. This is justified by the following Lemma,

Lemma 1 (Lemma 1.4 [74]) Let w(xi) ∈ [0,B] be the optimal weight in the population sense,
Pr(Ti = 1|xi) = w(xi)Pr(Ti = 0|xi). Assume we draw n samples from X |T = 1 and m samples
from X |T = 1 independently and that ||φ(x)|| ≤ R. Then, with probability at least 1−δ ,∣∣∣∣∣

∣∣∣∣∣1n n

∑
i=1:ti=1

w(xi)φ(xi)−
1
m

m

∑
j=1:t j=0

φ(x j)

∣∣∣∣∣
∣∣∣∣∣≤
(

1+

√
2log

2
δ

)
R

√
B2

n
+

1
m
. (B.18)

Note that because the optimization problem is convex the choice of ŵ(x) :=Pr(Ti = 1|x)/Pr(Ti =

0|x) uniquely minimizes the objective function with value 0, see Lemma 1.3, [74]. Thus by the
argument above, we may assume that for increasing sample size, as n,m→ ∞, ŵ(x)→ w(x),
for all x in the common support of the distributions Pr(Ti = 1|x) and Pr(Ti = 0|x).

Consider the first terms of ŴMMD
2
(; ŵ) and ŴMMD

2
(;w), that denote the empirical WMMD2

with estimated and true weights w respectively,

K̂n,m :=
n

∑
i=1:ti=1

m

∑
j=1, j ̸=i:t j=1

ŵi jk(yi,y j), and Kn,m :=
n

∑
i=1:ti=1

m

∑
j=1, j ̸=i,t j=1

wi jk(yi,y j).

(B.19)

It holds that ∑
n
i=1 ∑

m
j=1, j ̸=i

(
ŵi j−wi j

)2→ 0 as n,m→ ∞ by the arguments above. This implies
that Var(K̂n,m−Kn,m)→ 0 and E(|K̂n,m−Kn,m|2)→ 0 which means that K̂n,m−Kn,m converges
to 0 in L2, and hence in distribution. The distributions of K̂n,m and Kn,m coincide in the limit.

The same derivations apply for the other two terms in the definition of ŴMMD
2
. Therefore we

conclude that ŴMMD
2

with estimated weights has the same asymptotic null and alternative
distribution as ŴMMD

2
with known weights. In particular, asymptotically, its false positive

rate is α and its power converges to 1.
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B.1.4 Proof of Theorem 3

We prove Theorem 3 by first stating and proving several Lemmas which bound the different
terms of the inequality of interest.

Lemma 2 In addition to the conditions of Lemma 1, assume there exists some ŵi, the empirical
counterparts of the population weights estimated by matching kernel mean embeddings, such
that, ∣∣∣∣∣

∣∣∣∣∣1n n

∑
i=1:ti=1

ŵiφ(xi)−
1
m

m

∑
j=1:t j=0

φ(x j)

∣∣∣∣∣
∣∣∣∣∣≤ ε. (B.20)

Then, ∣∣∣∣∣
∣∣∣∣∣1n n

∑
i=1

wiφ(xi)−
1
n

n

∑
i=1

w(xi)φ(xi)

∣∣∣∣∣
∣∣∣∣∣≤ ε +

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m
. (B.21)

Proof. Note that by using Lemma 1 and the triangle inequality we immediately get,∣∣∣∣∣
∣∣∣∣∣1n n

∑
i=1:ti=1

ŵiφ(xi)−
1
n

n

∑
i=1:ti=1

wiφ(xi)

∣∣∣∣∣
∣∣∣∣∣≤
∣∣∣∣∣
∣∣∣∣∣1n n

∑
i=1:ti=1

ŵiφ(xi)−
1
m

m

∑
j=1:t j=0

φ(x j)

∣∣∣∣∣
∣∣∣∣∣

+

∣∣∣∣∣
∣∣∣∣∣1n n

∑
i=1:ti=1

wiφ(xi)−
1
m

m

∑
j=1:t j=0

φ(x j)

∣∣∣∣∣
∣∣∣∣∣

≤ ε +

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m
. (B.22)

Lemma 3 Let ŴMMD(w) be the weighted estimator of the MMD given i.i.d. distorted samples
as defined in equation (B.1) with known (population) weights w, and similarly define ŴMMD(ŵ)
with weights ŵ estimated by matching the empirical kernel mean embeddings of the distorted
samples. Then, given the conditions of Lemmas 1 and 2,

∣∣∣ŴMMD
2
(ŵ)−ŴMMD

2
(w)
∣∣∣≤ 2R(B+1)

(
ε +

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m

)
. (B.23)
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Proof. Consider expanding the estimators,∣∣∣ŴMMD
2
(ŵ)−ŴMMD

2
(w)
∣∣∣= 1

n(n−1) ∑
i ̸= j

ŵiŵ jk(yi,y j)−
1

n(n−1) ∑
i ̸= j

wiw jk(yi,y j)

−

(
2

nm ∑
i, j

ŵik(yi,y j)−
2

nm ∑
i, j

w(xi)k(yi,y j)

)
. (B.24)

Note that the U-statistic in y cancel since these do not involve the weights.

First and second terms. We can bound the first and second terms as follows,

1
n(n−1) ∑

i̸= j
ŵiŵ jk(yi,y j)−

1
n(n−1) ∑

i̸= j
wiw jk(yi,y j) (B.25)

=
1

n(n−1) ∑
i ̸= j

ŵiŵ j
〈
ψ(yi),ψ(y j)

〉
− 1

n(n−1) ∑
i̸= j

wiw j
〈
ψ(yi),ψ(y j)

〉
(B.26)

= |

〈
1
n

n

∑
i=1

ŵiψ(yi)−
1
n

n

∑
i=1

w(xi)ψ(yi),
1

n−1

m

∑
j=1, j ̸=i

ŵ jψ(y j)

〉

+

〈
1
n

n

∑
i=1

ŵiψ(yi)−
1
n

n

∑
i=1

w(xi)ψ(yi),
1

n−1

m

∑
j=1, j ̸=i

w(x j)ψ(y j)

〉
| (B.27)

≤

∣∣∣∣∣
〈

1
n

n

∑
i=1

ŵiψ(yi)−
1
n

n

∑
i=1

w(xi)ψ(yi),
1

n−1

m

∑
j=1, j ̸=i

ŵ jψ(y j)

〉∣∣∣∣∣
+

∣∣∣∣∣
〈

1
n ∑

i
ŵiψ(yi)−

1
n ∑

i
w(xi)ψ(yi),

1
n−1

m

∑
j=1, j ̸=i

w(x j)ψ(y j)

〉∣∣∣∣∣ (B.28)

≤ 2BR

(
ε +

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m

)
, (B.29)

where ψ(y) := k(y, ·). Note that we have omitted the group allocation indices, these should be
clear however from the i and j indices. The second equality follows by adding and subtracting

1
n(n−1) ∑

n
i=1 ∑

m
j=1, j ̸=i w(xi)ŵ j⟨ψ(yi),ψ(y j)⟩ which factorizes into the given expression. The

second to last inequality follows from the triangle inequality and the last inequality follows
from the properties of norms and the results derived in Lemmas 1 and 2.
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Third and fourth terms. The third and fourth terms (in brackets) are derived similarly and
satisfy the following bounds,

2
nm ∑

i, j
ŵik(yi,y j)−

2
nm ∑

i, j
w(xi)k(yi,y j) (B.30)

=
2

nm ∑
i, j

ŵi
〈
ψ(yi),ψ(y j)

〉
− 2

nm ∑
i, j

w(xi)
〈
ψ(yi),ψ(y j)

〉
(B.31)

=

∣∣∣∣∣1n n

∑
i=1

ŵi

〈
ψ(yi),

2
m

m

∑
j=1

ψ(y j)

〉
− 1

n

n

∑
i=1

w(xi)

〈
ψ(yi),

2
m

m

∑
j=1

ψ(y j)

〉∣∣∣∣∣ (B.32)

=

∣∣∣∣∣
〈

1
n

n

∑
i=1

ŵiψ(yi)−
1
n

n

∑
i=1

w(xi)ψ(yi),
2
m

m

∑
j=1

ψ(y j)

〉∣∣∣∣∣ (B.33)

≤ 2R

(
ε +

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m

)
, (B.34)

where the last inequality follows from the properties of norms and the results derived in Lemmas
1 and 2.

Finally, collecting the two bounds the lemma follows.

Lemma 4 Let ŴMMD(w) be the weighted estimator of the MMD given i.i.d. distorted samples
as defined in equation (B.1) with known (population) weights w, and maximum kernel value R.
Assume that 1≤ w≤ B for all x ∈ X . Then, with probability at least 1−δ ,

∣∣∣ŴMMD
2
(w)−MMD2

∣∣∣≤ R(B+1)2
√

1
2m2

log
1
δ
, (B.35)

where m2 := ⌊m/2⌋.

Proof. Assuming the kernel k(·, ·) is bounded between 0 and R and the weights w bounded
between 0 and B, we can infer function bounds such that −2BR ≤ wk(yi,x j) ≤ R(B2 + 1).
By Theorem 10 in [70] which results from an application of the large deviation bound on U
statistics due to Hoeffding we have that,

p
(∣∣∣ŴMMD

2
(w)−MMD2

∣∣∣> e
)
≤ exp

{
−2e2m2

R2(B+1)4

}
. (B.36)
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Define δ = exp
{
−2e2m2

R2(B+1)4

}
. Thus, with probability 1−δ ,

∣∣∣ŴMMD
2
(w)−MMD2

∣∣∣≤ R(B+1)2
√

1
2m2

log
1
δ
, (B.37)

where m2 := ⌊m/2⌋.

We are ready to prove Theorem 3. This will be a straightforward combination of the lemmas
given above.

Proof of Theorem 3. Let ŴMMD(ŵ) be the weighted estimator of the MMD given i.i.d.
distorted samples as defined in (B.1) with estimated weights ŵ. Assume conditions on Lemmas
1,2,3 and 4 above hold and that there exists an ε > 0 such that,∣∣∣∣∣

∣∣∣∣∣1n n

∑
i=1

ŵiφ(xi)−
1
m

m

∑
i=1

φ(xi)

∣∣∣∣∣
∣∣∣∣∣≤ ε. (B.38)

We may decompose the absolute difference between our weighted approximation using distorted
samples and the population MMD as follows,∣∣∣ŴMMD

2
(ŵ)−MMD2

∣∣∣
≤
∣∣∣ŴMMD

2
(ŵ)−ŴMMD

2
(w)
∣∣∣+ ∣∣∣ŴMMD

2
(w)−MMD2

∣∣∣ .
(B.39)

Then using Lemma 3 to bound the first term and Lemma 4 to bound the second term, we get
that with probability at least 1−δ ,

|ŴMMD
2
(ŵ)−MMD2| ≤

R(B+1)

(
2ε +2

(
1+

√
2log

2
δ

)
R

√
B2

n
+

1
m
+(B+1)

√
1

2m2
log

1
δ

)
,

(B.40)

where m2 := ⌊m/2⌋.
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B.2 Details on the introductory example

The example is used to illustrate the need for adjusting for confounding variables. For a total of
500 individuals we generated random education data X by sampling from a uniform distribution
between 0 and 10, from which we derived the post-intervention income Y 0 and Y 1 by simply
adding a standard random Gaussian noise variable to these values (in this caseH0 holds: the
distributions are equal). We generated male T = 1 and female T = 0 data, our two populations
(S = 1), by selectively removing with probability 0.5 females with education level higher than
5 (Pr(T = 0|X > 5) ≈ 0.33), and removing with probability 0.5 males with education level
lower than 5 (Pr(T = 0|X < 5) ≈ 0.66). We end up with approximately 150 individuals in
each group, males with higher education levels than females on average. Observe that the
underlying generating process is the same in both populations, only the marginal distribution
of the education level changes. As is natural, a two-sample test that overlooks the differences
in education will reject the hypothesis of equal data generating process for the income.

B.3 Description and implementation of tests

B.3.1 Hyperparameter selection for high power

The population quantity WMMD = 0 if and only if the distributions under consideration are
equal, for any choice of kernel hyperparameters. With finite sample size n, decisions must
rely on inference based on the empirical WMMD, and some hyperparameters will give higher
power than others. A popular strategy is to set the bandwidth σ of the Gaussian kernel to the
median squared pairwise distance between input data, but can be sub-optimal when the scale of
the difference between populations differs from the scale of the difference within populations
themselves. Instead, we follow the approaches of [169, 86] and choose σ so as to maximize
the test power, i.e. the probability of rejectingH1 when it is false.

Proposition (Approximate power of test statistic). UnderH1, for large n and fixed r, the test
power Pr(nŴMMD2 > r) ≈ 1−Φ( r√

nσH1
−
√

nWMMD2

σH1
), where Φ denotes the cumulative

distribution function of the standard normal distribution, and σH1 is defined as in Theorem 1.

Assume that n is sufficiently large. Following the same argument as in [86], in r√
nσH1
−WMMD2

σH1
,

we observe that the first term r√
nσH1

=O(n−1/2) goes to 0 as n→ ∞ because σ2
H1

=O(n−1),

while the second term,
√

nWMMD2

σH1
=O(n1/2), dominates the first one for large n. Thus, the
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parameters that maximize the test power are given by θ ∗ = argmaxθ p(nŴMMD2 > r) ≈
WMMD2

σH1
. Since WMMD and σH1 are unknown, to maintain the validity of the hypothesis test

we divide the sample into a training set, used to compute ŴMMD
2

σ̂H1
and choose the kernel, and

a testing set used to perform the final hypothesis test with the learned kernel. The empirical
estimate of the variance σ̂H1 that appears in our objective is approximated up to second order
terms, similarly to [169].

B.3.2 B-Test: a modification that uses propensity scores

An alternative to the weighted MMD test is a B-test (block-based test): the idea is to break
the data into homogeneous blocks by stratifying subjects into mutually exclusive subsets
based on their estimated propensity score. Recall that the propensity score is defined as
e(x) := Pr(T = 1|X), the probability of group assignment given confounding variables. After
this stage, we compute a two sample test statistic on each block, and average these quantities to
obtain the test statistic.

More specifically, subjects are ranked according to their estimated propensity score and then
stratified into subsets based on previously defined thresholds of the estimated propensity
score. Because population assignment is essentially at random for individuals with the same
propensity value, we expect mean comparisons within this group to be unbiased. [142] showed
that stratification based on the propensity score will balance x, in the sense that within strata
homogeneous in e(x) = Pr(T = 1|x), the distribution of x will be equal in the two populations.

For an individual block, laying on the main diagonal and starting at position (i−1)B+1, the
statistic η(i) is calculated as,

η(i) :=
1(B
2

) iB

∑
a=(i−1)B+1

iB

∑
b=(i−1)B+1̸=a

h(ya,0,y⋆b,0,ya,1,y⋆b,1), (B.41)

where h(y0,y⋆0,y1,y⋆1)= k(y0,y⋆0)+k(y1,y⋆1)−k(y0,y⋆1)−k(y⋆0,y1) , y0 is a sample from Y |T = 0,
y1 a sample from Y |T = 1 and superscript ⋆ denotes an independent copy. The overall test
statistic is then,

η =
B
n

n
B

∑
i=1

η(i). (B.42)
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The choice of B determines the accuracy of the balancing procedure and computation time
- at one extreme is exact matching based on the propensity score and the linear-time MMD
suggested by [70] where we have n/2 blocks of size B = 2, and at the other extreme is the
unbalanced and usual full MMD with 1 block of size n. We chose as a default to divide both
populations into

√
n blocks as proposed in [194].

B-test of [194] assumes that B→ ∞ together with n, which implies that the statistic η̂ defined
in (B.42) under the null distribution satisfies,

√
nBη̂ →d N (0,4σ

2), (B.43)

where σ2 = EX ,X ′(k(X ,X ′)2)+ (EX ,X ′k(X ,X ′))2− 2EX [(EX ′k(X ,X ′)2] that can be estimated
directly or by considering the empirical variance of the statistics computed within each of the
blocks.

B.3.3 ANCOVA

Analysis of covariance (ANCOVA) are a general statistical procedure derived from a general
linear model which blend ANOVA and regression. Conventionally, ANCOVA evaluates whether
the means of a dependent variable are equal across levels of a categorical independent variable
often called a treatment, while statistically controlling for the effects of other continuous
variables that are not of primary interest, that is confounders. In existing implementations
[172] these suffer from a number of limitations such as the assumption of an underlying linear
feature/outcome mapping and normality of residuals.

In our implementation we proceed as follows. We fit a Random Forest regression model on the
confounding variables to approximate the outcome variable Y . Since in our experiments we
consider Y to be multivariate, we fit a different regression model for each dimension of Y . We
interpret the resulting residuals as being independent of confounders given group assignments
and use those to proceed with testing. Because of the computational burden of this procedure,
we fit the well-known Hotelling T 2 test [78] on the residuals to decide whether Y 0 and Y 1 share
the same generating process up to confounding variables.
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B.4 Computational complexity

The computational complexity of the WMMD2 is quadratic in the number of samples due to the
need to compute the Kernel matrix, similarly to the plain implementation of the MMD2. When
permutations are chosen to approximate the null distribution, this procedure can be overly time
consuming for large data sets. Below we briefly describe existing approximations that can be
used with the WMMD2 to speed up computations.

• Gamma approximation to the null [72]. This procedure consist of using a two-parameter
Gamma distribution that we fit by matching the first and second moments of the empirical
MMD2. Such approximations can be accurate in practice and much faster, although they
remain heuristics with no consistency guarantees.

• Linear time test [70]. Another alternative would be to randomly subsample the data such
as to make the computational complexity linear in the original number of samples. The
drawback is that power is often overly reduced as a result.

• Kernel matrix approximation with low-dimensional random features [136]. To accelerate
the computation of the kernel matrix, one may map the input data to a randomized low-
dimensional feature space and compute inner products based on these representations.
[136] showed that by projecting unto a suitable basis the inner products of the transformed
data are approximately equal to those in the feature space of a user specified shift-invariant
kernel.

137





Appendix C

Appendix to Chapter 4

This appendix provides additional material accompanying Chapter 4: "Conditional Indepen-
dence Testing using Generative Adversarial Networks". It is outlined as follows:

• In sections C.1 and C.2 further experiments relating to. hyperparameters and computa-
tional complexity

• In section C.3 the proofs of all theoretical statements.

• In section C.4 implementation details for all methods.

• In section C.5 further details on the genetic data.

C.1 Discussion on hyperparameter choice

As ground truth information on variable relationships is rarely available, choosing hyperpa-
rameters is challenging. In this section we analyze the GCIT’s performance as a function of
hyperparameter configurations of the GCIT and discuss an approximate procedure to guide
hyperparameter optimization on a validation set.

C.1.1 Choice of statistic ρ

We start by analyzing potential choices for the summary statistic ρ : (X ×Y ×Z)× (X ×
Y ×Z)→ R that summarizes the generated and observed samples into a real-valued scalar.
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Different choices for ρ encode in more or less detail the distributional differences in samples
and thus we can expect them to influence the resulting performance of the test. We considered
the following distance and correlation measures between two samples:

• The Maximum mean discrepancy (MMD) is defined as the largest difference between the
mean function values on two samples in a reproducing kernel Hilbert space. When MMD
is large, the samples are likely from different distributions. For a kernel k : X ×X → R,
a consistent empirical estimate of the MMD is given by [70],

ρ̂(x,y) :=
1
n2 ∑

i, j
k(xi,x j)+

1
n2 ∑

i, j
k(yi,y j)−

2
n2 ∑

i, j
k(xi,y j).

• The Pearson’s correlation coefficient (PCC) is a measure of linear correlation between
two variables. It is defined as,

ρ̂(x,y) :=
∑i(xi− x̄)(yi− ȳ)√

∑i(xi− x̄)
√

∑i(yi− ȳ)
.

• The distance correlation (DC) measures both linear and nonlinear association between
two random variables or random vectors. It is defined as,

ρ̂(x,y) :=
dCov(x,y)√

dVar(x)dVar(y)
.

• The Kolmogorov-Smirnov statistic (KS) is defined as the sup-norm between cumulative
distribution functions of two samples as follows,

ρ̂(x,y) := supw|F
(n)
x (w)−F(n)

y (w)|,

where F(n)
x and F(n)

y are the empirical distribution functions of X and Y samples respec-
tively.

• The Randomized Dependence Coefficient (RDC) measures the dependence between
random samples X and Y as the largest canonical correlation between k randomly chosen
nonlinear projections of their copula transformations. It is formally defined an analyzed
in [112].

ρ̂(x,y) := sup
α,β

PCC(αT
Φx,β

T
Φy),
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where PCC is Pearson’s correlation coefficient and Φ are nonlinear random projections,
such as sine or cosine projections. See [112] for more details.

We tested the above metrics with simulated data under setting (3) described in the main chapter.
Type I error and power results for the GCIT implemented with each one of the above choices
for ρ are given in Figure C.1. Finer differences are given by the MMD, the RDC or the DC that
all consider non-linear relationships between variables; we see in the power computations in the
right column that this results in higher power of the GCIT since the underlying data generating
mechanism in non-linear. However, these statistics will also encode spurious differences
between samples when the nullH0 is in fact true, resulting in higher type I error. We can see
this behaviour in the type I error results on the panels in the left column. The PCC, for example,
that encodes only linear differences between samples is more robust to type I error.
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Figure C.1: Power and type I error results for different choices of ρ .

Remark on the robustness of the GCIT for practical applications. Our test does depend
to some extent on the hyperparameter configurations of both λ and ρ . Recall that no ground
truth is available to optimize hyperparameters using conventional methods, but we argue
that the following procedure can be used to guide hyperparameter selection. We consider
artificially inducing conditional independence (X |= Y |Z) by permuting variables X and Y such
as to preserve the marginal dependence in (X ,Z) and (Y,Z), as in [50] (further details are
also described in our related work section). On this data, a well calibrated test is expected to
produce uniformly distributed p-values, i.e. the empirical distribution of p-values should be
approximately uniform. Our recommendation would be to choose GCIT’s hyperparameters
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with lowest Kolmogorov-Smirnov statistic in comparison to the uniform distribution. This
ensures the resulting test produces "well-behaved" p-values and thus prevents to some extent
p-value cheating. We will discuss this further in the revised manuscript, thank you for raising
this point.

C.2 Further experiments and complexity analysis

In this section we present results on the type I error of the GCIT and all baseline algorithms for
the synthetic simulations considered in the main body of this chapter, and analyze computational
complexity as a function of sample size and data dimensionality.

C.2.1 Type I error versus dimensionality of Z

Next we show in Figure C.2 type I error as a function of dimensionality of Z for each one of
the three synthetic simulations considered in the main body of this chapter. We observe that
in all cases, type I error is approximately controlled at the chosen level α = 0.05 when the
distributional assumptions underlying each method holds. This is not the case otherwise, the
CRT fails to control type I error in the non-linear setting when a Gaussian approximation to the
joint distribution of the variables is not appropriate.

Figure C.2: Type I error results for the synthetic simulations.

C.2.2 Computational complexity analysis

We give in Figure C.3 the run times in seconds of all algorithms for a single conditional
independence test for data generated under setting (1) in the main body of this chapter. We
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vary both the number of samples (fixing the dimension of Z to 100) and the dimensionality
of Z (fixing the sample size to 100). The GCIT scales very well with both sample size and
conditioning set size, even if each iteration requires training a new GAN. In contrast, the
running times of KCIT for sample sizes above 1000 and those of CCIT in higher dimensional
samples are prohibitive in practice.

Figure C.3: Running times in seconds as a function of sample size and dimension of Z.

C.2.3 Sensitivities to sample size and stability of generated p-values

We investigate the influence of sample size on the three leftmost panels of Figure C.4. The
GCIT, as well as most competing tests, have slightly higher type I error in low sample sizes but
control type I error successfully with 500 samples or more. In terms of power, our experiments
show that we can expect the GCIT to outperform competing tests with 500 samples or more
(for dimension of Z = 100). Next, we investigate the stability of p-values as a function of
sample size; the variance of the empirical p-values quickly drops to 0. This means that for
say 500 samples, we can expect the p-values of two independently trained GCITs to be within
0.005 of each other with approximately 95% confidence. The last panel on the right illustrates
how quickly the p-value approximation (eq. 3 in the main body of this chapter) converges to its
population quantity as a function of the number of samples used to compute the approximation
i.e. M in eq. 3. The convergence should be at least of order M−1/2 by the central limit theorem.

C.3 Theoretical results

Proof of Proposition 1. A sequence of random variables is said to be exchangeable if its
distribution is invariant under variable permutations. We make use of the "representation
theorem" for exchangeable sequences of random variables, first stated by de Finetti and extended
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Figure C.4: Leftmost and middle-left panel: Type I error and power as a function of sample size for
data generated under scenario (3) with dimensionality of Z set to 100; Middle-right panel: Empirical
p-value variance of the GCIT as a function of sample size (computed by generating 100 p-values for
each GAN trained on data with the specified size); Rightmost panel: Illustration of the convergence of
the GCIT’s p-values as a function of generated samples.

by Diaconis and Freedman for finite sequences [45, 47]. They show that every sequence of
conditionally i.i.d. random variables can be considered as a sequence of exchangeable random
variables. With our definition of the generator we start from i.i.d. sequence of noise random
variables {Vm}M

m=1 and define, for every m, X̃ (m) = φ(Z,Vm) where Z is a random variable
independent of Vm and φ is a measurable function, such as a neural network in our case. By
construction, the resulting random sequence of data sets (X̃ (m),Y,Z)M

m=1 is exchangeable and
therefore also the sequence of statistics (ρi)

M
i=1 (measurable functions of (X̃ (m),Y,Z)M

m=1) is
exchangeable.

The theoretical results that follow are proven only for the version of the generator loss given in
equation (5) in the main body of this chapter, LG(D) := Ex̃∼q̂H0

Dη(x̃)−Ex∼qH0
Dη(x) though

we do believe that the theorem holds more generally with the addition of the power maximizing
procedure - this is backed up by our empirical results demonstrating Type I error control while
using the power maximizing procedure. We prove the bound on the excess Type I error in two
parts. First we show in the following lemma that an optimal discriminator exists, and second
we prove the bound on the Type I error.
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Lemma 1 An optimal discriminator D∗ minimizing LD := Ex∼qH0
D(x)+Ex∼q̂H0

(1−D(x))
over all measurable functions D such that D ∈ (0,1) exists and it is given by,

D∗ =
1
2

sign
(
qH0− q̂H0

)
+

1
2
.

Proof. To see this note first that the sign(x) function is defined as +1 or −1 depending on the
sign of x. Then,

LD∗ = 1+Ex∼qH0
D∗(x)−Ex∼q̂H0

D∗(x) (C.1)

= 1+
∫
X

qH0(x)
1
2

sign
(
qH0− q̂H0

)
dx−

∫
X

q̂H0(x)
1
2

sign
(
qH0− q̂H0

)
dx (C.2)

= 1− 1
2

∫
x:q̂H0(x)−qH0(x)>0

qH0(x)− q̂H0(x)dx− 1
2

∫
x:q̂H0(x)−qH0(x)<0

q̂H0(x)−qH0(x)dx

(C.3)

= 1− 1
2

∫
X
|q̂H0(x)−qH0(x)|dx (C.4)

= 1− 1
2

sup
||D||∞≤1

Ex∼q̂H0
D(x)−Ex∼qH0

D(x) (C.5)

= 1− sup
||D||∞≤1/2

Ex∼q̂H0
D(x)−Ex∼qH0

D(x) (C.6)

= 1− sup
0≤D≤1

Ex∼q̂H0
D(x)−Ex∼qH0

D(x) (C.7)

= inf
0≤D≤1

Ex∼qH0
D(x)+Ex∼q̂H0

(1−D(x)) (C.8)

≤ LD, (C.9)

for any D in the mentioned space and with equality if and only if D = D∗. Eq (5) follows from
the Kantorovich-Rubinstein dual representation for general f divergences, proven for example
in [183].

Corollary 1 For a generator G with infinite capacity converging to the true conditional
distribution qH0(x), LG(D∗) attains its minimum value of 0.

Proof. By setting D∗ in the loss of the generator LG we observe that,

LG(D∗) = 1−LD∗ (C.10)

=
1
2

∫
X
|q̂H0(x)−qH0(x)|dx. (C.11)
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Hence, for a generator with infinite capacity converging to the true conditional distribution
qH0(x), the last term is 0 which implies LG(D∗) = 0.

Proof of Theorem 1. Our derivation is similar to [20]. By definition the statistic ρ̂ results
in a p-value p < α if and only if the observed variable x is contained in the set Aα := {x :

∑
M
m=1 1{ρ(x(m),y,z) ≥ ρ(x,y,z)}/M < α}. Consider generating a new sample x̃ from the

generator G under the estimated conditional distribution and let x∼ qH0 be sampled from the
true conditional. Then it holds that,

LG(D∗) = Ex∼q̂H0
D∗(x)−Ex∼qH0

D∗(x) (C.12)

=
∫
X
|qH0(x)− q̂H0(x)|dx (C.13)

= sup
A
|qH0(A)− q̂H0(A)| (C.14)

≥ Pr(x ∈ Aα)−Pr(x̃ ∈ Aα) (C.15)

≥ Pr(ρ̂ > cα |H0)−α, (C.16)

where by expanding the expectations, eq. (13) follows from similar arguments to those presented
in Lemma 1. Next eq. (14) follows from a well known equivalent representation of the total
variation divergence between probability measures, proven for example in Proposition 4.2,
page 48 of [105]. Eq. (15) follows by standard properties of the supremum operator. Finally
we arrive at eq. (16) given the fact that, by definition of Aα , Pr(x ∈ Aα) = Pr(ρ̂ > cα |H0)

and, since given y and z the set (x̃,x(1), ...,x(M)) is conditionally independent and therefore
exchangeable, we have that Pr(x̃ ∈ Aα)≤ α .

Proof of equation (9). Let qH0 and qH1 be the true conditional distributions of X |Z under the
null hypothesis H0 : X |= Y |Z and its alternative H1 : X ⊥̸⊥ Y |Z respectively. Denote by A the
event that samples x result in a p-value below the level α . Then,

Type I error+Type II error = qH0(A)+qH1(A
c) (C.17)

= 1+qH0(A)−qH1(A) (C.18)

≥ 1+ inf
A

(
qH0(A)−qH1(A)

)
(C.19)

= 1− sup
A

(
qH1(A)−qH0(A)

)
(C.20)

= 1−δTV (qH0,qH1). (C.21)
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C.4 Implementation details

GCIT. In all our experiments we have set the depth of the generator, the discriminator and
information network to 3. The number of hidden nodes in each layer is d/10 and d/16 for the
generator and discriminator respectively (d the number of inputs). For the information network,
we use 2 diagonal matrices for each layer to make two hidden nodes for each feature separately.
We use ReLu and tanh as the activation functions for each layer except for the output layer
where we use a linear activation function for the information network, and sigmoid activation
function for the discriminator and generator network given that we require its output to be
constrained in the (0,1) interval and re-scale the data in the (0,1) interval prior to training.
The number of samples in each mini-batch is 128 for the synthetic experiments and 64 for
the genetic experiment. The GCIT and all experiments have been implemented and carried
out in tensorflow and python. Pseudocode for the GCIT is given in Algorithm 1 and a python
implementation is given at https://github.com/alexisbellot/GCIT.

Baseline algorithms. We implemented the KCIT and RCoT with code provided by the authors
in [167] in their R package RCIT. The CCIT [156] was implemented with the code provided
at https://github.com/rajatsen91/CCIT/blob/master/CCIT by the authors.
The CRT was implemented in python with our own code.
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Algorithm 1 GCIT

Input: batch size nb, data D = (x,y,z) of size N, statistic ρ , iterations M, parameter λ

Initialize: neural network model parameters φ ,η ,θ

while convergence criteria not satisfied do
1. Update Discriminator
Sample z1, ...,znb fromD and v1, ...,vnb ∼ pv a batch from the real and latent samples

x̃i← Gφ (zi,vi) for i = 1, ...,nb

Update η by stochastic gradient descent with,

∇η

1
nb

nb

∑
i=1

Dη(xi,zi)+(1−Dη(x̃i,zi))

2. Update Information Network
Sample z1, ...,znb from D, v1, ...,vnb ∼ pv and κ a permutation of 1, ...,nb

x̃i← Gφ (zi,vi) for i = 1, ...,nb

Update θ by stochastic gradient ascent with,

∇θ

(
1
nb

nb

∑
i=1

Tθ (x̃i,xi)− log[
1
nb

nb

∑
i=1

exp(Tθ (x̃i,xκ(i)))]

)

3. Update Generator
Sample z1, ...,znb from D and v1, ...,vnb ∼ pv

x̃i← Gφ (zi,vi) for i = 1, ...,nb

Update φ by stochastic gradient descent with,

∇φ (LG(D)+λLIn f o.)

end while
for m = 1, ...,M do

Sample v1, ...,vN ∼ pv

x̃(m)
j ← Gφ (z j,v j) for j = 1, ...,N

ρ̂(m)← ρ(x̃(m),y,z)
end for
ρ̂ ← ρ(x,y,z)
p̂← ∑

M
m=1 1{ρ̂(m) ≥ ρ̂}/M

Output: p-value p̂
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C.5 Genomics experiment details

The Cancer Cell Line Encyclopedia (CCLE) is a compilation of gene expression, chromosomal
copy number and sequencing data from 947 human cancer cell lines. A cancer cell line can be
understood as a string of cancer cells that keep dividing and growing over time under certain
conditions in a laboratory. Then, using high-throughput sequencing technologies, the molecular
characteristics of cancer cell lines, such as gene expression or mutation data, can be extracted.
These genetic predictors were coupled with measures of drug sensitivity for PLX4720: a drug
used against cancer whose response is available for 474 of the above cancer cell lines. By
correlating the genetic information with the corresponding sensitivity to drug response, the data
in principle allows for the identification of relevant genetic markers which could then lead to
personalized treatment therapies depending on a patients genetic makeup. We illustrate this
procedure in Figure C.5.

Except for the conditional independence test to report significant genetic variables, our experi-
ments followed similar procedures to those detailed in [173] and [9]. We choose to analyze
dependence of drug response with 466 genetic mutations observed on each cancer line. We give
summary statistics of the final data used in Table C.1 below. This is a very high-dimensional
problem that makes conditional independence testing unfeasible with traditional tests.

As in the original study in [9], we proceeded by fitting an elastic net model to predict drug
response from genetic features with 10-fold cross-validation to optimize hyperparameters.
Influential features were then ranked by their heuristic importance score given by the magnitude
of fitted parameter values. The random forest model was used with default hyper-parameters in
the python library sklearn and the CRT was implemented with a Gaussian approximation
like in all other experiments. We ran the GCIT and the CRT considering each feature separately
with drug response and all remaining features as confounders.

Remark. For a more systematic biological evaluation of features reported by the GCIT, we would
use a more principled feature selection procedure such as Benjamini-Hochberg’s correction for
false discoveries [16].

Table C.1: Summary statistics of the final genetic data used from [9].

Statistics Values
No. of cancer cell lines 474
No. of genetic mutations 466
Pearson correlation with drug response min: 0.05, max: 0.51, mean: 0.07, var: 0.001
Drug response distribution min: −97.9, max: 43.3, mean: −17.2, var: 633.3
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Figure C.5: Diagram illustrating the data used in the Genetic experiment.

150



Appendix D

Appendix to Chapter 5

This appendix provides additional material accompanying Chapter 5: "Accounting for Unob-
served Confounding in Domain Generalization". It is outlined as follows:

• In section D.1 we present additional experiments designed to demonstrate the causal interpre-
tation one may give to DIRM if all conditions for causality are satisfied (i.e. are available
interventions on all observed variables). We also include a sensitivity analysis to show the
impact on performance of changing the regularization parameter λ .

• In section D.2 we show how measurement error may be interpreted as an instance of unose-
brved confounding.

• In section D.3 we provide proofs for the statements made in the main body of this chapter.

• In section D.4 we give additional experimental details, including on the implementation of
DIRM and on the datasets used.

D.1 Additional experiments

So far, we have considered predictive performance under different data distributions with se-
lected hyper-parameter configurations of all algorithms to illustrate heterogeneous behaviour of
algorithms trained with different learning principles in the presence of unobserved confounders.
In this section we revisit our introductory example to investigate in more details learned
prediction rules and any sensitivities of interest, especially to hyper-parameter configurations.
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We will use the same data generating mechanism presented in the introductory example in
Figure 5.1 of the main body of this chapter. Recall that we assume access to observations of
variables (X1,X2,Y ) in two training datasets, each dataset sampled with differing interventions
on (X1,X2) (in this case differing variances σ2 = 1 and σ2 = 2) from the following structural
model,

X2 :=−H +EX2, Y := X2 +3H +EY , X1 := Y +X2 +EX1 H := EH ,

where EX1,EX2 ∼ N (0,σ2), EY ∼ N (0,1), EH ∼ N (0,1) are exogenous variables. H is
an unobserved confounder, not observed during training but that influences the observed
association between X2 and Y .

D.1.1 Recovery of causal coefficients

In this section, given the above two training datasets, we inspect the weights learned in a simple
one layer feed-forward neural network to determine exactly whether unobserved confounding
induces a given learning paradigm to exploit spurious correlations and to what extent.

By way of preface, we have mentioned that causal, in contrast with spurious, solutions to a
prediction problem may be defined as the argument solving,

minimize
f

sup
P∈P

E(x,y)∼P[L( f (x),y)], (D.1)

for P defined as any distribution arising from arbitrary interventions on observed covariates
x leading to shifts in their distribution Px (see sections 3.2 and 3.3 in [117] for a detailed
discussion of this result). This objective is a special case of the proposed optimization problem
(5.5), specifically it is an affine combination (with λ → ∞) of distributions with different shifts
in Px in all observed variables x.

We demonstrate this fact empirically in Table D.1. In principle, causal solutions are recoverable
with the proposed approach because we do observe during training environments with shifts in
p(X1,X2), irrespective of the presence or not of unobserved confounders. We see that this holds
approximately for the proposed objective with estimated coefficients (0.01,0.95) for (X1,X2)

close to the true causal coefficients (0,1). In contrast, ERM returns biased coefficients and so
does IRM.

This empirical observation is important because it highlights the fact that enforcing minimum
gradients on average (ERM) or simultaneously across environments (the regularization pro-
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posed by IRM) is not appropriate to recover causal coefficients in the presence of unobserved
confounders.

If however, no unobserved confounders exist in the system being modelled (H := 0 in the
data generating mechanism) our objective and IRM are equivalent in the limit, and estimated
parameters coincide with the causal solution approximately. This experiment is given in Table
D.2.

Table D.1: Bias in estimation with unobserved confounders.

Truth ERM IRM (λ → ∞) DIRM (λ → ∞)

Estimated parameters [0, 1] [0.91, -1.02] [0.75, -0.76] [0.01, 0.95]

Table D.2: Bias in estimation without unobserved confounders.

Truth ERM IRM (λ → ∞) DIRM (λ → ∞)

Estimated parameters [0, 1] [0.5, -0.6] [0.01, 0.98] [0.02, 0.96]

D.1.2 Sensitivity to hyper-parameters

The robustness guarantees of any particular solution depends on the extent of the extrapolation
desired (as a function of λ ). For larger values of this parameter we can expect solutions to
be robust in a larger set of distributions, spanning empirical risk minimization for λ = 0, to
convex combinations, to training environments to arbitrary affine combinations of training
environments for increasing λ .

In this section, we analysed performance in test data with the exact same data generating
mechanism as considered in the introduction of the main body of this chapter as a function of λ .
Figure D.1 gives our performance results that empirically verifies that the proposed approach
interpolates between empirical risk minimization and causality in this case. We can see that
for λ approaching zero solutions converge to ERM, for λ = 2 the solutions was equivalent to
DRO, and for increasing λ the solutions approximate the causal one in the limit.

D.2 Other examples of unobserved confounding

Measurement error. The data generating processes described in the main body of this chapter
for instance, as well as most of machine learning, assume that all nuisance variability enters
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Figure D.1: Sensitivity of solutions to hyperparameter λ . Ordinary Least Squares (OLS) and the
causal solution, with coefficients (0,1) for (X1,X2) are two extremes (λ = 0 and λ → ∞ respectively)
of the spectrum of solutions that can be attained with the proposed approach. Positive values of λ

interpolate in some sense between OLS and causal solutions in this case. Here DRO corresponds to
DIRM with λ = 2, approximately.

the causal mechanisms of the data; that is, observed data reflects only causal drivers. If this is
not the case, for example because of independent measurement noise observed in data but that
does not propagate to across causal children, regression is known to be inconsistent in general
[32] and its bias is analogous to a form of unobserved confounding.

Consider a simple model for illustration. Suppose (X ,Y ) are observed subject to measurement
noise, X⋆ = X +Ex and Y ⋆ = Y +Ey, which are not causally related to one another but rather
Y = βX +E. Let Ex = βxH and Ey = βyH be the structure of measurement error independent of
X and Y . Then substituting our observed data (X⋆,Y ⋆) into the underlying (X ,Y ) relationship
the observed model is,

Y ⋆ = βX⋆+(βy−βxβ )H +E, X⋆ = βxH +X . (D.2)

A special case of regression with unobserved confounders H.

D.3 Technical results

This section provides a more complete discussion of the assumptions and justification statements
relating to causality in section 5.1.2, and the proof of Theorem 1.
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D.3.1 Invariances in the presence of unobserved confounding

In section 5.1.2 we justified exploiting a certain invariance of causal coefficients in the inner
product of functions of the data X and residuals E, to occur even in the presence of unob-
served confounders as long as interventions that define different environments do not involve
unobserved confounders H.

Here we show this invariance to hold in the special case of an additive model. The general data
generation mechanism is as follows. Data sources, or different environments, emerge from
manipulations in exogenous EX , related to X only, in an underlying additive model F with also
additive functions f1, f2, f3, f4,

Y := f1(X)+ f2(H)+EY , X := f3(X)+ f4(H)+EX , H := EH . (D.3)

Exogenous variables (EX ,EY ,EH) may have arbitrary distributions but only EX or EY vary
across environments. Then it holds that,

X = (I− f3)
−1 f4(H)+(I− f3)

−1EX

= (I− f3)
−1 f4(EH)+(I− f3)

−1EX ,

and that,

∇β f1(X)(Y − f1(X)) =
(
∇β f1(I− f3)

−1 f4(EH)+∇β f1(I− f3)
−1EX

)
· ( f2(EH)+EY ),

which is a product of functions involving EH in one term, EH and EY in another term, EX

and EH in another term, and EX and EY in the last term. Since (EX ,EY ,EH) are mutually
independent taking expectations of product of functions involving EX and EH , EX and EH , and,
EX and EY equals 0 assuming fi(E j) = 0 for i = 1, . . . ,4 and j ∈ {X ,Y,H}.

So concluding, the expectation of the inner product ∇β f1(X)(Y − f1(X)) does not depend on
EX nor EY and is thus stable across environments that have changing distributions for EX or EY .
Now note that other functions than f1 may have this property as well, i.e. predictors that satisfy
this invariance are not necessarily unique and will depend on the differences between available
environments. If however, only one predictor exist that satisfies this invariance we may say that
this predictor is causal. We summarize this claim in the following statement.
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Proposition 1 Let Y and X be related by a non-linear additive model with unobserved con-
founding as in (D.3). Then,

EPi∇β f1(X)(Y − f1(X)) = EPj∇β f1(X)(Y − f1(X)), (D.4)

under the assumption that distributions on (X ,Y ) Pi and Pj are given by a data generating
mechanism (D.3) subject to interventions on EX or EY only. Moreover, a function f satisfying
the above equality, if unique is equal to f1.
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D.3.2 Proof of Theorem 1

We restate the Theorem for convenience.

Theorem 1 Let {Pe}e∈E , be a set of available environments. Further let the parameter space
of β be open and bounded, such that the expected loss function L as a function of β belongs to
a Sobolev space. Then, the following inequality holds,

sup
αe∈∆η

∑
e∈E

αe E
(x,y)∼Pe

L( f ◦φ(x),y)≤ E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)

+(1+nη) ·C ·
∣∣∣∣∣∣∣∣ sup

e∈E
E

(x,y)∼Pe
∇βL( f ◦φ(x),y)− E

(x,y)∼Pe,e∼E
∇βL( f ◦φ(x),y)

∣∣∣∣∣∣∣∣
L2

,

where C depends on the domain of β , n := |E| is the number of available environments and
e∼ E loosely denotes sampling indeces with equal probability from E .

Proof. Let Ω denote the parameter space of β . The following derivation shows the claim,

sup
αe∈∆η

∑
e∈E

αe E
(x,y)∼Pe

L( f ◦φ(x),y)

= (1+nη) · sup
e∈E

E
(x,y)∼Pe

L( f ◦φ(x),y)−η ∑
e∼E

EPeL( f ◦φ(x),y)

= E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)+(1+nη) · sup
e∈E

E
(x,y)∼Pe

L( f ◦φ(x),y)

− (η +1/n) ∑
e∼E

E
(x,y)∼Pe

L( f ◦φ(x),y)

= E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)

+(1+nη) ·
(

sup
e∈E

E
(x,y)∼Pe

L( f ◦φ(x),y)− E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)
)

≤ E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)

+(1+nη) ·M ·
∣∣∣∣∣∣∣∣ sup

e∈E
E

(x,y)∼Pe
L( f ◦φ(x),y)− E

(x,y)∼Pe,e∼E
L( f ◦φ(x),y)

∣∣∣∣∣∣∣∣
L2

,

where the inequality is given by the property that the evaluation functional is a bounded linear
operator in certain Sobolev spacesW , for example with Ω = Rd and L2 norm. In particular

157



Appendix to Chapter 5

this means that | f (β )| ≤M|| f ||L2 for all f ∈W . It follows then also that the above is,

≤ E
(x,y)∼Pe,e∼E

L( f ◦φ(x),y)+

(1+nη) ·P ·M ·
∣∣∣∣∣∣∣∣ sup

e∈E
E

(x,y)∼Pe
∇βL( f ◦φ(x),y)− E

(x,y)∼Pe,e∼E
∇βL( f ◦φ(x),y)

∣∣∣∣∣∣∣∣
L2

,

by Poincaré’s inequality for Sobolev functions defined on an open, bounded parameter space,
see e.g. [104]. The assumption we make here for this last inequality to hold is that the region
where the difference in loss functions is near zero is large enough such that the integral of the
gradient is also large enough to control the integral of the function. This holds however for
functions defined on many "reasonable" parameter spaces (Lipschitz suffices).
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D.4 Experimental details

This section gives implementation details of DIRM, additional experiments to test sensitivities
relating to optimization choices, and a complete description of the data and experiments
performed in the main body of this chapter.

D.4.1 Implementation details

The regularizer in DIRM’s objective in equation (5.5) controls the regularity or variation of
the prediction function and encourages to learn a representation φ that results in a prediction
function with similar derivatives in all training domains. The L2 norm integrates out the
influence of β in the regularizer and thus most of the optimization involves φ , though β still
plays a role in the first term of the objective.

In all our experiments, f : Rh→ R as well as φ : Rd → Rh are implemented as fully connected
neural networks (φ with optional hidden layers). β can thus be interpreted as the weights and
biases of f . The L2 norm must be approximated in practice, which we do by evaluating the
vector norm of the derivative of f with respect to β on a batch of training examples of each
environment. The variance on the computed norms between environments is a proxy for the
maximum deviation between environments with a smoother gradient vector field. Each step of
the optimization then alternates between an update on φ and update on f , as detailed in the
algorithm below.

DIRM is sensitive to initialization and to the choice of hyperparameters – specifically its
optimization schedule. In our experiments, we found best performance by increasing the relative
weight of the penalty term λ after a fixed number of iterations (and similar implementations
are used for IRM and REx that suffer from similar challenges). This we believe could be
a significant limitation for its use in practice since this choice must be made a priori. We
investigated the sensitivity of DIRM to this optimization schedule in Table D.3 that shows test
accuracy as a function of the iteration at which penalty term weight λ is increased.

Table D.3: Test set performance (accuracy in %) on X-ray data as a function of the number of epochs
used to increase penalty λ .

2 epochs 4 epochs 6 epochs 8 epochs 10 epochs 12 epochs
IRM 56.4 (± 6) 58.1 (± 3) 59.2 (± 3) 59.1 (± 2) 58.1 (± 3) 57.8 (± 1)
REx 55.3 (± 8) 57.9 (± 4) 60.6 (± 3) 60.5 (± 2) 57.7 (± 3) 54.7 (± 2)
DIRM 54.1 (± 7) 61.7 (± 4) 63.8 (± 3) 63.5 (± 3) 62.6 (± 2) 58.2 (± 1)
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Choosing this number accurately is important for generalization performance. If λ is increased
too early, different initialization values (and the complex loss landscape) lead to different
solutions with unreliable performance and a large variance. This happens for all methods.
An initial number of iterations minimizing loss in-sample improves estimates for all methods
which then converge to solutions that exhibit lower variance.
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Algorithm 2 DIRM

Input: datasets D1, . . . ,DE in E different environments, parameter λ , batch
size K
Initialize: neural network model parameters φ ,β

while convergence criteria not satisfied do
for e = 1, . . . ,E do

Estimate loss Le(φ ,β ) empirically using a batch of K examples from De.

Estimate derivatives ∇βLe(φ ,β ) empirically using a batch of K examples
from De.

end for
Update β by stochastic gradient descent with,

∇β

(
1
E

E

∑
e=1
Le(φ ,β )

)

Update φ by stochastic gradient descent with,

∇φ

(
1
E

E

∑
e=1
Le(φ ,β )+λ ·Var(||∇βL1(φ ,β )||22, . . . , ||∇βLE(φ ,β )||22)

)

end while

Approximation of the L2 norm in practice

The bound given in Theorem 1 quantifies the discrepancy between function derivatives using
the L2 norm, defined as an intregal over possible parameter values β . For neural networks,
computation of the L2 norm is largely intractable and specifically, for networks of depth greater
or equal to 4, it is an NP-hard problem (see Proposition 1 in [177]). Some approximation is
thus unavoidable. One option is to recognise the L2 norm as an expectation over functional
evaluations, || f ||L2 =Ex∼U(Θ)

[
|| f (x)||22

]1/2 for a continuous function f taking values x sampled
uniformly from its domain Θ. Empirical means are tractable yet they induce a much higher
computational burden as these must be computed in every step of the optimization. Our
approach is to take this approximation to its limit, making a single function evaluation at each
step of the optimization using the current estimate β , as written in Algorithm 1.
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This approximation loosens the connection between the bound given in Theorem 1 and the
proposed algorithm. It remains justified however from a conceptual perspective as the objective
of controlling an L2 type of norm is to encourage the regularizer function towards 0, and
thus the values of the regularizer (which we do explicitly). For empirical comparisons with
the empirical mean approach, we implemented empirical means using all combinations of
parameter values chosen from a grid of 5 parameter values around the current estimate β ,
{0.25β ,0.5β ,β ,2β ,4β}. Table D.4 shows similar performance across the real data experi-
ments considered in the main body of this chapter. A single evaluation is in practice enough to
monitor invariance of representations to environment-specific loss derivatives.

Table D.4: Test set performance (accuracy in %) on real datasets for two different regularizer approxi-
mations to the L2 norm.

Pneumonia Prediction Parkinson Prediction Survival Prediction
DIRM-means 63.5 (± 3) 73.0 (± 1.5) 78.0 (± .9)
DIRM-single 63.7 (± 3) 72.8 (± 2) 77.9 (± 1)
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D.4.2 Data details

X-ray data

We create training environments with different proportions of X-rays from our two hospital
sources to induce a correlation between the hospital (and its specific data collection procedure)
and the pneumonia label. The objective is to encourage learning principles to exploit a spurious
correlation, data collection mechanisms should not be related to the probability of being
diagnosed with pneumonia. The reason for creating two training data sets with slightly different
spurious correlation patterns is to nevertheless leave a statistical footprint in the distributions
to disentangle stable (likely causal) and unstable (likely spurious). In each of the training
and testing datasets we ensured positive and negative labels remained balanced. The training
datasets contained 2002 samples each and the testing dataset contained 1144 samples.

All learning paradigms trained a convolutional neural network, 2 layers deep, with each layer
consisting of a convolution (kernel size of 3 and a stride of 1). All predictions were made
off of the deepest layer of the network. The number of input channels was 64, doubled for
each subsequent layer, and dropout was applied after each layer. We optimize the binary cross-
entropy loss using Adam (learning rate 0.001) without further regularization on parameters and
use Xavier initialization. While learning with IRM and the proposed approach, the respective
penalty λ = 1 is added to the loss after 5 epochs of learning with λ = 0. Experiments are run
for a maximum of 20 epochs with early stopping based on validation performance. All results
are averaged over 10 trials with different random splits of the data, and the reported uncertainty
intervals are standard deviations of these 10 performance results.

Parkinson’s disease speech data

The data includes a total of 26 features recorded on each sample of speech and set training and
testing splits which we use in our experiments. For each patient 26 different voice samples
including sustained vowels, numbers, words and short sentences where recorded, which we
considered to be different but related data sources. We created three training environments by
concatenating features from three number recordings, concatenating features from three word
recording and concatenating features from three sentences; for a total of 120 samples in each of
the three training environment. The available testing split contained 168 recordings of vowels,
which we expect to differ from training environments because these are different patients and
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do not contain numbers or words. Positive and negative samples were balanced in both training
and testing environments.

On this data, for all learning paradigms we train a multi-layer perceptron with two hidden
layers of size 64 with tanh activations and dropout (p = 0.5) after each layer. As in the image
experiments, we optimize the binary cross-entropy loss using Adam (learning rate 0.001),
L2 regularization on parameters and use Xavier initialization. While learning with IRM and
the proposed approach, the respective penalty is added to the loss λ = 1 after 200 epochs of
learning with λ = 0 to ensure stable optimization. Experiments are run for a maximum of 1000
epochs with early stopping based on the validation performance. All results are averaged over
10 trials with different random seeds of our algorithm. This is to give a sense of algorithm
stability rather than performance stability.

MAGGIC electronic health records

MAGGIC stands for Meta-Analysis Global Group in Chronic Heart Failure. The MAGGIC
meta-analysis includes individual data on 39,372 patients with heart failure (both reduced and
preserved left-ventricular ejection fraction), from 30 cohort studies, six of which were clinical
trials. 40.2% of patients died during a median follow-up of 2.5 years. For our purposes, we
removed patients that were censored or lost to follow-up to ensure well-defined outcomes
after 3 years after being discharged from their respective hospitals. A total of 33 variables
describe each patient including demographic variables: age, gender, race, etc; biomarkers:
blood pressure, haemoglobin levels, smoking status, ejection fraction, etc; and details of their
medical history: diabetes, stroke, angina, etc.

To curate our training and testing datasets, we proceeded as follows. On all patients follow-up
over 3 years, we estimated feature influence of survival status after three years. A number
of variables were significantly associated with survival out of which we chose Age, also
found correlated with BMI and a number of medical history features, as a confounder for
the effect of these variables on survival. We used three criteria to select studies: having
more than 500 patients enrolled and balanced death rates (circa 50%). 5 studies fitted these
constraints: ’DIAMO’, ’ECHOS’, ’HOLA’, ’Richa’, ’Tribo’. Each was chosen in turn as a
target environment with models trained on the other 4 training environments.

Feature reproducibility experiments. A natural objective for the consistency of health care
and such that we may reproduce the experiments and their results in different scenarios is
to find relevant features that are not specific to an individual medical study, but can also be
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found (replicated) on other studies with different patients. Heterogeneous patients and studies,
along with different national guidelines and standards of care make this challenging. In our
experiments we made comparisons of reproducibility in parameter estimates for models trained
using Empirical Risk Minimization (ERM) and DIRM. We chose networks with a single layer
with logistic activation and focused on the estimation of parameter to understand the variability
in training among different data sources. Naturally, feature importance measured by parameter
magnitudes makes sense only after normalization of the covariates to the same (empirical)
variance (equal to 1) in each study separately. After this preprocessing step, for both ERM
and the proposed approach we trained separate networks on 100 random pairs of studies (each
pair concatenated for ERM) and returned the top 10 significant features (by the magnitude of
parameters). Over all sets of significant parameters we then identified how many intersected
across a fixed number of the 100 runs.

The same architecture and hyperparameters as in Parkinson’s disease speech data experiments
was used for MAGGIC data except that we increase the maximum training epochs to 5000.

165





Appendix E

Appendix to Chapter 6

This appendix provides additional material accompanying Chapter 6: "Scoring of DAGs with
Dense Unobserved Confounding". It is outlined as follows:

• Section E.1 proves Theorem 1.

• Section E.2 includes further simulations and details of the synthetic experiments and
implementations.

– Section E.2.1 gives details of the synthetic experiments, metrics of evaluation.

– Section E.2.2 includes an experiment analysing performance with sparse unobserved
confounding.

– Section E.2.3 analyses the recovery of the exact weighted adjacency matrix with
synthetic simulations.

– Section E.2.4 gives further reproducibility experiments on skeleton recovery.

• Section E.3 gives details of the (semi-synthetic) genetic experiments.

E.1 Proof of Theorem 1

We begin by recalling the adjusted regression model that we seek to analyse.

FX = FX(W +C)+FĒ ⇒ X̃ = X̃(W +C)+ Ẽ. (E.1)

167



Appendix to Chapter 6

Let us write Σ̃ = Cov(X̃) for the covariance matrix of X̃ . Even for a good choice of F that
balances between a well behaved error term Ẽ = FĒ, well behaved design matrix X̃ and well
behaved perturbation term X̃C tending to zero, W is not necessarily uniquely identifiable. The
map between the observed covariance Σ̃ and the pair of causal adjacency matrix W and error
covariance Σ̃E = Cov(Ẽ) is not necessarily unique. To avoid issues of identifiability, recent
work [4] defines minimum-trace DAGs Wmin,

(Wmin,Σmin) ∈ arg min{Tr(Σ̃) : (W, Σ̃E) ∈ D}, (E.2)

where D denotes all pairs (W, Σ̃E) that exhibit a data covariance indistinguishable from that
observed. Minimum-trace DAGs themselves are not necessarily unique in general but for the
purposes of the results presented here we will assume it to be unique for good choices of F that
shrink the spurious signal without altering the causal signal too much. We note that extensions
exist for unidentifiable case [3], in which case penalized score optimization can be shown to
converge to a sparse representative within the class of minimum-trace DAGs but leave this
investigation in the presence of unobserved confounding to future work.

Our objective is to control the likelihood of the following failure event,

{supp(Wmin)⊊ supp(Ŵ )}, (E.3)

where Ŵ is the solution to the constrained, penalized optimization program,

Ŵ ∈ argmin
W∈D

S(W ;X), S(W ;X) :=
1

2n
||X̃− X̃W ||2F +λ ||W ||1. (E.4)

This can be done by reducing the analysis of Ŵ to a family of neighbourhood regression
problems [4, 3]. There are two key steps:

• First showing that Ŵ is equivalent to solving a series of p regression problems given by,

arg min
wi∈Rp, supp(wi)⊂S

1
2n
||X̃i− X̃wi||22 +λ ||wi||1, (E.5)

as defined in the main body of this paper.

• And second, controlling for the error in estimation in each of these neighbourhood problems
for all subsets of covariates, or neighbourhoods given by S.
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Point 1. The first step is a consequence of how the least squares loss and regularizer factor. This
allows to formally establish the equivalence between the DAG problem and neighbourhood
regression, and is justified by Lemma B.1. in [3]. This is similar to undirected models, for
which the analysis can be reduced to p different regression problems, namely the regression
of X j onto X− j. Unfortunately, for DAGs, there are p2p possible regression problems (the
regression of X j onto any subset of other variables S), which quickly become intractable to
control uniformly. In the identifiable case, we can constrain ourselves to control over sets S
that are consistent with a superstructure G of the underlying graph, i.e. we must only control
over those adjacency matrices that are sub-graphs of G (e.g. the moral graph of a DAG is an
example of superstructure). [3] then show a uniform concentration bound for the score function
restricted to a consistent superstructure and use this result to show that any estimated Ŵ has the
same topological sort as Wmin. This topological sort identifies candidate parent sets for each
node X j, and reduces the problem to control over p regression problems, which is substantially
lower than p2p problems.

These steps rely on the model distribution, independence of the error term in (E.1), and the
properties of minimum-trace DAGs, and are given as a sequence of Lemmas and Propositions
in Appendix B in [3]. All proofs (and prior conditions for the applicability of each statement)
therein hold for our model without modification since the distribution family is preserved under
deterministic transformations of both sides of the model equation, and the independence of
error terms holds by construction of the matrix C and Gaussianity. We refer the reader to these
references for a detailed derivation of each of these steps.

Point 2. The second point differs from [3]. It holds that the optimization program (E.4) can be
reduced to a collection of local regression problems, but in our case each regression problem is
defined as (E.5) rather than the conventional un-adjusted lasso. For this problem, as mentioned,
a good choice of F needs to find a balance between a well behaved error term Ẽ = FĒ, well
behaved design matrix X̃ and well behaved perturbation term X̃C. These conditions can be
articulated in three assumptions on the adjusted program.

• We assume λmax(Cov(X ,H)) = O(√p): the largest singular value of the (p× q) co-
variance matrix of (X ,H) is of the order

√
p, which is a consequence of denseness of

unobserved confounding (the effect on each individual observable being small but spread
over a large number of variables).

• We assume that d̃n/2 =O(
√

p): the median value of the singular values of X̃ is of the
order

√
p, with high probability.
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• We assume that the compatibility constant φM of M := n−1X̃T X̃ is of the same order
as the minimal singular value of X . The compatibility constant is a kind of restricted
eigenvalue condition and is common in the model selection literature. For a square matrix
M it is defined as,

φM := inf
||α||1≤5||αS||1

√
αT Mα

||αS||1/
√

s
, (E.6)

where S is the support set of wi, s is the size of S and αS is a vector consisting only of the
components of α which are in S.

With these conditions, [33] demonstrated that the error in estimation of wi with the program
(E.5) to be bounded in l1 norm by a factor of order,

O
(

σis
σmin(Σ̃E)

√
log p/n

)
, (E.7)

where σmin(M) denotes the smallest singular value of a matrix M, σi is the standard deviation
of Ẽi and s is the size of the support of wi.

Control over events of the form {supp(wi)⊊ supp(ŵi)} then follows with an additional beta-
min condition, i.e. a condition minimum strength on the signal of causal coefficients,

min(|w| : w ∈ supp(Wmin))≳ σ
√

log p/n,

where we have written a ≳ b to mean that a≥C ·b for some constant C > 0, and σ = maxi(σi)s
σmin(Σ̃E)

.
To see this notice that,

||ŵi−wi||1 ≥ ||ŵi−wi||∞. (E.8)

It follows that supp(wi) ⊆ supp(ŵi) as long as min(|w| : w ∈ supp(wi)) ≳ σ
√

log p/n with
high probability. If not, we could find a j ∈ supp(wi) with j /∈ supp(ŵi) such that |ŵi j−wi j|=
|ŵi j|≳ σ

√
log p/n, which leads to a contradiction. Here wi j is the j-th element of the vector

wi.

Finally, control over false positives {supp(wi)⊈ supp(ŵi)} in each neighbourhood regression
problem implies control over events {supp(Wmin)⊈ supp(Ŵ )} in DAG estimation by a uniform
bound over the control ensured in the p distinct neighbourhood regression problems, and is
technically justified by point (b) in Lemma B.1 in [3], that ensures that Ŵ is the unique solution
to (E.4) if and only if ŵi = [Ŵ ]·i is the unique solution to (E.5).
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E.2 Details on synthetic experiments

E.2.1 Simulations, metrics and implementation

In the main body of this paper, we consider one main synthetic network model:

• Erdös–Rényi graph models. These are generated by adding edges independently with
equal probability r = 2e

p2−p , where e is the expected number of edges in the resulting
graph. For each p-node graph, we simulate graphs with e equal to p.

Based on the DAG sampled from this graph model, we assign edge weights sampled inde-
pendently from Uniform([−2,−0.5]∪ [0.5,2]) to construct the weighted adjacency matrix
W ∈ Rd×d . The observational data is then generated according to the linear confounded DAG
model with different graph sizes, and additive noise types:

• Gaussian. Hi,E j ∼N (0,1), i = 1, . . . ,q, j = 1, . . . , p.

• Exponential. Hi,E j ∼ Exp(1), i = 1, . . . ,q, j = 1, . . . , p.

• Gumbel. Hi,E j ∼ Gumbel(0,1), i = 1, . . . ,q, j = 1, . . . , p.

In each synthetic experiment we generate n = 100 samples for each of these settings. For
experiments considering performance as a function of varying dimensionality p of X , we fixed
q = 10 and σ = 0.2. For experiments considering varying dimensionality q of H, we fixed
p = 20 and σ = 0.2. For experiments considering varying σ , we fixed p = 20 and q = 10.

We evaluate the estimated graphs using four different metrics:

• Structural Hamming Distance (SHD) indicates the number of edge additions, deletions,
and reversals in order to transform the estimated graph into the ground truth DAG.

• True Positive Rate (TPR) measures the proportion of actual positive edges that are
correctly identified as such.

• False Discovery Rate (FDR) measures the proportion of false discoveries among the
estimated edges.

• The Area Under the ROC Curve (AUC) measures the area under a plot of the TPR as a
function of FDR as te threshold for determining presence / absence of edges is varied.

• The l2 loss in the recovery of adjacency matrices ||Ŵ −W ||22/p.
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Figure E.1: Performance on the recovery of the weighted adjacency matrix.

We use the following implementations for baseline algorithms.

• FCI was implemented through the pcalg R package with a Gaussian conditional
independence test.

• LGES was implemented with hyperparameters chosen by cross validation following the
author’s implementation at https://github.com/benjaminfrot/lrpsadmm/.

• NOTEARS. We use the variant with l1 regularization chosen by cross-validation. The
code is available at the author’s GitHub repository
https://github.com/xunzheng/notears.

How to compute AUC and SHD on the different baselines

We have mentioned that all comparisons are made using estimated skeletons. The AUC
considers a range of precision / recall values estimated with different parameters to determine
the presence / absence of edges.

• For DECS and Notears this computation is straightforward as both return weighted
adjacency matrices and one obtains a skeleton by choosing different thresholds on the
estimated weights to determine presence / absence of edges.
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• For LGES the strategy is different as it does not return weighted adjacency matrices.
The equivalence class of LGES is computed using the BIC and we obtain a range of
precision / recall values by considering a range of penalties on the strength of the BIC
regularization, as done by the authors in [58].

• FCI uses independence tests to recover the skeleton and thus requires a threshold for
significance, precision / recall values are obtained by varying this threshold.

E.2.2 Further experiments with sparse unobserved confounding

We conduct in this section an empirical investigation on the sensitivity of DECS with respect to
the level of denseness on B. Sparse unobserved confounding render the spurious contributions
to the adjacency matrix indistinguishable from the true causal signal. We consider B to be
drawn as W in the data generating mechanism, i.e. a DAG with a specified number of edges e
(fewer edges implying sparser unobserved confounding contribution).

We evaluate all algorithms on the Gaussian model with Erdös–Rényi and p = 20 nodes with
the difference that B is drawn as W with e edges (recall that W has fixed e = 20 edges).

As can be seen in Table E.1, with decreasing number of non-zero entries in B, that is increasing
sparsity, the advantage of DECS decreases, though performance remains competitive.

Table E.1: SHD as a function of the number of non-zero entries in B

20 50 100 200

DECS 62±6.0 53±7.3 50±6.2 46±5.9
NOTEARS 68±3.9 71±2.5 70±2.8 75±2.0
LGES 56±3.3 60±5.1 58±6.0 53±3.4
FCI 67±6.2 85±3.7 85±5.0 95±5.7

E.2.3 Further experiments using adjacency matrix error

In the main body of this paper we tested performance on undirected graphs to allow for
comparisons across algorithms with different outputs. Here we consider recovery performance
of the original weighted adjacency matrix W used to generate the data. Comparisons are made
with Notears which is the only method that returns a weighted adjacency matrix although
it does not account for unobserved confounding. This experiment thus served to show that
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adjusting for unobserved confounding can significantly improve upon the same algorithm
without adjustments.

We follow the same experimental set-up as in the main body of this paper and report results in
Figure E.1.

E.2.4 Further reproducibility experiments on skeleton recovery

In the main body of this paper we tested for the reproducibility of causal discovery in different
environments shifted by the distribution of unobserved confounders. In this section we consider
the exact same set-up but test instead for skeleton recovery to be able to make comparisons
with LGES.

Results are given in Figure E.2. The results show that DECS returns a skeleton which is more
reproducible across environments. For instance, approximately 20% of estimated edges in the
skeleton (across all 10 environments) intersect in all 10 environments for DECS whereas only
7% and 3% do for LGES and Notears respectively.

Figure E.2: Reproducibility experiments on skeleton recovery. Higher values for larger number of
environments indicate higher levels of reproducibility. DECS is the proposed approach.
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• The Scale Free (SF) graph is simulated using the Barabási-Albert model [7], which is
based on the preferential attachment process, with nodes being added sequentially. In
particular, 1 edge is added each time between the new node and existing nodes. Scale-
free graphs are popular since they exhibit topological properties similar to real-world
networks such as gene networks, social networks, and the internet. Once the network G
is sampled we draw edge weights and data following the Erdös-Rényi data generating
process with n = 100, p = 200,q = 10,σ = 0.2.

• The E. coli network describes the expression of protein coding genes of the E. coli
microorganism under stress, in an experiment conducted by [152]. The available data
of 100 samples of 46 genes was sampled from a Gaussian model, as described in the
bnlearn R package.

• The Starch network simulates gene expression expression interaction resulting from an
experiment investigating the impact of the diurnal cycle on the starch metabolism of
Arabidopsis thaliana [125]. This gene network and data contains 107 genes, 150 edges
and 100 samples and represents an example of a high-dimensional causal discovery
problem. It is available in the bnlearn R package.

• The Sachs dataset consists of n = 7466 measurements of expression levels of proteins
and phospholipids in human immune system cells for p = 11 cell types [148]. It is widely
used as a benchmark for causal discovery as it comes with a consensus network that is
accepted by the biological community. It is available in the bnlearn R package.

We give illustrations of the real networks, together with omitted nodes in Figure E.3. Variables
in blue are root nodes omitted from the available data to induce unobserved confounding among
children, and thus simulate a scenario of incomplete system of variables as would be expected
in real applications.
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(a) Starch network (b) E. coli network (c) Sachs network

Figure E.3: Networks and omitted variables considered in the genetic data experiments.
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