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ABSTRACT
The Sun’s magnetic field exhibits coherence in space and time on much larger scales
than the turbulent convection that ultimately powers the dynamo. In the past the
α-effect (mean-field) concept has been used to model the solar cycle, but recent work
has cast doubt on the validity of the mean-field ansatz under solar conditions. This
indicates that one should seek an alternative mechanism for generating large-scale
structure. One possibility is the recently proposed ‘shear dynamo’ mechanism where
large-scale magnetic fields are generated in the presence of a simple shear. Further
investigation of this proposition is required, however, because work has been focused
on the linear regime with a uniform shear profile thus far. In this paper we report
results of the extension of the original shear dynamo model into the nonlinear regime.
We find that whilst large-scale structure can initially persist into the saturated regime,
in several of our simulations it is destroyed via large increase in kinetic energy. This
result casts doubt on the ability of the simple uniform shear dynamo mechanism to
act as an alternative to the α-effect in solar conditions.
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1 INTRODUCTION

Turbulent motions of plasma within the Sun are believed
to be responsible for the generation and sustainment of its
magnetic field via dynamo action. It is well understood how
small-scale magnetic fields can be induced by the small-scale
turbulence (Schekochihin et al. 2004, 2007). A more abstruse
phenomenon, however, is the ability for the field to display
larger structure on the scale of the Sun itself. Mean field
dynamo theory (Moffatt 1978; Rädler & Rheinhardt 2007)
which utilises non-zero net helicity via the α-effect (Steen-
beck et al. 1966) has long been used to explain the generation
of the large-scale fields, although there is recent evidence
suggesting that the theory suffers from considerable inaccu-
racies in the solar context where turbulence is generated by
convection (Cattaneo & Hughes 2006; Hughes & Cattaneo
2008). However, if the α-effect is not a plausible model, then
how else is large-scale structure to be obtained?

Several authors (Yousef et al. 2008a,b; Heinemann et al.
2011; McWilliams 2012) have demonstrated an apparently
different mechanism. They investigated forced non-helical
motion in a long domain in the presence of a uniform shear.
They found that magnetic fields with long-range order (and
extended lifetimes) can be induced, though the large-scale
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structures move irregularly and are hard to identify with
cyclic behaviour common to the solar field. Their work in-
volved non-helical forcing in order to eliminate the α-effect
as an amplification mechanism, as well as a large aspect ratio
to allow for large-scale structure to develop whilst conserv-
ing computational resolution. A number of theoretical mech-
anisms have been suggested to explain the ability of shear
and non-helical turbulence to generate large-scale fields: an
enhanced α via greater correlation of small-scale motions by
the shear (Courvoisier et al. 2009); an interaction with the
fluctuating α-effect (Proctor 2007; Richardson & Proctor
2012; Sridhar & Singh 2014); and an enhancement of the
shear-current effect (Rogachevskii & Kleeorin 2003; Bran-
denburg et al. 2008). The enhancement of dynamo action
due to shear without an α-effect has also been observed in
models incorporating convection (Hughes & Proctor 2009).
Recently, Tobias & Cattaneo (2013) showed that it was pos-
sible to produce large-scale field with periodic behaviour us-
ing a shear dynamo mechanism although this was not a fully
3D simulation.

Our work is an extension of the original ‘shear dynamo’
calculation. The work of Yousef et al. (2008a,b) was per-
formed for the kinematic case only so we have investigated
the natural extension of the model by including the Lorentz
forces due to the magnetic field. This allows us to determine

c© 2016 The Authors



2 R. J. Teed et al.

how the velocity and magnetic fields equilibrate and whether
the large-scale structures persist into the nonlinear regime.

2 METHODS

The physical and mathematical set-up is akin to that of
Yousef et al. (2008a). Hence we solve the incompressible
magnetohydrodynamic (MHD) equations in the presence of
a uniform shear flow, U =−Sxŷ, in a shear-periodic box sub-
ject to a white-noise nonhelical homogeneous isotropic body
force, f. The relevant equations are then:

du
dt

= uxSŷ− ∇p
ρ

+
B ·∇B
4πρ

+ ν∇
2u + f, (1)

dB
dt

=−BxSŷ + B ·∇u + η∇
2B, (2)

where u and B are the velocity and magnetic fields respec-
tively, and d/dt = ∂t − Sx∂y + u ·∇. Note that the effects of
rotation and convection are omitted in this study.

To allow for a direct comparison with, and indeed a
validation of, the linear regime in the previous work we im-
plement the forcing in an identical fashion to Yousef et al.
(2008a). Thus we set the mean forcing power ε = 〈u · f〉 = 1
and inject the energy in a wavenumber shell centred at
k f /2π = 3 (i.e. the average forcing scale is l f = 1/3). We
broadly use the same parameter values as the previous work
so that 0.125 ≤ S ≤ 2 and ν = 10−2 = η giving Rm = Re =
urms/k f ν ∼ 5 in the linear regime. Simulations with S > 2
cannot be performed within this set-up since in order for
the successful separation of scales between the mean and
fluctuating parts of the field, the magnitude of the shear
must not exceed the turnover rate: urms/l f ∼ 3.

The equations are solved with shear periodic boundary
conditions (Umurhan & Regev 2004; Lithwick 2007) using
the code Snoopy (Lesur & Longaretti 2005, 2007), which
utilises a spectral method. In order to observe the growth
and, ultimately, the saturation of the mean magnetic field
in this model the size of the domain must be significantly
larger than the scale of the turbulent motions. However, this
then requires simulations to be run in computationally ex-
pensive large boxes for very long durations. Yousef et al.
(2008a) alleviated this problem somewhat by using boxes
with a large aspect ratio so that one direction of the domain
is much longer than the others: Lz � Lx,Ly. Although this
reduces computational time drastically we note that several
of our simulations (specifically those with very large aspect
ratios) had to be run up to 35 times longer than Yousef
et al. (2008a) in order to reach the nonlinear regime. This
shows that several of the simulations in the previous work
were extremely far from the saturated regime. It is suffi-
cient to run with 32 points in both the x and y directions,
where Lx = 1 = Ly and between 256 and 4096 points in the z
direction where 8≤ Lz ≤ 128.

In what follows we use 〈·〉 and · to indicate spatial and
time averages respectively; subscripts on the angle brackets
indicate an average over particular spatial coordinates. Ad-
ditionally we employ the use of the definition of the mean
field used by Yousef et al. (2008a,b):

B<(z) = ∑
kz/2π<1

B(kx = 0,ky = 0,kz)exp(ikzz), (3)

i.e. the largest Fourier modes are removed to filter the small-
scale field and retain the mean field.

3 RESULTS

3.1 Linear regime

Simulations are initialised with a random, zero-mean, weak
seed field (〈B2〉= 10−20). We calculate the growth rate, γ, of
Brms = 〈B2〉1/2 over the total duration of the linear regime,
which gives a more accurate value of this quantity than the
truncated time series of Yousef et al. (2008a). The growth
rates, however, are found to match those of the previous
studies extremely well (Tab. 1) thus confirming those results.
There is one exception however - we do not find a growing
field in the S = 1, Lz = 8 case, which decays, after a short
period of growth. Fig. 1 displays the linear scaling with S of
the growth rate matching very well to Yousef et al. (2008a).
We also calculate the quantities defined by Yousef et al.
(2008b):

By/x =

(
〈(B<

y )2〉z
〈(B<

x )2〉z

)1/2

(4)

1
lB

=

(
〈(∂B<

y /∂ z)2〉z
〈(B<

y )2〉z

)1/2

, (5)

which give an indication of the magnitude of the mean field
and the characteristic length scale of the mean field respec-
tively. Superscripts on these quantities shown later denote
that the quantity in question has been time averaged over a
set time period coinciding with particular regime (i.e. kine-
matic regime, etc.).

Structures averaged over the short domains, x and y, are
of particular interest because we expect to find large-scale
structures appearing in the long domain, z. Such structures
do indeed appear, and they are found to wander in space (i.e.
z) and time (Fig 2 for t < 5000, or Fig. 3 for t < 1600) epito-
mising the non-cyclic behaviour found earlier in this uniform
shear case. We find no great qualitative differences between
our results and those of Yousef et al. (2008a) indicating that
their results are representative of the whole linear regime
before the field saturates and Lorentz forces become impor-
tant. The properties of the linear regime have also recently
been confirmed independently by Squire & Bhattacharjee
(2015b).

3.2 Saturated regime

As the simulations are run further we are able to observe the
saturated (i.e. nonlinear) regime where the magnetic field
equilibrates. In this regime the value of Brms has become
large enough for the effect of the Lorentz forces on the ve-
locity field to be important. The time taken to reach the end
of the linear regime (τs in Tab. 1) is, of course, a function of
the growth rate and thus varies across the simulations. The
quantity τf is the final time that has been reached in each
simulation, thus far.

As the magnetic energy ceases to grow, it saturates at
an O(1) value, similar to the kinetic energy. At this time
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Table 1. Table displaying the input and output parameters of the simulations performed in this study. Superscripts on lB and By/x
indicate that the quantities were calculated for the kinematic (k), the large-scale (l), the small-scale (s) regime respectively.

Run S Lz Nz τf τs γ Bk
y/x lkB Bl

y/x llB Bs
y/x lsB

S0125L64 0.125 64 2048 67000 35000 0.0005 10.59 12.86 219.86 57.84 - -
S0125L128 0.125 128 4096 15000 - 0.0007 10.52 12.82 - - - -

S025L64 0.25 64 2048 40000 14000 0.0013 10.80 10.27 187.42 50.20 - -

S025L128 0.25 128 4096 25000 12000 0.0015 10.79 10.58 259.46 52.19 - -
S05L16 0.5 16 512 25000 7000 0.0028 11.28 7.44 48.03 11.94 - -

S05L32 0.5 32 1024 25000 5000 0.0037 11.41 7.91 119.35 23.35 - -

S05L64 0.5 64 2048 16000 4500 0.0036 11.29 7.92 508.56 51.48 - -
S1L8 1 8 256 5000 - <0 - - - - - -

S1L16 1 16 512 6000 3000 0.0062 11.85 5.56 68.32 10.75 4.76 1.92

S1L32 1 32 1024 7000 2500 0.0062 12.05 5.55 285.80 23.62 4.69 1.87
S1L64 1 64 2048 5000 2400 0.0069 11.91 5.64 164.57 21.01 - -

S2L8 2 8 256 4000 2400 0.0063 12.09 3.85 62.15 6.85 4.20 1.77

S2L16 2 16 512 3000 1500 0.0113 12.11 4.11 75.16 7.27 5.73 1.80
S2L32 2 32 1024 3000 1300 0.0128 12.88 4.28 79.25 7.87 5.80 1.85

Figure 1. Growth rate of Brms, γ, plotted as a function of the

shear rate, S. The dashed line indicates the linear S dependence

of γ.

Figure 2. By, averaged over x and y and normalised using Brms,
as a function of z and t for simulation S05L32.

Figure 3. By, averaged over x and y and normalised using Brms,

as a function of z and t for simulation S2L16.

we find an immediate growth in the lengthscale of the z-
structure of the field in all simulations where it has been
possible to reach this time. This is evidenced by the values
of llB given in Tab. 1 as well as graphically in Fig. 4. Fig. 2
(for t > 8000) and Fig. 3 (for 1600 < t < 2200) clearly show
that the scale of the field is larger than in the linear regime
(cf. with earlier times in the same figures). We find that
although the field continues to wander in z-space as time
progresses it now does so more slowly. Figs. 5 and 6 show
the x and y-components of the magnetic field and velocity
respectively, at three different times in the simulation S2L16.
Curves are displayed in each plot for specific x and y values as
well as averaged over x and y. The averaged z-components
are omitted in these plots since the solenoidal conditions
stipulate that u<z = 0 = B<

z . The z-components at specific x
and y values are extremely similar to the x-components and
are also omitted in the plots to aid readability. By comparing
Figs. 5a and 5b we can again see the change in length scale
of the magnetic field between the regimes.

Fig. 4 indicates that an inverse dependence of llB on S
(in the form of llB ∼ S−3/2, at least for large S) is retained
in this regime. However, there is now also some dependence
on the box size of the simulation - larger boxes can lead to
larger structures. The size of the domain in the z-direction,
of course, ultimately limits the size of the structures as llB
approaches Lz. The scale of the solution has saturated in the
cases S≥ 1 evidenced by the saturation of llB as the box size
is increased. However, for S < 1, larger boxes are required to
determine the length-scale of the field. Unfortunately these
computationally expensive simulations are outside the scope
of this current work. It therefore seems that, in certain pa-
rameter regimes, the aspect ratios chosen by Yousef et al.
(2008a) for their original study are not adequate for the
nonlinear regime. If we assume that the possible lB ∼ S−3/2

dependence shown in Fig. 4 is accurate then we could expect
Lz = 64 to be sufficient at S = 0.5 but Lz > 128 is certainly
required for S≤ 0.25.

The transition to a very large-scale field is typical upon
entering the nonlinear regime across our suite of simulations.
The behaviour is also reminiscent of structures in By recently
reported by Squire & Bhattacharjee (2015a,b) where it is
argued that the coherent large-scale features are driven by
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Figure 4. llB, plotted as a function of the shear rate, S, for the

large-scale saturated regime. The dashed line indicates a possible

S−3/2 dependence of lB. Horizontal lines indicate extent of the box
in the z-direction for each Lz.

small-scale magnetic fluctuations. In their work they either
have a small-scale dynamo operating (Squire & Bhattachar-
jee 2015a) or they force the magnetic field in the same man-
ner as the velocity (Squire & Bhattacharjee 2015b). This
is in contrast to our work where Rm is below the thresh-
old value for the onset of a fluctuation (in this regime) and
there is no artificial emf imposed - we have time integrated
the simulation through the linear regime. Thus the struc-
tures we display do not arise as result of small-scale mag-
netic fluctuations but rather they are a characteristic of the
equipartition of the fields in the nonlinear regime.

For the majority of simulations the very large-scale field
regime persists for the remainder of the duration of time-
integration that has (so far) been possible. However, when
the shear is large enough we find that a rather different
regime can arise typified by a complete destruction of large-
scale field (Fig. 3 for t > 2300). Values of Bs

y/x and lsB are dis-

played in Table 1 for simulations for which this behaviour
has been observed. During the aforementioned large-scale
saturated regime the velocity field grows rapidly whilst the
magnetic field remains at a saturated value. Most of the ki-
netic growth is in uy which is organised into the form of a
large-scale sinusoidal pattern in z-space (the beginnings of
which can be observed in Fig. 6b). This creates a shear-
ing effect in z-space - note that this shear is different from
that imposed in the basic state which, by contrast, is linear
and dependent on x rather than z. However, there is addi-
tional growth in small-scale velocity fluctuations, evidenced
by Fig. 7, which has been filtered of the largest length scales.
The magnitude of the small-scale velocity in the saturated
regime (t > 2300) clearly exceeds that of the linear regime
(t < 1500). Indeed the rms value of the small-scale velocity
is approximately 15 compared with a linear regime value
urms ∼ 1 (as found both here and by Yousef et al. 2008a). A
larger value of urms consequently leads to a larger Rm and
hence the assumption made by Yousef et al. (2008a) that
Rm∼ 5 appears to be invalid in the nonlinear regime.

Once uy becomes large enough, large-scale structure in
B is destroyed enabling a state to develop that is charac-
terised by large-scale structure in u (Fig. 6c) yet small-scale
structure in B (Fig. 5c). Given that the increase in mag-
nitude of the small-scale velocity is likely to result in Rm
exceeding the critical value for the onset of the fluctuation
dynamo (Schekochihin et al. 2004, 2007) we postulate that

(a) t = 1200

(b) t = 2000

(c) t = 2980

Figure 5. Snapshots of Bx, By (at randomly chosen values of x
and y), B<

x and B<
y as functions of z for simulation S2L16 at three

times.

the small-scale nature of the magnetic field in the late satu-
rated regime is the appearance of such a fluctuation dynamo.

4 CONCLUSIONS

In this work we have observed the saturated regime of the
shear dynamo problem for a range of parameters similar to
those of the original kinematic study (Yousef et al. 2008a).
We have found two regimes within the saturated state. The
first, which is exhibited in all simulations, is typified by very
large-scale structure in By, the magnetic field in the direction
of the imposed shear. Structures here are even larger than
those found in the kinematic regime (llB > lkB) although the
wandering of field in z-space is reduced. The second regime
subsequently appears only in simulations with large imposed
shear (S ≥ 1) and displays a drastic reduction in large-scale
field. Small-scale field now dominates as the kinetic energy
grows rapidly to a new saturated value. While this energy
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(a) t = 1200

(b) t = 2000

(c) t = 2980

Figure 6. Snapshots of ux, uy (at randomly chosen values of x
and y), u<x and u<y as functions of z for simulation S2L16 at three

times.

Figure 7. uy, averaged over x and y and bandpass filtered of the
three largest modes, as a function of z and t for simulation S2L16.

growth is predominantly in the form of a strong z-dependent
sinusoidal velocity shear, there is also growth in small-scale
velocity structures which consequently increases the value of
Rm. It appears likely that the large-scale field previously ob-
served is then overwhelmed by small-scale field generated by
a fluctuation dynamo as the value of the magnetic Reynolds

number exceeds its required critical value (∼60 for Pm ≥ 1,
Schekochihin et al. 2007).

We should note that it is possible that the very large-
scale regime found at the onset of saturation may be a in-
termediate regime at all values of the shear. So far we have
only observed a transition to the small-scale regime for S≥ 1
but that does not preclude the possibility that, with further
time-integration, the runs with smaller S could also display
such behaviour. Indeed in large boxes with S = 0.5 there is
evidence of growth in the kinetic energy similar to that seen
at S = 2 which may indicate a progression towards a small-
scale regime. Conversely at S = 0.5 with Lz = 16 there is no
evidence of kinetic growth despite the total simulation time
being over seven times the period of the kinematic regime
- such a time period was more than enough to observe the
transition in the S = 2 runs. It may be the case that the sat-
urated value of urms in this simulation never becomes large
enough for Rm to exceed the critical threshold for the onset
of the fluctuation dynamo. However, the value of Rm also de-
pends on, for instance, the magnetic Prandtl number. Hence
varying other parameters may allow a fluctuation dynamo to
operate at values of S and Lz for which we do not currently
see small-scale field in the saturated regime. For S < 0.5 it
has not been possible to probe the saturated regime deeply
enough to ascertain its behaviour. It is clear from the above
discussion that further integration of the simulations, as well
as an increase in the aspect ratio of the box, is required to
determine the prevalence of the small-scale regime across all
values of S, and indeed other parameters. Such simulations
are currently too computationally demanding and are left to
future work.

Possible inaccuracies in the classical mean-field theory
under solar conditions have motivated interest in other dy-
namo mechanisms such as the shear dynamo. However, if
this model with a uniform shear is unable to sustain large-
scale field at large, and potentially all, shear rates then its
position as a viable alternative to the α-effect may have to be
re-examined. There is the option to increase complexity in
the current model as a way of potentially negating the unde-
sirable effects leading to the destruction of large-scale field.
For instance, Tobias & Cattaneo (2013) have demonstrated
in a 2.5D model that an imposed sinusoidal (rather than
linear) shear can suppress the generation of small-scale field
allowing for the development of large-scale dynamo waves.
Such models, however, must be treated with caution until
an investigation of the associated nonlinear regime is per-
formed, as the results of our current work indicate. An al-
ternative possibility would be to vary the shear along the
long domain as a way of adding to the inhomogeneity of
the system. Such an extension would be relevant to the Sun
where there is known to be a strong differential rotation be-
tween the poles and the equator. The ideas discussed here
will form the basis of future investigations.
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