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Abstract 
Biological spread cells exist in a perpetually fluctuating state, and therefore cannot be 

described in terms of a unique deterministic system. In order for modelling approaches to 

provide novel insight and uncover new mechanisms that drive cell behaviour, a framework is 

required that progresses from traditional deterministic methods (whereby simulation of an 

experiment predicts a single outcome). In this study we implement a new modelling approach 

for the analysis of cell spreading on ligand coated substrates, extending the framework for 

non-equilibrium thermodynamics of cells developed by Shishvan et al. (2018) to include 

active focal adhesion assembly. We demonstrate that the model correctly predicts the coupled 

influence of surface collagen density and substrate stiffness on cell spreading, as reported 

experimentally by Engler et al. (2003). Low surface collagen densities are shown to result in 

a high probability that cells will be restricted to low spread areas. Furthermore, elastic free-

energy induced by substrate deformation lowers the probability of observing a highly spread 

cell, and consequentially lower cell tractions affect the assembly of focal adhesions. 

Experimentally measurable observables such as cell spread area and aspect ratio can be 

directly post-processed from the computed homeostatic ensemble of (several million) spread 

states. This allows for the prediction of mean and standard deviations of such experimental 

observables. This class of cell mechanics modelling presents a significant advance on 

conventional deterministic approaches.  
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1. Introduction 

There is no unique outcome for tissue development in nature. For example, examination of 

arterial tissue across several samples reveals non-homogenous structures with non-uniform 

collagen fibre alignment, tissue thickness, and smooth muscle cell (SMC) morphology (1–3). 

The same is true in-vitro, where cells of the same phenotype exhibit a diverse range of spread 

shapes, area, stress-fibre alignments, and focal adhesion distributions. However, over large 

populations the statistics of observables is highly reproducible. Several experimental studies 

have demonstrated that the microenvironment has a significant impact on cell behavior. Jacot 

et al. (4) show that sarcomere development and alignment in cardiomyocytes are dependent 

on substrate stiffness. A study by Arnold et al. (5) reveals that focal adhesion (FA) and stress-

fibre (SF) formation are limited by ligand spacing on the substrate. Engler et al. (3) show that 

both the mean and standard error of SMC spread area depend on substrate rigidity and ligand 

density: with decreasing surface collagen density and decreasing substrate stiffness, the 

standard error reported for the experiment reduces. 

It is therefore evident that in order to uncover the biomechanisms underlying such 

observations, a statistical mechanics approach to cell modelling is required. Typically, 



previous models have assumed the spread state as the reference configuration and simulate a 

single deterministic outcome (6–12). McEvoy et al. (13) recently implemented a framework 

whereby an initially unadhered cell deforms to a range of possible spread states, and the 

system free-energy is computed for each configuration. It is demonstrated that cell spreading 

entails a competition between the increasing elastic free-energy due to stretching of passive 

cell components, and the decreasing cytoskeletal free-energy as contractile proteins assemble 

to form stress-fibres. Such a competition allows for the identification of a low free-energy 

state, and it is shown that the predicted cell areas and SF alignments in these configurations 

are similar to reported experimental measurements (14). However, in the study of McEvoy et 

al. (13) a single low energy spread state is identified. This deterministic approach neglects the 

fact that cells display a fluctuating response to their microenvironment in terms of 

observables such as SF alignment and spread area. 

In this study, we implement a statistical mechanics framework for the homeostatic ensemble 

of spread cells, following the approach of Shishvan et al. (15). This methodology allows for 

the simulation of a large collection of spread microstates the cell-substrate system assumes 

while maintaining its homeostatic state. The framework incorporates mathematical models to 

describe SF formation and cell-substrate deformation. Here we expand the model for 

calculation of Gibbs free-energy to include the free-energy associated with the traction 

dependent focal adhesion (FA) assembly. Simulations accurately predict the dependence of 

cell area and shape on surface collagen density and substrate stiffness, as reported in the 

experimental study of Engler et al. (3).  

 

2. Methodology 

We aim to analyse the response of cells adhered to collagen coated elastic substrates. This 

experimental system is responding to both mechanical and chemical cues from its 

environment, viz. the stiffness of the substrate and the extra-cellular proteins (collagen) 

through which the cells adhere to the substrates. The response of this complex system is 

recorded through a range of observables, all of which exhibit large variations but with trends 

clearly emerging when the statistics of these observables are analysed. This motivates our 

choice of a modelling framework, called homeostatic statistical mechanics (15), in which, 

just as in the experimental system, observables fluctuate while trends (and understanding) 

emerge once these observables are viewed statistically. This framework has previously been 



shown to successfully capture a range of observations for smooth muscle cells (SMCs) 

seeded on elastic substrates in which perfect adhesion was assumed and the role of the extra-

cellular matrix neglected. Here we extend the framework to include an adhesion model and 

thus will first give a brief overview of the modelling framework (details in Supplementary 

Information Section 1) and then focus on the adhesion model.  

2.1. Overview of the homeostatic mechanics framework 

The homeostatic mechanics framework recognises that the cell is an open system which 

exchanges nutrients with the surrounding nutrient bath. These high-energy nutrient exchanges 

fuel fluctuations in cell responses associated with various intracellular biochemical processes 

(such non-thermal nutrient-fuelled fluctuations are observed to be very large and occur over 

very long time-scales, compared to conventional thermal fluctuations). However, these 

biochemical processes attempt to maintain the cell in a homeostatic state, i.e. the cell actively 

maintains its various molecular species at a specific average number over these fluctuations 

that is independent of the environment. This translates to the constraint on the average Gibbs 

free-energy (16) of the cell. Employing the ansatz that biochemical processes such as actin 

polymerisation and treadmilling provide the mechanisms to maximise the morphological 

entropy of the cell subject to the constraint that the cell maintains a homeostatic state, 

Shishvan et al. (15) obtained the distribution of states that the cell assumes in terms of the 

Gibbs free-energy 𝐺(𝑗) of morphological state (𝑗) of the system as 

 𝑃eq
(𝑗)

=
1

𝑍
exp(−𝜁𝐺(𝑗)).  (1) 

𝑍 ≡ ∑ exp(−𝜁𝐺(𝑗))𝑗  is the partition function of the morphological microstates, and the 

distribution parameter 𝜁 follows from the homeostatic constraint 

 
1

𝑍
∑ 𝐺(𝑗)

𝑗

exp(−𝜁𝐺(𝑗)) = 𝐺S ,  (2) 

where 𝐺S is equal to the equilibrium Gibbs free-energy of an isolated cell in suspension (free-

standing cell), i.e. the homeostatic processes maintain the average biochemical state of the 

system equal to that of a cell in suspension. Thus, the distribution (eq. (1)) is characterised by 

a homeostatic temperature 1/𝜁 that is conjugated to the morphological entropy of the cell. 

We employ Markov Chain Monte Carlo (MCMC)
 
to construct a Markov chain that is 

representative of the homeostatic ensemble. This involves three steps: (i) a discretisation 

scheme to represent morphological microstate (𝑗), (ii) calculation of 𝐺(𝑗) for a given 

morphological microstate (𝑗), and (iii) construction of a Markov chain comprising these 



morphological microstates. Typical Markov chains comprised in excess of 2.5 million spread 

states (a detailed overview of the procedure is provided in Supplementary Information 

Section 2.2). 

 

2.2 Free-energy 𝑮(𝒋) of a morphological state 

Much like conventional statistical mechanics frameworks that require a model for the energy 

of molecular systems, the homeostatic statistical mechanics framework requires a model for 

the Gibbs free-energy 𝐺(𝑗) of a morphological state (𝑗) of the system. Here, we employ a 

relatively simple model for the Gibbs free-energy wherein the cell consists of a passive 

elastic nucleus within a cytoplasm that is modelled as comprising an active stress-fibre 

cytoskeleton and elements such as the cell membrane, intermediate filaments and 

microtubules that are all lumped into a single passive elastic contribution. 

Details of the model including the parameters used to characterise the SMCs are given in 

Supplementary Information Section 2. Here we briefly describe the salient features of the 

model for SMCs on elastic substrates. The SMCs are modelled as two-dimensional (2D) 

bodies in the 𝑥1 − 𝑥2 plane lying on the surface of an elastic substrate such that the out-of-

plane Cauchy stress 𝛴33 = 0. The substrates are modelled as linear elastic half-spaces while 

the cells are modelled using the approach of Vigliotti et al. (17) as modified by Shishvan et 

al. (15). The Vigliotti et al. (17) model assumes only two elements within the cell: (i) a 

passive elastic contribution from elements such as the cell membrane, intermediate filaments 

and microtubules and (ii) contractile acto-myosin stress-fibres that are modelled explicitly. 

The cell in its undeformed state is a circle of radius 𝑅0 and for a given morphological 

microstate (𝑗), the strain distribution within the cell is specified. This directly gives the 

elastic strain energy of the cell 𝐹̂passive via a 2D Ogden-type hyperelastic model for both the 

nucleus and cytoplasm. The passive hyperelastic behaviour of the cytoplasm and nucleus has 

been characterised for several cell types using experimental techniques in which stress fibres 

are disrupted using cyto-D (18–20). The stress-fibre cytoskeleton within the cytoplasm is 

modelled as a distribution of stress-fibres such that at each location 𝑥𝑖 within the cell 𝜂̂(𝜑) 

parameterises the angular concentration of stress-fibres over all angles 𝜑, while 𝑛̂𝑠𝑠(𝜑) 

denotes the number of functional units within each stress-fibre. Thus, at any 𝑥𝑖 there is a total 

concentration 𝑁̂b of bound stress-fibre proteins obtained by integrating 𝜂̂𝑛̂𝑠𝑠 over all 

orientations 𝜑 and these bound proteins are in chemical equilibrium with the unbound stress-



fibre proteins. The unbound proteins are free to diffuse within the cell and thus at equilibrium 

of a morphological microstate the concentration 𝑁̂u of these unbound stress-fibre proteins is 

spatially uniform. This chemical equilibrium condition along with the conservation of stress-

fibre proteins within the cell provides the spatial and angular distributions of stress-fibres 

from which the free-energy of the cytoskeleton 𝐹̂cyto is evaluated. The total normalised free-

energy of the cell morphological microstate (𝑗) then follows as 𝐺̂(𝑗) ≡ 𝐹̂passive
(𝑗)

 +𝐹̂cyto
(𝑗)

 +𝐹̂sub
(𝑗)

 , 

where 𝐹̂sub
(𝑗)

 is the elastic energy of the substrate (𝐺̂(𝑗) is the normalised value of 𝐺(𝑗); see 

Supplementary Information Section 2.4 for details of the normalisations). 

In addition to the contributions to 𝐺̂(𝑗) from the passive elasticity and cytoskeleton of the cell, 

here we also include the contribution from the focal adhesions between the cell and the 

collagen extra-cellular matrix (ECM) laid on the elastic substrates on which the SMCs are 

seeded. Shishvan et al. (15) implicitly assumed an unlimited supply of adhesion proteins as 

well as extra-cellular proteins to form adhesion complexes and thereby neglected the 

contribution of adhesion to 𝐺̂(𝑗). Here we extend the approach of Shishvan et al. (15) for the 

case of a finite quantity of both focal adhesion proteins and extra-cellular collagen and thus 

explicitly include an adhesion contribution to 𝐺̂(𝑗), i.e. we write 𝐺̂(𝑗) as  

 𝐺̂(𝑗) ≡ 𝐹̂passive
(𝑗)

 + 𝐹̂cyto
(𝑗)

 + 𝐹̂sub
(𝑗)

+ 𝐹̂adh
(𝑗)

.  (3) 

We now proceed to make explicit this adhesion model. 

 

2.3 Adhesion complexes between the cell and the extra-cellular collagen 

The focal adhesion model proposed here is a modification to the model of McEvoy et al. (13) 

where adhesion is assumed to be via integrins that exist in a single state. These integrins form 

complexes by binding to ligands that have a density 𝑁H per unit area on the surface of the 

elastic substrate. For a given morphological microstate (𝑗), the strain state of the cell is 

specified and this implies that the tractions T𝑖(𝑥𝑖) the cells exert on the substrate are also 

fixed from the cell model; see Supplementary Information Section 2.1 (for the sake of 

brevity here we have dropped the superscript (𝑗) to indicate that these are tractions for a 

given morphological microstate (𝑗)). These tractions are transmitted to the substrate through 

the focal adhesion complexes and here we explain the adhesion model with the tractions 

T𝑖(𝑥𝑖) specified. 



When in local equilibrium at a location 𝑥𝑖 on the surface of the cell, the integrins with a local 

concentration 𝐶I(𝑥𝑖) have a chemical potential at temperature 𝑇 in terms of the Boltzmann 

constant 𝑘B 

 𝜒I(𝑥𝑖) = 𝜇I(𝑥𝑖) + 𝑘B𝑇 ln (
𝐶̅(𝑥𝑖)

1 − 𝐶̅(𝑥𝑖)
) ,  (4) 

where 𝜇I is their enthalpy while 𝐶̅(𝑥𝑖) ≡ 𝐶I(𝑥𝑖)/𝐶r, in terms of the number of integrin sites 

per unit area 𝐶r on the cell membrane. The enthalpy of the integrins follows from recalling 

that each integrin molecule transmits a force Ƒ(𝑥𝑖) related to the traction T(𝑥𝑖) ≡

√T1(𝑥𝑖)2 + T2(𝑥𝑖)2  on the cell surface via T(𝑥𝑖) =  Ƒ(𝑥𝑖)𝑁H. Then,  

 𝜇I(𝑥𝑖) = Φ(Δ(𝑥𝑖)) − Ƒ(𝑥𝑖)Δ(𝑥𝑖),  (5) 

where Δ is the stretch of the focal adhesion complex and Φ the internal energy of the 

complex subjected to a stretch Δ. Now assuming linear behaviour of the complex with a 

stiffness 𝜅s, such that Ƒ(𝑥𝑖) ≡ 𝜅s Δ(𝑥𝑖), eq. (5) reduces to 𝜇I(𝑥𝑖 ) = −Ƒ(𝑥𝑖)2/2𝜅s and the 

chemical potential follows as 

 𝜒I(𝑥𝑖) = 𝑘B𝑇 ln (
𝐶̅(𝑥𝑖)

1 − 𝐶̅(𝑥𝑖)
) −

Ƒ(𝑥𝑖)2

2𝜅s
.  (6) 

The integrins are mobile over the surface membrane and at equilibrium, their chemical 

potentials are spatially uniform such that 𝜒I(𝑥𝑖) = 𝜒C. The equilibrium concentrations 

𝐶̅eq(𝑥𝑖) then follow in terms of 𝜒C as  

 (
𝐶̅eq(𝑥𝑖)

1 − 𝐶̅eq(𝑥𝑖)
) = exp (

𝜒C +
Ƒ(𝑥𝑖)2

2𝜅s

𝑘B𝑇
).  (7) 

However, 𝜒C is as yet unknown and the conservation of integrins provides the additional 

constraint to determine 𝜒C, viz. given a spatially uniform surface density 𝐶0 of integrins for a 

cell in suspension, the conservation statement reads 

 𝐴0𝐶0 = 𝐶r ∫ 𝐶̅eq(𝑥𝑖)𝑑𝐴
𝐴

,   (8) 

where 𝐴0 is the surface area of the cell in suspension and 𝐴 its area in the current 

configuration. The simultaneous solution of eq. (7) and eq. (8) gives 𝜒C and the adhesion 

free-energy of the cell is then given as 𝐹adh = 𝐴0𝐶0𝜒C. 



The above analysis assumes the adhesion complexes can sustain any required force Ƒ(𝑥𝑖) via 

the assumed linearity of the complex response. However, it has been demonstrated that 

complexes cannot support a force greater than a critical value Ƒmax (21–23). Direct 

enforcement of the condition that no complex force exceeds Ƒmax at the cell-substrate 

interface would require an iterative adjustment of spread state (as implemented for simplified 

microstates by McEvoy et al. (13)), and is therefore excessively computationally expensive in 

the context of the Monte Carlo simulations required for sampling the homeostatic ensemble. 

Here we use the alternative approach of a penalty scheme to ensure that a very small number 

of spread states contain complexes with forces Ƒ > Ƒmax. In summary, we define a penalty 

force  

 Ƒp = ∫ΔƑp(𝑥𝑖) 𝑑𝐴
𝐴

,    (9) 

where  

 ΔƑp(𝑥𝑖) = {
Ƒ(𝑥𝑖) − Ƒmax       Ƒ(𝑥𝑖) > Ƒmax

0                                   otherwise.
   (10) 

A penalty energy is then defined as 𝜒p = (Ƒp)2/(2𝜅p), where the parameter 𝜅p has the units 

of stiffness and sets the magnitude of the penalty. The total focal adhesion free-energy 

including the penalty contribution is then defined as 

 𝐹adh = 𝐴0𝐶0(𝜒C + 𝜒p),   (11) 

with the normalised energy 𝐹̂adh following from the definitions detailed in Supplementary 

Information Section 2.4 along with the model parameters. In order to compare model 

predictions with the experimental results of Engler et al. (3), the number of ligands per unit 

area, 𝑁H, can be expressed as surface collagen density 𝜌col through the following expression: 

 𝜌col = 𝑁H𝑀col/𝐿  ,  (12) 

where 𝑀col is the molar mass of collagen and 𝐿 is Avogadro’s constant. We assume a 

uniform surface collagen distribution and substrate stiffness.  

 



3. Results and Discussion 

3.1. Spread dependence of cells on surface collagen density 

The influence of surface collagen density 𝜌col on cell spreading is shown in Figure 1. Cells 

are spread on rigid substrates coated with three different values of 𝜌col (6, 33, and 250 

ng cm−2). A sample of cell spread states, with the same free-energy for a given 𝜌col, are 

shown in Figure 1a, including stress fibre distributions (green), focal adhesion distributions 

(red), and nuclei (blue). In the case of a low 𝜌col (i.e. 6 ng cm−2) cells are not highly spread 

and they maintain regular rounded morphologies. A low concentration smeared actin 

cytoskeleton is observed throughout the cell, with no regions of highly aligned stress fibres. 

For a higher 𝜌col of 33 ng cm−2, cells become more highly spread. Additionally, the spread 

shapes become quite irregular, in contrast to the rounded shapes observed on a lower 𝜌col. 

Regions of aligned stress fibres are observed and focal adhesions cluster towards the cell 

periphery. In the case of the highest 𝜌col of 250 ng cm−2, a further increase in spread area is 

observed and the spread shape becomes highly irregular, with cells exhibiting elongated 

protrusions. High concentrations of aligned stress fibres are observed, and focal adhesions are 

highly localised at the cell periphery and cell nucleus.  

Probability density functions (pdfs) for cell spread area (Figure 1b) and for cell aspect ratio 

(AR) of a best fit ellipse (Figure 1c) are constructed from the full population of spread states 

for each surface collagen density. With increasing 𝜌col, the mean cell spread area increases 

and the variance in spread area increases (i.e. in Figure 1a, as 𝜌col increases the pdf moves to 

the right and becomes less peaked). A similar trend is observed for cell aspect ratio (Figure 

1c), where the mean is closer to 1 and the variance is very low (the pdf is more peaked) for 

the lowest 𝜌col. In summary, the pdfs presented in Figures 1b and 1c show that a population 

of cells on a lower 𝜌col will have a lower mean spread area and a lower variance of spread 

area, in addition to being rounded (AR close to 1) with a low variance of spread shape. As 

𝜌col increases, a higher mean spread area is obtained for a population of cells, with a higher 

variance of spread area and spread shape. Additional spread shapes are presented in 

Supplementary Data Figures SI-1 and SI-2. 

 

 



3.2. Influence of substrate stiffness on cell spreading 

The influence of substrate stiffness 𝐸sub on cell spreading is shown in Figure 2. Cells are 

spread on substrates of stiffness 8 kPa and 32 kPa, in addition to a rigid substrate. All 

substrates have a 𝜌col of 33 ng cm−2. A sample of cell spread states shown in Figure 2a 

suggests that cell spread area increases with 𝐸sub. Cells on the compliant (8 kPa) substrate 

exhibit a low concentration smeared actin cytoskeleton, compared to the highly aligned stress 

fibres on the stiff and rigid substrate. The irregularity of the spread shape increases with 𝐸sub, 

with longest protrusions occurring on the rigid substrate. 

Probability density functions for cell spread area (Figure 2b) and aspect ratio (Figure 2c) are 

constructed from the full population of spread states for each value of 𝐸sub. Clearly both the 

mean spread area and the variance in spread area increase with 𝐸sub (i.e. in Figure 2b the pdf 

moves to the right and becomes less peaked as 𝐸sub is increased). The effect of 𝐸sub on cell 

shape is less pronounced for the value of 𝜌col considered here, with only a minor increase in 

the mean and variance of cell aspect ratio with increasing stiffness (Figure 2c). 

 

3.3. Coupled dependence of collagen density and substrate stiffness 

The coupled interplay between the influence of 𝜌col and 𝐸sub on cell spreading is next 

considered. Contour plots are constructed from mean spread areas (Figure 3a) and mean 

aspect ratios (Figure 3b). Representative spread states are superimposed for illustrative 

purposes. As shown in Figure 3a, a very low 𝜌col results in a very weak dependence of mean 

spread area on 𝐸sub. However, for moderate and high 𝜌col the mean spread area is highly 

dependent on 𝐸sub. As shown in Figure 3b, the cell aspect ratio exhibits a very weak 

dependence on 𝐸sub (the contours in 4b are almost uniform in the vertical direction), while 

exhibiting a very strong dependence on 𝜌col.  

Both the mean and standard deviation of cell spread area is shown in Figure 3c. A number of 

features should be noted: (i) as 𝜌col is increased, both the mean and standard deviation 

increase up to a peak value. This trend is observed for all values of 𝐸sub; (ii) if 𝜌col is 

increased beyond the peak value, a slight reduction in mean spread area (and its standard 

deviation) is observed. Again, this trend is observed for all values of 𝐸sub; (iii) the 𝜌col at 

which the mean spread area reaches a peak value increases with increasing 𝐸sub; (iv) for a 

given 𝜌col, both the mean and standard deviation increase with increasing 𝐸sub. Figure 3d 



shows that cell aspect ratio is highly dependent on 𝜌col, with both the mean and standard 

deviation increasing with increasing 𝜌col. It is interesting to note that even though the cell 

mean spread area decreases when the 𝜌col is increased beyond the critical value, the mean 

aspect ratio continues to increase. However, mean aspect ratio and its standard deviation 

exhibits a weak dependence on 𝐸sub. 

 

3.4. Experimental support for predicted cell behaviour 

Remarkably, all the features described by Figure 3 are directly supported by the experimental 

study of Engler et al. (3), where the response of smooth muscle cells (SMCs) to 𝐸sub and 𝜌col 

was investigated. At a low 𝜌col on all substrates, SMCs that were detectably spread were 

found to be rounded with a low spread area. As the 𝜌col was increased, the spread area (mean 

and standard deviation) was observed to increase up to a peak value. Following this peak, any 

increase to the density of 𝜌col resulted in a reduction of mean spread area. This behaviour is 

further supported by the experimental study of Gaudet et al. (24). Engler et al. (3) noted that 

the 𝜌col at which the peak mean spread area occurs is dependent on 𝐸sub, i.e. it increases with 

increasing 𝐸sub, as predicted by our models). They also reported that an increase in 𝐸sub 

results in a higher mean cell spread area for a fixed 𝜌col.  

Although the aspect ratio is not directly measured in the experimental work of Engler et 

al. (3), with an increase in cell area (due to 𝐸sub or 𝜌col) it was reported that cell shapes 

became less rounded and more irregular when cell spread area increases as a result of 

increased 𝐸sub and/or 𝜌col. Such a reduction in cell roundness with increasing 𝐸𝑠𝑢𝑏 has also 

been observed in the experimental study of Ren et al. (25) for skeletal muscle cells. 

Additionally, Prager-Khoutorsky et al. (26) reported that cells readily elongate (i.e. high 

aspect ratio) when plated on rigid substrates, with the behaviour significantly less pronounced 

with decreasing 𝐸sub. Similar to our predictions for stress fibre distributions, Engler et al. (3) 

report that highly spread cells display a well-ordered stress-fibre network. Such ordered 

fibres were far less probable on rounded cells on low 𝜌col and on softer substrates. Similar 

observations are also reported in the experimental study by Deroanne et al. (27) in which a 

significant reduction in stress fibre and  focal adhesions formation was observed in 

endothelial cells on soft gels compared to stiff substrates. Pelham and Wang (28) also showed 

such dependence of adhesion formation on substrate stiffness. The predicted trends of SF and 

FA organisation in Figures 1 and 2 of the current study are strongly supported by the 



aforementioned experimental studies. Additional samples of computed cell spread states are 

shown in Supplementary Data Figures SI-1 and SI-2.  

 

3.5. Thermodynamically motivated insights and explanations for predicted cell 

behaviour 

We next provide a thermodynamically motivated explanation for the computed results in 

Figures 1-3, and, by extension, for the experimental observations of Engler et al. (3). In 

Figure 4a we plot the pdf of Gibbs free-energy for the three values of 𝜌col on a rigid 

substrate. Recall that the system is subject to the homeostatic constraint, such that the mean 

Gibbs free-energy of all states is equal to the cellular homeostatic free-energy 𝐺S, which can 

be identified from the unique state of a free-standing cell. Therefore, the mean free-energy is 

similar for all values of 𝜌col (Figure 4a). The pdf for adhesion free-energy (Figure 4b) is 

highly peaked and negative for a high 𝜌col of 250 ng cm−2. This indicates a high probability 

that adhesion complex forces are close to Ƒmax so that a low adhesion energy is obtained. On 

the other hand, there is a low probability that adhesion complex forces exceed Ƒmax and incur 

a (positive) adhesion energy penalty. 

In the case of a high 𝜌col of 250 ng cm−2, the cell-substrate tractions for a wide range of 

highly spread states can be supported without incurring an adhesion energy penalty (i.e. the 

adhesion free-energy remains low). As a result the entropy of spread states is very high for 

high values of 𝜌col. Correspondingly, a high variance in the (negative) cytoskeletal and 

(positive) elastic free energies (Figures 4c, d) occurs. In effect, cell spreading on a rigid 

substrate coated with a high 𝜌col can be viewed as a competition between positive elastic 

free-energy due to stretching of passive cell components and negative free-energy due to 

assembly of contractile stress fibres, with an additional negative free-energy contribution 

from the adhesion complexes. 

When 𝜌col is reduced, higher forces occur in ligand complexes, resulting in a higher 

probability that Ƒmax is exceeded and an adhesion energy penalty is incurred. Therefore, there 

is a low probability that highly spread states will occur, and the entropy of spread states 

decreases.  In other words, a highly spread cell on a low 𝜌col will result in adhesion complex 

forces that exceed the maximum value, and the imposition of an energetic penalty results in a 

low probability that such highly spread states will occur. This explains the high probability of 

rounded cells with low spread areas on a 𝜌col of 6 ng cm−2, as reported in Figures 1 and 3. 



Correspondingly, as shown in Figures 4c and 4d, the cytoskeletal and elastic free-energy pdfs 

are highly peaked with mean values close to zero (as expected for the observed low spread 

areas and low variance in spread shapes (AR)).  

Recall from Figure 3 that, for all values of 𝐸sub, cell spread area increases with increasing 

𝜌col up to a peak value. In Figure 5, we report the mean and standard deviation of the free-

energy densities across all 𝜌col and 𝐸sub (the standard deviation is indicative of the variance 

observed in the corresponding pdfs). The peak spread areas shown in Figure 3b coincide with 

the lowest mean adhesion free-energy for each substrate (Figures 5(a-c)). The 𝜌col associated 

with such a peak spread area on each substrate is hereafter referred to as “optimal”. At this 

optimal 𝜌col there is a high probability that the forces in adhesion complexes will result in a 

low adhesion free-energy. For sub-optimal 𝜌col, highly spread states will result in an 

increased probability of adhesion complex forces higher than Ƒmax, resulting in an energetic 

penalty, as explained in Figure 4 above. On the other hand, when the 𝜌col is increased beyond 

the “optimal” value, the cell must spread to a higher area in order to generate sufficient 

tractions to achieve sufficiently high adhesion complex forces (i.e. Ƒ(𝑥𝑖) ≅ Ƒmax) and a low 

adhesion free-energy. However, spreading to such a high area results in an increased elastic 

strain energy. There is a low probability that the adhesion (Figure 5 (a-c)) and cytoskeletal 

(Figure 5 (d-f)) free-energy will overcome this “elastic penalty” and achieve the homeostatic 

state, i.e. 𝐺̂S. Therefore, on “post-optimal” 𝜌col there is a low probability that the cell area 

will increase beyond the peak spread area. In fact, a “post-optimal” 𝜌col leads to a reduction 

in mean spread area, as shown in Figure 3c (this has been also observed experimentally by 

Engler et al. (3) and Gaudet et al. (24), as discussed in Section 3.4 above). This occurs 

because cellular tractions are supported by a higher number of complexes, so that individual 

bond forces are reduced. Therefore, the cell adhesion free-energy moves towards zero (Figure 

5(a-c)), providing a weaker competition to the elastic strain energy (Figures 5 (g-i)) so that 

there is a lower probability that the cell will achieve the peak spread area. Although the mean 

spread area decreases for “post-optimal” 𝜌col, the mean elastic free-energy increases on rigid 

and stiff substrates (Figure 5g-h). This is due to a high variability in spread shape on stiffer 

substrates with high 𝜌col  (see plots of cell aspect ratio in Figure 3d).  

A reduction in 𝐸sub lowers the probability of the cell achieving a high spread area, with 

rounded low spread morphologies more frequently observed (Figure 3c). On a rigid substrate, 

there is no contribution from the elastic strain energy of the substrate (Figure 5j) as it is not 



deformed by the contractile activity of the cell. However, as the 𝐸sub is reduced (Figures 5 

k,l), it will be deformed by the cell. The associated substrate free-energy causes the total 

system free-energy to become increasingly positive. Thus, to achieve a homeostatic state, 

there is a high probability that the cell area will be lower on more compliant substrates. The 

highly coupled balance between the contributions to the system free-energy causes the peak 

cell area to occur at a lower 𝜌col for a lower 𝐸sub. As mentioned above, a low 𝐸sub  results in 

lower spread areas, which leads to lower cell-substrate tractions. Therefore, a lower 𝜌col is 

required for an increased probability of optimal forces in adhesion complexes (Ƒ(𝑥𝑖) ≅ Ƒmax) 

and a correspondingly low adhesion free-energy. Peak spreading occurs on lower 𝜌col for 

lower 𝐸sub, as shown in Figure 3c (and as reported in the experimental of Engler et al. (3)).  

 

4. Concluding Remarks 

The equilibrium statistical mechanics framework developed by Shishvan et al. (15) allows for 

the simulation of the homeostatic ensemble for cells on an elastic substrate in a nutrient bath. 

Cells assume a dynamic homeostatic equilibrium by means of a free-energy competition 

between the increasing elastic free-energy due to stretching of passive cell components (and 

substrate deformation), and the decreasing cytoskeletal free-energy as contractile proteins 

assemble to form stress-fibres. In the current study, the framework is expanded to include the 

free-energy associated with formation of focal adhesions between the cell and a collagen 

coated substrate. 

The expanded framework allows for the simulation of the coupled influence of surface 

collagen density 𝜌col and substrate stiffness 𝐸sub on cell spreading, as reported in the 

experimental study of Engler et al. (3). The key experimental observations predicted by our 

modelling framework are summarized as follows: 

- With increasing substrate 𝜌col, cell spread area (mean and standard deviation) 

increases up to a peak value. 

- A further increase in 𝜌col beyond this peak results in a reduction of the cell spread 

area (mean and standard deviation).  

- The 𝜌col at which the mean cell area reaches a peak decreases with decreasing 𝐸sub. 

- At a fixed 𝜌col, the mean and standard deviation of the spread area increase with 

increasing 𝐸sub.  



The 𝜌col directly influences the forces in adhesion complexes and, consequently, the adhesion 

free-energy. This, in turn, influences the spread states that cells assume in achieving 

homeostasis. A low 𝜌col lowers the probability of a cell becoming highly spread, as sufficient 

complexes cannot form to support the tractions imposed by the substrate. Conversely, at a 

high 𝜌col the cell may form more adhesion complexes, lowering the associated free-energy. 

Thus, the probability of cells having a high spread area increases. The influence of 𝐸sub  and 

𝜌col is highly coupled, as demonstrated in Figure 3 and 5. A deformable substrate lowers the 

probability of a cell becoming highly spread, reducing the cell tractions and thereby causing 

the peak mean spread area to occur at a lower 𝜌col.  

In statistical thermodynamics a closed system in a constant temperature and pressure 

environment attains equilibrium at minimum Gibbs free-energy. However, metabolic systems 

such as cells cannot be viewed in this manner; in fact, cells never attain an equilibrium 

minimum free-energy state while alive. The approach developed by Shishvan et al. (15) 

(extended in the current study) acknowledges this and predicts the statistics of biological 

observables (e.g. cell area, aspect ratio etc.) under the constraint that the cell maintains a 

homeostatic state. In previous studies, the importance of considering the system free-energy 

in the interpretation of cell spreading behaviour has been recognized (13, 29). McEvoy et al. 

(13) identified low (or minimum) free-energy cell spread states within a limited phase space 

of axisymmetric configurations. This simplified approach provided a reasonable 

approximation of the detailed trends computed in the current study (as observed 

experimentally (3)) which can be explained by the fact that low free-energy states will of 

course be highly probable within the homeostatic ensemble; see eq. (1). While McEvoy et al. 

(13) correctly demonstrate that cell spreading is governed by a competition between 

decreasing cytoskeletal and adhesion free-energy and increasing elastic energy, the 

identification of a low or minimum free-energy configuration is not physically appropriate for 

a fluctuating system. Therefore, the emergence of such an energetic competition within the 

statistical mechanics framework of the homeostatic ensemble provides a significant advance 

in current understanding of the influence of ligand density and substrate stiffness on cell 

spreading. Importantly, this framework correctly predicts the trends for observables such the 

spread area and spread shape as a function of environmental cues such as stiffness and ligand 

density, while also quantifying inherent statistical variability in these observations. The 

homeostatic ensemble for cells, expanded to include the focal adhesion formation and an 

associated adhesion free-energy contribution, provides new insight into observed cell 



behaviour on deformable collagen coated substrate. The model may readily be used to 

simulate more complex extra-cellular environments, including the spreading of cells on 

ligand patterned ridges and ligand patterned micro-pillars. Furthermore, the computational 

framework will be extended in a future study to explore the influence of gradients of ligand 

density on cell motility. 
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Figure captions 
 

Figure 1: (a) Contours of bound stress-fibre protein concentrations 𝑁̂b (green) with dominant 

alignment, focal adhesion distributions 𝐶̂ (red), and overlays in commonly observed cell 

shapes at a given surface collagen density 𝜌col. The substrate is rigid, and nucleus is 

highlighted in blue. The cell spread states for a given 𝜌col have the same free-energy. Scale 

bar indicates undeformed cell radius 𝑅0. Probability density functions for cells spread on a 

rigid substrate for 3 collagen densities, of (b) cell spread area (𝐴̂ = 𝐴/𝜋𝑅0
2), and (c) cell 

aspect ratio.  

 

Figure 2: (a) Contours of bound stress-fibre protein concentrations 𝑁̂b (green) with dominant 

alignment, focal adhesion distributions 𝐶̂ (red), and overlays in commonly observed cell 

shapes at a given substrate stiffness 𝐸sub. The surface collagen density 𝜌col is fixed at 33 

ng cm−2, and the nucleus is highlighted in blue. The cell spread states for a given 𝐸𝑠𝑢𝑏 have 

the same free-energy. Scale bar indicates undeformed cell radius 𝑅0. Probability density 

functions for cells spread on substrates of different stiffness at a surface collagen density 𝜌col 

of 33 ng cm−2, of (b) cell spread area (𝐴̂ = 𝐴/𝜋𝑅0
2), and (c) cell aspect ratio.  

 

Figure 3: Contour plots for predicted mean spread area (a) and mean cell aspect ratio (b) in 

the 𝜌col − 𝐸sub space. (c) Predicted cell area (mean±SD) and (d) cell aspect ratio 

(mean±SD) as a function of surface collagen density 𝜌col for cells spread on substrates of 

different stiffness (red-rigid, yellow-32kPa, green-8kPa). Sample cell spread states are shown 

for a given substrate in (a, b). 

 

Figure 4: Probability density functions for cells spread on a rigid substrate for 3 surface 

collagen densities 𝜌col, of (a) Gibbs free-energy, (b) adhesion free-energy, (c) cytoskeletal 

free-energy, and (d) elastic free-energy (𝐹̂𝑒𝑙𝑎𝑠 = 𝐹̂𝑝𝑎𝑠𝑠𝑖𝑣𝑒 + 𝐹̂𝑠𝑢𝑏).  

 

Figure 5: Predicted adhesion (a-c), cytoskeletal (d-f), elastic (g-i), and substrate (j-l) free-

energy (mean±SD) as a function of surface collagen density 𝜌col for cells spread on rigid, 

stiff, and compliant substrates.  












