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ABSTRACT  35 

Methylation of carbon-5 of cytosines (m5C) is a post-transcriptional nucleotide modification 36 

of RNA found in all kingdoms of life. While individual m5C-methyltransferases have been 37 

studied, the impact of the global cytosine-5 methylome on development, homeostasis and stress 38 

remains unknown. Here, using Caenorhabditis elegans, we generated the first organism devoid 39 

of m5C in RNA, demonstrating that this modification is non-essential. Using this genetic tool, 40 

we determine the localisation and enzymatic specificity of m5C sites in the RNome in vivo. We 41 

find that NSUN-4 acts as a dual rRNA and tRNA methyltransferase in C. elegans mitochondria.  42 

In agreement with leucine and proline being the most frequently methylated tRNA 43 

isoacceptors, loss of m5C impacts the decoding of some triplets of these two amino acids, 44 

leading to reduced translation efficiency. Upon heat stress, m5C loss leads to ribosome stalling 45 

at UUG triplets, the only codon translated by an m5C34-modified tRNA. This leads to reduced 46 

translation efficiency of UUG-rich transcripts and impaired fertility, suggesting a role of m5C 47 

tRNA wobble methylation in the adaptation to higher temperatures.   48 

 49 
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translation efficiency  51 

 52 

INTRODUCTION 53 

The methylation of carbon-5 of cytosines (m5C) in RNA is a conserved modification in 54 

biological systems. m5C has been detected in tRNAs, rRNAs, mRNAs and non-coding RNAs, 55 

and is catalysed by m5C RNA-methyltransferases that utilise SAM as a methyl donor (Liu & 56 

Santi, 2000; Boccaletto et al, 2017). In humans, RNA m5C formation is catalysed by the tRNA 57 

aspartic acid MTase 1 (TRDMT1/DNMT2), and by seven proteins of the NOP2/Sun domain 58 

family (NSUN1-7) (García-Vílchez, et al, 2019). Pathogenic mutations in humans have been 59 

mapped to several genes involved in the m5C pathway (Abbasi-Moheb et al, 2012; Haag et al, 60 

2016; Khan et al, 2012; Khosronezhad et al, 2015; Komara et al, 2015; Martinez et al, 2012; 61 

Nakano et al, 2016; Ren et al, 2015; Van Haute et al, 2016). Despite its conservation and clear 62 

relevance, the functions and molecular interactions of the RNA m5C methylome remain largely 63 

unknown. Here, we use Caenorhabditis elegans as a model to study the genetic requirements 64 

and molecular functions of m5C modification and its methyltransferases in vivo. 65 

 66 



m5C has been implicated in a variety of molecular roles. Amongst the most highly 67 

modified methyltransferase targets are tRNAs and rRNAs, the core components of the 68 

translation machinery. tRNAs are methylated by NSUN2, NSUN3, NSUN6 and DNMT2, 69 

while rRNAs are methylated by NSUN1, NSUN4 and NSUN5 (García-Vílchez et al, 2019).  70 

 71 

In some tRNAs, m5C protects from degradation. Loss of NSUN2-mediated tRNA 72 

methylation has been shown to promote cleavage by angiogenin and accumulation of tRNA 73 

fragments that interfere with the translation machinery (Flores et al, 2016; Blanco et al, 2014, 74 

2016; Tuorto et al, 2012). Similarly, DNMT2-mediated methylation was found important for 75 

protection of tRNAs from stress-induced cleavage in Drosophila and mice (Schaefer et al, 76 

2010; Tuorto et al, 2015, 2012). NSUN6-mediated methylation of tRNAs Cys and Thr 77 

promotes a slight enhancement of tRNA thermal stability (Haag et al, 2015; Li et al, 2018) 78 

 79 

 In other tRNAs, m5C modulates translational fidelity. DNMT2 has been shown to 80 

facilitate charging of tRNA Asp and discrimination between Asp and Glu near-cognate codons, 81 

thus controlling the synthesis of Asp-rich sequences and promoting translational fidelity 82 

(Tuorto et al, 2015; Shanmugam et al, 2015). NSUN3 methylates exclusively mitochondrial 83 

tRNA Met-CAU at the wobble position, which is further modified into f5C by the dioxygenase 84 

ALKBH1, facilitating the recognition of AUA and AUG codons as methionine in the 85 

mitochondria (Van Haute et al, 2016; Nakano et al, 2016; Haag et al, 2016; Takemoto et al, 86 

2009). Lack of f5C affects mitochondrial translation rates in human fibroblasts (Van Haute et 87 

al, 2016).  88 

 89 

The rRNA methyltransferase NSUN1 (yeast nop2) methylates C2870 in yeast 25S 90 

rRNA. While NSUN1 is an essential gene in all organisms studied thus far, it remains unclear 91 

whether this is dependent on its catalytic activity (Sharma et al, 2013). Similarly, NSUN4 acts 92 

in complex with MTERF4 for assembly of small and large mitochondrial ribosome subunits, 93 

however m5C catalysis does not seem to be essential (Metodiev et al, 2014). NSUN5 has been 94 

shown to methylate position C2278 in yeast 25S rRNA (Schosserer et al, 2015; Sharma et al, 95 

2013). Loss of NSUN5-mediated methylation induces conformational changes in the ribosome 96 

and modulation of translational fidelity, favouring the recruitment of stress-responsive mRNAs 97 

into polysomes and promoting lifespan enhancement in yeast, flies and nematodes. In 98 

mice, Nsun5 knockout causes reduced body weight and reduced protein synthesis in several 99 

tissues (Schosserer et al, 2015; Heissenberger et al, 2019).  100 



 101 

It remains less clear whether mRNAs are specific targets of m5C-methyltransferases 102 

and if m5C is functional in mRNA. Several methods have been used to investigate the presence 103 

and function of m5C in coding transcripts and two m5C-binding proteins have been identified 104 

so far (Chen et al, 2019; Yang et al, 2017). However, there is a lack consensus on the 105 

abundance, distribution and relevance of this mark in mRNAs, as the number and identity of 106 

putative mRNA m5C sites varies widely between studies (David et al, 2017; Huang et al, 2019; 107 

Legrand et al, 2017; Li et al, 2017; Squires et al, 2012; Tang et al, 2015; Yang et al, 2017; 108 

Zhang et al, 2012).  109 

 110 

Although previous studies have explored the roles of individual m5C 111 

methyltransferases, none have established a systematic dissection of these enzymes as a class, 112 

of their specificity, or of their potential molecular and genetic interactions, in any organism. 113 

Many questions remain on how the m5C methylome sustains development and normal 114 

physiology. In this work, we generated the first mutant animals devoid of any detectable levels 115 

of cytosine C5 methylation in RNA, demonstrating that m5C is a non-essential modification 116 

under standard conditions. We then used this mutant strain as genetic tool to map m5C sites 117 

onto RNA in vivo and determined their impact on translation, development, physiology and 118 

stress. 119 

 120 

RESULTS 121 

 122 

m5C and its derivatives are non-essential RNA modifications in C. elegans  123 

To identify putative m5C RNA methyltransferases in C. elegans, we performed a BLAST 124 

analysis and found that the open reading frames W07E6.1, Y48G8AL.5, Y39G10AR.21 and 125 

Y53F4B.4 are likely homologues of the human genes NSUN1, NSUN2, NSUN4 and NSUN5, 126 

respectively (Fig 1A). Knockdown of these genes through RNAi by feeding revealed that nsun-127 

1 is an essential gene, as 100% of the animals that had this gene silenced from the first larval 128 

stage onwards developed into sterile adults (Fig 1B, C). We could not identify homologous 129 

genes of NSUN3, NSUN6, NSUN7 or DNMT2.  130 

 131 

m5C RNA methyltransferases utilise two conserved cysteine residues for the methyl 132 

group transfer, one of which (TC-Cys) is required for the covalent adduct formation, and the 133 

other (PC-Cys) for the release of the substrate following m5C catalysis (King & Redman, 134 



2002). Using CRISPR-Cas9, we introduced mutations converting the TC-Cys into alanine in 135 

nsun-1 (mj473), nsun-2 (mj458) and nsun-4 (mj457) (Fig 1D, Appendix Fig S1A, B). These 136 

mutants, as well as a previously reported knockout mutant of nsun-5 (tm3898), are viable and 137 

produce viable progeny, suggesting that the individual activity of m5C methyltransferases is 138 

not essential for the viability of C. elegans. In addition, these results suggest that the essential 139 

role played by NSUN-1 in fertility (Fig 1B, C) is independent of the catalytic functions of this 140 

protein.  141 

 142 

To investigate epistatic interactions among the nsun genes in C. elegans, we performed 143 

genetic crosses between the individual mutants, and produced a quadruple mutant in which all 144 

nsun genes are predicted to be inactive. This strain was viable and fertile, and was termed 145 

noNSUN. To confirm whether the introduced mutations resulted in catalytic inactivation, and 146 

to rule out the existence of additional unknown m5C RNA methyltransferases, we performed 147 

mass spectrometry analyses in total RNA from the mutant strains, and confirmed that m5C is 148 

no longer detectable in this genetic background (Fig 1E; lower limit of detection ~0.3 ng/ml, 149 

average amount detected in wild type samples 477 ng/ml). We additionally quantified the m5C 150 

metabolic derivative 2′-O-methyl-5-hydroxymethylcytosine (hm5Cm) (Huber, et al, 2017) and 151 

found that this modification is not present either in nsun-2 or noNSUN mutants (Fig 1F). We 152 

therefore conclude that m5C and its derivatives are not essential for C. elegans viability under 153 

laboratory conditions. Furthermore, we showed that NSUN-2 is the main source of m5C (88% 154 

of total), and that hm5Cm sites exclusively derive from NSUN-2 targets in C. elegans.   155 

 156 

It has been proposed that some RNA modifications may act in a combinatorial manner, 157 

providing compensatory effects to each other (Hopper & Phizicky, 2003). This prompted us to 158 

investigate whether complete loss of m5C would significantly interfere with the levels of other 159 

RNA modifications. We performed a mass spectrometry analysis to quantify 15 different 160 

modifications in total RNA and found no significant differences between wild type and 161 

noNSUN samples (Fig 1G). Taken together, our data establish the noNSUN strain as a highly 162 

specific genetic tool for the study of m5C distribution and function in vivo. 163 

  164 

The m5C methylome of C. elegans 165 

Schosserer et al demonstrated that position C2381 of 26S rRNA is methylated at carbon-5 by 166 

NSUN-5 in C. elegans, being involved in lifespan modulation (Schosserer et al, 2015). 167 

Nevertheless, the m5C methylome of this organism remained to be determined. We therefore 168 



used the noNSUN strain as a negative control for whole-transcriptome bisulfite sequencing 169 

(WTBS) analysis (Legrand et al, 2017), aiming to determine the localisation of m5C sites in C. 170 

elegans RNA at single nucleotide resolution. 171 

 172 

We identified C5 methylation at positions C2982 and C2381 of 26S cytoplasmic rRNA 173 

and positions C628 and C632 of 18S mitochondrial rRNA (Fig 2A). Using alignment to rRNA 174 

of different organisms we found that position C2982 is a conserved NSUN1 target (Sharma et 175 

al, 2013), which has also been recently reported in C. elegans (Heissenberger et al, 2020). In 176 

addition, C2381 has previously been reported as a conserved NSUN5 target (Schosserer et al, 177 

2015; Sharma et al, 2013). We further confirmed the specificity of these sites using a targeted 178 

bisulfite sequencing (BS-seq) approach in individual mutants (Fig EV1A, B). Interestingly, 179 

other groups had previously identified adjacent modified sites in mt-rRNA in mice, however 180 

the methylation of only one of the positions was shown to be dependent on NSUN4 activity, 181 

while the other was interpreted as a 4-methylcytosine site (Metodiev et al, 2014). In the case 182 

of C. elegans, both positions are NSUN-dependent (Fig 2A).  183 

 184 

We found 40 positions to be methylated in stoichiometry higher than 50% in tRNAs, 185 

the majority of which being detected in leucine and proline isoacceptors (Fig 2B-C). As 186 

anticipated for NSUN2 targeting, modified positions are found in the variable loop region 187 

(positions 48, 49, 50), with cytoplasmic tRNA Leu-CAA carrying an additional modification 188 

at the wobble position (C34) (Blanco et al, 2014; Burgess, et al, 2015) (Fig 2C). Using targeted 189 

BS-seq, we demonstrated that NSUN-2 is indeed responsible for both C34 and C48 methylation 190 

in tRNA-Leu (Fig EV1C). In agreement with the lack of homologous genes of DNMT2 and 191 

NSUN6 in C. elegans, no methylation was found on conserved RNA targets of these enzymes 192 

(Goll et al, 2006; Schaefer et al, 2010; Long et al, 2016) (Fig 2C).  193 

 194 

Contrasting with what was observed for tRNAs and rRNAs, non-conversion of mRNA 195 

sites in C. elegans is rare and occurs at much lower stoichiometry. Lowering the non-196 

conversion threshold from 50% to 25-40%, we detected 188 positions that remained 197 

unconverted after bisulfite treatment exclusively in wild type samples, i.e. putative m5C sites 198 

(Fig 2D, x axis). Using the same thresholds to probe for likely artefacts revealed 88 positions 199 

that remained unconverted exclusively in noNSUN samples, i.e. non-conversion was only 46% 200 

less frequent (Fig 2D, y axis). It is also noteworthy that positions remaining reproducibly 201 

highly unconverted equally in wild type and noNSUN samples are more frequent in mRNAs, 202 



when compared to tRNAs and rRNAs (Fig 2A-B, D). In summary, we found no evidence of a 203 

widespread distribution of m5C in coding transcripts. To investigate whether the presence of 204 

common characteristics could support a subset of the aforementioned 188 positions as bona 205 

fide methylated sites, we performed gene ontology, motif search, genomic localisation, and 206 

secondary structure analyses on these transcripts and sites, however no significant shared 207 

features were found. While our data does not completely rule out the existence of m5C 208 

methylation in mRNAs, it demonstrates that this mark cannot be detected in high stoichiometry 209 

in C. elegans, as observed in tRNAs and rRNAs.  210 

 211 

Finally, we attempted to identify m5C sites in small RNAs in our dataset. Given that 212 

the fractionation used in this protocol aimed to enrich for tRNAs (60-80 nt), we could not detect 213 

microRNA reads in abundance for confident analysis. Nevertheless, we found high NSUN-214 

dependent non-conversion rates (>80%) in five non-coding RNAs (approximately 60 nt long) 215 

previously identified in C. elegans (Lu et al, 2011; Xiao et al, 2012) (Figure 2E). Secondary 216 

structure predictions suggest that the methylated sites are often found on the base of a stem-217 

loop, reminiscent of tRNA variable loops (Fig EV2). Further experiments will be required to 218 

determine the functionality of these m5C sites.  219 

 220 

NSUN-4 is a multisite-specific tRNA/rRNA-methyltransferase in the mitochondria of 221 

C. elegans 222 

Interestingly, we found the mitochondrial tRNA Met-CAU to be methylated at a very high rate 223 

(94.7%) (Fig 3A). Supporting our finding, previous articles also indicated the detection of this 224 

modified site in Ascaris suum and C. elegans (Nakano et al, 2016; Watanabe et al, 1994). This 225 

was unexpected, as previous reports have shown that this position is methylated by NSUN3 226 

(Haag et al, 2016; Nakano et al, 2016; Van Haute et al, 2016). As C. elegans does not have an 227 

NSUN3 homologue, this implies that mitochondrial tRNAs can be modified by alternative 228 

enzymes. A BLAST analysis of the human NSUN3 methyltransferase domain against the C. 229 

elegans proteome showed higher similarity to NSUN-4 (30% identity), followed by NSUN-2 230 

(26% identity). Moreover, we observed that, among human NSUN genes, NSUN3 and NSUN4 231 

share the highest percentage of similarity (Fig 3B). Using a targeted BS-seq approach, we 232 

probed the methylation status of position C34 in mitochondrial tRNA Met-CAU from wild 233 

type, nsun-2 and nsun-4 strains. Our results indicate that NSUN-4 is responsible for the 234 

catalysis of m5C in this position in C. elegans (Fig 3C).  235 

 236 



NSUN-4 is the only mitochondrial rRNA m5C methyltransferase identified to date. To 237 

confirm that the previously reported role of NSUN4 is also conserved in C. elegans, we 238 

performed targeted BS-seq in 18S mitochondrial rRNA, and found that methylation of 239 

positions C628 and C632, as well as C631, is mediated by NSUN-4 (Fig 3D). Notably, 240 

methylation of position C631 was also detected by WTBS, however in reduced stoichiometry 241 

(23.5% in wild type vs. 0.04% in noNSUN). Taken together, our results show that NSUN-4 is 242 

a multisite-specific tRNA/rRNA mitochondrial methyltransferase in nematodes.  243 

 244 

To investigate when the divergence of NSUN3 arose in evolution, a phylogenetic 245 

analysis of NSUN3 was performed using Treefam and, given the high sequence similarity, 246 

NSUN3 and NSUN4 sequences were automatically included in the generated cladogram. 247 

While Drosophila and C. elegans only have NSUN4, vertebrate model organisms as basal as 248 

zebrafish have both NSUN3 and NSUN4 (Fig 3E). A more expanded version of the tree 249 

indicates the presence of NSUN4, but not NSUN3, in sea lampreys 250 

(http://www.treefam.org/family/TF321304#tabview=tab1), suggesting that NSUN3 diverged 251 

from NSUN4 in vertebrates. 252 

 253 

Loss of m5C leads to temperature-sensitive reproductive phenotypes  254 

The individual or collective introduction of mutations in nsun genes failed to induce noticeable 255 

abnormal phenotypes. We therefore performed a more extensive characterisation of the mutant 256 

strains using a live imaging-based phenotypic analysis (Akay et al, 2019). As a proxy for 257 

reduced fitness, we chose to analyse the number of viable progeny and occurrence of 258 

developmental delay (growth rate, as measured by body length). In comparison to wild type 259 

animals, we observed a delay in all mutant strains, which persists throughout development and 260 

into adulthood. This difference is greater in noNSUN animals, especially as this strain 261 

transitions from L4 stage to young adulthood (Fig 4A). When comparing mutants’ sizes at 262 

young adult stage at 20°C, noNSUN animals are, on average, five times smaller than wild type 263 

(Fig 4B). While this difference reflects a developmental delay, noNSUN animals remain 20% 264 

smaller even when they reach adulthood themselves (Fig 4B). In addition, the noNSUN strain 265 

shows a 25% reduction in brood size, which is comparable to what is observed in nsun-1 and 266 

nsun-5 individual mutants (Fig 4C).  267 

 268 

 C. elegans stocks can be well maintained between 16°C and 25°C, being most typically 269 

kept at 20°C. To gain insights into how the loss of m5C impacts development under different 270 



environmental conditions, wild type and noNSUN animals were cultured at 25°C for three 271 

generations and subjected to automated measurements. As shown in Fig 4D, the reproductive 272 

phenotype previously observed in the noNSUN strain (Fig 4C) is significantly aggravated at 273 

this temperature. This suggests that the phenotypes arising from loss of m5C are temperature-274 

sensitive, pointing towards an involvement of this modification in the adaptation to 275 

environmental changes.  276 

  277 

Loss of m5C impacts translation efficiency of leucine and proline codons 278 

To explore the impact of temperature stress in the absence of m5C while avoiding the 279 

confounding effect introduced by differences in brood size, we performed further experiments 280 

using an acute heat shock treatment. To investigate whether the observed phenotypes are linked 281 

to abnormalities in protein translation rates, we quantified the polysomal fraction in wild type 282 

and noNSUN adult animals subject to heat shock at 27°C for 4 hours and found no significant 283 

differences (Fig 5A, Appendix Fig S2). 284 

 285 

To gain insights into transcriptional and translational differences resulting from the loss 286 

of m5C, we performed transcriptomic and ribosome profiling analyses. The latter allows the 287 

quantification of active translation by deep-sequencing of the mRNA fragments that are 288 

protected from nuclease digestion by the presence of ribosomes (ribosome protected fragments 289 

- RPFs). RPFs showed the expected 3 nt periodicity along the coding domain sequences of 290 

mRNA, with the majority of reads in frame (Appendix Fig S3A, B).  Furthermore, RNASeq 291 

and riboSeq counts of genes showed high correlation, and variation in the gene counts could 292 

be attributed to the difference in samples analysed (Appendix Fig S3C, D, E). Loss of m5C 293 

did not greatly impact the nature of the heat stress response, as most differentially transcribed 294 

and translated genes upon heat stimulus showed agreement, or very subtle differences between 295 

wild type and noNSUN strains (Appendix Fig S4). We found that differentially transcribed 296 

genes upon loss of m5C are mainly involved in cuticle development (Fig EV3A), while 297 

differentially translated genes are enriched in components of the cuticle and ribosomes, as well 298 

as RNA-binding proteins (Fig EV3B).   299 

 300 

We then evaluated genome-wide codon occupancy during translation elongation in 301 

both temperatures and found that loss of m5C leads to increased ribosome occupancy at leucine 302 

and proline codons. Upon heat shock, Leu-UUG codons showed the highest ribosome density 303 

observed in the noNSUN strain, suggesting that translation of this codon is slowed during heat 304 



stress in the absence of m5C (Fig 5B, Fig EV4A). We investigated this phenomenon more 305 

closely in different transcripts and found that ribosome stalling at UUG codons seems to be 306 

context-dependent, as it only occurs in a small subset of UUG codons (Fig 5C, Fig EV4B). 307 

Interestingly, as shown in our WTBS analysis, leucine and proline are the most frequently 308 

methylated tRNA isoacceptors in C. elegans (Fig 2B). In addition, tRNA Leu-CAA, 309 

responsible for decoding of UUG codons, is the only cytoplasmic tRNA bearing an m5C-310 

modified wobble position (Fig 2C).  311 

 312 

As a downstream consequence of ribosome stalling, we found translation efficiency of 313 

UUG-, leucine- and proline-rich genes to be significantly reduced in the noNSUN strain. While 314 

this effect can be observed in both temperatures in leucine-rich transcripts and at 20°C in 315 

proline-rich ones, it occurs in a heat shock-dependent manner in UUG-rich transcripts, 316 

suggesting an involvement of m5C wobble methylation in the adaptation to heat stress (Fig 317 

5D). Finally, we found that translation efficiency is further reduced as transcripts get more 318 

enriched in the affected codons (Fig EV5).  319 

   320 

  321 

DISCUSSION 322 

Chemical modifications of RNA occur in organisms from all kingdoms of life and are often 323 

highly conserved throughout evolution, as is the case of the methylation of carbon-5 in 324 

cytosines (Boccaletto et al, 2017; Huber et al, 2015). Despite that, there is a growing body of 325 

evidence showing that several RNA modifications are individually not required for 326 

development under controlled conditions (O’Connor, et al 2018, reviewed in Sharma & 327 

Lafontaine, 2015 and Hopper & Phizicky, 2003). Our results reignite a recurrent question in 328 

the epitranscriptomics field: why are so many of these chemical marks extensively conserved 329 

throughout evolution and, yet, organisms often present subtle phenotypes in their absence? 330 

Ribonucleoside modifications occur in an overwhelming diversity and, in some cases, might 331 

(i) exert subtle molecular effects, (ii) act in a combinatorial or redundant manner with other 332 

modifications or (iii) be the result of relaxed enzymatic specificity (Phizicky & Alfonzo, 2010; 333 

Jackman & Alfonzo, 2013). 334 

 335 

While the absence of m5C in RNA did not give rise to overt phenotypes under standard 336 

laboratory conditions, a more detailed analysis of the mutants revealed developmental and 337 

fertility defects. Previous studies have shown that levels of several RNA modifications, 338 



including m5C, are responsive and can react dynamically to a wide range of environmental 339 

challenges, such as toxicants, starvation and heat shock, thus potentially supporting organismal 340 

adaptation (Chan et al, 2010; van Delft et al, 2017). In agreement with this idea, we observed 341 

a temperature-dependent aggravation of reproductive phenotypes in m5C-deficient C. elegans. 342 

In nature, where the environmental conditions vary greatly, such genotypes would likely be 343 

selected against in a wild population. 344 

 345 

Our results suggest an RNA methylation-independent essential role for NSUN-1 in 346 

germline development. Consistently, Nop2p/Nol1/NSUN1 has been shown to be an essential 347 

gene in yeast, mice and Arabidopsis (Burgess et al, 2015; De Beus et al, 1994; Kosi et al, 2015; 348 

Sharma et al, 2013). In Saccharomyces cerevisiae, both depletion and catalytic mutation of 349 

Nop2p lead to lower levels of 60S ribosomal subunits, supporting the idea that reduced 350 

methylation affects rRNA processing and translation (Hong et al, 1997; Honget al, 2001; 351 

Sharma et al, 2013). In contrast, Bourgeois et al reported that loss of Nop2p-mediated m5C had 352 

no effect on ribosome synthesis and phenotype (Bourgeois et al, 2015). A similar phenomenon 353 

has been observed for NSUN4 in mice, as well as for Dim1 and Trmt12 in yeast, and their 354 

human homologues DIMT1L and WBSCR22, where the presence of the enzyme, rather than 355 

its catalytic activity, is required for viability (Lafontaine et al, 1995; Metodiev et al, 2014; 356 

Zorbas et al, 2015). It has been proposed that the essential binding of certain rRNA 357 

methyltransferases represents a quality control step in ribosome biogenesis, committing rRNA 358 

to methylation during the maturation process (Lafontaine et al, 1998). 359 

 360 

Taking advantage of the noNSUN strain as a tool to increase the confidence of WTBS 361 

analysis, we produced the first comprehensive list of m5C sites throughout C. elegans 362 

transcriptome. Using a targeted approach, we showed that NSUN-4 has both rRNA and tRNA 363 

targeting capabilities in the mitochondria. It has been suggested that binding of MTERF4 and 364 

NSUN4 in a complex is responsible for targeting the methyltransferase to rRNA in the 365 

mitochondria (Metodiev et al, 2014; Spåhr et al, 2012; Yakubovskaya et al, 2012). 366 

Nevertheless, genetic evidence suggests that NSUN4 methylates rRNA independently of 367 

MTERF4 in mice (Metodiev et al, 2014). C. elegans has an MTERF4 homologue (K11D2.5), 368 

and most residues involved in the interaction with NSUN4 appear conserved, suggesting that 369 

a similar interaction with this co-factor could occur (Spåhr et al, 2012).   370 

 371 



 In humans, NSUN3-mediated methylation at position 34 of mitochondrial tRNA Met-372 

CAU is further modified by the dioxygenase ALKBH1 to form f5C (Haag et al, 2016; Nakano 373 

et al, 2016). Previous studies explored differential methods for the detection of f5C, indicating 374 

that 35-100% of tRNA Met-CAU molecules are f5C-modified, while the whole population is 375 

at least m5C-modified (Haag et al, 2016; Kawarada et al, 2017; Van Haute et al, 2016).  As 376 

f5C reacts as an unmodified cytosine upon sodium bisulfite treatment, it was surprising to detect 377 

high levels of non-conversion (95%) in our study. Nakano et al (2016) have used DNA probes 378 

in reciprocal circulating chromatography followed by mass spectrometry to demonstrate high 379 

stoichiometry of f5C in this site in C. elegans RNA. In addition, an ALKBH1 homologue 380 

(Y51H7C.5) has recently been discovered and implicated in mitochondrial protein biogenesis 381 

in the nematode (Wagner et al, 2019). These results support the existence of a f5C pathway in 382 

C. elegans. However, as we used a sequencing-based method that does not discriminate 383 

between precursors or mature tRNAs, it is possible that our method detects mainly primary 384 

transcripts or precursor molecules, which have not been oxidised by ALKBH1. 385 

 386 

Using the noNSUN strain as a negative control, we investigated the presence of m5C in 387 

coding transcripts. Several reports have shown that m5C is a common mRNA modification 388 

(Amort et al, 2017; David et al, 2017; Squires et al, 2012; Yang et al, 2017). However, results 389 

derived from BS-seq can be influenced by several factors, such as incomplete deamination, 390 

protection due to secondary structures, presence of other modifications, protein binding and 391 

sequencing errors, among others (summarized in Legrand et al, 2017). Given these technical 392 

drawbacks, the noNSUN strain represented an unprecedentedly stringent negative control, 393 

which allowed for exclusive detection of highly specific methylation. Despite the detection of 394 

positions with 20-30% NSUN-dependent non-conversion, we detected a similar number of 395 

positions with NSUN-independent non-conversion at these rates, which we interpret as false 396 

positives. This poses a statistical challenge on the interpretation of such non-converted 397 

positions as methylated. Our main conclusion, therefore, is that the data does not provide 398 

evidence for widespread or high stoichiometry m5C methylation of coding transcripts in C. 399 

elegans. This is in agreement with earlier work using chromatography (Adams & Cory, 1975; 400 

Desrosiers et al, 1974; Salditt-Georgieff et al, 1976) and other reports that have detected very 401 

few or no m5C sites in eukaryotes by BS-seq (Edelheit et al, 2013; Khoddami & Cairns, 2013; 402 

Khoddami et al, 2019; Legrand et al, 2017).  403 

 404 



Using ribosome profiling, we investigated the genome-wide effect of loss of m5C in 405 

translational speed and efficiency and found leucine and proline translation to be affected. The 406 

strongest effect by far was observed in a heat shock-dependent manner in UUG codons, which 407 

rely on the only tRNA modified at the wobble position - tRNA Leu-CAA. Chan et al (2012) 408 

found that m5C level specifically at position 34 of tRNA Leu-CAA is upregulated upon 409 

oxidative stress in yeast. The presence of this modification was shown to enhance translation 410 

efficiency of a UUG-rich luciferase reporter construct, as trm4Δ (NSUN2 homologue mutant) 411 

cells showed significantly lower levels of reporter activity, especially under oxidative stress. 412 

The biological relevance of these findings was linked to an abnormally high frequency of UUG 413 

codons in transcripts of specific ribosomal protein paralogues (Chan et al, 2012).  414 

 415 

In summary, m5C supports C. elegans fitness at higher temperatures and enhances the 416 

translational efficiency of leucine and proline codons in physiology and stress. Our work 417 

highlights a specific role of cytosine C5 methylation in facilitating translation of leucine UUG 418 

codons upon heat shock, suggesting that m5C tRNA wobble methylation is involved in the 419 

adaptation to heat stress.   420 

 421 

 422 

MATERIALS AND METHODS 423 

 424 

Genetics 425 

C. elegans strains were grown and maintained as described in Brenner (Brenner, 1974). The 426 

strains were kept at 20°C, unless otherwise indicated. HB101 strain Escherichia coli was used 427 

as food source (Caenorhabditis Genetics Center, University of Minnesota, Twin Cities, MN, 428 

USA). Bristol N2 was used as the wild type strain.  429 

 430 

Gene silencing by RNAi 431 

Empty vector, nsun-1 (W07E6.1), nsun-2 (Y48G8AL.5), nsun-4 (Y39G10AR.21), and nsun-5 432 

(Y53F4B.4) bacterial feeding clones were kindly provided by Prof. Julie Ahringer’s lab 433 

(Kamath & Ahringer, 2003). Single colonies were inoculated in LB-Ampicillin 100 μg/ml and 434 

cultured for 8 h at 37 °C. Bacterial cultures were seeded onto 50 mm NGM agar plates 435 

containing 1 mM IPTG and 25 μg/ml Carbenicillin at a volume of 200 μl of bacterial culture 436 

per plate, and left to dry for 48 hours. 50 synchronized L1 larvae were placed onto RNAi plates 437 



and left to grow until adult stage. Adults were scored for fertility (presence of embryos in the 438 

germline).  439 

 440 

CRISPR-Cas9 gene editing 441 

CRISPR-Cas9 gene editing was performed as in Paix et al (Paix et al, 2015). Briefly, injection 442 

mixes were prepared in 5 mM Tris pH 7.5 as follows: 20 μg of tracrRNA (Dharmacon), 3.2 μg 443 

of dpy-10 crRNA (Dharmacon), 200 ng of dpy-10 homologous recombination template (Sigma 444 

Aldrich), 8 μg of target gene gRNA (Dharmacon), 1.65 μg of homologous recombination 445 

template (Sigma), up to a volume of 11.5 μl. The mix was added to 10 μg of Cas9 (Dharmacon) 446 

to a final volume of 15 μl, and incubated at 37°C for 15 min. For the creation of nsun catalytic 447 

mutants, a homologous recombination template bearing a point mutation to convert the 448 

catalytic cysteine into alanine while creating a restriction site for HaeIII was co-injected. 449 

Following incubation, the mix was immediately micro-injected into the germline of N2 young 450 

adults. After injection, animals were left to recover in M9 medium, then transferred to 451 

individual plates and left to recover overnight at 20°C. Successful injections led to the hatch of 452 

dumpy and roller animals. From positive plates, 96 animals were individualized for self-453 

fertilization and genotyped for the relevant alleles. Same process was performed with F2s, until 454 

a homozygous population was isolated. Each strain was backcrossed at least three times with 455 

the wild type strain.  456 

 457 

RNA extraction (Mass spectrometry and WTBS) 458 

The strains of interest (N2 and noNSUN) were grown in 90 mm plates until gravid adult stage, 459 

washed three times with M9 and pelleted by centrifugation at 2000 rpm for 2 minutes. Gravid 460 

adults were resuspended in 4 ml of bleaching solution (final concentration 177 mM NaOH, 177 461 

mM NaOCl solution - free chlorine 4–5%) and vortexed vigorously for 7 minutes. Recovered 462 

embryos were washed four times to remove any traces of bleach and left to hatch in ml of M9 463 

for 24 h at 20°C in a rotating wheel. Synchronised L1 starved larvae were used for RNA 464 

extraction. Independent triplicates were obtained from three different generations. 465 

Nematodes were washed thoroughly in M9 to remove bacterial residue, and pelleted in RNAse-466 

free tubes at 2000 rpm for 2 min. 500-1000 μl of TRIsure (Bioline) and 100 μl of zirconia beads 467 

were added and the samples were subjected to three cycles of 6,500 rpm with 20 sec breaks on 468 

Precellys to crack open the animals. 100 μl of chloroform were added to the tubes, which were 469 

then shaken vigorously for 15 sec and incubated at room temperature for 3 min. Samples were 470 

centrifuged at 12,000 x g for 15 min at 4 °C and the aqueous phase of the mixture was carefully 471 



recovered and transferred to a fresh RNAse-free tube. RNA was precipitated with 500 μl of 472 

cold isopropanol at room temperature for 10 min and then centrifuged at 12,000 x g for 15 min 473 

at 4°C. The supernatant was carefully removed, the pellet was washed and vortexed with 1 ml 474 

of 75% ethanol and centrifuged at 7,500 x g for 5 min at 4°C. RNA pellet was air-dried, 475 

dissolved in the appropriate volume of DEPC-treated water and the concentration, 260/280 and 476 

260/230 ratios were measured by Nanodrop. RNA integrity was evaluated in the Agilent 2200 477 

Tapestation system.  478 

 479 

RNA mass spectrometry 480 

Up to 10 μg of RNA was digested by adding 1 μl digestion enzyme mix per well in a digestion 481 

buffer (4 mM Tris-HCl pH 8, 5 mM MgCl2, 20 mM NaCl) in a total volume of up to 100 μl. 482 

The digestion enzyme mix was made by mixing benzonase (250 U/μl, Sigma Aldrich), 483 

phosphodiesterase I from Crotalus adamanteus venom (10mU/μl, Sigma Aldrich) and 484 

Antarctic phosphatase (5 U/μl, NEB) in a ratio of 1:10:20. The reaction was incubated 485 

overnight at 37 °C. The following day, an equal volume of 13C, 15N-labelled uridine (internal 486 

control, previously dephosphorylated; Sigma Aldrich) in 0.1% formic acid was added to each 487 

reaction and this was subsequently prepared for LC-MS-MS by filtration through 30 kDa 488 

molecular weight cut-o filters (Sigma).  489 

Samples were resolved using a Thermo Scientific U3000 UPLC system on a gradient 490 

of 2- 98% (0.1% formic acid/acetonitrile) through an Acquity 100mm x 2.1 mm C-18 HSS T3 491 

column and analysed on a QExactive-HF Orbitrap High Resolution Mass Spectrometer 492 

(ThermoFisher Scientific, IQLAAEGAAPFALGMBFZ) in positive full-scan mode and the 493 

results were deconvoluted using the accompanying Xcalibur Software. Nucleosides of interest 494 

were identified by both retention times and accurate masses, compared to purified standards 495 

and quantified accordingly.  496 

 497 

Whole Transcriptome Bisulfite Sequencing  498 

Bisulfite sequencing experiments were performed as previously described in Legrand et al 499 

(Legrand et al, 2017). RNA was fractionated into <200 nt and >200 nt using a modified 500 

mirVana miRNA isolation kit (AM1560) protocol. Briefly, 50 μg of RNA in a volume of 80 501 

μl were mixed with 400 μl of mirVana lysis/binding buffer and 48 μl of mirVana homogenate 502 

buffer and incubated for 5 min at room temperature. Next, 1/3 volume (176 μl) of 100% ethanol 503 

was added and thoroughly mixed by inversion, and the mixture was incubated for 20 min at 504 

room temperature. After addition of 0.8 μg of Glycoblue, the samples were spun down at 2,500 505 



x g for 8 min at 21 °C for precipitation of long RNAs. The supernatant containing the short 506 

fraction was transferred to a fresh tube and the RNA pellet was washed in 1 ml of cold 75% 507 

ethanol before centrifugation at maximum speed for at least 20 min at 4 °C. The pellet was 508 

finally air-dried and resuspended in DEPC-treated water. For short fraction RNA precipitation, 509 

800 μl of isopropanol were added to the supernatant and the mixture was incubated at -80 °C 510 

for at least 20 min. Next, 20 μg of Glycoblue were added and the mixture was spun down at 511 

maximum speed for at least 20 min at 4 °C. The pellet was washed with cold 70% ethanol and 512 

air dried before resuspension in DEPC-treated water. Depletion of ribosomal RNA was 513 

performed on the short fractions and on half of the long fractions using a Ribo-zero rRNA 514 

removal kit (Illumina), according to the supplier’s instructions. The other half of long fractions 515 

was processed as Ribo+ samples. RNA was stored at -80 °C until the moment of use.  516 

The long fractions (with and without rRNA depletion) were further processed with the 517 

NEBNext Magnesium RNA Fragmentation Module (NEB), as described in the manual. 3 min 518 

of fragmentation at 94 °C has been established to lead to a peak at approximately 250 nt, 519 

appropriate for the final 100 bp paired-end sequencing. The fragmented RNA was precipitated 520 

using ethanol with 20 μg GlycoBlue at -80 °C for at least 10 min.  521 

Samples were treated with TURBO DNase (Ambion) in a final volume of 20 μl, 522 

according to the manufacturer’s instructions. DNase-treated samples were bisulfite-converted 523 

using an EZ RNA Methylation Kit (Zymo Research), following the manufacturer’s manual. As 524 

a final step before library preparation, a stepwise RNA end repair was carried out using T4 525 

polynucleotide kinase (TaKaRa). A 3′-dephosphorylation and 5′- phosphorylation reaction was 526 

performed using T4 PNK enzyme (TaKaRa). The enzyme was removed by phenol-chloroform 527 

purification. Library preparation was done using a NEBNext Small RNA Library Prep Set, 528 

according to the manufacturer’s protocol. cDNA was amplified with 12 cycles of PCR and 529 

purified using the QIAquick PCR Purification Kit (Qiagen). The libraries were size-selected 530 

on a 6% polyacrylamide gel. Compatible barcodes were selected, and samples were pooled in 531 

equimolar ratios on multiple lanes in an Illumina HiSeq 2000 platform. A 100 bp paired-end 532 

sequencing approach was used.  533 

Bioinformatics, statistical analyses and methylation calling were performed as 534 

described in Legrand et al (Legrand et al, 2017), utilising the BisRNA software. Adapters were 535 

removed from sequenced reads using Cutadapt version 1.8.1 (with options: --error-rate=0.1  --536 

times=2 --overlap=1 and adapter sequences AGATCGGAAGAGCACACGTCT and 537 

GATCGTCGGACTGTAGAACTCTGAAC for forward and reverse reads, respectively 538 

(Martin, 2011). Reads were further trimmed of bases with phred quality score <30 on 5' and 3' 539 



ends and reads shorter than 25 nucleotides were discarded (Trimmomatic version 0.36) 540 

(Bolger, Lohse, & Usadel, 2014). Reads were aligned uniquely using Bsmap (version 2.87, 541 

options: -s 12 -v 0.03  -g 0  -w 1000  -S 0 -p 1 -V 1 -I 1 -n 0 -r 2 -u -m 15  -x 1000) (Xi & Li, 542 

2009). Reference sequences were downloaded from Gtrnadb (version ce10), Ensembl (release 543 

90, version WBcel235) and Arb-Silva (P. P. Chan & Lowe, 2016; Kersey et al, 2016; Lee et 544 

al, 2018; Quast et al, 2012). End sequence 'CCA' was appended to tRNA if missing. Bisulfite-545 

identical sequences, where only C>T point differences were present, were merged, keeping the 546 

C polymorphism. Similarly to Legrand et al (Legrand et al, 2017), tRNA sequences were 547 

further summarized to the most exhaustive yet unambiguous set of sequences, using sequence 548 

similarity matrix from Clustal Omega (Sievers et al, 2011). Methylation calling was performed 549 

as described in Legrand et al (Legrand et al, 2017), utilising the BisRNA software. Methylation 550 

frequency was calculated as the proportion of cytosines with coverage higher than 10 in three 551 

wild type and noNSUN replicates and bisulfite non-conversion ratio higher than 0.1. The 552 

measure for reproducibility was the standard error. Deamination rates were calculated as the 553 

count of converted cytosines divided by the sum of converted and non-converted cytosines. 554 

This calculation was carried out on nuclear and mitochondrial rRNA. Known methylation sites 555 

in rRNA were removed from the calculations. WTBS raw data have been deposited in the Gene 556 

Expression Omnibus (GEO) database under the accession number GSE144822.  557 

 558 

Targeted bisulfite sequencing 559 

1 μg of total RNA was bisulfite-modified with the EZ RNA Methylation Kit (Zymo Research). 560 

Briefly, samples were first treated with DNase I for 30 min at 37 °C in 20 μl volume. The 561 

DNAse reaction was stopped and immediately applied to the EZ RNA Methylation Kit (Zymo 562 

Research) according to manufacturer’s instructions. Converted RNAs were eluted in 12 μl of 563 

distilled water.  564 

Reverse transcription was performed with the purified RNA and adaptors were added 565 

to the amplicons using reverse oligonucleotides designed for the bisulfite-converted sequences 566 

of interest and SuperScript III reverse transcriptase (Invitrogen). cDNA was cleaned from any 567 

residual RNA with an RNase H treatment at 37 °C for 20 min and then used for PCR 568 

amplification and adaptor addition using forward oligonucleotides. Low annealing temperature 569 

(58 °C) was used to overcome high A-T content after bisulfite treatment. 4 μl of PCR product 570 

were used for ligation and transformation into TOP10 competent cells using the Zero Blunt 571 

TOPO PCR Cloning Kit (Invitrogen) according to the manufacturer’s instructions. Following 572 

overnight culture, 24 colonies were individually lysed and used for PCR amplification using 573 



M13 primers, in order to confirm the presence of the insert at the correct size by DNA 574 

electrophoresis. The remaining PCR product (10 clones per condition) was used for Sanger 575 

sequencing using T3 primers (Genewiz).  576 

 577 

Automated phenotypical characterisation 578 

Viable Progeny 579 

Viable progeny refers to the number of progeny able to reach at least the L4 stage within ~4 580 

days.  Measurements were completed over three 24-h intervals. First, eggs were prepared by 581 

synchronisation via coordinated egg-laying. When these animals had grown to the L4 stage, 582 

single animals were transferred to fresh plates (day 0). For 3 days, each day (days 1–3), each 583 

animal was transferred to a new plate, while the eggs were left on the old plate and allowed to 584 

hatch and grow for ~ 3 days, after which, the number of animals on each of these plates was 585 

counted (Hodgkin & Barnes, 1991) using a custom animal counting program utilising short 586 

video recordings. Animals were agitated by tapping each plate four times, after this, 15 frames 587 

were imaged at 1 Hz and the maximum projection was used as a background image. Animals 588 

were then detected by movement using the difference in the image between each frame and 589 

this background image and counted this way for ten additional frames. The final count was 590 

returned as the mode of these counts. This system was tested on plates with fixed numbers of 591 

animals and was accurate to within 5%, comparable to human precision. Total viable progeny 592 

was reported then as the sum for 3 days. Data is censored for animals that crawled off of plates 593 

(Akay et al, 2019).  594 

 595 

 Single Worm Growth Curves 596 

Populations of Caenorhabditis elegans were synchronized by coordinated egg laying.  Single 597 

eggs were transferred to individual wells of a multi-well NGM plate solidified with Gelrite 598 

(Sigma).  Each well was inoculated with 1 !" of OD 20 E. coli HB101 bacteria (~18 million) 599 

and imaged periodically using a camera mounted to a computer controlled XY plotter 600 

(EleksMaker, Jiangsu, China) which moved the camera between different wells.  Images were 601 

captured every ~11 minutes for ~75 hours.  Image processing was done in real-time using 602 

custom MATLAB scripts, storing both properties of objects identified as C. elegans, and sub 603 

images of regions around detected objects.  Body length was calculated using a custom 604 

MATLAB (Mathworks, Natick MA) algorithm and all other properties were measured using 605 

the regionprops function.  Growth curves were aligned to egg-hatching time, which was 606 

manually determined for each animal. 607 



 608 

Polysome profiling 609 

Synchronised populations of the strains of interest (N2 and noNSUN) were grown until adult 610 

stage (3 days) in 140 mm NGM agar plates seeded with concentrated E. coli HB101 cultures 611 

at 20 °C. Next, the animals were harvested from the plates, transferred to liquid cultures in S-612 

medium supplemented with E. coli HB101, and incubated at 20°C or 27°C for 4h in a shaking 613 

incubator at 200 rpm before harvesting.  Sample preparation for polysome profiling was 614 

adapted from Arnold et al (Arnold et al, 2014). The animals were harvested, washed 3x in cold 615 

M9 buffer supplemented with 1 mM cycloheximide and once in lysis buffer (20 mM Tris pH 616 

8.5, 140 mM KCl, 1.5 mM MgCl2, 0.5% Nonidet P40, 2% PTE (polyoxyethylene-10-617 

tridecylether), 1% DOC (sodiumdeoxycholate monohydrate), 1 mM DTT, 1 mM 618 

cycloheximide). The animals were pelleted and as much liquid as possible was removed before 619 

the samples were frozen as droplets in liquid nitrogen, using a Pasteur pipette. Frozen droplets 620 

were transferred to metallic capsules and cryogenically ground for 25 sec in a mixer (Retsch 621 

MM 400 Mixer Mill). The resulting frozen powder was stored at -80 °C until the moment of 622 

use.  623 

Approximately 250 μl of frozen powder was added to 600 μl of lysis buffer and mixed 624 

by gentle rotation for 5 min at 4 °C. The samples were centrifuged at 10,000 x g for 7.5 min, 625 

the supernatant was transferred to fresh tubes and the RNA concentration was quantified by 626 

Nanodrop. For ribosome footprinting, 400 μl of lysate was treated with 4 μl of DNase I (1 U/μl, 627 

Thermo Scientific) and 8 μl of RNase I (100 U/μl, Ambion) for 45 min at room temperature 628 

with gentle shaking. 20 μl of RNasin ribonuclease inhibitor (40 U/μl, Promega) was added to 629 

quench the reaction when appropriate. The tubes were immediately put on ice and 220 μl of 630 

lysate was loaded into 17.5 – 50% sucrose gradients and ultracentrifuged for 2.5 h at 35,000 631 

rpm, 4 °C in a Beckman SW60 rotor. In parallel, undigested samples used for polysome 632 

profiling were equally loaded into sucrose gradients under the same conditions. Gradient 633 

fractions were eluted with an ISCO UA-6 gradient fractionator while the absorbance at 254 nm 634 

was continuously monitored. The fraction of polysomes engaged in translation was calculated 635 

as the area under the polysomal part of the curve divided by the area below the entire curve.  636 

 637 

Ribosome profiling  638 

Sucrose gradient fractions were collected in tubes containing 300 μl of 1 M Tris-HCl pH 7.5, 639 

5M NaCl, 0.5 M EDTA, 10% SDS, 42% urea and then mixed by vortexing with 300 μl of 640 

Phenol-Chloroform-Isoamylalcohol (PCL, 24:25:1). Fractions corresponding to 80S 641 



monosomes were heated for 10 min at 65°C and centrifuged at 16,000 x g for 20 min at room 642 

temperature. The upper aqueous phase was transferred to a fresh tube and mixed well with 643 

600 μl of isopropanol and 1 μl of Glycoblue for precipitation overnight at -80 °C. RNA was 644 

pelleted by centrifugation at 16,000 x g for 20 min at 4 °C and washed in 800 μl of cold ethanol. 645 

After supernatant removal, the pellet was left to dry for 1-2 min and then dissolved in 60 μl of 646 

RNase-free water. RNA concentration and quality were measured by Nanodrop and 647 

Tapestation (2200 Agilent R6K), respectively.  648 

A dephosphorylation reaction was performed by adding 7.5 μl T4 polynucleotide kinase 649 

(PNK) 10x buffer, 1.5 μl ATP, 1.5 μl RNase OUT, 1.5 μl T4 PNK (TaKaRa) and 3 μl RNase-650 

free water up to a final volume of 75 μl, and incubated for 1.5 h at 37 °C. The enzyme was 651 

removed by acid-phenol extraction and the RNA was precipitated with 1/10 volume 3 M 652 

sodium acetate pH 5.2, 2.5x volume 100% cold ethanol and 1 μl Glycoblue overnight at -80°C. 653 

Pelleted RNA was dissolved in RNase-free water. For footprint fragments purification, RNA 654 

was denaturated for 3 min at 70 °C and loaded into a 15% polyacrylamide TBE-urea gel 655 

alongside a small RNA marker. Gel was run for 1 h at 150 V and stained for 10 min with 656 

1:10,000 SYBR Gold in 0.5x TBE. The gel was visualised under UV light and the region 657 

between the 20 nt and 30 nt marks (28-32 nt) was excised with a sterile scalpel. The gel band 658 

was crushed into small pieces and incubated in 300 μl of 0.3 M RNase-free NaCl solution with 659 

2 μl of RNase OUT overnight at 4°C on an Intelli-Mixer (Elmi). The gel slurry was transferred 660 

to a 0.45 μm NanoSep MF Tube (Pall Lifesciences) and centrifuged at maximum speed for 5 661 

min at 4°C. After overnight precipitation with 30 μl of 3 M sodium acetate pH 5.2, 1 μl 662 

Glycoblue and 800 μl 100% ethanol, the RNA was dissolved in RNase-free water.  663 

Libraries were prepared using a NEB NEXT Small RNA Library Prep Set for Illumina 664 

(Multiplex compatible) E7330 Kit, following the manufacturer’s instructions. cDNA libraries 665 

were purified according to the manual, followed by a QIAQuick PCR Purification Kit and a 666 

6% polyacrylamide gel, where a band of 150 bp (120 bp adapter + 28-32 footprint fragments) 667 

was excised. Gel extraction was performed as described above for footprint fragments 668 

purification. Libraries were sequenced at the Genomics and Proteomics Core Facility of the 669 

German Cancer Research Centre (DKFZ), Heidelberg.  670 

Raw reads were assessed for quality using FastQC and Trimmed for low quality bases 671 

and adapter sequences using Trimmomatic (version 0.39, parameters - 672 

ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:20 MINLEN:20) (Bolger et al, 2014). 673 

SortMERNA was used to remove any rRNA sequences (Kopylova, Noé, & Touzet, 2012). 674 

Remaining reads were uniquely aligned to the C. elegans (WBCel235) reference genome using 675 



HISAT2 (version 2.1.0) (Kim et al, 2015). The longest transcript was chosen for each gene 676 

from the WBCel235 reference genome and the CDS for these transcripts was extracted. Reads 677 

were length stratified and checked for periodicity, only read lengths showing periodicity over 678 

the 3 frames were retained for further analysis (26 bp -30 bp). Reads aligned to the genome 679 

were shifted 12 bp from the 5′-end towards the 3′-end (Ingolia et al, 2009)i. Any reads aligned 680 

to the first 10 codons of each gene were then removed and the remaining reads with a 5′ end 681 

aligning to a CDS were kept for further analysis (Lecanda et al, 2016). 682 

Bulk codon occupancy in the P-Site for each codon was calculated as the number of 683 

shifted RPFs assigned to the first nucleotide of the codon. This value was then normalized by 684 

the frequency of the counts for the same codon in the +1, +2 and +3 codons relative to the A-685 

Site (Stadler & Fire, 2011). Fold changes were then computed as the normalized bulk codon 686 

occupancies for noNSUN / wild type. Ribosome occupancy for gene in a sample was calculated 687 

as the number of shifted in frame RPFs aligned to the CDS of the gene (not including the first 688 

10 codons). These values were inputted into DESeq2 (Love et al, 2014). Translation efficiency 689 

was calculated by dividing the ribosome occupancy of each gene (disregarding the first ten 690 

codons) by the mRNA abundance of the same gene. Ribo-Seq raw data have been deposited in 691 

the Gene Expression Omnibus (GEO) database under the accession number GSE146256.  692 

 693 

RNA sequencing 694 

Input RNA was extracted from aliquots from the samples used for polysome profiling and 695 

ribosome footprinting. 100 μl of chloroform were added to the tubes, which were then shaken 696 

vigorously for 15 sec and incubated at room temperature for 3 min. Samples were centrifuged 697 

at 12,000 x g for 15 min at 4 °C and the aqueous phase of the mixture was carefully recovered 698 

and transferred to a fresh RNAse-free tube. RNA was precipitated with 500 μl of cold 699 

isopropanol at room temperature for 10 min and then centrifuged at 12,000 x g for 15 min at 700 

4 °C. The supernatant was carefully removed, the pellet was washed and vortexed with 1 ml of 701 

75% ethanol and centrifuged at 7,500 x g for 5 min at 4°C. RNA pellet was air-dried, dissolved 702 

in the appropriate volume of DEPC-treated water and the concentration, 260/280 and 260/230 703 

ratios were measured by Nanodrop. RNA integrity was evaluated in the Agilent 2200 704 

Tapestation system.  RNA was depleted of DNA with a TURBO DNA-free kit (Invitrogen), 705 

according to the manufacturer’s instructions. Libraries were prepared with 750 ng of starting 706 

material using the NEBNext Ultra II Directional RNA Library Prep Kit for Illumina, following 707 

rRNA depletion using a NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (NEB).  708 



 Raw reads were assessed for quality using FastQC (Andrews, 2010) and Trimmed for 709 

low quality bases and adapter sequences using Trimmomatic (version 0.39, parameters - 710 

ILLUMINACLIP:2:30:10 SLIDINGWINDOW:4:20 MINLEN:25) (Bolger et al, 2014). 711 

SortMERNA (Kopylova et al, 2012) was used to remove any reads matching rRNA sequences. 712 

Remaining reads were aligned to the C. elegans reference genome (WBCel235) using HISAT2 713 

(version 2.1.0, default parameters) (Kim et al, 2015). Read alignments were then counted using 714 

HTSeq-count (Anders et al, 2015) and gene counts inputted into DESeq2 (Love et al, 2014). 715 

RNA-Seq raw data have been deposited in the Gene Expression Omnibus (GEO) database 716 

under the accession number GSE146256. 717 

 718 

Data availability 719 

BS-seq: Gene Expression Omnibus (GEO) GSE144822 720 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144822)  721 

RNA-seq: Gene Expression Omnibus (GEO) GSE146256 722 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146256) 723 

Ribo-seq: Gene Expression Omnibus (GEO) GSE146256 724 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146256) 725 
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 990 

FIGURE LEGENDS 991 

 992 

Figure 1. m5C and its derivatives are non-essential RNA modifications in C. elegans.  993 

(A) Phylogenetic relationship among human and putative nematode NSUN proteins. Unrooted 994 

phylogenetic tree of NSUN homologues in Homo sapiens and C. elegans using entire protein 995 

sequence. Phylogenetic tree reconstructed using the maximum likelihood method implemented 996 

in the PhyML program (v3.0).  997 

(B, C) Knockdown of nsun genes through RNAi by feeding. Representative images of wild 998 

type adult animals after silencing of nsun genes via RNAi by feeding. Widefield DIC images 999 

are 10x magnification (B). Percentage of fertile adults after gene silencing by RNAi (C). n = 2 1000 

independent experiments, 3 biological replicates each.  1001 

(D) Mutant alleles used in this study. CRISPR-Cas9 strategy for creation and screening of 1002 

catalytically inactive alleles of nsun-1 (mj473), nsun-2 (mj458) and nsun-4 (mj457). A 1003 

homologous recombination template bearing a point mutation to convert the catalytic cysteine 1004 

into alanine whilst creating a restriction site for HaeIII was co-injected. For the study of nsun-1005 

5, a 928 bp deletion allele (tm3898) was used. Image not to scale. 1006 

(E, F) Mass spectrometry quantification of m5C (D) and hm5Cm (E) levels in total RNA from 1007 

nsun mutants. RNA was extracted from populations of L1 animals synchronised by starvation, 1008 

digested to nucleosides and analysed via LC-MS. n = 3 independent biological replicates. n.d. 1009 

= not detected.  1010 

(G) Fold change in total RNA modification levels upon loss of m5C. Fold changes were 1011 

calculated by dividing the peak area ratio of noNSUN samples by the one of wild type samples. 1012 

n = 3 independent biological replicates. Multiple t-tests.  1013 



Data information: In (C, E, F, G), data are presented as mean ± SEM. In (C), a representative 1014 
plot of two independent experiments is shown. 1015 
 1016 

Figure 2. The m5C methylome of C. elegans.  1017 

(A, B) Site-specific methylation analysis by whole-transcriptome bisulfite sequencing. Scatter 1018 

plots show individual cytosines and their respective non-conversion rates in rRNAs (A) and 1019 

tRNAs (B) of wild type and noNSUN strains; pie chart showing most frequently methylated 1020 

tRNA isoacceptors.  1021 

(C) Heatmap showing non-conversion rates of tRNA positions methylated in stoichiometry 1022 

higher than 50% and of tRNA positions predicted to be targets of DNMT2 and NSUN6.  1023 

(D) Site-specific methylation analysis by whole-transcriptome bisulfite sequencing. Scatter 1024 

plot shows density of cytosines and their respective non-conversion rates in mRNAs of wild 1025 

type and noNSUN strains.  1026 

(E) Heatmap showing non-conversion rates of small non-coding RNA positions methylated in 1027 

stoichiometry higher than 50%.  1028 

Data information: In (A, B, C, D, E), n = 3 independent biological replicates. 1029 

 1030 

Figure 3. NSUN-4 is a dual tRNA/rRNA methyltransferase in C. elegans.  1031 

(A) RNA bisulfite sequencing map for mitochondrial tRNA Met-CAU in wild type (top) and 1032 

noNSUN (bottom) strains. Each row represents one sequence read and each column one 1033 

cytosine.  1034 

(B) Percent identity matrix of human NSUN proteins according to the Clustal Omega multiple 1035 

alignment tool.  1036 

(C, D) Targeted bisulfite-sequencing heat map showing non-conversion rates of cytosines in 1037 

mitochondrial tRNA Met-CAU (C) and mitochondrial 18S rRNA (D). Each row represents one 1038 

genetic strain analysed and each column represents one cytosine.  1039 

(E) Treefam phylogenetic tree based on sequence conservation of NSUN3 proteins in different 1040 

model organisms. Bootstrap values are indicated on branches.  1041 

Data information: In (A), a representative map of the replicates is shown, n = 3 independent 1042 

biological replicates. In (C, D), the average of two experiments is plotted, n = 2 independent 1043 

biological replicates, 10 clones sequenced per strain, per replicate. Similar effects were 1044 

observed in all replicates analysed. 1045 

 1046 

Figure 4. Loss of m5C leads to a temperature-sensitive reproductive phenotype.  1047 



(A) Body length of individual nsun mutants throughout development (n = 44,7,7,7,8,8) in ~4 1048 

hour windows. L1-L4 refers to the larval stages, YA and Ad to young adult and adult, 1049 

respectively.  1050 

(B) Size of mutant nsun strains at young adult and egg-laying stages. Approximately 100 1051 

synchronised young adults of each strain were measured. Images were processed using custom 1052 

algorithms to recognize C. elegans and measure their cross-sectional area. 1053 

(C, D) Viable progeny counts of wild-type and nsun mutant strains at 20°C (C) and of wild-1054 

type and noNSUN strains at 20°C and 25°C (D). Automatic counting was done using a Matlab 1055 

script which processed plate images in real-time.  1056 

Data information: In (A), error bars indicate the 95% confidence interval of the median. In (C), 1057 

data are presented as mean ± SEM, One-way ANOVA. In (D), data are presented as mean ± 1058 

SEM, unpaired two-tailed Student’s t-test. 1059 

 1060 

Figure 5. Loss of m5C impacts translation efficiency of leucine and proline codons.  1061 

(A) Fraction of polysomal ribosomes quantified from polysome profiles in the wild type and 1062 

noNSUN strains subject to a 4 h heat shock at 27°C. ns = non-significant.  1063 

(B) Heatmap showing P-site codon occupancy according to the colour scale at 20°C and 27°C. 1064 

Red and blue refer to enhanced and reduced codon occupancy, respectively, in the noNSUN 1065 

strain relative to wild type. Leucine and proline codons are marked in red. 1066 

(C) Ribosome-protected fragment (RPF) counts in each sample plotted along ife-1 and pat-10 1067 

CDS. Vertical grey lines indicate UUG codons. 1068 

(D) Translation efficiency of UUG-enriched, leucine-enriched, proline-enriched and random 1069 

genes in each sample. A gene was considered enriched in a certain codon when the proportion 1070 

of this codon in the gene was at least 3-fold higher than the proportion of the same codon across 1071 

the transcriptome. 1072 

Data information: In (A, B, C, D, E), n = 3 biological replicates. In (A), data are presented as 1073 

mean ± SEM, unpaired two-tailed Student’s t-test. In (D), boxplots show the median (central 1074 

band) and IQR (boxes) ± 1.5 x IQR (whiskers), Welch’s t-test, p-value < 0.05. 1075 

 1076 

 1077 

EXPANDED VIEW FIGURE LEGENDS 1078 

 1079 

Figure EV1 | Related to Figure 2. Enzymatic specificity of NSUN proteins in C. elegans. 1080 

(A, B, C) Determination of enzymatic specificity of 26S rRNA C2381 (A), 26S rRNA C2982 1081 



(B) and tRNA Leu-CAA C34 and C48 (C) methylation by targeted bisulfite-sequencing. Each 1082 

column represents one cytosine in the sequence of interest; each line represents one clone 1083 

sequenced. Enzymatic specificity of C2381 and C2982 in C. elegans has been independently 1084 

demonstrated in other publications (Schosserer et al, 2015; Heissenberger et al, 2020). 1085 

 1086 

Figure EV2 | Related to Figure 2. Predicted secondary structures of m5C-methylated 1087 

ncRNAs. Red dot indicates the methylated position. Structures predicted by the Predict a 1088 

Secondary Structure Web Server (David Mathews Lab, University of Rochester) as the lowest 1089 

free energy structures generated using default data.  1090 

 1091 

Figure EV3 | Related to Figure 5. Differentially transcribed and translated genes upon 1092 

loss of m5C at different temperatures. (A, B) Heatmaps and gene ontology enrichment 1093 

(biological process) analysis for the comparison between wild type and noNSUN samples. 1094 

Panel (A) shows RNA-seq (scaled normalised expression) and panel (B) shows Ribo-seq 1095 

(scaled normalised RPFs). Sets of significant non-redundant GO terms are clustered according 1096 

to semantic similarity; size indicates the frequency of the GO term in the underlying database 1097 

WT = wild type; n = 3 biological replicates. 1098 

 1099 

Figure EV4 | Related to Figure 5. Codon occupancy analyses.  1100 

(A) Fold change of P-site codon occupancy in noNSUN over wild type samples at 20°C and 1101 

27°C. p-values for the fold change occupancy of each codon are indicated in a heatmap below 1102 

the graph, where asterisks indicate statistical significance. n = 3 biological replicates. 1103 

(B) Representative examples of UUG codon occupancy in different affected genes. Ribosome-1104 

protected fragment counts (RPF) plotted along the gene’s CDS. Vertical grey lines indicate 1105 

UUG codons. n = 3 biological replicates. 1106 

Data information: In (A), p < 0.05, t-test. 1107 

 1108 

Figure EV5 | Related to Figure 5. Translation efficiency of leucine and proline-enriched 1109 

transcripts. Translation efficiency of genes with increasing enrichment for leucine (top) or 1110 

proline codons (bottom). Boxplots show the median (central band) and IQR (boxes) ± 1.5 x 1111 

IQR (whiskers). n = 3 biological replicates. 1112 
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Figure S1 | Related to Figure 1. Genotyping of nsun mutants.
(A) HaeIII-treated DNA agarose gel showing genotypes of F1 individuals from heterozygous nsun-1, nsun-2 and nsun-4 mutants.
(B) DNA agarose gel showing genotypes of F1 individuals from a heterozygous nsun-5 mutant; diagram showing primers used for 
genotyping of nsun-5 mutation.
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FIGURE S2

Figure S2 | Related to Figure 5A. Polysome profiles of wild type and noNSUN animals subjected or not to a heat shock 
at 27°C
(A) Representative polysome profiles of wild type and noNSUN strains at 20°C (left) and 27°C (right). Graphs normalised by
the total area under the curve.
(B) Polysome profiles of wild type and noNSUN strains at 20°C (left) and 27°C (right) in triplicates. Graphs normalised by
the total area under the curve.
Data information: n = 3 biological replicates.
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Figure S3 | Related to Figure 5. Quality assessment of ribosome profiling data.
(A) Number of reads aligning the to the CDS in each frame after length stratification. The frame of the 5′ nucleotide is shown.
(B) Representative meta-gene plot for 27 bp reads showing 3-nt periodicity. Number of reads for each codon position coloured 
according to the frame of their 5′ base relative to the CDS. 
(C) Scatter plots showing the correlation between transcripts and footprints abundance for each gene at the indicated samples. 
Pearson correlation coefficient (r) is shown.
(D) PCA plot of RNA-seq counts for the 2000 genes with the highest variance.
(E) PCA plot of Ribo-seq counts for the 2000 genes with the highest variance.
Data information: n = 3 biological replicates.
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Figure S4 | Related to Figure 5. Differentially transcribed and translated genes in wild type and noNSUN strains upon heat shock.
(A, B) Heatmaps and gene ontology enrichment (biological process) analysis for the comparison between 20°C and 27°C in the 
wild type and noNSUN samples. (A) shows RNA- seq (scaled normalised expression) and (B) shows Ribo-seq (scaled normalised RPFs). 
Data information: n = 3 biological replicates. WT = wild type.


