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Abstract
This paper develops Bayesian sample size formulae for experiments comparing
two groups, where relevant preexperimental information from multiple sources
can be incorporated in a robust prior to support both the design and analysis. We
use commensurate predictive priors for borrowing of information and further
place Gamma mixture priors on the precisions to account for preliminary belief
about the pairwise (in)commensurability between parameters that underpin the
historical and new experiments. Averaged over the probability space of the new
experimental data, appropriate sample sizes are found according to criteria that
control certain aspects of the posterior distribution, such as the coverage prob-
ability or length of a defined density region. Our Bayesian methodology can be
applied to circumstances that compare two normal means, proportions, or event
times. When nuisance parameters (such as variance) in the new experiment are
unknown, a prior distribution can further be specified based on preexperimen-
tal data. Exact solutions are available based on most of the criteria considered
for Bayesian sample size determination, while a search procedure is described
in cases for which there are no closed-form expressions. We illustrate the appli-
cation of our sample size formulae in the design of clinical trials, where pretrial
information is available to be leveraged. Hypothetical data examples, motivated
by a rare-disease trial with an elicited expert prior opinion, and a comprehensive
performance evaluation of the proposed methodology are presented.
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1 INTRODUCTION

Conventionally, sample size has often been determined
to control certain aspects of the sampling distribution
of a test statistic (Desu and Raghavarao, 1990). This is
typically considered from a frequentist perspective that
operating characteristics, for example, type I error rate and
power, should be maintained for detecting a meaningful
magnitude of the difference. For data that are assumed

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2022 The Authors. Biometrics published by Wiley Periodicals LLC on behalf of International Biometric Society.

to be independently and identically distributed normal,
sample size may be a function also of nuisance parameters
such as unknown variances. Fixing such parameters to
certain values may leave the determination inaccurate, or
only locally optimal, as an arbitrary guess could deviate
far from the true value. The Bayesian framework has
been argued to be more advantageous to sample size
determination (SSD), since it allows uncertainty to be
described in a prior for the parameters (O’Hagan and
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Forster, 2004). Moreover, it brings about the possibility of
incorporating preexperimental information, if available,
in a prior for the parameter of interest and/or nuisance
parameters. Considerable attention has thus been given to
Bayesian SSD; see, for example, Clarke and Yuan (2006).
Twomain kinds ofmethodologywritten in the literature

are “hybrid classical and Bayesian” and “proper Bayesian”
SSD (Spiegelhalter et al., 2004). With the former, sample
size would be chosen to ensure that the predictive power,
obtained by averaging the frequentist power function over
a prior distribution for the unknown parameter(s), reaches
a desired target level. By contrast, “proper Bayesian” SSD
approaches refer to those for which the final analysis of
data would also be Bayesian. Joseph et al. (1995) derive for-
mulae for binomial experiments comparing two propor-
tions; specifically, sample sizes are sought to ensure, for
example, an adequate coverage probability or width of a
defined interval of the posterior “success” rate. Joseph and
Bélisle (1997) concentrate on normal distributions and use
normal-gamma conjugate priors for experiments that esti-
mate either single normalmeans or the difference between
two normal means. In the context of clinical trials, White-
head et al. (2008) develop Bayesian methods resembling
frequentist formulations of the SSDproblem in exploratory
trials, to demonstrate the treatment effect based on poste-
rior interval probabilities. These fully Bayesian approaches
shed light on the option of incorporating preexperimental
data into a prior for both the design and analysis consis-
tently.
This paper is focused on fully Bayesian SSD permitting

the use of preexperimental data frommultiple sources. Our
research is partly motivated by the efficient design and
analysis of clinical trials that evaluate a new treatment for
rare diseases (EMA, 2006), where asking for a sample size
to achieve the frequentist power is often infeasible. Pretrial
information, collected from historical studies which had
been conducted under similar circumstances, or elicited
from expert opinion, could play an essential role. The pro-
posed methodology would nonetheless be generic: it can
be applied to areas where there is a need to use preexper-
imental data formally through the mechanism of specify-
ing priors. For instance, the sample size for environmen-
tal water quality evaluation could be limited: borrowing
strength from historical water monitoring data has been
considered helpful (Duan et al., 2006).

2 METHODS

2.1 Borrowing of historical information
frommultiple sources

Suppose there are 𝐾 relevant sets of data, 𝒚1, … , 𝒚𝐾 ,
to specify a prior for the parameter, denoted by 𝜇Δ,

underpinning a new experiment. Let 𝜃1, … , 𝜃𝐾 denote
the counterparts of 𝜇Δ, specific to each historical exper-
iment 𝑘 = 1,… , 𝐾. Following Zheng and Wason (2022),
we specify 𝐾 commensurate predictive distributions
by the source of information, which are formulated
as conditional normal distributions with an unknown
mean 𝜃𝑘 and precision 𝜈𝑘 (the variance would thus be
𝜈−1
𝑘
):

�̃�𝑘 ∣ 𝜃𝑘, 𝜈𝑘 ∼ 𝑁(𝜃𝑘, 𝜈
−1
𝑘

), for 𝑘 = 1,… , 𝐾, (1)

where each �̃�𝑘 is regarded as equivalent to 𝜇Δ in terms
of the parameter space. More precisely, it means that the
parameter space for �̃�𝑘, as projected from a preexperimen-
tal parameter 𝜃𝑘, would be defined with the same or com-
parable set of parameter values to that of 𝜇Δ. The precision
𝜈𝑘 is sometimes referred to as a commensurate parame-
ter. Different from the original proposal with a spike-and-
slab prior on each 𝜈𝑘, we consider a mixture of conjugate
priors for analytical derivations; that is, for the predictive
precision:

𝜈𝑘 ∼ 𝑤𝑘Gamma(𝑎01, 𝑏01) + (1 − 𝑤𝑘)Gamma(𝑎02, 𝑏02),

(2)

where 𝑤𝑘 is the prior mixture weight, on the scale of
[0, 1], to represent preliminary skepticism about how
commensurate 𝜃𝑘 and 𝜇Δ would be. The hyperparame-
ters are chosen so that the first mixture component with
𝑎01, 𝑏01 has the density concentrated on small values of
𝜈𝑘, while the second mixture component with 𝑎02, 𝑏02

has density covering larger values of 𝜈𝑘. A large prior
mixture weight allocated to either component distribu-
tion would thus result in sufficient down-weighting (with
no borrowing at all as one extreme) or strong borrowing
of historical information (with fully pooling as the other
extreme), respectively. Stipulating 0 < 𝑤𝑘 < 1 in (2) pro-
duces a compromise between the two extreme cases. The
strength of this Gamma mixture prior is then tuned by
𝑤𝑘, which can be interpreted as the prior probability of
incommensurability.
Then, 𝑓(�̃�𝑘, 𝜈𝑘 ∣ 𝜃𝑘) has a Normal-Gamma mixture dis-

tribution. By integrating out the nuisance parameter 𝜈𝑘, we
further obtain

𝑓(�̃�𝑘 ∣ 𝜃𝑘) ∝ 𝑤𝑘

(
(�̃�𝑘 − 𝜃𝑘)

2

2𝑏01
+ 1

)−
2𝑎01+1

2

+(1 − 𝑤𝑘)

(
(�̃�𝑘 − 𝜃𝑘)

2

2𝑏02
+ 1

)−
2𝑎02+1

2

, (3)

which is a two-component mixture of nonstandardized
(shifted and scaled) 𝑡 distributions. In particular, the
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component 𝑡 distributions have their location parame-
ters identically as 𝜃𝑘 yet scale parameters as

𝑏01

𝑎01
and 𝑏02

𝑎02
,

respectively. Detailed derivation of (3) and the demonstra-
tion of it being a nonstandardized 𝑡 mixture distribution
are given in Section A of the Supporting Information. For
easing the synthesis of 𝐾 predictive priors later on, we
approximate this unimodal 𝑡mixture distribution by a nor-
mal distribution that

�̃�𝑘 ∣ 𝜃𝑘 ∼̇𝑁

(
𝜃𝑘,

𝑤𝑘𝑏01

𝑎01 − 1
+

(1 − 𝑤𝑘)𝑏02

𝑎02 − 1

)
,

with 𝑎01, 𝑎02 > 1. (4)

This approximation is based on the first twomoments of
the nonstandardized 𝑡mixture distribution,which are ana-
lytically available; see SectionB of the Supporting Informa-
tion for details. The variance of the normal approximation
takes account of the dispersion of both 𝑡 mixture compo-
nents. The goodness of such normal approximation to the
original 𝑡 mixture distribution depends on the degrees of
freedom, 2𝑎01 and 2𝑎02, and the scale parameters,

𝑏01

𝑎01
and

𝑏02

𝑎02
, which are of the investigators’ choice. We show the

numerical accuracy of this approximation in Section C of
the Supporting Information.
With the normal approximation given by (4), we stip-

ulate 𝜇Δ as a linear combination of 𝐾 ≥ 2 hypothetical
random variables, �̃�𝑘, projected from the preexperimental
parameters. That is, 𝜇Δ =

∑
𝑘 𝑝𝑘�̃�𝑘, for 𝑘 = 1,… , 𝐾. These

synthesis weights 𝑝1, … , 𝑝𝐾 sum to 1, with each reflect-
ing the relative importance of a corresponding preexper-
imental dataset to constitute the collective predictive prior
for 𝜇Δ. Pragmatically, one may associate these synthesis
weights with the prior probabilities of commensurability,
that is, 1 − 𝑤𝑘, so that a preexperimental dataset thought
of as more commensurate would be assigned a larger 𝑝𝑘 to
derive the collective prior for 𝜇Δ. Applying the convolution
operator for the sum of normal random variables, 𝜇Δ has
a normal prior distribution. Suppose each preexperimen-
tal dataset leads to an estimate of 𝜃𝑘 ∣ 𝒚𝑘 ∼ 𝑁(𝑚𝑘, 𝑠

2
𝑘
), 𝑘 =

1,… , 𝐾. We thus obtain a normal collective prior that

𝜇Δ ∣ 𝒚1, … , 𝒚𝐾∼̇𝑁

(∑
𝑘

𝑝𝑘𝜆𝑘,
∑
𝑘

𝑝2
𝑘
𝜉2
𝑘

)
, (5)

with

𝜆𝑘 = 𝑚𝑘 and 𝜉2
𝑘

= 𝑠2
𝑘
+

𝑤𝑘𝑏01

𝑎01 − 1
+

(1 − 𝑤𝑘)𝑏02

𝑎02 − 1
,

(𝑎01, 𝑎02 > 1) (6)

being the marginal prior means and variances. It accounts
for both the variability in a preexperimental dataset𝒚𝑘 and
the postulated level of incommensurability, 𝑤𝑘, through
the Gamma mixture prior placed on the predictive preci-
sion, 𝜈𝑘. We give more details in Section D of the Support-
ing Information for this derivation. Using Bayes’ theorem,
this collective prior will be updated by the new experimen-
tal data, denoted by 𝒚𝐾+1, to a robust posterior.

2.2 Criteria for the Bayesian SSD

Most Bayesian SSD criteria aim to control certain prop-
erty of the posterior, denoted by 𝑓𝑝(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1),
wherein 𝒚𝐾+1 are unobserved at the design stage. It is
important to state that uncertainty of sampling a set of
data as 𝒚𝐾+1 from the entire probability space needs to
be accounted for. Thus, strictly speaking, the Bayesian
SSD criteria can only maintain the average properties of
the posterior.
Joseph and Bélisle (1997) propose specifying a density

region,𝑅(𝒚𝐾+1), bounded by 𝑟 and 𝑟 + 𝓁0, to contain possi-
ble parameter values.Here,𝓁0 is the desired interval length
and 𝑟 chosen so that 𝑅(𝒚𝐾+1) is the highest posterior den-
sity (HPD) interval; the so-calledHPDbecause this interval
includes the mode of the posterior distribution. This spec-
ification can ensure the coverage probability of 𝑅(𝒚𝐾+1) to
be at least 1 − 𝛼, when averaged over all possible samples.
Formally, it requires that

∫
{

∫
𝑟+𝓁0

𝑟

𝑓𝑝(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1)d𝜇Δ

}
𝑓𝑑(𝒚𝐾+1)d𝒚𝐾+1 ≥ 1 − 𝛼, (7)
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where  denotes the probability space and 𝑓𝑑(𝒚𝐾+1) the
marginal distribution of the sample, that is, the new
experimental data. For controlling the coverage proba-
bility, it is often referred to as the average coverage cri-
terion (ACC). The posterior distribution in our context
would be unimodal and symmetric about the posterior
mean, as we can envisage from the collective prior given
by (5). We would then simply stipulate the HPD inter-
val as

𝑅(𝒚𝐾+1) = 𝔼(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1) ±
𝓁0

2
, (8)

which coincides with the alpha-expectation tolerance
region by Fraser and Guttman (1956).
An alternative to the ACC is the average length crite-

rion (ALC), which limits the interval length to be at most
𝓁 for a posterior interval that has a coverage probability
of 1 − 𝛼0 (Joseph and Bélisle, 1997). Let 𝓁′(𝒚𝐾+1) be the
random interval length of the posterior credible interval
dependent on the unobserved new experimental data. Tar-
geting a fixed coverage probability of 1 − 𝛼0, onemay solve
𝓁′(𝒚𝐾+1) to meet

∫
𝑟+𝓁′(𝒚𝐾+1)

𝑟

𝑓𝑝(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1)d𝜇Δ = 1 − 𝛼0, (9)

where 𝑟would be specified to give the HPD interval as that
for the ACC above. Averaged over all possible samples, the
ALC requires that

∫ 𝓁′(𝒚𝐾+1)𝑓𝑑(𝒚𝐾+1)d𝒚𝐾+1 ≤ 𝓁. (10)

The ALC could be more favored than the ACC, since
Bayesian practitioners are keen to report, for example,
a 95% credible interval for the posterior mean, in the
analysis.
As we can see from (7) and (10), sample sizes cho-

sen to meet the ACC or ALC rely on the marginal,
predictive distribution of 𝒚𝐾+1; that is, 𝑓𝑑(𝒚𝐾+1) =

∫ 𝑓(𝒚𝐾+1 ∣ 𝜇Δ)𝜋(𝜇Δ)d𝜇Δ. When 𝑓𝑑(𝒚𝐾+1) also depends
on nuisance parameters, say the variance 𝜎2

0 being
unknown, it becomes 𝑓𝑑(𝒚𝐾+1) = ∫ ∫ 𝑓(𝒚𝐾+1 ∣ 𝜇Δ, 𝜎2

0)

𝜋(𝜇Δ)𝑔(𝜎2
0)d𝜇Δd𝜎2

0 . In our context, priors for unknown
𝜇Δ and 𝜎2

0 would be specified based on preexperimental
information. The predictive distribution 𝑓(𝒚𝐾+1) would
thus formally be 𝑓𝑑(𝒚𝐾+1 ∣ 𝒚1, … , 𝒚𝐾), given our 𝜋(𝜇Δ ∣

𝒚1, … , 𝒚𝐾) and 𝑔(𝜎2
0 ∣ 𝒚1, … , 𝒚𝐾).

We consider one additional criterion relating to the
moments of posterior distribution. For practical reasons,
we focus on the second central moment only, so the crite-
rion would be referred to as the average posterior variance
criterion (APVC) hereafter. Given a fixed level of disper-

sion 𝜖0, a suitable sample size is chosen to ensure that

𝔼 [Var(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1)] ≤ 𝜖0. (11)

As Adcock (1997) commented, this criterion is equivalent
to using the 𝐿2-norm loss function for inferences: 𝐿2(𝜇Δ) =

(𝜇Δ − 𝔼(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1))
2. It is also worth noting

that the literature also documented many other Bayesian
approaches to SSD, for example, based on the use of utility
theory (Lindley, 1997) and Bayes factors (Weiss, 1997); the
latter is relevant to pursuing the control of type I error rate
and power in hypothesis testing problems.
We note that the fixed values of 𝓁0, 𝛼0, and 𝜖0 are all pos-

itive real numbers. Unlike the frequentist statistical signif-
icance levels, there is no convention to set these thresh-
olds. It is most likely to be backed up by supporting details
from the field of application; questions such as what is the
meaningful range of 𝜇Δ that can provide compelling evi-
dence for the inference may be discussed with a subject-
matter expert.

2.3 Sample size required for comparing
two normal means

Consider the comparison of two normal means, denoted
by 𝜇𝑗, 𝑗 = 𝐴, 𝐵, in a new experiment. The difference 𝜇Δ =

𝜇𝐴 − 𝜇𝐵 > 0 would indicate 𝐴 is superior to 𝐵. Let 𝑋𝑖𝑗 be
the measured outcome from experimental unit 𝑖 assigned
to group 𝑗. We assume these measurements are indepen-
dent, random samples drawn from populations with over-
all mean 𝜇𝑗 and a common variance 𝜎2

0 . Letting 𝑛𝑗 be the
groupwise sample sizes, the sample means �̄�𝑗 = (𝑋1𝑗 +

⋯ + 𝑋𝑛𝑗𝑗)∕𝑛𝑗 follow an asymptotic normal distribution

by the central limit theorem; that is, �̄�𝑗 ∼ 𝑁(𝜇𝑗,
𝜎2

0

𝑛𝑗
), for

𝑗 = 𝐴, 𝐵. This further leads to �̄�Δ ∼ 𝑁(𝜇Δ,
𝜎2

0

𝑛𝐴
+

𝜎2
0

𝑛𝐵
).

2.3.1 For cases of known variance

When the common variance 𝜎2
0 is known, 𝜇Δ = 𝜇𝐴 − 𝜇𝐵

has a normal prior based on preexperimental datasets
𝒚1, … , 𝒚𝐾 , as was given in (5). Since the joint likelihood
of the 𝑛𝐴 + 𝑛𝐵 measurements in the new experiment
(𝒚𝐾+1|𝜇𝐴, 𝜇𝐵) ∝ (�̄�Δ|𝜇𝐴, 𝜇𝐵), we formulate the data
likelihood in terms of �̄�Δ, which is regarded as a random
variable. We further derive the posterior distribution as

𝜇Δ ∣ 𝒚1, … ,𝒚𝐾, 𝒚𝐾+1∼̇𝑁

⎛⎜⎜⎜⎜⎝
𝜂,

⎛⎜⎜⎜⎝
1∑
𝑝2

𝑘
𝜉2
𝑘

+
1(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

⎞⎟⎟⎟⎠
−1⎞⎟⎟⎟⎟⎠

,

(12)
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with

𝜂 =

(
1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0∑
𝑝2

𝑘
𝜉2
𝑘
+
(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

∑
𝑝𝑘𝜆𝑘

+

∑
𝑝2

𝑘
𝜉2
𝑘∑

𝑝2
𝑘
𝜉2
𝑘
+
(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

�̄�Δ, (13)

where �̄�Δ is the realization of �̄�Δ. The marginal distribu-
tion (unconditional on 𝜇Δ) for the difference in sample
means is

�̄�Δ ∣ 𝒚1, … ,𝒚𝐾∼̇𝑁

(∑
𝑘

𝑝𝑘𝜆𝑘,

(
1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0 +
∑
𝑘

𝑝2
𝑘
𝜉2
𝑘

)
,

(14)

which corresponds to 𝑓𝑑(𝒚𝐾+1) in Section 2.2.
As Joseph and Bélisle (1997) noted, the ACC and ALC

result in the same outcome for cases where the variance is
known. Hence, we illustrate using the ACC in the follow-
ing. Letting the HPD interval (𝑟, 𝑟 + 𝓁0) stretch symmet-
rically around the posterior mean 𝜂, the coverage can be
computed by

ℙ

[|𝜇Δ − 𝜂| ≤ 𝓁0

2
∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1

]

= Φ

⎛⎜⎜⎜⎝
√√√√ 1∑

𝑝2
𝑘
𝜉2
𝑘

+
1(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

𝓁0

2

⎞⎟⎟⎟⎠, (15)

where Φ(⋅) is the cumulative distribution function
of the standard normal distribution. We thus have

Φ(

√
1∑
𝑝2

𝑘
𝜉2
𝑘

+
1

(
1

𝑛𝐴
+

1

𝑛𝐵
)𝜎2

0

𝓁0

2
) ≥ 1 − 𝛼, which is rearranged

as

𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵
≥
⎛⎜⎜⎝
4𝑧2

𝛼∕2

𝓁2
0

−
1∑
𝑝2

𝑘
𝜉2
𝑘

⎞⎟⎟⎠𝜎2
0, (16)

where 𝑧𝛼∕2 is the upper (𝛼∕2)-th quantile of the stan-
dard normal distribution, that is, Φ−1(1 − 𝛼∕2). Simi-
larly, averaging over the entire data space, the APVC
gives

𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵
≥
(

1

𝜖0
−

1∑
𝑝2

𝑘
𝜉2
𝑘

)
𝜎2

0. (17)

When
∑

𝑝2
𝑘
𝜉2
𝑘
, the prior variance for 𝜇Δ based on pre-

experimental data is so small that the right-hand side of

the inequalities above becomes zero or negative, little or no
informationwould be required to accrue from a new exper-
iment.

2.3.2 For cases of unknown variance

When 𝜎2
0 is unknown, we assume that the quantity

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘
∕𝜎2

0 ∼ 𝜒2(𝑐), where 𝜒2(𝑐) refers to a chi-square
distribution with 𝑐 degrees of freedom (Gelman et al.,
2013). This is equivalent to specifying that 𝜎2

0 ∼ Inv-

Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
); hence, the larger value 𝑐 takes, the

more 𝜎2
0 converges to the prior variance for 𝜇Δ ∣ 𝒚1, … , 𝒚𝐾 .

Themarginal posterior for𝜇Δwill then be obtained by inte-
grating out the nuisance parameter 𝜎2

0:

𝑓𝑝(𝜇Δ ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1)

= ∫ 𝜋𝑝(𝜇Δ, 𝜎2
0 ∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1)𝑔(𝜎2

0)d𝜎2
0

∝ exp

(
−

(𝜇Δ −
∑

𝑝𝑘𝜆𝑘)
2

2
∑

𝑝2
𝑘
𝜉2
𝑘

)⎡⎢⎢⎢⎣1 +
1

𝑐
⋅

(𝜇Δ − �̄�Δ)2(
1

𝑛𝐴
+

1

𝑛𝐵

)∑
𝑝2

𝑘
𝜉2
𝑘

⎤⎥⎥⎥⎦
−

𝑐+1

2

, (18)

that is, the posterior is proportional to the product of nor-
mal and nonstandardized 𝑡 kernels (Ahsanullah et al.,
2014). Detailed steps for deriving (18) are given in Section E
of the Supporting Information. In particular, the 𝑡 density
kernel (with the location and scale parameters being �̄�Δ

and (
1

𝑛𝐴
+

1

𝑛𝐵
)
∑

𝑝2
𝑘
𝜉2
𝑘
, respectively) can be related to a nor-

mal kernel with the same location parameter and the vari-
ance as (

1

𝑛𝐴
+

1

𝑛𝐵
)𝜎2

0, conditional on 𝑐
∑

𝑝2
𝑘
𝜉2
𝑘
∕𝜎2

0 ∼ 𝜒2(𝑐).
The posterior (18) can thus be further developed as

𝑓𝑝(𝜇Δ ∣ 𝜎2
0, 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1)

∝ exp

(
−

(𝜇Δ −
∑

𝑝𝑘𝜆𝑘)
2

2
∑

𝑝2
𝑘
𝜉2
𝑘

)
exp

⎛⎜⎜⎜⎝−
(𝜇Δ − �̄�Δ)2

2
(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

⎞⎟⎟⎟⎠
def
= exp

(
−

(𝜇Δ − 𝜇𝑁)2

2𝜎2
𝑁

)
, (19)

with

𝜎2
𝑁 =

⎛⎜⎜⎜⎝
1∑
𝑝2

𝑘
𝜉2
𝑘

+
1(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

⎞⎟⎟⎟⎠
−1

, (20)

which is consistent with (12) but here with unknown 𝜎2
0 ∼

Inv-Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
). We can also find the distribution
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for �̄�Δ unconditional on 𝜇Δ as

�̄�Δ ∣ 𝜎2
0, 𝒚1, … , 𝒚𝐾∼̇𝑁

(∑
𝑝𝑘𝜆𝑘,

(
1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0 +
∑
𝑘

𝑝2
𝑘
𝜉2

𝑘

)
;

(21)

see the derivation also in Section E of the Supporting
Information. Apparently, this marginal distribution for �̄�Δ

relies on prior distribution for the unknown 𝜎2
0, whichmay

yield different solutions of 𝑛𝐴 and 𝑛𝐵 across the Bayesian
SSD criteria considered in this paper.
Let the interval (𝑎, 𝑎 + 𝓁0) be symmetric about 𝜇𝑁 given

the marginal posterior for 𝜇Δ in (19). The sample size
is found requiring ℙ[|𝜇Δ − 𝜇𝑁| ≤ 𝓁0

2
∣ 𝒚1, … , 𝒚𝐾, 𝒚𝐾+1] ≥

1 − 𝛼, based on the ACC; thus

𝓁0

2𝜎𝑁
=

√√√√ 1∑
𝑝2

𝑘
𝜉2
𝑘

+
1(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

⋅
𝓁0

2
≥ 𝑧𝛼∕2, (22)

where 𝑧𝛼∕2 denotes the upper (𝛼∕2)-th quantile of the stan-
dard normal distribution. We rewrite the expression and
obtain

𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵
≥
⎛⎜⎜⎝
4𝑧2

𝛼∕2

𝓁2
0

−
1∑
𝑝2

𝑘
𝜉2
𝑘

⎞⎟⎟⎠∫
∞

0

𝜎2
0𝑔(𝜎2

0)d𝜎2
0, (23)

where 𝑔(𝜎2
0) is the probability density function of an Inv-

Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
) distribution. The reader may compare

this inequality with what was obtained for cases where 𝜎2
0

is known in (16).
Applying the ALC, we need to average the random cred-

ible interval length 𝓁′(�̄�Δ) = 2𝑧𝛼0∕2𝜎𝑁 over the marginal
distribution for �̄�Δ which varies with 𝜎2

0 . According to the
definition of ALC, we obtain that

2𝑧𝛼0∕2 ∫
∞

0

⎛⎜⎜⎜⎝
1∑
𝑝2

𝑘
𝜉2
𝑘

+
1(

1

𝑛𝐴
+

1

𝑛𝐵

)
𝜎2

0

⎞⎟⎟⎟⎠
−

1

2

𝑔(𝜎2
0)d𝜎2

0 ≤ 𝓁,

(24)

which does not have a closed-form solution. This requires
a search over the integers for 𝑛𝐴 and 𝑛𝐵 to find the smallest
sum that satisfies the inequality.With theAPVC,wewould
likewise remove the dependence on 𝜎2

0 by integration. The
formula thus becomes

𝑛𝐴𝑛𝐵

𝑛𝐴 + 𝑛𝐵
≥
(

1

𝜖0
−

1∑
𝑝2

𝑘
𝜉2
𝑘

)
∫

∞

0

𝜎2
0𝑔(𝜎2

0)d𝜎2
0. (25)

3 APPLICATION

Hampson et al. (2014) present a Bayesian approach for
elicitation of expert opinion on model parameters for
enhanced design and analysis of rare-disease trials. An
elicitation meeting (Hampson et al., 2015) was held for the
MYPAN trial, which compares the efficacy of a new treat-
ment (labeled 𝐴) relative to the standard of care (labeled
𝐵) for polyarteritis nodosa, a rare and severe inflammatory
blood vessel disease. Priors were elicited from the input of
15 experts individually. Specifically, opinion was sought on
(i) the probability that a patient given 𝐵 would achieve dis-
ease remissionwithin 6months (a dichotomous event) and
(ii) the log-odds ratio of remission rates. Consensus dis-
tributions for the remission rates were obtained, with the
mode at 71% for 𝐴 and 74% for 𝐵.
In line with the original assumptions for the MYPAN

trial, we suppose the Bernoulli probability is not close
to 0 or 1, so the log-odds ratio of treatment benefit,
that is, 𝜃𝑘 = log[(𝜌𝐴𝑘(1 − 𝜌𝐵𝑘))∕((1 − 𝜌𝐴𝑘)𝜌𝐵𝑘)], would be
approximately normally distributed (Agresti, 2003). Here,
𝜌𝑗𝑘 denotes the probability of remission for patients receiv-
ing treatment 𝑗 = 𝐴, 𝐵. We regard the expert opinion as
a type of pretrial information and further assume it had
been summarized in the form of 𝜃𝑘 ∣ 𝒚𝑘 ∼ 𝑁(𝑚𝑘, 𝑠

2
𝑘
), 𝑘 =

1,… , 𝐾. Eliciting such expert opinion is a nontrivial prob-
lem; we refer the interested reader to the literature such
as Dias et al. (2017). Furthermore, Hampson et al. (2014)
detailed the elicitation process for reaching a probabilis-
tic summary for the log-odds ratio. For illustrative pur-
poses, we assume five sets of expert opinion had been sum-
marized as𝑁(−0.26, 0.25), 𝑁(−0.24, 0.23),𝑁(−0.37, 0.22),
𝑁(−0.34, 0.36), and 𝑁(−0.32, 0.26) to inform 𝜃𝑘. The
opinion would also be sought on 𝑤𝑘, 𝑘 = 1,… , 5 , to
represent the experts’ skepticism about the predictabil-
ity of each pretrial parameter 𝜃𝑘 towards the param-
eter 𝜇Δ, measured on the continuous scale of 0 to 1.
In this example, we suppose such pretrial information
is valued about equally, with 𝑤1 = 0.15, 𝑤2 = 0.20, 𝑤3 =

0.17, 𝑤4 = 0.13, 𝑤5 = 0.20. In practice, the trial statisti-
cian could look into the levels of pairwise commensura-
bility between the 𝑁(𝑚𝑘, 𝑠

2
𝑘
) distributions through a dis-

crepancymeasure, such as theHellinger distance (Dey and
Birmiwal, 1994), to reconcile the choices of value for 𝑤𝑘.
For reaching a collective prior for 𝜇Δ ∣ 𝒚1, … , 𝒚5, syn-

thesis weights 𝑝1, … , 𝑝5 need to be specified. We apply a
decreasing function:

𝑝𝑘 =
exp(−𝑤2

𝑘
∕𝑠0)∑

𝑘 exp(−𝑤2
𝑘
∕𝑠0)

, (26)

with a concentration parameter 𝑠0 to transform these
weights from 𝑤1,… ,𝑤𝐾 . Specifically, for 𝑠0 ≫ 𝑤𝑘, all 𝑝𝑘
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will be close to 1∕𝐾 irrespective of the values of 𝑤𝑘.
Whereas, with 𝑠0 → 0+, the smallest 𝑤𝑘 would have
𝑝𝑘 → 1, meaning that the corresponding 𝜃𝑘 ∣ 𝒚𝑘 tends to
dominate the collective prior. The rationale behind this
approach is that both 𝑤𝑘 and 𝑝𝑘 might be determined
by some distance measure between parameters 𝜃𝑘 and
𝜇Δ. It is an objective-directed approach, since we hope to
discount preexperimental information to a larger extent
via small values of 𝑝𝑘, when it is believed a priori to
be less commensurate (thus, large values of 𝑤𝑘) with
the new experimental data. Figures S2 and S3 (in the
Supporting Information) visualize the impact of 𝑤𝑘, 𝑘 =

1,… , 5, and 𝑠0 on the informativeness of the collective
prior. A thorough evaluation by Zheng and Wason (2022)
shows this objective-directed approach has desirable prop-
erties. We generally recommend choosing a small value
(relative to the magnitudes of 𝑤𝑘) for 𝑠0, particularly
because this can discern the degree of relevance and can
further lead to a heavy-tailed collective prior for cases
of divergent pretrial information. Here, we set 𝑠0 = 0.05

for illustration; consequently, 𝑝1 = 0.23, 𝑝2 = 0.16, 𝑝3 =

0.20, 𝑝4 = 0.25, 𝑝5 = 0.16. This gives a collective prior
𝜇Δ ∣ 𝒚1, … , 𝒚5 ∼ 𝑁(−0.309, 0.154), when specifying 𝜈𝑘 ∼

𝑤𝑘Gamma(2, 2) + (1 − 𝑤𝑘)Gamma(18, 3) for our model.
Assuming known variance of 𝜎2

0 = 0.35 and that 𝑛𝐴 =

𝑛𝐵, the total sample sizes (i.e., 𝑛𝐴 + 𝑛𝐵) found based on
the ACC and ALC criteria are both 41.8 for 95% poste-
rior coverage probability and the credible interval length
as 0.65 on average. For cases of unknown 𝜎2

0, we let 𝜎2
0 ∼

Inv-Gamma(2.500, 0.385) (i.e., setting 𝑐 = 5). TheACCand
ALC sample sizes become 30.7 and 24 for attaining the
sameposterior behaviors, respectively. Targeting 𝜖0 = 0.03,
the APVC sample sizes are 32.2 and 27.6 for known and
unknown 𝜎2

0, respectively.
It may be counterintuitive to find the sample size for

cases of unknown variance is smaller than those for known
variance here, especially if the latter is perceived as a ver-
sion of the former with infinite precision. We would reiter-
ate that the prior specification for 𝜎2

0 in our methodology

uses pretrial information, via an Inv-Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
)

distribution. Taking the mode for illustration, the sample
sizewould be proportional to the quantity 𝑐

𝑐+2

∑
𝑝2

𝑘
𝜉2
𝑘
, that

is, themagnitude of the collective prior variance (i.e., 0.154
in this illustration) scaled by the constant relying on 𝑐. This
is smaller than the fixed 𝜎2

0 = 0.35; so not surprisingly, a
smaller sample size would be yielded by the same crite-
rion. We also caution that the distribution is not necessar-
ily symmetric about the mode, and the uncertainty in 𝜎2

0
needs to be integrated out for the formal SSD.

4 PERFORMANCE EVALUATION

4.1 Basic settings

Motivated by the MYPAN trial, we generate four base
scenarios of historical data, which are configured with
different levels of pairwise (in)commensurability and
informativeness. Such preexperimental information from
𝐾 sources is supposed to have been summarized as
𝜃𝑘 ∣ 𝒚𝑘 ∼ 𝑁(𝑚𝑘, 𝑠

2
𝑘
), 𝑘 = 1,… , 𝐾. For each base scenario,

two distinct sets of prior mixture weights I and II for
robust borrowing are considered to implement the pro-
posed approach for borrowing of information, as listed
in Table 1. These fractions are chosen to (a) reflect high
and low levels of prior confidence in the historical data
when they are consistent between themselves or (b) des-
ignate a certain source of historical data to be more
influential.
We compute the Hellinger distances of any two

𝑁(𝑚𝑘, 𝑠
2
𝑘
) distributions to describe their pairwise

(in)commensurability, as visualized in Figure S4 of
the Supporting Information. This is used to justify the
values of 𝑤𝑘 in Table 1 for our numerical study being no
greater than 0.500, as the largest Hellinger distance in
Figure S4 is below 0.500. Both the Gamma mixture prior
for 𝜈𝑘, and derivation of the weights, 𝑝𝑘, for prioritizing
certain historical data to form a collective prior, follow
our specification in Section 3. Nonetheless, we note at
the outset the Gamma component distributions can be
equally essential, as choices have an impact on the effec-
tive sample size of the collective prior (Neuenschwander
et al., 2020).
We compare the sample sizes computed using the pro-

posed Bayesian SSD formulae with those computed (a)
without robustification, that is, setting each 𝑤𝑘 = 0 for
𝑘 = 1,… , 5, (b) without leveraging historical information
for 𝜇Δ, that is, setting each 𝑤𝑘 = 1, (c) from the proper
Bayesian SSD approach driven by a single prior, here
specified as the most informative 𝑁(𝑚𝑘, 𝑠

2
𝑘
), for example,

𝑁(−0.37, 0.22) for configuration 1, and (d) from an opti-
mal approach as the benchmark. Specifically, the optimal
approach is coupled with a perfectly commensurate prior,
by equating 𝜎2

0 to the collective prior variance
∑

𝑝2
𝑘
𝜉2
𝑘
.

In this way, the corresponding result would serve as the
benchmark referring to the scenario of perfect consistency
between the collective prior and the new data, so the
largest saving in sample size could be attained by the pro-
posed methodology. For cases of unknown 𝜎2

0, the optimal
sample sizes could be approached by setting 𝑐 to a suffi-
ciently large value.
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TABLE 1 Configurations of hypothetical historical data, each accompanied by two sets of weights for robust borrowing of information.
preexperimental information about 𝜃𝑘 ∣ 𝒚𝑘 is assumed to have been summarized by a 𝑁(𝑚𝑘, 𝑠

2
𝑘
) prior for 𝑘 = 1,… , 5

Hypothetical historical data
𝒌 = 𝟏 𝒌 = 𝟐 𝒌 = 𝟑 𝒌 = 𝟒 𝒌 = 𝟓

∑
𝒑𝒌𝝀𝒌

∑
𝒑𝟐

𝒌
𝝃 𝟐
𝒌

Configuration 1 𝑚𝑘 −0.260 −0.240 −0.370 −0.340 −0.320
𝑠2
𝑘

0.250 0.230 0.220 0.360 0.260
Robust weights I 𝑤𝑘 0.103 0.175 0.081 0.143 0.077 −0.311 0.129

𝑝𝑘 0.214 0.143 0.232 0.176 0.235
Robust weights II 𝑤𝑘 0.252 0.319 0.140 0.306 0.149 −0.325 0.198

𝑝𝑘 0.149 0.069 0.359 0.082 0.341
Configuration 2 𝑚𝑘 −0.260 −0.240 −0.370 −0.340 −0.320

𝑠2
𝑘

0.100 0.100 0.100 0.100 0.100
Robust weights I 𝑤𝑘 0.103 0.175 0.081 0.143 0.077 −0.311 0.096

𝑝𝑘 0.214 0.143 0.232 0.176 0.235
Robust weights II 𝑤𝑘 0.252 0.319 0.140 0.306 0.149 −0.325 0.158

𝑝𝑘 0.149 0.069 0.359 0.082 0.341
Configuration 3 𝑚𝑘 −0.260 −0.170 −0.440 −0.150 0.120

𝑠2
𝑘

0.250 0.640 0.970 1.540 0.590
Robust weights I 𝑤𝑘 0.101 0.219 0.385 0.385 0.304 −0.198 0.295

𝑝𝑘 0.559 0.263 0.035 0.035 0.108
Robust weights II 𝑤𝑘 0.325 0.203 0.171 0.180 0.272 −0.215 0.379

𝑝𝑘 0.065 0.235 0.298 0.280 0.122
Configuration 4 𝑚𝑘 −0.260 −0.170 −0.440 −0.150 0.120

𝑠2
𝑘

0.250 0.150 0.400 0.890 0.220
Robust weights I 𝑤𝑘 0.066 0.303 0.459 0.355 0.115 −0.099 0.226

𝑝𝑘 0.473 0.082 0.008 0.041 0.396
Robust weights II 𝑤𝑘 0.537 0.306 0.054 0.220 0.350 −0.312 0.343

𝑝𝑘 0.002 0.098 0.602 0.243 0.055

4.2 Results

Figure 1 visualizes a subset of the results, which compare
the proposed Bayesian SSD formulae using robust weights
I and II with the alternative approaches for cases of known
and unknown 𝜎2

0, respectively. Here, we assume 𝜎2
0 = 0.35

and, if unknown, 𝜎2
0 ∼ Inv-Gamma(1.5, 1.5×

∑
𝑝2

𝑘
𝜉2
𝑘
) for

illustration. We fix the posterior credible interval length
𝓁0 = 0.65 to find the ACC sample sizes, so that the average
coverage probability would be 95%, that is, targeting
𝛼 = 0.05 in (16). Likewise, for computing the ALC sample
sizes, we fix 𝛼0 = 0.05 and constrain the average length
of the posterior credible interval below 0.65. When apply-
ing the APVC, sample sizes are found with the average
posterior variance retained to level 𝜖 = 0.03.
In all configurations 1–4, we see that the sample sizes

computed according to the same criterion, using robust
weights I, are smaller than those using robust weights II.
This is because following our setting the collective prior,
produced by robust weights I, has a smaller variance than
its counterpart by robustweights II, for each configuration.

Moreover, sample sizes yielded using either robust weights
I or II are always bounded by those using no robustifica-
tion (𝑤𝑘 = 0) and no borrowing (𝑤𝑘 = 1). We may think
that no robustification leads to the least conservative result
by the proposed SSD formulae, for the given historical
information fully used. These, however, are not necessarily
identical to the optimal situations, where 𝜎2

0 is equated to
the collective prior variance, or largely determined by the
latter if unknown. In Figure 1, we omit the benchmark
optimal sample sizes that may be obtained by using the
proposed formulae with robust weights I and II for each
configuration. Yet wewill comment on themaximal saving
that the proposed SSD approach can achieve in the follow-
ing along with other figures.
The height difference across bars of sample sizes, com-

puted using our approach with robust weights I or II
and no borrowing (𝑤𝑘 = 1), quantifies the benefit from
leveraging preexperimental information for 𝜇Δ. Looking
across subfigures (i) and (ii), such height differences
betweenmethods are far greater for the unknown variance
case than the known variance case. Comparison of SSD
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F IGURE 1 Comparison of the Bayesian SSD approaches in terms of the sample size obtained according to the ACC, ALC, and APVC
criteria for cases of (i) known 𝜎2

0 = 0.35 and (ii) unknown 𝜎2
0 . Sample sizes in subfigure (ii) for unknown 𝜎2

0 are computed setting 𝑐 = 3, that
is, assuming that 𝜎2

0 ∼ Inv-Gamma(1.5, 1.5 ×
∑

𝑝2
𝑘
𝜉2

𝑘
), for fairly limited use of preexperimental information to inform the variance 𝜎2

0 . This
figure appears in color in the electronic version of this article, and any mention of color refers to that version

approaches with borrowing versus no borrowing, as visu-
alized in subfigure (ii) of Figure 1, would be more objec-
tive for illustrating the benefit. As mentioned, choosing
𝑐 = 3 means 𝜎2

0 would be related with
∑

𝑝2
𝑘
𝜉2
𝑘
to a very

limited extent, as if a diffuse prior had been placed on 𝜎2
0 .

Thereby, implementing no borrowing by setting 𝑤𝑘 = 1,
preexperimental information would neither be leveraged
through the robust prior for 𝜇Δ, nor through the prior for

the unknown 𝜎2
0 ∼ Inv-Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
). Consequently,

larger sample sizes would be found for no borrowing SSD
for the unknown 𝜎2

0 than the known cases assuming 𝜎2
0 =

0.35, to retain similar properties of the posterior distri-
bution. Focusing on the bars for robust weights I and II
against no borrowing within subfigure (ii), saving in all
the ACC, ALC, and APVC sample sizes could be as much
as two-thirds for configurations 1 and 2. Such saving is
attenuated in configurations 3 and 4 when historical infor-
mation is divergent. In configurations 3, the ACC (ALC)
sample size obtained from the no borrowing approach is
about twice the size from the proposed approach with
robust weights I, specifically, 232.2 versus 116.8 (136 vs.

65), respectively. We observe a small increase in sam-
ple size by using robust weights II instead of I, because
slightly higher prior probabilities of incommensurability
had been allocated to certain informative 𝑁(𝑚𝑘, 𝑠

2
𝑘
) for

greater down-weighting. The trend is similar for results in
configuration 4.
We then compare the proposed approach with an alter-

native strategy, that is, restricting the use of preexperi-
mental information from a single source. When the his-
torical data are consistent (divergent) between themselves,
the proposed SSD formulae lead to smaller (larger) sam-
ple sizes, as presented obviously in configuration 1 (con-
figurations 3 and 4) for both cases of known and unknown
𝜎2

0 . As one may perceive, such selection of a single source
could be less robust than averaging over all available pre-
experimental information. Another noteworthy finding is
concerned with the comparison of the ACC and ALC sam-
ple sizes, particularly when 𝜎2

0 is unknown and we place a
minimally informative prior on it (setting 𝑐 = 3). As shown
in Figure 1, theALC sample size is universally smaller than
the ACC sample size for all these investigated configura-
tions.
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F IGURE 2 The ACC, ALC, and APVC sample sizes for the new trial, where the unknown 𝜎2
0 could be related to the collective prior

variance by assuming the quantity 𝑐
∑

𝑝2
𝑘
𝜉2

𝑘
∕𝜎2

0 ∼ 𝜒2(𝑐). The extent of borrowing for better knowledge about 𝜎2
0 depends on the number of

degrees of freedom, 𝑐. This figure appears in color in the electronic version of this article, and any mention of color refers to that version

Wemove on to quantify how the sample sizeswould vary
as 𝑐 changes. Focusing on approaches using preexperimen-
tal information from multiple sources, Figure 2 displays
the sample sizes exclusively for cases of unknown 𝜎2

0 ∼

Inv-Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
). We set 𝑐 = 3, 5, 10, 20, 30, 40, and

keep the target level of each SSD criterion unchanged from
what we have used for Figure 1. As 𝑐 gets larger, the sam-

ple sizes for all approaches investigated here decrease and
tend to stabilize at their own lowest levels possible. This
could be explained from the perspective of prior effective
sample size, to which variance is a key determining factor.
Consider the prior placed on the inverse of the unknown

variance that 1

𝜎2
0

∼Gamma( 𝑐

2
,

𝑐
∑

𝑝2
𝑘
𝜉2
𝑘

2
), of which the mean

and variance are 1∑
𝑝2

𝑘
𝜉2
𝑘

and 2

𝑐
⋅

1

(
∑

𝑝2
𝑘
𝜉2
𝑘
)2
, respectively. As 𝑐
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increases, the prior variance diminishes,meaning that pos-
sible values of 1

𝜎2
0

are more concentrated around the prior

mean obtained based on historical data. For 𝑐 ≥ 20, the
ACC and ALC sample sizes are nearly identical. Whereas,
the ACC sample size is more sensitive than the ALC to
small values of 𝑐, for example, when 𝑐 = 3, 5. We note that
the so-called “no borrowing” (by setting𝑤𝑘 = 1) should be
clarified as no borrowing in terms of the parameter 𝜇Δ.
When 𝑐 gets larger, it means the unknown variance 𝜎2

0
would be more closely tied to the prior variance based on
the historical data. That is, borrowing is enabled through
the variance, although not directly the parameter of infer-
ential interest. By fixing 𝑤𝑘 = 1, historical data would not
be leveraged through the robust prior for 𝜇Δ, but neverthe-
less could be used to inform the unknown 𝜎2

0, particularly
when 𝑐 is sufficiently large.
Figure 3 illustrates how the sample size varies, for cases

of unknown 𝜎2
0, when targeting the average coverage prob-

ability, posterior credible length, and posterior variance at
different levels. Like in Figure 1, these results are obtained
by setting 𝑐 = 3 for the very limited use of preexperimen-
tal information to inform 𝜎2

0 . The optimal sample sizes are
also plotted to show the maximal saving the proposed SSD
formulae may achieve. Specifically, Optim I and II should
be taken as the benchmark for formulae using robust
weights I and II, respectively. As expected, sample sizes
by robust weights I and II would always be bounded by
the extremes of no robustification (all 𝑤𝑘 = 0) and no bor-
rowing (all 𝑤𝑘 = 1). Given a fixed length 𝓁0 = 0.65 of the
HPD interval, more ACC sample sizes would be required
if increasing the desired coverage probability on average,
1 − 𝛼. For example, the ACC sample size computed using
robust weights I (II) rises from 78.7 to 156.5 (104.4 to 204.2)
for configuration 3 had the level of 1 − 𝛼 been lifted from
90% to 97.5%. The displayed ALC sample sizes in subfig-
ure (ii) ensure the coverage probability as 95%; by relax-
ing the target average HPD interval length, fewer sample
sizes would be needed. Likewise, the APVC sample sizes in
subfigure (iii) share this commonality of decreasing as we
relax the target posterior variance. Generating these plots
would be helpful in practice for balancing between obtain-
ing an economic sample size planning and a posterior suf-
ficiently informative for inferences on a case-by-case basis.
For example, targeting the average length of theHPD inter-
val with 95% coverage probability as 𝓁 = 0.60 requires the
ALC sample size to be 28 for configuration 1 using robust
weights I,whichmaynot bemuchdifferent from23 yielded
by the level 𝓁 = 0.65.
We further investigate the impact of 𝑠2

𝑘
, the associ-

ated levels of uncertainty inherent to historical data 𝑘 =

1,… , 𝐾, on the respective sample sizes. Configurations 1
and 2, with the robust weights kept the same, have been

constructed for this purpose. From Figures 1–3, it is clear
that Configuration 1 requires a larger sample size than
Configuration 2 under the same criterion. The explana-
tion is that Configuration 2, with smaller sample variation,
leads to a more informative collective prior for 𝜇Δ, so less
information (sample size) would be required from the new
experiment for the inference.
We also examine how sensitive the proposed Bayesian

SSD formulae are to the Gamma mixture components.
Since a suitable yet least informative Gamma(𝑎01, 𝑏01)

has been chosen for down-weighting, the other compo-
nent of the mixture prior, Gamma(𝑎02, 𝑏02), determines
the maximum borrowing possible. Assuming unknown
𝜎2

0 and setting 𝑐 = 3, Figure 4 shows the Bayesian SSD
under different choices of the hyperparameters, 𝑎02 and
𝑏02, for each criterion. As expected, a more informative
Gamma(𝑎02, 𝑏02) yields a smaller sample size given the
same set of 𝑤𝑘, 𝑘 = 1,… , 𝐾. The ALC sample sizes appear
to have least decreasing, compared with the ACC and
APVC, in this sensitivity evaluation. We also observe that
the reduction in Bayesian sample sizes is not proportional
to the improving of informativeness of Gamma(𝑎02, 𝑏02):
setting the informative component as Gamma(18, 3) is
not much different from Gamma(54, 3) for our illustrative
examples. For practical implementation, we recommend
the component Gamma distributions to be chosen for rep-
resenting two extremes of very limited borrowing and com-
plete pooling of information, when given a full prior mix-
ture weight 𝑤𝑘 = 1 and 𝑤𝑘 = 0, respectively.
Finally, comprehensive simulation studies have been

performed in Section H–J of the Supporting Information
to investigate (i) the average properties of the posterior for
𝜇Δ as updated by the new experimental data, (ii) the sensi-
tivity to nonnormal data, and (iii) the performance if orig-
inal priors (without normal approximation) are used for
the analysis.

5 DISCUSSION

Planning a new experiment with a sufficient sample size
necessitates the use of relevant information. Bayesian
methods allow for the inherent uncertainty in the estimate
of model parameters, as well as a formal incorporation of
any expert opinion or historical data. In this paper, we have
developed Bayesian sample size formulae that use com-
mensurate priors to leverage preexperimental data, avail-
able from multiple sources, for the model parameter(s) of
interest. While we note proposals based on the “two-prior”
approach (De Santis, 2007; Brutti et al., 2009), the proposed
method specifies a singular prior for both the design and
analysis of the new experiment.
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F IGURE 3 Sample sizes required when 𝜎2
0 is unknown to retain the desired average property of the posterior distribution. The ACC and

ALC sample sizes are computed by fixing the credible interval length 𝓁0 = 0.65 and coverage probability 1 − 𝛼0 = 95%, respectively. This
figure appears in color in the electronic version of this article, and any mention of color refers to that version

One area that deserves more investigation is surround-
ing 𝑤𝑘. Following Zheng and Wason (2022), we recom-
mend these are based on some measures of distributional
discrepancy, such as the Hellinger distance between any
two 𝑁(𝑚𝑘, 𝑠

2
𝑘
) distributions. The underlying logic is that

the new experiment, at the planning stage, is regarded
as compatible with the historical experiments, then their
data would also be. The levels of the (in)commensurability
between a preexperimental parameter and the new exper-

imental parameter would thus be comparable to those
between the preexperimental parameters themselves. Nev-
ertheless, we recognize that these prior mixture weights
𝑤𝑘 cannot be correctly specified when the new experimen-
tal data are yet to be generated. Pragmatically, the new
experiment could be embedded with interim analyses to
enable midcourse modifications towards 𝑤𝑘. Each update
in terms of 𝑤𝑘 tends to better reflect the genuine incom-
mensurability (Zheng and Hampson, 2020).
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F IGURE 4 The proposed Bayesian SSD is dependent on the choice of the informative Gamma component distribution for strong
borrowing. The labels at the 𝑥-axis are short for Optim I, Optim II, Robust weights I, Robust weights II, and no robustification, respectively.
This figure appears in color in the electronic version of this article, and any mention of color refers to that version

As noted by one reviewer, there are circumstances that
preexperimental information may be available for a single
arm (say, to inform 𝜇𝐴 or 𝜇𝐵) only. The proposed Bayesian
methodology can still be useful in that the information
may be represented into a commensurate predictive prior
to the arm-based statistic(s). Analytical derivation of a pos-
terior for themean difference can follow our one presented
in Section 2. This would be particularly relevant to the spe-
cial topic of using historical control in clinical trials to sup-
plement or replace a concurrent control. However, we cau-

tion that the selection of relevant pretrial data on one arm
needs to be done carefully, since the model may introduce
systematic difference between arms that would affect the
inference of the difference in means.
For comparing two Bernoulli probabilities in Section 3,

we used a logit transformation to consider the log-odds
ratio, which is generally adequately modeled by a nor-
mal distribution. The approach of constructing a nor-
mal statistic can also be used for time-to-event data,
which is elaborated upon in Section K of the Supporting
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Information with new formulae presented. We are aware
of the limitations. For example, accurate estimation of the
Bernoulli probabilities is not straightforward and the cen-
soring assumptions in the time-to-event data are simpli-
fied. We hope this work motivates further research for
SSD in both binomial and time-to-event data within this
Bayesian context.
Throughout this paper, we supposed preexperimen-

tal information had been available with regard to the
parameter of influential interest. Situations may be more
complex in practice. For instance, historical data may have
been recorded on a different measurement scale (Zheng
et al., 2020) from what might be for the new experiment
under planning. This is an area where our future research
would look towards. To promote the uptake of ourmethod-
ology, we have summarized the necessary actions, along
with the specification of key parameters, at different stages
of the planning of a new experiment in Section L of the
Supporting Information. As a separate note, we applied
quite general criteria such as ACC and ALC to control the
average coverage probability or length of the HPD interval
of the posterior distribution for the parameter of influ-
ential interest throughout. In such decision frameworks,
the sample size largely depends on the informativeness of
a prior distribution for 𝜇Δ, as well as for 𝜎2

0 when using
preexperimental data to inform the variance. With each
criterion concerning an average property of the posterior
distribution, permitting borrowing (with 0 < 𝑤𝑘 < 1)
yields a smaller sample size than the approach of no
borrowing (which can be a limiting case of the proposed
model with 𝑤𝑘 = 1). However, when alternative decision
criteria are applied, it is not necessarily true that enabling
borrowing always leads to a sample size reduction. An
example is research for overcoming prior-data conflict,
where the prior mismatches the data accrued from the
new experiment. There is relevant literature addressing
the issue in clinical trials, where maintaining strong con-
trol of error rates is required by regulatory agencies (EMA,
1998). Our sample size formulae according to the ACC can
be closely relevant for giving a solution analogous to the
frequentist hypothesis testing; for example, rejection of
the null hypothesis could be defined based on posterior
interval probabilities with respect to a magnitude of effect
deemed clinically meaningful (Whitehead et al., 2008).

ACKNOWLEDGMENTS
This work was supported by Cancer Research UK through
Dr. Zheng’s Population Research Postdoctoral Fellowship
(RCCPDF∖100008). JW and TJ received funding from
the UK Medical Research Council (MC_UU_00002/6,
MC_UU_00002/14). This report is independent research
arising in part fromProf. Jaki’s Senior Research Fellowship
(NIHR-SRF-2015-08-001) supported by the National Insti-

tute for Health Research. The views expressed in this pub-
lication are those of the authors and not necessarily those
of the NHS, the National Institute for Health Research, or
the Department of Health and Social Care (DHSC).

DATA AVAILAB IL ITY STATEMENT
The authors confirm that the simulated data supporting
the findings of this paper are reproducible with openly
available R code in the Supporting Information.

OPEN RESEARCH BADGES

This article has earned Open Data and Open Materials
badges. Data and code are available at https://github.com/
haiyanzheng/SSDcmspriors.

ORCID
HaiyanZheng https://orcid.org/0000-0002-3385-2117
JamesM.S.Wason https://orcid.org/0000-0002-4691-
126X

REFERENCES
Adcock, C.J. (1997) Sample size determination: a review. Journal of
the Royal Statistical Society: Series D (The Statistician), 46, 261–283.

Agresti, A. (2003) Categorical Data Analysis. Wiley Series in Proba-
bility and Statistics. Hoboken. NJ: Wiley.

Ahsanullah, M., Kibria, B. and Shakil, M. (2014) Normal and Stu-
dent’s t Distributions and Their Applications. Atlantis Studies in
Probability and Statistics. Paris: Atlantis Press.

Brutti, P., De Santis, F. and Gubbiotti, S. (2009) Mixtures of prior dis-
tributions for predictive Bayesian sample size calculations in clin-
ical trials. Statistics in Medicine, 28, 2185–2201.

Clarke, B. and Yuan, A. (2006) Closed form expressions for Bayesian
sample size. Annals of Statistics, 34, 1293–1330.

De Santis, F. (2007) Using historical data for Bayesian sample size
determination. Journal of the Royal Statistical Society: Series A
(Statistics in Society), 170, 95–113.

Desu, M.M. and Raghavarao, D. (1990) Sample Size Methodology. Sta-
tistical Modeling and Decision Science. San Diego, CA: Academic
Press.

Dey, D.K. and Birmiwal, L.R. (1994) Robust Bayesian analysis using
divergence measures. Statistics & Probability Letters, 20, 287–294.

Dias, L., Morton, A. andQuigley, J. (2017)Elicitation: The Science and
Art of Structuring Judgement. Berlin: Springer.

Duan, Y., Ye, K. and Smith, E.P. (2006) Evaluating water quality
using power priors to incorporate historical information. Environ-
metrics, 17, 95–106.

EMA (1998) Statistical Principles for Clinical Trials. European
Medicine Agency: London UK. https://www.ema.europa.eu/en/
documents/scientific-guideline/ich-e-9-statistical-principles-
clinical-trials-step-5_en.pdf. [Accessed 11 June 2020].

EMA (2006) Guideline on clinical trials in small populations. Euro-
pean Medicine Agency: London UK. https://www.ema.europa.
eu/en/documents/scientific-guideline/guideline-clinical-trials-
small-populations_en.pdf. [Accessed 11 June 2020].

https://github.com/haiyanzheng/SSDcmspriors
https://github.com/haiyanzheng/SSDcmspriors
https://orcid.org/0000-0002-3385-2117
https://orcid.org/0000-0002-3385-2117
https://orcid.org/0000-0002-4691-126X
https://orcid.org/0000-0002-4691-126X
https://orcid.org/0000-0002-4691-126X
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations_en.pdf


ZHENG et al. 15

Fraser, D.A.S. and Guttman, I. (1956) Tolerance regions. Annals of
Mathematical Statistics, 27, 162–179.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. and
Rubin, D. (2013) Bayesian Data Analysis, 3rd edition. Chapman &
Hall/CRC Texts in Statistical Science. Boca Raton, FL: CRC Press,
Taylor & Francis.

Hampson, L.V., Whitehead, J., Eleftheriou, D. and Brogan, P. (2014)
Bayesian methods for the design and interpretation of clini-
cal trials in very rare diseases. Statistics in Medicine, 33, 4186–
4201.

Hampson, L.V., Whitehead, J., Eleftheriou, D. and et al. (2015) Elic-
itation of expert prior opinion: application to the MYPAN trial in
childhood polyarteritis nodosa. PLOS ONE, 10, 1–14.

Joseph, L. and Bélisle, P. (1997) Bayesian sample size determination
for normalmeans and differences between normalmeans. Journal
of the Royal Statistical Society: Series D (The Statistician), 46, 209–
226.

Joseph, L., Wolfson, D.B. and Berger, R.D. (1995) Sample size calcula-
tions for binomial proportions via highest posterior density inter-
vals. Journal of the Royal Statistical Society: Series D (The Statisti-
cian), 44, 143–154.

Lindley, D.V. (1997) The choice of sample size. Journal of the Royal
Statistical Society: Series D (The Statistician), 46, 129–138.

Neuenschwander, B., Weber, S., Schmidli, H. andO’Hagan, A. (2020)
Predictively consistent prior effective sample sizes. Biometrics, 76,
578–587.

O’Hagan, A. and Forster, J.J. (2004) Kendall’s Advanced Theory of
Statistics, volume 2B: Bayesian Inference, 2nd edition. Kendall’s
Library of Statistics. London: Oxford University Press.

Spiegelhalter, D., Abrams, K. and Myles, J. (2004) Bayesian
Approaches to Clinical Trials and Health-Care Evaluation. Statis-
tics in Practice. New York: Wiley.

Weiss, R. (1997) Bayesian sample size calculations for hypothesis test-
ing. Journal of the Royal Statistical Society: Series D (The Statisti-
cian), 46, 185–191.

Whitehead, J., Valdés-Márquez, E., Johnson, P. and Graham, G.
(2008) Bayesian sample size for exploratory clinical trials incor-
porating historical data. Statistics in Medicine, 27, 2307–2327.

Zheng, H. and Hampson, L.V. (2020) A Bayesian decision-theoretic
approach to incorporate preclinical information into phase I
oncology trials. Biometrical Journal, 62, 1408–1427.

Zheng, H., Hampson, L.V. and Wandel, S. (2020) A robust Bayesian
meta-analytic approach to incorporate animal data into phase I
oncology trials. Statistical Methods in Medical Research, 29, 94–
110.

Zheng, H. andWason, J.M.S. (2022) Borrowing of information across
patient subgroups in a basket trial based on distributional discrep-
ancy. Biostatistics, 23, 120–135.

SUPPORT ING INFORMATION
Web Appendices A–E referenced in Section 2, Figures S2–
S4 in Sections 3 and 4, and Appendices H–L for additional
simulations, extended application to time-to-event data,
and a brief user-guide to apply the proposed methodology,
are available at the Biometrics website on Wiley Online
Library. Programming code for the sample size formulae
and reproducing the numerical results, is posted online
along with this paper, as well as available at GitHub: https:
//github.com/haiyanzheng/SSDcmspriors

How to cite this article: Zheng, H., Jaki, T.,
Wason, J.M.S. Bayesian sample size determination
using commensurate priors to leverage
preexperimental data. Biometrics. 2022;1–15.
https://doi.org/10.1111/biom.13649

https://github.com/haiyanzheng/SSDcmspriors
https://github.com/haiyanzheng/SSDcmspriors
https://doi.org/10.1111/biom.13649

	Bayesian sample size determination using commensurate priors to leverage preexperimental data
	Abstract
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Borrowing of historical information from multiple sources
	2.2 | Criteria for the Bayesian SSD
	2.3 | Sample size required for comparing two normal means
	2.3.1 | For cases of known variance
	2.3.2 | For cases of unknown variance


	3 | APPLICATION
	4 | PERFORMANCE EVALUATION
	4.1 | Basic settings
	4.2 | Results

	5 | DISCUSSION
	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	OPEN RESEARCH BADGES

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


