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Abstract

Multivariate analysis of dietary data

in the presence of excess zeros and measurement error

Yulia Chernova-Chernaya

Nutritional epidemiology is a complex area of research plagued with bias and measure-

ment error partly arising from the use of imperfect methods of dietary data measurement

and inadequate data analyses. Some foods or nutrients are consumed habitually, while

others are consumed occasionally. This thesis addresses three important public health

problems: (1) Estimation of under and over consumption of foods consumed occasionally

such as alcohol; (2) Investigation of the determinants of food intake, and (3) Estimation of

the effect of the intake of occasionally-consumed foods on health outcomes.

The analysis of food intake is complicated because foods are often eaten in combination.

This gives rise to multiple correlated habitually- and occasionally-consumed food intakes,

characterised by a large proportion of zero observations. Modern statistical methods are

required to deal with measurement error, excess zeros in the intake distributions, and

correlated preferences for frequency of consumption and portion sizes across foods.

The thesis demonstrates the use of contemporary statistical methods, based on mixed-

distributions and mixed-effects modelling approaches, for the analysis of a single and

multiple correlated habitually and occasionally-consumed food intakes. These methods

are complex due to the need to evaluate intractable integrals for parameter estimation.

Firstly, to describe under and over consumption, the thesis provides a new numerical

approach, which is a quicker and simpler alternative to Monte Carlo simulation, to es-

timate the distributional quantiles of occasionally-consumed food intakes in predefined

sub-populations.

Secondly, dietary data from the UK National Diet and Nutrition Survey Rolling Programme

(NDNS RP), which provides the only source of current authoritative information on food
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and nutrient intake in the UK, are analysed with a mixed-effects two-part model to esti-

mate the associations between personal and socio-economic risk factors and the intake

of several foods of current public health importance.

This is the first time this approach is applied to NDNS RP data to assess explicitly socio-

economic and personal characteristics related to occasionally-consumed food intakes in

the UK population.

Then, the thesis develops a novel multivariate joint model for several correlated occasionally-

consumed food intakes utilising a pseudolikelihood approach and parametric bootstrap for

parameter estimation. The approach is illustrated by modelling the intake of alcohol, jointly

with the intake of other foods, and the resulting analysis is compared with that based on

the two-part model for a single food and the traditional multivariable linear regression

model widely used in nutritional epidemiology.

Finally, a regression calibration approach is applied to correct for the effect of excess

zeros and multiple correlated person-specific preferences when several food intakes are

investigated as predictors of health outcomes. Again the results are contrasted with those

obtained by applying multivariable regression analysis which ignores excess zeros and

correlated preferences, introducing potential bias in the effect estimates. As an exam-

ple, the relationships between alcohol intake in a male sub-population of NDNS RP and

haemoglobin A1c (HbA1c), a known predictor of type 2 diabetes mellitus, are investi-

gated. Ideally, to obtain unbiased estimates of predictors’ effects, all correlated unob-

served person-specific effects should be accounted for. However, the task is incredibly

complex and to tackle this the suggestion is to simplify the model by accounting only

for the largest residual correlations. Even in this imperfect form, regression calibration

produces markedly different results from multivariate linear regression.
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Chapter 1

Introduction

1.1 Background
What we eat might affect us in numerous ways. While the consequences of extreme

cases of nutrient deficiencies or overload are well recognised (vitamin C deficiency and

scurvy; extreme iodine deficiency and cretinism), the effects of more subtle variations in

people’s usual diets are subject to debate. Ioannidis (2013) argues that “Almost every

single nutrient imaginable has peer reviewed publications associating it with almost any

outcome”. Statements like this reflect recognition that observational studies, the major

source of information on diet and health outcomes, are prone to various biases (Fraser,

2003).

One of the major biases in observational research is confounding (Rochon et al., 2005;

Mamdani et al., 2005; Normand et al., 2005), which, if not accounted for, can lead to erro-

neous conclusions regarding the effect of the risk factor of interest on a health outcome.

Part of the answer to this problem lies in conducting more well designed and well executed

randomised control trials (RCTs). A well known example of a well-conducted RCT in the

area of nutrition is the original Dietary Approaches to Stop Hypertension (DASH) trial

(Appel et al., 1997), which linked increase in fruits, vegetables and low-fat dairy products

1
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consumption with lowering of blood pressure. However, often RCTs are not feasible: they

are too expensive or not ethical to conduct (when the exposure is potentially harmful),

then public health policy making has to rely on information obtained from observational

studies. Observational studies, therefore, form the basis of information we rely on when

linking health outcomes and diet. It is of utter importance that confounding should be

thoroughly considered at a design stage of a study and all possible measures should be

taken to record and then adjust for confounding factors at the analysis stage.

Missing values can also impact the inference drawn from research in several undesirable

ways. For example, if a group of potential survey respondents with certain demographic

or social characteristics refuse survey participation then, in case these characteristics are

related to food consumption, the estimated food intake distribution will be biased away

from the distribution specific to this group. Hence every step should be taken to acquire

data from various demographic populations to minimise bias. Some degree of missing

information may be unavoidable, in this case it is recommended to document the reasons

for this and compare the characteristics of the individuals who have missing records with

those from individuals with complete information. When the primary outcome has missing

records and these are thought to be missing at random, a likelihood method of estimation

will yield consistent and efficient estimates, whereas some form of multiple imputation

may be appropriate if explanatory variables are thought to be missing at random.

Other sources of bias in the realm of Nutritional Epidemiology arise from limitations of

current instruments available to capture usual dietary intake, which is defined by the In-

stitute of Medicine as the individual’s average intake over a long period of time (Institute

of Medicine, Food and Nutrition Board, 2003). The most commonly used dietary assess-

ment tools rely on self-report and these are food frequency questionnaires (FFQ), food

diaries (FD) and 24 hour food recalls (24HR).

Data collected by self-reporting are prone to systematic bias that arise when people con-

sistently under- or over-report their food intake, certain characteristics like age, education
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and BMI are linked to misreporting (Braam et al., 1998; Freedman et al., 2014). Method-

comparison and biomarker-validation studies indicate that FFQs are less reliable com-

pared to multiple-days FD and multiple 24HR (Day et al., 2001; Burrows et al., 2010;

Bingham et al., 1994, 1997; McKeown et al., 2001). Recent studies indicate that multi-

ple web-based diet 24-hour recalls can provide a convenient and modern alternative to

paper-based diaries with the reliability comparable to multiple 24HR and multiple days FD

(Arab et al., 2011). Hereafter, FFQs are left out of the scope of this work and the methods

developed in this work apply to data collected from multiple days food diaries and multiple

24HR recalls. This work focuses on minimising the impact of random measurement error

in nutritional exposure which, unlike systematic measurement error, is a result of random

variation in daily food consumption and short observational period.

Multiple days diaries and 24HRs records reflect information on both, long-term individual

usual intake and daily within-subject variations in food consumption. When the obser-

vational period is reduced, as is the case in the majority of studies, observational error,

defined as the difference between the measured diet and its true value can be quite large

(Rutishauser and Black, 2002; Beaton et al., 1979; Nelson et al., 1989; Sempos et al.,

1985; Borrelli et al., 1992). The presence of observational error, referred to as measure-

ment error in the published literature, leads to certain implications in the analysis and

interpretation of available data.

1.2 Measurement error
First, we describe the classical additive measurement error model for a single continuous

intake T in the context of habitually consumed foods, i.e. those foods consumed most

days. Suppose that Ti is the true long-term consumption of person i, i = 1, ....m. Due

to the limitations in food intake measurement tools, on day j, j = 1, ....n, we are unable

to observe Ti but instead observe Rij, which contains information on both, Ti and daily

within-person variation εij. Under the assumptions of the classical additive measurement

error model, the relation between the true intake Ti and daily variation εij is additive and
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Rij = Ti+εij. Thus, εij introduces random noise around the true long-term individual intake

Ti. We assume that the random variable εij does not depend on the true Ti and E(εij) = 0.

It can also be reasonable to assume that the εijs are identically independently distributed

(i.i.d.) and εij ∼ N (0, σ2
w). This assumption is called homogeneity of the errors. Therefore,

it follows that Rij is an unbiased estimate of Ti: E(Rij) = Ti and Var(Rij) = σ2
w. The mean

of observed individual dietary records is often used as a measure of the true individual

intake. Consider an individual average Ri obtained over the available number of diary

days n so that Ri = 1
n(Ri1 + Ri2 + ... + Rin), it can be seen that Ri is also an unbiased

estimate of the long-term personal true intake Ti with variance Var(Ri) = 1
nσ

2
w. Increasing

the number of observed days will decrease the variation of Ri around Ti, however, the

required number of diary days to achieve certain precision will depend on the magnitude

of the daily variation.

As an example, Basiotis et al. (1987) showed that in a study of 13 men over 1 year, in

order to estimate the true individual usual niacin intake with 10 percent accuracy, it was

required to collect 53 record days, and 249 days of intake data were needed to estimate

usual vitamin C intake with the same precision. Clearly, this number of diary records

is impossible to obtain in the majority of research studies and hence, the presence of

measurement error needs to be considered and its consequences evaluated, and, when

possible, minimised. We next consider how the presence of non-negligible daily variation

in nutritional data can impact research findings in various contexts.

1.2.1 Monitoring food consumption in populations of interest

Monitoring habitual long-term dietary intake to assess nutrient adequacy of a population

is of public health interest as it can highlight those subgroups of the population which

are particularly prone to consuming a less healthy diet, similarly it helps to monitor the

adherence of subpopulations to dietary recommendations. However, unaccounted mea-

surement error can distort the estimates of food intake distributions in subgroups. Let’s

consider an example where the interest lies in estimating a food intake in a group of in-
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dividuals with a true group mean intake µ and a true between-person variance σb. If we

independently draw a representative sample of individuals from the target population and

somehow learn their true habitual intakes T1, ..., Tm then the sample mean and the sample

variance would give us unbiased estimates of µ and σb. If, instead, we draw our conclu-

sions based onR1, ...,Rm as measured proxies for true habitual intake of these individuals,

then we will obtain an unbiased estimate of the group mean E(R) = µ, but the estimate

of the group variance will be artificially inflated by σ2
w/n, because Var(R) = σ2

b + 1
nσ

2
w.

Thus, utilising individual averages Ri to characterise the group distribution will produce

an unbiased estimate of the group mean µ but increase the group variance reflecting

both, between-person and daily within-person variation. The effect will be especially pro-

nounced at the tails of the distribution leading to biased estimates of over- or under-

consumers. This, potentially, can lead to implementing inefficient public health policies.

1.2.2 Current statistical approaches dealing with measurement error

Dodd et al. (2006) provided a review of statistical methods available to account for within-

person variation when estimating the distribution of usual dietary intake within a pop-

ulation group using individual means. The methods make certain assumptions on the

distribution of intake and the relationship between the true and observed intakes. First,

unbiasedness of intake on the original scale or a transformed scale (to obtain a symmet-

ric distribution) is assumed , so that Rij = Ti + εij, or R∗
ij = T ∗

i + εij, where R∗
ij and T ∗

i are

transformed recorded and true intakes respectively. Then the total group variance of the

food intake distribution is decomposed into within-person (σ2
ε , daily) and between-person

(true) parts. Using the estimated between-person variance and assuming an approxi-

mately Gaussian distribution for food intake (on the original or transformed scale), we

can obtain individual approximations to the true food intake, i.e. intermediary individual

values, leaving out measurement error. These intermediary individual values are back-

transformed to the original scale and used instead of observed intake. Their distribution

on the original scale should have approximately the same mean and between-person vari-
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ance as the original food intake distribution. To carry out these type of analysis, multiple

records of food intake per individual are required. We briefly summarise the main points

and methods of the review paper below.

The Institute of Medicine (Institute of Medicine, Food and Nutrition Board, 2003) sug-

gested using a power or log transformation of the original data, estimating within– and

between–person variances on the transformed data, constructing intermediary values on

the transformed scale, where intermediary values are weighted averages of transformed

individual means and transformed group means, and using the inverse of the original

transformation to get a new set of values from which the distributional parameters can be

assessed. Intermediary individual values are constructed so that more weight is given to

the group mean if within–person variance is large and, vice versa, smaller within–person

variance results in more weight given to individual means.

Iowa State University (ISU) method (Guenther et al., 1997) assumes unbiasedness on

the original scale, relaxes the homogeneity assumption of measurement error and al-

lows its variance to vary from individual to individual, adjusts for seasonality and allows

adjustment for complex survey designs. It applies a two-stage transformation and the con-

structed intermediary values are based on theoretical quantiles of the normal distribution

instead of individual means. The inverse to the initial two-stage transformation is applied

and a new set of intermediary values on the original scale is used to make inference about

the group intake distribution.

Nusser et al. (1996) also suggested the Best Power method, which is a simplified ver-

sion of the Iowa State University method. It is also applicable to complex surveys, it does

not allow the within-person variance to vary across individuals but applies only one trans-

formation so that back-transformation and adjustment for transformation-induced bias is

easier that in the ISU method.

More recently, Tooze et al. (2010) suggested utilising a mixed-effects modelling ap-

proach (Diggle et al., 2002) without requiring to reduce the data to individual averages.
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Instead, the observed intake Rij (or observed transformed intake R∗
ij) is modelled via a

linear combination of observed covariates (and/or factors) such as age, education, day of

the week or season X1
ij, ...,X

k
ij, unobserved person-specific effects ui that are impractical,

impossible, very expensive to measure or simply unknown, and daily variation εij, so that

the observed intake can be recorded as Rij = X′
ijβ + ui + εij or, on a transformed scale,

R∗
ij = X′

ijβ + ui + εij. For a specific person i unobserved preferences ui are constant but

in a group of people these unobserved preferences introduce between-person variation

additional to and unaccounted for by observed measured covariates X1
ij, ...,X

k
ij. In math-

ematical terms, ui is represented by a random variable, typically, normally distributed

ui ∼ N (0, σ2
u). As above, εij represents random daily variation and is assumed to have

mean 0, variance σ2
w, realisations of εij are uncorrelated with each other, with the true

individual intake Ti (T ∗
i ) and with ui. A maximum likelihood approach is used to estimate

the model parameters. When the estimates of the model parameters are obtained they

can be utilised to simulate a new set of data that should be further back-transformed to

the original scale. This new back-transformed dataset is then used to empirically estimate

the distributional parameters of the true intake in the original group. Several applications

of this method can be found in the literature (Tooze et al., 2010; Guenther et al., 2006)

and it forms a part of National Cancer Institute (NCI) method (National Cancer Institute,

2015).

The methods described above are suitable for describing the intake distribution of habit-

ually consumed foods. Each method has its own advantages and limitations, and these

are summarised in Table 1.1. For example, The Institute of Medicine is easy to apply

and easy to programme relative to ISU methods. However, occasionally consumed foods

are characterised by a high frequency of zero intake records, which presents further chal-

lenges in analysis. The methods of dealing with within-person variance that assume that

food intake can be transformed to be approximately Gaussian using a monotone function

are not directly applicable to zero-inflated data. This distributional assumption is clearly vi-

olated for occasionally consumed foods. For food intakes with multiple zero-consumption
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days, The ISU modified method should provide more reliable estimates of usual intake

as it accounts for the probability of consumption, which is an important method’s feature

for food with many zero daily records. Chapter 2 of this thesis discusses a method to

estimate the distribution of occasionally consumed foods in subgroups and proposes a

new approach that can further simplify the application of the method.



  

  

  

  

 METHODS 
 IOM ISU BP ISU Modified 

Transformation of the 

original observed values so 

that the distribution of 

transformed data is 

approximately normal  

Power or log transformation  Two-stage transformation  Power or log transformation Two-stage transformation 

 

Note: Transformation is applied 

to non-zero values of observed 

daily intake only 

Adjustment for covariates 

such as age groups, season, 

day or the week  

Not allowed Allowed Allowed Allowed 

Adjustment for probability of 

consumption  

(important for food intakes, 

which are not consumed 

daily) 

No 

 

No 

 

No 

 

Yes 

 

Estimates distribution of 

consumption probability based 

on observed consumption 

frequency. Does not allow for 

correlation between 

consumption probability and 

portion size 

Assumption of 

unbiasedness of usually 

intake  

On transformed scale On untransformed scale On untransformed scale On untransformed scale 

 

Applies to a non-zero 24-hour recall 

only 

Within-person variance The same for all individuals Can vary between individuals The same for all individuals Can vary between individuals 

Intermediary values are 

constructed on 

Transformed scale Transformed scale Transformed scale Original scale 

Back-Transformation 

function 

Inverse of initial power or log 

transformation  

Inverse of the initial two-stage 

normality transformation coupled with 

bias-adjustment before back-

transformation 

Inverse of initial power or log 

transformation coupled with bias-

adjustment before back-

transformation 

Inverse of the initial two-stage normality 

transformation coupled with bias-

adjustment 

Black-transformation applied to non-

zero values of food intake only 
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Table 1.1: Summary of available methods adjusting for measurement error in estimation of usual food intake in a population



     

     

     

     

     

 IOM ISU BP ISU Modified 

Estimation of intermediary 

values involves additional 

steps other than elimination 

of within-person variability 

 

No No No Yes 

 

Mathematically combines the estimated 

distribution of the original-scale daily 

usual intake with the estimated 

distribution of consumption probability to 

obtain a set of intermediary values 

Estimated usual intake 

distribution is 

Empirical distribution of back- 

transformed intermediary values 

Empirical distribution of original- 

scale intermediary values 

Empirical distribution of original- 

scale intermediary values 

Empirical distribution of original-scale 

intermediary values 

 

Assumption: Usual intake is the 

probability to consume on a given day 

multiplied by the usual portion size for a 

day the food is consumed. Probability of 

consumption and portion size is 

assumed to be uncorrelated  

IOM - The institute of Medicine 

ISU – Iowa State University 

BP – Best Power 

ISU Modified – Iowa State University Modified 
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Table 1.1 Summary of available methods adjusting for measurement error in estimation of usual food intake in a population (Continued)
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1.3 Determinants of food intake
Another extensive research area where the application of correct modelling techniques

and accounting for measurement error is of great importance is the area of investigation

of determinants of food intake.

Lifestyle and, in particular, food choices are important health determinants in today’s world

of plenty of food and reduced physical activity. The abundance of easily available high-fat,

high-sugar, cheap and palatable food, and sedentary lifestyle have led to increasing rates

in obesity in the developed world (Lobstein et al., 2004). Obesity has been implicated in

a number of health conditions such as insulin resistance and metabolic syndrome, which

increase the risk of cardiovascular disease and type 2 diabetes (T2D) (Cloostermans

et al., 2015; Tuomilehto et al., 2001). The rising obesity rates lead to a larger burden

on health care costs (Kent et al., 2017) to society. For individuals, obesity can lead to

detrimental quality of life and reduced life expectancy (Katzmarzyk et al., 2003; Chan

et al., 2015). Diet is an important target for public health interventions. However, to

slow down the trend, more information is needed on the driving forces behind people’s

preferences for certain foods. This knowledge can inform the design and implementation

of effective intervention strategies for healthier lives (Appleton et al., 2016).

Factors that can influence an individual’s food consumption choices vary and include, but

are not restricted to, genetics, pre-natal exposures, child feeding practices, cultural back-

ground and family habits, peers influence, surroundings, marketing and various socio-

economic factors.

For example, human genetic variation can influence people’s food choices (Feeney et al.,

2011) and there is a wide variation in how well humans can detect bitter compounds

phenylthiocarbamide (PTC) and propylthiouracil (PROP) (Bartoshuk et al., 1994). The

population can be broadly described as super tasters (high sensitivity to PROP), medium

tasters (medium sensitivity to PROP) and non-tasters (lowered sensitivity to PROP) mak-

ing up 20, 50 and 30 percent of the population respectively (Tepper et al., 2009). This
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taste sensitivity to PROP can be partially explained by genetic variations in the TAS2R

genes family, which links people with certain genetic profiles to dislike of bitter tastes

(Bufe et al., 2005; Kim and Drayna, 2005; Tepper et al., 2014).

This, in turn, can influence food choices with carriers avoiding certain bitter tasting foods

like cruciferous vegetables, soya or green tea (Tepper et al., 2009), or increasing fat and

sugar consumption (Feeney et al., 2011). However, it has been reported that this ge-

netic influence is most prominent during childhood and becomes less important with age

(Mennella et al., 2005; Navarro-Allende et al., 2008).

This suggests that childhood preferences can be modified through environmental factors.

Summarising the available evidence, Mennella (2014) concluded that taste differentiation,

unrelated to genetic profile, can start in the uterus, when foetuses are exposed to vari-

ous taste components of amniotic waters, then during the lactating period through the

taste of mother’s milk and, during weaning time, through repeated exposures, provision

of healthy snacks and mother’s modelling behaviour (Nicklaus, 2011; Cooke and Fildes,

2011; McGowan et al., 2012).

Cultural norms further shape children’s developing food preferences. For example, Rozin

et al. (2011) shows that French and American cultures, broadly speaking, have differ-

ent attitudes towards food. Americans, as opposed to French, prefer quantity to quality,

comfort to uniqueness and variety and abundance to moderation when it comes to food

choices. Furthermore, lower income and socio-economic status (SES) has been found to

correlate with less healthy diet in a number of studies (Darmon and Drewnowski, 2008;

Conklin et al., 2014; Galobardes et al., 2001; Groth et al., 2001; Lallukka et al., 2006;

Pomerleau et al., 1997; Rydén and Hagfors, 2011; Turrell et al., 2003; Maguire and Mon-

sivais, 2015). However, food is just one of the goods that people choose to buy and

the same disposable income can be distributed differently by people with different social

and cultural backgrounds, and different educational levels (Galobardes et al., 2001; Groth

et al., 2001; Lallukka et al., 2006; Rydén and Hagfors, 2011; Ranjit et al., 2015).
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Additionally to socio-economic and cultural backgrounds, psychology (Smeets et al., 2010)

and physiology play their parts in food preferences, and stress and sleep deprivation can

be related to food choice too (Yau and Potenza, 2013; Sinha and Jastreboff, 2013; Dashti

et al., 2015; Tomiyama et al., 2012).

These and other potentially important factors need to be considered and investigated

further to understand their role as determinants of food intake in specific populations.

This will enable public health policy makers to develop and implement more targeted and,

consequently, more effective programmes to help people live healthier lives.

Appleton et al. (2016) recently showed that the majority of published interventions with

the aim to increase vegetable consumption had little significant change in vegetable con-

sumption habits. This might indicate a lack of understanding of the motives behind peo-

ple’s food choices or inefficiently chosen target populations as well as misapplied statisti-

cal modelling methods.

The use of correct modelling techniques and statistical methods is of great importance

when eliciting the determinants of food intake. Probable consequences of incorrect mod-

elling include a loss of power to detect an important determinant or, vice versa, falsely

highlighting the importance of some factors that might be just a correlate of unobserved

true determinants.

Chapter 3 applies the most novel methods (mixed-distribution mixed-effects modelling

approach described in detail in Chapter 2) of statistical methodology to analyse three

waves (2009-2012) of the National Diet and Nutrition Survey Rolling Programme (NDNS

RP) data. The models adjust for measurement error, correlation arising from the re-

peated measurements on the same person, excess-zeros and unobserved correlated

preferences.

Chapter 4 extends the two-part model introduced in the previous chapters and, based

on composite likelihood theory (Varin et al., 2011; Lele and L. Taper, 2002), develops



14 CHAPTER 1. INTRODUCTION

an approach that takes into account the unobserved preferences between probability of

consumption and portion size of a single food as well as multiple correlated food intakes.

In particular, the two-part model is extended to a triple-wise model with the focus of es-

timating the effect of various determinants of alcohol intake. The results demonstrate

that the composite likelihood (or pseudolikelihood) approach, which is used to combine

the estimated triple-wise parts models, and a subsequent bootstrap tool to make infer-

ence about uncertainty of model parameters is an attractive approach that accounts, to a

certain degree, for a correlation between various food intakes.

1.4 Estimating the association of the intake of multiple

foods with health outcomes
Naturally, the interest in peoples’ nutritional preferences arises from the potential impact of

dietary choices on people’s health beyond weight change (Willett, 2012; Malik et al., 2010;

Appel et al., 1997; Gadgil et al., 2013). One of the most recent examples, where cumula-

tive research evidence suggests that a particular nutrient is on the causal pathway to an

adverse health condition, is the increased risk of developing cardiovascular disease with

increased consumption of trans fatty acids (TFA) (Mozaffarian and Willett, 2007). How-

ever, establishing these types of connections can be extremely difficult due many factors

like confounding, selection mechanisms, short observational periods and measurement

errors which are inherent to dietary assessment methods and observational research.

Regression dilution is a well known phenomenon when the estimated relationship be-

tween an outcome and a single risk factor measured with error is biased towards the null.

Extensive literature exists to provide methods to correct for regression dilution including

Fuller (1980), Lindley (1953), Madansky (1959) and more recently Carroll et al. (2006),

Buonaccorsi (2010) and Keogh and White (2014) who provide an extensive overview on

the subject in the field of nutrition.

However, the effect of measurement errors in multiple correlated exposures is less stud-
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ied. It has been shown that when multiple correlated factors are measured with error,

the estimates of their effects on health outcomes can be biased both downwards and

upwards and the size and the direction of the bias depend on the covariance structure

of the covariates. This observation is directly relevant to data analysis in nutritional epi-

demiology as the intakes of certain foods and/or nutrients are correlated through personal

preferences. The picture becomes even more complex when we consider occasionally-

consumed foods, such as fish, nuts, certain vegetables, and alcohol, as diet diary records

of these foods contain excess zeros making them unsuitable for analysis with traditional

statistical tools.

A potential approach to address this problem is to investigate the usability of the regres-

sion calibration approach described by Carroll et al. (2006). The following notation will be

used.

1.4.1 Notation

Let Yi represent a health outcome, Xi the true continuous unobserved exposure, Wi the

observed exposure measured with error and Zi a vector of covariates measured without

error for a person i. We highlight vector notation in boldface: for example, for multiple

unobserved and observed exposures with errors, we will useXi andWi =Xi+εi respec-

tively, whereXi is a k-vector of multiple exposures for participant i,Xi = (X1i,X2i, ...,Xki).

Denote Σab a covariance matrix of random variables a, b and Sab the corresponding sam-

ple covariance, and the variance of a random variable a as σ2
a and its expectation as

µa. It is reasonable to assume that measurement error ε is such that E(εi∣Xi) = 0 and

εi∣Xi ∼ N (0,Σε).

For illustration of the impact of measurement error on regression modelling, it is conve-

nient to start with the method of ordinary least squares (OLS) as it is one of the most

widely used analytic tools, and it is easy to show where bias occurs with assumptions of

the classical additive measurement error.
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1.4.2 Ordinary least squares linear regression and additive non-dif-

ferential measurement error

The exposure is assumed to have been measured with additive errorWi =Xi+εi and the

health outcome Yi can be related to the true Xi through a linear function:

Yi = β0 +β
′

xXi +β
′

zZi + δi

where δi is an error arising from Yi, uncorrelated with εi i.e the assumption of non-

differential measurement error is valid, and βx,βz are the vectors of corresponding re-

gression coefficients.

When estimating the multivariate regression coefficients (βx,βz) with the OLS method

and using Wi as proxy for Xi, we can observe that the estimates of (βx,βz) are biased.

The OLS naive regression coefficients (βx∗ ,βz∗) satisfy:
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(1.1)

It can be seen from (1.1) that when only a single exposure Xi is measured with error,

such that Xi is uncorrelated with the other exposures measured without errors Zi, and

εi is uncorrelated with δi, then the well-known expression for the bias in the regression

coefficient for Xi is obtained, βx∗ = λβx, where the coefficient λ, commonly known as

reliability ratio (Fuller, 1987), is less than one: 0 < λ = σ2
x

σ2
x+σ

2
ε
< 1 so that the estimate of

the regression coefficient βx by OLS is attenuated and this effect is commonly referred to

as regression dilution bias. If validation data or repeatedly measured data are available

on a subset of study participants, the reliability coefficient can be estimated with various

methods (Frost and Thompson, 2000; Keogh and White, 2014).

Interestingly, in the case, when Xi and Zi are correlated, the regression coefficients for Zi
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will also be biased (Carroll et al., 1985). This has important implications for the analysis

of the treatment effect in clinical trials (Carroll, 1989).

In the multivariate case, when Xi are correlated, the estimated naive regression coef-

ficients βx∗, are not necessary attenuated to 0 and can even change signs opposite to

those of the true coefficients as their estimation depends on the covariance structure of

Xi (Fuller, 1987; Carroll et al., 2006).

The method-of-moments estimation has been proposed in (Fuller, 1987) to correct for

bias when data are available to estimate the required covariances and when ε and δ

are uncorrelated (the assumption of non-differential measurement error), the method-of-

moments estimator is:
⎛
⎜
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Szw Szz
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Correcting the naive regression coefficients is one way to correct for the bias induced

by measurement error. Carroll et al. (2006) and Buonaccorsi (2010) give an extensive

overview of various measurement error models which are suitable for the application of

the method. However, this approach can be too restrictive in cases with highly skewed

covariates, multiplicative error or non-linear models.

The alternative method, suggested by Rosner et al. (1989) and Rosner et al. (1990) for

the case of logistic regression but applicable to a broader range of models, is to find

a replacement XRP for the true but unobserved X, so that XRP has certain properties,

which allow it to be placed instead ofX in the exposure-to-health-outcome model, yielding

consistent estimates of βx.

1.4.3 Regression calibration

Carroll et al. (2006) describes the method of regression calibration, which is applica-

ble to a broader range of models when internal validation data, replicate data or data

collected with unbiased instrument are available for, at least, a subset of participants.

The method relies on substituting the observed exposure measured with error by the esti-
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mated expectation of unobserved true exposure conditional on the values of the observed

proxy.

The general principle of regression calibration with application to nutritional data can be

described as follows:

Suppose, HOi is a health outcome for person i that we can relate to the true food intake Ti

and the other relevant covariates measured without error Zi through a linear combination:

E(HOi∣Ti,Zi) = α0 + αTTi +Zi

′

αZ .

The regression calibration approach suggests that if we consistently estimate

E(Ti∣Wi1, . . . ,Wini ,Zi) then utilising E(Ti∣Wi1, . . . ,Wini ,Zi) instead of Ti will produce a con-

sistent estimate of αT for ordinary least squares (OLS) linear regression or generalised

linear models (GLM). We adjust the standard errors using bootstrap or a sandwich esti-

mator.

Carroll et al. (2006) describes the algorithm of regression calibration in the following way:

● Estimate the conditional expectation ofX given Z andW : E(X ∣Z,W ) =mX(Z,W , θ),

where mX(X,W ,θ) denotes the calibration function, which is a function of additional

parameters θ.

● Replace unobserved X with the estimate of mX(Z,W , θ̂), where θ̂ is the estimate of

θ.

● Fit a standard regression analysis with mX(Z,W , θ̂) instead of X to estimate the rela-

tionships between Y andX, and adjust the standard errors using bootstrap or a sandwich

estimator.

Several methods to obtain an estimate of the expectation of the unobserved true expo-

sure conditioned on the observed proxy (i.e. regression calibration function) have been

proposed. One of them, developed by Carroll and Stefanski (1990) and Gleser (1990),

and described in detail in Keogh and White (2014), uses a linear approximation as the re-

gression calibration function and multiple replicates of the proxy for the true exposure. In
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the case of a Normally distributed exposure, the best linear predictor is also the best linear

unbiased predictor, yielding consistent estimates of regression coefficients. Gleser (1990)

gives the bound of the bias of ordinary least squares (OLS) regression coefficients under

the best linear regression calibration model. Rosner et al. (1989) and Rosner et al. (1990)

showed that if the exposure can be assumed approximately Normal then the regression

calibration approach for logistic regression models can yield consistent estimates of re-

gression parameters. However, this does not need to be true in a more general case, for

example, a multiplicative error model and relaxed assumptions on the distribution of the

health outcome can provide challenges for unbiased estimation of the effect of the risk

factor. Lyles and Kupper (1997) provide an alternative to the regression calibration esti-

mate in the form of a quasi-likelihood estimator where they show that the quasi-likelihood

estimator is consistent under the specified model assumptions and behaves very similar

to the regression calibration estimator.

Chapter 5 investigates the effect of alcohol consumption on HbA1C, a well-established

marker of type II diabetes, using a subset of male sample of the NDNS RP survey Years

2-4. It compares the results obtained with various analysis: the traditional multivariate lin-

ear regression where alcohol intake is estimated with an observed individual average; the

regression calibration approach, where alcohol intake is predicted based on the mixed-

effect mixed-distribution model and available socio-demographic characteristics; and the

regression calibration approach, where alcohol intake is predicted based on the mixed-

effect mixed-distribution model and composite likelihood theory, aiming to take into ac-

count potential residual correlation between alcohol intake and consumption of various

occasionally-consumed foods that was not accounted for by the observed personal and

socio-economic characteristics.
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Chapter 2

Estimation of the intake distribution of

occasionally-consumed foods

This chapter provides an overview of methods available for the estimation of the intake

distribution of occasionally-consumed foods, it develops a numerical approach for the esti-

mation of the distributional quantiles of food intake as an alternative to Monte Carlo (MC)

simulations. The methods are illustrated through the analysis of self-reported alcohol

consumption collected during the screening phase of a randomised controlled trial inves-

tigating the effect of the types of fats and carbohydrates in diet on glucose and insulin

metabolism.

2.1 Background
Monitoring usual or long-term dietary intake is of interest to health researchers and public

health policy makers to assess nutrient adequacy of a group or population. Recent public-

health programmes include monitoring of alcohol consumption by personal, social and

demographic characteristics in the research programme “Reducing alcohol-related health

harms in an English context” led by the School for Public Health Research of the UK

National Institute for Health Research (School for Public Health Research, 2013).

21
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The statistical analysis of dietary data presents several challenges due to limitations in

dietary assessment tools and the presence of within-person variation in consumption.

The most commonly used dietary assessment tools are food frequency questionnaires

(FFQ), food diaries (FD) and 24 hour food recalls (24HR). Of these, methods comparison

and biomarker validation studies suggest that multiple days FD and multiple 24HR are

more reliable (Burrows et al., 2010; Bingham et al., 1994, 1997; McKeown et al., 2001).

These tools were developed to capture long-term habitual diet but due to reduced obser-

vation periods, they are subject to observational error, defined as the difference between

the measured diet and its true value (Rutishauser and Black, 2002; Beaton et al., 1979).

Moreover, the records of intake of occasionally-consumed dietary components (e.g. fish,

alcohol, nuts) usually contain high frequencies of zeros, adding further complexity to the

analysis of the distribution of these components. The mean and a measure of spread de-

scribe symmetrical distributions well, but not those with skewed shapes. The majority of

occasionally-consumed food intake distributions have skewed shapes so the information

contained in the mean and a measure of spread will not suffice to estimate, say, under- or

over- consumption, which is often of major interest to public health policy makers. There-

fore, in the evaluation of dietary intake, the tails of the population intake distribution are

often as important as the mean or the median. Thus, quantile estimation provides a useful

tool for monitoring diet and complements regression analysis of the mean.

This chapter provides an overview of methods available for the estimation of occasionally-

consumed food intake distribution and proposes a numerical approach to estimate the

quantiles of the distribution of occasionally-consumed foods in specified sub-populations

as an alternative to Monte Carlo (MC) simulations. The method accounts for within-person

variation, correlation arising from multiple measurements taken from the same person and

the high frequency of zero observations of recorded food intake.
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2.1.1 Within-person variation

Within-person variation arises from individual daily variation in food consumption and ob-

servational error. The mean of observed individual dietary records is often used as a

measure of true individual intake; however, the mean contains information of both, the

true long-term habitual intake and within-person variation. Although increasing the num-

ber of days in dietary records reduces observational error (Nusser et al., 1987), in practice,

most FDs and 24HRs contain only 2 to 4 days of dietary intake records, which leads to

a significant daily variation in individual means (Beaton et al., 1979; Nelson et al., 1989;

Sempos et al., 1985). Therefore, using individual means to describe food intake in pop-

ulation groups artificially inflates the group variance estimate, which, in turn, results in

biased estimates of upper and lower quantiles of food intake distribution and in biased es-

timates of compliance with respect to recommended intake guidelines (Tooze et al., 2010;

Guenther et al., 2006). To illustrate this, consider the estimation of the 90th quantile of

a normal distribution. If the mean is 0 and the standard deviation 1, the 90th quantile is

1.28. But, the same 90th quantile, for a distribution with the same mean, but 1.5 times

larger standard deviation becomes 1.92.

Dodd et al. (2006) provided a review of statistical methods which account for within-person

variation when estimating the distribution of usual dietary intake within a population group

using individual means. More recently, Tooze et al. (2010) suggested utilising a mixed-

effects modelling approach without reducing the data to individual averages. This method

suggests that if a person i has true intake Ti (T ∗
i on a transformed scale) then the indi-

vidual daily food record Rij (R∗
ij on a transformed scale), of a person i on day j, can be

described as Rij = Ti+εij (R∗
ij = T ∗

i +εij), where εij represents random daily variation and is

assumed to have mean 0 and variance σ2
ε . This assumption can be described as the un-

biasedness of the recorded individual intake either on the original or a transformed scale.

Then the total group variance of food intake distribution is decomposed into a within-

person (σ2
ε , daily) and between-person (true) parts. Using the estimated between-person
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variance and mean and assuming approximately Gaussian distribution of food intake (on

the original or transformed scale), we can reconstruct the true food intake distribution

within a specified group leaving out the estimated within-person variance. Several appli-

cations of this method can be found in the literature (Tooze et al., 2010; Guenther et al.,

2006; Tooze et al., 2006).

2.1.2 Excess zeros

Occasionally consumed foods are further characterised by high frequency of zero intake

records, which presents further challenges in analysis. Firstly, the methods of dealing

with within-person variance described above are not directly applicable to zero-inflated

data as they assume that food intake can be transformed to be approximately Gaussian

using a monotone function. This distributional assumption is clearly violated for occasion-

ally consumed foods. Secondly, the number of daily records needed to reliably estimate

within-person and between-person variation, if consumption occurs only infrequently, ex-

ceeds the number of daily records typically available from food diaries or food recalls.

A preferred method for modelling occasionally-consumed food intake for a given individ-

ual, adopted in this chapter, looks at the data as generated by a two-step process: the

first step (the probability step) generates the event of consumption (yes/no) on a given day

and the second step (the amount step) generates the amount of food consumed on a con-

sumption day. The probability part can be modelled by a mixed-effects logistic regression

and the amount component by a mixed-effects linear regression model.

Importantly, as discussed by Olsen and Schafer (2001) and Tooze et al. (2002), con-

sumption behaviours are complex and the outcomes of the first and the second steps

are not, generally, independent. In particular, it is plausible that the more often someone

consumes, the larger the amount consumed on any given consumption day: examples

include fruits and vegetables, whole grains and alcohol (Ashfield-Watt et al., 2004; Guen-

ther et al., 2006). Consequently, the probability and the amount parts are likely to be

correlated.
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The correlation can arise, inter alia, from personal preferences affecting the probability of

consumption and the amount consumed simultaneously. When some of these personal

preferences are unobserved, because they may be impractical, impossible, or very ex-

pensive to measure, the model needs to account for this unobserved heterogeneity. This

can be done through inclusion of one random effect into each component of the model

and allowing the two random effects to be correlated. Ignoring this correlation in the es-

timation of food intake distribution when, in fact, the correlation is positive, can lead to

over-estimation of the amount consumed by people with low probability of consumption

and under-estimation of the amount consumed by people with high probability of con-

sumption. The magnitude of the bias can be especially pronounced when the between-

person variation is quite large and there is not enough information to explain it and when

the correlation between unobserved preferences is substantial (Albert, 2005; Kipnis et al.,

2009; Su et al., 2009).

Monitoring dietary intake at a group level requires the estimation of distribution charac-

teristics, such as quantiles. Obtaining these from the two-part mixed-effects model is not

straightforward due to the presence of the random effects in the model. The current prac-

tice, suggested by Guenther et al. (2006), is to: i) estimate individual linear predictors

from fitting the two-part model, ii) simulate 100 random effects, per individual, from a bi-

variate normal distribution, with mean zero and variance parameters estimated from the

fitted model, iii) add the simulated random effects to the estimated linear predictors, and

iv) obtain empirical quantile estimates from the simulated datasets. This method forms

part of the NCI method (National Cancer Institute, 2015) for the estimation of usual di-

etary intake, recommended by the US National Institute of Health. However, the precision

of MC estimates is affected by random sampling variation, and the size of the simulated

data that is needed to achieve the required precision is population- and model-specific,

which can hinder reproducibility of results. The simulations can also be time consuming

with increasing number of sub-populations for which intake distribution is of interest.
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We suggest an approach which is based on the two-part model (Olsen and Schafer,

2001; Tooze et al., 2002) and circumvents the need of simulation by use of numerical

integration to estimate the distribution of occasionally-consumed food in specified sub-

populations. The method is a quicker, easier to implement and more accurate alternative

to the simulation-based method. Additionally, we illustrate the impact of ignoring the cor-

relation between the probability and amount parts of the two-part model in the model

specification, and compare the performance of our approach with that based on Monte

Carlo (MC) simulations.

2.2 Methods
In this section, the two-part mixed-effects model (Olsen and Schafer, 2001; Tooze et al.,

2002) for modelling individual intakes of occasionally-consumed foods is described. Then,

the two-part model, along with the numerical method, are utilised for the estimation

of habitual dietary intake of occasionally-consumed foods in sub-populations. Finally,

the proposed numerical method for the quantile estimation of habitual dietary intake of

occasionally-consumed foods is presented in Appendix 2.B.

Additionally, Appendix 2.D.1 contains code written in the statistical software R (R Core

Team, 2017) which allows the estimation of the two-part model parameters in a special

case when two days of food intake observations per person are available for analysis and

this is the first freely available code, to our knowledge, which helps to analyse this type of

data.

2.2.1 Two-part mixed-effects model

We briefly describe the two-part mixed-effects model for repeated positive continuous

responses with excess zeros (cf. Olsen and Schafer (2001), Tooze et al. (2002), and Su

et al. (2009) for full details). As discussed above, for each person, i, i = 1, . . . ,m on day

j, j = 1, . . . ni, the data consist of two parts: the occurrence of food consumption (yes/no),
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which can be recorded as an indicator variable Iij such that:

Iij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the food is consumed by person i on day j

0, otherwise

and the amount of food consumed if consumption took place, which we record asAij,Aij >

0 if Iij = 1.

Natural heterogeneity arise among subjects due to personal preferences for consumption.

We denote unobservable person-specific information related to propensity to consume

certain foods as vi and unobservable person-specific information related to amount con-

sumed on consumption day as ui. Then, conditionally on vi and ui, responses Iij and Aij

are independent. The indicator variable Iij is assumed to follow a Bernoulli distribution

with probability pij, and to allow for skewness, we assume Aij,Ai,j > 0 to be log-normally

distributed. In this paper, we suggest the following model specification: the first part re-

sponse Iij follows the logistic regression model:

logit{Pr(Iij = 1∣vi)} = x
′

ijγ + vi

where x′ij is the vector of relevant covariates, relating individual characteristics to propen-

sity for food intake, and γ is the vector of corresponding regression coefficients. And,

considering, log(Aij) = Yij is approximately normal, we can write:

Yij = x
′

ijβ + ui + εij

where E(Yij ∣ui) = x
′

ijβ + ui and Var(Yij ∣ui) = σ2
ε (within-person daily variation); x′ij is the

vector of relevant covariates relating individual characteristics to the amount of food con-

sumed, β is the vector of corresponding regression coefficients. The potential correlation

between the probability and amount parts is linked through person-specific effects ui and

vi , which are assumed to have a common bivariate normal distribution with means 0 and

variance-covariance matrix:

Σ =
⎛
⎜
⎝

σ2
u ρσuσv

ρσuσv σ2
v

⎞
⎟
⎠
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where ρ denotes the correlation between ui and vi, σ2
u and σ2

v are the variances of ui and vi

respectively. These are called random effects and are assumed to be independent of εij.

The unknown model parameters θ = (γ, β, σu, σv, σε, ρ) can be estimated through maximis-

ing the full marginal likelihood function, where we utilise the conditional independence of

responses Iij and Yij and their distributional assumptions. Because the random effects ui

and vi are unobserved, they need to be integrated out, so that the full marginal likelihood

function is:

L(θ)∝
m

∏
i=1
∫

+∞

−∞
∫

+∞

−∞

ni

∏
j=1

fI(Iij ∣ vi, θ)fY (Yij ∣ Iij > 0, ui, θ)fUV (ui, vi ∣ θ)duidvi (2.1)

where fI , fY and fUV denote the density functions of the binomial, normal and bivari-

ate normal distributions, respectively. More precisely, taking into account the assumed

distributions for Yi, Ii, ui, vi the likelihood can be further re-written as

L∝
m

∏
i=1
∫

+∞

−∞
∫

+∞

−∞
exp(lVi) exp(lUi)fU ∣V (ui ∣ vi; θ)fV (vi; θ)duidvi (2.2)

where fU ∣V , fU denote the conditional normal distribution for U ∣V and the marginal normal

distribution of U respectively, lVi is the loglikelihood contribution from Iij, and lUi from Yij

given by

lVi =
ni

∑
j=1

(Iij(XT
ijγ + vi) + log(1 − pij))

lUi = −
n∗i
2

log(σ2
ε ) −

1

2σ2
ε

n∗i

∑
j=1

(Yij − (Xijβ + ui))T (Yij − (Xijβ + ui))
(2.3)

where n∗i denotes the number of observed positive values of Yij for participant i.

The loglikelihood function does not have a closed form and needs to be evaluated numer-

ically.

We note that if it is assumed that the random effects are independent, i.e. ρ = 0, estimation

is considerably simplified as the two parts can be fitted separately using standard statis-

tical software for generalised mixed-effects models. However, if this assumption does not

hold, i.e. ρ ≠ 0, then the estimation of the two-part model requires more specialised pro-

gramming, for example, the SAS PROC NLMIXED procedure (SAS Institute, Cary, NC,

Version 9.1, Littell et al 2006, SAS for mixed model) can be used in this case.



2.2. METHODS 29

2.2.2 Distribution of habitual dietary intake

The expected individual habitual daily intake Tij for a person i on a day j is calculated as

the product of the individual daily probability of consuming the food, pij, and the expected

individual consumed amount on a consumption day:

Tij = Pr(Iij = 1∣vi) ⋅ E(Aij ∣Aij > 0, ui). Under the two-part model Tij depends on the

regression parameters β and γ, as well as the unobserved person-specific effects ui and

vi, which may be correlated. Maximum likelihood estimates: β̃, γ̃, Σ̃, σ̃ε can be obtained by

fitting the two-part model, but the person-specific variation has to be accounted for when

estimating a group distribution of dietary intake. One way to account for this variation is

to perform MC simulations.

This method and its application in the present context have been described elsewhere

(Guenther et al., 2006; Tooze et al., 2002; Freedman et al., 2010). Briefly, first, point es-

timates of the model parameters are obtained from fitting the two-part model. Secondly,

for each combination of covariates of interest, fixed effect predictions are obtained using

the estimated regression coefficients. Thirdly, N pairs (ui, vi) are generated from a bivari-

ate normal distribution with the parameters of the distribution estimated earlier at the first

step. Guenther et al. (2006) recommends to simulate 100 observations per original sam-

ple observation with the same covariate values but varying person-specific effects. Thus,

for each combination of covariates we have a dataset containing N (e.g. 100 times the

original sample size) simulated observations whose distribution characterises the distribu-

tion of occasionally-consumed dietary intake in a sub-population with the same covariate

pattern as that of the observed sample. This dataset is then used to obtain empirical

quantile estimates. If the intake is assumed to be unbiased on the original scale then

back-transformation needs to be used (Nusser et al., 1996).

This work suggests the use of optimisation and numerical integration methods to estimate

the quantiles of occasionally-consumed food intake distributions as an alternative to MC

simulations. To compare the proposed approach with MC simulations, we undertook a
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simulation study following the NCI method described above, up to the point where we

needed to decide on the size of simulated data. One of the research questions we set to

answer was to investigate the MC convergence in the context of the application of the two-

part model, so it was decided to simulate data sets of varying size including 1000, 5000,

10000 and 50000 observations per fixed covariate values. The covariates we adjusted for

in the model were gender and age, so for men and women, and for each of the following

age values (years): 40, 45, 50, 55, 60, 65 we simulated 4 data sets of different sizes. In

the Results section we compare how our MC simulated results compare with the results

obtained from the proposed approach. The following section describes the proposed

numerical method with further technical details provided in Appendix 2.A and Appendix

2.B provides code for implementation in R.

2.2.3 Quantiles of habitual dietary intake

Quite often, the distribution of the amount of food consumed on a consumption day ap-

pears to be skewed and a logarithmic transformation can be an appropriate choice to

obtain a symmetric distribution (Xiao et al., 2011). If we assume that the individual

transformed intake Yij ∣Iij > 0, ui follows a normal distribution with expectation x
′

ijβ + ui
and variance σε then Aij ∣Iij > 0, ui follows log-normal distribution with expected value

exp(x′ijβ +ui + 0.5σ2
ε ) so we can write down the individual expected daily marginal amount

consumed as

T̃ij = exp(x′ijβ̃ + ui + 0.5σ2
ε )

exp(x′ij γ̃ + vi)
1 + exp(x′ij γ̃ + vi)

Dietary intake, alcohol consumption for example, is likely to vary between a week day and

a weekend. To account for this, the expected weekly consumption T̃i is estimated as the

weighted average of habitual daily consumption comprising 4 working-week days and 3

weekend days:

T̃i = 4 exp(x′i0β̃ + ui + 0.5σ2
ε )

exp(x′i0γ̃ + vi)
1 + exp(x′i0γ̃ + vi)

+ 3 exp(x′i1β̃ + ui + 0.5σ2
ε )

exp(x′i1γ̃ + vi)
1 + exp(x′i1γ̃ + vi)
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where β̃ and γ̃ are point estimates from the two-part model, x′i0 are covariates corre-

sponding to a working-week day and x
′

i1 are covariates corresponding to a weekend. T̃i

depends on the two random variables ui and vi. By definition of cumulative distribution

function, for a given probability p and the corresponding quantile cp, we can write:

Pr(T̃i ≤ cp) = p (2.4)

which, when substituting T̃i, is equivalent to

Pr (4 exp(x′i0β̃ + ui + 0.5σ2
ε )

exp(x′i0γ̃ + vi)
1 + exp(x′i0γ̃ + vi)

+ 3 exp(x′i1β̃ + ui + 0.5σ2
ε )

exp(x′i1γ̃ + vi)
1 + exp(x′i1γ̃ + vi)

≤ cp) = p

After re-arranging the terms and taking natural logarithm, the above expression is equiv-

alent to

P(ui ≤ ln(cp) − ln{4 exp(x′i0β̃ + 0.5σ2
ε )

exp(x′i0γ̃ + vi)
1 + exp(x′i0γ̃ + vi)

+ 3 exp(x′i1β̃ + 0.5σ2
ε )

exp(x′i1γ̃ + vi)
1 + exp(x′i1γ̃ + vi)

}) = p

Let h(c, vi) denote the function:

h(c, vi) ≡ ln(c) − ln (4 exp(x′i0β̃ + 0.5σ2
ε )

exp(x′i0γ̃ + vi)
1 + exp(x′i0γ̃ + vi)

+ 3 exp(x′i1β̃ + 0.5σ2
ε )

exp(x′i1γ̃ + vi)
1 + exp(x′i1γ̃ + vi)

)

Then under the distributional assumptions for vi and ui as bivariate normal (0,Σ) we can

re-write (2.4) as

∫
+∞

−∞
∫

h(c,vi)

−∞
fBN(ui, vi)duidvi = p. (2.5)

The solution of (2.5) with respect to c, is the quantile cp, corresponding to a given proba-

bility p. Appendix 2.A shows why this solution exists and is unique under the given model

assumptions. To find cp the integral in (2.5) can be approximated numerically, e.g. by

quadrature methods, and the solution to the equation found through optimisation.
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2.2.4 Data

To illustrate the method, we analysed alcohol intake from the screening phase of the

RISCK (Reading, Imperial, Surrey, Cambridge, and Kings) study (Jebb et al., 2010), which

was a randomised controlled trial (RCT), investigating the effect of the types of fats and

carbohydrates in diet on glucose and insulin metabolism. Participants were recruited from

the general population and baseline measures were collected from August 2004 to April

2006. The participants were eligible if their weight was stable 3 months prior to enrol-

ment, i.e. their energy intake and energy expenditure were in balance (Rosenbaum et al.,

1996), and if they were at risk of developing metabolic syndrome with special emphasis

on enrolling participants with impaired glucose tolerance. Initially, 7-day food diaries were

collected from 531 participants. These yielded 2214 days of dietary records in total, with

the majority (81%) providing 4 days of the foods records. However, to reduce potential

bias in data analysis (Braam et al., 1998; Mendez et al., 2011; Tooze et al., 2004), this

analysis excluded data from 209 (39%) participants due to extreme under-reporting, leav-

ing for analysis data on 322 (61%) participants. The status of under-reporters was defined

by the Goldberg cut-off (Black, 2000a,b) (see Appendix 2.C for further details). Ethical ap-

proval for the RISCK study was obtained from the National Research Ethics Service, and

written informed consent was given by participants.

2.2.5 Simulation study to assess the impact of model misspecifica-

tion

A simulation study was conducted based on the R code written by the author for the

analysis of semi-continuous data with correlated random effects in the special case when

information from only 2-day food diaries is available (Appendix 2.D.1). To obtain maximum

likelihood estimates, the second-order Laplace approximation for the numerical integra-

tion in (2.2) was used, requiring the analytic calculation of the first and second derivatives

of the log-likelihood function with respect to all model parameters. The aim of the simula-

tion study was to examine the potential consequences of model misspecification on model
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parameters estimates from assuming that the correlation of the random effects from the

two model components is zero. The results of the simulation study are presented in Ap-

pendix 2.D.2.

The data were generated from the two-part model described earlier for consumption of a

single occasionally-consumed food recorded over 2 days. The probability of consumption

pij = Pr(Iij = 1) for a person i on day j, j = 1,2 followed the model

logit(pij) = 12.7 − 30 ⋅Xij1 + 2 ⋅Xij2 + vi

The amount consumed when consumption took place (Iij = 1) was simulated from the

model

Yij = 900 − 1000 ⋅Xij1 + 5 ⋅Xij2 + ui + εij

X1 was chosen to be a continuous variable but constant across the two observed time

points. X2 was a binary variable (0/1) so that it could take different values at different time

points for the same person and be representative of a consumption pattern that depends

on the day of a week.

The joint distribution of vi and ui was generated as bivariate normal with variance compo-

nents Var(ui) = σ2
u = 50 and Var(vi) = σ2

v = 25. The covariance component varied to assess

how the regression estimates change with a change of magnitude of correlation between

ui and vi. The within-person measurement error εij was simulated from N (0,100).

Five hundred datasets were generated under the above model assumptions with varying

sizes (N = 150, 500, 800) and analysed in two ways. First, the data sets were analysed

with the two-part model, which takes correlation between the model parts into account.

Secondly, the data were analysed by fitting two parts of the model separately not account-

ing for correlation of random effects. Then, the results of two analysis were compared to

investigate the effect of model misspecification (Appendix 2.D.2).
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2.3 Results

2.3.1 Descriptive analysis

The sample available for analysis consisted of 186 (58%) women, with the following char-

acteristics summarised as mean (standard deviation) or frequency (%): age 52 years

(10), body mass index (BMI) 27.5 (4.2), smoking status (yes) 31 (4%), degree of under-

reporting 0.96 (0.15); and of 136 (42%) men: age 53 years (11), BMI 27.6 (3.4), smoking

status (yes) 36 (6.3%) and degree of under-reporting 0.93 (0.13).

To describe the probability of consuming alcohol in the period of observation, the ratio of

the number of reported alcohol consumption days over the total number of diary records

available for each participant was calculated. Table 2.1 shows that men and women

have significantly different consumption patterns (overall p-value from chi-squared test

is 0.004): more women than men (70 (37.6%) versus 32 (23.5%)) reported no alcohol

consumption, whereas, there are fewer women than men (26 (14.0%) versus 32 (23.5%))

whose estimated probability of consuming is greater than 0.75 on a given day.

Table 2.1: Proportion of days of recorded alcohol intake out of total recorded days available

Proportion of days with recorded alcohol consumption Men, N (%) Women, N (%)

0 records 32 (23.5) 70 (37.6)

>0 and ≤ 0.25 20 (14.7) 42 (22.6)

>0.25 and ≤ 0.5 27 (19.9) 26 (14.0)

>0.5 and ≤ 0.75 25 (18.4) 22 (11.8)

>0.75 32 (23.5) 26 (14.0)

The percentage of days of recorded alcohol intake was estimated as a ratio of the number of

reported alcohol consumption days over the total number of diary record days available.

Despite different frequency patterns of alcohol consumption, both, men and women, tend

to consume more alcohol on a given consumption day if their frequency of consumption

is higher compared to those who consume less frequently (Figure 2.1).
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Figure 2.1: Median of alcohol intake by recorded frequency of alcohol consumption

2.3.2 Modelling alcohol intake

The statistical analyses were stratified by sex. After preliminary screenings of the sam-

pling distributions of alcohol intake on consumption days, a logarithmic transformation

was adopted to obtain a more symmetric distribution of the data. Figure 2.1 suggests

that there might be a positive correlation between the probability of consuming alcohol

and the amount of alcohol consumed on consumption day. We fitted the two-part mixed-

effects model assuming that the correlation between the two parts is positive (Model A)

and assuming that the correlation is zero (Model B). We compare the analysis results

from Models A and B to assess the impact of model misspecification on both the estima-

tion of parameters related to individual alcohol intake and the distribution of alcohol intake

in specified sub-groups. We note that the regression parameters in the two parts of the

models are person specific.
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Correlation between probability and amount parts of the model

The estimated (adjusted for age and weekend) correlation between the model parts is

0.55 (p-value 0.004) in females and 0.30 (p-value 0.160) in males. This suggests that

there exist some person-specific characteristics which simultaneously increase the prob-

ability to consume alcohol and the amount of alcohol consumed on consumption day.

Probability part

Estimates show no difference between models A and B in the estimation of the odds of

daily alcohol consumption for both groups, men and women (Table 2.2).

Table 2.2: Effect of the covariates on daily probability of alcohol consumption and amount of

alcohol consumed

Males Females

Probability part Odds ratio p-value Odds ratio p-value

95%CI 95%CI

Model A

Weekend 3.95 <0.001 3.56 <0.001

(2.37, 6.60) (2.27, 5.56)

5 years increase in age 1.27 0.042 1.29 0.031

(1.01, 1.54) (1.03, 1.55)

Model B

Weekend 3.99 <0.001 3.53 <0.001

(2.39, 6.66) (2.25, 5.54)

5 years increase in age 1.27 0.043 1.30 0.028

(1.01, 1.53) (1.03, 1.56)

Amount part Ratio of change p-value Ratio of change p-value

95% CI 95% CI

Model A

Weekend 1.48 <0.001 1.28 0.016



2.3. RESULTS 37

Table 2.2: Effect of the covariates on daily probability of alcohol consumption and amount of

alcohol consumed (Continued)

Males Females

Probability part Odds ratio p-value Odds ratio p-value

95%CI 95%CI

(1.23, 1.79) (1.04, 1.56)

5 years increase in age 0.96 0.162 1.00 0.910

(.90, 1.02) (0.91, 1.08)

Model B

Weekend 1.45 0.001 1.23 0.062

(1.19, 1.73) (0.99, 1.48)

5 years increase in age 0.95 0.105 0.98 0.695

(0.89, 1.01) (0.90, 1.06)

Correlation between

probability and 0.30 0.160 0.55 0.004

amount parts

Amount part

The regression parameters are interpreted as percentage change in the amount of alcohol

consumed on consumption day with a unit-change in the corresponding covariate, holding

the other covariates fixed. For females, model B shows weekend as a non-significant pre-

dictor (at 5% significance level): 1.23 (95%CI (0.99, 1.48), p-value 0.062) times increase

in the amount of alcohol consumed given consumption took place on weekend compared

to a week day; whereas model A shows that, on weekend, women increase the amount

of alcohol consumed (given it was consumed) by 1.28 times (95%CI (1.04, 1.56), p-value

0.016). Thus, under the wrong assumption of zero correlation between the model parts,

a statistically significant predictor turns into non-significant.
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For males the discrepancy between the results obtained from model A and model B is

not as pronounced: 1.45 times increase on weekend in amount consumed if consumption

takes place (95%CI (1.19, 1.73), p-value 0.001) for model B, and 1.48 times increase

(95%CI (1.23, 1.79), p-value <0.001) for model A.

These findings show that when the zero correlation assumption between probability and

amount parts is strongly violated, model A provides better estimates of regression co-

efficients. However, the greatest discrepancies between the results from model A and

model B tend to be observed not around the (geometric) mean but around the tails of the

distribution of alcohol intake.

Distribution of weekly alcohol consumption

Table 2.3 shows the estimated weekly alcohol intake quantiles (0.1, 0.25, 0.50, 0.75, 0.90

and 0.95) and the magnitude of discrepancies between weekly alcohol intake distributions

estimated under model A and B assumptions, separately for males and females and for

various ages. The difference between the models is most obvious at the tails of the

distribution, where Model A, as expected, gives higher estimates than model B for higher

quantiles. For example, our data show that, in men, model A estimates 0.90 quantile to

be 321.8g versus 301.6g (model B) of weekly alcohol intake in 40-year-old participants.

Since the detrimental effect of alcohol is believed to arise from excessive consumption,

our results demonstrate that the application of the model with the correct assumptions

provides a more accurate assessment of the potential public health burden.

Table 2.3: Weekly alcohol intake quantiles estimates under various model assumptions

Quantiles

Age, y Model 0.1 0.25 0.5 0.75 0.9 0.95

Men

40 A 8.2 29.6 91.1 194 321.8 419.1

B 11.1 36 97.7 190 301.6 386
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Table 2.3: Weekly alcohol intake quantiles estimates under various model assumptions (Contin-

ued)

Quantiles

Age, y Model 0.1 0.25 0.5 0.75 0.9 0.95

MC1 8.6 32 97.1 190.3 311.4 407.7

MC5 8.2 29.5 91.3 191.5 312.4 410.9

MC10 7.9 29.7 91 192 322.7 420.2

MC50 8.3 30.1 90.6 194.1 321.8 416.2

45 A 9.8 34.2 97.9 198.1 321.3 414.9

B 13.2 41.1 103.9 193.4 301.2 382.8

MC1 7.8 32.6 86.1 190.4 306.4 391.5

MC5 9.7 34.2 96 199.7 317.6 408.4

MC10 9.4 33.9 97.3 196.1 317.3 416.4

MC50 9.7 34.6 98 198.6 322.5 414

50 A 11.7 39 104 201 319.5 409.6

B 15.5 46.3 109.2 195.6 299.6 378.5

MC1 12.5 43.1 108 199.5 330.1 386.3

MC5 13 41.3 104.9 203.1 325.1 416.6

MC10 11.2 37.9 101.7 201.3 320.9 413.3

MC50 11.4 38.5 103.9 201.7 317.4 407.8

55 A 13.9 43.9 109.2 202.7 316.6 403.2

B 18.2 51.5 113.6 196.8 297.1 373.2
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Table 2.3: Weekly alcohol intake quantiles estimates under various model assumptions (Contin-

ued)

Quantiles

Age, y Model 0.1 0.25 0.5 0.75 0.9 0.95

MC1 13.5 44.5 108.5 202 301.7 396.1

MC5 13.3 42.4 107 205.4 318.7 406.4

MC10 13.5 42.1 105.2 198.4 308.5 390.1

MC50 13.7 43 108.5 204 319.7 406.8

60 A 16.3 48.9 113.5 203.3 312.7 395.9

B 21.1 56.8 117 197 293.7 367.1

MC1 14.5 43.9 107.6 200.4 306.7 375.8

MC5 15.3 48.7 113.7 203.9 319 408

MC10 16.4 47.7 111.2 203.2 311.1 392.1

MC50 15.9 48.9 114.5 204.8 314.7 397.6

65 A 19 53.7 116.9 203 307.9 387.9

B 24.5 61.5 119.6 196.4 289.4 360.2

MC1 19.4 55 120.4 197.7 303.9 370.1

MC5 18.5 52.6 115.9 201.8 304 392

MC10 19.7 54.2 117.6 202.8 311.4 394.1

MC50 19.2 54.3 118 204.3 308 387.1
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Table 2.3: Weekly alcohol intake quantiles estimates under various model assumptions (Contin-

ued)

Quantiles

Age, y Model 0.1 0.25 0.5 0.75 0.9 0.95

Women

40 A 0 4 20.1 71.7 166 251

B 1.7 6.5 25.2 70.7 143.5 207.4

MC1 0.9 4 19.7 69.8 156.1 248.2

MC5 0.8 4 20.2 73.8 167.4 252.8

MC10 0.8 3.7 19.3 71.6 166.9 253.1

MC50 0.8 4 19.7 70.5 163.2 249.8

45 A 1 5 24 79.7 176.8 262.7

B 2.1 8.1 29.7 78.3 153.6 219.3

MC1 1.2 5.2 26.5 90.9 186.6 256.1

MC5 1 4.9 23.9 77.4 173.4 258.6

MC10 1 5.2 24.3 80.9 174.4 255.5

MC50 1 5 24.1 80.5 176 260.5

50 A 1.3 6.2 28.4 88.1 186.9 273.6

B 2.6 10 34.6 85.8 163.4 230.6

MC1 1.2 7 29.9 86 181.8 268.4

MC5 1.3 6.1 28.2 86.4 182.1 272.3

MC10 1.4 6.5 29.4 89.8 192.2 279.4
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Table 2.3: Weekly alcohol intake quantiles estimates under various model assumptions (Contin-

ued)

Quantiles

Age, y Model 0.1 0.25 0.5 0.75 0.9 0.95

MC50 1.3 6.2 28.2 88.2 186.5 273.3

55 A 1.6 7.7 33.2 96.1 196.4 283.5

B 3.3 12.3 39.7 93.2 172.8 241.3

MC1 1.5 8.3 34.1 95.7 203.3 282.2

MC5 1.6 7.9 34.2 95.7 195.6 300.1

MC10 1.6 7.3 32.2 93.9 197.7 286.6

MC50 1.6 7.6 33.1 95.5 195.7 282.8

60 A 2.1 9.5 38.3 103.8 205.1 292.6

B 4.2 14.9 44.9 100.4 181.7 251.5

MC1 2.5 11.3 40.9 109.9 216.9 286.2

MC5 2.3 9.8 39.2 104.2 209.3 296

MC10 2.3 10.2 40.3 110.6 213.8 301.5

MC50 2.1 9.6 38.1 103.6 205.9 293

65 A 2.6 11.6 43.5 111.1 213.1 300.7

B 5.2 17.8 50.2 107.2 190.1 261

MC1 2.3 11 42.4 115 237.4 302.9

MC5 2.8 12.5 45.4 112.6 208.4 305.2
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Table 2.3: Weekly alcohol intake quantiles estimates under various model assumptions (Contin-

ued)

Quantiles

Age, y Model 0.1 0.25 0.5 0.75 0.9 0.95

MC10 2.7 11.9 44.9 111.4 214.5 299.9

MC50 2.6 11.6 43.2 110.7 211.5 303

2.3.3 Comparison with Monte Carlo simulation
Table 2.3 shows the results of Monte Carlo simulation (model A only), based on 1000,

5000, 10 000 and 50 000 simulated datasets for a given covariate pattern.

Monte Carlo simulation estimates show better convergence to the estimates obtained via

the numerical method with increasing number of simulations. The difference between

results is more pronounced at the tails of the distribution. For example, for a group of 45-

year-old men, the 0.95 quantile obtained from the Monte Carlo simulated dataset of 1000

observations is equal to 391.5g, which is considerably lower than 414.9g obtained from

the suggested numerical approach and compared to 414.0g obtained when increasing

the number of datasets to 50000.

Adherence to maximum recommended intake

The proposed method also allows the estimation of the percentage of participants who

adhere to the current recommendations with respect to reference intakes. For example,

the Department of Health (School for Public Health Research, 2013) recommends that

maximum daily alcohol intake should not exceed 32g for men and 24g for women, which

accumulates to weekly maximum intake of 224g for men and 168g for women. Applying

the method described in this chapter we estimate that among 45-year-old participants

21% of males and 11% of females exceed the maximum recommended weekly alcohol

intake.
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2.4 Discussion
The chapter utilises the two-part mixed-effects model introduced by Olsen and Schafer

(2001) and followed by Tooze et al. (2002), and extends the work by Guenther et al.

(2006) by suggesting a concise numerical method, as an alternative to Monte Carlo sim-

ulations, for the estimation of the distribution of occasionally consumed foods in specified

population sub-groups. We show that, although quantile estimates obtained with simula-

tions converge to numerically obtained estimates, the number of simulated observations

needed per covariate pattern cannot be known in advance and depends on the struc-

ture of the data at hand. With the differences between the estimates obtained from both

methods most pronounced at the tails of the distribution, the method can be especially

applicable when the focus of research is under- or over-consumption of certain nutrients,

foods or beverages. Furthermore, since the method is faster than simulations, it is espe-

cially convenient when the number of covariate patterns is large.

There are several extensions to the two-part mixed-effects model, as Olsen and Schafer

(2001) show, it may include random slopes in addition to the random intercepts used

here, thus widening their application to more complex study designs, such as longitudinal

studies. Guenther et al. (2006) suggested transforming the original recorded amount of

food consumed based not only on the log-normal distribution, but also including Box-Cox

power transformations. Consequently the back-transformations to the original scale of the

continuous response is required (Nusser et al., 1996). Liu et al. (2010) suggested to use

the generalised gamma distribution for continuous positive responses. Furthermore, Su

et al. (2009) discussed in depth the bias, arising in regression coefficients, when the cor-

relation between the model parts is not accounted for. Our results provide an illustration

of the impact of this form of model specification on the estimated distribution of alcohol

intake.

The multivariate Normal distribution for random effects is commonly used in the area of

generalised mixed-effects models for computational convenience; however, it has also
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been shown to be a robust assumption in many situations when using maximum likeli-

hood estimation (McCulloch and Neuhaus, 2011). Su et al. (2011) suggested the bridge

distribution for the joint random effects to relax this assumption for the two-part model

and provided an extensive discussion on the interpretation of the marginal effects of the

probability part. The Bridge distribution is similar in shape to the bivariate Normal distribu-

tion but has heavier tails. Its main advantage is that it links the conditional and marginal

regression coefficients of the probability part; however, the estimation of the marginal

coefficients for the linear part is not straightforward and requires numerical integration.

Unlike the normal distribution, the Bridge distribution for correlated random effects is not

widely known or implemented in standard statistical software.

It is possible to use the probit link to model the probability of consumption; however, the

interpretation of the fixed-effects coefficients is not as straightforward as the interpretation

of coefficients of logistic regression. The marginal effects have a convenient interpreta-

tion, but their estimation requires taking into account the potential non-zero correlation

between the parts of the two-part model, making this model more difficult to interpret and

use in practice.

Often, it is also of interest to investigate the relationship between predicted dietary intake

and health outcomes. We have showed that the between-person variation of alcohol

consumption can be substantial. Therefore, when utilising predicted values of intake in

relationship with health outcomes, this variation should be taken into account.

There are several limitations of the described model and the proposed method. First, it

is assumed that all consumed foods are reported (i.e. the reported intake is an unbiased

measure of the true intake on the original or transformed scale), which might be unlikely

for some subgroups of people as demonstrated by doubly labelled water studies (Tooze

et al., 2004). We tried to minimise the potential bias by excluding those with high degree

of energy under-reporting. However, if misreporting is present then the estimated intake

distribution can also be biased.
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Secondly, sometimes, a user might experience model convergence issues. The current

optimisation routine starts with estimates obtained under an independence assumption of

the two parts of the model. Varying the initial points from which the algorithm starts the

optimisation routine is advised. Furthermore, residual diagnostics similar to those used

for generalised linear mixed-effects models can be applied to assess goodness-of-fit.

The two-part model allows the probability to consume to be very small but not zero, so

we cannot distinguish never- from rare-consumers. Keogh (2011) suggests a model ex-

tension to adjust for never-consumers.

We limited the applicability of the model to natural logarithm transformed data to obtain

symmetry in the shape of the distribution, which might be too restrictive in some cases.

This, along with the extension of the method to the estimation of intake of multiple corre-

lated foods are areas of further research.

2.5 Conclusions
In summary, this chapter provides a new numerical method for the concise estimation

of occasionally consumed food intake distribution within a specified sub-population. The

method is based on estimates obtained from the two-part mixed-effects model and utilises

numerical integration and optimisation techniques which can be readily implemented. It

is less time consuming than a simulation based method, which is especially beneficial for

when the number of the predictors of food intake is large. It does not rely on simulation

so the precision of quantiles estimates does not depend on simulated data size. We hope

that this work will encourage the application of the two-part mixed-effects model in the

wider research community as it shows that the model is very flexible and can incorporate

various explanatory factors such as seasonality, the day of the week, gender, age, be-

havioural and socio-economic status. Incorporating relevant explanatory factors reduces

the between-person variation and thus can help uncover potential causal relationships

between food intake and social, environmental, personal and behavioural predictors. This
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is a very active area of current nutrition research.

List of abbreviations
24HR - 24 hour food recall

BMI - Body mass index

FD - Food diary

FFQ - Food frequency questionnaire

ISU - Iowa State University

MC - Monte Carlo

NCI - National Cancer Institute



48 CHAPTER 2. INTAKE DISTRIBUTION OF OCCASIONALLY-CONSUMED FOODS



Appendix

2.A Mathematical justification of proposed numerical ap-

proach
We show that the solution to equation (2.5), which defines the quantile cp, is unique. This

involves the integral

I(c) = ∫
+∞

−∞
(∫

h(c,vi)

−∞
f(ui, vi)dui)dvi

where f(ui, vi) is the probability density function of the bivariate normal distribution with

mean 0 and covariance matrix Σ =
⎛
⎜
⎝

σ2
u ρσuσv

ρσuσv σ2
v

⎞
⎟
⎠
ρ is the correlation between ui and

vi and σu, σv are the corresponding standard deviations, and consider h(c, vi)

h(c, vi) = ln(c) − ln
⎛
⎝

4 exp(x′i0β̃ + ui + 0.5σ2
ε )

exp(x′i0γ̃ + vi)
1 + exp(x′i0γ̃ + vi)

+

+ 3 exp(x′i1β̃ + ui + 0.5σ2
ε )

exp(x′i1γ̃ + vi)
1 + exp(x′i1γ̃ + vi)

⎞
⎠

Then under the above assumptions the following holds true:

h(c, vi) is continuous for all c > 0 and vi,

h(c, vi) is strictly decreasing in vi,
∂h(c,vi)
∂vi

< 0 for all vi,

h(c, vi) is strictly increasing in c, ∂h(c,vi)
∂c > 0 for all c,

49
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As f(ui, vi) is strictly positive and continuous by assumption, it follows that I(c) is contin-

uous and is strictly increasing in c. Moreover, as f(ui, vi) is a p.d.f., the following holds:

0 < I(c) < 1 for all c > 0 and both the upper and the lower bounds for I(c) are tight in the

sense that limc→0 I(c) = 0, and limc→∞ I(c) = 1. Hence, by applying the Intermediate value

theorem to I(c), it follows that for all p ∈ (0,1) there exists a unique consumption level

cp that solves equation I(cp) = p (A Course in Mathematical Analysis: Volume 1, Founda-

tions and Elementary Real Analysis, D.J.H. Garling, 2013, Cambridge). The uniqueness

follows from the strict monotonicity of I(c).

2.B R code for the estimation of quantiles
This Appendix provides R code for the estimation of quantiles of occasionally-consumed

food intake in sub-populations while taking correlations between the two parts of the

model into account and avoiding Monte Carlo simulations to save estimation time and

increase precision.

The function returns the daily amount consumed that corresponds to the specified per-

centile for a defined population. The function takes into account weekend and age dif-

ferences in consumption when estimating percentiles and can be extended further to

accommodate the necessary covariates.

#theta is a vector - c(, ..., ) of 13 inputs; percentile = [0, 1]; load "pracma"

package for "integral2"

# package pracma allows 2 dimensional integration

##########################################################################################

# returns daily amount consumed that corresponds to the specified percentile

# if weekly amount needs to be estimated then 4/7 and 3/7 in the _Umin_ function

should be replace by 4 and 3
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# if Friday is not a part of weekend then 4/7 and 3/7 in the _Umin_ function

should be replace by 5/7 and 2/7

#requires some starting value for the consumption to be estimated specified in the

parameter _consumption0_

uncond_consum_amount = function(theta){

#the entries for the function - estimated previously model parameters

#fixed effect part related parameters

age=theta[1]

const_beta=theta[2]

beta=theta[3:4]

const_gamma=theta[5]

gamma=theta[6:7]

#variance part related parameters

sigmaUsq=theta[8] # variance of random effect of amount part

sigmaVsq=theta[9] # variance of random effect of probability part

sigmaEsq=theta[10] # variance of measurement error

rho=theta[11] # correlation between the two parts of the model

#optimisation related parameters

percentile=theta[12] # required percentile to be estimates, in the region

[0, 1]

consumption0=theta[13] # initial value of the consumption (best guess)
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# variance-covariance matrix of random effects

sigma =

matrix(c(sigmaVsq,rho*(sigmaVsq*sigmaUsq)^(1/2),rho*(sigmaVsq*sigmaUsq)^(1/2),sigmaUsq),

ncol=2)

# probability density function for the 2 dimensional normal distribution

jointerror=function(v,u){

x=c(v,u)

return(1/(2*pi)/((det(sigma))^0.5)*exp(-1/2*t(x)%*%solve(sigma)%*%x))

}

# need to vectorise the joint normal pdf so that integration can be performed

vecjointerror=Vectorize(jointerror)

# function _myintegral.func_ which needs optimising with respect to _consumption_

myintegral.func=function(consumption){

# _Umin_ is the function which estimates the limit of integration in the function

h(c, v_i) where h(c, v_i) is specified in the Methods section of this chapter

# the proportion 4/7 or 3/7 in the estimated consumption function is referred to

the number of week days and weekend days (including Friday)

Umin=function(v){ return(log(consumption)-

log((4/7)*exp(const_gamma+c(age,0)%*%gamma+v)*exp(const_beta+

c(age,0)%*%beta+sigmaEsq/2)/(1+

exp(const_gamma+c(age,0)%*%gamma+v))+
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(3/7)*exp(const_gamma+c(age,1)%*%gamma+v)*exp(const_beta+

c(age,1)%*%beta+sigmaEsq/2)/(1+

exp(const_gamma+c(age,1)%*%gamma+v))))

}

integral = integral2(vecjointerror, -6*(sigmaVsq)^0.5, 6*(sigmaVsq)^0.5, Umin,

6*(sigmaUsq)^0.5,reltol = 1e-9)

return(abs(integral$Q-(1-percentile)))

}

# the optimisation routine for the output from _myintegral.func_ which takes

_consumption0_ as the starting consumption value

consumption=nlminb(consumption0,myintegral.func,gradient=NULL,control=

list(iter.max=500),lower=0.00000001,upper=Inf)

# returns the estimated amount for the specified percentile

return(c(consumption))

}

###########################################################################################

# the function returns percentile of the daily consumption for the specified

consumed amount

# the required function parameters align with the previous function

# the only new parameter is _consumption_ for which percentile needs to be

estimated

uncond_consum_percent = function(theta){

age=theta[1]
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const_beta=theta[2]

beta=theta[3:4]

const_gamma=theta[5]

gamma=theta[6:7]

sigmaUsq=theta[8]

sigmaVsq=theta[9]

sigmaEsq=theta[10]

rho=theta[11]

consumption=theta[12]

sigma =

matrix(c(sigmaVsq,rho*(sigmaVsq*sigmaUsq)^(1/2),rho*(sigmaVsq*sigmaUsq)^(1/2),sigmaUsq),

ncol=2)

jointerror=function(v,u){

x=c(v,u)

return(1/(2*pi)/((det(sigma))^0.5)*exp(-1/2*t(x)%*%solve(sigma)%*%x))

}

vecjointerror=Vectorize(jointerror)

myintegral.func1=function(amount){

Umin=function(v){ return(log(amount)-

log((4/7)*exp(const_gamma+c(age,0)%*%gamma+v)*exp(const_beta+

c(age,0)%*%beta+sigmaEsq/2)/(1+

exp(const_gamma+c(age,0)%*%gamma+v))+

(3/7)*exp(const_gamma+c(age,1)%*%gamma+v)*exp(const_beta+

c(age,1)%*%beta+sigmaEsq/2)/(1+

exp(const_gamma+c(age,1)%*%gamma+v))))

}

integral = integral2(vecjointerror, -6*(sigmaVsq)^0.5, 6*(sigmaVsq)^0.5, Umin,

6*(sigmaUsq)^0.5,reltol = 1e-9)

return(1-integral$Q)
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}

return(myintegral.func1(consumption))

}

#############################################################################

## Examples of the code application ########

## Consider that the estimated two-part model parameters are the following ########

## age = -10, age value ( in this example age was

centred on the sample mean so -10 means that this estimation is for the

population 10 years younger than average)

## const_beta = 3.1 - intercept for the amount part

## beta = theta [3:4] = (-0.01, 0.39) are beta-coefficients for age and

weekend correspondingly in the amount part

## const_gamma=theta[5] = -0.72 - intercept for the probability part

## gamma=theta[6:7] = (0.05, 1.37) are gamma-coefficients for age and

weekend correspondingly in the probability part

## sigmaUsq=theta[8] = 0.26 - estimated variance of the amount part of the

random effect

## sigmaVsq=theta[9] = 4.71 - estimated variance of the probability part of

the random effect

## sigmaEsq=theta[10] = 0.30 - estimated variance of measurement error

(within-person variation)

## rho=theta[11] = 0.30 - estimated correlation between two model

parts

## percentile=theta[12] = 0.90 percentile in the region (0, 1)

## consumption0=theta[13] = 100 - initial value of the consumption ( our best
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guess)

## Then the the function _uncond_consum_amount_ will estimate percentile based on

the specified model parameters and specified age

## uncond_consum_amount(c(-10, 3.1, -0.001, 0.39, -0.72, 0.05, 1.37, 0.26, 4.71,

0.30, 0.30, 0.9, 100)) ###

## parameter value of the output after the function run is the required daily

consumption in the specified population for the specified percentile

## the output should be monitored for the convergence as if the initially supplied

vlaue is too far from the estimated value convergence issues might arise

#######################################################################################

2.C Method of identification of under-reporters

The analysis required careful consideration of under-reporting. A brief summary of the

information used to identify extreme under-reporters in this study is presented. The sta-

tus of “under-reporter” was defined by the Goldberg cut-off (Black, 2000a) and based

on the following information: the within-person coefficient of variation of the total Kcal

intake of 24%, the number of dietary records of, on average, 4 days per person, Basal

Metabolic Rate (BMR) estimated by Schofield equations (Schofield et al., 1985), Phys-

ical Activity Level (PAL) obtained from the WHO recommendations for energy require-

ments and assigned to be 1.53 to represent sedentary or lightly active lifestyle (Food and

Agriculture Organization of the United Nations, United Nations University, World Health

Organization, 2004). Reported energy intake (rEI) was calculated as individual average

of reported total energy intake over available record days and estimated energy require-
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ment was estimated as a product of estimated BMR and PAL. To exclude extreme cases

of under-reporting, status of "under-reporter" was assigned to everyone whose degree

of under-reporting (rEI:EER) was below 0.75 and ‘’adequate” reporters to those whose

degree of under-reporting was greater than or equal to 0.75.

2.D R code for the joint estimation of two-part model pa-

rameters and simulations

2.D.1 Joint estimation of two-part model parameters

This Appendix provides R code to jointly estimate the two-part model parameters when

two days observations are available per person while taking into account the correlation

between the model parts. The notation used is based on Raudenbush (2000) and the

code utilises Laplace approximations when integration is required. The code also provides

a means to perform simulations to compare the effect of misspecification of the two-part

model.

## Simulation part starts

simulate=function(m,sigmaEsq.true,sigmaUsq.true,sigmaVsq.true,rho.true,

beta0.true,beta1.true,beta2.true,gamma0.true,gamma1.true,gamma2.true){

library(lme4)

library(numDeriv)

loopi=0

coeff.mat=rep(0,17)

REreg.mat=rep(0,8)

logisticREreg.mat=rep(0,7)

pooledOLS.mat=rep(0,6)
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while(loopi<500){

#for N = 500 generate data under two-model assumptions based on age, ethnicity and

weekend for two days

ID=1:m

age=.45+.1*rnorm(m)

edinichny=rep(1,m)

weekend1=rep(0,m)

weekend2=rep(1,m)

oshibka1=sigmaEsq.true^0.5*rnorm(m)

oshibka2=sigmaEsq.true^0.5*rnorm(m)

tte1=rnorm(m)

tte2=rnorm(m)

tte3=rnorm(m)

u_i=sigmaUsq.true^0.5*((1-rho.true)^0.5*tte1+rho.true^0.5*tte2)

v_i=sigmaVsq.true^0.5*((1-rho.true)^0.5*tte3+rho.true^0.5*tte2)

p1=exp(gamma0.true*edinichny+gamma1.true*age+gamma2.true*weekend1+v_i)/

(1+exp(gamma0.true*edinichny+gamma1.true*age+gamma2.true*weekend1+v_i))

p2=exp(gamma0.true*edinichny+gamma1.true*age+gamma2.true*weekend2+v_i)/

(1+exp(gamma0.true*edinichny+gamma1.true*age+gamma2.true*weekend2+v_i))

indicator1=rbinom(m,1,p1)

indicator2=rbinom(m,1,p2)

amount1=indicator1*(beta0.true*edinichny+beta1.true*age+beta2.true*weekend1+u_i+oshibka1)

amount2=indicator2*(beta0.true*edinichny+beta1.true*age+beta2.true*weekend2+u_i+oshibka2)
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# Combine generated data into one matrix

temp1.mat=cbind(ID,edinichny,age,weekend1,weekend2,amount1,amount2,

indicator1,indicator2,u_i,v_i,oshibka1,oshibka2)

## Simulation part ends

#################################################################

## Estimation part starts

# function that returns the gradient to my.OLS.likelihood

gradlike = function(theta){

sigmaEsq=theta[1] # variance of measurement error in amount

part

sigmaUsq=theta[2] # variance of random effect in amount part

sigmaVsq=theta[3] # variance of random effect in probability

part

rho=theta[4] # correlation between the two model parts

beta=theta[5:7] # b1 - intercept, b2 - age, b3 - weekend -

vector of model parameters for amount part

gamma=theta[8:length(theta)] # gamma1 - intercept, gamma2 - age, gamma3 - weekend

- vector of model parameters for probability part

# Read data from the created matrix

X1= temp1.mat[,c(2,3,4)]

X2= temp1.mat[,c(2,3,5)]
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I1= temp1.mat[,8]

I2= temp1.mat[,9]

u=seq_along(temp1.mat[, 1])

Day1=I1*(temp1.mat[,6]-X1%*%beta) # array for i = participants

Day2=I2*(temp1.mat[,7]-X2%*%beta) # array for i = participants

sigmaS12Usq=(I1/sigmaEsq+I2/sigmaEsq+1/sigmaUsq/(1-rho^2))^(-1) # array

# The remaining power function under the integral to be maximized to find Vhat

# Notations are based on Raudenbush (2000)

h.func = function(v){

muS12U=(Day1/sigmaEsq+Day2/sigmaEsq+

rho*v/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))*sigmaS12Usq

# array

sumlogS12U=-t(v)%*%v/2/sigmaVsq-

1/2*(t(Day1)%*%(Day1)/sigmaEsq+t(Day2)%*%(Day2)/sigmaEsq+

rho^2*t(v)%*%v/sigmaVsq/(1-rho^2)-sum(muS12U*muS12U/sigmaS12Usq))

l_v1 = I1%*%(X1%*%gamma+v)-sum(log(1+exp(X1%*%gamma+v))) # logit

term, Day 1

l_v2 = I2%*%(X2%*%gamma+v)-sum(log(1+exp(X2%*%gamma+v))) # logit

term, Day 2

l_v=l_v1+l_v2

return(-(l_v+sumlogS12U))

}

# gradient h

hgrad.func=function(v){
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muS12U=(Day1/sigmaEsq+Day2/sigmaEsq+

rho*v/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))*sigmaS12Usq

# array

return(-(I1+I2-exp(X1%*%gamma+v)/(1+exp(X1%*%gamma+v))-

exp(X2%*%gamma+v)/(1+exp(X2%*%gamma+v))-v/sigmaVsq/(1-rho^2)+

muS12U*rho/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5)))

}

# $par - the value of V_hat; $objective - the maximised value of h.func

V_hat=nlminb(rep(0,time=m),h.func,hgrad.func,control=list(iter.max=400))

muS12U=(Day1/sigmaEsq+Day2/sigmaEsq+

# array

rho*V_hat$par/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))*sigmaS12Usq

p1=exp(X1%*%gamma+V_hat$par)/(1+exp(X1%*%gamma+V_hat$par))

# probability of consumption at V_hat, day 1

p2=exp(X2%*%gamma+V_hat$par)/(1+exp(X2%*%gamma+V_hat$par))

# probability of consumption at V_hat, day 2

d3h_dv3_Vhat=-(p1*(1-p1)*(1-2*p1)+p2*(1-p2)*(1-2*p2))

# third derivative of h at Vhat

d2h_dv2_Vhat=-p1*(1-p1)-p2*(1-p2)-1/(1-rho^2)/sigmaVsq+

# second derivative of h at Vhat

rho^2*sigmaS12Usq/sigmaVsq/sigmaUsq/((1-rho^2)^2)

sumlogV_Vhat=sum(-1/2*log(-d2h_dv2_Vhat))

# sum log ((-d2hdv2_Vhat)^(-1/2))

com_coeff=1/2*d3h_dv3_Vhat/d2h_dv2_Vhat/d2h_dv2_Vhat

# array, common coefficient to the indirect term of the gradients,
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# is equal to -dl_dvhat/(d2h_d2vhat)^2

# derivates with respect to model parameters

dsigmaS12Usq_dsigmaEsq=(I1+I2)*sigmaS12Usq^2/sigmaEsq^2

dmuS12U_dsigmaEsq=-(Day1/sigmaEsq^2+Day2/sigmaEsq^2)*sigmaS12Usq+

(Day1/sigmaEsq+Day2/sigmaEsq+

rho*V_hat$par/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))*

dsigmaS12Usq_dsigmaEsq

d2h_dvdsigmaEsq=rho/(1-rho^2)/sigmaUsq^0.5/sigmaVsq^0.5*dmuS12U_dsigmaEsq #

array

d_dsigmaEsq=sum(-1/2*(I1+I2)/sigmaEsq+1/2*dsigmaS12Usq_dsigmaEsq/sigmaS12Usq+

#scalar

1/2*(Day1^2+Day2^2)/sigmaEsq^2+muS12U*dmuS12U_dsigmaEsq/sigmaS12Usq-

1/2*muS12U^2*dsigmaS12Usq_dsigmaEsq/sigmaS12Usq^2-

1/2*rho^2/(1-rho^2)^2*dsigmaS12Usq_dsigmaEsq/d2h_dv2_Vhat/sigmaVsq/sigmaUsq+

com_coeff*d2h_dvdsigmaEsq)

dsigmaS12Usq_dsigmaUsq=sigmaS12Usq^2/sigmaUsq^2/(1-rho^2)

#Y

d3h_dv2_dsigmaUsq_Vhat =

(rho^2/(((1-rho^2)^2)*sigmaVsq))*((sigmaUsq*dsigmaS12Usq_dsigmaUsq -

sigmaS12Usq)/sigmaUsq^2) #Y

dmuS12U_dsigmaUsq =

((rho*V_hat$par)/(sigmaVsq^0.5*(1-rho^2)))*((dsigmaS12Usq_dsigmaUsq*sigmaUsq^0.5-
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0.5*sigmaS12Usq/sigmaUsq^0.5)/sigmaUsq)+

(Day1+Day2)*dsigmaS12Usq_dsigmaUsq/sigmaEsq

dh_dsigmaUsq_Vhat = (muS12U*dmuS12U_dsigmaUsq*sigmaS12Usq -

0.5*muS12U^2*dsigmaS12Usq_dsigmaUsq)/sigmaS12Usq^2

d2h_dvdsigmaUsq = (rho*(dmuS12U_dsigmaUsq*sigmaUsq^0.5 -

0.5*muS12U/sigmaUsq^0.5))/((1-rho^2)*sigmaVsq^0.5*sigmaUsq)

d_dsigmaUsq = sum(0.5*dsigmaS12Usq_dsigmaUsq/sigmaS12Usq - 1/2/sigmaUsq -

0.5*d3h_dv2_dsigmaUsq_Vhat/d2h_dv2_Vhat+dh_dsigmaUsq_Vhat+

com_coeff*d2h_dvdsigmaUsq)

dsigmaS12Usq_dsigmaVsq=0

dmuS12U_dsigmaVsq=-1/2*rho*V_hat$par/(1-rho^2)*sigmaS12Usq/(sigmaVsq^1.5)/(sigmaUsq^0.5)

d2h_dvdsigmaVsq=V_hat$par/(1-rho^2)/sigmaVsq^2+rho/(1-rho^2)/(sigmaUsq^0.5)*

(dmuS12U_dsigmaVsq*sigmaVsq-muS12U/2)/sigmaVsq^1.5 # array

d_dsigmaVsq=sum(-1/2/sigmaVsq-1/2/d2h_dv2_Vhat/(1-rho^2)/sigmaVsq^2* # scalar

(1-rho^2*sigmaS12Usq/(1-rho^2)/sigmaUsq)+

1/2*(V_hat$par)^2/sigmaVsq^2/(1-rho^2)+

muS12U*dmuS12U_dsigmaVsq/sigmaS12Usq+com_coeff*d2h_dvdsigmaVsq)

dsigmaS12Usq_drho=-2*rho*sigmaS12Usq^2/sigmaUsq/(1-rho^2)^2

dmuS12U_drho=V_hat$par/(sigmaVsq^0.5)/(sigmaUsq^0.5)*(1+rho^2)/(1-rho^2)^2*sigmaS12Usq+

dsigmaS12Usq_drho*(Day1/sigmaEsq+Day2/sigmaEsq+

rho*V_hat$par/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))

d2h_dvdrho=-2*V_hat$par*rho/sigmaVsq/(1-rho^2)^2+1/(sigmaUsq*sigmaVsq)^(0.5)* #
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array

(dmuS12U_drho*(1-rho^2)*rho+muS12U*(1+rho^2))/(1-rho^2)^2

dh_drho=-rho*V_hat$par^2/sigmaVsq/(1-rho^2)^2+

(2*muS12U*dmuS12U_drho*sigmaS12Usq-muS12U^2*dsigmaS12Usq_drho)/2/sigmaS12Usq^2

dh3_d2vdrho=-2*rho/sigmaVsq/(1-rho^2)^2+1/(sigmaUsq*sigmaVsq)*

(2*rho*(1-rho^4)*sigmaS12Usq+rho^2*(1-rho^2)^2*dsigmaS12Usq_drho)/(1-rho^2)^4

d_drho=sum(1/2*dsigmaS12Usq_drho/sigmaS12Usq+rho/(1-rho^2)-1/2*dh3_d2vdrho/d2h_dv2_Vhat+

# scalar

dh_drho+com_coeff*d2h_dvdrho)

dsigmaS12Usq_dbeta=0

dmuS12U_dbeta=-sigmaS12Usq/sigmaEsq*(cbind(I1,I1,I1)*X1+cbind(I2,I2,I2)*X2)

# matrix

d2h_dvdbeta=dmuS12U_dbeta*rho/(sigmaUsq*sigmaVsq)^(0.5)/(1-rho^2)

# matrix

d_dbeta=colSums(1/sigmaEsq*(cbind(Day1,Day1,Day1)*X1+cbind(Day2,Day2,Day2)*X2)+

# array 3 elements

cbind(muS12U,muS12U,muS12U)*dmuS12U_dbeta/sigmaS12Usq+

cbind(com_coeff,com_coeff,com_coeff)*d2h_dvdbeta)

tt1=p1*(1-p1)*(1-2*p1)

tt2=p2*(1-p2)*(1-2*p2)

dh_dgamma=cbind(I1-p1,I1-p1,I1-p1)*X1+cbind(I2-p2,I2-p2,I2-p2)*X2

d3h_d2vdgamma=-cbind(tt1,tt1,tt1)*X1-cbind(tt2,tt2,tt2)*X2

d2h_dvdgamma=cbind(-p1*(1-p1),-p1*(1-p1),-p1*(1-p1))*X1+

cbind(-p2*(1-p2),-p2*(1-p2),-p2*(1-p2))*X2
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d_dgamma=colSums(-1/2*cbind(1/d2h_dv2_Vhat,1/d2h_dv2_Vhat,1/d2h_dv2_Vhat)*d3h_d2vdgamma+

dh_dgamma+cbind(com_coeff,com_coeff,com_coeff)*d2h_dvdgamma)

# array 3 elements

return(c(-d_dsigmaEsq,-d_dsigmaUsq,-d_dsigmaVsq,-d_drho,-d_dbeta,-d_dgamma))

}

my.OLS.likelihood = function(theta) {

sigmaEsq=theta[1]

sigmaUsq=theta[2]

sigmaVsq=theta[3]

rho=theta[4]

beta=theta[5:7] # b1 - intercept, b2 - age, b3 -

weekend - vector of model parameters for amount part

gamma=theta[8:length(theta)] # gamma1 - intercept, gamma2 - age, gamma3 -

weekend - vector of model parameters for probability part

X1= temp1.mat[,c(2,3,4)]

X2= temp1.mat[,c(2,3,5)]

I1= temp1.mat[,8]

I2= temp1.mat[,9]

u=seq_along(temp1.mat[, 1])

Day1=I1*(temp1.mat[,6]-X1%*%beta)

Day2=I2*(temp1.mat[,7]-X2%*%beta)
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sigmaS12Usq=(I1/sigmaEsq+I2/sigmaEsq+1/sigmaUsq/(1-rho^2))^(-1) # array

h.func = function(v){ # the

remaining power function under the integral to be maximized to find Vhat

muS12U=(Day1/sigmaEsq+Day2/sigmaEsq+

rho*v/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))*sigmaS12Usq # array

sumlogS12U=-t(v)%*%v/2/sigmaVsq-

1/2*(t(Day1)%*%(Day1)/sigmaEsq+t(Day2)%*%(Day2)/sigmaEsq+

rho^2*t(v)%*%v/sigmaVsq/(1-rho^2)-sum(muS12U*muS12U/sigmaS12Usq))

l_v1 = I1%*%(X1%*%gamma+v)-sum(log(1+exp(X1%*%gamma+v)))

# logit term, Day 1

l_v2 = I2%*%(X2%*%gamma+v)-sum(log(1+exp(X2%*%gamma+v)))

# logit term, Day 2

l_v=l_v1+l_v2

return(-(l_v+sumlogS12U))

}

hgrad.func=function(v){ # gradient

h

muS12U=(Day1/sigmaEsq+Day2/sigmaEsq+

rho*v/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5))*sigmaS12Usq # array

return(-(I1+I2-exp(X1%*%gamma+v)/(1+exp(X1%*%gamma+v))-

exp(X2%*%gamma+v)/(1+exp(X2%*%gamma+v))-v/sigmaVsq/(1-rho^2)+

muS12U*rho/(1-rho^2)/(sigmaUsq*sigmaVsq)^(0.5)))

}

# $par - the value of V_hat; $objective - the maximised value of h.func

V_hat=nlminb(rep(0,time=m),h.func,hgrad.func,control=list(iter.max=450))
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# Laplace approximation; (the second derivative of h) at Vhat

d2hdv2_Vhat= -exp(X1%*%gamma+V_hat$par)/(1+exp(X1%*%gamma+V_hat$par))^2-

exp(X2%*%gamma+V_hat$par)/(1+exp(X2%*%gamma+V_hat$par))^2-

1/sigmaVsq/(1-rho^2)+

rho^2*sigmaS12Usq/sigmaUsq/sigmaVsq/((1-rho^2)^2)

sumlogV_Vhat=sum(-1/2*log(-d2hdv2_Vhat)) # sum log

((-d2hdv2_Vhat)^(-1/2))

# probability of consumption at V_hat, day 1

p1=exp(X1%*%gamma+V_hat$par)/(1+exp(X1%*%gamma+V_hat$par))

# probability of consumption at V_hat, day 2

p2=exp(X2%*%gamma+V_hat$par)/(1+exp(X2%*%gamma+V_hat$par))

w1=p1*(1-p1)

w2=p2*(1-p2)

m31=w1*(1-2*p1)

m32=w2*(1-2*p2)

m3=m31+m32

m41=w1*(1-6*w1)

m42=w2*(1-6*w2)

m4=m41+m42

m61=m41*(1-12*w1)-12*(m31)^2

m62=m42*(1-12*w2)-12*(m32)^2

m6=m61+m62
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# Taylor expansion

return(-(1/2*sum(log(sigmaS12Usq)-(I1+I2)*log(sigmaEsq)-log(sigmaUsq)-log(1-rho^2)-

log(sigmaVsq))+sumlogV_Vhat-V_hat$objective))

}

resultsnograd = function(sigmaEsq_0, sigmaUsq_0, sigmaVsq_0, rho_0, beta0_0,

beta1_0, beta2_0, gamma0_0, gamma1_0, gamma2_0) {

theta=c(sigmaEsq_0, sigmaUsq_0, sigmaVsq_0, rho_0, beta0_0, beta1_0, beta2_0,

gamma0_0, gamma1_0, gamma2_0)

return(nlminb(theta, my.OLS.likelihood,NULL,control=list(iter.max=500,trace=0),

lower=c(0.001,0.001, 0.001, -1, -Inf,-Inf,-Inf, -Inf,-Inf,-Inf),

upper=c(Inf,Inf,Inf, 1, Inf,Inf,Inf, Inf,Inf,Inf)))

}

results = function(sigmaEsq_0, sigmaUsq_0, sigmaVsq_0, rho_0,

beta0_0, beta1_0, beta2_0, gamma0_0, gamma1_0, gamma2_0){

theta= c(sigmaEsq_0, sigmaUsq_0, sigmaVsq_0, rho_0, beta0_0, beta1_0, beta2_0,

gamma0_0, gamma1_0, gamma2_0)

#optimises likelihood

solution.results=nlminb(theta, my.OLS.likelihood,gradlike,

control=list(iter.max=500,trace=0),

lower=c(0.001,0.001, 0.001, -.999, -Inf,-Inf,-Inf, -Inf,-Inf,-Inf),
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upper=c(Inf,Inf,Inf, .999, Inf,Inf,Inf, Inf,Inf,Inf))

# my.OLS.likelyhood returns -1*likelihood, returns hessian fo,

if(solution.results$convergence==0){

hess=-jacobian(gradlike,solution.results$par)

stand.error=(diag(solve(-hess)))^0.5}

else {

stand.error=rep(0,length(solution.results$par))}

return(c(solution.results$par,stand.error,solution.results$convergence))

}

######################################################################

indicator.long=c(indicator1,indicator2)

amount.long=c(amount1,amount2)

age.long=c(age,age)

weekend.long=c(weekend1,weekend2)

ID.long=c(ID,ID)

#### starting values for sigmaV and gamma are based on logistic RE regression

#####################

#print("~~~~~~~~~~~~~~~~~~~Logistic RE~~~~~~~~~~~~~~~~~~~~~~~~~~~~")

logistic.reg=glmer( indicator.long~ 1+age.long+weekend.long+(1|ID.long), family =

binomial(),nAGQ=25)

#print("~~~~~~~~~~~~~~~~Pooled OLS~~~~~~~~~~~~~~~~~~~~~~~~~~~")
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amount.long=amount.long[indicator.long!=0]

age.long=age.long[indicator.long!=0]

weekend.long=weekend.long[indicator.long!=0]

OLS.reg=glm( amount.long~ 1+age.long+weekend.long, family = gaussian())

#print("~~~~~~~~~~~~~~~~~~~~~RE~~~~~~~~~~~~~~~~~~~~~~~~~~")

#### starting points for sigmaE, sigmaU, and betas are based on Random Effects

regression #####################

indicator.re=apply(cbind(indicator1,indicator2),1,min)

amount.re=c(amount1[indicator.re!=0],amount2[indicator.re!=0])

age.re=c(age[indicator.re!=0],age[indicator.re!=0])

weekend.re=c(weekend1[indicator.re!=0],weekend2[indicator.re!=0])

ID.re=c(ID[indicator.re!=0],ID[indicator.re!=0])

RE.reg=lmer(amount.re~1+age.re+weekend.re+(1|ID.re))

solution=results((getME(RE.reg,"sigma"))^2,(getME(RE.reg,"sigma")*getME(RE.reg,"theta"))^2,

(getME(logistic.reg,"theta"))^2,

0,fixef(RE.reg)[1],fixef(RE.reg)[2],fixef(RE.reg)[3],

fixef(logistic.reg)[1],fixef(logistic.reg)[2],fixef(logistic.reg)[3])

if(loopi==0) {coeff.mat=solution

REreg.mat=

c((getME(RE.reg,"sigma"))^2,(getME(RE.reg,"sigma")*getME(RE.reg,"theta"))^2,

fixef(RE.reg),sqrt(diag(vcov(RE.reg))))

logisticREreg.mat=

c((getME(logistic.reg,"theta"))^2,fixef(logistic.reg),sqrt(diag(vcov(logistic.reg))))

pooledOLS.mat=

c(OLS.reg$coefficients,sqrt(diag(vcov(OLS.reg))))}
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else {coeff.mat=cbind(coeff.mat,solution)

REreg.mat=

cbind(REreg.mat,c((getME(RE.reg,"sigma"))^2,

(getME(RE.reg,"sigma")*getME(RE.reg,"theta"))^2,

fixef(RE.reg),sqrt(diag(vcov(RE.reg)))))

logisticREreg.mat=

cbind(logisticREreg.mat,c((getME(logistic.reg,"theta"))^2,fixef(logistic.reg),

sqrt(diag(vcov(logistic.reg)))))

pooledOLS.mat=

cbind(pooledOLS.mat,c(OLS.reg$coefficients,sqrt(diag(vcov(OLS.reg)))))}

loopi=loopi+1

}

return(list("POLS"=pooledOLS.mat,"REREG"=REreg.mat,"LOGITRE"=logisticREreg.mat,

"TWOPART"=coeff.mat))

}

2.D.2 Results of simulation

Figure 2.D.1 shows the coverage rate of 95% confidence intervals of model parameters in

relation to the model specification and dataset size. Convergence rates differed depend-

ing on the sample size of individual dataset and correlation. The lowest convergence rate

was 57% (N = 150, ρ = 0.50); the highest convergence rate was 73% (N = 800, ρ = 0.85

and N = 500, ρ = 0.50). The figure demonstrates that the model parameters related to

the amount part can have a certain degree of bias under model misspecification. Ta-

ble 2.D.1 shows the results of model parameters estimation under various assumptions.

The variance components parts have less bias when estimation takes the true correlation

structure into account. The model parameters related to the probability part are better es-

timated with the Gaussian quadrature method than the Laplace approximation. However,
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Figure 2.D.1: Coverage probability of 95% confidence intervals of model parameters estimated

with two separate random effects models and a two-part model with correlated random effects.

Figure A 2.5.1. Coverage probability of 95% confidence intervals of model parameters estimated 
with two separate random effects models and with two-part model with correlated random effecs
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the amount part model parameters are biased when the correlation of random effects are

not taken into account.

Table 2.D.1: Estimated model parameters from two 2-part models allowing correlated (ρ ≠ 0) and

assuming uncorrelated (ρ = 0) random effects, under various scenarios from simulation Study 2

ρ N Convergence (%) True parameters Model parameters estimates

Model allows Model assumes

ρ ≠ 0 ρ = 0

Mean SE Mean SE

0.85 150 59 σε 100 96.3 16.2 99.6 .

σu 50 56.4 24.9 29.5 .

σv 25 38.8 22.5 23.1 .

ρ 0.85 0.85 0.24 NA NA

γ0 12.7 14.4 4.8 12 3.6

γ1 -30 -34.2 11.3 -28.1 8.2

γ2 2 1.8 0.6 1.8 0.6

β0 900 900.8 5.2 897 5.2

β1 -1000 -1003.2 13.8 -981 12.4

β2 5 5 1.7 4.9 1.8

500 70 σε 100 98.9 9.3 99.6 .

σu 50 57.2 13.8 29.8 .

σv 25 37.1 13.6 24.2 .

ρ 0.85 0.9 0.1 NA NA

γ0 12.7 15.4 2.9 12.5 2.1

γ1 -30 -36.9 7 -29.6 4.7

γ2 2 2.1 0.4 1.9 0.33

β0 900 901.2 2.9 896.3 2.8

β1 -1000 -1005.3 7.4 -979.4 6.8
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Table 2.D.1: Estimated model parameters from two 2-part models allowing correlated (ρ ≠ 0) and

assuming uncorrelated (ρ = 0) random effects, under various scenarios from simulation Study 2

(Continued)

ρ N Convergence (%) True parameters Model parameters estimates

Model allows Model assumes

ρ ≠ 0 ρ = 0

Mean SE Mean SE

β2 5 5.2 0.9 5 1

800 73 σε 100 99.6 7.4 99.8 .

σu 50 57.8 11 29.8 .

σv 25 32.5 10.2 25.2 .

ρ 0.85 0.91 0.1 NA NA

γ0 12.7 15 2.3 12.5 1.6

γ1 -30 -36.1 5.5 -29.7 3.7

γ2 2 2 0.3 2 0.3

β0 900 901.2 2.3 896.3 2.2

β1 -1000 -1005.7 5.9 -979.7 5.3

β2 5 5.2 0.7 5 0.8

0.5 150 57 σε 100 98.4 17.1 99.8 .

σu 50 58.4 24.5 43.2 .

σv 25 31.5 23 35.1 .

ρ 0.5 0.53 0.29 NA NA

γ0 12.7 14.7 5.1 14.2 4.5

γ1 -30 -34.9 11.9 -33.7 10.2

γ2 2 1.9 0.7 2.3 0.7

β0 900 900.6 5.5 897.8 5.7
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Table 2.D.1: Estimated model parameters from two 2-part models allowing correlated (ρ ≠ 0) and

assuming uncorrelated (ρ = 0) random effects, under various scenarios from simulation Study 2

(Continued)

ρ N Convergence (%) True parameters Model parameters estimates

Model allows Model assumes

ρ ≠ 0 ρ = 0

Mean SE Mean SE

β1 -1000 -1003.2 14.8 -988 13.5

β2 5 5.1 1.7 4.9 1.8

500 73 σε 100 100.5 9.6 100.3 .

σu 50 57.6 13.3 42.9 .

σv 25 32.9 10.9 24.4 .

ρ 0.5 0.65 0.14 NA NA

γ0 12.7 15 2.8 12.4 2.1

γ1 -30 -35.6 6.5 -29.5 4.7

γ2 2 2 0.37 2 0.33

β0 900 901.5 3 898.1 3.1

β1 -1000 -1006.6 8.1 -988.5 7.3

β2 5 5.2 0.9 4.9 1

800 70 σε 100 100.2 7.6 99.5 .

σu 50 61.3 11 44.1 .

σv 25 35 10.6 25.5 .

ρ 0.5 0.7 0.1 NA NA

γ0 12.7 15.3 2.3 12.6 1.7

γ1 -30 -36.4 5.4 -29.9 3.8

γ2 2 2 0.31 2 0.27



76 CHAPTER 2. INTAKE DISTRIBUTION OF OCCASIONALLY-CONSUMED FOODS

Table 2.D.1: Estimated model parameters from two 2-part models allowing correlated (ρ ≠ 0) and

assuming uncorrelated (ρ = 0) random effects, under various scenarios from simulation Study 2

(Continued)

ρ N Convergence (%) True parameters Model parameters estimates

Model allows Model assumes

ρ ≠ 0 ρ = 0

Mean SE Mean SE

β0 900 901.4 2.4 897.7 2.4

β1 -1000 -1007.8 6.3 -987.6 5.8

β2 5 5.3 0.7 5 0.8



Chapter 3

Socio-economic and personal

determinants of food intake in the UK

using a two-part mixed-effects model

with correlated random effects

This chapter demonstrates the application of the two-part model introduced in Chapter 2

to estimate the effect of various personal and socio-economic factors on consumption

of various foods of public health importance. The analyses account for excess zeros,

measurement errors and unobserved correlation between probability of consumption and

portion size. The analysis are based on dietary data from a sub-sample of population

from the UK National Diet and Nutrition Survey Rolling Programme.

3.1 Background
Understanding diet choice is complex due to the intricate interplay of personal and envi-

ronmental factors affecting dietary intake (Lusk et al., 2013; Shepherd and Raats, 2013).

Additionally, records of dietary intake often have substantial natural within-person varia-

77
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tion, and measurement error arising from imperfect measurement instruments (Beaton

et al., 1979; Nusser et al., 1987; Rutishauser and Black, 2002; Basiotis et al., 1987; Nel-

son et al., 1989; Kipnis et al., 2002). Further, most diet diaries and recalls collect records

over 2-4 days only and, consequently, dietary data often contain a high proportion of zero

records as consumption may not occur during the measurement period. Hence, careful

statistical modelling to account for various variability sources and excess zeros is required

to minimise potential bias in analysis and interpretation. This chapter demonstrates the

application of novel statistical methods in observational research to provide reliable infer-

ences on food intake determinants in a free-living population in an uncontrolled environ-

ment. We analyse data collected as a part of the UK National Diet and Nutrition Survey

Rolling Programme (NDNS RP), which provides information on food intake, collected with

a 4-day food diary, along with various personal, lifestyle and socio-economic determinants

of nutritional behaviour of a representative sample of adults drawn from the UK popula-

tion. An extensive literature exists on the potential determinants of people’s food choices

(Bufe et al., 2005; Kim and Drayna, 2005; Mennella et al., 2005; Navarro-Allende et al.,

2008; Nicklaus, 2011; McGowan et al., 2012; Ranjit et al., 2015; Rasmussen et al., 2006;

Kröller and Warschburger, 2009; Turrell et al., 2003; Maguire and Monsivais, 2015; No-

vaković et al., 2014; Galobardes et al., 2001; Rozin et al., 2011). However, despite grow-

ing understanding behind people’s diet preferences, governmental dietary programmes to

encourage healthier eating habits in the general population are not reaching their target

audience. This is reflected in recent findings from the NDNS RP Years 1-4 which showed

that a large proportion of the UK population do not adhere to the nutritional recommen-

dations by Public Health UK. These findings were echoed by a review of various diet

interventions aimed at increasing fruits and vegetables consumption that showed small

or inconsistent effects on the desired behaviours (Appleton et al., 2016). A recent review

of interventions aiming to modify discretionary food choices highlighted some potentially

useful strategies but no single most effective strategy was identified (Grieger et al., 2016).

Overall, current research suggests a need for more targeted interventions and policies
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addressing specific lifestyles and food preferences. To achieve this, better understanding

of the determinants, driving forces and constraints behind people’s long-term usual food

choices in every-day life, outside experimental settings, is required. The task is not trivial

and requires reliable analytical and measurement tools. Currently, the most reliable and

widely available long-term food intake measurement tools are multiple-day food diaries

or multiple 24-hour recalls (Bingham et al., 1994; Kipnis et al., 2003; Arab et al., 2011).

These food records, however, are subject to a large within-person daily variation, which is

observed along with the true personal long-term intake (Nelson et al., 1989). The prevail-

ing statistical approach is to compute individual averages which are used as proxies for

long-term true personal intake in ordinary least squares (OLS) regression. However, us-

ing proxies in the analysis leads to artificially inflated food intake variance, which, in turn,

reduces the chance of detecting an important predictor. The statistical analysis of intake

of occasionally-consumed foods, such as alcohol, fruits, fish, and certain vegetables, is

further complicated by a high frequency of zero intake records making OLS or logistic

regression of limited inferential value (Tooze et al., 2006). Therefore, nutritional data an-

alytical tools should account for within-person variation, measurement error and excess

zeros to avoid violations of model assumptions which can lead to incorrect analyses, data

misinterpretation or inefficient use of available information. This chapter investigates the

effect of personal, lifestyle and socio-economic determinants on the consumption of cer-

tain nutrients and food groups, shown to be of public health importance (Guenther et al.,

2013; Department of Health, 2014; US Department of Health and Human Services, 2015),

in an adult population drawn from NDNS RP data (Years 2-4). We utilise a two-part sta-

tistical model with random effects (Olsen and Schafer, 2001; Tooze et al., 2002) which

accounts for within-person variation and excess zeros in occasionally-consumed foods.

The analysis simultaneously adjusts for multiple correlated factors, such as education,

income and occupation, to minimise bias arising from confounding. This analysis is the

first, to the best of the author’s knowledge, to take advantage of contemporary statisti-

cal advances and a unique data source to provide robust and detailed evidence on the
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determinants of food intake in a sample representative of the general adult UK population.

3.2 Methods

3.2.1 The UK National Diet and Nutrition Survey Rolling Programme

The NDNS RP is an annual cross-sectional survey, jointly funded by Public Health Eng-

land and the UK Food Standards Agency, undertaken since 2008. The survey aims to as-

sess diet, nutrient intake and nutritional status of the UK population aged 18 months and

older, living in private households. A nationally representative sample of the UK house-

holds is selected by a multistage sampling procedure: firstly, the Postcode Address File

(PAF), which contains all the addresses in the UK, is accessed to sample Primary Sam-

pling Units (PSUs). These are small geographical areas formed by neighbouring post-

codes. Secondly, twenty seven addresses are sampled from a selected PSU at random,

where either an adult or a child is selected. The 27 addresses are randomly allocated

to one of two groups to determine whether an adult (aged 19 years or over) and a child

(aged 1.5 to 18 years), or a child only, are selected for interview. At nine of the selected

addresses the interviewer selects one adult and, where present, one child for inclusion

in the survey. The remaining 18 addresses form a “child boost” where only households

with children are selected. Where more than one person is eligible the participants are

selected using a random selection procedure.

The data collection included an estimated four-day food diary, life-style factors, socio-

economic measurements and demographics. Diary response rate was 56%. Further

details can be found in Public Health England (2014).

3.2.2 Dietary data collection

Estimated four-day food diaries were supplemented with pictures of 15 frequently con-

sumed foods in small, medium and large portions. Records included portion sizes (house-

hold measures), brand names and label/wrapper information for unusual or ready-made

meals. Diaries were coded by trained coders and editors. Food intakes were entered into
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an NDNS RP specific version of the dietary assessment system DINO (Diet In Nutrients

Out), an all-in-one dietary recording and analysis system with the food composition data

used from the Department of Health’s (DH NDNS) Nutrient Databank (Fitt et al., 2010).

3.2.3 Data sample

The data sample analysed in this chapter comprises individuals older than 18 years drawn

from NDNS RP Years 2, 3, 4 (2009-2012). The initial sample available were 702 males

and 899 females. Of them 45 (6.4%) males and 113 (12.6%) females were excluded

due to dieting, further 65 (9.3%) and 79 (8.8%) females were excluded due to potential

extreme under-reporting. Extreme under-reporting was defined as the reported energy

intake of less than 80% of the estimated resting energy expenditure which was based on

Mifflin equations that adjust for weight, height, age and gender (Mifflin et al., 1990). For

some participants, information on food intake predictors was missing providing the final

sample of 509 males and 618 females.

3.2.4 Food groups and nutrients

Key macronutrients and food groups were selected for analysis according to current nu-

tritional guidelines (Department of Health, 2014; US Department of Health and Human

Services, 2015) and public health importance. These comprised alcohol (g), energy

(Kcal), protein (g), saturated fatty acids (SFA) (g), monounsaturated fatty acids (MUFA)

(g), Omega-3 and Omega-6 fatty acids (g), trans-fatty acids (TFA) (g), fibre (g), starch (g),

extrinsic sugars (Kcal), fruits (g), cooked vegetables (g), raw and salad vegetables (g),

processed meat (g), oily fish (not canned tuna) (g) and sugary beverages (g).

3.2.5 Demographics, socio-economic and life-style factors

Demographic factors comprised age; sex; ethnicity (white; non-white); body mass index

(BMI); lipid and blood pressure lowering medications taken (yes; no); self-assessed gen-

eral health problems (no; yes, but no impact on mobility; yes, with impact on mobility);

partner status (married or in partnership; never married or lived in partnership; previously
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married or lived in partnership but now single).

Life-style factors comprised take away shopping habits (rarely or never; once or twice

per month; every week or more often); fruits and vegetables shopping habits (less than

weekly; weekly and more often); being a non-meat-eater (yes; no); smoking (never smoked;

quit >10 years ago; quit ≤ 10 years ago; current smoker; occasional smoker); alcohol

consumption (never drink; rarely drink; the rest); moderate-to-vigorous physical activity

(MVPA) assessed through a recent self-completed Physical Activity Questionnaire, ex-

pressed in min per day and combined from four domains: home, commuting, work and

leisure (0 min ; 0–10 min; 10–20 min; 20–40 min; 40–60 min; ≥ 60 min) (Mindell, 2014).

Socio-economic factors comprised education as the highest obtained degree (bachelor

degree and above; unfinished degree; current student; A levels; GCSE grades A-C;

GCSE grades below C or no qualifications; foreign degree); socio-economic status (never

worked and others; routine; semi-routine; lower supervisory and technical; small employ-

ers and own account; intermediate; lower managerial and professional; higher managerial

and professional); income over the previous 12 months as assessed through self-report

and equalised to take into account the household composition by a rescaled version

of the Organisation for Economic Development modified equivalence scale (Anyaegbu,

2010) (<£15,000; £15,000–£25,000; £25,000–£35,000; £35,000–£50,000; ≥ £50,000).

For some people (71 (14%) for men and 85 (13.8%) for women) information was not col-

lected so they were assigned into a separate category; tenure (own or mortgage; renting

privately; renting from local authority).

3.2.6 Statistical analysis

Statistical models were developed separately for occasionally- and habitually-consumed

foods intakes. Occasionally-consumed food intake is characterised by a high frequency of

zero values. Histograms were used to distinguish these from habitually-consumed foods

which are consumed most days. All models were adjusted for survey year, weekend

and age. Male and female records were analysed separately. Habitually-consumed food
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intakes were analysed with linear mixed-effect regression models (Diggle et al., 2002).

The intakes from occasionally-consumed foods were analysed with two-part mixed-effects

models with correlated random effects. The model consists of the probability part which

estimates the probability of food consumption for a given individual (modelled with logistic

regression with a random intercept) and the amount part which estimates the amount of

food consumed when consumption took place (modelled with linear mixed-effects regres-

sion model with a random intercept). The parts are linked by allowing the two random

intercepts to be correlated. This allows portion sizes and consumption frequency corre-

late through unobserved individual preferences. Further details on the two-part model and

its application in epidemiology can be found in Appendix 3.B.1 and Tooze et al. (2002);

Olsen and Schafer (2001); Smith et al. (2015); Chernova and Solis-Trapala (2016); Liu

et al. (2010). Natural log-transformation was applied when the distributions of continuous

variables were skewed.

Model selection was based on a backward selection process. This strategy was chosen

because the potential risk factors are correlated and it is unknown a priory, which of

these factors will present themselves as most significant when modelling a particular food

intake. This strategy allows us to find a combination of correlated risk factors, which might

show significant model improvement together but not when fitted separately.

An initial model A for food intake contained all the potential predictors. The predictors with

p-values larger than 0.20 were removed one at a time. Secondly, an intermediate model

B contained the predictors retained at the first step. Thirdly, the remaining predictors

stayed in the final model C if they were significant at 10% significance level. The choice of

moderate significance levels at each step reflects the large number of model parameters,

medium size dataset and potential correlation between the predictors. Likelihood ratio

tests were used at each step of model selection. The Akaike information criterion (AIC)

was used if a selection between non-nested models had to be made and the model with

the smallest AIC was retained (Burnham and Anderson, 2002). The results of the final
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model are presented.

Model interpretation: the regression parameters of the linear mixed-effects model in the

two-part model are subject-specific. For example, the difference in consumption at week-

end compared to a week day is a within-person difference, whereas a between-person

difference would have to be assessed taking into account the value of the unobserved

person-specific effects. A marginal interpretation of regression coefficients, i.e. the effect

averaged over the whole population may be of interest in some instances. Examples in-

clude ethnicity or parental background, and cases where a predictor’s effects go in the

opposite directions for the probability and amount model parts. Numerical integration is

required to estimate marginal effects of covariates in non-linear models and further tech-

nical details can be found in Appendix 3.B.2 and Su et al. (2011).

The residuals from the portion part of the two-part model were estimated on the logarith-

mic scale for model diagnostics plots. The portion sizes were predicted based on empir-

ical Bayes rules and then residuals were estimated as the difference between observed

and predicted intakes.

The complex survey design includes individual combined selection weights to adjust for

different probabilities of dwelling unit, catering unit and individuals’ selection, with key

variables for creating weights including age, sex and Government Region Office. The

presented analysis is model-based and is not meant to provide inferences on population

statistics therefore, it does not adjust for weights or clustering (Muthen and Satorra, 1995;

Chambers et al., 2012).

This decision is discussed in more detail in Appendix 3.B.3. Standard errors were es-

timated by using a Huber-White-sandwich estimator. Stata 14 software was utilised to

analyse the data (StataCorp. 2015. Stata Statistical Software: Release 14. College

Station, TX: StataCorp LP).
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3.3 Results
Personal, socio-demographic and lifestyle sample characteristics are shown in Table 3.1.

The study sample comprised 509 men, mean (sd) age 48.3 (17.5), BMI 27.4 (4.5) and 610

women with mean (sd) age 48.2 (18.1), BMI 26.7 (5.7). The majority of participants are

of white ethnicity (over 92%), self-reported healthy (over 60%) and have a wide spread of

lifestyle and socio-economic characteristics.



   

 Males (N = 509) Females (N = 618) 

 N 

(mean) 

% 

(SD) 

N 

(mean) 

% 

(SD) 

     

Age, years (mean (SD)) (48.3) (17.5) (48.2) (18.1) 

BMI (mean(SD)) (27.4) (4.5) (26.7) (5.7) 

Survey Year     

2009/2010 170 33.4 202 32.7 

2010/2011 146 28.7 178 28.8 

2011/2012 193 37.9 238 38.5 

Ethnicity     

white 471 92.5 571 92.4 

non-white 38 7.5 47 7.6 

Health, self-reported     

no health problems 341 67.0 381 61.7 

health problems, no mobility restrictions 86 16.9 110 17.8 

health problems, mobility restrictions 82 16.1 127 20.6 

Lipid lowering drug taken     

no 451 88.6 560 90.6 

yes 58 11.4 58 9.4 

Blood pressure lowering drug taken     

no 454 89.2 544 88.0 

yes 55 10.8 74 12.0 

Partner      

married or live in partnership 273 53.6 266 43.0 

never married or lived in partnership 148 29.1 168 27.2 

previously married or lived in partnership but now 

single 

88 17.3 184 29.8 

Lifestyle 

Smoking     

never smoked 257 50.5 355 57.4 

ex-smoker, quit >10 year ago 77 15.1 73 11.8 

ex-smoker, quit <=10 years ago 46 9.0 65 10.5 

current 115 22.6 116 18.8 

occasional 14 2.8 9 1.5 
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Table 3.1: Personal, lifestyle and socio-demographic characteristics of the sample population

selected for analysis from the NDNS RP Years 2-4



 Males (N = 509) Females (N = 618) 

 N 

(mean) 

% 

(SD) 

N 

(mean) 

% 

(SD) 

     

Moderate to vigorous physical activity, min/day     

0 14 2.8 15 2.4 

0-10 62 12.2 138 22.3 

10-20 33 6.5 76 12.3 

20-40 71 14.0 116 18.8 

40-60 65 12.8 70 11.3 

>60 264 51.9 203 32.9 

Drinking     

yes 444 87.2 524 84.8 

rarely 28 5.5 37 6.0 

never 37 7.3 57 9.2 

Fruits and vegetables buying habits     

weekly or more often 472 92.7 575 93.0 

less often than weekly 37 7.3 43 7.0 

Non-meat eaters 9 1.8 23 3.7 

Take away habit     

rarely or never 200 39.3 291 47.1 

less than once a week 198 38.9 204 33.0 

once a week and more 111 21.8 123 19.9 

Socio-economic  

Tenure     

mortgaged or owned 355 69.7 433 70.1 

rented privately  90 17.7 89 14.4 

 rented from local authority 64 12.6 96 15.5 

Qualifications     

bachelor degree and above 133 26.1 136 22.0 

unfinished degree 50 9.8 64 10.4 

students 20 3.9 32 5.2 

A levels 83 16.3 98 15.9 

GCSE A_C 86 16.9 114 18.5 

GCSE below C and no qualifications 110 21.6 146 23.6 

foreign qualifications 27 5.3 28 4.5 
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Table 3.1 Personal, lifestyle and socio-demographic characteristics of the sample population se-

lected for analysis from the NDNS RP Years 2-4 (Continued)



 Males (N = 509) Females (N = 618) 

 N 

(mean) 

% 

(SD) 

N 

(mean) 

% 

(SD) 

     

Social Status      

higher managerial and professional occupation 104 20.4 86 13.9 

lower managerial and professional occupation 134 26.3 174 28.2 

intermediate occupations 45 8.8 63 10.2 

small employers and own account workers 50 9.8 74 12.0 

lower supervisory and technical occupation 49 9.6 47 7.6 

semi-routine occupations 60 11.8 93 15.1 

routine occupations 56 11.0 58 9.4 

never worked or other 11 2.2 23 3.7 

Equalised household income, £ 1000     

<=15 70 13.8 134 21.7 

15-25 99 19.5 124 20.1 

25-35 95 18.7 110 17.8 

35-50 79 15.5 87 14.1 

>50 95 18.7 78 12.6 

missing 71 14.0 85 13.8 
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Table 3.1 Personal, lifestyle and socio-demographic characteristics of the sample population se-

lected for analysis from the NDNS RP Years 2-4 (Continued)
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Table 3.2 displays the median and interquantile range of intake of macronutrients which

are habitually consumed while Table 3.3 shows the sample distributions of daily intake of

occasionally- consumed foods.

Table 3.2: The sample distribution of macronutrients intake in males (N = 509) and females

(N=618)

Males Females

Macro nutrients Median IQR Median IQR

Energy, Kcal 2200 1900 - 2500 1660 1460 - 1860

Protein, g 87 73 - 100 67 58 - 75

SFA, g 30.4 24.5 - 36.4 23.9 18.9 - 28.8

Fibre, g 15.6 12.7 - 18.5 13.1 10.7 - 15.6

Starch, g 151 125 - 177 113 97 - 129

MUFA, g 30 25 - 36 23 19 - 27

TFA, g 1.4 1.1 - 1.9 1.1 0.8 - 1.5

NMES, g 68 44-106 48 30-74

Omega 3 FA, g 2.2 1.8 - 2.8 1.8 1.5 - 2.1

Omega 6 FA, g 11 9 - 14 9 7 - 11

Total sugar, g 114 85 - 143 89 68 - 110

A description of food intake by number of consumption (Table 3.4) helps illustrate the

need to use a two-part model for estimation of intake of occasionally-consumed foods

to minimise inferential bias. The percentage of participants who reported zero intakes

on all four days of food diaries ranged from 6% for fruits to 73% for oily fish intake. In

men, the total number of zero records is 1252 (61.7%) for alcohol, 703 (34.6%) for fruits,

1255 (61.8%) for salad vegetables, 967 (47.6%) for cooked vegetables, 1063 (52.4%) for

processed meat and 1446 (71.2%) for soft drinks. We also notice that the portion sizes

can relate to consumption frequency and tend to increase for the majority of the foods. For

example, sugary drinks median portion size increases by 70%(women) and 85% (men)
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Table 3.3: The sample distributions of intake of occasionally-consumed foods in males (N = 509)

and females (N=618). Correlation presented in the table shows the extent to which probability of

consumption and portion size is correlated

Occasionally-consumed food groups Median IQR Corr p-value

Males

Alcohol, g 12.4 0-29.8 0.23 <0.001

Fruits, g 73 31 -163 0.67 <0.001

Cooked vegetables, g 85 53 - 131 0.43 0.005

Salad and raw vegetables, g 25 9 - 60 0.39 0.002

Processed meat, g 39 23 - 62 0.12 0.390

Oily fish, g 6 2 - 15 -0.45 0.016

Sugary drinks (not juice), g 50 7 - 212 0.41 0.003

Females

Alcohol, g 6.1 0-15.3 0.25 0.030

Fruits, g 86 36 -180 0.55 <0.001

Cooked vegetables, g 76 52 - 108 0.29 0.083

Salad and raw vegetables, g 39 19 - 70 0.24 0.095

Processed meat, g 26 15 - 41 -0.03 0.830

Oily fish, g 5 2 - 11 -0.14 0.663

Sugary drinks (not juice), g 34 7 - 126 0.44 <0.001

when consumption frequency increases from one to four recorded consumption days.

This is further supported by the estimated correlation of random effects (Table 3.3). For

example, healthy eating habits like fruits and vegetables consumption show a high positive

correlation of random effects indicating that those with higher consumption frequency also

consume bigger portions. It also supports the presence of person-specific characteristics

which drive both, the consumption frequency and the consumption portions.

Due to its high public health significance, the results from modelling alcohol intake are
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Table 3.4: Median portion sizes (g) of occasionally-consumed foods relative to consumption fre-

quency and the number of non-consumption days (N(%)) as reported in food diaries

The number of consumption days

0 1 2 3 4

N (%) Median daily portion size, g

Males

Alcohol 183 (36.0) 28.2 37.9 36.3 37.9

Fruits 55 (10.8) 19 83 112 144

Cooked vegetables 52 (10.2) 121 149 171 171

Salad and raw vegetables 147 (28.9) 60 73 87 105

Processed meat 83 (16.3) 75 70 87 96

Oily fish 368 (72.3) 89 72 72 111

Sugary drinks (not juice) 257 (50.5) 301 388 522 558

Females

Alcohol 277 (44.8) 22.5 26.8 28.9 25.8

Fruits 39 (6.3) 65 99 104 153

Cooked vegetables 62 (10.0) 112 125 136 147

Salad and raw vegetables 143 (23.1) 75 88 90 105

Processed meat 129 (20.9) 50 67 55 68

Oily fish 452 (73.1) 61 62 62 60

Sugary drinks (not juice) 316 (51.1) 260 300 333 440

reported in the following dedicated section, prior to the presentation of results for the

intake of macronutrients and foods. The tables presented in the remainder of this chapter

display estimates from the final model for the intake of each food, i.e., the statistically

significant regression parameters for clarity. To aid interpretation of results forest plots of

effect sizes are shown in Figures 3.1-3.4.
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3.3.1 Alcohol intake

Tables 3.5 and 3.6 present the results from modelling alcohol intake in men and women

respectively. Alcohol consumption increases during the weekend (including Friday) com-

pared to weekdays: odds of consumption increase by 3.72, 95% CI: (2.77, 4.99) for men

and 3.00, 95% CI: (2.32, 3.89) for women (both p-values <0.001) and portion size in-

creases by 1.31 95% CI: (1.18, 1.46) times in men and 1.21 95% CI: (1.21, 1.49) times

in women (both p-values<0.001). In men, the increase was associated with being a

smoker or having recently quit, being a student, being divorced or widowed, and fre-

quent takeaways consumption. Decrease in alcohol consumption was associated with

being other than white ethnicity, privately renting compared to owning or paying mortgage

and equalised income of less than £25,000.

In women, increase in alcohol intake was associated with occasional/regular takeaways

consumption, being in lower managerial or intermediate occupations, being divorced or

widowed. Decrease was related to taking lipid lowering medicine, and having lower edu-

cation and lower socio-economic status.

Marginal effects. The expected daily alcohol consumption for groups was estimated for

base groups in men and women (see Methods section for details) and found to be 21g

and 13g of alcohol respectively. Additionally, in men, current smokers show increased

daily alcohol consumption by 14.7g compared to the base group. In women, occasional or

regular takeaway consumption is associated with daily increase of 4.4g of alcohol intake.



  

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 1882) CONDITIONAL AMOUNT (N = 778) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value 

LR 

p-value2 

Relative 

Change 

(95% CI) 

Wald 

p-value 

LR 

p-value2 

Weekend1 3.72  <0.001 1.33  <0.001 

 (2.77, 4.99)   (1.18, 1.50)   

Survey Year (base: 2009/2010)       

2010/2011 0.63 0.134  1.20 0.076  

 (0.35, 1.15)   (0.98, 1.48)   

2011/2012 0.76 0.328  0.97 0.750  

 (0.44, 1.31)   (0.78, 1.19)   

Age, years 
1.036 

(1.019,1.054) 
 <0.001 0.99  0.046 

    (0.99, 1.00)   

Ethnicity (non-white) 0.26  0.013    

 (0.09, 0.75)      

Partner (base: married)      0.005 

never married    1.14 0.237  

    (0.92, 1.43)   

previously married    1.39 0.002  

    (1.13, 1.72)   

Smoking (base: never smoked)   0.095   0.002 

ex, quit >10 year ago 1.79 0.119  1.00 0.987  

 (0.86, 3.74)   (0.76, 1.32)   

ex, quit <=10 years ago 1.45 0.369  1.37 0.042  

 (0.64, 3.27)    (1.01, 1.86)   

current 2.35 0.009  1.47 0.001  

 (1.24, 4.46)   (1.18, 1.83)   

occasional 1.12 0.873  2.10 <0.001  

 (0.27, 4.64)   (1.49, 2.96)   

Alcohol habit consumption (base: 

regular) 
      

rarely 0.02  <0.001 0.09  <0.001 

 (0.01, 0.10)   (0.04, 0.20)   

never NA   NA   

Take away (base: rarely or never)      0.033 

occasionally     0.99 0.944  

    (0.81, 1.22)   

regularly    1.28 0.040  

    (1.01, 1.61)   

Tenure (base: mortgaged or 

owned) 
  0.073    

privately rented 0.47 0.025     

 (0.25, 0.91)      

local authority rented 0.98 0.964     

 (0.44, 2.18)      
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Table 3.5: Alcohol intake predictors in men in the sample population selected for analysis from

the NDNS RP Years 2-4



       

       

McClement equivalence score, 

 £ 1000 
  0.028    

<=15 0.39 0.032     

 (0.17, 0.93)      

15-25 0.32 0.003     

 (0.15, 0.67)      

(base) 25-35 1      

35-50 0.76 0.487     

 (0.34, 1.66)      

>50 0.85 0.674     

 (0.41, 1.78)      

Qualifications 1  0.031    

(base) bachelor degree and above       

unfinished degree 0.63 
(0.27, 1.45) 

0.281 
    

       

current students 1.51 
(0.42, 5.40) 

0.524 
    

       

A levels 0.43 
(0.21, 0.88) 

0.020 
    

       

GCSE A_C 0.51 
(0.25, 1.05) 

0.066 
    

       

GCSE below C and no 
qualifications 

0.29 
(0.14, 0.63) 

 

0.002 
    

foreign qualifications 0.63 
(0.21, 1.90) 

0.413 
    

Residual between-person SD 1.95 (1.68, 2.26) 0.62 (0.53, 0.71) 

Residual within-person SD  0.66 (0.62, 0.71) 

Residual within-person correlation  0.46 (0.37, 0.55) 

Residual correlation between 
model parts 

0.37 (0.17, 0.58) (p-value< 0.001) 

 

1Weekend includes Friday. 

2p-value from likelihood ratio (LR) test of joint significance in case when a factor variable has more than two levels. 
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Table 3.5 Alcohol intake predictors in men in the sample population selected for analysis from the

NDNS RP Years 2-4 (Continued)



  

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2234) CONDITIONAL AMOUNT (N = 728) 

Predictors 

Odds 
Ratio 

(95%CI) 

Wald 
p-value 

LR 
p-value2 

Relative 
Change 
(95%CI) 

Wald 
p-value 

LR 
p-value2 

Weekend1 2.97  <0.001 1.34 <0.001  

 (2.26, 3.92)   (1.21, 1.49)   

Survey Year       

(base) 2009/2010 1   1   

2010/2011 0.73 0.201  1.08 0.427  

 (0.45, 1.19)   (0.89, 1.32)   

2011/2012 0.83 0.419  1.17 0.082  

 (0.53, 1.31)   (0.98, 1.40)   

Age, years 1.02  0.001 0.99  <0.001 

 (1.01, 1.04)   (0.98, 0.99)   

BMI, kg/m2    1.02  0.067 

    (1.00, 1.03)   

Lipid lowering medicine 0.41  0.036 0.73  0.118 

 (0.18, 0.94)   (0.50, 1.08)   

Partner      0.034 

(base) married    1   

never married    1.08 0.439  

    (0.89, 1.32)   

previously married    1.28 
(1.07, 1.52) 

0.006  

Alcohol habit consumption   <0.001   0.002 

(base) regular 1   1   

rarely 0.08   0.26   

 (0.03, 0.21)   (0.11, 0.62)   

never N/A   N/A   

Take away shopping   0.024   0.078 

(base) rarely or never 1   1   

Occasionally/regularly  
1.64 

(1.07, 2.53) 
  

1.18 
(0.98, 1.43) 

  

Qualifications   0.027    

(base) bachelor degree and above 1      

unfinished degree 1.10 0.783     

 (0.55, 2.19)      

current students 0.35 0.026     

 (0.14, 0.88)      

A levels 0.55 0.074     

 (0.28, 1.06)      

GCSE A_C 0.69 0.216     

 (0.38, 1.24)      

GCSE below C and no qualifications 0.60 0.120     

 (0.32, 1.14)      

foreign qualifications 0.27 0.039     

 (0.08, 0.94)      
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Table 3.6: Alcohol intake predictors in women in the sample population selected for analysis from

the NDNS RP Years 2-4



       

Socio-economic status   0.003    

(base) higher managerial  
and professional occupation 

1      

       

lower managerial  
and professional occupation 

1.83 0.034     

 (1.05, 3.20)      

Intermediate occupations 1.35 0.450     

 (0.62, 2.93)      

Small employers  
and own account workers 

1.26 0.526     

 (0.62, 2.58)      

Lower supervisory  
and technical occupation 

0.45 0.116     

 (0.17, 1.21)      

Semi-routine occupations 0.73 0.390     

 (0.36, 1.50)      

Routine occupations 0.51 0.106     

 (0.22, 1.16)      

Never worked and Other 0.60 0.426     

 (0.17, 2.09)      

Residual between-person SD 1.68 (1.44, 1.93) 0.57 (0.49, 0.64) 

Residual within-person SD  0.57 (0.53, 0.61) 

Residual within-person correlation  0.50 (0.41, 0.58) 

Residual correlation between  
model parts 

0.31 (0.09, 0.53) (p-value 0.006) 

 

1Weekend includes Friday. 

2p-value from likelihood ratio (LR) test of joint significance in case when a factor variable has more than two levels. 
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Table 3.6 Alcohol intake predictors in women in the sample population selected for analysis from

the NDNS RP Years 2-4 (Continued)
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3.3.2 Personal, socio-economic and lifestyle characteristics in rela-

tion to food intake in men

Below is a summary of the most interesting trends in relationships between determinants

and food intake described by predictor. The full results of modelling intake of macronutri-

ents and foods are presented in Appendix 3.A. The trends and overview of relationships

between the considered predictors and considered occasionally- consumed food intakes,

along with p-values, are summarised in Table 3.7.

Weekend is associated with increase in energy, protein, MUFA, SFA, TFA, Omega-6 FA,

total sugars, NMES intake and the consumption of alcohol, cooked vegetables, processed

meat and sugary drinks. It is also associated with decrease in fruits and raw vegetables

consumption.

Ethnicity (non-white) showed increased consumption of starch, omega-6 FA, cooked and

raw vegetables and decreased consumption of SFA, total sugars and NMES, alcohol and

processed meat.

Lipid lowering medication is related to increase in raw vegetables, oily fish and processed

meat intake and decrease in sugary beverages.

Fruits/Vegetables shopping less than weekly is associated with increase in sugary bever-

ages and decrease in raw vegetable intake.

Partner status Being divorced or widowed is associated with higher alcohol consumption,

lower raw vegetables and fibre intake and somewhat lower intake of Omega-3 FA and

Omega-6 FA; never married is associated with higher intake of TFA and raw vegetables.

Smoking Being a current smoker is related to increase in alcohol intake, processed meat

and MUFA, and decrease in fibre, fruits, cooked and raw vegetables. Being a recent ex-

smoker (≤10 years) is still associated with higher alcohol and processed meat and lower

fruit and fibre intake, but also with higher intake of raw vegetables. Ex-smoker (>10 years

ago) showed only higher intake in extrinsic sugars and occasional smokers increase in
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energy and MUFA compared to never-smokers.

MVPA increase is related to increased intake of all macronutrients except NMES, and

increase in fruit, vegetable and oily fish intake and decrease in sugary beverages.

Alcohol habit Those who rarely drink alcohol consumed more energy, protein, MUFA, SFA,

TFA, fibre, starch, total sugars, fruit and less oily fish than regular drinkers, but those who

said they never drink alcohol did not statistically differ from regular drinkers in their food

preferences except they consumed less processed meat and less oily fish.

Regular takeaway consumption is related to more energy, MUFA, SFA, TFA and alcohol

and to less fibre, total sugars, NMES and oily fish, and fewer fruit and cooked vegetable

intake.

Non-meat-eaters consumed less protein, fruits and raw vegetables but more fibre, starch,

total sugars and NMES, and cooked vegetables and oily fish.

Socio-economic indicators

Tenure Renting is related to increase in SFA, Omega-6 FA and processed meat, and

decrease in alcohol, fruit and cooked vegetable intake. Those renting from local authority

indicated lower intake of sugary drinks.

Qualifications. Lower qualifications are associated with lower energy, protein, Omega-3

FA, TFA, SFA, fibre, fruit, raw vegetable and oily fish intake. Being a student is somewhat

related to increased consumption of SFA, TFA and omega-3 FAl, and lower intake of

protein and fibre, but no estimates (except fibre) reached statistical significance, possibly,

due to very small numbers of participants in the students group.

Socio-economic status (occupation) Those involved in routine occupations consumed less

raw vegetables and more processed meat.
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Equalised income, when adjusted for the other food intake predictors, was related to

lower alcohol intake (<£25,000) and decrease in TFA, SFA and MUFA intake (for those in

<£15,000 and for those in ≥ £50,000 groups).



 

 

 

Predictors 
Alcohol 

Pr 

Alcohol 

Portion 

Fruits 

Pr 

Fruits 

Portion 

Veg 

cooked 

Pr 

Veg 

cooked 

Portion 

Veg raw 

Pr 

Veg raw 

Portion 

Process 

meat 

Pr 

Process 

meat 

Portion 

Oily fish 

Pr 

Oily fish 

Portion 

Sugary 

drinks 

Pr 

Sugary 

drinks 

Portion 

Weekend <0.001 <0.001 0.020 <0.001  0.060 0.003 0.067 0.064 0.010    0.022 

Survey Year 2010/2011               

Survey Year 2011/2012               

Age, years <0.001 0.039 <0.001 0.032 <0.001  0.013 0.069 <0.001  0.010 0.092 <0.001 <0.001 

BMI, kg/m2   0.115      0.032   0.023   

Ethnicity, non-white 0.013     0.003   <0.001      

Health problems (self-reported)         0.061      

Lipid lowering drug         0.009  0.024  0.081  

Blood pressure lowering drug               

Fruits/veg buy < weekly       0.097    0.076 0.039 0.121  

Non-meat-eaters    0.023  0.037  0.089   0.012    

Partner, not married  0.005             

Smoking  0.095 0.002 <0.001 0.005 0.051  0.017 0.175  0.101     

Physical activity, increase 

min/day 
  0.004 0.001   0.036    0.006 0.064 0.096 0.002 

Alcohol consumption, 

rare/never 
<0.001 <0.001 0.069      0.092  0.006    

Take away shopping, regular  0.033  0.052       0.022    

Tenure, renting 0.073   0.098      0.092   0.122 0.151 

Qualifications, lower levels1   <0.001 0.006 0.019      0.029    

SES, lower levels1       0.017 0.063  0.348     

Equalised income, increase £ 

1000 
0.028              

1For the individual effects of “Qualification” variable strata on alcohol and “SES” variable strata on raw vegetables please refer to Table 3.5 and Table Table A 3.2.3. P-values highlighted in bold 

indicate associated intake increase, underlined p-values indicate that the effects of the predictor depends on its category. Only significant effects are shown. 
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Table 3.7: Summary of the overall effects of personal, lifestyle and socio-economic predictors on the consumption of occasionally-consumed foods

presented as p-values and effect directions in men.
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Personal, socio-economic and lifestyle characteristics in relation to food intake in

women

Below is the summary of the most interesting trends in relationships between determi-

nants and food intakes described by predictor. The full results of modelling intake of

macronutrients and foods are presented in Appendix 3.A. The trends and overview of

relationships between the considered predictors and considered occasionally- consumed

food intakes, along with p-values, are summarised in Table3.8.

Weekend showed increase in intake of alcohol, cooked vegetables, processed meat, en-

ergy, protein, SFA, MUFA, TFA, Omega-3 and Omega-6 FA, total sugars and NMES intake

and small decrease in fruit intake.

Ethnicity (non-white) is associated with increased intake of raw vegetables, oily fish, sug-

ary beverages, MUFA, Omega-3 and Omega-6 FA intake increase, and decrease in pro-

cessed meat, SFA, TFA and total sugar intake.

BMI is associated with increase in MUFA and sugary drinks.

Lipid lowering medication - increase in Omega-6 FA and decrease in alcohol, raw vegeta-

bles, fibre, sugary drinks consumption.

Blood pressure medication - decrease in fish and Omega-6 FA.

Fruits/Veg shopping less than weekly - decrease in cooked vegetables, oily fish, energy,

protein, fibre and NMES.

Non-meat-eaters consumed more cooked and raw vegetables, more fibre, starch and

sugary drinks; and less protein, SFA, MUFA and TFA.

Partner status Being divorced or widowed is associated with increase in alcohol, cooked

vegetables and decrease in Omega-3 FA. Never married is associated with decreased

intake of protein and starch, but increased intake of processed meat and sugary drinks.
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Smoking Being a current smoker is associated with lower fruit, energy, protein, fibre,

starch, total sugars, Omega-3 FA and Omega-6 FA intakes.

MVPA - increase in cooked and raw vegetables, oily fish, Omega-3 FA, and sugary drinks;

and decrease in starch.

Alcohol habit Those who rarely drink alcohol consume less cooked and raw vegetables,

but more total sugars.

Occasional and regular takeaway consumption is associated with more alcohol, pro-

cessed meat and sugary drinks but less fruit, cooked and raw vegetables, less oily fish

and fibre.

Socio-economic indicators

Tenure Renting is associated with less cooked and raw vegetables, sugary drinks and

fibre.

Qualifications Lower qualifications level is associated with less alcohol, fruits (A levels

and below), raw vegetables, oily fish, omega-3 FA and Omega-6 FA and slightly less TFA,

and with more starch (A level and GCSE A-C grades) and slightly more sugary drinks,

extrinsic sugars and processed meat. Being a student is associated with less alcohol,

processed meat and fibre and fewer raw vegetables.

Socio-economic status Those involved in semi-routine and routine occupations consume

more starch; those on lower managerial and professional positions – more alcohol and

less raw vegetables; SES below small employers status indicate fewer raw vegetables

consumption.

Equalised income, when adjusted for the other food intake predictors, is related to less

fruit and fish intake (<£15,000), more cooked vegetables (£15,000 - £25,000) and more

MUFA and less sugary drinks (≥ £50,000).



 

 

 

Predictors 
Alcohol 

Pr 

Alcohol 

Portion 

Fruits 

Pr 

Fruits 

Portion 

Veg 

cooked 

Pr 

Veg 

cooked 

Portion 

Veg raw 

Pr 

Veg raw 

Portion 

Process 

meat 

Pr 

Process 

meat 

Portion 

Oily fish 

Pr 

Oily fish 

Portion 

Sugary 

drinks 

Pr 

Sugary 

drinks 

Portion 

Weekend <0.001 <0.001  0.052 0.005  0.113  <0.001      

Age, years 0.001 <0.001 <0.001 0.001 <0.001  0.008 0.015 0.013  <0.001 <0.001 <0.001 <0.001 

BMI, kg/m2  0.025 0.002    0.032        

Ethnicity, non-white       0.023  <0.001  0.024  0.088  

Health problems (self-reported)   0.086    0.046 0.091  0.144     

Lipid lowering drug 0.017 0.062     0.114        

Blood pressure lowering drug            0.023  0.024 

Fruits/veg buy < weekly   0.027 0.114 0.033 0.092   0.025 0.099 0.012    

Non-meat-eaters     <0.001 <0.001 0.042       0.026 

Partner1, not married  0.034    0.011       0.085  

Smoking    0.047       0.012   0.103  

Physical activity, increase 

min/day 
  0.028 0.001 0.006 0.086 0.164 0.006   0.201  0.053 0.079 

Alcohol preference, rare/never <0.001 <0.001 0.069  0.035   0.097       

Take away shopping, regular 0.028 0.064 0.008 <0.001 0.008  0.096  0.106  0.011   0.002 

Tenure, renting   <0.001  0.001  0.023       0.032 

Qualifications, lower levels1 0.027  0.096 0.003   0.014    0.055   0.041 

SES, lower levels1 0.003      0.052        

Equalised income1, decrease    0.088  0.007     0.005  0.208 0.173 

 

1For the individual effects of “SES” strata on alcohol, “Partner” status and equalised income on cooked vegetables intakes please refer to Tables 3.6 and Table A 3.3.2. as the effects are non-linear 

and strata-specific. P-values highlighted in bold indicate associated intake increase, underlined p-values indicate that the effects of the predictor depends on its category. Only significant effects are 

shown. 
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Table 3.8: Summary of the overall effects of personal, lifestyle and socio-economic predictors on the consumption of occasionally-consumed foods

presented as p-values and effect directions in women.
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The results of residual diagnostics are presented in Figures 3.5-3.10. The distribution

of intake across the foods seems reasonably symmetric (Figures 3.5 and 3.8). There

appears to be a few outlier observations which are prevalent in national survey data,

otherwise the distribution of the residuals can be reasonably assumed to be normally dis-

tributed (Figures 3.6 and 3.9). It appears that further model development, which would

take into account potential heterogeneity of measurement errors might be beneficial (Fig-

ures 3.7 and 3.10).
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Figure 3.1: Forest plot of odds ratios for various risk factors of alcohol consumption in probability

part of the two-part model in male sub-population of NDNS RP
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Figure 3.2: Forest plot of relative change in portion size for various risk factors of alcohol con-

sumption in portion part of the two-part model in male sub-population of NDNS RP
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Figure 3.3: Forest plot of odds ratios for various risk factors of alcohol consumption in probability

part of the two-part model in female sub-population of NDNS RP
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Figure 3.4: Forest plot of relative change in portion size for various risk factors of alcohol con-

sumption in portion part of the two-part model in female sub-population of NDNS RP
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Figure 3.5: Histograms of residuals from portion size part of the two-part model in male sub-

population
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Figure 3.6: QQ plots of residuals from portion size part of the two-part model in male sub-

population
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Figure 3.7: Residuals versus fitted values from portion size part of the two-part model in male

sub-population
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Figure 3.8: Histograms of residuals from portion size part of the two-part model in female sub-

population
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Figure 3.9: QQ plots of residuals from portion size part of the two-part model in female sub-

population
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Figure 3.10: Residuals versus fitted values from portion size part of the two-part model in female

sub-population
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3.4 Discussion
We demonstrated how a modern statistical approach, based on the two-part mixed-effects

model, can be applied to obtain valid inferences and provide in-depth and detailed de-

scription of food intake determinants when analysing inherently complex nutritional data

from observational studies. In agreement with prior research, our results show that var-

ious socio-economic indicators, although related, contribute additional information to ex-

plain food preferences (Galobardes et al., 2001; Groth et al., 2001; Lallukka et al., 2006;

Darmon and Drewnowski, 2008). In line with Pomerleau et al. (1997) and Groth et al.

(2001) and, unlike Turrell et al. (2003), we show that the highest gained qualification level

was the strongest consistent socio-economic determinant in this sample of the UK pop-

ulation. Socio-economic indicators are, necessarily, related to a myriad of various other

factors. Qualifications are related to family background and peer influence. Occupation, in

turn, is also related to family background and peer influence, but, additionally, it is related

to the availability of workplace health promotion, working hours, job satisfaction, commut-

ing time and food coping mechanism, which might be better indicators of food choices

than occupation stratum per se. This suggests that more careful consideration should

be paid to the choice of predictors, informed by potential mechanisms, during study de-

sign and data collection and, necessarily, adjustment for potential confounding should be

carried out in data analysis when analysing food preferences in a socio-economic con-

text. Interestingly, fats such as SFA, MUFA and TFA show the attributes of inferior goods

(Mankiw and Taylor, 2007) in males (but not in females) and sugary drinks in the female

population as they are consumed less with higher income. On the other hand, alcohol

in men and fruit and oily fish in women show the attributes of normal consumer goods

in the sub-population of below average earners as their consumption increases with in-

come. The results also suggest that people with the same level of income can choose to

distribute it differently according to their perceived priorities. For example, with the same

income and qualifications level, men in rented accommodation consume less alcohol and

fruit and more SFA and sugary beverages, whilst women who rent consume less vegeta-
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bles. This indicates that promotion for healthier lifestyle should be developed more in line

with people’s background, expenses and time spending priorities. Overall, the data sug-

gest that public health policy makers may want to shift their focus from income inequalities

as a whole to education and environmental inequalities, especially, in the sub-populations

with McClement equivalent score of above £15,000. This suggestion is in line with McK-

innon et al. (2014) who showed that diet-disease association knowledge were the biggest

factors attenuating the relationships between higher SES and better food choice. Ranjit

et al. (2015) showed similar results in a population of children when SES became a non-

significant predictor of a Healthy Eating Index score after adjustment for home food envi-

ronment. A sub-population of those who rarely drink alcohol deserves some discussion as

men in this category report increased consumption of energy, protein, MUFA, SFA, TFA,

fibre, starch and fruit, and decreased intake of oily fish, and women report lower vegetable

intake. This might partially explain the J-shaped relationships consistently observed be-

tween alcohol intake and cardiovascular disease (CVD) risk (Kloner and Rezkalla, 2007;

Roerecke and Rehm, 2012) as the increase in energy and TFA intake (and/or decrease

in oily fish intake) can be on the causal pathway between seldom alcohol consumption

and increased CVD risk (Willett, 2012; Djoussé et al., 2012). We recommend that future

analysis very clearly differentiate between never-drinkers, ex-drinkers for health reasons,

and those who rarely drink alcohol out of personal preference and, importantly, energy,

fats, fish intake and vegetable consumption should be accounted for when assessing the

relationship between CVD risk and alcohol intake to disentangle this association. Inter-

estingly, men, but not women, taking lipid powering medicine showed some healthy food

choices like increase in raw vegetables, oily fish and processed meat intake and decrease

in sugary beverages and extrinsic sugars consumption. First, this finding indicate poten-

tial reverse causality, and, second, potential gender differences. Longitudinal data are

needed to address this question in detail.

Additionally, we showed that the combination of factors such as lower qualification, smok-

ing, reduced MVPA, regular takeaways and being divorced or widowed is related to un-
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healthy dietary patterns such as lower consumption of fruit, vegetables, oily fish and fi-

bre and excess intake of alcohol intake in men. The results suggest that monitoring

sub-populations with clustering of the mentioned lifestyle characteristics could be of pub-

lic health significance in tackling diet-related health conditions. The analysis’ strengths

include the application of a model suitable for the analysis of occasionally-consumed

foods taking into account excess-zeros and within-person variation including measure-

ment error. Furthermore, the model accounts for the correlation between the probability

of consumption and the portion size to minimise bias. The analysis also benefits from the

availability of multiple interrelated SES predictors: qualifications, occupation, income and

tenure, and lifestyle habits like smoking, physical activity and take away shopping habits.

The application of the two-part model is not restricted to dietary intake but can be applied

to any data that exhibit similar behaviour. For example, physical activity data, collected

with actigraph devices or multiple-day diaries, have a similar complex structure and is-

sues associated with an imperfect measurement process. Study limitations include the

cross-sectional nature of the data making it impossible to examine the effect of change in

predictors on food preferences. This, however, equally applies to many studies on deter-

minants of health behaviour. Additionally, more detailed lifestyle and personal information

would be desirable to help differentiate between the effects of correlated predictors. For

instance, additional information on parental qualification could help to clarify the effect

of a person’s highest qualifications gained on food choice controlling for parental back-

ground. The model application also requires a relatively large sample size and is not

particularly suitable for small datasets. However, more data will allow to capture more

subtle preferences between food subgroups such as brassicas, salads and root vegeta-

bles. Additionally, fitting two-part model requires some statistical expertise to deal with

potential convergence problems inherent to all maximum-likelihood based methods. Re-

sponse rate of just above 50%, although typical of survey data, leaves a chance that the

most disadvantaged strata of the population was not fully represented. If this is the case,

we would expect that some associations found in the data between less healthy food pref-
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erences and unfavourable circumstances would become even stronger. We encourage to

conduct more research on the determinants of diet behaviour in these sub-populations.

3.5 Conclusion
The presented work shows that the benefits provided by this modern statistical approach

available for the analysis of habitually- and occasionally-consumed foods and the unique-

ness of the data (i.e. food intake records quality, data size and quite detailed information

on food choice predictors) overweight the potential limitations and provide in-depth and

detailed insight into the food intake habits of the UK adult population. We hope that this

work not only adds to the current research on food intake determinants, which is a topic

of great public health importance, but encourages nutritional scientists to use the most

modern statistical tools in their research, preferably in collaboration with a statistician, to

obtain robust inferences that can be reliably interpreted and used for public health policy

making.
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List of abbreviations
24HR - 24 hour food recall

BMI - Body mass index

DINO - Diet In Nutrients Out

FD - Food diary

FFQ - Food frequency questionnaire

ISU - Iowa State University

MC - Monte Carlo

MUFA - Monounsaturated fatty acids

MVPA - Moderate to vigorous physical activity

NCI - National Cancer Institute

NDNS - National Diet and Nutrition Survey

RCT - Randomised control trial

SES - Socio-economic status

SFA - Saturated fatty acids

TFA - Trans fatty acids
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Appendix

3.A Estimated regression parameters of two-part mod-

els for food intake

3.A.1 Determinants of macronutrients intake

This appendix shows the tables that describe the relationships between predictors and

macronutrients in men (Table 3.A.1) and women (Table 3.A.3) . Only significant associ-

ations are shown. SES, frequency of shopping for fruits and vegetables and being on

lipid or blood pressure medication were not found to be significant predictors in men and

health-related self report in women for any macronutrients so were omitted for clarity of

presentation. Weekend includes Friday for Total sugars and NEMS. All macronutrients

are presented in grams except energy, which is presented in Kcal.
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 Linear models 

Regression coefficients indicate absolute effects (95%CI)  

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total Sugars  TFA NMES Omega3 FA Omega6 FA 

Weekend1 149*** 

(88, 210) 

5.3*** 

(2.6, 8.0) 

2.8*** 

(1.4, 4.2) 

-0.2 

(-0.7, 0.4) 

-2.1 

(-7.2, 2.9) 

2.4*** 

(1.1, 3.7) 

4.8* 

(0.5, 9.1) 

1.08* 

(1.00, 1.16) 

1.15*** 

(1.07, 1.24) 

1.05 

(0.98, 1.11) 

1.06* 

(1.01, 1.12) 

Survey Year 

(2009/2010) 

           

2010/2011 -23 

(-134, 88) 

-1.0 

(-6.0, 4.0) 

-2.0† 

(-4.3, 0.4) 

0.1 

(-1.0, 1.1) 

2.8 

(-6.7, 12.3) 

0.04 

(-2.1, 2.2) 

-1.2 

(-11.3, 8.9) 

0.73*** 

(0.65, 0.82) 

1.00 

(0.86, 1.17) 

0.94 

(0.85, 1.03) 

0.94 

(0.86, 1.02) 

2011/2012 15 

(-88, 117) 

-2.2 

(-6.8, 2.5) 

-1.6 

(-3.8, 0.6) 

0.6 

(-0.3, 1.6) 

11.1* 

(2.2, 20.0) 

-0.5 

(-2.5, 1.5) 

5.7 

(-4.1, 15.4) 

0.62*** 

(0.56, 0.69) 

1.04 

(0.90, 1.20) 

0.98 

(0.89, 1.07) 

0.96 

(0.88, 1.04) 

Age, years -3* 

(-7, -0.1) 

-0.1 

(-0.2, 0.03) 

0.05 

(-0.02, 0.12) 

0.01 

(-0.02, 0.05) 

-0.6*** 

(-0.8, -0.4) 

-0.09** 

(-0.15, -0.03) 

-0.4** 

(-0.7, -0.1) 

1.004* 

(1.000, 

1.008) 

0.991*** 

(0.987, 

0.995) 

0.999 

(0.997, 

1.002) 

0.997** 

(0.994, 

0.999) 

BMI, kg/m2  0.4† 

(-0.04, 0.9) 

    -1.1* 

(-2.1, -0.01) 

 0.98** 

(0.95, 0.99) 

  

Ethnicity, non-white   -4.3* 

(-8.1, -0.6) 

 18.6* 

(3.9, 33.3) 

 -18.5* 

(-33.6, -3.4) 

 0.74* 

(0.59, 0.94) 

 1.15* 

(1.00, 1.31) 

Health (self-reported) 

(base: no problems) 

           

health problems, no 

mobility restrictions 

 -6.0* 

(-11.6, -0.5) 

         

health problems, 

mobility restrictions 

 -0.7 

(-6.6, 5.2) 

         

Non-meat eaters 127 

(-37, 291) 

-6.2† 

(-13.6, 1.25) 

 2.1* 

(0.6, 3.7) 

11.3 

(-2.8, 25.4) 

 13.1† 

(-2.6, 28.8) 

 1.14† 

(0.99, 1.32) 
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Table 3.A.1: Macronutrient intake predictors in men in the sample selected for analysis from the NDNS RP Years 2-4



 

 

           

 
Linear models 

Regression coefficients indicate absolute effects (95%CI)  

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Partner (base: 

married/partner) 

           

never married    0.6 

(-0.5, 1.7) 

   1.15* 

(1.02, 1.29) 

   

previously married    -1.1† 

(-2.3, 0.04) 

   1.05 

(0.92, 1.19) 

   

Smoking (base: never)            

ex, quit >10 year ago 40 

(-99, 179) 

  -0.2 

(-1.5, 1.1) 

 0.6 

(-2.1, 3.3) 

     

ex, quit <=10 years 

ago 

108 

(-47, 264) 

  -1.3† 

(-2.8, 0.1) 

 0.1 

(-2.9, 3.1) 

     

current 87 

(-27, 201) 

  -2.0*** 

(-3.1, -0.9) 

 2.1† 

(-0.1, 4.2) 

     

occasional 237† 

(-30, 504) 

  -0.2 

(-2.7, 2.3) 

 4.5† 

(-0.6, 9.7) 

     

MVPA, min/day, 

(base: 0) 

           

0-10 264† 

(-28, 557) 

16.2* 

(2.8, 29.5) 

7.6* 

(1.3, 13.8) 

2.8* 

(0.1, 5.6) 

18.5 

(-6.7, 43.8) 

3.7 

(-2.0, 9.4) 

 1.43* 

(1.05, 1.94) 

 1.30* 

(1.01, 1.67) 

1.32* 

(1.05, 1.66) 

10-20 332* 

(13, 651) 

19.5** 

(4.9, 34.1) 

8.1* 

(1.2, 15.0) 

3.7* 

(0.7, 6.6) 

22.4 

(-5.2, 49.9) 

5.4† 

(-0.8, 11.6) 

 1.51* 

(1.08, 2.12) 

 1.31† 

(1.00, 1.73) 

1.40** 

(1.09, 1.80) 

20-40 390** 

(97, 684) 

20.0** 

(6.5, 33.5) 

9.7** 

(3.4, 16.0) 

4.5** 

(1.8, 7.3) 

25.0† 

(-0.4, 50.5) 

5.7* 

(0.03, 11.5) 

 1.50* 

(1.10, 2.04) 

 1.45** 

(1.12, 1.86) 

1.46** 

(1.16, 1.84) 

40-60 409** 

(113, 705) 

22.9** 

(9.4, 36.3) 

9.3** 

(2.9, 15.7) 

4.0** 

(1.3, 6.8) 

22.8† 

(-2.7, 48.4) 

7.3* 

(1.6, 13.1) 

 1.43* 

(1.04, 1.95) 

 1.57** 

(1.22, 2.02) 

1.52*** 

(1.21, 1.92) 

>60 473** 

(198, 748) 

24.9*** 

(12.2, 37.5) 

10.9** 

(5.0, 16.9) 

4.9*** 

(2.4, 7.5) 

31.3* 

(7.5, 55.2) 

7.1* 

(1.7, 12.5) 

 1.59** 

(1.19, 2.12) 

 1.40** 

(1.11, 1.78) 

1.50*** 

(1.21,1.86) 
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Table 3.A.1 Macronutrient intake predictors in men in the sample selected for analysis from the NDNS RP Years 2-4 (Cont.)



            

            

 
Linear models 

Regression coefficients indicate absolute effects (95%CI)  

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Alcohol habit 

consumption 

           

rarely 221* 

(31, 411) 

12.0** 

(3.3, 20.6) 

7.9*** 

(3.8, 11.9) 

2.3* 

(0.5, 4.1) 

22.9** 

(6.5, 39.4) 

5.6** 

(1.9, 9.2) 

22.7† 

(-0.8, 46.1) 

1.29* 

(1.06, 1.57) 

   

never -93 

(-260, 74) 

-3.1 

(-10.7, 4.5) 

1.8 

(-1.9, 5.4) 

-0.2 

(-1.7, 1.4) 

1.7 

(-13.1, 16.6) 

-0.8 

(-4.1, 2.4) 

9.0 

(-12.1, 30.0) 

0.93 

(0.78, 1.11) 

   

Take away shopping            

occasionally -25 

(-134, 83) 

 -0.4 

(-2.7, 1.9) 

-1.1* 

(-2.1, -0.1) 

 -0.9 

(-2.9, 1.2) 

-10.7* 

(-20.9, -0.5) 

1.01 

(0.90, 1.13) 

0.87† 

(0.75, 1.02) 

  

regularly 153* 

(29, 278) 

 2.8* 

(0.2, 5.5) 

-0.9 

(-2.1, 0.2) 

 2.8* 

(0.4, 5.2) 

-0.5 

(-12.3, 11.3) 

1.13† 

(1.00, 1.29) 

1.08 

(0.91, 1.29) 

  

Tenure (base: 

owned/mortgaged) 

           

privately rented   3.3* 

(0.8, 5.9) 

       1.09† 

(0.99, 1.20) 

LA rented   2.3 

(-0.8, 5.3) 

       0.95 

(0.86, 1.06) 

Qualifications            

unfinished degree 5 

(-157, 167) 

3.0 

(-4.3, 10.3) 

-1.4 

(-4.9, 2.1) 

-1.4† 

(-2.9, 0.1) 

  12.5† 

(-1.8, 26.8) 

0.91 

(0.77, 1.08) 

   

students 89 

(-155, 332) 

-3.7 

(-14.7, 7.3) 

3.2 

(-2.1, 8.6) 

-2.8* 

(-5.1, -0.5) 

  18.9 

(-9.3, 47.1) 

1.16 

(0.89, 1.51) 
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Table 3.A.1 Macronutrient intake predictors in men in the sample selected for analysis from the NDNS RP Years 2-4 (Cont.)



            

            

A levels -118 

(-254, 18) 

-8.5** 

(-14.7, -2.4) 

-3.6* 

(-6.5, -0.7) 

-2.9*** 

(-4.2, -1.6) 

  -7.2 

(-19.2, 4.8) 

0.85* 

(0.74, 0.98) 

   

GCSE A_C -166 

(-303, -28) 

-6.9* 

(-13.0, -0.7) 

-4.3** 

(-7.3, -1.3) 

-2.4*** 

(-3.7, -1.1) 

  -4.3 

(-15.8, 7.2) 

0.87† 

(0.75, 1.00) 

   

GCSE below C and no 

qualifications 

-137 

(-273, -0.2) 

-9.7** 

(-15.8, -3.7) 

-2.4 

(-5.4, 0.7) 

-3.1*** 

(-4.4, -1.8) 

  -0.1 

(-13.7, 13.5) 

0.85* 

(0.73, 0.98) 

   

            

foreign qualifications -115 

(-326, 96) 

-3.8 

(-13.3, 5.6) 

-0.9 

(-5.4, 3.7) 

-2.8** 

(-4.8, -0.8) 

  -3.4 

(-19.9, 13.0) 

0.96 

(0.77, 1.20) 

   

 
Linear models 

Regression coefficients indicate absolute effects (95%CI)  

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

McClement 

equivalence score,  

£ 1000 

           

<=15   -1.9 

(-5.3, 1.5) 

  -2.5 

(-5.5, 0.5) 

 0.85† 

(0.72, 1.00) 

   

15-25   -0.13 

(-3.1, 2.8) 

  -1.0 

(-3.7, 1.7) 

 0.94 

(0.81, 1.09) 

   

(base) 25-35        1    

35-50   0.6 

(-2.6, 3.8) 

  1.7 

(-1.2, 4.6) 

 0.95 

(0.81, 1.11) 

   

>50   -3.4* 

(-6.5, -0.3) 

  -2.0 

(-5.0, 1.0) 

 0.83* 

(0.72, 0.97) 

   

Variability Standard deviation (SD) on absolute scale Standard deviation (SD) on Log scale 

Between-person SD 396 18.3 8.0 3.7 35.4 7.2 40.3 0.38 0.61 0.31 0.29 

Within-person SD 567 25.2 13.1 5.1 47.1 12.1 42.4 0.68 0.70 0.60 0.50 

Within-person 
correlation 

0.33 0.34 0.27 0.35 0.36 0.26 0.47 0.24 0.43 0.21 0.26 

Statistical significance: † < 0.10; * < 0.05; ** < 0.01; *** < 0.001 
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Table 3.A.1 Macronutrient intake predictors in men in the sample selected for analysis from the NDNS RP Years 2-4 (Cont.)



            

            

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Weekend <0.001 <0.001 <0.001 0.537 0.412 <0.001 0.025 0.042 <0.001 0.160 0.031 

Survey Year 
2010/2011 

0.684 0.690 0.100 0.896 0.567 0.969 0.823 <0.001 0.973 0.197 0.145 

Survey Year 
2011/2012 

0.776 0.363 0.144 0.190 0.014 0.637 0.242 <0.001 0.612 0.617 0.292 

Age, years 0.044 0.137 0.160 0.437 <0.001 0.002 0.003 0.034 <0.001 0.531 0.001 

BMI, kg/m2  0.075     0.026  0.003   

Ethnicity, non-white   0.022  0.013  0.025  0.012  0.043 

Health (self-reported)  0.097          

Non-meat eaters 0.130 0.103  0.006 0.117  0.092  0.066   

Partner    0.062    0.066    

Smoking  0.238   0.001  0.203      

Physical activity, 
min/day 

0.002 0.001 0.005 <0.001 0.051 0.031  0.040  0.009 0.004 

Alcohol habit 
consumption 

0.035 0.016 <0.001 0.037 0.024 0.010 0.028 0.028    

Take away shopping 0.009  0.300 0.085  0.005 0.059 0.115 0.025   

Tenure   0.027        0.099 

Qualifications 0.122 0.005 0.025 <0.001   0.141 0.063    

Equalised income,  

£ 1000 

  0.012   0.052  0.150    
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Table 3.A.2: P-values of macronutrient intake predictors in men in the sample selected for analysis from the NDNS RP Years 2-4



 

 

 Linear models 

Regression coefficients indicate absolute effects (95%CI)  

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Weekend1 140*** 

(97, 182) 

4.6*** 

(2.5, 6.6) 

2.3*** 

(1.3, 3.4) 

-0.2 

(-0.7, 0.2) 

1.1 

(-2.5, 4.8) 

2.5*** 

(1.5, 3.4) 

2.3 

(-0.9, 5.4) 

1.19*** 

(1.11, 1.28) 

1.13*** 

(1.05, 1.20) 

1.10** 

(1.04, 1.17) 

1.10*** 

(1.04, 1.16) 

Survey Year (2009/2010)            

2010/2011 -34 

(-107, 38) 

0.7 

(-2.4, 3.8) 

-0.8 

(-2.6, 1.0) 

0.5 

(-0.3, 1.3) 

3.0 

(-2.7, 8.7) 

0.2 

(-1.2, 1.7) 

-7.7* 

(-14.5, -0.9) 

0.72*** 

(0.65, 0.80) 

0.84* 

(0.72, 0.97) 

0.92† 

(0.85, 1.00) 

0.95 

(0.88, 1.03) 

2011/2012 -9 

(-76, 58) 

1.3 

(-1.6, 4.3) 

-0.4 

(-2.0, 1.3) 

0.4 

(-0.4, 1.1) 

0.8 

(-4.5, 6.1) 

0.4 

(-1.0, 1.8) 

-4.0 

(-10.5, 2.4) 

0.68*** 

(0.62, 0.76) 

0.85* 

(0.75, 0.99) 

0.91* 

(0.84, 0.99) 

0.97 

(0.91, 1.04) 

Age, years -3** 

(-4, -1) 

-0.01 

(-0.10, 0.08) 

0.00 

(-0.04, 0.04) 

0.03* 

(0.01, 0.06) 

-0.56*** 

(-0.73, -0.38) 

-0.06** 

(-0.09, -0.02) 

-0.1 

(-0.2, 0.1) 

1.003* 

(1.001, 

1.006) 

0.998 

(0.995, 

1.001) 

1.003* 

(1.001, 

1.005) 

0.999 

(0.997, 

1.002) 

BMI, kg/m2       -0.5† 

(-1.0, 0.0) 

    

Ethnicity (non-white)   -2.8* 

(-5.5, -0.1) 

  2.1† 

(-0.1, 4.3) 

-14.4** 

(-24.1, -4.7) 

0.86† 

(0.73, 1.02) 

 1.13† 

(0.99, 1.28) 

1.19** 

(1.05, 1.33) 

Lipid lowering drug    -1.5* 

(-2.6, -0.3) 

      1.10 

(0.97, 1.24) 

Blood pressure lowering drug           0.91† 

(0.81, 1.01) 

Fruits/veg buy <  weekly -106† 

(-217, 5) 

-7.4** 

(-12.3, -2.5) 

 -1.1† 

(-2.3, 0.1) 

  -6.4* 

(-11.8, -0.9) 

    

Non-meat eaters  -9.2*** 

(-12.4, -5.9) 

-1.7† 

(-3.6, 0.2) 

1.1** 

(0.3, 1.9) 

3.9 

(-2.0, 9.8) 

-1.5† 

(-3.0, 0.02) 

 0.86** 

(0.77, 0.96) 

 0.93 

(0.85, 1.02) 

 

Partner (base: married)            

never married  -3.8* 

(-7.1, -0.4) 

  -10.6** 

(-17.1, -4.2) 

    1.03 

(0.93, 1.14) 
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Table 3.A.3: Macronutrient intake predictors in women in the sample selected for analysis from the NDNS RP Years 2-4



            

            

previously married  -1.5 

(-4.6, 1.6) 

  -4.5 

(-10.2, 1.2) 

    0.91† 

(0.82, 1.01) 

 

 
Linear models 

Regression coefficients indicate absolute effects (95%CI) 

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Smoking  

(base: never smoked) 

           

ex, quit >10 year ago -34 

(-99, 179) 

-0.02 

(-4.03, 3.99) 

 -0.1 

(-1.1, 0.9) 

-4.4 

(-11.6, 2.8) 

 -1.8 

(-10.9, 7.2) 

  0.98 

(0.88, 1.09) 

0.99 

(0.90, 1.09) 

ex, quit <=10 years ago 12 

(-47, 264) 

3.2 

(-1.0, 7.3) 

 0.2 

(-0.8, 1.2) 

-1.3 

(-8.9, 6.2) 

 -13.6** 

(-21.5, -5.7) 

  1.09 

(0.98, 1.22) 

1.07 

(0.97, 1.18) 

current -124** 

(-27, 201) 

-6.4*** 

(-9.8, -3.1) 

 -2.5*** 

(-3.4, -1.6) 

-19.6*** 

(-25.9, -13.2) 

 -7.8† 

(-15.8, 0.2) 

  0.91† 

(0.83, 1.00) 

0.92† 

(0.85, 1.00) 

occasional 155 

(-30, 504) 

4.3 

(-5.9, 14.6) 

 2.3† 

(-0.2, 4.9) 

-4.6 

(-23.3, 14.0) 

 4.9 

(-15.4, 25.3) 

  1.07 

(0.81, 1.41) 

1.19 

(0.93, 1.53) 

MVPA, min/day, (base: 0)            

0-10     -8.4 

(-23.4, 6.5) 

    1.08 

(0.87, 1.35) 

 

10-20     -7.6 

(-23.3, 8.0) 

    1.21 

(0.96, 1.53) 

 

20-40     -10.8 

(-26.0, 4.5) 

    1.17 

(0.93, 1.47) 

 

40-60     -14.5† 

(-30.2, 1.2) 

    1.10 

(0.87, 1.39) 

 

>60     -14.8† 

(-29.6, 0.1) 

    1.20 

(0.97, 1.50) 
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Table 3.A.3 Macronutrient intake predictors in women in the sample selected for analysis from the NDNS RP Years 2-4 (Cont.)



            

            

Alcohol habit consumption (base: 

regular) 

           

rarely       12.2† 

(-1.2, 25.6) 

    

never       7.0 

(-4.6, 18.5) 

    

            

 
Linear models 

Regression coefficients indicate absolute effects (95%CI) 

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Take away shopping            

occasionally    -0.9* 

(-1.6, -0.1) 

       

regularly    -1.2** 

(-2.1, -0.4) 

       

Tenure (base: owned/mortgaged)            

privately rented    -0.7 

(-1.6, 0.3) 

       

LA rented    -1.0* 

(-2.0, -0.1) 

       

Qualifications            

unfinished degree    -0.2 

(-1.4, 0.9) 

-5.8 

(-14.6, 2.9) 

  0.82* 

(0.69, 0.96) 

 0.86* 

(0.76, 0.97) 

0.89* 

(0.80, 1.00) 

students    -1.4† 

(-3.0, 0.1) 

-6.7 

(-18.6, 5.3) 

  1.02 

(0.83, 1.27) 

 1.02 

(0.86, 1.20) 

0.96 

(0.83, 1.12) 

A levels    -0.1 

(-1.1, 0.9) 

6.6† 

(-1.1, 14.2) 

  1.00 

(0.87, 1.15) 

 0.96 

(0.86, 1.07) 

0.98 

(0.89, 1.08) 

GCSE A - C    -0.4 

(-1.4, 0.6) 

5.9 

(-1.5, 13.3) 

  0.89† 

(0.78, 1.02) 

 0.93 

(0.84, 1.04) 

0.92† 

(0.83, 1.01) 
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Table 3.A.3 Macronutrient intake predictors in women in the sample selected for analysis from the NDNS RP Years 2-4 (Cont.)



            

            

GCSE below C and no 

qualifications 

   -1.7** 

(-2.7, -0.7) 

1.1 

(-6.6, 8.8) 

  0.89† 

(0.78, 1.02) 

 0.87* 

(0.78, 0.97) 

0.86** 

(0.78, 0.95) 

            

foreign qualifications    -1.4† 

(-3.1, 0.2) 

-9.4 

(-21.3, 2.5) 

  0.78* 

(0.62, 0.97) 

 0.85† 

(0.71, 1.01) 

0.83* 

(0.71, 0.97) 

 
Linear models 

Regression coefficients indicate absolute effects (95%CI) 

Log-linear models 

Regression coefficients indicate relative effects (95%CI) 

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Socio-economic status            

(base) higher managerial             

lower managerial  

and professional occupation 

    -0.7 

(-8.1, 6.7) 

      

Intermediate occupations     -0.5 

(-10.0, 9.1) 

      

Small employers  

and own account workers 

    2.7 

(-6.3, 11.7) 

      

Lower supervisory  

and technical occupation 

    0.6 

(-9.8, 11.0) 

      

Semi-routine occupations     11.3* 

(2.5, 20.2) 

      

Routine occupations     11.4* 

(1.2, 21.5) 

      

Never worked and Other     14.8* 

(1.4, 28.2) 
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Table 3.A.3 Macronutrient intake predictors in women in the sample selected for analysis from the NDNS RP Years 2-4 (Cont.)



            

            

            

            

            

Predictors Energy Protein SFA Fibre Starch MUFA Total sugars TFA NMES Omega3 FA Omega6 FA 

Weekend <0.001 <0.001 <0.001 0.274 0.540 <0.001 0.138 <0.001 <0.001 0.002 <0.001 

Survey Year 
2010/2011 

0.348 0.663 0.381 0.199 0.306 0.746 0.031 <0.001 0.016 0.052 0.190 

Survey Year 
2011/2012 

0.796 0.372 0.676 0.336 0.767 0.542 0.228 <0.001 0.030 0.24 0.451 

Age, years 0.001 0.799 0.977 0.010 <0.001 0.001 0.431 0.019 0.139 0.014 0.644 

BMI, kg/m2      0.106 0.057     

Ethnicity, non-white   0.044   0.060 0.010 0.077  0.071 0.005 

Health (self-reported)            

Lipid lowering drug    0.010       0.126 

Blood pressure 
lowering drug 

          0.081 

Fruits/veg buy rarely 0.062 0.003  0.044   0.024     

Non-meat eaters  <0.001 0.076 0.005 0.194 0.053  0.009  0.114  

Partner  0.083   0.004       

Smoking  0.009 <0.001  <0.001 <0.001  0.028   0.082 0.074 

Physical activity, 
min/day 

 0.001   0.117     0.129  

Alcohol habit 
consumption 

      0.061     

Take away shopping    0.011        

Tenure    0.061        

Qualifications    0.006 0.013   0.056  0.057 0.029 

SES     0.009       

Equalised income, £ 
1000 

     0.049      
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Table 3.A.4: P-values of macronutrient intake predictors in women in the sample selected for analysis from the NDNS RP Years 2-4
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3.A.2 Determinants of occasionally-consumed food intake

This appendix presents the results of applying the two-part model to estimate associations

between various personal and socio-economic predictors and the intake of occasionally-

consumed foods in the men and women sample populations of NDNS RP Years 2-4. The

analysis is shown for the following occasionally-consumed food intakes: fruits, vegetable

(raw and cooked), processed meat, oily fish and sugary beverages.

Male sample

The results below correspond to the male sub-sample.



 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2030) CONDITIONAL AMOUNT (N = 1327) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value 

LR 

p-value1 

Relative 

Change 

(95%CI) 

Wald 

p-value 

LR 

p-value1 

Weekend 0.64  0.020 0.74  <0.001 

 (0.49, 0.85)   (1.18, 1.46)   

Survey Year (base: 2009/2010)       

2010/2011 1.06 0.817  0.88 0.365  

 (0.67, 1.68)   (0.89, 1.39)   

2011/2012 1.39 0.133  1.00 0.998  

 (0.90, 2.13)   (0.76, 1.12)   

Age, years 1.04  <0.001 1.009  0.032 

 (1.03, 1.06)   (1.001, 1.017)   

BMI, kg/m2 0.97  0.115    

 (0.93, 1.01)      

Smoking (base: never smoked)   <0.001   0.005 

ex, quit >10 year ago 0.91 0.765  0.97 0.835  

 (0.50, 1.67)   (0.71, 1.33)   

ex, quit <=10 years ago 0.80 0.503  0.71 0.074  

 (0.42, 1.52)   (0.49, 1.03)   

current 0.25 <0.001  0.68 0.015  

 (0.16, 0.40)   (0.50, 0.93)   

occasional 0.84 0.768  2.07 0.020  

 (0.27, 2.64)   (1.12, 3.81)   

Alcohol habit consumption   0.069    

rarely 2.16 0.057     

 (0.98, 4.76)      

never 0.69 0.252     

 (0.36, 1.31)      

MV physical activity, min/day (base: 0)   0.004   0.001 

0-10 1.47 0.539  0.86 0.683  

 (0.43, 5.07)   (0.42, 1.77)   

10-20 2.29 0.222  1.31 0.496  

 (0.61, 8.61)   (0.60, 2.84)   

20-40 4.24 0.022  1.66 0.159  

 (1.23, 14.70)   (0.82, 3.38)   

40-60 3.48 0.051  1.21 0.604  

 (1.00, 12.12)   (0.59, 2.49)   

>60 4.05 0.019  1.75 0.103  

 (1.26, 13.06)   (0.89, 3.41)   

Non-meat eaters    0.65  0.023 

    (0.45, 0.94)   
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Table 3.A.5: Fruit intake predictors in men in the sample population selected for analysis from the

NDNS RP Years 2-4



Take away (base: rarely or never)      0.052 

occasionally    0.83 0.138  

    (0.65, 1.06)   

regularly    0.70 0.016  

    (0.53, 0.94)   

Tenure (base: mortgaged or owned)      0.098 

privately rented    0.73 0.031  

    (0.55, 0.97)   

LA rented    0.91 0.609  

    (0.64, 1.30)   

Qualifications (base: bachelor and 

above) 
  <0.001   0.006 

unfinished degree 0.90 0.762  0.89 0.527  

 (0.45, 1.80)   (0.61, 1.28)   

current students 0.55 0.240  1.75 0.078  

 (0.21, 1.48)   (0.94, 3.27)   

A levels 0.60 0.077  0.80 0.165  

 (0.34, 1.06)   (0.58, 1.10)   

GCSE A_C 0.35 <0.001  0.57 0.001  

 (0.19, 0.61)   (0.41, 0.79)   

GCSE below C and no qualifications 0.30 <0.001  0.73 0.068  

 (0.17, 0.54)   (0.52, 1.02)   

foreign qualifications 0.90 0.834  1.06 0.824  

 (0.35, 2.35)   (0.65, 1.72)   

 Correlation between model parts is 0.59, p-value <0.001 

Within-person SD  1.11 

Between-person SD 1.48 0.87 

Within-person correlation  0.38 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.5 Fruit intake predictors in men in the sample population selected for analysis from the

NDNS RP Years 2-4 (Continued)



 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2030) CONDITIONAL AMOUNT (N = 1063) 

Predictors 

Odds 

Ratio 

(95% CI) 

Wald 

p-value 

LR 

p-value1 

Relative 

Change 

(95% CI) 

Wald 

p-value 

LR 

p-value1 

Weekend 1.01  0.936 1.10  0.060 

 (0.83, 1.23)   (1.00, 1.21)   

Survey Year (base: 2009/2010)       

2010/2011 0.93 0.610  0.97 0.708  

 (0.70, 1.24)   (0.83, 1.13)   

2011/2012 1.16 0.269  1.04 0.599  

 (0.89, 1.52)   (0.90, 1.20)   

Age, years 1.02  <0.001 1.001  0.448 

 (1.01, 1.03)   (0.998, 1.005)   

Ethnicity (non-white)    1.40  0.003 

    (1.12, 1.76)   

Smoking (base: never smoked)   0.051    

ex, quit >10 year ago 1.01 0.955     

 (0.71, 1.44)      

ex, quit <=10 years ago 1.01 0.957     

 (0.68, 1.51)      

current 0.66 0.005     

 (0.49, 0.88)      

occasional 0.74 0.385     

 (0.37, 1.47)      

Non-meat eaters    1.25  0.037 

    (1.01, 1.53)   

Qualifications (base: bachelor and 

above) 
  0.019    

unfinished degree 0.67 0.053     

 (0.44, 1.00)      

current students 0.96 0.898     

 (0.52, 1.78)      

A levels 0.66 0.020     

 (0.47, 0.94)      

GCSE A_C 0.73 0.074     

 (0.51, 1.03)      

GCSE below C and no qualifications 0.51 <0.001     

 (0.36, 0.73)      

foreign qualifications 0.69 0.175     

 (0.40, 1.18)      

 Correlation between model parts is 0.50, p-value 0.005 

Within-person SD  0.74 

Between-person SD 0.69 0.40 

Within-person correlation  0.47 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two level 
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Table 3.A.6: Cooked vegetables intake predictors in men in the sample population selected for

analysis from the NDNS RP Years 2-4



 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2030) CONDITIONAL AMOUNT (N = 775) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value 

LR 

p-value1 

Relative 

Change 

(95% CI) 

Wald 

p-value 

LR 

p-value1 

Weekend 0.71  0.003 1.16  0.067 

 (0.56, 0.89)   (0.99, 1.36)   

Survey Year (base: 2009/2010)       

2010/2011 0.76 0.190  0.85 0.226  

 (0.51, 1.15)   (0.65, 1.11)   

2011/2012 0.91 0.609  0.78 0.047  

 (0.62, 1.33)   (0.61, 1.00)   

Age, years 1.016  0.013 1.006  0.069 

 (1.003, 1.029)   (1.000, 1.013)   

Ethnicity (non-white) 2.11  0.015    

 (1.16, 3.86)      

Lipid lowering drug 2.05  0.009    

 (1.20, 3.53)      

Partner (base: married)   0.004    

never married 1.55 0.038     

 (1.02, 2.35)      

previously married 0.59 0.026     

 (0.38, 0.94)      

Smoking (base: never smoked)   0.017   0.175 

ex, quit >10 year ago 1.12 0.664  0.75 0.072  

 (0.67, 1.86)   (0.54, 1.03)   

ex, quit <=10 years ago 1.60 0.104  0.83 0.313  

 (0.91, 2.83)    (0.59, 1.19)   

current 0.63 0.036  0.74 0.048  

 (0.41, 0.97)   (0.55, 1.00)   

occasional 0.44 0.114  0.70 0.309  

 (0.16, 1.22)   (0.36, 1.38)   

MV Physical activity, min/day (base: 0)   0.036    

 1      

0-10 1.53 0.443     

 (0.51, 4.59)      

10-20 2.31 0.164     

 (0.71, 7.51)      

20-40 2.78 0.069     

 (0.92, 8.35)      

40-60 3.22 0.039     

 (1.06, 9.77)      

>60 3.17 0.030     

 (1.12, 8.96)      
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Table 3.A.7: Raw and salad vegetables intake predictors in men in the sample population selected

for analysis from the NDNS RP Years 2-4



Non-meat eaters    0.75  0.089 

    (0.53, 1.05)   

Fruit/veg buy < weekly 0.58  0.097    

 (0.31, 1.10)      

Socio-economic status   0.017   0.063 

(base) Higher managerial       

and professional occupation       

Lower managerial  0.81 0.386  1.04 0.802  

and professional occupation  (0.51, 1.30)   (0.78, 1.39)   

Intermediate occupation 0.77 0.419  0.68 0.069  

 (0.40, 1.46)   (0.45, 1.03)   

Small employers  0.71 0.293  0.71 0.095  

and own account workers (0.38, 1.34)   (0.47, 1.06)   

Lower supervisory 0.96 0.895  0.90 0.611  

and technical occupation (0.51, 1.79)   (0.61, 1.33)   

Semi-routine occupation 0.31 <0.001  1.30 0.215  

 (0.17, 0.58)   (0.86, 1.96)   

Routine occupation 0.54 0.052  1.30 0.213  

 (0.29, 1.00)   (0.86, 1.95)   

Never worked and other 0.64 0.448  1.11 0.781  

 (0.20, 2.03)   (0.53, 2.32)   

 Correlation between model part is 0.50, p-value <0.001 

Within-person SD  0.95 

Between-person SD 1.32 0.72 

Within-person correlation  0.36 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.7 Raw and salad vegetables intake predictors in men in the sample population selected

for analysis from the NDNS RP Years 2-4 (Continued)



 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 1994) CONDITIONAL AMOUNT (N = 966) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value 

LR 

p-value1 

Relative  

change 

(95% CI) 

Wald 

p-value 

LR 

p-value1 

Weekend 1.25  0.064 1.19  0.010 

 (0.99, 1.58)   (1.04, 1.36)   

Survey Year (base: 2009/2010)       

2010/2011 1.27 0.163  1.02 0.861  

 (0.91, 1.77)   (0.84, 1.22)   

2011/2012 1.19 0.271  0.99 0.876  

 (0.87, 1.62)   (0.83, 1.17)   

Age, years 0.98  <0.001 1.000  0.885 

 (0.97, 0.99)   (0.996, 1.005)    

Ethnicity (non-white) 0.28  <0.001    

 (0.16, 0.50)      

BMI, kg/m2 1.034  0.032    

 (1.003, 1.066)      

Health (base: no problems)   0.061    

health problems, no mobility 

restrictions 
1.12 0.538     

 (0.78, 1.62)      

health problems, mobility restrictions 1.59 0.018     

 (1.08, 2.34)      

Smoking (base: never smoked)      0.101 

ex, quit >10 year ago    0.88 0.299  

    (0.70, 1.12)   

ex, quit <=10 years ago    1.21 0.140  

    (0.94, 1.55)   

current    1.14 0.188  

    (0.94, 1.38)   

occasional    1.43 0.131  

    (0.90, 2.29)   

Alcohol habit consumption   0.092    

rarely 0.83 0.516     

 (0.47, 1.46)      

never 0.56 0.035     

 (0.32, 0.96)      

Tenure (base: mortgaged or owned)      0.092 

privately rented    1.15 0.165  

    (0.94, 1.41)   

local authority rented    1.28 0.048  

    (1.00, 1.64)   

       

Socio-economic status      0.348 

(base) Higher managerial       
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Table 3.A.8: Processed meat intake predictors in men in the sample population selected for anal-

ysis from the NDNS RP Years 2-4



and professional occupation       

Lower managerial     1.13 0.248  

and professional occupation     (0.92, 1.40)   

Intermediate occupation    1.12 0.447  

    (0.84, 1.50)   

Small employers     1.00 0.993  

and own account workers    (0.76, 1.32)   

Lower supervisory    1.19 0.224  

and technical occupation    (0.90, 1.58)   

Semi-routine occupation    1.08 0.564  

    (0.82, 1.43)   

Routine occupation    1.34 0.047  

    (1.00, 1.78)   

Never worked and other    1.74 0.068  

    (0.96, 3.14)   

Between-person SD 0.91 21.5 

Within-person SD  69.4 

Within-person correlation  0.09 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.8 Processed meat intake predictors in men in the sample population selected for anal-

ysis from the NDNS RP Years 2-4 (Continued)



 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2030) CONDITIONAL AMOUNT (N = 203) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value 

LR 

p-value1 

Relative 

change 

(95% CI) 

Wald 

p-value 

LR 

p-value1 

Weekend 0.85  0.425 1.13  0.182 

 (0.57, 1.27)   (0.82, 1.56)   

Survey Year (base: 2009/2010)       

2010/2011 0.83  0.474 0.78  0.267 

 (0.49, 1.39)   (0.49, 1.22)   

2011/2012 0.98  0.938 0.98  0.933 

 (0.61, 1.58)   (0.64, 1.50)   

Age, years 1.021  0.010 1.009  0.092 

 (1.005, 1.037)   (0.998, 1.020)    

BMI, kg/m2    0.95  0.023 

    (0.91, 0.99)   

Lipid lowering drug 2.03  0.024    

 (1.10, 3.75)      

Fruit/veg buy < weekly 0.42  0.076 2.49  0.039 

 (0.16, 1.10)   (1.05, 5.95)   

Non-meat eaters 2.50  0.012    

 (1.22, 5.14)      

MV Physical activity, min/day (base: 0)   0.006   0.064 

 1   1   

0-10 0.50 0.331  6.84 0.003  

 (0.13, 2.01)   (1.89, 24.71)   

10-20 1.31 0.721  3.00 0.107  

 (0.30, 5.71)   (0.79, 11.41)   

20-40 2.01 0.297  4.93 0.009  

 (0.54, 7.50)   (1.49, 16.28)   

40-60 2.20 0.242  5.70 0.004  

 (0.59, 8.22)   (1.75, 18.61)   

>60 1.05 0.939  4.31 0.012  

 (0.30, 3.64)   (1.37, 13.57)   

Alcohol habit consumption   0.006    

rarely 0.16 0.019     

 (0.03, 0.74)      

never 0.46 0.117     

 (0.18, 1.21)      

Take away shopping   0.022    

occasionally 0.94 0.796     

 (0.58, 1.52)      

regularly 0.44 0.012     

 (0.23, 0.84)      

Fish dislike 0.12  <0.001    

 (0.04, 0.36)      
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Table 3.A.9: Oily fish intake predictors in men in the sample population selected for analysis from

the NDNS RP Years 2-4



Qualifications (base: bachelor and up)   0.029    

unfinished degree 0.78 0.447     

 (0.40, 1.49)      

students 0.89 0.842     

 (0.29, 2.74)      

A levels 0.60 0.108     

 (0.33, 1.12)      

GCSE A_C 0.41 0.006     

 (0.21, 0.78)      

GCSE below C and no qualifications 0.37 0.002     

 (0.20, 0.69)      

foreign qualifications 0.45 0.100     

 (0.17, 1.17)      

Within-person SD  0.69 

Between-person SD 1.07 0.90 

Within-person correlation  0.63 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.9 Oily fish intake predictors in men in the sample population selected for analysis from

the NDNS RP Years 2-4 (Continued)



 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2030) CONDITIONAL AMOUNT (N = 584) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-

value2 

LR 

p-value1 

Relative 

change, g 

(95% CI) 

Wald 

p-

value2 

LR 

p-value1 

Weekend 0.79  0.165 1.14  0.022 

 (0.57, 1.10)   (1.02, 1.28)   

Survey Year       

(base) 2009/2010       

2010/2011 0.91  0.791 1.04  0.687 

 (0.45, 1.84)   (0.85, 1.28)   

2011/2012 1.22  0.561 1.11  0.315 

 (0.63, 2.36)   (0.91, 1.34)   

Age, years 0.95  <0.001 0.979  <0.001 

 (0.93, 0.97)   (0.974, 0.985)   

Lipid lowering drug 0.38  0.081    

 (0.13, 1.13)      

Fruit/veg buy < weekly 2.24  0.121    

 (0.81, 6.25)      

MV Physical activity, min/day2 

(base:0) 
  0.096   0.002 

>0 0.21   0.42   

 (0.03, 1.32)   (0.24, 0.73)   

Tenure       

(base) mortgaged or owned 1  0.122 1  0.151 

privately rented 1.58 0.224  1.02 0.831  

 (0.76, 3.30)   (0.84, 1.25)   

LA rented 0.54 0.179  0.76 0.066  

 (0.22, 1.33)   (0.57, 1.02)   

Within-person SD  0.51 

Between-person SD 2.53 0.55 

Within-person correlation  0.54 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 

2The effect of moderate to vigorous physical activity (MVPA) is modelled as two categories: none MVPA versus any MVPA as it 

showed better model fit (AIC criteria). When MVPA was fitted as 6 categories the effects of each category on the sugary drinks 

consumption in both parts of the model were all negative and almost identical in size.  
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Table 3.A.10: Sugary beverages (excluding juice) intake predictors in men in the sample popula-

tion selected for analysis from the NDNS RP Years 2-4
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Female sample

The results below correspond to the female sub-sample.



 

 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2461) CONDITIONAL AMOUNT (N = 1780) 

Predictors 

Odds 
Ratio 

(95%CI) 

Wald 
p-value 

LR 
p-value1 

Relative 
Change 
(95% CI) 

Wald 
p-value 

LR 
p-value1 

Weekend 0.86  0.255 0.88  0.052 

 (0.66, 1.12)   (0.78, 1.00)   

Survey Year (base: 2009/2010)       

2010/2011 0.81 0.308  0.96 0.741  

 (0.54, 1.21)   (0.78, 1.19)   

2011/2012 0.91 0.608  1.06 0.577  

 (0.62, 1.33)   (0.87, 1.29)   

Age, years 1.05  <0.001 1.01  0.001 

 (1.03, 1.06)   (1.00, 1.02)   

BMI, kg/m2 0.96  0.002    

 (0.93, 0.98)      

Health (base: no problems)   0.086    

health problems, no mobility  0.67 0.059     

restrictions (0.44, 1.02)      

health problems, mobility restrictions 1.15 0.516     

 (0.75, 1.78)      

Smoking (base: never smoked)   0.047    

ex, quit >10 year ago 0.79 0.378     

 (0.46, 1.34)      

ex, quit <=10 years ago 0.78 0.319     

 (0.47, 1.28)      

current 0.52 0.003     

 (0.34, 0.80)      

occasional 1.53 0.564     

 (0.36, 6.39)      

MV Physical activity, min/day (base: 0)   0.028   0.001 

0-10 0.63 0.433  0.87 0.625  

 (0.20, 2.0)   (0.51, 1.50)   

10-20 0.75 0.634  0.93 0.804  

 (0.22, 2.49)   (0.52, 1.65)   

20-40 1.26 0.701  1.19 0.531  

 (0.39, 4.11)   (0.69, 2.07)   

40-60 1.36 0.620  1.34 0.318  

 (0.40, 4.59)   (0.76, 2.36)   

>60 1.11 0.854  1.42 0.204  

 (0.35, 3.53)   (0.83, 2.43)   

Fruit/veg buy <weekly 0.51  0.027 0.76  0.114 

 (0.37, 0.80)   (0.54, 1.07)   
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Table 3.A.11: Fruit intake predictors in women in the sample selected for analysis from the NDNS

RP Years 2-4



       

       

Take away shopping   0.008   <0.001 

occasionally 0.54 0.002  0.70 0.001  

 (0.37, 0.80)   (0.57, 0.86)   

regularly 0.66 0.063  0.57 <0.001  

 (0.42, 1.02)   (0.44, 0.72)   

Tenure (base: mortgaged or owned)   <0.001    

privately rented 0.83 0.418     

 (0.53, 1.30)      

LA rented 0.38 <0.001     

 (0.24, 0.59)      

Qualifications (base: bachelor degree 
and above) 

  0.096   0.003 

unfinished degree 0.83 0.537  1.19 0.287  

 (0.46, 1.50)   (0.87, 1.62)   

current students 0.72 0.376  0.70 0.128  

 (0.34, 1.50)   (0.45, 1.11)   

A levels 1.21 0.479  0.73 0.026  

 (0.72, 2.04)   (0.55, 0.96)   

GCSE A_C 0.70 0.184  0.77 0.059  

 (0.42, 1.18)   (0.58, 1.01)   

GCSE below C and no qualifications 0.55 0.026  0.65 0.002  

 (0.33, 0.93)   (0.49, 0.85)   

foreign qualifications 0.96 0.939  0.89 0.588  

 (0.37, 2.50)   (0.58, 1.37)   

McClement equivalence score, £ 1000      0.088 

<=15    0.77 0.061  

    (0.59, 1.01)   

15-25    0.97 0.832  

    (0.74, 1.27)   

(base) 25-35    1   

35-50    1.14 0.367  

    (0.86, 1.52)   

>50    1.02 0.896  

    (0.76, 1.37)   

 Correlation between model parts is 0.41, p-value < 0.001 

Within-person SD  1.03 

Between-person SD 1.24 0.75 

Within-person correlation  0.35 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.11 Fruit intake predictors in women in the sample selected for analysis from the NDNS

RP Years 2-4 (Continued)



 

 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2461) CONDITIONAL AMOUNT (N = 1322) 

Predictors 

Odds 
Ratio 

(95% CI) 

Wald 
p-value2 

LR 
p-value1 

Relative 
Change 
(95% CI) 

Wald 
p-value2 

LR 
p-value1 

Weekend 1.34  0.005 1.02  0.688 

 (1.09, 1.64)   (0.93, 1.12)   

Survey Year (base :2009/2010)       

2010/2011 1.20  0.146 0.95  0.458 

 (0.94, 1.54)   (0.84, 1.08)   

2011/2012 0.97  0.822 0.98  0.728 

 (0.77, 1.23)   (0.87, 1.10)   

Age, years 1.014  <0.001 0.998  0.214 

 (1.007, 1.020)   (0.995, 1.001)   

Partner3(base: married/in partnership)      0.011 

never married    0.91 0.170  

    (0.90, 1.04)   

previously married    1.15 0.022  

    (1.02, 1.30)   

Fruit/veg buy < weekly 0.66  0.033 0.84  0.092 

 (0.45, 0.97)   (0.68, 1.03)   

Physical activity, min/day (base: 0)   0.006   0.086 

0-10 2.26 0.018  1.01 0.968  

 (1.15, 4.45)   (0.69, 1.48)   

10-20 3.70 <0.001  1.00 0.996  

 (1.82, 7.54)   (0.67, 1.48)   

20-40 2.73 0.005  1.09 0.678  

 (1.37, 5.46)   (0.74, 1.60)   

40-60 2.42 0.015  1.20 0.358  

 (1.19, 4.93)   (0.81, 1.79)   

>60 2.69 0.004  1.19 0.373  

 (1.37, 5.28)   (0.81, 1.74)   

Vegetarian 1.70  <0.001 1.27  <0.001 

 (1.27, 2.27)   (1.13, 1.41)   

Alcohol habit consumption   0.035    

rarely 0.58 0.010     

 (0.38, 0.88)      

never 0.97 0.872     

 (0.69, 1.37)      

Take away shopping   0.008    

occasionally 0.78 0.041     

 (0.61, 0.99)      

regularly 0.77 0.063     

 (0.58, 1.01)      

146 CHAPTER 3. DETERMINANTS OF FOOD INTAKE IN THE UK

Table 3.A.12: Cooked vegetables intake predictors in women in the sample selected for analysis

from the NDNS RP Years 2-4



       

       

Tenure (base: mortgaged or owned)   0.001    

privately rented 0.64 0.004     

 (0.48, 0.87)      

local authority rented 0.63 0.001     

 (0.48, 0.83)      

McClement equivalence score, £ 1000      0.007 

<=15    1.01 0.934  

    (0.86, 1.17)   

15-25    1.29 0.001  

    (1.10, 1.50)   

(base) 25-35    1   

35-50    1.00 0.992  

    (0.84, 1.19)   

>50    1.05 0.565  

    (0.88, 1.26)   

 Correlation between model parts is 0.24, p-value 0.350 

Within-person SD  0.78 

Between-person SD 0.58 0.25 

Within-person correlation  0.09 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.12 Cooked vegetables intake predictors in women in the sample selected for analysis

from the NDNS RP Years 2-4 (Continued)



 

 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2461) CONDITIONAL AMOUNT (N = 1024) 

Predictors 

Odds 
Ratio 

(95%CI) 

Wald 
p-value2 

LR 
p-value1 

Relative 
Change 

Wald 
p-value2 

LR 
p-value1 

Weekend 0.83  0.113 1.06  0.447 

 (0.67, 1.04)   (0.91, 1.23)   

Survey Year (base: 2009/2010)       

2010/2011 0.90 0.544  1.06 0.458  

 (0.65, 1.25)   (0.88, 1.27)   

2011/2012 0.88 0.418  1.02 0.842  

 (0.65, 1.20)   (0.85, 1.22)   

Age, years 1.014  0.008 1.006  0.015 

 (1.004, 1.025)   (1.001, 1.010)   

BMI, kg/m2 1.03  0.032    

 (1.00, 1.05)      

Ethnicity (non-white) 1.80  0.023    

 (1.08, 3.00)      

Health (self-reported)   0.046   0.101 

health problems,  0.73 0.078  0.91 0.375  

no mobility restrictions (0.90, 1.04)   (0.74, 1.12)   

health problems, 0.68 0.032  1.20 0.091  

mobility restrictions (0.48, 0.97)   (0.97, 1.47)   

Lipid lowering drug 0.68  0.114    

 (0.42, 1.10)      

Physical activity, min/day (base: 0)   0.164   0.006 

0-10 1.45 0.425  1.06 0.837  

 (0.58, 3.60)   (0.59, 1.90)   

10-20 1.96 0.166  1.37 0.303  

 (0.76, 5.08)   (0.75, 2.51)   

20-40 1.85 0.193  1.35 0.318  

 (0.73, 4.69)   (0.74, 2.43)   

40-60 2.12 0.123  1.35 0.335  

 (0.81, 5.51)   (0.74, 2.46)   

>60 2.28 0.077  1.64 0.095  

 (0.92, 5.66)   (0.92, 2.94)   

Vegetarian 1.42  0.042    

 (1.01, 2.00)      

Alcohol habit consumption      0.097 

rarely    0.73 0.039  

    (0.54, 0.98)   

never    1.06 0.667  

    (0.82, 1.37)   
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Table 3.A.13: Raw and salad vegetables intake predictors in women in the sample selected for

analysis from the NDNS RP Years 2-4



       

       

Take away shopping   0.096    

occasionally 0.81 0.198     

 (0.59, 1.12)      

regularly 0.67 0.034     

 (0.46, 0.97)      

Tenure   0.023    

privately rented 0.65 0.042     

 (0.43, 0.98)      

LA rented 0.62 0.022     

 (0.41, 0.93)      

Qualifications (base: bachelor and up)   0.014    

unfinished degree 0.63 0.063     

 (0.38, 1.02)      

students 0.45 0.023     

 (0.23, 0.89)      

A levels 0.73 0.153     

 (0.47, 1.12)      

GCSE A_C 0.59 0.014     

 (0.38, 0.90)      

GCSE below C and no qualifications 0.45 <0.001     

 (0.29, 0.71)      

foreign qualifications 0.62 0.173     

 (0.31, 1.23)      

Socio-economic status (base: higher 
managerial and professional) 

  0.052    

Lower managerial  0.66 0.047     

and professional occupation (0.43, 0.99)      

Intermediate occupation 0.99 0.976     

 (0.58, 1.70)      

Small employers  0.90 0.684     

and own account workers (0.54, 1.50)      

Lower supervisory 0.56 0.064     

and technical occupation (0.31, 1.03)      

Semi-routine occupation 0.53 0.014     

 (0.32, 0.88)      

Routine occupation 0.54 0.038     

 (0.30, 0.97)      

Never worked and other 0.95 0.893     

 (0.43, 2.07)      

 Correlation between the model parts is 0.06, p-value 0.691  

Between-person SD 1.04 0.43 

Within-person SD  0.97 

Within-person correlation  0.16 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 
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Table 3.A.13 Raw and salad vegetables intake predictors in women in the sample selected for

analysis from the NDNS RP Years 2-4 (Continued)



 

 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2370) CONDITIONAL AMOUNT (N = 1000) 

Predictors 

Odds 

Ratio 

(95% CI) 

Wald 

p-value2 

LR 

p-value1 

Relative 

change 

(95% CI) 

Wald 

p-value2 

LR 

p-value1 

Weekend 1.50  <0.001 1.02  0.730 

 (1.21, 1.85)   (0.90, 1.16)   

Survey Year (base: 2009/2010)       

2010/2011 0.82 0.178  1.15 0.133  

 (0.61, 1.09)   (0.96, 1.37)   

2011/2012 1.02 0.908  1.02 0.836  

 (0.78, 1.33)   (0.87, 1.20)   

Age, years 0.991  0.013 1.000  0.588 

 (0.984, 0.998)   (0.996, 1.004)    

Ethnicity (non-white) 0.43  <0.001    

 (0.27, 0.68)      

Fruits/veg buy <  weekly 0.60  0.025 1.28  0.099 

 (0.38, 0.94)   (0.96, 1.71)   

Health (self-reported)      0.144 

health problems, no mobility     1.18 0.009  

restrictions    (0.98, 1.43)   

health problems, mobility restrictions    0.97 0.729  

    (0.80, 1.17)   

Take away shopping   0.106    

occasionally  1.27 0.105     

 (0.95, 1.68)      

regularly 1.38 0.050     

 (1.00, 1.90)      

Current smoker2    1.25  0.012 

    (1.05, 1.48)   

       

 Correlation between the model parts is 0.03, p-value 0.856 

Between-person SD 0.85 0.42 

Within-person SD  0.88 

Within-person correlation  0.19 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 

2Current smoker status compared to the other smoking related history showed the best prediction in the model. No differences were 

observed between the other levels of smoking history.  
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Table 3.A.14: Processed meat intake predictors in women in the sample selected for analysis

from the NDNS RP Years 2-4



 

 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2416) CONDITIONAL AMOUNT (N = 219) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value2 

LR 

p-value1 

Absolute 

change, g 

(95% CI) 

Wald 

p-value2 

LR 

p-value1 

Weekend 0.87  0.460 0.83  0.213 

 (0.61, 1.25)   (0.62, 1.12)   

Survey Year(base) 2009/2010       

2010/2011 0.90 0.624  0.79 0.145  

 (0.59, 1.37)   (0.58, 1.08)   

2011/2012 0.69 0.072  0.65 0.006  

 (0.46, 1.03)   (0.47, 0.88)   

Age, years 1.026  <0.001 1.02  <0.001 

 (1.013, 1.039)   (1.01, 1.03)   

Ethnicity (non-white) 2.03  0.024    

 (1.10, 3.75)      

BP lowering drug    0.62  0.023 

    (0.42, 0.94)   

Fruit/veg buy < weekly 0.28  0.012    

 (0.10, 0.75)      

Physical activity, min/day(base) 0   0.201    

0-10 3.39 0.136     

 (0.68, 16.93)      

10-20 4.78 0.062     

 (0.93, 24.64)      

20-40 4.68 0.061     

 (0.93, 23.52)      

40-60 3.99 0.100     

 (0.77, 20.72)      

>60 5.04 0.048     

 (1.02, 24.97)      

Take away shopping   0.011    

occasionally 0.58 0.015     

 (0.37, 0.90)      

regularly 0.52 0.018     

 (0.30, 0.89)      

Qualifications (base: bachelor and up)   0.055    

unfinished degree 0.63 0.135     

 (0.34, 1.16)      

students 0.65 0.417     

 (0.23, 1.83)      

A levels 0.49 0.020     

 (0.27, 0.89)      

GCSE A_C 0.44 0.005     

 (0.25, 0.78)      
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Table 3.A.15: Oily fish intake predictors in women in the sample selected for analysis from the

NDNS RP Years 2-4



       

       

GCSE below C and no qualifications 0.59 0.052     

 (0.35, 1.00)      

foreign qualifications 0.36 0.023     

 (0.15, 0.87)      

McClement equivalence score, £ 1000   0.005    

<=15 0.47 0.015     

 (0.26, 0.87)      

15-25 0.78 0.368     

 (0.45, 1.34)      

(base) 25-35 1      

35-50 1.26 0.410     

 (0.73, 2.17)      

>50 1.34 0.318     

 (0.76, 2.37)      

Fish dislike 0.20  <0.001    

 (0.09, 0.43)      

       

 Correlation3 between the model parts is 0 

Within-person SD  0.93 

Between-person SD 0.77 0.22 

Within-person correlation  0.05 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 

Correlation between the probability and the conditional amount model parts was set to 0 based on the preliminary analysis described in 

Table 2 of the Results section in the main text. 
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Table 3.A.15 Oily fish intake predictors in women in the sample selected for analysis from the

NDNS RP Years 2-4 (Continued)



 

 

 SUBJECT-SPECIFIC TWO-PART MODEL EFFECTS 

 PROBABILITY (N = 2461) CONDITIONAL AMOUNT (N = 616) 

Predictors 

Odds 

Ratio 

(95%CI) 

Wald 

p-value 

LR 

p-value1 

Relative 

Change 

(95% CI) 

Wald 

p-value 

LR 

p-value1 

Weekend 1.14  0.361 1.08  0.222 

 (0.85, 1.53)   (0.96, 1.20)   

Survey Year (base: 2009/2010) 1   1   

2010/2011 0.60 0.068  0.93 0.464  

 (0.35, 1.04)   (0.77, 1.12)   

2011/2012 0.75 0.259  1.05 0.587  

 (0.45, 1.24)   (0.88, 1.25)   

Age, years 0.97  <0.001 0.99  <0.001 

 (0.95, 0.98)   (0.98, 0.99)   

Ethnicity (non-white) 1.96  0.088    

 (0.91, 4.26)      

BMI, kg/m2    1.010  0.094 

    (0.998, 1.024)   

Lipid lowering medicine    0.71  0.024 

    (0.53, 0.96)   

Partner (base: married) 1  0.085    

never married 1.88 0.029     

 (1.07, 3.30)      

previously married 1.29 0.356     

 (0.75, 2.21)      

Smoking (base: never smoked) 1  0.103    

ex, quit >10 year ago 1.18 0.636     

 (0.59, 2.38)      

ex, quit <=10 years ago 0.39 0.014     

 (0.19, 0.83)      

current 1.13 0.604     

 (0.65, 1.97)      

occasional 1.19 0.842     

 (0.22, 6.54)      

MV Physical activity2, min/day (base:0) 5.56  0.053 1.90  0.079 

 (0.98, 31.50)   (0.93, 3.89)   

Vegetarian    1.22  0.026 

    (1.02, 1.46)   

Take away shopping (base: never)    1  0.002 

occasionally    1.20 0.043  

    (1.01, 1.43)   

regularly    1.44 <0.001  

    (1.17, 1.76)   
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Table 3.A.16: Sugary beverages (excluding juice) intake predictors in women in the sample se-

lected for analysis from the NDNS RP Years 2-4



       

       

Tenure (base: mortgaged or owned)    1  0.032 

privately rented    0.84 0.096  

    (0.68, 1.03)   

LA rented    0.79 0.041  

    (0.64, 0.99)   

Qualifications3 (base: bachelor degree and 

above) 
      

Lower than bachelor degree    1.21  0.041 

    (1.01, 1.44)   

McClement equivalence score, £10004   0.208   0.173 

<=15 0.85 0.637  0.92 0.474  

 (0.43, 1.67)   (0.73, 1.16)   

15-25 0.92 0.816  0.92 0.452  

 (0.46, 1.83)   (0.73, 1.15)   

(base) 25-35 1   1   

35-50 0.51 0.090  0.95 0.695  

 (0.24, 1.11)   (0.73, 1.24)   

>50 0.46 0.060  0.70 0.014  

 (0.20, 1.03)   (0.52, 0.93)   

 Correlation between the model parts is 0.42 , p-value 0.003 

Within-person SD  0.54 

Between-person SD 1.99 0.47 

Within-person correlation  0.43 

 

1p-value from likelihood ratio test of the joint significance if a factor variable has more than two levels 

2MV Physical activity is analysed as 2 categories (0 min MVPA /day vs. >0 min MVPA/day) 

3Qualifications is analysed as 2 categories (base: bachelor degree and above and lower than bachelor degree) 

4McClement’s equivalence score was jointly significant in both parts of the model at p-value 0.109. 
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Table 3.A.16 Sugary beverages (excluding juice) intake predictors in women in the sample se-

lected for analysis from the NDNS RP Years 2-4 (Continued)
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3.B Detailed statistical methods

3.B.1 Mixed-effect mixed-distribution model
We briefly describe the two-part mixed-effects model suitable for repeated positive con-

tinuous responses with excess zeros (cf. Olsen and Schafer (2001), Tooze et al. (2002),

and Su et al. (2009) for full details). For each person, i, i = 1, . . . ,m on day j, j = 1, . . . ni,

the data consist of two parts: the occurrence of food consumption (yes/no), which can be

recorded as an indicator variable Iij such that:

Iij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the food is consumed by person i on day j

0, otherwise

and the amount of food consumed if consumption took place, which we record asAij,Aij >

0 if Iij = 1. Natural heterogeneity arise among subjects due to personal preferences for

consumption. We denote unobservable person-specific information related to propensity

to consume certain foods as vi and unobservable person-specific information related to

amount consumed on consumption day as ui. Then, conditionally on vi and ui, responses

Iij and Aij are independent. The indicator variable Iij is assumed to follow a Bernoulli

distribution with probability pij, and to allow for skewness, we assume Aij,Ai,j > 0 to be

log-normally distributed. In this chapter, we suggest the following model specification: the

first part response Iij follows the logistic regression model:

logit{Pr(Iij = 1∣vi)} = x
′

ijγ + vi

where x′ij is the vector of relevant covariates, relating individual characteristics to propen-

sity for food intake, and γ is the vector of corresponding regression coefficients. And,

considering, log(Aij) = Yij is approximately normal, we can write:

Yij = x
′

ijβ + ui + εij

where E(Yij ∣ui) = x
′

ijβ + ui and Var(Yij ∣ui) = σ2
ε (within-person daily variation); x′ij is the

vector of relevant covariates relating individual characteristics to the amount of food con-

sumed, β is the vector of corresponding regression coefficients. The potential correlation
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between the probability and amount parts is induced through person-specific effects ui

and vi, which are assumed to have a common bivariate normal distribution with means 0

and variance-covariance matrix:

Σ =
⎛
⎜
⎝

σ2
u ρσuσv

ρσuσv σ2
v

⎞
⎟
⎠

where ρ denotes the correlation between ui and vi, σ2
u and σ2

v are the variances of ui and vi

respectively. These are called random effects and are assumed to be independent of εij.

The unknown model parameters θ = (γ, β, σu, σv, σε, ρ) can be estimated through maximis-

ing the full marginal likelihood function, where we utilise the conditional independence of

responses Iij and Yij and their distributional assumptions. Because the random effects ui

and vi are unobserved, they need to be integrated out, so that the full marginal likelihood

function is:

L(θ)∝
m

∏
i=1
∫

+∞

−∞
∫

+∞

−∞

ni

∏
j=1

fI(Iij ∣ vi, θ)fY (Yij ∣ ui, θ)fUV (ui, vi ∣ θ)duidvi (3.1)

where fI , fY and fUV denote the density functions of the binomial, normal and bivariate

normal distributions, respectively. The likelihood function does not have a closed form

and needs to be evaluated numerically.

We note that if it is assumed that the random effects are independent, i.e. ρ = 0, esti-

mation is considerably simplified as the two parts can be fitted separately using standard

statistical software for generalised mixed-effect models.

Due to non-linearity the estimates of the regression coefficients β and γ are subject-

specific. To obtain estimates, which could be generalised to a group of participants, the

marginal effects should be obtained.

3.B.2 Marginal effects

In certain cases, when the interpretation of subject-specific regression coefficients is prob-

lematic, marginal effects of predictors can be obtained. This section explains how to es-
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timate the marginal effects of predictors in the two-part model, the expected individual

intake and the expected group intake.

The expected individual habitual daily intake Tij for a person i on a day j is calculated as

the product of the expected individual daily probability of the food consumption, pij, and

the expected individual consumed amount on a consumption day:

Tij = P (Iij = 1∣vi) ⋅ E(Aij ∣Aij > 0, ui). Under the two-part model Tij depends on the set

of parameters θ as well as on the unobserved person-specific effects ui and vi, which

may be correlated. The point model estimates θ̃ of θ can be obtained through likelihood

maximisation but the person-specific ui and vi are unobserved. Using the the notation

introduced in Appendix 3.B.1, the estimated expected individual habitual daily intake can

be then described as

T̃ij = exp(x′ijβ̃ + ui + 0.5σ̃2
ε )

exp(x′ij γ̃ + vi)
1 + exp(x′ij γ̃ + vi)

(3.2)

A weekend may change the expected daily intake (for example, this is true for alcohol

consumption). To account for this, we assign weights to the estimated expected daily

weekend and weekdays intakes accordingly, so that the expected individual daily intake

T̃i now becomes:

T̃i =
4

7
exp(x′i0β̃ + ui + 0.5σ̃2

ε )
exp(x′i0γ̃ + vi)

1 + exp(x′i0γ̃ + vi)

+ 3

7
exp(x′i1β̃ + ui + 0.5σ̃2

ε )
exp(x′i1γ̃ + vi)

1 + exp(x′i1γ̃ + vi)
(3.3)

where x′i0 and x′i1 are the vector of explanatory variables corresponding to week days and

weekends.

From the above quantity and under the distributional assumptions for vi and ui as bivariate

normal (0, Σ̃) we can estimate the expected group intake T̃A = E(T̃i∣i ∈ A), where A

denotes the subgroup of interest with certain fixed characteristics. The expected intake

for this subgroup is given by
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T̃A = ∫
∞

−∞
∫

∞

−∞
T̃ifUV (ui, vi)duidvi (3.4)

Typically, the integration of the above quantity requires numerical methods.

The marginal effects of a predictor can be found via the estimated expected group intakes

(Su et al., 2009). Consider participants in group 1 that differ from participants from group

2 only in one characteristic, the effect of which we are trying to estimate. The expected

group intakes can be obtained as described above and, then, the difference between the

intakes can be attributed to the effect of the characteristic in question. Clearly, the esti-

mated marginal group intakes are non-linear with respect to the group participants char-

acteristics, so, to make the interpretation of the results easier, we set a baseline group

and compare the effect of predictors against this group. This chapter utilises the baseline

group with the following characteristics: white, 48 years old, having BMI of 27.4 (men) and

26.7 (women), with no health and mobility problems, not on lipid or BP lowering drug, mar-

ried or live in partnership, never-smoker, involved in moderate-to-vigorous physical activity

more than 60 min daily, not vegetarian, regularly buying fruits and vegetables, rarely buy-

ing takeaways, owned or mortgaged accommodation, qualified to bachelor degree and

above, being in the lower managerial and professional occupation, with equalised income

of £25000 - £35000 (men) and £15000 - £25000 (women).

3.B.3 Complex survey design

Generally speaking, two methodological issues should be addressed when survey data

are being analysed: firstly, standard errors can be misleading if clustering of the partic-

ipants from the same sampling unit is not adjusted for. Secondly, the generalisability of

the results need to be considered. Typically, the latter is addressed by applying individual

weights to adjust for different selection probabilities when inference about such population

parameters as means or frequencies is required.

However, as discussed by Carle (2009) and Pfeffermann (2011), when using survey data
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to elicit determinants of participants’ behaviour in a model-based approach, no clear-cut

strategy on applying individual weights in the analysis currently dominates.

This chapter utilises National Diet and Nutrition Survey Rolling Programme (NDNS RP)

data to make inference about the predictors of participants’ food-related behaviour by

applying a mixed-effect mixed-distribution modelling approach and it does not incorporate

individual weights in the analysis for the reasons listed below.

Firstly, NDNS RP data come from a selection procedure that is non-informative because

the primary sampling units (PSUs) were chosen at random and the inclusion probabilities,

including non-response, are not explicitly conditioned on the examined outcomes. This

implies that the point estimates of the effects of the predictors on participants’ food choice

should be unbiased.

Secondly, to minimise the potential selection bias associated with non-response, we ad-

just for possible predictors of both, non-response and food intake: age, tenure, income

and other socio-demographic characteristics.

Thirdly, clustering of the responses is addressed in two of ways. Correlation of indi-

vidual responses within a participant is explicitly incorporated into the model variance-

covariance structure. Clustering within PSU is adjusted through taking into account cer-

tain neighbourhood’s characteristics such as clustering of participants with similar social

occupations and incomes through estimation of expected values at individual level.

Gelman (2007) suggests that under the above conditions within the framework of mixed-

effect modelling the model-based point estimates derived from complex design surveys

can serve as appropriate estimates of the predictors’ effects. Carle (2009) shows that

unweighted model-based inference on point estimates is very similar to the inference

based on scaled weighting and lead to the same conclusions regarding the importance of

the predictors.
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There remains a possibility that residual clustering exists that is not accounted for by the

measured predictors or by modelling of variance-covariance responses structure. This is

addressed by running the analysis of habitually consumed foods (continuous responses

only) taking into account both levels of correlation: individual (Level 1) and PSU (Level 2)

through multi-level modelling. The analysis showed that, after adjusting for within-person

correlation and various personal and socio-economic predictors the residual within-PSU

correlation is negligible and, consequently, should not affect the results.



Chapter 4

Joint modelling of multiple correlated

habitually- and occasionally-consumed

food intakes with application to alcohol

intake

This chapter extends the two-part model presented in Chapters 2 and 3 to model the

intake of several occasionally consumed foods jointly. Parameter estimation is carried

out using a pseudolikelihood approach coupled with parametric bootstrap. The method

is illustrated by analysing alcohol intake, jointly with the intake of other foods, from a

subsample population of the UK National Diet and Nutrition Survey Rolling Programme.

4.1 Background
We showed in previous chapters how to analyse occasionally-consumed food intake using

a two-part mixed-effects model which allows person-specific preferences for consumption

frequency and portion size to be correlated. This chapter models the intake of two or

more occasionally-consumed foods, allowing for unobserved preferences to be correlated

161
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across various food intakes. A full specification of the underlying correlation structure in

a joint model allows the investigation of the residual correlation among various foods that

remains after adjusting for observed predictors, and is expected to provide more robust

inferences for the model parameters. The joint modelling of two occasionally-consumed

food intakes consists of four parts, with four potentially correlated random effects, making

maximum likelihood estimation challenging due to the required computation of a high-

dimensional integral. The extension to model three or more occasionally-consumed foods

jointly, quickly increases the dimensionality of the integration space. An approach to this

problem found in the literature is to resource to Markov Chain Monte Carlo (MCMC) (Zeger

and Karim, 1991; Hamra et al., 2013; Zhang et al., 2011), or Monte Carlo expectation max-

imisation (Guolo, 2011) within a Bayesian framework. However, these methods are not

widely spread among practitioners, are time-consuming and difficult to reproduce. This

chapter proposes an approach based on a pseudolikelihood approach, also known as

composite likelihood (Lindsay, 1988; Cox and Reid, 2004; Bellio and Varin, 2005; Fieuws

and Verbeke, 2006), to reduce the complex high-dimensional likelihood function arising

from modelling multiple correlated occasionally-consumed food intakes jointly.

The composite likelihood (CL) approach arises from the asymptotic theory of estimating

equations and misspecified likelihoods (White, 1982) with the method of generalised esti-

mating equations developed for longitudinal data being a prime example of its successful

application (Liang and Zeger, 1986) in medical research. CL assumes independence

for individual conditional or marginal likelihood contributions which are pulled together to

form a full composite likelihood, in cases where optimisation of the original full likelihood

function is not feasible. The key properties of the method are, generally, its consistency

and asymptotic normality of the estimated model parameters (White, 1982). The area of

research on composite likelihood is rapidly developing due to its potential to reduce the

complexity of estimation associated with high dimensions (Geys et al., 1999; Bellio and

Varin, 2005; Fieuws and Verbeke, 2006; Varin et al., 2011). Recent applications can be

found in the areas of spacial processes (Caragea and Smith, 2007), health care (Ivanova
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et al., 2017), questionnaire data (Fieuws et al., 2006), statistical genetics (Larribe and

Fearnhead, 2011), chemical exposures (Zhang et al., 2016) and meta-analysis (Chen

et al., 2015) to name a few. For the most recent extensive review of the subject please

refer to Varin et al. (2011).

The focus of the analysis presented here is on modelling alcohol intake, considering the

intake of other dietary components jointly. The analysis is based on dietary data from

the UK National Diet and Nutrition Survey Rolling Programme (NDNS RP) and it draws

from the work developed in previous chapters. This work is, to the best of the author’s

knowledge, the first analysis of complex nutritional data utilising a composite likelihood

approach to provide more robust inference of the determinants of alcohol intake in a

representative sample drawn from the population of adults residing in United Kingdom

(UK).

4.2 Methods

4.2.1 The UK National Diet and Nutrition Survey Rolling Programme

Data

The NDNS RP is an annual cross-sectional survey, jointly funded by Public Health Eng-

land and the UK Food Standards Agency, undertaken since 2008. The survey aims to as-

sess diet, nutrient intake and nutritional status of the UK population aged 18 months and

older, living in private households. A nationally representative sample of the UK house-

holds is selected by a multistage sampling procedure: firstly, the Postcode Address File

(PAF), which contains all the addresses in the UK, is accessed to sample Primary Sam-

pling Units (PSUs). These are small geographical areas formed by neighbouring post-

codes. Secondly, twenty seven addresses are sampled from a selected PSU at random,

where either an adult or a child is selected. The 27 addresses are randomly allocated

to one of two groups to determine whether an adult (aged 19 years or over) and a child

(aged 1.5 to 18 years), or a child only, are selected for interview. At nine of the selected
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addresses the interviewer selects one adult and, where present, one child for inclusion

in the survey. The remaining 18 addresses form a “child boost” where only households

with children are selected. Where more than one person is eligible the participants are

selected using a random selection procedure.

The collection included demographics, an estimated four-day food diary, life-style factors

and socio-economic measurements. Diary response rate was 56%. Further details can

be found elsewhere (Public Health England, 2014).

Demographics, socio-economic and life-style factors

The following patient characteristics were available as potential determinants of alcohol

intake.

Demographic factors comprised age; sex; ethnicity (white; non-white); body mass index

(BMI); lipid and blood pressure lowering medications taken (yes; no); self-assessed gen-

eral health problems (no; yes, but no impact on mobility; yes, with impact on mobility);

partner status (married or in partnership; never married or lived in partnership; previously

married or lived in partnership but now single).

Life-style factors comprised take away shopping habits (rarely or never; once or twice

per month; every week or more often); fruits and vegetables shopping habits (less than

weekly; weekly and more often); being a non-meat-eater (yes; no); smoking (never smoked;

quit >10 years ago; quit ≤ 10 years ago; current smoker; occasional smoker); alcohol

consumption (never drink; rarely drink; the rest); moderate-to-vigorous physical activity

(MVPA) assessed through a recent self-completed Physical Activity Questionnaire, ex-

pressed in min per day and combined from four domains: home, commuting, work and

leisure (0 min ; 0–10 min; 10–20 min; 20–40 min; 40–60 min; ≥ 60 min) (Mindell, 2014).

Socio-economic factors comprised education as the highest obtained degree (bachelor

degree and above; unfinished degree; current student; A levels; GCSE grades A-C;

GCSE grades below C or no qualifications; foreign degree); socio-economic status (never
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worked and others; routine; semi-routine; lower supervisory and technical; small employ-

ers and own account; intermediate; lower managerial and professional; higher managerial

and professional); income over the previous 12 months as assessed through self-report

and equalised to take into account the household composition by a rescaled version

of the Organisation for Economic Development modified equivalence scale (Anyaegbu,

2010) (<£15,000; £15,000–£25,000; £25,000–£35,000; £35,000–£50,000; ≥ £50,000).

For some people (71 (14%) for men and 85 (13.8%) for women) information was not col-

lected so they were assigned into a separate category; tenure (own or mortgage; renting

privately; renting from local authority).

4.2.2 Extension of the two-part model to model intake of two occa-

sionally-consumed foods

Chapter 2 introduced a two-part mixed-effects model (Olsen and Schafer, 2001; Tooze

et al., 2002) to model the individual intake of one occasionally-consumed food. This sec-

tion extends the model for the joint modelling of the individual intake of two occasionally-

consumed foods.

To extend the notation introduced in previous chapters, we use the sub-indeces h to de-

note each food, h = 1,2, i for each individual, i = 1, . . . ,m and j for day on which con-

sumption took place j = 1, . . . nhi. The data consist of two parts: the occurrence of food

consumption (yes/no), which can be coded as an indicator variable Ihij such that:

Ihij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if the food h is consumed by person i on day j

0, otherwise

and the amount of food consumed if consumption took place, which we record as Ahij,

with Ahij > 0 if Ihij = 1.

Natural heterogeneity arise among subjects due to personal preferences for consumption.

We denote unobservable person-specific information related to propensity to consume

certain foods as vhi and unobservable person-specific information related to amount con-
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sumed on consumption day as uhi. Then, conditionally on vhi and uhi, responses Ihij

and Ahij are independent. The indicator variable Ihij is assumed to follow a Bernoulli

distribution with probability phij = Pr(Ihij = 1∣vhi), and to allow for skewness, we assume

Ahij ∣Ahij > 0 to be log-normally distributed. We assume a logistic regression model for Ihij

logit{Pr(Ihij = 1∣vhi)} = x
′

hijγh + vhi

where x′hij is the vector of relevant covariates, relating individual characteristics to propen-

sity for food intake, and γh is the vector of corresponding regression coefficients. Further,

under the assumption that log(Ahij ∣Ahij > 0) = Yhij is approximately normal, we specify

Yhij = x
′

hijβh + uhi + εhij,

where E(Yhij ∣uhi) = x
′

hijβh + uhi and Var(Yhij ∣uhi) = σ2
εh

(within-person daily variation); x′hij

is the vector of relevant covariates relating individual characteristics to the amount of food

consumed, βh is the vector of corresponding regression coefficients.

The potential correlation between the probability and amount parts of both foods is linked

through person-specific effects uhi and vhi, which are assumed to have a joint four-

dimensional normal distribution with means 0 and variance-covariance matrix Σ. These

are called random effects and are assumed to be independent of εhij.

The unknown model parameters θ = (γh, βh,Σ, σε2
h
) can be estimated through maximising

the full marginal likelihood function, where we utilise the conditional independence of

responses Ihij and Yhij and their distributional assumptions. Because the random effects

uhi and vhi are unobserved, we take expectation of the above function over the random

effects, so that the expected full marginal likelihood function becomes:

L(θ)∝
m

∏
i=1
⨌

n1,i

∏
j=1

fI1(I1ij ∣ v1i, θ)fY1(Y1ij ∣ u1i, θ)
n2,i

∏
j=1

fI2(I2ij ∣ v2i, θ)fY2(Y2ij ∣ u2i, θ)

fU1V1U2V2(u1i, v1i, u2i, v2i ∣ θ)du1idv1idu2idv2i (4.1)

where fIh, fYh and fU1V1U2V2 denote the density functions of the Bernoulli, normal and

multivariate normal distributions, respectively. The likelihood function does not have a

closed form and needs to be evaluated numerically.
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It can be seen that as the number of foods increases, the numerical integration computa-

tion becomes more challenging to evaluate.

4.2.3 Pseudolikelihood
The pseudolikelihood approach has been previously used to reduce the complexity of

the likelihood function of mixed-effect models involving multiple correlated random ef-

fects (Geys et al., 1999; Bellio and Varin, 2005; Fieuws and Verbeke, 2006; Varin et al.,

2011). We denote the loglikelihood contribution of individual i to the full loglikelihood

by `i(θ;Y1i,Y2i, . . . ,Yqi,I1i,I2i, . . . ,Iqi), the pseudolikelihood approach suggests that in-

stead of maximising the full likelihood function, we maximise likelihoods built on simpler

models which do not involve more than four random effects simultaneously and, typically,

are bivariate, so called pairwise likelihoods, so that the individual pairwise loglikelihood

contribution becomes `l,r,i(θl,r;Yli,Iri) where, l = 1, . . . , q − 1, r = l + 1, . . . , q and θl,r is

the vector of parameters of the corresponding reduced simpler model. Then the following

loglikelihood contributions can be maximised separately

`l,r =
m

∑
i=1

`l,r,i(θl,rYli,Iri),

and the log-pseudolikelihood function can then be obtained as the sum of the above

q(q − 1)/2 pairwise loglikelihoods. The estimates obtained from maximising pairwise like-

lihoods have properties grounded in the theory of estimating equations and are, gen-

erally, consistent and approximately normal provided the full joint model is correct (Cox

and Reid, 2004). This follows from considering the estimating equations Ul,r(θ;Y ) =

∂`l,r(θ;Y )/∂θ = 0, which are the first derivatives of `l,r(θ;Y ) with respect to θ and which

are unbiased for θ. For some elements of θ there will be more than one estimate coming

from pairwise log likelihoods. In this case, using the Central Limit Theorem, the available

estimates are averaged to get a single estimate of the model parameter.

Confidence intervals for model parameters based on pseudolikelihood

The distribution of the estimates of θ obtained from maximising the pseudolikelihood dif-

fers from the distribution of estimates obtained from maximising the full likelihood; there-
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fore, the Fisher information matrix cannot longer be used to estimate their variance. In-

stead, the variance of estimates is estimated by the inverse of the Godambe information

matrix, G(θ), defined by G(θ) = H(θ)J(θ)−1H(θ), where H(θ) = E(−∂U(θ;Y )/∂θ) and

J(θ) = E(U(θ;Y )U(θ;Y )T ). The evaluation of this matrix is complex due to the joint

structure of the random effects (Bellio and Varin, 2005; Varin et al., 2011). However,

Aerts and Claeskens (1999) showed that parametric bootstrap will provides consistent

estimates of confidence intervals for model parameters estimated from a log pseudolike-

lihood.

To apply the method of parametric bootstrap, P bootstrap dataset samples from a fully

specified likelihood model where the true model parameters are replaced by our esti-

mates obtained from maximising the pseudolikelihoods are generated. Each bootstrap

sample is then analysed by applying pseudolikelihoods and, for each bootstrap sample,

a corresponding maximum pseudolikelihood estimate of θ is obtained. The procedure re-

sults in a set of P pseudolikelihood estimates, the sample variance of which is a bootstrap

variance of θ (Zhang et al., 2016).

The two-part models (pairwise likelihoods) from Chapter 3 set the basis for the inference

on the predictors of alcohol intake. To maximise the utilisation of available information,

and, simultaneously, whilst keeping the computational aspect of data analysis at a reason-

able level of complexity, this work analyses the data in triple-wise likelihoods so that each

simpler likelihood contains a model specifying the probability of alcohol intake, the amount

of alcohol consumed if consumption takes place (i.e. portion size) and another model

part for occasionally-consumed food intake (probability or amount part). This approach

ensures that the parameters of the model for alcohol intake, probability and amount parts,

are always analysed together, so that, the underlying correlated random effects related to

alcohol intake are always fitted together. On top of that, they are also always adjusted for

one more potential correlation coming from a random effect of another model, probability

or amount, representing another occasionally-consumed food intake distribution.
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More precisely, for each sub-population, male or female, twelve models are fitted where

each model contains the part which models the probability of alcohol consumption, the

part which models the portion size of alcohol consumed and a part which models either

the probability of consumption of one of the following foods: fruits, cooked vegetables,

raw vegetables, processed meat, oily fish and sugary drinks or the portion size of the

corresponding occasionally-consumed foods. The results are stored and the model pa-

rameters, which appear in the pseudolikelihoods more than once, are averaged to obtain

a single estimate. The resulting covariance matrix of the fourteen random effects is con-

structed and, if necessary, converted to the nearest positive-semi-definite matrix to have

the attributes of variance-covariance matrices. This allows to specify the full likelihood

function which consists of fourteen components describing the consumption probability

and the portion size of the specified occasionally-consumed food intake distributions, via

the combination of fixed effect parts with available observed food intake predictors and

random effect parts. To build one bootstrap sample the actual available data are utilised

so that for each person with observed food intake predictors such as age, gender, so-

cial and lifestyle characteristics, fourteen possible intakes are generated based on the

available information on predictors, fixed effect model parameters estimates (obtained at

the previous step from pseudolikelihood) and on person-specific effects, simulated from

a fourteen-dimensional multivariate normal distribution with variance-covariance matrix

obtained at the previous step. Each of the generated bootstrap samples is then anal-

ysed in the same manner as the original data by applying the psuedolikelihood approach

to 12 triple-likelihoods and the results of model parameters point-estimates are stored.

The results presented in this chapter are based on 10 bootstrap samples applied to the

full likelihood, resulting in 120 point estimates of each vector of model parameters for

alcohol intake. These 120 point estimates form the sample distribution of the model pa-

rameters and the corresponding ranges of values lying within the lower and the upper 5th

percentiles represent 95% bootstrap-constructed confidence intervals to draw statistical

inference for the model parameters of alcohol intake distribution.
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4.2.4 Comparison of the pseudolikelihood approach with multivari-

able linear regression

We compared the proposed modern methodology to the traditional approach in nutritional

epidemiology in which multivariable linear regression is applied to individual averages

of alcohol intake as outcome. Individual averages are calculated as the average of all

available daily alcohol intake per person. To correct for skewness and zero records, the

individual average alcohol intake was transformed by applying natural logarithm to indi-

vidual average increased by 1. The selection of risk factors when applying multivariable

regression follows a similar process as that utilised in Chapter 3 for the two-part model.

First, a model with the full set of predictors was fitted. Then, in a step-down manner, each

predictor was tested for significance. In the first run, the predictors with p-values above

0.20 were removed and the process repeated. In the second and consequent runs, the

variables were left in the model if the corresponding p-values were less than 0.10. All

models were adjusted for age, survey year and weekend (including Friday) and excluded

non-drinkers. Robust (Sandwich-Huber-White) standard errors were computed to correct

for potential model mis-specification. An F-test was utilised to test the significance of

factor variables and a Wald test was utilised to test significance of continuous variables.

Stata 14 software was utilised to analyse the data.

4.3 Results
Table 4.1 displays personal, lifestyle and socio-demographic characteristics of the sample

population selected for analysis from the NDNS RP Years 2-4.



   

 Males (N = 509) Females (N = 618) 

 N 

(mean) 

% 

(SD) 

N 

(mean) 

% 

(SD) 

     

Age, years (mean (SD)) (48.3) (17.5) (48.2) (18.1) 

BMI (mean(SD)) (27.4) (4.5) (26.7) (5.7) 

Survey Year     

2009/2010 170 33.4 202 32.7 

2010/2011 146 28.7 178 28.8 

2011/2012 193 37.9 238 38.5 

Ethnicity     

white 471 92.5 571 92.4 

non-white 38 7.5 47 7.6 

Health, self-reported     

no health problems 341 67.0 381 61.7 

health problems, no mobility restrictions 86 16.9 110 17.8 

health problems, mobility restrictions 82 16.1 127 20.6 

Lipid lowering drug taken     

no 451 88.6 560 90.6 

yes 58 11.4 58 9.4 

Blood pressure lowering drug taken     

no 454 89.2 544 88.0 

yes 55 10.8 74 12.0 

Partner      

married or live in partnership 273 53.6 266 43.0 

never married or lived in partnership 148 29.1 168 27.2 

previously married or lived in partnership but now 

single 

88 17.3 184 29.8 

Lifestyle 

Smoking     

never smoked 257 50.5 355 57.4 

ex-smoker, quit >10 year ago 77 15.1 73 11.8 

ex-smoker, quit <=10 years ago 46 9.0 65 10.5 

current 115 22.6 116 18.8 

occasional 14 2.8 9 1.5 
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Table 4.1: Personal, lifestyle and socio-demographic characteristics of the sample population

selected for analysis from the NDNS RP Years 2-4



 Males (N = 509) Females (N = 618) 

 N 

(mean) 

% 

(SD) 

N 

(mean) 

% 

(SD) 

     

Moderate to vigorous physical activity, min/day     

0 14 2.8 15 2.4 

0-10 62 12.2 138 22.3 

10-20 33 6.5 76 12.3 

20-40 71 14.0 116 18.8 

40-60 65 12.8 70 11.3 

>60 264 51.9 203 32.9 

Drinking     

yes 444 87.2 524 84.8 

rarely 28 5.5 37 6.0 

never 37 7.3 57 9.2 

Fruits and vegetables buying habits     

weekly or more often 472 92.7 575 93.0 

less often than weekly 37 7.3 43 7.0 

Non-meat eaters 9 1.8 23 3.7 

Take away habit     

rarely or never 200 39.3 291 47.1 

less than once a week 198 38.9 204 33.0 

once a week and more 111 21.8 123 19.9 

Socio-economic  

Tenure     

mortgaged or owned 355 69.7 433 70.1 

rented privately  90 17.7 89 14.4 

 rented from local authority 64 12.6 96 15.5 

Qualifications     

bachelor degree and above 133 26.1 136 22.0 

unfinished degree 50 9.8 64 10.4 

students 20 3.9 32 5.2 

A levels 83 16.3 98 15.9 

GCSE A_C 86 16.9 114 18.5 

GCSE below C and no qualifications 110 21.6 146 23.6 

foreign qualifications 27 5.3 28 4.5 
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Table 4.1 Personal, lifestyle and socio-demographic characteristics of the sample population se-

lected for analysis from the NDNS RP Years 2-4 (Continued)



 Males (N = 509) Females (N = 618) 

 N 

(mean) 

% 

(SD) 

N 

(mean) 

% 

(SD) 

     

Social Status      

higher managerial and professional occupation 104 20.4 86 13.9 

lower managerial and professional occupation 134 26.3 174 28.2 

intermediate occupations 45 8.8 63 10.2 

small employers and own account workers 50 9.8 74 12.0 

lower supervisory and technical occupation 49 9.6 47 7.6 

semi-routine occupations 60 11.8 93 15.1 

routine occupations 56 11.0 58 9.4 

never worked or other 11 2.2 23 3.7 

Equalised household income, £ 1000     

<=15 70 13.8 134 21.7 

15-25 99 19.5 124 20.1 

25-35 95 18.7 110 17.8 

35-50 79 15.5 87 14.1 

>50 95 18.7 78 12.6 

missing 71 14.0 85 13.8 
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Table 4.1 Personal, lifestyle and socio-demographic characteristics of the sample population se-

lected for analysis from the NDNS RP Years 2-4 (Continued)
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Table 4.2 and Table Table 4.3 present the results of applying the pseudolikelihood ap-

proach to the estimation of alcohol intake predictors in male and female sub-populations

of NDNS RP correspondingly. The 95 % confidence intervals of model parameters were

obtained by applying the parametric bootstrap method described in the previous section.



 

  
Subject specific regression coefficient from 

two-part model 

Predictors 

 Odds Ratio 

 

(95%CI) 

(N = 1882) 

Portion size 

Relative Change  

(95% CI) 

(N = 778) 

Weekend1  3.59 1.33 

  (2.54, 4.45) (1.27, 1.44) 

Survey Year (base: 2009/2010)    

2010/2011  0.64 1.25 

  (0.30, 1.37) (1.02, 1.45) 

2011/2012  0.78 1.00 

  (0.41, 1.18) (0.86, 1.11) 

Age, years  1.04 0.992 

  (1.01, 1.06) (0.987, 0.998) 

Ethnicity (non-white)  0.29  

  (0.13, 0.75)  

Partner (base: married)    

never married   1.11 

   (0.97, 1.30) 

previously married   1.40 

   (1.13, 1.59) 

Smoking (base: never smoked)    

ex, quit >10 year ago  1.64 0.99 

  (0.86, 3.40) (0.81, 1.13) 

ex, quit <=10 years ago  1.70 1.40 

  (0.59, 6.07)  (1.16, 1.64) 

current  2.21 1.39 

  (1.15, 6.05) (1.13, 1.54) 

occasional  1.33 2.15 

  (0.14, 4.20) (1.37, 2.82) 

Alcohol habit consumption (base: regular)    

rarely  0.04 0.09 

  (0.00, 0.26) (0.07, 0.12) 

never  NA NA 

Take away (base: rarely or never)    

occasionally    1.04 

   (0.96, 1.22) 

regularly   1.30 

   (1.16, 1.51) 
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Table 4.2: Predictors of alcohol intake in the sample population of men selected for analysis from

the NDNS RP Years 2-4, based on the pseudolkelihood approach



Tenure (base: mortgaged or owned)    

privately rented  0.52  

  (0.21, 1.14)  

local authority rented  1.15  

  (0.37, 2.46)  

    

McClement equivalence score, £ 1000    

<=15  0.46  

  (0.23, 0.99)  

15-25  0.39  

  (0.16, 0.62)  

(base) 25-35  1  

35-50  0.90  

  (0.39, 1.86)  

>50  0.86  

  (0.50, 1.92)  
1Weekend includes Friday. 
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Table 4.2 Predictors of alcohol intake in the sample population of men selected for analysis from

the NDNS RP Years 2-4, based on the pseudolkelihood approach (Continued)



 

 
 Subject specific regression coefficient from two-

part model 

Predictors 

 Odds Ratio 

 

(95%CI) 

(N = 2234) 

Portion size 

Relative Change  

(95% CI) 

(N = 728) 

Weekend1  3.11 1.35 

  (2.38, 3.86) (1.34, 1.40) 

Survey Year    

(base) 2009/2010  1 1 

2010/2011  0.83 1.11 

  (0.59, 1.18) (1.07, 1.19) 

2011/2012  0.82 1.20 

  (0.58, 1.41) (1.15, 1.31) 

Age, years  1.027 0.988 

  (1.020, 1.040) (0.987, 0.990) 

BMI, kg/m2   1.017 

   (1.015, 1.022) 

Lipid lowering medicine  0.54 0.74 

  (0.26, 0.99) (0.68, 0.86) 

Partner    

(base) married   1 

never married   1.09 

   (1.08, 1.15) 

previously married   1.25 

   (1.18, 1.43) 

Alcohol habit consumption    

(base) regular  1 1 

rarely  0.09 0.26 

  (0.00, 0.17) (0.24, 0.33) 

never  N/A N/A 

Take away shopping    

(base) rarely or never  1 1 

occasionally/regularly   1.69 1.15 

  (1.06, 2.56) (1.11, 1.23) 
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Table 4.3: Predictors of alcohol intake in the sample population of women selected for analysis

from the NDNS RP Years 2-4, based on the pseudolkelihood approach



Predictors 

 Odds Ratio 

 

(95%CI) 

Portion size 

Relative Change  

(95% CI) 

Qualifications    

(base) bachelor degree and above  1  

unfinished degree  1.26  

  (0.52, 3.47)  

current students  0.40  

  (0.17, 0.85)  

A levels  0.58  

  (0.31, 1.28)  

GCSE A_C  0.70  

  (0.45, 1.65)  

    

GCSE below C and no qualifications  0.64  

  (0.34, 1.41)  

foreign qualifications  0.24  

  (0.05, 0.76)  

Socio-economic status    

(base) higher managerial  
and professional occupation 

 
1  

    

lower managerial  
and professional occupation 

 
2.00  

  (1.19, 3.10)  

Intermediate occupations  1.15  

  (0.59, 1.73)  

Small employers  
and own account workers 

 
1.22  

  (0.73, 1.74)  

Lower supervisory  
and technical occupation 

 
0.60  

  (0.32, 1.04)  

Semi-routine occupations  0.71  

  (0.37, 1.29)  

Routine occupations  0.51  

  (0.26, 0.95)  

Never worked and Other  0.63  

  (0.16, 1.26)  
 

1Weekend includes Friday. 
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Table 4.3 Predictors of alcohol intake in the sample population of women selected for analysis

from the NDNS RP Years 2-4, based on the pseudolkelihood approach (Continued)
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Overall, the point estimates of model parameters obtained by fitting only pairwise likeli-

hoods presented in Chapter 3 (Tables 3.5 and 3.6) are in line with the results obtained

by fitting triple pseudolikelihoods and parametric bootstrap presented here. However, the

bootstrap confidence intervals change the inference for some model parameters. For

example, in the male sub-sample, the effect of renting privately on alcohol intake dimin-

ishes when confidence intervals are estimated with parametric bootstrap compared to

pairwise likelihood based inference. In contrast, for some variables, like smoking history,

the inference became even stronger when analysed by pseudolikelihood and parametric

bootstrap. Theoretically, the difference between inference based on pairwise likelihoods

and pseudolikelihood might depend on how similar the components of the Fisher infor-

mation matrix and the Godambe information matrix are. In our particular case of alcohol

intake predictors, the conclusions drawn from the analysis by triple pseudolikelihood and

parametric bootstrap are similar to those drawn from the reduced pairwise likelihoods of

the two-part model. All predictors, except tenure, remain important for the estimation of

the alcohol intake distribution. The conclusions are similar for the female sub-population.

It is interesting to contrast the results from the two-part model approach and pseudo-

likelihood approach with the results obtained by applying the traditional multivariable lin-

ear regression. When estimating alcohol consumption utilising individual averages, the

unadjusted distribution of alcohol intake in men had mean of 18.3g, median of 9.3g, in-

terquartile range (0.0g - 29.6g), standard deviation of 23.8g, minimum of 0.0g, maximum

of 149.4 g. In women, the alcohol intake distribution had a mean of 9.9 g, median of 2.9

g, interquartile range (0.0g - 15.0g), standard deviation of 15.4g, minimum of 0.0g and

maximum of 96.7g. This under-estimates the median consumption both, in men and in

women, by around 3 g daily, which is a bit more than a third of an alcohol portion (Depart-

ment of Health, UK, 2016), compared to when the correlation between portion size and

consumption probability is taken into account as shown in Table 3.3.

Interestingly, some predictors, for example, being married or having a partner, which
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showed significant association when analysed with two-part model, became no longer

significant in the results of analysis with linear regression. Conversely, income showed

no association in two-part model but came out as significant in linear regression analysis.

This highlights the importance of potential model misspecification with respect to infer-

ence on predictors of interest even when potential adjustment for confounding is available

and carried out.

The results of full adjustments when multivariate linear regression tool is applied are

shown in Table 4.4 for women and in Table 4.5 for men and presented as a change relative

to a median portion.



 

 

Predictors Relative 

change 

95%CI p-value  

F test 

p-value 

Wald 

test 

     

Weekend 1.23 1.07 1.39  0.002 

      

Survey Year (base: 

2009/2010) 

     

2010/2011 0.86 0.71 1.00  0.069 

2011/2012 1.07 0.90 1.23  0.428 

      

Age, y 1.01 1.00 1.01  0.042 

Lipid lowering drug 0.54 0.41 0.67  0.000 

Alcohol consumption (base: 

regular) (rarely) 

0.22 0.17 0.28  0.000 

      

Smoking (base: never)    0.003  

ex, quit >10 year ago 1.04 0.82 1.26  0.709 

ex, quit <=10 years ago 1.20 0.95 1.46  0.095 

Current 1.37 1.12 1.63  0.001 

Occasional 1.76 0.88 2.64  0.032 

      

MV Physical activity, 

min/day (base: 0) 

   0.005  

0-10 1.35 0.88 1.82  0.100 

10-20 1.11 0.69 1.54  0.581 

20-40 1.26 0.81 1.72  0.212 

40-60 1.28 0.81 1.75  0.194 

>60 1.59 1.05 2.13  0.009 

      

Take away shopping    <0.001  

Occasionally 1.33 1.12 1.54  0.000 

 1.39 1.12 1.65  0.001 

      

BMI, kg/m2 1.01 1.00 1.02  0.078 
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Table 4.4: Predictors of alcohol intake in the sample population of women selected for analysis

from the NDNS RP Years 2-4, based on multivariable linear regression



      

      

Qualifications (base: 

bachelor degree and above 

   <0.001  

Unfinished degree 1.13 0.84 1.43  0.355 

Current student 0.60 0.38 0.82  0.003 

A levels 0.71 0.54 0.88  0.004 

GCSE A_C 0.84 0.65 1.02  0.114 

GCSE below C and no 

qualifications 

0.82 0.63 1.01  0.084 

foreign qualifications 0.46 0.27 0.64  0.000 

      

Socio-economic status 

(base: higher managerial 

and professional) 

   <0.001  

Lower managerial  1.43 1.12 1.73  0.001 

Intermediate occupation 1.33 0.97 1.69  0.045 

Small employers 1.20 0.87 1.52  0.200 

Lower supervisory 0.65 0.42 0.88  0.013 

Semi-routine occupation 0.81 0.58 1.04  0.133 

Routine occupation 0.67 0.44 0.89  0.014 

Never worked and other 0.82 0.48 1.17  0.360 

      

McClement equivalence 

score, £ 1000 

   <0.001  

<=15 1.14 0.90 1.39  0.227 

15-25 1.27 1.00 1.53  0.028 

Base (25-35)      

35-50 1.43 1.11 1.74  0.002 

>50 2.28 1.76 2.81  0.000 
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Table 4.4 Predictors of alcohol intake in the sample population of women selected for analysis

from the NDNS RP Years 2-4, based on multivariable linear regression (Continued)



 

 

Predictors Relative 

change 

95%CI p-value  

F test 

p-value 

Wald 

test 

Weekend 1.17 1.00 1.33  0.033 

Survey Year (base: 2009/2010)      

2010/2011 0.94 0.76 1.12  0.507 

2011/2012 0.97 0.81 1.14  0.735 

      

Age, y 1.01 1.00 1.02  0.002 

Ethnicity (non-white) 0.41 0.27 0.55  <0.001 

Partner (base: married)    0.012  

never married 0.88 0.69 1.08  0.267 

previously married 1.31 1.03 1.60  0.014 

Blood pressure lowering drug (yes) 0.62 0.46 0.78  <0.001 

Alcohol consumption (base: regular) 

(rarely) 
0.08 0.05 0.10 

 <0.001 

Smoking (base: never)    <0.001  

ex, quit >10 year ago 1.31 1.04 1.59  0.012 

ex, quit <=10 years ago 1.57 1.17 1.97  0.001 

Current 1.77 1.42 2.12  <0.001 

Occasional 1.82 1.13 2.51  0.002 

      

MV Physical activity, min/day (base: 0)    0.035  

0-10 1.56 0.71 2.41  0.112 

10-20 2.03 0.82 3.24  0.022 

20-40 1.74 0.82 2.65  0.042 

40-60 2.23 1.04 3.42  0.004 

>60 1.85 0.91 2.79  0.020 
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Table 4.5: Predictors of alcohol intake in the sample population of men selected for analysis from

the NDNS RP Years 2-4, based on multivariable linear regression



      

      

      

      

Take away shopping (base: rarely or 

never) 
   

<0.001  

occasionally 1.39 1.15 1.63  <0.001 

regularly 1.64 1.30 1.98  <0.001 

Non-meat eaters 1.68 1.39 1.98  <0.001 

BMI, kg/m2 1.04 1.02 1.05  <0.001 

Health, self-reported (base: no 

problems) 

   0.005  

Health problems, no mobility 

restrictions 
1.36 1.10 1.62 

 0.002 

Health problems, mobility restrictions 1.21 0.96 1.46  0.075 

Tenure (base: mortgaged or owned)    <0.001  

privately rented 0.57 0.44 0.69  <0.001 

local authority rented 0.95 0.70 1.21  0.728 

Qualifications (base: bachelor degree 

and above 

   <0.001  

Unfinished degree 0.56 0.40 0.72  <0.001 

Current student 1.24 0.67 1.81  0.366 

A levels 0.92 0.70 1.14  0.478 

GCSE A_C 0.67 0.51 0.82  0.001 

GCSE below C and no qualifications 0.54 0.39 0.69  <0.001 

foreign qualifications 0.79 0.51 1.08  0.198 

      

Socio-economic status (base: higher 

managerial and professional) 

   <0.001  

Lower managerial  1.15 0.91 1.38  0.188 

Intermediate occupation 1.20 0.83 1.57  0.250 

Small employers 1.66 1.20 2.12  <0.001 

Lower supervisory 0.60 0.40 0.80  0.002 

Semi-routine occupation 1.29 0.90 1.68  0.107 

Routine occupation 1.64 1.11 2.18  0.003 

Never worked and other 1.73 0.85 2.60  0.037 
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Table 4.5 Predictors of alcohol intake in the sample population of men selected for analysis from

the NDNS RP Years 2-4, based on multivariable linear regression (Continued)



      

      

      

      

      

      

      

McClement equivalence score, £ 1000    <0.001  

<=15 0.73 0.51 0.94  0.033 

15-25 0.78 0.60 0.97  0.045 

Base (25-35)      

35-50 0.78 0.60 0.97  0.526 

>50 1.34 1.03 1.66  0.015 
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Table 4.5 Predictors of alcohol intake in the sample population of men selected for analysis from

the NDNS RP Years 2-4, based on multivariable linear regression (Continued)
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It is also worth noting that the residual correlation between model parts presented in

Tables 4.6 and 4.7, generally, is not very big. It is possible that the robustness of the

results based on fitting only a two-part model to estimate alcohol intake, can be partially

attributed to the extensive specification of the fixed part of the two-part model, which

explicitly modelled and explained some person-specific preferences, thus reducing unex-

plained variation. This, in turn, emphasises the importance of collecting and analysing

all the available information, including confounders, that can be relevant and important to

the estimation of food intake. It is worth noting that the two-part model might potentially

account for the biggest source of correlation (after the fixed effect are taken into account)

between the probability of consumption and portion size so that the remaining correlation

might have less impact over the estimation of model parameters.



 

1Pr stands for Probability part of the two-part model, 2Am stands for Amount part of the two-part model 

 

  Alcohol Fruits Veg Cooked Veg Raw Processed Meat Oily Fish Soft regular drinks 

         

  Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 

                

Alcohol Pr 1 0.37 -0.09 0.01 0.08 0.05 0.15 0.07 0.03 -0.13 0.07 -0.18 -0.05 -0.04 

Am  1 -0.30 0.02 -0.06 0.09 -0.07 0.00 -0.04 0.28 -0.12 0.02 -0.10 0.22 

Fruits Pr   1 0.59 0.22 0.06 0.32 0.16 -0.12 -0.13 0.19 0.13 -0.10 -0.10 

Am    1 -0.03 0.00 0.18 0.23 -0.15 0.03 0.36 0.07 -0.12 -0.16 

Veg Cooked Pr     1 0.35 -0.05 -0.15 -0.04 0.39 0.37 -0.09 -0.08 -0.12 

Am      1 -0.09 -0.14 -0.21 -0.09 0.08 0.08 -0.10 0.00 

Veg Raw Pr       1 0.52 0.11 -0.06 0.60 -0.46 0.01 -0.14 

Am        1 0.07 0.15 0.14 -0.04 -0.18 -0.22 

Processed 

Meat 

Pr         1 0.03 -0.07 -0.35 0.18 0.01 

Am          1 0.09 -0.13 0.09 0.18 

Oily Fish Pr           1 -0.54 -0.27 -0.05 

Am            1 -0.10 0.10 

Soft regular 

drinks 

Pr             1 0.41 

Am              1 
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Table 4.6: Estimated correlation structure of random effects in the male sub sample of the NDNS RP Years 2-4



 

 

 

1Pr stands for Probability part of the two-part model, 2Am stands for Amount part of the two-part model, 3 – estimate not available as the model did not 

achieve convergence 

  Alcohol Fruits Veg Cooked Veg Raw Processed Meat Oily Fish Soft regular drinks 

                

  Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 

                
Alcohol Pr 1 0.31 -0.16 -0.09 0.06 -0.17 0.17 0.08 0.12 0.13 0.30 -0.89 0.02 -0.07 

 Am  1 -0.24 -0.17 -0.11 -0.26 0.29 0.33 0.14 0.06 0.13 0.03 0.03 0.18 

Fruits Pr   1 0.40 0.32 -0.07 0.35 0.10 -0.06 -0.14 0.51 0.40 0.08 -0.10 

Am    1 0.34 0.19 0.16 0.29 -0.28 0.20 0.22 0.20 -0.06 -0.08 

Veg Cooked Pr     1 0.30 0.09 0.27 -0.03 0.17 0.59 0.51 0.05 -0.08 

Am      1 -0.49 0.36 -0.36 0.39 -0.57 0.53 -0.11 0.10 

Veg Raw Pr       1 0.07 0.19 -0.22 0.64 -0.97 0.02 0.09 

Am        1 -0.21 0.13 0.20 0.54 0.11 -0.12 

Processed 

Meat 

Pr         1 0.01 -0.60 N/A3 0.17 0.03 

Am          1 0.27 -0.12 -0.02 0.24 

Oily Fish Pr           1 -0.98 0.01 0.04 

Am            1 -0.15 0.13 

Soft regular 

drinks 

Pr             1 0.44 

Am              1 
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Table 4.7: Estimated correlation structure of random effects in the female sub sample of the NDNS RP Years 2-4
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4.4 Discussion
This work, to the author’s knowledge, is the first to utilise a novel pseudolikelihood ap-

proach and parametric bootstrap for the analysis of multiple occasionally-consumed food

intakes distributions, taking into account measurement error, excess zeros and correlation

between consumption frequency and portion sizes across various multiple foods. It shows

that complex multivariate analysis of multiple correlated occasionally-consumed food in-

takes can be performed utilising modern statistical methods, current computer powers

and existing statistical software. The method is useful to get insights into people’s con-

sumption preferences accounting for available demographic and personal information and

unobserved person-specific preferences that can correlate across various multiple food

intakes.

In line with the results obtained in Chapter 3, the results of Chapter 4 suggest that in-

clusion of fixed effects of both, probability and portion size parts of the two-part model, is

very important to get robust inference on the potential predictors of people’s health related

behaviours, and careful consideration to confounding and available predictors should be

given at this stage of the data analysis. The results also show the consequences of model

misspecification regarding the choice of food intake predictors and the conclusions drawn

from a misspecified model might be misleading.

The author hopes that despite considerable time efforts required to carry out the de-

scribed method, the community of researchers in nutritional epidemiology will see the

many benefits the modern methodology can bring to increase inference robustness and,

with increasing computer power and readily available software, will be willing to apply the

suggested method in their research practice.

List of abbreviations
Composite Likelihood (CL)

Markov Chain Monte Carlo (MCMC)
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National Diet and Nutrition Survey Rolling Programme (NDNS RP)

Postcode Address File (PAF)

Primary Sampling Units (PSUs)



Chapter 5

Modelling multiple correlated

habitually- and occasionally-consumed

food intakes applied to the evaluation

of the relationship between alcohol

intake and glycosylated haemoglobin

A1C

This chapter combines the joint modelling approach of multiple foods intake introduced

in Chapter 4 with regression calibration to evaluate the relationship of alcohol intake,

which has excess zeros and is correlated with the intake of other foods, and glycosylated

haemoglobin A1C in a subsample population of the UK National Diet and Nutrition Survey

Rolling Programme.

191
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5.1 Background

This chapter, investigates the effect of alcohol consumption on glycosylated haemoglobin

A1C (HbA1C), a biomarker of type 2 diabetes mellitus (T2D), which is a well-recognised

adverse health condition affecting the human body’s natural ability to process blood glu-

cose by regulating the amount of insulin production (Polonsky, 2012). The recent increase

in T2D incidence (World Health Organization, 2016) has been linked to obesity (Garber

et al., 2008; Cloostermans et al., 2015), reduced physical activity (PA) (Jelleyman et al.,

2015; Jeon et al., 2007; Cloostermans et al., 2015) and certain nutrition habits (Gadgil

et al., 2013; Malik et al., 2010). In particular, sweet beverages and high glycaemic load

meal consumption have been consistently associated with the development of insulin re-

sistance, which increases the risk of T2D (Malik et al., 2010). However, the effects of

intake of many other foods remain unclear. In particular, the reported effects of alco-

hol consumption on the risk of developing insulin resistance and T2D are inconsistent.

Several cohort studies report no relationships with insulin resistance, the precursor of

T2D, (Schrieks et al., 2015), while others report a J-shaped relationship between alcohol

intake and T2D incidence (Baliunas et al., 2009; Koloverou et al., 2015; Koppes et al.,

2005; Huang et al., 2017; Knott et al., 2015). The lack of robust results might be partially

attributed to residual confounding and the presence of measurement error in correlated

multiple exposures inherent to observational nutritional research.

Measurement error, defined as a difference between recorded intake and the true long-

term intake, is particularly pronounced in nutrition research (Nelson et al., 1989) and can

be broadly divided into systematic and random. Systematic error results from intentional

or unintentional misreporting of certain foods and nutrients which correlates with certain

personal characteristics such as social desirability, fear of negative evaluation, body mass

index (BMI) and dieting history to name a few (Braam et al., 1998; Tooze et al., 2004;

Neuhouser et al., 2008; Subar et al., 2003). Random or measurement error, on the other

hand, comes naturally from individual daily variation of food consumption and a shortage
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of measurement tools to capture the true long-term intake. Currently, multiple-day food di-

ary or multiple 24 hour recalls are found to be the most reliable diet measurement tools to

capture long-term nutritional habits in the general population (Burrows et al., 2010; Subar

et al., 2003). However, due to short observation period and natural personal variation in

diet, they are prone to large measurement error. Additionally, nutritional preferences can

result in certain consumption patterns leading to the situation when multiple exposures

measured with error are correlated. It has been shown that when measurement errors

are present in multiple correlated predictors a bias arises when estimating the predictors’

effects on outcome. Unlike in the case of a single predictor measured with error, the size

and direction of the bias cannot be predicted in advance as it depends on the covari-

ance structure of the predictors (Carroll et al., 2006) leading to potentially false positive

results. Carroll et al. (2006) and Keogh and White (2014) provide suggestions to correct

regression coefficients for bias in the case of multiple continuous correlated predictors

measured with error.

The situation is more complex when occasionally-consumed foods like fish, nuts, certain

vegetables or processed meat is considered in relation to a health outcome. The distri-

bution of occasionally-consumed food intake is characterised not only by the presence of

measurement error but also by the presence of excess zeros and potential correlation be-

tween the frequency of consumption and portion sizes (Ashfield-Watt et al., 2004), which

makes the application of traditional methods problematic.

Kipnis et al. (2009) suggested a combination of several modern statistical methods, namely

regression calibration (Armstrong, 1985), a two-part mixed-effects model with correlated

random effects (Olsen and Schafer, 2001; Tooze et al., 2002) and empirical Bayes predic-

tion (Casella, 1985), to correct for bias in the case of a single semi-continuous predictor

when assessing the relationship between fish intake (exposure) and blood mercury levels

(outcome). First, they applied a two-part model to estimate the distribution of fish intake

based on a few covariates. Secondly, they utilised the results obtained from the two-part



194 CHAPTER 5. RELATIONSHIP BETWEEN ALCOHOL INTAKE AND HBA1C

model to estimate the joint posterior distribution of random effects given the observed in-

takes, utilising Bayes’ theorem. Then, they predicted individual fish intake conditional on

the covariates and observed intake utilising the estimated posterior distribution of random

effects and, last, by applying the regression calibration principle, they used the empirical

Bayes’ individual fish intake predictions instead of the observed individual records to re-

late fish intake to blood mercury levels. Their simulation results suggest that in the case of

a single semi-continuous predictor uncorrelated with other predictors this approach yields

minimal estimation bias. It is important to notice that their choice of food exposure and

health outcome involves an assumption, most probably valid in their particular case, that

only a single semi-continuous predictor measured with error is related to the health out-

come and there is no need to adjust for other nutritional predictors measured with errors.

In many other cases this assumption might not be valid. For example, health conditions

as complex as cardiovascular disease or T2D might have multiple nutritional exposures

relevant to disease risk which should be taken into account in the statistical analysis. The

task is not trivial and is computationally challenging. Firstly, the covariance structure of

the random effects of all relevant correlated predictors measured with error should be es-

timated. Secondly, the resulting covariance structure will be high-dimensional and efforts

should be made to reduce its dimensions as the prediction of individual intake involves

numerical integration over a high-dimensional space which is computationally challeng-

ing. Finally, once the number of dimensions is reduced, the joint posterior distribution of

random effects and the prediction of individual food intake using the posterior distribution

of the random effects can be carried out.

This chapter applies the regression calibration method to investigate alcohol intake ex-

posure in relation to HbA1C, a biomarker of type 2 diabetes mellitus in a sub-sample of

adult male participants of NDNS RP survey waves 2-4 (Public Health England, 2014).

Alcohol intake as a potential predictor of HbA1C was chosen due to its high public health

importance and inconsistent results found in published literature. For example, Stampfer
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et al. (1988) report no relationships while Koloverou et al. (2015) report protective effect

of alcohol. Attempts are carried out to adjust for unexplained residual correlation between

alcohol and other various occasionally-consumed food intakes to minimise inferential bias.

5.2 Methods
We assume the classical additive non-differential measurement error, we use the regres-

sion calibration approach described in Chapter 1, and the two-part model for modelling

of occasionally-consumed food intakes described in detail in Chapters 2 and 3 combined

with the composite likelihood approach for multiple occasionally-consumed food intakes

described in detail in Chapter 4.

5.2.1 Regression calibration for two occasionally-consumed foods

The regression calibration function to obtain an estimate of the expectation of the un-

observed true food intake conditioned on the observed food intake suggested by Kipnis

et al. (2009) is based on the combination of the application of two-part model and Bayes’

empirical predictions.

Recall that the individual expected habitual daily intake Thij for a food h, person i on a day

j is calculated as the product of the individual daily probability of the food consumption,

phij, and the individual expected consumed amount on a consumption day:

Thij = (phij ∣ vi) ⋅E(Ahij ∣ Ahij > 0, uhi). Under the two-part model Thij depends on a set of

parameters θ and the unobserved person-specific effects uhi and vhi, which may be corre-

lated. The point model estimates θ̃ of θ can be obtained through likelihood maximisation

but the person-specific uhi and vhi are unobserved. Using the the notation introduced

in Appendix 3.B.1, the expected estimated individual habitual daily intake can be then

described as

T̃hij = exp(x′hijβ̃ + uhi + 0.5σ̃2
εh)

exp(x′hij γ̃ + vhi)
1 + exp(x′hij γ̃ + vhi)

(5.1)

Daily intake of alcohol consumption may vary by day of the week. To account for this, we

assign weights to the expected estimated daily weekend and weekdays intakes accord-
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ingly, so that the expected individual daily intake T̃hi now becomes:

T̃hi =
4

7
exp(x′hi0β̃ + uhi + 0.5σ̃2

εh)
exp(x′hi0γ̃ + vhi)

1 + exp(x′hi0γ̃ + vhi)

+ 3

7
exp(x′hi1β̃ + uhi + 0.5σ̃2

εh)
exp(x′hi1γ̃ + vhi)

1 + exp(x′hi1γ̃ + vhi)
(5.2)

where x′hi0 and x′hi1 are the vectors of explanatory variables corresponding to week days

and weekends respectively.

The above expression is a function of random variables uhi, vhi and hence a random vari-

able itself. The expectation of this function can be estimated if the joint distribution fUV of

(u1i, u2i, v1i, v2i) is known.

For the estimation of the regression calibration predictor, T̂hi(θ̃) = E(Thi ∣ Ihij,Ahij, xhij, θ̃),

the joint posterior distribution fUV (u1i, u2i, v1i, v2i ∣ {Ihij,Ahij, xhij}, θ̃) which is the joint dis-

tribution of the random effects conditional on the observed values of food intakes, can be

estimated and utilised for the estimation of the regression calibration function.

Recall that under Bayes’ theorem, the joint posterior distribution of (u1i, u2i, v1i, v2i) can be

expressed through the joint conditional distribution of the observed intakes

f(I1ij, I2ij,A1ij,A2ij ∣ u1i, u2i, v1i, v2i) and the joint marginal distribution fUV (u1i, u2i, v1i, v2i)

fUV (u1i, u2i, v1i, v2i ∣ I1ij, I2ij,A1ij,A2ij, θ̃,{xhij}) =

f(I1ij, I2ij,A1ij,A2ij ∣ θ̃,{xhij}, u1i, u2i, v1i, v2i)fUV (u1i, u2i, v1i, v2i ∣ {xhij}, θ̃)

⨌ f(I1ij, I2ij,A1ij,A2ij ∣ θ̃,{xhij}, u1i, u2i, v1i, v2i)fUV (u1i, u2i, v1i, v2i ∣ {xhij}, θ̃)du1idv1idu2idv2i
(5.3)

The joint conditional distribution of the observed intakes f(I,A∣u, v, θ̃) is the product of

corresponding conditional distributions f(Ihij ∣ vhi, θ̃) and f(Ahij ∣ uhi, θ̃). In our model

specification, the joint conditional distribution of the observed intakes f(I,A∣u, v, θ̃) can
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be described as

f(Ii,Ai∣ui, vi, θ̃) =
n1,i

∏
j=1

fI1(I1ij ∣ v1i, θ̃)fY1(Y1ij ∣ u1i, θ̃)
n2,i

∏
j=1

fI2(I2ij ∣ v2i, θ̃)fY2(Y2ij ∣ u2i, θ̃) (5.4)

where fIh(Ih ∣ θ̃, x, v), fYh(Yh ∣ θ̃, x, u) denote the density functions of the binomial and

normal distributions and respectively, and fIh(Ih ∣ θ̃, x, v) is parametrised here, via the

logit link function (please refer to section 2.2.1 for model specification details).

The parameters of the marginal joint multivariate normal distribution fUV (u1i, u2i, v1i, v2i ∣ θ̃)

are the point estimates obtained from the covariance structure of random effects which

forms part of θ̃ and was obtained at the step of maximising the likelihood function.

Conditional on a food having been reported consumed if and only if it was consumed,

the regression calibration predictor of an individual food intake E(Thi ∣ Ihij,Ahij, xhij, θ̃)

becomes

T̂hi(θ̃) = E(Thi ∣ Ihij,Ahij, xhij, θ̃) =

⨌ T̃hifUV (u1i, v1i, u2i, v2i ∣ I1ij, I2ij,A1ij,A2ij, θ̃)du1idv1idu2idv2i (5.5)

The results shown in the next section adjust the predicted intakes for the relevant predic-

tors of T2D additionally to the predictors specific to their consumption.

To estimate multiple integrals Mathematica 11.2 software was utilised. Numerical integra-

tion was performed using the Adaptive Gauss-Hermit quadrature method with 7 quadra-

ture points.

5.2.2 Fitted models to examine the relationship between alcohol in-

take and HbA1C

The outcome variable in the models was HbA1C levels split into three categories: HbA1C

<5.5 %, which was defined as a reference category (N = 107 (39.9%)) ; HbA1C ≥ 5.5 %

and < 6.0 % (normal-elevated, N = 114 (42.5%)); HbA1C ≥ 6.0 % (elevated and high, N

= 47 (17.5%)). The choice of these cut-offs was based on the results from Bonora and
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Jaakko (2011), where these cut-offs showed the importance of elevated HbA1C levels in

progressing to diagnosed T2D. The numbers in the category with HbA1C levels above

6.5% required to diagnose T2D were small (N = 14 (5.2%)) and not feasible to analyse as

a separate category.

Multinomial logistic regression was utilised to examine the relationship between HbA1C

levels and alcohol intake. Three models were considered which differ in the way alcohol

intake was predicted. Model 1 and Model 2 used the regression calibration approach to

predict individual alcohol intake, where Model 1 used a two-part model to predict alco-

hol intake and Model 2 used a four-part model to predict alcohol intake. Model 3 used

the traditional approach of individual averages (all observations available for individual

averaged across diary days recorded) as a predictor of individual alcohol and other food

intakes. The analysis started with fitting models with a full set of potential predictors or

confounders: age (years), body mass index (BMI) (kg/m2), moderate to vigorous physical

activity (min) (MVPA), history of smoking, qualifications and lipid medicine. Additionally,

all the models were adjusted for the following food intakes: fruit (g), cooked vegetables

(g), raw vegetables (g), regular soft drinks (g) and total energy intake (Kcal). For Models 1

and 2, the food intakes were predicted using the regression calibration approach based on

the two-part models previously specified in Chapter 3 and taking into account the residual

correlation between consumption probability and portion size for a given food only. It was

decided not to adjust for blood test results to avoid over-adjustment. The predictors were

chosen based on a likelihood ratio test and only those which remained significant (p-value

<0.05) for at least one of the response levels were left in the final models and presented.

To diagnose the models’ fit Akaike information criterion (AIC) and Bayesian information

criterion (BIC) were provided.
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5.3 Results

5.3.1 Descriptive analysis

The sample available for analysis consisted of a 268 male sub-sample of the NDNS RP

Years 2-4 population for whom HbA1C values were available. The sample’s characteris-

tics by the three HbA1C categories are summarised in Table 5.1

Table 5.1: Sample characteristics in the male sub-population of NDNS RP Years 2 - 4 available

for analysis of Haemoglobin A1C (N = 268). Means (SD), Medians (IQR) or N(%) are shown

HbA1C < 5.5 % HbA1C ≥ 5.5 % and < 6.0 % HbA1C ≥ 6.0 % p-value

(N = 107 (39.9%)) (N = 114 (42.5%)) (N = 47 (17.5%))

Age, y 41 (14) 51(16) 60 (17) <0.001

HDL, mmol/l 1.37 (1.12 - 1.53) 1.35 (1.09 -1.59) 1.22 (0.98 -1.36) 0.020

HDL/LDL Ratio 0.45 (0.36 - 0.57) 0.36 (0.29 - 0.49) 0.47 (0.33 - 0.60) 0.003

Cholesterol, mmol/l 5.0 (1.0) 5.4 (1.1) 4.7 (1.1) 0.071

Triglicerides, mmol/l 1.1 (0.8 - 2.0) 1.2 (0.8 - 1.6) 1.6 (1.1 - 2.2) 0.029

BMI, kg/m2 26.3 (3.3) 27.6 (4.4) 29.9 (5.4) <0.001

Lipid Medication (Yes) 5 (4.7 %) 10 (9.1 %) 19 (41.3 %) <0.001

Smoking 0.005

Smoking (No, never smoked) 67 (63.2%) 53 (48.2%) 16 (34.8 %)

Smoking (No, quit more 10 years ago) 10 (9.4%) 17 (15.5%) 16 (34.8 %)

Smoking (No, quit less 10 years ago) 9 (8.5%) 11 (10.0%) 6 (13.0 %)

Smoking (Yes, current smoker) 19 (17.9%) 25 (22.7%) 7 (15.2 %)

Smoking (Occasional smoker) 1 (1.0%) 4 (3.6%) 1 (2.2 %)

Moderate-vigorous physical activity, h/day 1.2 (0.5 - 3.0) 1.3 (0.6 - 3.3) 0.7 (0.1 - 2.0) 0.098

Qualifications 0.006

Degree level 34 (31.8%) 25 (21.9%) 8 (17.0%)

Uninished degree, students or A levels 43 (40.2%) 35 (30.7 %) 13 (27.7 %)

GCSE grades A-C 14 (13.0%) 26 (22.8 %) 6 (12.8 %)

GCSE grades below C or no qualifications 13 (12.2 %) 20 (17.5 %) 17 (36.2%)

Foreign degree 3 (2.8 %) 8 (7.0 %) 3 (6.4 %)

p-values are from Kruskal-Wallis test for continuous predictors or from chi-squared test for categorical predictor

In line with previous research, age and BMI strongly correlate with elevated levels of

HbA1C. Interestingly, significant unadjusted correlation was observed between ex- or cur-

rent smoking, obtained qualifications and elevated HbA1C levels, but no significant corre-

lation observed between HbA1C and moderate-vigorous physical activity.
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5.3.2 Regression calibration applied to alcohol intake predictions

We utilise the results from Chapter 4 where the composite likelihood approach was ap-

plied to estimate the two-part model parameters from a multivariate model, including the

covariance structure of random effects presented in Table 4.6. We reproduce this cor-

relation structure in Table 5.2 to describe the estimated correlation structure of residual

correlations between random effects after adjusting for numerous observed predictors of

various food intakes in a male sub-sample of NDNS RP Years 2-4. The table shows that

even after adjusting for various observed patients’ characteristics related to food intakes,

there remained unexplained part of personal preferences that shows high correlation for

some food intakes. In particular, unobserved personal preferences for alcohol intake are

negatively correlated with unobserved personal preferences for fruit consumption (prob-

ability part) and positively correlated with the unobserved personal preferences for pro-

cessed meat (portion size). There are other remaining correlations between unobserved

preferences for alcohol and unobserved preferences for other food intakes but these two,

along with the correlation between alcohol intake probability and alcohol intake portion

size, surfaced as the largest correlations between the estimated random effects related to

alcohol intake and will be taken into account in Model 2.



 

1Pr stands for Probability part of the two-part model, 2Am stands for Amount part of the two-part model 

 

  Alcohol Fruits Veg Cooked Veg Raw Processed Meat Oily Fish Soft regular drinks 

         

  Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 Pr1 Am2 

                

Alcohol Pr 1 0.37 -0.09 0.01 0.08 0.05 0.15 0.07 0.03 -0.13 0.07 -0.18 -0.05 -0.04 

Am  1 -0.30 0.02 -0.06 0.09 -0.07 0.00 -0.04 0.28 -0.12 0.02 -0.10 0.22 

Fruits Pr   1 0.59 0.22 0.06 0.32 0.16 -0.12 -0.13 0.19 0.13 -0.10 -0.10 

Am    1 -0.03 0.00 0.18 0.23 -0.15 0.03 0.36 0.07 -0.12 -0.16 

Veg Cooked Pr     1 0.35 -0.05 -0.15 -0.04 0.39 0.37 -0.09 -0.08 -0.12 

Am      1 -0.09 -0.14 -0.21 -0.09 0.08 0.08 -0.10 0.00 

Veg Raw Pr       1 0.52 0.11 -0.06 0.60 -0.46 0.01 -0.14 

Am        1 0.07 0.15 0.14 -0.04 -0.18 -0.22 

Processed 

Meat 

Pr         1 0.03 -0.07 -0.35 0.18 0.01 

Am          1 0.09 -0.13 0.09 0.18 

Oily Fish Pr           1 -0.54 -0.27 -0.05 

Am            1 -0.10 0.10 

Soft regular 

drinks 

Pr             1 0.41 

Am              1 
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Table 5.2: Estimated correlation structure of random effects in the male sub sample of the NDNS

RP Years 2-4, refer to Chapter 4 for details on estimation
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Table 5.3 shows the estimated regression parameters of Models 1 and 2 where alcohol

intake was predicted based on a two- part model (taking into account the correlation be-

tween unobserved preferences for alcohol intake probability and alcohol intake portion

size) and a four-part model (taking into account the correlation between unobserved pref-

erences for alcohol intake probability, alcohol intake portion size, fruit intake probability

and processed meat portion size) respectively. The estimated effects of factors on the

probability of falling in one of the two groups with elevated HbA1C levels are presented

as relative risk ratios (RRR) compared to the reference category (HbA1C < 5.5 %). The

effects presented are for the increase in alcohol consumption by 1g per day and by 100g

per day for the other foods. The results show that out of the available food intake predic-

tors, neither alcohol nor cooked vegetables, total fruits, soft drinks nor total energy intakes

were related to HbA1C levels. However, raw and salad vegetable intake was negatively

and statistically significantly correlated with risk of being in the group with HbA1C ≥ 5.5%

and < 6.0% (RRR 0.55 (95% CI (0.33, 0.90), p-value 0.017) but the effect does not reach

statistical significance for the risk of being in the group with the highest HbA1C levels ≥

6.0% (RRR 0.68 95% CI(0.37, 1.24), p-value 0.206). Interestingly, the effect of elevated

BMI showed significance only for risk of being in the group with HbA1C with the highest

levels. Prediction of alcohol intake based on the two-part or four-part model does not

change the inference that can be drawn from the data, and the AIC is only marginally

lower for Model 2 compared to Model 1.

Table 5.4 shows the results from Model 3 when alcohol intake, as a predictor, is estimated

as an individual average. Interestingly and in line with the theory, the effect of alcohol

intake in Model 3, when fitted as estimated individual average, is inclined in the direction

of zero and exhibit high statistical significance. If we draw inferences from this model

we would conclude that alcohol intake has a very strong significant protective effect on

HbA1C. Additionally, the effect of the other potentially correlated predictors, in our case,

raw vegetable intake, becomes more statistically significant and also tends in the direction

of zero, probably indicating residual correlation between alcohol and raw vegetable intake
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that was not taken into account when predicting vegetable intake.

Unexpectedly, in the adjusted analysis, neither physical activity nor smoking were found

to be significantly related to HbA1C levels.
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Table 5.3: The estimated effects of patients characteristics and food intakes on elevated

Haemoglobin A1C from Model 1 and Model 2 where HbA1C < 5.5 % is a reference category

Predictors RRR (95% CI) p-value

HbA1C ≥ 5.5% and < 6.0%

Model 1

Alcohol, 1 g 1.000 (0.993, 1.008) 0.947

Veg Raw, 100g 0.55 (0.33, 0.90) 0.017

Age, year 1.05 (1.02, 1.07) < 0.001

BMI , kg/m2 1.04 (0.97, 1.11) 0.315

Lipid reduction medicine (yes) 1.47 (0.45, 4.78) 0.524

Model 2

Alcohol, 1 g 0.998 (0.988, 1.009) 0.779

Veg Raw, 100g 0.55 (0.34, 0.90) 0.018

Age, year 1.05 (1.02, 1.07) < 0.001

BMI , kg/m2 1.04 (0.97, 1.11) 0.317

Lipid reduction medicine (yes) 1.47 (0.45, 4.78) 0.525

HbA1C ≥ 6.0 %

Model 1

Alcohol, 1 g 0.992 (0.968, 1.015) 0.480

Veg Raw, 100g 0.68 (0.37, 1.24) 0.206

Age, year 1.07 (1.04, 1.11) < 0.001

BMI , kg/m2 1.18 (1.07, 1.30) 0.001

Lipid reduction medicine (yes) 5.70 (1.68, 19.31) 0.005

Model 2

Alcohol, 1 g 0.988 (0.963, 1.013) 0.346

Veg Raw, 100g 0.68 (0.37, 1.23) 0.200

Age, year 1.07 (1.04, 1.11) < 0.001

BMI , kg/m2 1.18 (1.07, 1.30) 0.001

Lipid reduction medicine (yes) 5.72 (1.69, 19.40) 0.005

Model 1: Akaike Information criteria 493.23, Bayesian information criteria 536.32, Model 2: Akaike Information criterion 492.89,

Bayesian Information criterion 535.98.
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Table 5.4: The estimated effects of patients characteristics and food intakes on elevated

Haemoglobin A1C from Model 3 where HbA1C < 5.5 % is a reference category

Predictors RRR (95% CI) p-value

HbA1C ≥ 5.5% and < 6.0%

Alcohol, 1 g 0.987 (0.975, 0.999) 0.040

Veg Raw, 100g 0.53 (0.32, 0.88) 0.014

Age, year 1.05 (1.03, 1.07) < 0.001

BMI , kg/m2 1.04 (0.97, 1.12) 0.277

Lipid reduction medicine (yes) 1.65 (0.50, 5.52) 0.413

HbA1C ≥ 6.0 %

Alcohol, 1 g 0.956 (0.932, 0.980) <0.001

Veg Raw, 100g 0.58 (0.31, 1.09) 0.091

Age, year 1.08 (1.05, 1.12) < 0.001

BMI , kg/m2 1.20 (1.09, 1.32) < 0.001

Lipid reduction medicine (yes) 7.67 (2.07, 28.32) 0.002

Model 3: Akaike Information criterion 477.09, Bayesian information criterion 520.18.
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5.4 Discussion
This chapter showed how the regression calibration approach coupled with Empirical

Bayes estimation and a joint modelling approach can be applied to estimate the effect

of multiple occasionally-consumed foods on health outcomes. This extends the method

suggested by Kipnis et al. (2009) to take into account the unobserved correlated prefer-

ences across various foods and minimise the bias produced by correlated measurement

errors. This is the first research, to the best of the author’s knowledge, which applies

the regression calibration method to estimate the effect of alcohol intake on HbA1C in

an NDNS RP sub-population taking into account correlated observed and unobserved

preferences across more than one food. For comparative purposes, the alcohol intake

was predicted based on a 2-part model, where the correlation between probability and

portion size of alcohol intake was taken into account, in a 4-part model, other unobserved

food preferences were additionally taken into account. The regression parameters from

these models were contrasted with those estimated via the traditional approach based

on individual averages of food intake. The 4-part model produced only marginally better

regression calibration for alcohol intake with respect to the HbA1C outcome, compared to

the two-part model. The results utilising the prediction approach are however, in startling

contrast to the results obtained when the observed individual average is fitted as a pre-

dictor. This is an important finding as it confirms that the regression calibration approach,

which aims to account for measurement error and the correlation between the probability

of consumption and portion size, produces much less biased results compared to using

an individual average proxy, which has a large measurement error component and is cor-

related with other predictors measured with error. The results hold even when it is not

possible to predict a food intake taking into account all the correlation structure of unob-

served preferences. The results also emphasize the importance of gathering extensive

behavioural, personal and social information when estimating relationships between food

intakes and health outcome as it is highly possible that a minimal observed difference

between predictions based on a simpler versus a more complex model is, partially, due to
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extensively accounting for social and personal information in the fixed parts of the models.

One of the limitations of the presented research is the low number of unobserved pref-

erences taken into account, to the maximum of four to make the numerical integration

feasible, and the choice of random effects for integration was based on eyeballing of the

correlation matrix, rather than making the choice based on rigid mathematical criteria.

This decision is due to the fact that the task of reducing the dimensions of the correlation

matrix of random effects is not trivial. The estimation of the covariance matrix in multi-

variate cases has been a hot discussion topic in the recent literature, including finance,

climate change modelling and genetics, with the main concerns being the reliability of the

sample covariance matrix in high dimensions (Ledoit and Wolf, 2015; Bien and Tibshi-

rani, 2011). In our case, the concern is to reduce the dimensions of the matrix when no

theoretical ordering of the variable exists and this is an area of future research.
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Chapter 6

Discussion

The thesis provides novel methods of analysis for multivariate data with a complex struc-

ture arising from the presence of excess zeroes and correlated measurement errors.

Firstly, we proposed a new numerical approach of estimating the sample distribution of

occasionally-consumed food intakes modelled with a two-part model in Chapter 1, which,

compared to traditional Monte Carlo simulations reduces the estimation burden and in-

creases precision, especially, on the tails of the distribution. The method was illustrated

through the analysis of self-reported alcohol consumption collected during the screening

phase of a randomised controlled trial (RCT) investigating the effect of the types of fats

and carbohydrates in diet on glucose and insulin metabolism. Chapter 2 also demon-

strated how the two-part model can be estimated using freely available software for the

case of 2 day food diaries, or two recall records, and one occasionally-consumed food.

Chapter 3 further investigated the determinants of several occasionally-consumed food in-

takes, such as income, qualification and physical activity. This is the first research, to our

knowledge, which applies the two-part model for the investigation of the predictors of food

intakes in a NDNS RP sub-population. Our findings contribute further to our understand-

ing of people’s preferences for certain foods. The richness of the data, the extensive list of

potential correlated predictors and the advanced statistical methods make the inference

209
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quite robust and, although the effect of the residual confounding can never be excluded,

the conclusions presented in this research add to the current literature of people’s food

preferences and the effects of various social and personal factors in relation to food intake.

Chapter 4 extended the results of Chapter 3 for the estimation of effects of determinants

of alcohol intake taking the bigger correlation structure of unobserved preferences into

account. It has been carried out by applying composite likelihood and bootstrap methods

and this is the first time this novel approach was applied to the investigation of determi-

nants of food intake. The last chapter, Chapter 5, applied the regression calibration and

empirical Bayes approaches when occasionally-consumed food intake acts as a predictor

of health outcome. The work was built on the estimation models obtained in the previous

chapters and extends the previously published work by Kipnis et al. (2009) to take into ac-

count the correlation structure of unobserved personal preferences to minimise inferential

bias. The method is applied to the sub-sample of male population in NDNS RP (Years

2-4) to estimate the effect of alcohol intake on Haemoglobin A1C, a well recognized pre-

cursor of type 2 diabetes. We demonstrated how the method can be applied to minimise

inferential bias in nutritional research.

There are other multivariate data analysis methods which are widely used in the nutri-

tion research community. For example, principal component analysis (PCA), which is a

technique developed by Hotelling (1933) with an aim to reduce dimensions of correlated

multivariate data by finding fewer new uncorrelated directions which describe the biggest

part of the overall data variation. It serves well in many applications where reduction in

dimensions is of primary importance, for example, classification tasks and where the true

variance covariance matrix can be estimated with minimal bias. However, in nutritional

research, PCA most often operates on individual averages, which contain measurement

error. The application of PCA to individual averages should be interpreted with caution

as the presence of correlated measurement errors might lead to biased principal compo-

nents (Scagliarini, 2011; Raykov et al., 2017) and excess zeros are ignored. There is also

an issue with interpretation because it is difficult to replicate the results in another sample
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from the same population.

A potential application of PCA within the presented framework is to reduce the estimated

correlation matrix of random effects when modelling the intake of several foods. This

could include finding the related eigenvectors and their corresponding eigenvalues, and,

then, only the directions corresponding to the largest eigenvalues are retained such that

a big part of the overall variation is explained by these new remaining fewer directions.

Importantly, each of the previous dimensions can be represented as a linear combination

of the new uncorrelated dimensions. In our example, if we consider the joint probability

distribution function f(u1 . . . un) of random effects (u1 . . . un) then with the newly found

dimensions τ1 . . . τk, k < n, each of the random effects u1 . . . un can be represented as a

linear combination of newly found independent dimensions uj = ∑kj=1αjτj. Then, the joint

probability density function (pdf) can be factorised as the product of conditional densi-

ties f(ui ∣ τ1, . . . τk) such that the task of multiple integration will now be reduced to the

integrating multiple times over the simpler pdfs of τj. The suggestion is not without a

drawback as although PCA retains the biggest part of the variation, still some variation

will be lost. On the other hand, this approach appears to be more robust compared to just

picking out the biggest correlations from the covariance matrix and will be the area of the

future research.

In the applications presented in this thesis the regression coefficients, or marginal effects,

of explanatory variables of the components of the two-part models and their multivariate

extensions were the parameters of inferential interest, whereas the covariance parame-

ters were regarded as nuisance parameters. Estimation of both regression coefficients

and variance parameters was based on maximising the likelihood function. The proper-

ties of these estimates, for example, describing what aspects of the data and model may

lead to estimation issues is an area of future research.

In practice, selection of the appropriate covariance structure may require testing for zero

variance components. In this case, the null hypothesis may place some of the variance
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components on the boundary of the parameter space. Therefore, the commonly used

likelihood ratio test does not have the usual chi-squared distribution with the degrees of

freedom equal to the number of independent parameters being tested under the null hy-

pothesis. This is a challenging problem and a current area of research. The problem

has been addressed, under certain conditions, by using approximate or exact restricted

likelihood ratio tests for the covariance parameters of the linear mixed-effects model. The

results from Self and Liang (1987) to obtain the correct null distribution of the likelihood

ratio test in the case of generalised linear mixed-effects model or the models developed in

this thesis requires the calculation of the Fisher information matrix at the true parameter

value under the null hypothesis and to study the topological behaviour of the neighbour-

hood of the true parameter value. This problem is complex due to the intractable integrals

involved in the evaluation of the likelihood function and because the variance components

may become numerically unstable when some variance components are small. Further

research is required to tackle this complex problem.

The applicability of the 2-part model can be extended by modelling the outcomes through

various distributions, for example, generalised gamma to avoid the need of transforma-

tion to Normality (Agogo, 2017) and extending the 2-part model to accommodate non-

consumers (Keogh, 2011).

The apparent limitations of the presented framework is its reliance on relatively large

datasets, cost of meticulous data collection needed to produce robust model estimates

and relative complexity of methods. However, in situations where large scale research

into nutritional habits of populations is commissioned, the presented framework, if utilised,

provides the necessary tools to extract maximum benefit from the project given some ad-

ditional preliminary planning. The scope of application of the work presented in this thesis

in nutritional epidemiology is wide. While RCTs could be thought as the gold standard to

assess the effect of dietary exposures, they are often costly, difficult to conduct, of short

duration, and they rarely measure the effect of interventions on hard endpoints such as
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death, cancer or major cardiovascular events in general populations. For example the

PREDIMED trial, a randomised dietary intervention trial of the effects of a Mediterranean

diet supplemented with either extra-virgin olive oil or nuts on major cardiovascular events

rate in Spanish subjects at high cardiovascular risk, showed significant beneficial effects

of a Mediterranean diet with extra-virgin olive oil or nuts supplement compared to a advice

to reduce saturated fat intake (Estruch et al., 2013). The findings from the PREDIMED

trial were, however, questioned, the original results retracted due to potential biases aris-

ing from problems with the randomisation procedure, and the data were re-analised as an

observational study (Estruch et al., 2018b,a). Furthermore, in the PREDIMED trial, one

of the questions that have been debated is if supplementing any diet (not necessarily a

Mediterranean diet) with extra-virgin olive oil or nuts would have a beneficial effect on the

major cardiovascular event rate in those at risk (Appel and Van Horn, 2013). Additionally,

generalisability of the results might be questionable with respect to larger, more diverse,

populations.

Observational studies, on the other hand, can follow a large number of participants from

the general population in their natural environment for a long time to be able to observe

long-term health outcomes. Moreover, observational studies have the capacity to assess

exposures which might be unethical to assess in RCTs with a caveat of them being prone

to unobserved confounding, which, ideally, should be thought through at the design stage.

The models developed in this thesis can be applied in a variety of settings, not neces-

sarily restricted to nutrition research. For example, in respiratory therapeutic research, it

is plausible that the frequency of asthma exacerbations can be correlated with the inten-

sity of exacerbations. In therapeutic research areas where symptoms are an important

indication of disease progression, for example, rheumatoid arthritis, it is plausible that

symptoms’ frequency can correlate with symptoms’ intensity

Overall, this thesis provides a step-by-step tool using advanced statistical techniques

in the framework of the estimation of multiple correlated habitually and occasionally-
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consumed food intakes with measurement errors and suggests that the effort of taking

into account the full correlation structure is worthwhile for both, more robust inference

on food intake predictors, and when predicting risk of various nutritional exposures on

health outcomes. Hopefully, this work will make the new advanced statistical methods

more accessible for future nutrition researchers and will help to minimise inferential bias

associated with nutritional research.
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