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Abstract

This thesis deals with the study and development of several variational multi-task
models for solving inverse problems in imaging, with a particular focus on Magnetic
Resonance Imaging (MRI). In most image processing problems, one usually deals with the
reconstruction task, i.e., the task of reconstructing an image from indirect measurements,
and then performs various operations, one after the other (i.e. sequentially), to improve
the quality of the reconstruction and to extract useful information.

However, recent developments in a variational context, have shown that performing
those tasks jointly (i.e. in a multi-task framework) offers great benefits, and this is the
perspective that we follow in this thesis. We go beyond traditional sequential approaches
and set a new basis for variational multi-task methods for MRI analysis. We demonstrate
that by sharing representation between tasks and carefully interconnecting them, one
can create synergies across challenging problems and reduce error propagation.

More precisely, firstly we propose a multi-task variational model to tackle the problems
of image reconstruction and image segmentation using non-convex Bregman iteration.
We describe theoretical and numerical details of the problem and its optimisation scheme.
Moreover, we show that our multi-task model achieves better results in several examples
and MRI applications than existing approaches in the same context.

Secondly, we show that our approach can be extended to a multi-task reconstruction
and segmentation model for the nonlinear inverse problem of velocity-encoded MRI. In
this context, the aim is to estimate not only the magnitude from MRI data, but also the
phase and its flow information, whilst simultaneously identify regions of interest through
the segmentation task.

Finally, we go beyond two-task frameworks and introduce for the first time a variational
multi-task model to handle three imaging tasks. To this end, we design a variational multi-
task framework addressing reconstruction, super-resolution and registration for improving
the quality of MRI reconstruction. We demonstrate that our model is theoretically well-
motivated and it outperforms sequential models whilst requiring less computational cost.
Furthermore, we show through experimental results the potential of this approach for

clinical applications.



Keywords: medical imaging, joint models/multi-tasking, image reconstruction, image
segmentation, image registration, super-resolution, hyperelastic regularisation, inverse

problems, total variation, non-convex optimisation, Bregman distances.
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Chapter 1

Introduction

Imaging refers to the process of representing visual perception through the formation
of an image. In the past decades, digital images and videos have become an integral
part of everyone’s life at a global scale. They are generated at a pace that is far beyond
what any human or teams of humans can possibly view and analyse. This calls for more
powerful machines but more importantly for more powerful algorithms in the context of
image processing and analysis. As images are a representation of the analogue world,
they usually contain very complicated geometrical structures of different shapes, scales
and textures. Thus, processing this information requires sophisticated mathematical
methods and algorithms.

Most image processing problems, and in particular the ones we encounter in this
thesis, can be formulated as inverse problems. The general task is to find an image u from
some acquired measurements f that possibly live in a transformed domain and are likely
corrupted by noise and artefacts. That is the case for any imaging device: they operate
on specific physical principles and are usually concerned with the acquisition of some
indirect signal that needs to be transformed into the quantity of interest. Additionally,
due to system defects, quantisation and/or poor condition, the measurement may contain
several undesirable artefacts such as noise and blur.

We typically write an inverse problem to estimate a quantity of interest u as follows
[f=Au+n (1.1)

where A is the so-called forward operator describing the physical system, f is the
given measurements and 7 denotes some additive noise that follows a certain statistical
distribution. The forward operator A : X — Y is usually a bounded and linear operator

mapping one vector-space to another and describes the degrading/transforming process
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of our sought image u. For example, when this process introduces noise in the solution,
A is modelled as the identity operator; when blurring artefacts are present, Au denotes
the convolution with a blurring kernel; in image reconstruction problems, A models the
physics of the specific modalities, e.g. Fourier transform in MRI where the operator maps
the image to the frequency domain.

In order to retrieve the original image u, we need to invert the operator A. However,
most of the time A is not invertible or its inversion is ill-conditioned. Furthermore,
the presence of noise and incomplete data makes the problem even harder. In these
cases, problems of the form (1.1) are said to be ill-posed [Had02, Had23]. An approach
to solve ill-posed inverse problems is to incorporate in the mathematical model some
prior information to favour a specific type of solutions, based on what we know about
the quantity of interest. In this way, one can regularise the solution to be meaningful.
In this context, variational approaches have been proposed to recover u by solving a
family of well-posed problems through regularisation and suitable optimisation schemes
[Tik63, Ter86].

Variational methods have become very popular in the context of image processing and
analysis, as many imaging tasks can be formulated as an optimisation problem and this is
the mathematical perspective we follow in this thesis. In this context, the main challenges
lie in designing specific priors and functionals that accurately model the relevant features
for the specific problem. In general, the first problem concerns the image acquisition or
sensing, where a physical sensor converts some signal emitted from the object of interest
into digital form. This is usually called raw data (see left side of Figure 1.1b for an
example) and requires a reconstruction task to form the final image. Secondly, image
processing is required and this includes all those operations that aim at improving the
quality of the image, such as denoising and deblurring. Then, image analysis is carried
out on the processed images, where one seeks to extract useful information from the
images, such as detecting tumours in medical imaging, counting cells in microscopy,
assessing the mineral content of a rock sample in material sciences. Finally, based on the
previous analysis, the goal is to achieve a better image understanding for the specific
application with the aim of aiding the decision-making process of the user.

Most of the time, all of the steps above are necessary to obtain the desired output
of the specific imaging application. Furthermore, they are usually performed in a serial
fashion, that is to say one task after the other, in what we will refer to as sequential
approach (e.g. [BSWT11, UAO™13]). This classical pipeline is illustrated in Figure 1.1a,

emphasising the dependency of a successive task on the output of the previous one. For
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(b) A joint approach.

Figure 1.1: Illustration of sequential and joint approaches. (a) In the classical sequential
pipeline, each task is solved separately and only starts when the previous one is finished.
In this way, errors get more easily propagated in every step. (b) In joint models, all tasks
are intertwined through a mathematical model that exploits correlation and complementary
information in the data. The optimisation scheme makes possible to connect each output. In
these examples, the raw data is the measurement in frequency domain, typical of MRI. In the
rest of the thesis, we will see different examples of possible tasks in imaging problems.

example, task 1 is the image reconstruction from the raw data and task 2 could be image
denoising of the reconstructed image (output 1).

Although this seems logical at first glance, we also observe that each individual step
is strongly connected to the previous and next one. Certainly, the quality of the image,
whether you can clearly identify edges and textures, will affect for example the detection
of cancer regions, and in fact, the accuracy of these detected regions will then determine
pre-surgical planning for the clinician. This sequential pipeline is intrinsically subject to
error propagation from one step to the next: the further we go from the raw data of the

physical sensor, the more mistakes we introduce in the process. Moreover, the classical
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sequential approach can be seen as a sub-optimal configuration [LMGCCV12]: each task
is treated separately without exploiting relevant information and outcomes at different
stages to improve performance towards the final goal.

More recent developments in the variational context have shown that performing
those tasks jointly (i.e. in a multi-task framework) offers great benefits, and this is the
perspective of this thesis. Examples of variational joint models can be found for different
purposes, such as joint reconstruction and motion estimation [JF03, SMF09, BMMK™10,
OME"16, BDFT17, ARWGS18, BDS18], joint reconstruction and segmentation [RR07,
Klall, CBP*14, BRZ16], joint segmentation and registration [OGLG15, DG18, DOLG17,
SPSM18], to name a few. The conceptual idea of joint models is depicted in Figure 1.1b,
illustrating that all imaging tasks are interconnected through modelling and optimisation
to boost each output.

Our research hypothesis is that solving multiple processes - jointly - will yield overall
performance improvement compared to the classical sequential case. In this thesis, we
demonstrate that by sharing representation between tasks and carefully interconnecting
them, one can create synergies across challenging problems and reduce error propagation.
This results in boosting the accuracy of the outcomes whilst achieving better generalisation
capabilities than sequential models.

The main motivation is that one single model may neglect a potentially rich source
of information hidden in other related tasks [Car97]. And especially when tasks are
correlative and complementary at a certain level, exploiting the correlation between
them is beneficial for improving the final outcome. By carefully intertwining and sharing
information across the different imaging processing tasks, we can exploit relevant features
and each individual output and finally refine them through a suitable optimisation
scheme.

While there has been a growing set of research exploring multi-task frameworks in the
context of machine learning, this is not the focus of this work. Although, certainly, those
approaches deserve attention, this thesis is concerned with variational methods for which
we have a solid interpretability of the model and various theoretical guarantees. However,
we will demonstrate in Section 6.2 how we can integrate algorithms from machine learning
in our proposed variational framework, resulting in a hybrid model.

Certainly, designing relevant functionals and models to interconnect multiple tasks in
such a way that they positively affect each other to boost performance in the final outcome,
is not a trivial task. In this thesis, we go beyond current approaches and set a new

basis for variational multi-task methods, with a particular focus on magnetic resonance
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imaging (MRI). We propose several joint models and demonstrate the effectiveness of

multi-task frameworks for different applications.

1.1 Contribution

This thesis is a contribution to variational multi-task models for inverse imaging problems.
Through three research projects, we go beyond existing solutions and demonstrate that
by carefully sharing information across different imaging tasks, we improve overall
performance and reduce error propagation compared to state of the art methods. While

this is an important part of the thesis, our specific contributions are discussed next.

1.1.1 Multi-Task Model for Reconstruction and Segmentation

with Non-Convex Bregman Iteration

In Chapter 3 we present a research project in collaboration with Martin Benning, Matthias
J. Ehrhardt, Lynn F. Gladden, Richard Mair, Andi Reci, Stephanie Reichelt, Andrew
Sederman and Carola-Bibiane Schonlieb that was published in [CBE*19]. In this work we
deal with the problem of connecting image reconstruction and segmentation in a unified
framework and we propose a novel joint variational model to tackle both tasks simulta-
neously using non-convex Bregman iteration. Typically, segmentation is performed in
the reconstructed image, that is after the reconstruction task is finished. In this way, one
may lose complementary information (i.e., edge and object localisation) that is embedded
in the raw data, leading to sub-optimal solutions. Those errors are then propagated to
the next task, i.e. segmentation in this case. We explore a new approach that combines
reconstruction and segmentation in a unified framework. We derive a variational model
that consists of a total variation regularised reconstruction from undersampled measure-
ments and a Chan-Vese based segmentation. We extend the variational regularisation
scheme to a Bregman iteration framework to improve the reconstruction and therefore
the segmentation. We develop a novel alternating minimisation scheme that solves the
non-convex optimisation problem with provable convergence guarantees. Our results for
synthetic and real data show that both reconstruction and segmentation are improved

compared to the classical sequential approach. Our main contributions are:

e In our proposed joint method, we obtain an image reconstruction that preserves
its intrinsic structures and edges, possibly enhancing them, thanks to the joint
segmentation, and simultaneously we achieve an accurate segmentation. In this

unified Bregman iteration framework, we have the advantage of improving the
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reconstruction by reducing the contrast bias in the TV formulation, which leads
to more accurate segmentation. In addition, the segmentation constitutes another

prior for the reconstruction by enhancing edges of the regions of interest.

« We propose a non-convex alternating direction algorithm in a Bregman iteration

scheme for which we prove global convergence.

o We evaluate the performance of our joint approach throughout an exhaustive set
of experimental results on synthetic and real MRI data. We provide a thorough
comparison with classical sequential approach and with another joint model from

the literature.

1.1.2 Multi-Task Model for Phase Reconstruction and Magni-
tude Segmentation in Velocity-Encoded MRI

In Chapter 4 we extend our joint model for reconstruction and segmentation described
in Chapter 3 to the problem of estimating not only the magnitude image from MRI data,
but also the phase image, and simultaneously identify regions of interest through the
segmentation task. This extension is not trivial as estimating velocity through phase
images involve a non-convex and non-linear problem. This project is in collaboration
with Martin Benning, Lynn F. Gladden, Andi Reci, Andrew Sederman and Carola-
Bibiane Schonlieb and resulted in [CBG™19]. In this work, we consider the problem of
estimating flow, magnitude and segmentation of regions of interest from undersampled
velocity-encoded MRI data. The problem is of great interest in different areas including
cardiovascular blood flow analysis in medical imaging and rheology of complex fluids in
industrial applications. To this end, we propose a joint variational model for undersampled
velocity-encoded MRI. The significance of our approach is that by tackling the phase and
magnitude reconstruction jointly, we can exploit their strong correlation. This is further
assisted by the introduction of a segmentation term as additional prior to enhance edges

of the regions of interest. Our main contributions are

o A description of the forward and inverse problem of velocity-encoded MRI in the

setting of bubbly flow estimation.

o A joint variational framework for the approximation of the non-linear inverse
problem of velocity estimation. We show that by exploiting the strong correlation
in the data, our joint method yields an accurate estimation of the underlying

flow, alongside a magnitude reconstruction that preserves and enhances intrinsic
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structures and edges, thanks to the joint segmentation approach. Moreover, we
achieve an accurate segmentation to discern between different areas of interest, e.g.

fluid and air.
o An alternating Bregman iteration method for non-convex optimisation problems.

o Numerical experiments on synthetic and real data in which we demonstrate the
suitability and potential of our approach and provide a comparison with sequential

approach.

1.1.3 Multi-Task Model for MRI Reconstruction: Joint Recon-

struction, Registration and Super-Resolution

In Chapter 5 we present a research project to improve MRI reconstruction from dynamic
motion-corrupted MRI data. This is a collaboration with Angelica I. Aviles-Rivero,
Noémie Debroux, Martin J. Graves, Carole Le Guyader, Guy Williams and Carola-
Bibiane Schonlieb and resulted in [CDART19], [CARD*19a] and [CARD™19b].

Motion degradation is a central problem in MRI. This work addresses the problem
of how to obtain higher quality, super-resolved motion-free, reconstructions from highly
undersampled MRI data. In this work, we present for the first time a variational multi-task
framework that allows joining three relevant tasks in MRI: reconstruction, registration and
super-resolution. Our framework takes a set of multiple undersampled MR acquisitions
corrupted by motion into a novel multi-task optimisation model, which is composed of
an L? fidelity term that intertwines the different tasks, super-resolution foundations and
hyperelastic deformations to model biological tissue behaviours. We demonstrate that
this combination yields to significant improvements over sequential models and other
bi-task methods. Our results exhibit fine details and compensate for motion producing
sharp and highly textured images compared to state of the art methods. Our main

contributions are:

o We propose a computationally tractable and mathematically well-motivated varia-
tional multi-task framework for motion correction in MRI, in which our novelties

largely rely on:

— An original optimisation model that is composed of an L? fidelity term that
allows sharing representations between three tasks (reconstruction, super-
resolution and registration); a weighted total variation (TV) ensuring robust-

ness of our method to intensity changes; a TV regulariser of the highly resolved
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reconstruction; and a hyperelasticity-based regulariser. We demonstrate that
this combination yields to significant improvements over sequential models

and existing multi-task methods.

— We show that our optimisation problem can be solved efficiently by using
auxiliary variables and then splitting it into sub-problems. We show that this

requires lower CPU time than several methods from the body of literature.

« We extensively evaluate our approach using five datasets and different acceleration
factors. We also compare our multi-task framework against existing approaches.
Our experiments are further validated by interpretations of experts through a

user-study.

1.2 Thesis Overview

This thesis is organised into three main chapters, i.e. Chapters 3, 4 and 5, covering the
main contributions described in the previous section. Additionally, in Chapter 2, we
introduce the main mathematical tools used in this thesis, that is variational methods
in inverse problems, and describe the various imaging problems we tackle in this work.
Finally, we also give a brief overview of our imaging modality of interest, namely MRI.

In Chapter 3, we introduce a novel joint framework for reconstruction and seg-
mentation. First, we describe the problems of MRI reconstruction and region-based
segmentation. We then introduce our joint reconstruction and segmentation approach in
a Bregman iteration framework. This section also contains a detailed comparison with
other joint models in the literature. We study the non-convex optimisation problem and
present the convergence analysis for this class of problems. Finally we present numerical
results for MRI data for different applications. Here we investigate the robustness of
our model by testing the undersampling rate up to its limit and by considering different
noise levels.

In Chapter 4, we present the extension of the joint framework for reconstruction and
segmentation to the estimation of velocities from MRI velocimetry. Firstly, we describe
the derivation of the inverse problem of velocity-encoded MRI from the acquisition
process to the spin proton density estimation. Secondly, we present our joint variational
model to jointly estimate phase and magnitude reconstruction and its segmentation.
We then present the optimisation scheme for the non-convex and non-linear problem
using Bregman iteration. Finally, we demonstrate the performance of our proposed joint

method in comparison with a sequential approach for synthetic and real MRI data.
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In Chapter 5, we introduce for the first time a variational multi-task framework that
interconnects three relevant imaging problems, namely image reconstruction, registration
and super-resolution, for the central problem of motion-corrupted dynamic MRI. The aim
is to produce a high quality image by compensating for motion and acceleration artefacts.
After giving an overview of the field, we describe the derivation of the joint model by
introducing the relevant tasks and regularisation terms. Here, we provide a theoretical
result on the existence of minimisers for such a joint functional. Then, we explain in
detail our alternating optimisation scheme. We present an extensive set of results to
show the potential of our approach, which was validated by a user-study. Finally, we
offer a discussion of the possibilities of our model in terms of a plug-and-play framework.

Finally, in Chapter 6, we conclude the thesis by summarising our contributions and
highlighting the possible outcomes and applications for our proposed models. Furthermore,

we present a discussion of on-going and future work that arised from the thesis.






Chapter 2
Preliminaries

This chapter aims at introducing the main mathematical tools and the imaging processing
problems we will consider in this thesis. Finally, we give a brief overview of MRI as this
constitutes the main application of the proposed work. We assume that the reader is
familiar with basic concepts of mathematical analysis and linear algebra. We provide
some notions and definitions which will be useful for this thesis in Appendix A. For
any further details that are beyond the scope of this thesis, we refer the reader to
[AFP00a, Brel0, EG91, Rud87].

2.1 Variational Methods in Inverse Problems

Inverse problems in imaging are highly relevant in different areas of science as they allow
us to gain high-level understanding and achieve practical solutions for real-world problems
including image segmentation, reconstruction and registration. In particular when dealing
with advanced imaging modalities, inverse problems become more challenging and one
needs to account for specific modelling hypothesis. Having introduced the general linear
operator equation in Chapter 1, we are interested in reconstructing an image u that
underwent some kind of degradation through the forward operator A. Most of the time,
it is not possible to invert A and the problem is said to be ill-posed. According to the
definition proposed by Hadamard, an inverse problem is said to be well-posed if a solution
exists, is unique and depends continuously on the data [Had02, Had23, Joh60, EHN96].
However, most inverse problems in imaging fail to fulfil at least one of these three points
and are therefore considered to be ill-posed. In this case, we need to introduce some prior
knowledge on u, leading to regularisation. Variational methods have been proposed as a

way to tackle the ill-posedness of the inverse problems. In a variational approach, the
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aim is to minimise an energy functional F modelling certain assumptions on the problem
u* := argmin F(u). (2.1)
u

The energy functional E is usually composed of a data term D(u, f) and a regulariser
J(u)
E(u) = D(Au, f) + aJ(u). (2.2)

The data term or fidelity term depends on the input data f, which is usually distorted, and
it ensures that the solution w is close to the measurement f. This is usually formulated
by minimising a norm of the distance between f and Au, where the norm depends on the
given problem. For example, if we have additive Gaussian noise, this results in D being
the squared L?-norm, as we will see later in the thesis. The regulariser encodes prior
knowledge about the characteristics of the desired output, not depending on the observed
data. In many practical problems, it is reasonable to assume sparsity of the solution
in a particular transformed domain. For example, using the L'-norm, sparsity can be
enforced by penalising ||u||;, which means that the components of u are sparse, or by
penalising its gradient ||Vul|;, leading to piecewise constant reconstructions with sparse
edges. The parameter v > 0 balances the data fidelity term against the regularisation.

We refer the reader to [EHN96, SGGT09, CP16, BB18] for classical regularisation
approaches in inverse problems with application to imaging.

A particular type of regularisation that we are going to consider in this thesis is the
total variation, introduced in 1992 by Rudin, Osher and Fatemi in [ROF92] for image

denoising. In its rigorous mathematical formulation, the total variation is defined as
TV (u) == sup {/ wdiv ¥ dx ’ W e CHORY, V]| < 1} (2.3)
Q

where u € L'(Q2) and  is an open subset in R” representing the image domain. Since
in image analysis we require discontinuities in u such as intensity jumps at edges, we
define a more suitable function space, that is the space of functions of bounded
variations:

BV(Q) = {u e L*Q)| TV(u) < oo}. (2.4)

If we assume that u is sufficiently smooth, i.e. v € Wh1(Q), then the total variation
simplifies to
TV(u) = / Vul dz. (2.5)
Q
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Then in the discrete setting where Q = {1,...,n1} x {1,...,ns}, it corresponds to the
1-norm penalty on a discrete finite difference approximation of the two-dimensional
gradient V : R" — (R?)", that is Vu(i,j) = (Viu(i, j), Vau(i, 5))T, with:

u(i+1,7) —u(i,j) ifi<n

Viuli. j) = (i +1,7) — u(i, j) 1
(2.6)

u(i,j+ 1) —u(i,7) ifj<n

Vauli. j) = (6,7 +1) —u(i,j) ifj<ns

with n = nyny being the total number of pixels. Finally the discrete total variation is

TV(u) = [V (u)|

21 = > \IViuli, )12 + [Vauli, 5)2, (2.7)

(4,7)€

for the isotropic case.

Since its introduction, TV has been investigated and used extensively in the context
of image processing thanks to its edge preserving properties. Some of these applications
include image denoising [CL97, BC98, CKS01, Nik04, VOO04, LV08b], image deblurring
[VesO1, CC98, WYZ07, BT09], image inpainting [SC02, CS05], image decomposition
[Mey01, VO03, BLMV10], image segmentation [LKY*09] and motion estimation [ZPB07],

to name a few.

2.2 Imaging Problems

In the following, we will give a brief introduction of the imaging problems we encounter in

this thesis, namely image reconstruction, segmentation, registration and super-resolution.

2.2.1 Reconstruction

Recent years have seen the development of a variety of imaging modalities in many areas
including biology, medicine, engineering and physics, to name a few. All these techniques
such as magnetic resonance imaging (MRI), X-ray computed assisted tomography (CT),
positron emission tomography (PET) are based on different physical principles and are
usually concerned with the acquisition of some indirect signal that needs to be transformed
into an interpretable quantity of interest. This problem is called image reconstruction
and it is usually modelled depending on the underlying physics of the specific imaging

modality. The basic limitation is that during acquisition several sources of noise coming
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(a) MRI (b) CT

Figure 2.1: Examples of image reconstruction. Left: MRI reconstruction is related to the
Fourier transform and the raw data is in the frequency domain. Right: CT reconstruction is
modelled using the Radon transform and the raw data is called sinogram.

from both the hardware and the object that we want to image, will affect the signal.
Additionally, due to sampling and discretisation of the signal, we only observe incomplete
data which leads to artefacts in the reconstruction due to missing information. Based on
the theory of compressed sensing (CS) [CRT06a, CRT06b, Don06, LDP07, EK12], it is
possible to tackle these problems by exploiting sparsity in some transformed domain of
the signal, while acquiring significantly fewer measurements than the classical sampling
theorem.

The reconstruction can be seen as an inversion model to map some given noisy
measurements into the corresponding image and it is modelled as the classical formulation
for inverse problems (1.1). The operator A will model the physical acquisition process
of the specific imaging system and it is in general a trade-off between accuracy of the
model itself and computational complexity.

For example, in MRI, the signal is encoded in the frequency domain, in the so-called
k-space, and mathematically this is related to the Fourier transform [BCH"14] (see
Figure 2.1a). Additionally, the MRI forward operator can account for undersampling
and coil sensitivities. In X-ray CT, the data is collected in the sinogram as a collection
of line integrals and this process is characterised by the Radon transform [Buz08] (see
Figure 2.1b). In both MRI and CT the noise is assumed to be additive Gaussian noise
with zero mean and standard deviation o [GP95, Mac96, DRRT07]. Therefore, the
discrepancy measure for the reconstruction problem in a variational formulation is the
squared L2-norm. In PET, the operator is again related to the Radon transform, however,
the noise in this case follows a Poisson distribution [BMTV05, BLZ108, OF97], thus, the
fidelity term is now the Kullback-Leibler divergence.

Finally, by modelling the discrepancy measure and forward operator according to
the specific application, we solve a variational problem of the form (2.2). In this case,

different sparsity-promoting regularisation functionals can be chosen, including total
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(a) Original photo (b) Segmentation (finer) (c) Segmentation (coarser)

Figure 2.2: Example of image segmentation. From left to right: original frame and two
segmentation results showing different numbers of regions. There segmentations were generated
following the model in [SWFU15].

variation (e.g.[LDP07, BUF07, LKS'09, Blo08]), wavelets (e.g. [GC11, GKHPUI11,
GDCO05, QGNT12]) or dictionary learning (e.g. [AEB06, RB10, XYM™*12]), to name a

few.

2.2.2 Segmentation

Image segmentation refers to the task of partitioning an image into meaningful non-
overlapping regions (e.g. see Figure 2.2). While humans are naturally very good at
distinguishing different objects in a picture, the mathematical formulation that leads to
the same partition is not easy to obtain. Some assumptions need to be made: e.g. pixels
belonging to the same region have similar intensities, and/or sharp intensity changes
identify interface between different structures.

Image segmentation has found a large number of applications in different fields, such
as medical imaging (e.g. tumour detection, surgery planning, surgery navigation), object
detection in satellite images (e.g. to identify roads, trees, crops), traffic control systems
(e.g. to detect vehicles, planes, pedestrians) and video surveillance (e.g. to monitor and
detect specific activities in public places).

Although in the recent years machine learning has proposed numerous successful
segmentation algorithms [LSD14, RFB15, Girl5, PCD15, LDG*17, GDDM16], in the
following we are only giving an overview of unsupervised methods relying on low-level
features, such as pixel intensities, texture, curvature, without relying on any explicit
object model. Indeed, these approaches are more similar to the methods encountered in
the rest of the thesis. Following [ZMCL16], we can distinguish between

1. discrete methods: the image is treated as a fixed discrete grid. These methods
include image thresholding, e.g. Otsu [Ots79]; filtering approaches, e.g. the Canny
edge detection algorithm. This method uses first a Gaussian filter to reduce noise,
then it applies filters (e.g. Sobel mask) to find intensity gradient and finally threshold
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the image to keep only the edges. Other approaches are clustering methods, e.g.
K-means, Fuzzy K-means, C-means [Mac67, Ste56, L1o06], where the aim is to
group pixels or object based on proximity, similarity, continuation, closure and
symmetry. Finally graph-based methods consider an image as a graph, where each
pixel typically corresponds to a node and is connected to the other nodes by edges
whose value respects some similarities [SM00, BVZ01la, BVZ01b, FH04, BK04].

. continuous methods: based on variational techniques, the image is seen as a

continuous surface. These can be subdivided into two categories:

o edge-based methods, often referred to as active contours or "snakes', detect

different objects by evolving and deforming a snake/contour curve C' to match
object boundaries. First introduced by Kass [KWT88], a spline curve is
parametrised and evolves by minimising an energy functional composed of an
internal regularisation force to ensure smoothness and an external data-driven
energy based on the image gradient. However, this functional is non-convex
and sensitive to initialisation. To tackle this problem, Osher et al. [OS8§]
proposed an implicit parametrisation of the curve through the level-set method,
allowing an implicit modelling of topological changes of the curve. In 1997
Caselles et al. [CKS97] introduced the geodesic active contour model and
showed that the classical energy snakes model is equivalent to finding a geodesic
curve in a Riemannian space with a metric derived from the image content.
Moreover, by using the zero level line of a level-set function as the evolving
curve, topological changes are automatically handled. Since then, several
models have been introduced based on active contours, including [LV08a]
where a topology-preserving constraint prevents the curves from splitting or
merging.

region-based methods, based on the assumption that pixels belonging to the
same object share some similarities. In contrast to the active contours models,
the segmentation is not driven by edges and image gradients. These models

are mainly based on the well-known Mumford-Shah model. In [MS89], the

authors introduced the following model
infp [ (u—fPdot [ |Vul +HK 2.8
intp [ (0= et [ VUl HEK) (2.8)

where H is the 1-D Hausdorff measure, K is the set of discontinuities for a

given image f. The goal is to find an image u which is a piecewise-smooth
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approximation of f, based on the idea that f can be partitioned in regions
in which it varies smoothly in the interior, and quickly at the boundaries
represented by K. Since then, a large number of variants of (2.8) have been
proposed. A special case is the so-called minimal partition which is obtained
by restricting u to be piecewise constant, e.g. [CV01, CCP12a, SW14], and

this is what we will use in Chapter 3.

2.2.3 Registration

In many applications, e.g. medical imaging, several images of the same patient are
acquired using different imaging modalities to provide complementary information, or
acquired at different times to assess disease progression or treatment planning. This kind
of data is most informative when the images are put into a common space. This process
is called image registration.

Image registration is one the most challenging tasks in medical image analysis. It
refers to the process of finding the optimal spatial transformation or correspondence
between two or more images, achieving the best fitting and overlaying (see Figure 2.3).
In general, we can refer to one image as the template T" or moving image, and to the
other one as the Reference R or fixed image, where T, R : Q2 C R? — [0,1]. The idea
is that a transformation ¢ : R? — R? is applied to the source image, mapping point
locations of T" to other locations in R. Is is modelled as an optimisation problem for

estimating the best transformation that minimises an energy of the form:

m(pin D(T(¢), R) + @ (2.9)

distance measure  regulariser

The first term is a similarity measure that quantifies the level of alignment between the
two images. A popular example is the L2norm D(T(¢), R) = % [o(T(¢(z)) — R(z))?*dx.
The regularisation term provides some prior information in order to enforce specific
types of solutions and it is closely related to the deformation model; for example one can
consider L2-norm of the derivatives on the displacements to enforce some smoothness.
Following [SDP13al, a registration algorithm consists of three main components: a
deformation model, an objective function and an optimisation method .

Deformation models can be divided into two broad categories: [inear models, which
include rotation, translation, scaling and shearing, and elastic (non-linear, deformable)

models. In this last category we can distinguish among:
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(a) Reference image (b) Template image (c) Difference be- (d) Difference be-
(R) (T) tween R and T before tween R and T after
registration registration

Figure 2.3: Example of image registration. Given a reference image (R) and a moving
template (T) that are misaligned (c), the registration task aims at aligning T to R. Images
computed using an affine transformation. Result in (d). The differences are displayed as a
composite RGB image showing R and T overlaid in different color bands.

1. geometric transformations derived from physical models: elastic body, viscous fluid
flow, diffusion, curvature and flows of diffeomorphisms models [SDP13b, CRM*96b)].

2. geometric transformations derived from interpolation theory: radial basis functions,
elastic body splines, free-form deformations, basis functions from signal processing,
piecewise affine models [DKFH97, dVBV'17a].

3. knowledge-based geometric transformations: statistically-constrained, inspired by
biomechanical /biophysical models [CSBT05].

In addition to these models, it is often useful to consider task-specific constraints, such
as volume [HM04] or topology [KD04, OLG15] preservation, as a way to introduce prior
knowledge and tackle the intrinsic ill-posedness of the registration problem. This is
relevant in many applications, e.g. to avoid interpenetration of matter, which is physically

not possible, or in medical imaging, to preserve volume of anatomical structures.

The choice of a similarity or matching criterion is also important. We can identify
three main methods:

1. geometric methods: aim at assessing a correspondence between landmarks and

requires user input [CRO3].

2. iconic methods (intensity-based methods): aim at quantifying the alignment of

the images based on intensity or attribute distances over the whole image domain
[DLG14, KBD17].
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3. hybrid methods: aim at combining geometric and iconic methods either indepen-

dently and sequentially or using the additional information as constraints [LL14].

Finally, the choice of the optimisation algorithm will determine the quality of the obtained

transformation. Optimisation methods fall into two main categories:

1. continuous methods: gradient descent [BMTY05], conjugate gradient [MYO01],
Newton-type [WVREO08], stochastic gradient descent [WIVAT96].

2. discrete methods: including graph-based methods [TCO07] and belief propagation
approaches [HSP*16].

Additionally, in the context of machine learning, several algorithms have been proposed
for image registration, including the RegNet convolutional neural network architecture
developed in [SAVB*17]. However, these models do not constitute the focus of this thesis.

Following [Mod04], another classification of registration methods distinguishes

1. parametric methods: the set of feasible transformations is restricted to a certain

class of mapping (e.g. splines [RSHT99)])

D(T(¢),R) — m@in st.peQ={z+> wjq,weR™}

J
where the components of ¢ are linear combinations of certain basis functions ¢ and

the coefficients are the parameters w.

2. non-parametric methods: deformation maps are not restricted to a parametrisable

set and thus more degrees of freedom are allowed [SDP13a]

m(pinD(T(gp), R)+aJ(p — 901”69)7 @reg<$) = .

In all of these models, the distance measure can be chosen in several ways. Examples
are the L?-norm of the difference between the deformed template and the reference
intensities, correlation, mutual information, normalised gradient fields. The regulariser
can also vary a lot, including the use of the linearised elastic potential [Bro81], viscous
fluid flow [Chr94], diffusion [BF02], and curvature models [BF03]. In Chapter 5, we will
introduce a regulariser based on hyperelasticity principles to allow for large and smooth

deformations.
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(a) Original image (b) Low resolution image (¢) Super-resolved image

Figure 2.4: Example of image super-resolution. From left to right: original image, low
resolution version and a super-resolved image obtained from the low resolution.

Topology preservation. In many applications, especially in medical imaging, we
need to ensure that the deformation we estimate during the registration algorithm
are physically feasible. This means that the estimated deformation will not result
in penetration of boundaries and overlapped or distorted mesh elements. Therefore,
topology preservation is a crucial step to guarantee that structures will avoid distortion
and maintain their connectivity and relations between neighbouring structures. This
can be done by looking at the Jacobian determinant [DM90]. Generally, values equal
to 1 in the Jacobian determinant mean that the topology is preserved. Small positive
(< 1) or large positive values indicate that the deformations exhibit contractions or
expansions, respectively. However, negative numbers in the Jacobian determinant result
in distortions, overlapping and creation of new structures. This approach has been
adopted in several works involving deformable registration models to guarantee that the
estimated deformation are realistic (e.g. [CRM96a, AAF99, OLG15]).

2.2.4 Super-Resolution

Super-resolution (SR) is the process of generating an image with a higher resolution
than its source. The source can consist of one or more low quality frames [vO06] (see an
example in Figure 2.4). This problem finds practical applications in many real-world
problems including satellite and aerial imaging, medical image processing, facial image
analysis, text image analysis, sign and number plates reading, and biometrics recognition
[NM14]. In this thesis, we are mainly interested in a multi-frame setting for which we

give a brief introduction in the following section.
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Variational Multi-Frame Super-Resolution

In a classical multi-frame variational framework, super-resolution is the problem of
restoring a single high-resolution (HR) image from several low quality images representing
the same scene possibly corrupted by motion. This is a highly ill-posed inverse problem
which has been extensively studied in the literature both in a variational setting [Tsa89,
KBV90, PST94, EF97, EHOO01, UPWB10, GDCM17] and more recently in the context
of deep learning [WCH19]. The general variational formulation (see e.g. [EHOO01]) is

given by -
min Y~ [ DBWiu — f;3 + AReg(u), (2.10)

i=1

where D is the downsampling operator, B is the blurring operator, WW; corresponds to
the geometric warp existing between the m observed images f; and the restored image u
to correct for motion. Finally, Reg(u) is a generic regulariser and A its regularisation
parameter. The downsampling operator defines the way we obtain the low quality images,
e.g. this can be modelled as a window average [GDCM17].

The blurring kernel models any blurring affecting the low resolution (LR) observed
images. The blurring can be caused by the imaging system, acquisition conditions,
and/or motion, which is the case we will encounter in this thesis. Blurring due to the
imaging system is modelled by the so-called point spread function (PSF), which is usually
a Gaussian kernel. The warping operator aims at compensating temporal or spatial
misalignment between the LR images. This can be done through a registration task, to
align the different frames to the same coordinate space. Finally, different regularisation
functionals can be used, such as TV [CZ00, CZ03, MO08, YSG™10, YZS12|, wavelet
[LJF08, MY10, CP14], Tikhonov-type [ZM07, MSMMO08, TYOO08], markov random fields
[RCO1, GAMO02, SF06], to name a few.

Note that, from (2.10), we observe the natural connection between registration and
super-resolution. Together with a reconstruction framework, this is what we explore in
Chapter 5 of this thesis.

2.3 Magnetic Resonance Imaging

In this thesis, we mainly deal with the application of Magnetic Resonance Imaging (MRI).
In this section, we provide a brief overview to introduce the related imaging problems.
MRI is a non-ionizing and non-invasive imaging technique widely used in medical and
non-medical applications, as we will see in this thesis. MRI uses strong magnetic fields
to excite the spin of hydrogen protons in the human body [MRIO8]. When a magnetic
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field is applied the protons’ spins rotate at the so-called Larmor frequency wy around the
direction of the magnetic field and create a net magnetic vector.

By the introduction of a radio frequency (RF) pulse, it is possible to tilt the magnetic
vector. When the RF pulse is switched off, the magnetic vector realigns with the main
magnetic field. This process is called relazation of the magnetic vector. The relaxation
of the spin follows an exponential decay with time constants 77 and 75. The two
relaxations are independent processes, however T; is always larger than 7T,. Relaxation
parameters and proton density (PD) are generally different for different tissues, thus they
are responsible for the contrast in MR images. In addition, RF excitations known as
pulse sequences, influence the contrast by manipulating tissue and relaxations. They are
responsible for generating and recording the signals at specific times, and for producing
the tomographic images by spatially encoding the underlying object. The (simplified)

MRI imaging equation reads as
ft) = / r(z)e” 2RO qg (2.11)
Q

where we observe that f is just the Fourier transform of the object r and k(t) o [ G(r)dr.
We refer to Chapter 4 (Section 4.1) for the full derivation of the inverse problem. The
recorded data are Fourier samples at specific spatial frequencies k(to), k(t1), ... dictated
by the design of the gradient G generated from the gradient coils. We refer to this
frequency space of measurements as k-space. By appropriately designing the gradient
coils, we can control how we cover the k-space. We notice that the data is acquired
sequentially by travelling the k-space, which means that the MRI scans are arbitrarily
slow. This constitutes a central limitation in MRI and a large body of research is devoted
to the study ways to speed up the acquisition process. Naturally, this is important for
a number of reasons: long scanning times highly affect patients’ comfort, especially for
those with severe pathologies or for paediatric imaging [VMA™11]; motion also becomes
an issue, leading to degradation in the signal. This prolonged time is prohibitive when

imaging fast changing dynamics such as perfusion in cardiovascular system [GBKO0S].

Sparse MRI A way to partially overcome the limitation of slow acquisition consists
in exploiting redundancy in the data, following the theory of CS [LDP07] as mentioned
in Section 2.2.1. We refer to this as sparse MRI, where the idea is to acquire far fewer
measurements than traditionally imposed by the Nyquist—Shannon sampling theorem.
This is achieved by collecting k-space samples along continuous trajectories determined by

the sampling scheme. Some common patterns (e.g. lines, random, spiral) are illustrated
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(a) Lines (b) Random (c) Spiral

Figure 2.5: Examples of sampling patterns. Note that it is common practice to acquire more
samples at the centre of the k-space (low frequencies) to be able to recover contrast information.

in Figure 2.5. Note that because the k-space is in the frequency domain, it is usual
to acquire samples using a variable density, that is more samples are acquired at the
centre of the k-space (low frequencies) to recover contrast information and thus achieve
higher quality reconstructions. Let S: {1,..., M} — {1,..., N} be the locations of the
sampling scheme from the acquisition protocol and let S : CV — CM be the sampling
operator with M << N being the total number of acquired samples, much lower than

the image size. The sampling operator is defined as
(ST)m = Ts(m) (2.12)

and its adjoint operator S* : CM — C¥ as

M
m=1
with 6, ,, being the Kronecker delta

1, ifn=m
Opm = . (2.14)
0, else

MRI operator Finally the MRI forward operator is related to the Fourier transform
F [BCHT14]. Because we mainly work with real-valued images (following the standard
assumption that we have negligible phase in many practical cases of interest) but
the Fourier transform acts on complex data, we model the MRI forward operator as
A :R" — C™ and its adjoint A* : C"™ — R", see e.g.[EB16], with A = SF.
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Parallel MRI Another approach to speed up the acquisition time consists in acquiring
more data at the same time through parallel MRI. In parallel MRI one usually deals
with multiple receiver coils with spatially varying sensitivities P [PWSB99, GJH'02].
These sensitivity maps can then be incorporated in the MRI forward operator, which
now reads A = SFP. However, in this thesis, we assume that the coil sensitivities are

known and therefore, the problem of how to compute them is not addressed here.



Chapter 3

Multi-Task Model for

Reconstruction and Segmentation

with Non-Convex Bregman Iteration

In this chapter, we introduce our first joint variational model for image reconstruction
and segmentation and it is based on the publication [CBE*19]. This is joint work with
Martin Benning, Matthias J. Ehrhardt, Lynn F. Gladden, Richard Mair, Andi Reci,
Stephanie Reichelt, Andrew Sederman and Carola-Bibiane Schonlieb.

We have seen in Section 2.2 that all imaging modalities such as computed tomography
(CT), emission tomography and magnetic resonance imaging (MRI) require a reconstruc-
tion approach to produce an image. A common image processing task for applications
that utilise those modalities is image segmentation, typically performed posterior to the
reconstruction. Recently, the idea of tackling both problems jointly has been proposed.
We explore a new approach that combines reconstruction and segmentation in a unified
framework.

Image reconstruction plays a central role in many imaging modalities for medical
and non-medical applications. The majority of imaging techniques deal with incomplete
data and noise, making the inverse problem of reconstruction severely ill-posed. Based
on compressed sensing (CS) it is possible to tackle this problem by exploiting prior
knowledge of the signal [CRT06a, Don06, LDP07]. Nevertheless, reconstructions from
very noisy and undersampled data will present some errors that will be propagated
into further analysis, e.g. image segmentation. Segmentation is an image processing
task used to partition the image into meaningful regions. Its goal is to identify objects
of interest, based on contours or similarities in the interior. Typically segmentation

is performed after reconstruction, hence its result strongly depends on the quality of
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the reconstruction. Recently the idea of combining reconstruction and segmentation
has become more popular. The main motivation is to avoid error propagations that
occur in the sequential approach by estimating edges simultaneously from the data,
ultimately improving the reconstruction. In this work, we propose a new model for joint
reconstruction and segmentation from undersampled MRI data. The underlying idea
is to incorporate prior knowledge about the objects that we want to segment in the
reconstruction step, thus introducing additional regularity in our solution. In this unified
framework, we expect that the segmentation will also benefit from sharper reconstructions.
We demonstrate that our joint approach improves the reconstruction quality and yields
better segmentations compared to sequential approaches. In Figure 3.1, we consider
a brain phantom from which we simulated the undersampled k-space data and added
Gaussian noise. Figure 3.1b and 3.1e present reconstructions and segmentations obtained
with the sequential approaches, while Figure 3.1c and 3.1f show the results for our joint
approach. The reconstruction using our method shows clearly more details and it is able
to detect finer structures that are not recovered with the classical separate approach.
As a consequence, the joint segmentation is also improved. In the following section we
present the mathematical models that we used in our comparison. We investigated the
performance of our model for two different applications: bubbly flow and cancer imaging.
We show that both reconstruction and segmentation benefit from this method, compared

to the traditional sequential approaches, suggesting that error propagation is reduced.

Contributions. In this chapter, we introduced a novel mathematical approach to
jointly perform image reconstruction and segmentation with application to undersampled
MRI data, although our model can be used for different imaging modalities. Our main

contributions are summarised in the following:

e In our proposed joint method, we obtain an image reconstruction that preserves
its intrinsic structures and edges, possibly enhancing them, thanks to the joint
segmentation, and simultaneously we achieve an accurate segmentation. In this
unified Bregman iteration framework, we have the advantage of improving the
reconstruction by reducing the contrast bias in the TV formulation, which leads
to more accurate segmentation. In addition, the segmentation constitutes another

prior for the reconstruction by enhancing edges of the regions of interest.

o We propose a non-convex alternating direction algorithm in a Bregman iteration

scheme for which we prove global convergence.
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(a) Groundtruth (b) Sequential recon- (c) Joint reconstruction
struction

(d) Sampling matrix  (e) Sequential segmen- (f) Joint segmentation
tation

Figure 3.1: Sequential approach (left) versus unified approach (right). Combining reconstruc-
tion and segmentation in a single unified approach improves both the reconstructed image and
its segmentation. See Figure 3.2 for more details.

o We evaluate the performance of our joint approach throughout an exhaustive set
of experimental results on synthetic and real MRI data. We provide a thorough
comparison with classical sequential approach and with another joint model from

the literature.

Organisation of the chapter. The chapter is organised as follows. In Section 3.1 we
describe the problems of MRI reconstruction and region-based segmentation. We then
introduce our joint reconstruction and segmentation approach in a Bregman iteration
framework. This section also contains a detailed comparison with other joint models
in the literature. In Section 3.2 we study the non-convex optimisation problem and
present the convergence analysis for this class of problems. Finally in Section 3.3 we
present numerical results for MRI data for different applications. Here we investigate
the robustness of our model by testing the undersampling rate up to its limit and by

considering different noise levels.
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3.1 MRI Reconstruction and Segmentation

In the following section we recall the mathematical tools to perform image reconstruction
and image segmentation (see Section 2.2.1 and Section 2.2.2 for an overview). In this
work, we focus on the specific MRI application; however, our proposed joint method
can be applied to other imaging problems in which the measured data is connected to
the image via a linear and bounded forward operator, cf. Subsection 3.1.1. Finally we
present our model that combines the two tasks of reconstruction and segmentation in a

unified framework.

3.1.1 Reconstruction

In this chapter, we consider the application of MRI and we refer to the measurements f

as the k-space data. We recall the general reconstruction problem which reads
f=Au+n. (3.1)

As explained in Section 2.3, the Fourier samples are stored in the k-space sequentially,
meaning the scanning time is constrained by physical limitations of the imaging system.
One of the most common ways to perform fast imaging consists of undersampling the
k-space; this, however, only yields satisfactory results if the dimension of the parameter
space can implicitly be reduced, for example by exploiting sparsity in certain domains.
In the reconstruction, this assumption is incorporated in the regularisation term. Let
Q:={1,...,m} x{1,...,n2} with ny,ns € N be a discrete image domain. Let f =
(f)ir, € C™ with m < n = niny be our given undersampled k-space data, where f; € C
are the measured Fourier coefficients that fulfil the relationship (3.1) with 4 = SF.
The operator A is now composed by & : C" — C™, which is a sampling operator
(defined in Section 2.3) that selects m measurements from the Fu data according to
the locations provided by a binary sampling matrix (see e.g. Figure 3.1d), where F is
the discrete Fourier transform. In MRI, the noise 7 is drawn from a complex-valued
Gaussian distribution with zero mean and standard deviation o [Mac96].

In the formulation of problem (3.1) for MRI, the aim is to recover the image v € C"
from the data. However, in this chapter we follow the standard assumption that in many
applications we have negligible phase, i.e. we are working with real valued, non-negative
images. Therefore, we are only interested in u € R™; hence we consider the MRI forward
operator as A : R” — C™ and its adjoint A* : C"™ — R" as modelled in [EB16]. Problem

(3.1) is ill-posed due to noise and incomplete measurements. The easiest approach to
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approximate (3.1) is to compute the so-called zero-filling solution, for which the missing

entries are replaced with zero

u, = A*f.

However, images reconstructed with this approach will suffer from aliasing artefacts
because undersampling the k-space violates the Nyquist-Shannon sampling theorem.
Therefore, we consider a mathematical model that incorporates prior knowledge by using
a variational regularisation approach. A popular model is to find an approximate solution

for v as a minimiser of the Tikhonov-type regularisation approach
* : ]' 2
u eargmm{z”Au—f|]2—|—aJ(u)}, (3.2)

where the first term is the data fidelity that forces the reconstruction to be close to the
measurements and the second term is the regularisation, which imposes some regularity
on the solution. The parameter a > 0 is a regularisation parameter that balances the
two terms in the variational scheme. In this setting, different regularisation functionals
J can be chosen (see [BGH™14] for a survey of variational regularisation approaches).
Although problems of the form (3.2) are very effective, they also lead to a systematic
loss of contrast [Mey01, SC03, BBO1]. This is typically observed for common choices
of the regulariser J, i.e., convex functional. To overcome this problem, [OBG105]
proposed an iterative regularisation method based on the generalised Bregman distance
[Bre67, Kiw97]. The Bregman distance with respect to J is defined as

DY (u,u) = J(u) — J(u*) — (p*,u — u¥) (3.3)

with p* € 8J(u*), where 8J(u*) is called sub-differential and it is a generalisation of the
classical differential for convex functions. We replace problem (3.2) with a sequence of

minimisation problems
1
utt e argmin{2|lAu—f\|§+aD§k(u,uk)}. (3.4)

The update on the subgradient can be conveniently computed by the optimality condition
of (3.4)

pk+1 — pk o ;A*(AukJrl . f) (35)

In this work, we will focus on one particular choice for J, namely the isotropic total

variation (TV) regularisation, introduced in Section 2.1.
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We then consider the Bregman iteration scheme in (3.4) for J(u) = TV(u). This
approach is usually carried on by initialising the regularisation parameter a with a large
value, producing overregularised initial solutions. At every step k, finer details are added.
A suitable criterion to stop iterations (3.4) and (3.5) (see [BGH'14]), is the Morozov’s
discrepancy principle [Mor66]. The discrepancy principle suggests to choose the smallest
k € N such that u**! satisfies

If = Ay < oy/m (3.6)

where m is the number of samples and ¢ is the standard deviation of the noise in the data.
Note that using Bregman iterations, the contrast is improved and in some cases even
recovered exactly, compared to the variational regularisation model. In addition, it makes
the regularisation parameter choice less challenging. Note that for different choices of J in
(4.18), e.g., the Mumford-Shah/Potts model [MS89, AT90, Cha95, BKL*09, PCCB09],
we do not have loss of contrast, but we deal with a non-convex NP hard problem,
algorithmically more challenging.

3.1.2 Segmentation

Image segmentation refers to the process of automatically dividing the image into
meaningful regions. Mathematically, one is interested in finding a partition {Q;}¢_, of
the image domain 2 subject to U_,Q; = Q and N{_,Q; = (). One way to do this is to use
region-based segmentation models, which identify regions based on similarities of their
pixels. The segmentation model we are considering was originally proposed by Chan and
Vese in [CV01] and it is a particular case of the piecewise-constant Mumford-Shah model
[MS89]. Given an image function u : Q — R, the goal is to divide the image domain € in

two separated regions 2; and Qy = Q \ ©Q; by minimising the following energy function

/ (u(z) — c1)?dr + | (u(x) —c3)*dr + 3 - Length(C) — min
Q1 Qo c1,¢2,C
where C' is the desired contour separating €2; and €2, and the constants c¢; and ¢
represents the average intensity value of u inside C' and outside C, respectively. The
parameter § penalises the length of the contour C', controlling the scale of the objects

in the segmentation. From this formulation we can make two observations: first, the
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regions ; and € \ ©; can be represented by the characteristic function

O, 1f$691UC
1, ifIGQQ,

v(x) =

second, the perimeter of the contour identified by the the characteristic function corre-
sponds to its total variation, as shown by the Coarea formula [AFP00Ob]. This leads to

the new formulation

/ v(x)(u(z) — c1)?dr + (1 —v(z))(u(@) — ) dz + FTV(v) = min .
Q Cl,CQ,’UG{O,l}
Even assuming fixed constants c¢;, ¢ the problem is non-convex due to the binary
constraint. In [CEN06] the authors proposed to relax the constraint, allowing v(x) to
assume values in the interval [0, 1]. They showed that for fixed constants ¢, ¢, global

minimisers can be obtained by minimising the following energy

/ v(x)(u(z) — c1)?dr + (1 — v(2))(uw(x) — co)*dr + BTV (v) — rn[(i)rh (3.7)
Q ve )

followed by thresholding, setting ¥ = {x : v(x) > p} for a.e. p € [0,1]. As the problem
is convex but not strictly convex, the global minimiser may not be unique. In practice
we obtain solutions which are almost binary, hence the choice of u is not crucial.

Setting
s(z) = (u(x) — 1)® = (u(z) - c2)?

the energy (3.7) can be written in a more general form as

v(x)s(z)dx TV(v) — min .

| p@)s(a) de + FTV() > min

In this work, we are interested in the extension of the two-class problem to the multi-class
formulation [LLWS13]. Following the simplex-constrained vector function representation
for multiple regions and its convex relaxation proposed in [LKY"09], we obtain as a
special case a convex relaxation of the Chan-Vese model for arbitrary number of regions,

which reads

vEE

¢
/QZ:%(IE)(C@ — u(x))2 dx + BTV (v) — min, (3.8)

where ¢ := {v: Q — R’ |v(z) > 0,2, v;(z) = 1} is a convex set which restricts v(z)

to lie in the standard probability simplex. As in the binary case, the constants ¢; describe
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the average intensity value inside region 7. In this case we consider the vector-valued

formulation of TV

TV(v) :/Q\/|]Vv1H2+---+I\va|]2da:.

3.1.3 Joint Reconstruction and Segmentation

MRI reconstructions from highly undersampled data are subject to errors, even when
prior knowledge about the underlying object is incorporated in the mathematical model.
It is often required to find a trade-off between filtering out the noise and retrieving the
intrinsic structures while preserving the intensity configuration and small details. As a
consequence, segmentations in the presence of artefacts are likely to fail.

In this chapter, we propose to solve the two image processing tasks of reconstruction
and segmentation in a unified framework. The underlying idea is to inform the recon-
struction with prior knowledge of the regions of interest, and simultaneously update this
belief according to the actual measurements. Mathematically, given the under-sampled
and noisy k-space data f, we want to recover the image u: {2 — R and compute its

segmentation v in ¢ disjoint regions, by solving the following problem

1
(u,v) = arg min §||.Au — fl5+aTV(u)

reconstruction

+ 5211: > v —u)? 4+ BTV(v) +15(v) .

i=1j=1

segmentation

where 14(v) is the characteristic function over ¢ := {v : R" — R*|v;; > 0, Z§:1 Vi =
1,Vi € {1,...,n}}, and a, B, 6 > 0 are some regularisation parameters. However,
instead of solving (3.9), we consider the iterative regularisation procedure using Bregman
distances. The main motivation is to exploit the contrast enhancement aspect for the
reconstruction thanks to the Bregman iterative scheme. By improving the reconstruction,

the segmentation is in turn refined. Therefore, we replace (3.9) with the following
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sequence of minimisation problems for £ =0,1,2, ...

uftt = argumin ;HAU — fll3 + ozD%kV(u, u®) + 5221@-(@ — ;) (3.10a)
=1 j=
Pt =ph— = (A*(A ML) — 252621)}“(1/”1 — cj)) (3.10b)
=1
oM € arg mlndz ZUU — w2 g (v) + ﬁqup’iV(v, o) (3.10¢)
i=1j=1
J = gk — g(cj — k2, (3.10d)

Note that (3.10) solves a problem different from (3.9). Assuming that a minimiser exists,

the model (3.10) converges to a minimiser of

*IIA —f||2+5ZZ% —ui ),

=1 j=1

as we will show in Subsection 3.2.1. In case of noisy data f this is not desirable, so
that we combine the iteration with a stopping criterion in order to form a regularisation
method.

This model combines the reconstruction approach described in (3.4) and the discretised
multi-class segmentation in (3.8) with a variation in the regularisation term, which is now
embedded in the Bregman iteration scheme. In [ZvDT*17] the authors used Bregman
distances for the Chan-Vese formulation (3.7), combined with spectral analysis, to produce
multiscale segmentations.

As described in the previous subsection, the parameters v and 3 describe the scale
of the details in v and the scale of the segmented objects in v. By integrating the two
regularisations into the same Bregman iteration framework, we obtain that these scales
are now determined by the iteration k + 1. At the first Bregman iteration £ = 0, when «
is very large, we obtain an over-smoothed u!, and the value of 3 is not very important.
Intuitively, u! is almost piecewise constant with small total variation and a broad range
of values of 3 may lead to very similar segmentations v* However at every iteration
k 4 1, finer scales are added to the solution with the update p**!. Accordingly, with the

k+1

update ¢**!, which is independent of v**!, the segmentation keeps up with the scale in

the reconstructed image u**1!.
The novelty of this approach is also represented by the role of the parameter § > 0.

This parameter weighs the effect of the segmentation in the reconstruction, imposing
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regularity in u in terms of sharp edges in the regions of interest. In Section 3.3 we show
how different ranges of § affects the reconstruction (see Figure 3.12). Intuitively, large
values of ¢ force the solution u to be close to the piecewise constant solution described by
the constants ¢;. This is beneficial in applications where MRI is a means to extract shapes
and sizes of underlying objects, (e.g. bubbly flow in Subsection 3.3.1). On the other
hand, with very small 9, the segmentation has little impact and the solutions for u are
close to the ones obtained by solving the individual problem (3.4). Instead, intermediate
values of § impose sharper boundaries in the reconstruction while preserving the texture.

Obviously, we need to stop the iteration before the residual brings back noise from
the data f. As we cannot use Morozov discrepancy principle in this case (due to the fact
that || Au® — f|l» will rather increase due to the effect of the coupling term controlled by
the parameter ¢), we stop when the difference between two consecutive iterates in v is
smaller than a certain tolerance, ||[v¥*1 —v*|| < tol, following the observation that the rate

k+1

at which 4" changes close to the optimal solution is low, in contrary to more abrupt

changes at the beginning of the Bregman iteration and later on when it starts to add noise.

Clearly, problem (3.10) is non-convex in the joint argument (u,v) due to the coupling
term. However, it is convex in each individual variable. We propose to solve the joint
problem by iteratively alternating the minimisation with respect to u and to v (see

Section 3.2 for numerical optimisation and convergence analysis).

3.1.4 Comparison to other Joint Reconstruction and Segmen-

tation Approaches

In this section we will provide an overview of some existing simultaneous reconstruction

and segmentation (SRS) approaches with respect to different imaging applications.

CT/SPECT. Ramlau and Ring [RR07] first proposed a simultaneous reconstruction
and segmentation model for CT, that was later extended to SPECT in [EKR11] and
to limited data tomography [Klall]. In these works, the authors aim to simultaneously
reconstruct and segment the data acquired from SPECT and CT. CT measures the mass
density distribution u, that represents the attenuation of x-rays through the material,
SPECT measures the activity distribution f as the concentration of the radio tracer

injected in the material. Given the two measurements 2° and y°, from CT and SPECT,
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they consider the following energy functional
E(f, 5, D1, T%) = [LA(f, 1) = °I? + BIRp — 2°|I* + a(Length(T) + Length(T*)).

They propose a joint model based on a Mumford-Shah like functional, in which the
reconstructions of ;4 and f and the given data are embedded in the data term in a least
squares sense. The operators A and R are the attenuated Radon transform (SPECT
operator) and the Radon transform (CT operator), respectively. The penalty term is
considered to be a multiple of the lengths of the contours of x, I'* and the contours
of f, I'/. These boundaries are modelled using level set functions. In these segmented
partitions of the domain, p and f are assumed to be piecewise constant. The optimisation
problem is then solved alternatively with respect to the functional variables f and p with

fixed geometric variables I'* and I'/ and the other way around.

In [BRZ16] the simultaneous reconstruction and segmentation is applied to dynamic
SPECT imaging, which solves a variational framework consisting of a Kullback-Leibler
(KL) data fidelity and different regulariser terms to enforce sharp edges and sparsity for

the segmentation and smoothness for the reconstruction. The cost function is

K K 5 K a
B(u.c) = KL(R(u-c),g) + a3 [Vur| + 83 funl + 2 3 e
k=1 k=1 2 k=1 ot

Given the data g, they want to retreive the concentration curves c(t) in time for K
disjoint regions and their indication functions u(z) in space. The optimisation is carried

out alternating the minimisation over u having c¢ fixed and then over ¢ having v fixed.

In [LQP17] they propose a variational approach for reconstruction and segmentation

of CT images, with limited field of view and occluded geometry. The cost function

1 Bl L& 1
Bl ) = g4z =3l + ol Tl + 5 (A3 vl = )+ 5100l
i=1 k=1
s.t. a box constraint on the image values z and the simplex constraint on the labelling
function v. The operator A is the undersampled Radon transform modelling the occluded
geometry and y is the given data. The second term is the edge-preserving regularisation
term for u, the third term is the segmentation term which aims at finding regions in u that

are close to the value ¢ in region k. The operator D is the finite difference approximation



36 Multi-Task Reconstruction and Segmentation with Non-Convex Bregman Iteration

of the gradient. The non-convex problem is solved by alternating minimisation between

updates of u, v, c.

PET and Transmission Tomography. In [VdSB08], the authors propose a maxi-
mum likelihood reconstruction and doubly stochastic segmentation for emission and
transmission tomography. In their model they use a Hidden Markov Measure Field Model
(HMMFM) to estimate the different classes of objects from the given data r. They want

to maximise the following cost function
E(u,p,0) = log P(r|u) + log P(ulp, 0) + log P(p).

The first term is the data likelihood which will be modelled differently for emission and
transmission tomography. The second term is the conditional probability or class fitting
term, for which they use HMMFM. The third term is the regularisation on the HMMFEFM.
The optimisation is carried out in three steps, where first they solve for u (image update)
fixing p, 0, then for p, holding u, # (measure field update) and finally for 6 (parameter
update) having u, p fixed.

A variant of this method has been presented in [RDDHI15], in which they incor-
porate prior information about the segmentation classes through a HMMFM. Here, the
reconstruction is the minimisation over a constrained Bayesian formulation that involves
a data fidelity term as a classical least squares fitting term, a class fitting term as a
Gaussian mixture for each pixel given K classes and dependent of the class probabilities
defined by the HMMFM, and a regulariser also dependent of the class probabilities. The

model to minimise is

exp (—W)) + Aclass f: R(k)

k k=1

K
Ojk
Eu(s nozse Au b 10g< -
(1:6) =D A= b1} = 3 log (32 2

k=1,...,K.

K
st. > =1 03 >0, j=1,...,N

The operator A will be modelled as the Radon transform in case of CT and b represents
the measured data; N is the number of pixels in the image; \,ise and Agqss are the
regularisation parameters; g, o are the class parameters. The cost function is non
convex and they solve the problem in an alternating scheme where they either update

the pixel values or the class probabilities for each pixel.



3.1 MRI Reconstruction and Segmentation 37

Storath and others [SWFU15] model the joint reconstruction and segmentation
using the Potts Model with applications to PET imaging and CT. They consider the
variational formulation of the Potts model for the reconstruction. Since the solution
is piecewise constant, this directly induces a partition of the image domain, thus a
segmentation. Given the data f and an operator A (e.g. Radon transform), the energy

functional is in the following form
E(u) = M| Vullo + | Au — f]3

where the first term is the jump penalty enforcing piecewise constant solutions and
the second term is the data fidelity. As the Potts model is NP hard, they propose a
discretisation scheme that allows to split the Potts problem into subproblems that can

be solved efficiently and exactly.

MRI. In [CBPT*14], the authors proposed a joint model with applications to MRI.
Their reconstruction-segmentation model consists of a fitting term and a patch-based
dictionary to sparsely represent the image, and a term that models the segmentation as
a mixture of Gaussian distributions with mean, standard deviation and mixture weights

i, o, w. Their model is
N

E(u,T,p,0,m) = | Au =y + XY [|Royu— Dy,||* = BP(ulp, 0,7) st yallo < T Vn,
n=1

where A is the undersampled Fourier transform, y is the given data, R, is a patch
extraction operator, X is a weighting parameter, T' is the sparsity threshold, and =, is the
sparse representation of patch R, u organised as column n of the matrix I'. The problem
is highly non-convex and it is solved iteratively using conjugate gradient on wu, orthogonal

matching pursuit on I'" and Expectation-Maximisation algorithm on (u, o, ).

Summary. Recently, the idea to solve the problems of reconstruction and segmentation
simultaneously has become more popular. The majority of these joint methods have
been proposed for CT, SPECT and PET data. Mainly they differ in the way they
encode prior information in terms of regularisers and how they link the reconstruction
and segmentation in the coupling term. Some impose smoothness in the reconstruction
[BRZ16], others sparsity in the gradient [RR07, LQP17, SWEFU15], others consider a
patch-dictionary sparsifying approach [CBPT14]. In [SWFU15] they do not explicitly
obtain a segmentation, but they force the reconstruction to be piecewise constant.

Depending on the application, the coupling term is the data fitting term itself (e.g.
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SPECT), or the segmentation term. In [VASB08, RDDH15, CBP*14] the authors model
the segmentation as a mixture of Gaussian distribution, while [LQP17] has a a region-
based segmentation approach similar to what we propose. However, [LQP17] penalises
the squared 2-norm of segmentation, imposing spatial smoothness.

In our proposed joint approach, we perform reconstruction and segmentation in a
unified Bregman iteration scheme, exploiting the advantage of improving the reconstruc-
tion, which results in a more accurate segmentation. Furthermore, the segmentation
constitutes another prior imposing regularity in the reconstruction in terms of sharp
edges in the regions of interest. We propose a novel numerical optimisation problem in a
non-convex Bregman iteration framework for which we present a rigorous convergence

result in the following section.

3.2 Optimisation

The cost function (3.10) is non-convex in the joint argument (u,v), but it is convex in
each individual variable. To solve this problem we derive a splitting approach where we
solve the two minimisation problems in an alternating fashion with respect to u and v.
We present the general algorithm and its convergence analysis in the next subsection.

First, we describe the solution of each subproblem.

Problem in uw. The problem in u reads

1 n £
uftl = argmin§||Au — fII? 4+ a(TV(w) — p*,u) + 52 vaj(cj — ;)2
U i=1j=1
We solve the optimisation for u, fixing v, using the primal-dual algorithm proposed
in [CP11a, CP16, EZC10, PCBC09]. We write F(u) = ||u|;, K(u) = Vu and G(u) =
I Au = FlI3 — ap® u) + 630, Z§:1 v (c; — u;)? and obtain the following iterates for
6 =1 and step sizes o = 7 = 0.99/||V||

il y" +oVu"
max(1, ||y + oVur||)
u' + 7V -yt 4276 35 b + Tapt + T AT S

1+270 +17A*A

Y

un+1 —

n+1 — 2un+1 I )

U u" .

After sufficiently many iterations we set ©**!' = y"*! and compute the update p**! from
the optimality condition of (3.2) as (3.10b).
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Problem in v. The problem in v reads

v** = arg min(v, og — Bg") + BTV (v)

veC

T

with g = ((cl —ukt)2 0 (e — uk“)Q) . We now solve a variant of the primal-dual
method [CP11a] as suggested in [PCBC09, CCP12b]. They consider the general problem
including pointwise linear terms of the form

min max(Kz,y) + {g,z) — {h,y)

where C' C X, B C Y are closed, convex sets.
Setting I =V and h =0, § = 1 and step sizes 0 = 7 = 0.99/||V||, the updates are

w't =Tlg (w" +o(Vo" — h))
(4 5+ )

n+l _ 2vn+1 )

v v,

At the end, we set v**! = v"! and obtain the update ¢**! as (3.10d).

3.2.1 Convergence Analysis

The proposed joint approach (3.10) is an optimisation problem of the form
min E(u,v) + D?I; (u, u*) + DEZ(U, ") (3.11)

in the general Bregman distance framework for (nonconvex) functions £ : R® x R™ —
R U {00}, for k € {0,..., N} and some positive parameters o and . The functions
Ji :R" - RU{oo} and Jy : R™ — R U {oo} impose some regularity in the solution. In
this work we consider a finite dimensional setting and we refer to the next section for
the required definitons. To prove global convergence of (3.11), we consider functions
that satisfy the Kurdika-fojasiewicz property, defined below, and we make the following

assumptions.

Definition 3.1 (Kurdyka-fojasiewicz (KL) property). Let F': R? — R be a proper and

lower semicontinuous function.

e Then the function F' is said to have the KL property at u € dom(OF) := {u €
RYOF # 0} if there exists a constant n € (0,00|, a neighbourhood N of 4 and a
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concave function ¢ : [0,1n) — Rsq that is continuous at 0 and satisfies p(0) = 0,
o € C]0,n]), and ¢'(s) > 0 for all s €]0,n|, such that for allu € NN{u €
R F(u) < F(u) < F(u) +n} the inequality

O'(F(u) — F(u))dist(0,0F (u)) > 1 (KL)
holds.

o If F satisfies the KL property at each point of dom(OF), F' is called a KL function.

Lemma 3.2. The function E(u,v) = 3| Au— f[|3+6 37y S5, vij(c; — w)? in our joint
problem (3.10) satisfies the KL property over R™ x R™.

Proof. Tt has been proved in [Loj63] that real-analytic functions satisfy the KL property.

The function E(u,v) is polynomial and therefore it is a real-analytic function. O

Assumption 1.

~

. E is a C' function

2. F>—

Co

. Fis a KL function

4. Ji - R* - R, i« = 1,2, are proper, lower semi-continuous (l.s.c.) and strongly

coOnver
5. Ji, 1=1,2, are KL function

6. for any fixved v, the function uw — E(u,v) is convex. Likewise for any fized u, the

function v — E(u,v) is conver.

7. for any fized v, the function u — E(u,v) is C’il(v), hence the partial gradient is

L1 (v)-Lipschitz continuous
IVE(u1,v) — VyE(ug,v)|| < Li(v)]jur — usl| Vuy,us € R™.

Likewise for any fized u, the function v — E(u,v) is C’}JQ(u).
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Algorithm 1: Alternating splitting method with Bregman iteration
Input: (u®,%), p® € 8J;(u%), ¢° € 8J>(v°), N € N
for k=0,1,...,N do

uF*t! = arg min,, {E(u, oP) + Df}f (u, uk)}

P =pF = VB (Ut o)

. k

VP = argmin, {E(ukﬂ, v) + D%, (v, vk)}

¢ = ¢F — V,E(uF, oF

L k=k+1

end for

Output: (uV,v")

We want to study the convergence properties of the alternating scheme

Wkt = arg min {E(u, Uk) + Dgf (U, Uk)}
pk+1 _ pk o VuE(uk+1, vk)
R — arg min {E(ukH, v) + Dg’; (v, Uk>} (3.12¢

¢ = ¢F — V, BT oM (3.12d

for initial values (u°,v"), p° € 9J;(u") and ¢° € 9 J5(v°).
We want to show that the whole sequence generated by (3.12) and depicted in Algorithm 1
converges to a critical point of E.

In order for the updates (3.12a) and (3.12c¢) to exist, we want J to be of the form
J=R+¢eG (eg. R=|Vul; and G = ||u||3, see [BBES17]) where R and G fulfil the
following assumptions. In practice, we verify that G does not significantly change the
reconstruction and segmentation performance for the examples we consider in the next
section, for sufficiently small parameter (e.g. € = 1073). Therefore, in our model (3.10)

and in the numerical results we omit it.

Assumption 2.

1. The functions G : R® — R and G5 : R™ — R are strongly convexr with constants
v1 and v, respectively. They have Lipschitz continuous gradient VGy and VG,

with Lipschitz constant 61 and &z, respectively.
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2. The functions R; : R™ — R and Ry : R™ — R are proper, l.s.c. and convez.

For J; = a;R; + €;G;, i € {1,2}, we can write (3.12) as

uFT! = arg min {E(u, oF) + a1D110;1(U, u*) +e1Dg, (u, Uk)} (3.13a)
1

P = (Vu B o) + 21 (VG () VGl(uk))) (3.13b)

v* ! = arg min {E(uk“, v) + agD%Z(U, v*) + £2Dg, (v, Uk)} (3.13¢)
1

e R (VUE(ukH, VR 4 gy (VG2<'Uk+1) _ VGg(vk))>. (3.13d)
2

Theorem 3.3 (Global convergence). Suppose E is a KL function for any 2% = (u¥,v*) €
R™ x R™ and r* = (p*, ¢*) with p* € OR,(u*), ¢* € ORy(v¥). Assume Assumptions 1 and
2 hold. Let {z*}ren and {r¥}ren be sequences generated by (3.13), which are assumed to
be bounded. Then

1. The sequence {z*}ren has finite length, that is

ST = 2| < o0 (3.14)
k=0

2. The sequence {2z }ren converges to a critical point z of E

3.2.2 Proof of Theorem 3.3

In the following we are going to show global convergence of this algorithm. The first step
in our convergence analysis is to show a sufficient decrease property of a surrogate of the
energy function (3.11) and a subgradient bound of the norm of the iterates gap. We first
recall the following definitions.

Definition 3.4 (Convex Conjugate). Let G be a proper, l.s.c. and convex function. Then
its conver conjugate G* : R — R U {oc} is defined as

G*(p) := sup {{u,p) — G(u)},

ueR”
for all p € R™.

Lemma 3.5. Let G be a proper, l.s.c. and convex function and G* its convexr conjugate.

Then for all arguments u € R™ with corresponding subgradients p € 0G(u) we know
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* (u,p) = G(u) + G (p),
e p € 0G(u) is equivalent to u € OG*(p).

From Lemma 3.5 we can rewrite the Bregman distance in (3.3) as follows
k
DY (u,u®) = J(u) + J*(p") = (u, p*), (3.15)

where we can see that now it does not depend on u* anymore, but it can be defined as a
function of u and p* only, D;(u,p").

Definition 3.6 (Strong convexity). Let G be a proper, l.s.c. and convex function. Then

G is said to be y-strongly convex if there exists a constant v such that
Dig(u,v) = 2 flu— v

holds true for all u,v € dom(G) and q € 0G(v).

Definition 3.7 (Symmetric Bregman distance). Let G be a proper, l.s.c. and convex

function. Then the symmetric generalised Bregman distance DZ™" (u,v) is defined as

D™ (u,v) »= Dg(u,v) + Dg(v,u) = (p — q,u —v)

for u,v € dom(G) with p € 0G(u) and q € 0G(v). We also observe that in case G is
v-strongly conver we have
D™ (u,v) = yllu —v]*.

Definition 3.8 (Lipschitz continuity). A function G : R" — R is (globally) Lipschitz-

continuous if there exists a constant L > 0 such that
|G(u) = G)|| < Ljju— v
is satisfied for all u,v € R™.

Before we show global convergence, we first define the surrogate functions.

Definition 3.9 (Surrogate objective). Let E, R;, G;,i € {1,2} satisfy Assumption 1 and
Assumption 2, respectively. For any (u®,v*) € R" x R™ and subgradients p* € OR; (u*)
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and ¢* € ORy(v¥), we define the following surrogate objectives F, Fy and Fy

Fuf o pb gh) = B o) 4 ap (R + Ry(pY) — (b pF))

k
= D%l (uFt1, uk)

(3.16)
+an (R0 + Ri(gF) — (0", ¢M)),
= D;Z:Z(vk"'l,vk)
Fy(uf*h ph) = B oM7) 4 g (Ry(ub ) + R (pF) — (b, ph)), (3.17)
Fy(oh, ¢%) = B! 0" ) 4 an (R (0"4!) + R3(¢F) — (01, 1)), (3.18)

For convenience we will use the following notations

2 =", k) Vk >0
rk ::(pk,qk) ke aRl(uk), ¢ e 8R2(vk).

The surrogate function F' will then read

F(Zk+1, Tk) — F<uk+17,uk+1,pk’ qk).

We can now show the sufficient decrease property of (3.16) for subsequent iterates.

Lemma 3.10 (Sufficient decrease property). The iterates generated by (3.13) satisfy the

descent estimate

F(zk+1,’l”k) +p2||2’k+1 _ Zk||2 S F(Zk,Tk_l) (319)

In addition we observe

lim D™ (41 %) =0 lim D™ (pF+1 k) =0
k—oo R ( ’ ) k—o00 Ry ( ’ )
lim D™ (w1 uF) =0 lim D™ (vF L k) = 0.
k—o0 G ( ’ ) k—oco G2 ( ’ )

Proof. From (3.11) we consider the following step for J; = a1 Ry + 1G4

w1 = argmin {E(u, o) + alD%i (u,u”) + e, D¢, (u, uk)}

= arg min {E(u, ") + ay R(u) + .G (u) — (a1p® + &, VG (u),u — uk>}
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Computing the optimality condition we obtain
oy (P — pP) + VL B 0P + e (VGWF ™) — VG (k) =0
Taking the dual product with v+ — u* yields

ai <pk+1 - pkv uk—H - uk> + <qu(uk+17 Uk)v uk—H - uk>

_ D%?/lmm(uk+1,uk) > E(uk+1, Uk) — E(Ukyvk)

+&1 (VGl(uk+1) — VGl(uk),ukJrl — uk> = 0.

= Dgylmm(uk"'l, uk)

Using the convexity estimate E(uf*1, vF) — E(uf,v*) < —(V, E(uFt o%), uF Tt — ub) we

obtain the inequality
Olef%ylmm(ukJrl )+€1Dsymm( k+1 )+E( k+1 k) _ E(uk,’uk) <0
a1 (D, (M, u) + DR (uf, uf*) ) 4 e D (@M uf) 4+ B o)

< E(uf, v").

Adding o ngl (uF, u*~1) to both sides, using the strong convexity of G and the surrogate

function notation, we get

P p) (DR, () 4+ DR o) ) e o =P < Rl o).
Using the trivial estimate for the Bregman distances, we get the decrease property

Py (a1 ") + e [uf™ =P < Bt pt ).
Similarly for v, we obtain

Fy(o*1,¢8) + x|t — | < Fy(ot, ¢ 7).

Summing up these estimates, we verify the sufficient decrease property (3.19), with

positive
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p2 = max{e17y1, €272 . We also observe
0 < A* < E(ZF) — B(z*).
with

Ak - Dsymm( k+1 )+a2Dsymm( k+1 )+€ Dsymm( k+1 >+82Dsymm< k-‘,—l’vk)'

Summing over k =0,..., N
N N
SAF <N BN - B = E(2Y) - BN < B(2%) - inf E(z) < oo.
k=0 k=0

Taking the limit N — oo implies

o

Z AF < 0

k=0
thus limy_ o Dsymm(ukﬂ, uF) =0, limy_e0 DE™" =0, limy o0 Dsymm(vk“, k) =0,
limyyeo D™ (0¥, 0%) = 0, due to ay, as, €1, €2 > 0. ]

In order to show that the sequences generated by (3.13) approach the set of critical
point we first estimate a bound for the subgradients of the surrogate functions and verify
some properties of the limit point set. We first write the subdifferential of the surrogate

function as

qu(ukJrl k+1) + ay (pk+1 _pk)

Vo E(uF L vkt + o (¢ — ¢F)
k+1._ | Vo ; Bk
Wi i= JF € 0F(z ) (3.20)
ok ket

with p* € OR;(u*) and ¢* € IR, (v*) being equivalent to u* € ORI (p*) and v* € OR%(¢"),
respectively.

Lemma 3.11 (A subgradient lower bound for the iterates gap). Suppose Assumptions 1
and 2 hold. Then the iterates (3.13) satisfy

[ H] < pall 2 — 2| (3.21)

wrtl € OF (21 r®) as defined in (3.20) and p; = max{l + &101, 1 + €205 + Ly }.
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Proof. From (3.20) we know

||wk+1|| < HVUE(uk—i-17Uk+1) +a1(pk+1 _pk)H + HVUE(uk—H’Uk—i-l) +a2(qk+1 _ qk>||

= e o o)
From the optimality conditons of (3.13b) and (3.13d), we compute

0 < VLB, o) + aa (P = )]+ VLB, o) + sl — )
+ [l = dF o lof = ot
=& | VG (u") = VG (u)[| + [V B(u" 0™ =V, B(u" 0")|
< oy fluFtt — o < La|loftt — ok
+ &2 [[VG(0") = VG (") || +[lut — ]| + [[o" T — o]
< Gkt — ot

< (T4 e100) [ = || + (1 + e85 + Lo)[Jo" — 0"
k+1 Zk”

< p1llz

with p; = max{1l + €101, 1 + €202 + Lo }. Here we used the Lipschitz-continuity of VG,
and VE. O

Following [BBES17, BST14], we verify some properties of the limit point set. Let
{2*}ren and {r*}ren be sequences generated by (3.13). The set of limit points is defined

as

w(2°,r%) =< (2,7) € R" x R" : 3 an increasing sequence of integers {k;} en
737

such that lim 2% = z and lim % = 77}.
j—00 j—00

As in [BBES17, Definition 5.4, Proposition 5.5], we are going to assume that R;, i = 1,2

Y

has locally bounded subgradients.

Lemma 3.12. Suppose Assumptions 1 and 2 hold. Let {z*}ren be a sequence generated
by (3.13) which is assumed to be bounded. Let (z,7) € w(z°,r%). Then the following
assertion holds

lim F(* r%) = F(z,7) = B(2). (3.22)

k—o0

Proof. Since (z,7) is a limit point of {(2*,7%) }ren, {(2%, 7%) hren, there exist subsequences

2Fi} oy and {r¥) oy such that lim;_, 2% = Z and lim;_,. 7% = 7, respectively. We
J J J J
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immediately obtain
. ki k-1 . k; A P | Nk ki1
lim F(z%,r%™") = lim {E(z )4+ a Dyl (w7, u ) 4 apDE (0", 0" )}
j—oo J—oo
= E(2)
. . . pkj_l k. k.—1 . qkj_l ko ki—1
due to the continuity of £ and lim;_,, D~ (u",u® ™) = 0and lim;_,o D%, (0", 0%7") =

0. From the sufficient decrease property we conclude (3.22). O

Lemma 3.13 (Properties of limit point set). The limit point set w(z°) is a non empty,
compact and connected set, the objective function E is constant on w(z°) and we have

limy, o0 dist(2%,w(z")) = 0.
Proof. This follows steps as in [BST14, Lemma 5]. O]

To finally prove global convergence of (3.13), we will use the following Kurdyka-
Lojasiewicz property defined and the result from [BST14]. Before recalling the definition,
we introduce the notion of distance between any subset S C R? and any point z € R?
defined as

inf{lly —z|:ye S} S#0

dist(z, S) = )
00 S=10

where || - || denotes the Euclidean norm.

Lemma 3.14 (Uniformised KL property). Let 2 be a compact set and let E : R" x R™ —
R U {oo} be a proper and l.s.c. function. Assume that E is constant on Q) and satisfy the
KL property at each point in 2. Then there exists € > 0, n > 0 and p € C*((0,n)) that

satisfies the same conditions as in Definition KL, such that for all u € Q and all u in
{u e R"|dist(u,Q) <e}nN{ueR"|E(z) < E(z) < E(z) +n} (3.23)

condition KL is satisfied.
Proof. Follows from [BST14]. O
With these results we can now show global convergence of (3.13).

Proof of Theorem 1. By the boundedness assumption on {(z*,7%)}cn, there exist con-
verging subsequences {z% } ;cyy and {r¥} ;o such that lim;_, ., 2% = 7z and lim;_,,, 7" =T,
respectively. We know from Lemma 3.12 that (3.22) is satisfied.
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1. KL property holds for E and therefore for E*¥ and we write

gp’(F(zk, rk=1y — E(E))dist(O, OF (2", rk_1)> > 1.

From Lemma 3.11 we obtain
o (F(*, 1) = B(2)) = o7l — 474,
and from the concavity of ¢ we know that

p(F(*, ") = E(2)) — o((F(M" %) — E(2))
> ¢ (F(F 041 = B(2)) (F(F, 75 = P2 rh).

Thus, we obtain

o (F(,r51) = B(3)) — o(F(*,r1) - E(3))

> Uik _ k-1 -1
F(zF rk=1) — F(zF rk-1) Z ol =2

From (3.19) with Lemma 3.10 and using the abbreviation

it follows
|27+ — k|2

PL, k k+1
m < g(%p — 7).

Multiplying by [|z¥ — 25~1|| and using Young’s inequality (2vab < a+b)

2044 — 2K < P — ) + -
2

Summing up from £k =1,..., N we get

N

P1
>l =2 < 5(@ S AMPE S Eer B EabaE |
k=1

P1

Si
P2

o'+ |2t = 20| < 0.
In addition we observe that the finite length property implies that the sequence
{z*}ren is a Cauchy sequence and hence is a convergent sequence. For each 2" and

z% with s > r > [ we have
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s—1 s—1
Iz = 2% = | D22 =M < DD =2
k=r k=r

2. The proof follows in a similar fashion as in [BBES17, Lemma 5.9]

]

Remark 3.15 (Extension to d blocks). The analysis described above holds for the general
setting of d blocks

min _ E(uq,. .., ug) +ZafD§?(ui,uk). (3.24)

%
{Ul,...,’U,d} i=1

The update for each of the d blocks then reads

k
b+l _ - k1 kel k1 ko k k P} k
u; _argumln{E(ul , Us ,...,ui1,ui,ui+1,...,ud)—i—aZ-DJi(ui,ui)}
1
k1l k k1 k1 k41l k41 k k
j2h —pi—'<VuiE(u1 AN T T ,uiﬂ,...,ud)).
(2

3.3 Numerical Results

In this section we present numerical results for our joint reconstruction and segmentation
model described in (3.10). We demonstrate its advantages and limitations, as well
as a discussion on the parameter choice. In the first part, we focus on bubbly flow
segmentation for simulated data. In the second part, we show results for real data

acquired at the Cancer Research UK, Cambridge Institute, for tumour segmentation.

Quality measure. To assess the performance of the reconstruction we will compare
our solutions u with respect to the groundtruth u%. As quality measure we use the
relative reconstuction error (RRE) and the peak signal to noise ratio (PSNR) defined as

 RRE(u, v?) = [[u" — ull2/[[ul2
o PSNR(u,u’) = 10log,, (M)

[ud®—ull2/N

For the segmentation quality, we will use the relative segmentation error (RSE) to

compare our segmentations v with respect to the true segmentations v9!

° RSE('U, Ugt) = % ZZJ\LI 5v.gt,vz‘
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where N is the number of pixels in the image, ¢ is the Kronecker delta function that will

count the number of mis-classified pixels.

Before we present our two applications, we show a more detailed result of the phantom
brain in Figure 3.1. In this example, we show the TV reconstruction 3.2b, where the
parameter a has been optimised with respect to PSNR and its sequential segmentation 3.2f
with optimal 8 with respect to RSE. In 3.2¢ and 3.2g we present Bregman reconstruction
and sequential segmentation where the Bregman iteration has been stopped according to
the discrepancy principle Equation 3.6 and 5 has been optimised with respect to RSE.
These parameter choices for the sequential approaches will be used in the whole chapter.
In this first result, we clearly see that the joint approach performs much better compared
to the separate steps in Figures 3.2b, 3.2f and 3.2¢, 3.2g. Both reconstruction and
segmentation are improved and more details are recovered. We refer to B for more

simulated examples.

3.3.1 Bubbly Flow

The first application considered is the characterisation of bubbly flows using MRI. Bubbly
flows are two-phase flow systems of liquid and gas trapped in bubbles, which are common
in industrial applications such as bioreactors [Cha94] and hydrocarbon processing units
[DF92]. MRI has been successfully used to characterise the bubble size distribution
[HBT*12, THSG12a] and the liquid velocity field of bubbly flows [HMB*10, THSG12b];
these properties govern the heat and mass transfer between the bubbles and the liquid
which ultimately determine the efficiency of these industrial systems. However, when
studying fast flowing systems, the acquisition time for fully sample k-space is too long to
resolve the temporal changes; the most common method of breaking the temporal resolu-
tion barrier is through under-sampling. It is therefore critical to develop reconstruction
techniques for highly under-sampled k-space data for the accurate reconstruction of the
MRI images which would be subsequently used in calculating the bubble size distribution
or in studying the hydrodynamics of the system.

We apply our joint reconstruction and segmentation approach to simulated bubbly
flow imaging. In Figure 3.3 we present some results for synthetic data, where Figure 3.3a
represents the groundtruth magnitude image, from which we simulate its k-space fol-
lowing the forward model described in (3.1). From the full k-space we collect 8% of
the samples using the sampling matrix in Figure 3.3e and we corrupt the data with
Gaussian noise of standard deviation ¢ = 0.35. In Figure 3.3b and 3.3f we show the

results for the total variation regularised reconstruction and its segmentation performed
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VAL

(a) Groundtruth (b) TV reconstruc- (c) Bregman recon- (d)  Joint recon-

tion, o = 0.2, struction, o« = 1, struction, a = 0.8,
RRE=0.046, RRE=0.044, RRE=0.036,
PSNR=24.87 PSNR=24.98 PSNR=26.04

(e) Sampling matrix, (f) Segmentation, 5 = (g) Bregman segmen- (h) Joint segmenta-
15% 0.001, RSE=0.061 tation, 8 = 0.001, tion, 8 = 0.001, § =
RSE=0.065 0.01, RSE=0.057

Figure 3.2: We consider 15% of the simulated k-space for the brain phantom, where Gaussian
noise (o = 0.25) was added. We compare results for the total variation reconstruction and
total variation based Bregman iterative reconstruction and their segmentation in a sequential
approach with our joint model. We show that both reconstruction and segmentation are
improved.

sequentially. In the same sequential way, we show the results for the Bregman iterative
regularization in Figure 3.3c and 3.3g. In the last column in Figure 3.3d and 3.3h, we
finally show the results for our joint approach. Although the TV and the Bregman
approaches are already quite good, we can see that both RRE and PSNR are improved
using our model in the reconstruction and the segmentation. Smaller details, such as the
top right bubble contour, are better detected when solving the joint problem. As the
goal of the bubbly flow application is to detect bubble size distribution, this improvement

is really advantageous.

We tested the robustness of our approach by corrupting the data with different
signal to noise ratio (SNR) and by considering different amount of sampling. In Fig-
ure 3.5 we show in the top row the reconstructions obtained with the joint model for

different SNR (which corresponds to different standard deviation o) and in the bottom
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(a) Groundtruth (b) TV reconstruc- (c) Bregman (d) Joint reconstruc-
tion, « = 0.1, reconstruction, tion,
RRE=0.081, a = 2, RRE=0.069, o = 0.8,RRE=0.058,
PSNR=18.42 PSNR=18.83 PSNR=20.7105

(e) Sampling matrix, (f) Segmentation, (g) Bregman segmen- (h) Joint segmenta-
8% g = 0.001, tation, B = 0.001, tion, 8 =0.001,6 =1,
RSE=0.0093 RSE=0.017 RSE=0.0102

Figure 3.3: Results of the TV reconstruction and Bregman iterative reconstruction and their
segmentation in the sequential approach are compared with our joint model. Both MSE and
SSIM are improved in the joint approach. The data was corrupted with Gaussian noise with
o =10.35.

row the corresponding segmentation obtained by the joint approach. To complement
this information, we show in Figure 3.6 how the PSNR, RRE and RSE are affected,
for the joint approach (blue lines) and for the separate approaches, TV (red dotted
lines) and Bregman TV (green dotted lines). As expected, with the SNR increasing the
error decreases. We can see that the joint approach performs better than the sequential
approach for any SNR. The improvement is even more significant for very noisy data.
As in practice we often observe high levels of noise, the joint approach is able to takle
this problem better than the traditional sequential approaches.

It is also interesting to investigate how the joint approach performs with very low
undersampling rates. In Figure 3.3e we show joint reconstructions (top row) and corre-
sponding segmentations (bottom row) for decreasing sampling rates. We can see that up
to 5% results are still very good. Using 3 and 2% of the samples the results are less clean

but it is possible to identify the main structures. In contrast, 1% sampling is not enough
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Laltdl L)
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SNR=10.56, (b) SNR=12.69, (c) SNR=16.68, (d) SNR=32.83,
o= 070 0=0.56 0=0.35 0=0.06

Figure 3.4: Top row: reconstructions obtained by the joint model with different SNR. Bottom
row: corresponding segmentations.

to retrieve a good image reconstruction and consequently its segmentation. In Figure 3.7,
we plot PSNR ; RRE and RSE for different sampling rates. The blue lines represent the
error for our joint approach, while the red and green dotted lines are for the sequential
TV and sequential Bregman TV approaches. We can see that up to 5% sampling the
error measures do not change significantly. However, for lower rates, the improvement is
more significant. This is highly beneficial for the bubbly flow application as increasing

the temporal resolution is really important to keep track of the gas flowing in the pipe.

3.3.2 Cancer Imaging

In this subsection, we illustrate the performance of the joint model for real cancer data.
At the Cancer Research UK, Cambridge Institute, researchers acquire every day a huge
amount of MRI scans to assess tumour progression and response to therapy [RSK™14].
For this reason, it is very convenient to have fast sampling through compressed sensing,
and automatic segmentation methods. Furthermore, reconstructions with enhanced edges
are advantageous to facilitate clinical analysis.

Here we show our results for MRI data of a rat bearing a glioblastoma. The MR
image represents the rat head where the brain is the gray area in the top half of the image.

Inside this gray region, a tumour is clearly visible appearing as a brighter area. For this
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(a) 25% (b) 12.5% (c) 8% (d) 5% (e) 3% () 2% (g) 1%

Figure 3.5: Top row: reconstructions obtained by the joint model with different sampling
rates. Bottom row: corresponding segmentations. The joint reconstruction and segmentation is
able to detect the main structures down to 5% of the samples. Up to 2% the results are less
clean but still acceptable. Using only 1% of the data is not enough to produce the image and
segmentation.

14 . : 0.02 ' : 0 '
10.72 1271 16.65 32.54 10.72 1271 16.65 32.54 10.72 1271 16.65 32.54
SNR SNR SNR

(a) PSNR (b) RRE (c) RSE

Figure 3.6: Error plots for different SNR. From left to right, we show the PSNR, RRE and
RSE, respectively, for different levels of noise in the measurements. The blue lines represent
the error for our joint approach, while the red and green dotted lines are for the sequential
TV and sequential Bregman TV approaches. For each SNR, the joint model performs better
than the separate methods. This improvement is even more significant for noisier data, which
is highly advantageous as in practice we often observe lower SNR.

experiment, we acquired the full k-space and present the zero-filling reconstruction in
Figure 3.8a and the sequential segmentation in Figure 3.8e. As discussed already in the
previous section, the zero-filled reconstruction presents noise and artefact which may
complicate the segmentation. We want to show that the compressed sensing approach
and in particular the joint model can improve this reconstruction. Given the full k-space,

we select 15% of the samples using a spiral mask. In Figure 3.8b, 3.8f and Figure 3.8c,
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(a) PSNR (b) RRE (c) RSE

Figure 3.7: Error plots varying sampling rate. From left to right, we show the PSNR, RRE
and RSE, respectively, for different levels of noise in the measurements. The blue lines represent
the error for our joint approach, while the red and green dotted lines are for the sequential
TV and sequential Bregman TV approaches. The joint appraoch performs better than the
sequential cases. The gain is not very significant for higher sampling rates, but it becomes
more important for lower rates, starting from 3%.

3.8g we show the results for the sequential approaches. In Figure 3.8d and 3.8h we show
the joint reconstruction and the joint segmentation obtained for the same data. The
regularised approaches perform better that the zero-filled reconstruction, producing less
noisy results. However, our joint model is able to produce a cleaner reconstruction where
the edges that defines the tumour and the brain are very well detected. In Figure 3.9, we
show a zoomed section where it is easy to assess that the joint model tackle the noise and
detect the region of interest. We can see that we are able to improve the reconstruction
and automatically identify the tumour in the brain. The degree of enhancement of the
edges in the reconstruction is controllable by the parameter § in the model (3.10). In the

next subsection we present a discussion on how to tune this parameter.

3.3.3 Parameter Reasoning

In the model proposed in (3.10), the parameters that we need to choose are «, § and 4.
In this section we discuss a rule to choose them depending on the desired results. Some

examples will clarify these empirical choices.

o « balances the total variation regularization term in the reconstruction for the
magnitude. The higher the «, the more piecewise constant the reconstruction will
be. See Figure 3.10.

o (3 defines the scale of the objects that will be detected in the segmentation. Smaller

values of 8 will allow for smaller objects. See Figure 3.11.
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(a) Zero-filled recon- (b) TV reconstruc- (c) Bregman recon- (d) Joint reconstruc-
struction tion, o = 0.01 struction, a =1 tion, « = 0.5

(e) Segmentation (f) Segmentation, § = (g) Bregman segmen-(h) Joint segmenta-
0.07 tation, 5 = 0.07 tion, § = 0.01, § =
0.01

Figure 3.8: Reconstructions and segmentation for real MRI data. We select 15% of the samples
using a spiral mask. The image show a rat brain bearing a tumour (brighter region). The
zero-filled reconstruction 3.8a and the TV regularised reconstruction 3.8b are shown together
with their sequential segmentation 3.8e and 3.8f respectively. In the last column 3.8d and 3.8h
we show the results for our model. The parameter « for the TV reconstruction and for the
joint reconstruction has been chosen such that it achieves visually optimal in the sense that it
resolve all the details (e.g. the darker line cutting the tumour transversally).

e ¢ is the parameter linking the reconstruction and the segmentation. To better

illustrate its role, let us consider a zero-filling like reconstruction and segmentation:

¢
sFofr(u) + 0> > v(e; — wp)’dr + B|| Vol — min (3.25)

ieQ j=1

Yoo, fSFuf

where 1(u) = . This problem is solving the zero-filled recon-
0, if SFu=f

struction and segmentation jointly. For § = 0, the reconstruction is the zero-filling

solution. In Figure 3.12 we can see the impact of the segmentation term on the

reconstruction for increasing values of §. We can see that for very small 0 the result

is close to the zero-filling solution. For = 1 the noise from the model is present as
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LK.

(a) Zero-filled re- (b) TV reconstruc- (c) Bregman recon- (d) Joint recon-
construction tion struction struction

rrrr.

(e) Segmentation  (f) Segmentation (g) Bregman seg- (h) Joint segmenta-
mentation tion

Figure 3.9: Zoomed section on the tumour for the different approaches.

SIS»

(a) = 0.001 (b) a = 0.01 (c) a=0.1

Figure 3.10: The parameter « balances the data fidelity term and the total variation
regularisation for the reconstruction. Smaller values of a produce a reconstruction closer to
the data fitting term, hence less smooth as in 3.10a. As « increases in 3.10b the solution gets
smoother and less noisy. Finally for large values it tends to become more piecewise constant as
in 3.10c.

expected but in addition the boundaries are enhanced. For large § the boundaries

are still very pronounced and the noise is also amplified.

3.3.4 Comparison with another Joint Approach

We present a comparison of our joint model with another non-convex method, namely the
Potts model approach by [SWFU15|, described in Subsection 3.1.4. The major advantage

of the joint reconstruction and segmentation using the Potts model is that it does not
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0o

(a) =01 (b) =1 (c) B=3

Figure 3.11: The parameter 5 determines the scale of the objects that we are segmenting.
Smaller values of 8 can detect smaller objects 3.11a, which are lost for intermediate values
3.11b. Finally very large values only detect main structures 3.11c.

Q|0|0|0

(a) 6 =0 (b) = 0.1 (c) 6 =1 (d) 6 =2.5

Figure 3.12: We show the reconstructions obtained solving (3.25) for different values of ¢.
For § = 0 we get the zero-filling solution. For small § we expect the solution to be similar to the
zero-filling reconstruction. For § = 1 we see the effect of the joint term on the reconstruction.
The solution presents the same noise artefacts but having in addition very sharp boundaries.
Finally, for very large § we still have enhanced boundaries but we also amplify the noise.

require to select explicitely the number of regions to segment, although this depends on
the choice of the regularisation parameter. However, by definition, it only produces a
piecewise constant image, therefore a segmentation, and not a reconstruction. This is
useful in some applications where one is only interested in the segmentation. In contrast,
our model produces both reconstruction and segmentation. In Figure 3.13, we show the
results for some examples. Note that because the results of the Potts model are in the
range of the groundtruth image, while our segmentation are in label space, we can not
directly use the RSE as before, or common metrics that compare actual intensities such
as PSNR and structure similarity index measure (SSIM), for comparison. For example,
for some tissue in class 1, to label it class 2 is as wrong as to label it class 3. However in
this case, the SSIM and PSNR will favour the label class 2.

We therefore focus on a visual assessment and show the results of the Potts model for
two different choices of the regularisation parameter v. We recall that the proposed model

requires to determine the number of classes in advance, while the model for comparison



60 Multi-Task Reconstruction and Segmentation with Non-Convex Bregman Iteration

estimates the number of regions but this depends on the choice of the regularisation
parameter. In the top row, we can see that the Potts model, although it retrieves the
shape of the main structures for the brain phantom example, it overestimates the number
of classes. By increasing the parameter v, this issue is not resolved as it assigns different
intensities to objects of the same category. In contrast, our approach is able to identify
the desired classes as in the groundtruth. For the bubble case (middle row), we can see
that our method works better and our segmentation is more accurate, while the Potts
model fails to capture shape details (e.g., outer circle is distorted) and again overestimates
the number of regions. We can also see that, when slightly decreasing v, the Potts model
is very sensitive to artefacts. For the real MR data (bottom row), we see that both
methods identify the tumour quite well. Because we were only interested in identifying
three classes as tumour, brain and background, we do not segment the outer region (rat’s
head), captured insted by the Potts model. However, the Potts model only produces
the segmentation, while our method, as shown in Figure 3.8, also produces an enhanced

reconstruction with sharp edges.

3.4 Conclusion and Outlook

In this chapter, we have investigated a novel mathematical approach to perform simulta-
neously reconstruction and segmentation from undersampled MRI data. Our motivation
was to include in the reconstruction prior knowledge of the objects we are interested in.
By interconnecting the reconstruction and the segmentation terms, we can achieve sharper
reconstructions and more accurate segmentations. We derived a variational model based
on Bregman iteration and we have verified its convergence properties. With our approach
we show that by solving the more complicated joint model, we are able to improve
both reconstruction and segmentation compared to the traditional sequential approach.
This suggests that with the joint model it is possible to reduce error propagations that
occur in sequential analysis, when the segmentation is separate and posterior to the
reconstruction.

We have tested our method for two different application, which are bubbly flow and
cancer imaging. In both cases, the reconstructions are sharper and finer structures are
detected. Additionally, the segmentations also benefit from the improvement in the
reconstructions. We have found that the joint model outperforms the sequential approach
by exploiting prior information on the objects that we want to segment. In addition,
we also show that our method performs better than the well-known Potts model. We

also presented a discussion on the parameter choice rule that offer some insight on how
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(1]

(a) Groundtruth  (b) Joint segmenta- (c) Potts model, (d) Potts model,
tion v =0.01 v = 0.05

OIS

(e) Groundtruth  (f) Joint segmenta- (g) Potts model, (h) Potts model,
tion v =0.75 v=10.5

N

(i) Segmentation (j) Joint segmenta- (k) Potts model, (1) Potts model,
from zero-filled re- tion v =0.05 v=0.1
construction

Figure 3.13: Comparison of our joint approach with the Potts model. Noise level and
undersampling rate are described in Figure 3.2, 3.3 and 3.8. The results are presented for three
different examples and for two different choices of the regularisation parameter v. We can see
that the Potts model tends to overestimate the number of regions to segment.
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to tune the parameters according to the desired result. It is interesting to notice that,
with our model, we are able to control the segmentation effect on the reconstruction.
Furthermore, when the final analysis of the MR image is indeed the segmentation, it is
possible to bias the reconstruction towards the piecewise constant solution, yet preserving
finer details in the structure.

In our set-up, we have specified the intensity constants characteristic of the region
of interests, which were known a priori for our applications. However, it is possible
to also include the optimisation with respect to ¢; in our joint model, where the same
convergence guarantees hold (see Remark 3.15). Nevertheless, one limitation of the model
is the need to specify the number of regions to be segmented.

In the next chapter, we will study the extension of this model for the bubbly flow to
the reconstruction of the magnitude image as well as the phase image. The goal is not
only to extract the structure of the bubble, but also to estimate velocity information,

which is encoded in the phase image.



Chapter 4

Multi-Task Model for Phase
Reconstruction and Magnitude

Segmentation in Velocity-Encoded
MRI

In this chapter, we deal with velocity-encoded MRI where now we are not only interested
in the magnitude image, as in Chapter 3, but also to the phase image which encodes
velocity information. Here we present the extension of our joint reconstruction and
segmentation model for the application of velocity-encoded MRI which can be found
in [CBGT19]. This is joint work with Martin Benning, Lynn F. Gladden, Andi Reci,
Andrew Sederman and Carola-Bibiane Schonlieb.

We have seen in the previous chapters that MRI is a very powerful imaging technique
that allows to visualise the chemical composition of patients or materials in a non-invasive
fashion. However, besides resolving in great detail the morphology of the object under
consideration, MRI is intrinsically sensitive to motion, flow and diffusion [Bur82, Axe84].
This means that in a single experiment, MRI can produce both structural and functional
information. By designing the acquisition protocol appropriately, MRI can provide flow
and motion estimation. This technique is known as MR velocimetry or phase-encoded
MR velocity imaging [Calll, Fuk99, EA07, GS13]. In this work, we will focus on the
dynamic inverse problem involved in recovering velocities from this kind of data.

In many MRI applications, the goal is not only to extract the structure of the object
of interest, but also to estimate some functional features. An example is flow imaging, in
which the aim is to reconstruct the velocity of the fluid that is moving in some structure.

In order to acquire the velocity information and assess flow motion, phase-encoded MR
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velocity imaging is widely used in different areas. In medical imaging, this is used for
example in cardiovascular blood flow studies to assess the distribution and variation in
flow in blood vessels around the heart [GKCT05]. Other industrial applications include
the study the rheology of complex fluids [Cal99], liquids and gases flowing through packed
beds [SJAGI8, SHSG09, HMB*10], granular flows [Fuk99, HMD™08] and multiphase
turbulence [THSG12a].

MRI scanners use strong magnetic fields and radio waves to excite subatomic particles
(like protons) that subsequently emit radio frequency signals which can be measured
by the radio frequency coils. Because the local magnetisation of the spins is a vector
quantity, it is possible to derive both magnitude and phase images from the signal.
Furthermore, for appropriately designed experiments, the velocity information can be
estimated from the phase image. The problem of retrieving magnitude and phase (and
therefore velocities) from such measurements is non-linear. Many standard approaches
reduce this inverse problem to a complex but linear inverse problem, where magnitude
and phase are estimated subsequently. With this strategy, however, it is impossible to
impose regularity on the velocity information. In this work, we therefore propose a joint
framework to simultaneously estimate magnitude and phase from undersampled velocity-
encoded MRI. Based on [CBE"19] and Chapter 3, we additionally introduce a third
task, that is the segmentation on the magnitude, to improve the overall reconstruction
quality. The main motivation is that by estimating edges simultaneously from the data,
both magnitude and segmentation are reconstructed more accurately. By enhancing the
magnitude reconstruction, we expect in turn to improve the corresponding phase image

and therefore the final velocity estimation.

Contributions. In this work we consider the problem of estimating flow, magnitude
and segmentation of regions of interest from undersampled velocity-encoded MRI data.
The problem is of great interest in different areas including cardiovascular blood flow
analysis in medical imaging and rheology of complex fluids in industrial applications.
To this end, we propose a joint variational model for undersampled velocity-encoded
MRI. The significance of our approach is that by tackling the phase and magnitude
reconstruction jointly, we can exploit their strong correlation and finally impose regularity
on the velocity component. This is further assisted by the introduction of a segmentation
term as additional prior to enhance edges of the regions of interest. Our main contributions

are

o A description of the forward and inverse problem of velocity-encoded MRI in the

setting of bubbly flow estimation.



4.1 Velocity-Encoded MRI 65

e A joint variational framework for the approximation of the non-linear inverse
problem of velocity estimation. We show that by exploiting the strong correlation
in the data, our joint method yields an accurate estimation of the underlying
flow, alongside a magnitude reconstruction that preserves and enhances intrinsic
structures and edges, due to a joint segmentation approach. Moreover, we achieve
an accurate segmentation to discern between different areas of interest, e.g. fluid

and air.
o An alternating Bregman iteration method for non-convex optimisation problems.

o Numerical experiments on synthetic and real data in which we demonstrate the
suitability and potential of our approach and provide a comparison with sequential

approach.

Organisation of the chapter This chapter is organised as follows. In Section 4.1
we describe the derivation of the inverse problem of velocity-encoded MRI from the
acquisition process to the spin proton density estimation. In Section 4.2 we present
our joint variational model to jointly estimate phase and magnitude reconstruction
and its segmentation. In Section 4.3 we propose an optimisation scheme to solve the
non-convex and non-linear problem using Bregman iteration. To conclude, in Section 4.4
we demonstrate the performance of our proposed joint method in comparison with a

sequential approach for synthetic and real MRI data.

4.1 Velocity-Encoded MRI

In the following we will briefly describe the mathematics of the acquisition process
involved in MRI velocimetry. Subsequently we are going to see that finding the unknown
spin proton density basically leads to solving the inverse problem of the Fourier transform.
We refer the reader to [Cal93, HBTV99] for more details on MRI.

4.1.1 From the Bloch Equations to the Inverse Problem

The magnetisation of a so-called spin isochromat can be described by the Bloch equations

g [ M=) —% B B\ [ M) 0
gl M@ = B -5 B M) |+] 0 | @
M. (?) VBy(t)  —vBi(t)  —7 M. (t) My
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Here M (t) = (M, (t), M,(t), M,(t)) is the nuclear magnetisation (of the spin isochromat),
7 is the gyromagnetic ratio, B(t) = (B,(t), By(t), B.(t)) denotes the magnetic field
experienced by the nuclei, T} is the longitudinal and 75 the transverse relaxation time
and M, the magnetisation in thermal equilibrium. If we define M, (t) = M, (t) + iM,(t)
and By, (t) = B,(t) +iB,(t), we can rewrite (4.1) to

My (1) = =07 (May (1) B(0) = Mo(0)Bryf1)) — 220 (4.20)
ML) =i (Mo (0y0) = W0y (0) = =20 (4

with  denoting the complex conjugate of -.
If we assume for instance that B = (0,0, By) is just a constant magnetic field in

z-direction, (4.2) reduces to the decoupled equations

thxy(t) iy BoM,,(t) — ]”722@) , (4.30)
(= - 0=t (4:3b)
It is easy to see that this system of equations (4.3) has the unique solution
M, (t) = e ot VT N (t)) (4.4a)
M.() = M.(t;)e"™ + M, (1 - e—ﬁ) (4.4D)

for wy := yB, denoting the Lamor frequency, and M,,(t;), M.(t;) being the initial

magnetisations at time ¢ = ¢; > 0.

4.1.2 Signal Recovery

The key idea to enable spatially resolved nuclear magnetic resonance spectrometry is to
add a magnetic field B (t) to the constant magnetic field By in z-direction that varies

spatially over time. Then, (4.3a) changes to

a
dt

Moy (t) = =iy (Bo + B()) My, (1) -
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which, for initial value M,,(t;), has the unique solution

B ¢ B(r)dr) _ .t
I BOE) 1) (4.5)

M,y (t) = e—w(
if we ensure B(t;) = 0. If now z(t) denotes the spatial location of a considered spin
isochromat at time ¢, we can write B(t) as B(t) = z(t) - g(t), with a function g that
describes the influence of the magnetic field gradient over time.

If a radio-frequency (RF) pulse that has been used to induce magnetisation in the
z-y-plane is subsequently turned off at time ¢ = ¢, and thus, B,(t) = 0 and B,(t) = 0 for
t > t. > t;, the same coils that have been used to induce the RF pulse can be used to
measure the z-y magnetisation. Using (4.4a) and assuming ¢, < t < Ty for all x € R3,
this gives rise to the following model-equation:

iy (Bot+f:j 2(r)-g(r) dT)

M,

n(l) = e Moy (t5) - (4.6)

In the following we assume that z(t) can be approximated reasonably well via its

Taylor approximation around a time ¢t = ¢;, i.e.

which yields

/tta:(s) cg(s)ds = i [x(")(tj) . /ttg(s) (s —t;)" ds]

J n=0 n' J
o [xM(t)) -t
= Z EEETAN / g(t+t;)mdr| (4.7)
n=0 n' 0 ’

for ¢ > ¢;. It is well-known that appropriate application of gradients (i.e. appropriate
design of g) enables the approximation of individual moments of (4.7). If we further
assume that the system to be observed does only contain zero- and first-order moments,

we can assume

t

/ttx(s) ~g(s)ds = xj - /%9(7' + tj) dr + @; - / g(T + t]-) TdT, (4.8)

j tj J

where x; is now short for x(¢;) and ¢, := 2'(t;) is the corresponding velocity information.



68 Multi-Task Phase Reconstruction and Magnitude Segmentation

Equation (4.8) allows us to turn (4.6) into a useful mathematical model as we can
encode velocity information and remove the temporal dependency of z. For notational

convenience, we denote
¢ ¢
&;(t) ::/ g(t+1t;)dr and () ::/ g(t+t;)Tdr.
tj tj

Since the RF-coils measure a volume of the whole z-y net-magnetisation, the acquired
signal then equals

£i(t) = / () e B GO) G0 (4.9)
.

with w(x) denoting the spin-proton density M,,(t;) at a specific spatial coordinate
x € R, Note that for 7;(z) 1= u(z) e Bo@H+e@)6G1) we observe that f is just the

Fourier transform of the complex signal r; with magnitude u and phase —y(Boyt + ¢ - (;).

4.1.3 Removal of Background Magnetic Field

Our goal is to recover the velocity information ¢ from f. Assuming that we do not know
By, we can alternatively conduct two experiments, where the setup is identical apart

from the velocity-encoding gradients having opposite polarities, i.e. we measure

Fult) = / ufz) e NP0 i) gy (4.10a)
R

F(t) = / () e B0 =10 i (4.10b)
R

Note that we have omitted the subscript j introduced in the previous section for simplicity
of notation. If we denote ¢ (z,t) := By(x)t+p(x)-((t) and p_(z,t) := By(z)t—p(x)-((t),

we immediately observe

1

pla) - () = 5 (pr(a,t) —p-(.1)) .

The inverse problem of (4.10) is to recover u and ¢ from f, and f_.

4.1.4 Zero-Flow Experiment

A zero-flow experiment that allows for the removal of additional artifacts is also conducted.
This experiment is to account for imperfections in the measurement system which cause

an added signal between the positive and negative ( experiments even in the absence of
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flow, and enables a correction that allows direct quantification of flow and tissue motion.
We refer to this technique as flow compensation, which consists of acquiring a reference
scan, with any flow switched-off, with vanishing zero and first gradient moments, before
the actual velocity encoding scan with added bipolar gradients is performed. In this way,
we obtain background phase images from the reference scan, and velocity sensitivity with
the second flow-sensitive scan. In practice, this means that in addition to (4.10), the

following two measurements are taken:

fIlOﬁOW+ (t) —= /3 u(:v) e_i'ﬂanoﬂow_;'_ (Zyt) 6—17$€(t) dl‘ , (411&)
R

Jroflow_ () = /3 u(z) e~ Puottow_ (1) o —ivz(t) dzx (4.11b)
R

so that the actual velocity information can be recovered via

QO(I) C(t) - ; ((QO-&-(Q:’t) - QO_(I, t)) - (@HOHOWJr (ZE, t) — Pnoflow_ (ZL’, t))) : (4'12>

The inverse problem is to recover u and ¢ from (4.10) and (4.11) via (4.12). More details
on phase-encoded MR velocity imaging can be found in [Mar06].

In other words, for a given direction of the velocity to be measured (z, y or z), the
corresponding component velocity map (v,, v, or v,) is acquired by applying repeatedly
a pulse sequence with the velocity-encoding gradient in the respective direction (z, y or
z) and with alternating polarity between consecutive pulse sequences (from +g to Fg).
The difference between the phase of the MRI image reconstructed from the acquired
k-space data of consecutive pulse sequences, and the reference to a zero flow experiment,

yields the component velocity map.

4.1.5 Sampling

The MRI signal is acquired by sampling the continuous signals of f, f_, fuofiow, and
fuofiow_ at m discrete points in time. Based on the previous model assumptions, the

acquisition of an individual sample reads

ty
fir :/0 W (t,tj41)

/ u(x) @GO =& g | g (4.13)
R

for 7 € {0,...,m — 1}, and where ¥ denotes the sampling function or distribution. If we

for example assume W(t,t;41) = 0(t — ¢;41), where 0 denotes the Dirac delta distribution,
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then (4.13) simplifies to
fi= /3 u(x) PG = g je{l,...,m}, (4.14)
R

for

t; tj

& = / g(t+1tj_1)dr and ( ::/ g(T+tj_q) Tdr.
tj—1 ti—1

This is our final acquisition model. We record and store all measurements in a vector

f € C™. For the remainder of this chapter, we assume (; to be constant during the

acquisition, and rewrite (4.14) (in vecotrial form) as
f=SF (uei‘”) , (4.15)

where SF' denotes the (sub-sampled) Fourier transform, f € C™ denotes the vector of
k-space samples. We recall that sampling strategies are very important to reduce the
acquisition times and therefore to be able to image dynamic systems using velocity-
encoded MRI through fast imaging techniques. Thanks to the theory of CS [CRT04,
Don06, LDP07], it is possible to exploit redundancy in some specific domain of the
measured data, and many image reconstruction techniques have been proposed [HMBT10,
THSG12a, JHUT08, PB11, PBP10, PMS*09].

Depending on whether 7¢ is sampled on a uniform or non-uniform grid, SF can be
realised via the Fast Fourier Transform (FFT) [CT65] or via a non-uniform Fourier
Transform such as NUFFT [FS03].

4.1.6 Dynamic Inverse Problem

We want to highlight that (4.15) can easily be extended to studying spin-proton density
u and the velocity ¢ in (4.15) over time. To do so, one could take a sequence of m
measurements each, at (initial) times {At;}5_,, for 0 = At; < Aty < ... < At,, so that
we have a sequence of measurements {f;}5_;. This way, we would easily introduce a
discrete temporal dimension to our inverse problem that potentially allows us to exploit
any temporal correlation between frames {u;}3_; and {¢;}5_,. In this work, however, we
will only consider the reconstruction of individual frames for reasons that we are going
to address later. In the following we will refer to an individual frame of the dynamic
inverse problem for velocity-encoded MRI in the discrete setting and under the presence

of noise making use of the notation of the discrete Fourier transform operator.
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4.2 Mathematical Modelling

In this section we first present the velocity-encoded MRI reconstruction inverse problem
in the presence of noise and discuss a sequential variational regularisation scheme
to approximate the solution. Secondly, we introduce our joint reconstruction and
segmentation approach in a Bregman iteration framework to jointly estimate phase,

magnitude and segmentation.

4.2.1 Indirect Phase-Encoded MR Velocity Imaging

The velocity-encoded MRI image reconstruction problem is described as follows. Let
u, » € R™ be the proton density or magnitude image and correspondent phase image,
respectively, in a discretised image domain Q := {1,...,n1} x {1,...,ns}, with n = nyns.
The vector f = (f;)*; € C™ with m < n are the measured Fourier coeflicients obtained

from (4.15). Based on (4.15) the forward model for noisy data is given by
f=8F (uei‘z’) +n, (4.16)

where i = —1 and 7 is Gaussian noise with zero mean and standard deviation o. For
brevity we will follow the notation A = SF. As explained in the previous section,
velocity information is encoded in the phase image. However, during the acquisition
the phase is perturbed by an error due to field inhomogeneity and chemical shift. To
account for this error, usually different measurements corresponding to different polarities
of encoding flow gradients are acquired. Then the velocity (in one direction) at one
particular time will be estimated as in (4.12), where ( is a constant known from the
acquisition setting.

Given the presence of noise and partial observation of the data due to undersampling,
the problem described in (5.1) is ill-posed. We have seen in the previous chapter that a

simple strategy to obtain an approximated solution is to compute the zero-filling solution
r,=A"f (4.17)

where r = ue®. However, these reconstructed images will present aliasing artefacts
because of the undersampling. Therefore, we will instead compute approximate solutions
of (4.16) using a variational regularisation approach. We consider a Tikhonov-type
regularisation approach that reads

1
r; € argrmin{2||AjT—fj||§+a<](r)}, (4.18)
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for j € {1,...,4} being the different measurements, where the first term is the data
fidelity that imposes consistency between the reconstruction and the given measurements
f, the second term is the regularisation, which incorporates some prior knowledge of the
solution. The parameter o > 0 is a regularisation parameter that balances the two terms
in the variational scheme. In this setting, the survey proposed in [BGH"14] describes
different choices for the regularisation functional J, including wavelets and higher-order
total variation (TV) schemes. Subsequently, the phases can be extracted from these
complex images r; = u;e™i as

¢; = arg(r;). (4.19)

More recently, other reconstruction approaches have been proposed to regularise the
phase of the image [FN04, ZD10, ZNNF12, Vall4, ZP17]. All these methods rely on
modelling separately prior knowledge on the magnitude and on phase images and differ on
the optimisation schemes involved in the non-convex and non-linear problem. However,
while it is possible to exploit information about the velocity from fluid mechanics, it is
in general hard to assume specific knowledge on the individual phases. As explained in
the previous section and described in (4.12), velocities are computed as phase differences
of different MR measurements and therefore the regularisation needs to be imposed on
the phase difference rather than individual phases. In this work, we step away from the
approach of only regularising individual phases and propose instead to regularise the
velocity as difference of phases. In the following we describe our choice of regularisation

and algorithmic framework for velocity-encoded MRI.

4.2.2 Joint Variational Model

In many industrial applications, velocity-encoded MRI is used to estimate flow of different
chemical species in different physical status, such as gas-liquid systems [GS17]. In
this case, one aims at recovering a piecewise constant image or an image with sharp
edges to facilitate further analysis such as identification of regions of interest. In this
context, our joint model proposed in [CBET19] and Chapter 3 uses a segmentation
task as additional regularisation on the reconstruction to impose regularity in terms
of sharp edges. Furthermore, we have shown that this is highly beneficial for very low
undersampling rates in MRI, which becomes extremely more relevant for fast-changing
systems such as the ones we consider in this chapter. In this work, we expand this idea
to the phase-encoded MR velocity imaging data, where the idea is to jointly solve for

magnitude, segmentation and phase improving performances on the three tasks.
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Following our previous model in [CBE*19], we are interested in the joint model to
recover magnitude u; and velocity ¢ components through the measured phases ¢; from
undersampled MRI data f; and to estimate a segmentation v; on the magnitude images.

As described in the previous section, we are dealing with four MRI measurements to

4

obtain one component velocity image. Defining the shorthand notations u := {u;}j_;,

v:={v;}}_; and ¢ := {¢;}]_,, this joint model reads as

=1

4
1 i,
B(u,v,¢) = {2 | A(uze™) = il
reconstruction

(4.20)
+0) Unjler = tng)? + (1 = vnj) (2 — Unj)z} :

segmentation

The first term in (3.10) describes the reconstruction fidelity term for the magnitudes u and
phases ¢ for the given data f := {f; ;*:1. The second term represents the segmentation
problem to find partitions v, with v, € [0, 1], of the images u in two disjoint regions
that have mean intensity values close to the constants ¢; and ¢y [CV01, CENO06]. The
parameter 0 weighs the effect of the segmentation onto the reconstruction. The underlying
idea is to exploit structure and redundancy in the data, estimating edges simultaneously
from the data, ultimately improving the reconstruction. By incorporating prior knowledge
of the regions of interest we impose additional regularity of the solution.

The joint cost function (4.20) is non-convex. While sub-problems in u and v (leaving
the other parameters fixed) are convex, the sub-problems in ¢ are non-linear and non-
convex. In the next section we present a unified framework based on non-convex Bregman

iterations to solve the joint model.

4.3 Optimisation

There are many ways of minimising (3.10). We want to pursue a strategy that guarantees
smooth velocity-components, piecewise-constant segmentations and magnitude images
with sharp transitions in an inverse scale-space fashion. In order to achieve those features,

we aim to approximate minimisers of (3.10) via an alternating Bregman proximal method
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or Bregman iteration of the form

k
uy™ € argmin {E(uf“, o ufﬂ, Coul of o)+ D?i (u, uf)} , (4.21a)
d
it = pl Bl g ) (4:21b)
k
vptt = arg min {E(ukﬂ, of o v b, 0l ) + DY (v, vf)} . (4.21¢)
0
gt =gF - a—wE(ulchl T S LR PP 1 A (4.21d)
. ’Ll)k
o+ = arg min {0 BF 0 ¢h), 0) + DY (0%} (4.21e)
0
W = Wk — %E(ukﬂ,vkﬂ, ). (4.21f)

for i = 1,....d := 4, u := (w),, v = (v, and ¢ := (¢)L 1 Here J,, J and
Jy are proper lower semi-continuous and convex functions and Dp L (u,up), DU L (v,0f)
and DY (gb ¢*) are the corresponding generalised Bregman distances [Bre67, Kiw97]
with arguments and corresponding subgradients pf, ¢F and w®. We recall here that a
generalised Bregman distance is the distance between a function J evaluated at argument

u and its linearisation around argument v, i.e.
D3<uav) = J<u> o J(U) - <QJ u = U> ’

for a subgradient ¢ € 0J(v). Note that algorithm (4.21) has update rules for the
subgradients, as J,, J, and J, are allowed to be non-smooth, which makes the selection
of particular subgradients necessary.

The algorithm is a hybrid of the our algorithm described in Chapter 3 and the one
proposed in [BBES17]. For both algorithms global convergence results, motivated by
[XY13, BST14], have been established. Since we deal with imperfect data potentially
corrupted by measurement noise and numerical errors, we will, however, use (4.21) in
combination with an early-stopping criterion in order not to converge to a minimiser of
(3.10) but to approximate the solution of (5.1) via iterative regularisation.

The crucial part for the application of (4.21) are the choices of the underlying functions
Ju, Jy and J, of the corresponding Bregman distances. We want both the magnitude
images and the segmentations to maintain sharp discontinuities and therefore want to
penalise their discretised, isotropic, total variation. On the other hand, we want to

guarantee smooth components of our velocity field, which is why we penalise them with
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the two-norm of a discretised gradient. In particular, we choose
Ju(u) = aTV(u) = of||Vull1, Jy(v) = BTV(v), (4.22)

to be the isotropic total variation with weights a > 0 and g > 0. Further, we choose
Js in a way that allows to enable an H'-norm-type smoothing on the difference of the

phases, i.e.

E(0) = 5 (419 (61 = 60) = (2= o) 12+ S ol

where 1 > 0 denotes another weight. Note that all convex sub-optimisation-problems
in (4.21) are solved numerically with a primal-dual hybrid gradient (PDHG) method
[ZC08, PCBC09, EZC10, CP11b] (cf. Appendix A). Once we have approximated the
magnitudes, labels and phases with this iterative regularisation strategy, we can compute

the velocity components via (4.12).

4.4 Numerical Results

In this section we present numerical results of our method for the specific application
of bubble burst hydrodynamics using MR velocimetry. The hydrodynamics of bursting
bubbles is important in many different areas such as geophysical processes and bioreactor
design. We refer to [Rec19] for an overview on the field and the description of results on
the first experimental measurement of the liquid velocity field map during the burst of a

bubble at the liquid surface interface.

4.4.1 Case-Study on Simulated Dataset

To quantitatively evaluate our method, we consider the simulated k-space data of a
rising spherical bubble in an infinite fluid during Stoke’s flow regime. The simulated
data consists of 32 time frames, but for the sake of compactness we will show some visual
outputs for one time step ¢t = 19.

We assess the performance of our approach for velocity and magnitude estimation by
comparing our solutions with respect to the groundtruth and using the mean squared
error (MSE) defined as ||zgroundtrath 212/ where n is the number of pixels in the image.

We also present a comparison with a sequential approach, where the magnitude

is obtained with a classic CS TV-regularised approach and the phase is subsequently
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(a) Groundtruth  (b) Sequential (c) Joint
MSE=0.0030 MSE=0.0020

(d) Groundtruth (e) Sequential (f) Joint
MSE=0.0046 MSE=0.0035

(g) Groundtruth (h) Sequential (i) Joint

Figure 4.1: Phase reconstructions for the sequential approach and our joint approach compared
to the ground truth. Top row: x direction, middle row: z direction, bottom row: velocity plots.
We sampled 11% of the k-space data.

estimated using the method proposed in [BBES17] and presented in [Recl9] for the
evaluation of bubbly flow estimation.

In Fig. 4.1 we can see the results for the sequential approach compared to the joint
approach when sampling only 11% of the k-space data. Although visually there is not
significant change, the MSE shows a big improvement for the joint approach. This
confirms that using our joint model is relevant for the problem of velocity-encoded MRI.
For the 32 frames, we report the average MSE for magnitude and phase in Table 4.1

where can see a drastic improvement compared to the sequential approach.
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Table 4.1: MSE for phase (¢; and ¢3) and magnitude (u; and ug) images for the sequential
and joint approaches. The error is significantly decreased using our proposed joint approach.

U1 U2 (bl (b?
Sequential ~ 0.0019 0.0028 0.0032 0.0059
Joint 0.0011 0.0012 0.0018 0.0051

4.4.2 Real Dataset

In this section we present our model performance on real data acquired with the following

protocol described in [Rec19] and briefly reported here.

Acquisition protocol The experiments were conducted on an AV-400 Bruker magnet,
operating at a resonant frequency of 400.25 MHz for 'H observation with an RF coil of 25
mm diameter. The maximum magnetic field gradient amplitude available in each spatial
direction is 146 Gem™!. The velocity images were acquired with a 2D MR spiral imaging
technique developed and published in [THSG12b]. Images were acquired with 64 x 64
pixels over a field of view of 17 mm x 17 mm resulting in an image resolution of 265
mm X 265 mm. Data in k-space were acquired along a spiral trajectory at a sampling
rate corresponding to 25% of full Nyquist sampling over a time of 2.05 ms for the entire
image. We acquire the three velocity components for a transverse slice (perpendicular to
the axis of the pipe) and a longitudinal slice (parallel to the axis of the pipe), cutting
through approximately the centre of the bubble. For a given slice direction (transverse
or longitudinal) and a given direction of the velocity, four measurements corresponding
to the application of the velocity-encoding gradient with alternating polarity and to the
flow compensation, are taken, as discussed in Section 4.1 (see Figure 4.2(b)). The final
velocity for each component is then obtained as the difference between the phase of the
MRI images reconstructed from the acquired k-space data of consecutive pulse sequences
with flow on, and the reference to the zero flow experiment (see Sections 4.1.3 and 4.1.4,

respectively).

Experimental results on real data For the real data acquired with protocol de-
scribed above, we present the results for our joint model in comparison with the zero-filling
solution and the corresponding sequential approach also used in the previous subsection.
In Figure 4.3 we show the result for a specific time frame for a bubble in a transversal
and longitudinal view. At this specific time, the bubble is bursting which corresponds to

an upward jet being ejected. As we can see, the zero-filling solution gives an indication



78 Multi-Task Phase Reconstruction and Magnitude Segmentation
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Figure 4.2: Experimental setup. (a) Schematic of experimental setup. (b) Pulse sequence
used for MR velocimetry acquisitions and the corresponding k-space traversal. Taken from
[Recl9).

(a) (b)

\

bt
o

krcad,l/(2krcnd‘lmax) \\\
o

0.2 0 0.2
krcuﬁl.I/(Zk

=,
Il
SN
o0
3
4|‘ 3
S
Ik'%
S
(ye]

rcﬂd..l.m;.\x)

of the flow velocity but it is very noisy and imprecise. In contrast, the joint approach
removes noise and successfully estimate the velocity flow. The sequential approach on
the other hand, although it produces a smoother reconstruction, results in small errors
(see e.g. Figure 4.3e on the left). In Figure 4.6 we observe similar results for a different

time frame. We refer to the Appendix for the full dynamic sequence result.

We also present the results for the magnitude and segmentation for the zero-filling
solution, sequential approach and joint approach. We can see in Figure 4.4 and 4.5
that the joint approach exploits the structure in the data and present more accurate
magnitude reconstructions and segmentations. It is clear that, even in this rather simple
segmentation problem, the joint approach is able to improve the results of both tasks.
This gain is significant in Figure 4.5f. Additionally, the joint magnitudes present very
sharp edges distinguishing air and fluid thanks to the segmentation coupling term in the
model, which acts as additional prior to reconstruct images exploiting prior knowledge
on the region of interest.

Full dynamic sequence

In this section we show the full dynamic sequence of a bubble burst event in Figure 4.8
and 4.7. At time ¢ = 1 the bubble resting at the air-liquid interface. When the thin liquid
film breaks, the bubble bursts, causing the formation of an upward and downward jet.

The upward jet moves in the empty space left by the bubble and reached its maximum
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(a) Zero-filled (b) Sequential (c) Joint

(d) Zero-filled (e) Sequential (f) Joint

Figure 4.3: Phase reconstructions for the sequential approach and our joint approach compared
to the zero-filling solution. Results for a bursting bubble from a transversal view (top row) and
longitudinal view (bottom row).

at t = 4. After that, the jet falls down into the liquid pool, causing a downward jet and

some oscillation. At around ¢ = 8 the liquid motion stops.

4.5 Conclusion and Outlook

In this chapter we have presented a joint framework for flow estimation, magnitude
reconstruction and segmentation from undersampled velocity-encoded MRI data. After
having described the corresponding dynamic inverse problem, we have presented a joint
variational model based on a non-convex Bregman iteration. We have demonstrated
that by imposing regularity on the individual components (in contrast to the sequential
approach), our joint method achieves accurate estimations of the velocities, as well as an
enhanced magnitude reconstruction with sharp edges, thanks to the joint segmentation.

Furthermore, we assessed the performance of our joint approach on synthetic and real
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009

(a) Zero-filled (b) Sequential (c) Joint
(d) Zero-filled (e) Sequential (f) Joint

Figure 4.4: Magnitude reconstructions (top row) and corresponding segmentations (bottom
row) for the sequential approach and our joint approach compared to the zero-filling solution.
Transversal view.

data. In this context, we have shown that the joint model improves the performances of
the different imaging tasks compared to the classical sequential approaches.

Future work includes the investigation of the full joint temporal and spatial optimisa-
tion. By extending the model to the full 4D setting, we believe the performance will be
enhanced further, as temporal correlation e.g. in the segmentation can be exploited. The
current limitation is the lack of such 4D dataset. Indeed, as described in the acquisition
protocol, the velocity data was acquired separately for each spatial component to speed

up the acquisition.
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e

(a) Zero-filled (b) Sequential (c) Joint
(d) Zero-filled (e) Sequential (f) Joint

Figure 4.5: Magnitude reconstructions (top row) and corresponding segmentations (bottom
row) for the sequential approach and our joint approach compared to the zero-filling solution.
Longitudinal view.
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0.04

(b) Sequential

0.04

-0.04

(d) Zero-filled (e) Sequential (f) Joint

Figure 4.6: Phase reconstructions for the sequential approach and our joint approach compared
to the zero-filling solution. Top row: transversal view. Bottow row: longitudinal view.
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(a) t=1 (b) t =2 (c)t=3 (d) t=4

(e) t=5 (f) t=6 (g) t =7 (h) t =38

Figure 4.7: Full time sequence. Longitudinal view. The bubble burst event sees the bubble
resting at the interface between liquid and air, before this film is finally broken. The bursting
causes an upward jet that moves the liquid at its highest position at ¢ = 4. Subsequently, the
jet drops into a downward jet, causing oscillation in the liquid, until it finally dies out at ¢ = 8.

(a) t=1 (b) t =2 (c) t=3

(e) t=5 (f) t =6 (g) t=17 (h) t =8

Figure 4.8: Full time sequence. Transversal view through the middle of the bubble. We can
see the bubble burst event and the upward/inward jet caused by the empty space left by the
bubble. Subsequently, the jet falls down into the liquid pool causing a downward/outward jet,
until it dies out at t = 8.






Chapter 5

Multi-Task Model for
Motion-Compensated MRI: Joint
Reconstruction, Registration and

Super-Resolution

In this chapter, we present a variational multi-task framework to solve three relevant
tasks, namely image reconstruction, registration and super-resolution for the application
of motion correction in MRI. This is joint work with Angelica I. Aviles-Rivero, Noémie
Debroux, Martin J. Graves, Carole Le Guyader, Guy Williams and Carola-Bibiane
Schonlieb and resulted in [CDAR'19, CARD"19a, CARD*19b]. Here, we focus on
motion corrupted undersampled MRI data, which requires explicit motion compensation
techniques to improve the image quality and provide clinically relevant information that
can be used for diagnosis.

MRI is a widely used and non-invasive modality that creates detailed images of the
anatomical structures of the human body, including undergoing physiological events. It
allows radiologists to examine MRI for diagnosis, treatment monitoring and abnormal-
ity /disease detection [BSD15]. However, a central limitation of MRI is the prolonged
acquisition period needed to reconstruct an image [ZMH15]. This constraint is reputed
to be a major contributor to image quality degradation, and therefore, compromising the
expert interpretation.

Image degradation appears as motion artefacts including blurring effects and geometric
distortions [SMIT95, ZMH15]. Therefore, the problem of how to reduce the acquisition
time whilst producing high quality images, super-resolved and motion-free, is of a great

interest in the community, and it is the problem that we address in this chapter.
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Figure 5.1: The proposed variational multi-task framework. A set of higly undersampled MRI
measurements are taken as input to our three-tasks framework: reconstruction, registration
and super-resolution. We then jointly address them using a proposed functional that has as
input a super-resolved motion-free MRI and the physiological dynamics.

In particular, in a dynamic MRI setting, acquisitions with low signal-to-noise ratios
or small anatomical structures might be severely degraded, affecting the final expert’s
outcome [HOM™17]. These small structures can appear smeared or blurred, and discerning
whether these are artefacts or lesions is very challenging for the expert, leading to potential
false positive or negative findings [ABMB™15]. Moreover, movement distortions are most
prominent at contrast edges [BCB04].

Although, it is possible to reduce the artefacts by performing breath-holding tech-
niques, there is still residual motion to be compensated. This is mainly produced because
the timescale of physiological motion is shorter than the required time to form an image.
Likewise, gating strategies [SFL00, PSRT01, KYK*01, GEO06, JIA06, KKVMO00], which
track either the breathing or cardiac cycles, have been also widely explored. However,
they are mainly effective for perpetual breathing motion disregarding all other involuntary
physiological motion and therefore only partially accurate. Furthermore, it is challenging
to precisely co-register these signals to the corresponding MRI data [HST106].

As an alternative to the aforementioned techniques, a body of research has developed
several algorithmic approaches based on the conceptual definition of Compressed Sensing

(CS) which has demonstrated promising results since the seminal paper of Lustig et



87

al. [LDP07]. The main idea of using CS is to reconstruct signals from low-dimensional
measurements through iterative optimisation relying on sparsity of the image in a
transformed domain. Since then, several promising results have been reported in the
body of literature e.g. [Lia07], [LHDJ11a], [LHDJ11b], [OCS15], [ZPL15]. However, there
is still a need for improving the quality of the MRI reconstruction whilst decreasing the
number of measurements.

A commonality of previous techniques is that they perform a single task (just recon-
struction). However in most recent years, there has been a great interest for improving
medical image reconstruction [LDJ15, RAVCGSW'16, ARWGSI18] by using what is
called multi-tasking models (also known as joint models). The central idea of this per-
spective is that by sharing representation between tasks and carefully intertwining them,
one can create synergies across challenging problems and reduce error propagation, which
results in boosting the accuracy of the outcomes whilst achieving better generalisation
capabilities.

Following the multi-task perspective, different works have been presented e.g. [LDJ15,
RAVCGSWT16, OME*T16, ARWGS18, BMMK™*10, JF03]. Unlike existing approaches
from the literature, and to the best of our knowledge, we are presenting for the first time
a model that considers more than two tasks. In this work, we introduce a new variational
multi-tasking framework that integrates, in a single model, three relevant tasks in MRI:
reconstruction, registration and super-resolution (see Figure 5.1). Our contributions are

described below:

Contributions. In this chapter, we present a new variational multi-tasking framework
that combines, in a single model, three important tasks in MRI: reconstruction, registra-
tion and super-resolution. Whilst this is a relevant part of this work, our contributions

are:

o We propose a computationally tractable and mathematically well-motivated varia-
tional multi-task framework for motion correction in MRI, in which our novelties

largely rely on:

— An original optimisation model that is composed of an L? fidelity term that
allows sharing representations between three tasks (reconstruction, super-
resolution and registration); a weighted total variation (TV) ensuring robust-
ness of our method to intensity changes; a TV regulariser of the highly resolved
reconstruction; and a hyperelasticity-based regulariser. We demonstrate that
this combination yields to significant improvements over sequential models

and existing multi-task methods.
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— We show that our optimisation problem can be solved efficiently by using
auxiliary variables and then splitting it into sub-problems. We show that this

requires lower CPU time than several methods from the body of literature.

o We extensively evaluate our approach using five datasets and different acceleration
factors. We also compare our multi-task framework against existing approaches.

Our experiments are further validated by interpretations of experts.

5.1 Related Work

There have been different attempts to improve motion correction in MRI from undersam-
pled data. Besides motion prevention techniques such as breath-holding, another set of of
algorithmic approaches has been devoted to do motion correction based on image-based
motion tracking, where one needs an explicit estimation of the motion in between scans.
The predominant scheme, in this context, is image registration which aims at finding a
mapping aligning a moving image to a reference one. Following this perspective, the body
of literature can be roughly classified on rigid (translations, rotations) and deformable
registration.

In the first category, several approaches have been proposed including [GSBT03, ADS,
WYW*08, JBC18]. However, physiological motion, such as cardiac and respiratory,
can hardly be characterised by a simple combination of rotations and translations. To
mitigate this limitation, motion correction methods based on deformable registration have
been proposed such as [LCM07, LCKAM, LTC*15, JKV*17]. However, in a closer look
on the aforementioned approaches, a commonality between them is that the algorithmic
approaches are performed sequentially. That is - the motion estimation task is executed
only after the image reconstruction is computed (from now we refer to this perspective
as sequential model). A clear drawback of using this perspective is that the motion
estimation highly depends on the quality of the reconstruction as well as on the selection
of the reference image.

More recently, a body of research has solved jointly multiple tasks (the so-called multi-
task approach) such as image reconstruction and registration in a unified framework. In
particular, in the medical domain and following a variational perspective [BDS18], different
works have been reported using multi-task approaches. These include SPECT imag-
ing [MGS06, SMF09], PET [BMMK™10] and MRI [LDJ15, RAVCGSW*16, ARWGS18]-
to name a few. The works with a closer aim to ours are discussed next.

Authors in [JF03] and [BMMK™10] proposed a joint model composed of a motion-

aware likelihood function and a smoothing term for a simultaneous image reconstruction
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and motion estimation for PET data. Schumacher et al. [SMF09] presented an algorithmic
approach that combines reconstruction and motion correction for SPECT imaging. The
authors proposed a variational approach that includes a regulariser that penalises an
offset of motion parameter - to favour a mean location of the target object. However,
the major limitation is that they only consider rigid motions. In the same spirit, authors
of [SYC09, Fes10] proposed a generic joint reconstruction/registration framework. That
model is based on a penalised-likelihood functional, which use a weighted least square
fidelity term along with a spatial and a motion regulariser.

In the work of that Odille et al. [OME™16] proposed a joint model for MRI image
reconstruction and motion estimation. This approach allows for an estimate of both intra
and inter-image motion, meaning that, not only the misalignment problem is addressed
but also it allows correcting for blurring/ghosting artefacts. More recently in the context
of deep learning (DL), a number of methods has been investigated for image registration
- e.g. [YKSN17, dVBV*17b]. Although, certainly, those approaches deserve attention,

their review goes beyond the scope of this chapter.

5.2 Proposed Model

In this section, we introduce our joint variational framework which addresses simultane-
ously the following three tasks: MRI reconstruction, registration and super-resolution.
We introduce the mathematical formulation as separated tasks and then we show how
our novel optimisation model judiciously intertwines them. Finally, we describe the

numerical realisation of our approach.

Problem statement. We remark to the reader the focus of this work. Given a set
of multiple undersampled MR acquisitions {z;}]_, of low resolution and corrupted by
motion, we seek to recover a single high resolved, static and motion-corrected image
that represents the true underlying anatomy along with the estimation of the breathing

dynamics through deformation maps.

5.2.1 Task 1: CS MRI reconstruction

The first task in our multi-task framework is MRI reconstruction. In particular, in

standard dynamic MRI, the acquired data is in a time-spatial-frequency space, i.e. k,t-

S M,T
space, which is composed of © = (2 1);nl1 41 € CM*T measurements. Therefore, the
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task of MRI reconstruction, from those samples, reads:
r=Au+n (5.1)

where A : RV*T — CM*T i5 the undersampled MRI forward operator. More precisely,
A = SF where S is a subsampling operator, F the Fourier operator, and A* : CM*T —
RN*T its adjoint. Moreover, u € RY*T is the stack of reconstructed images, 7 an additive
Gaussian noise inherent to the acquisition, and ¢ the temporal coordinate.

The MRI reconstruction task is thus highly ill-posed due to the noise and incomplete
measurements. However, (5.1) can be solved by adding prior information and then

casting the problem as an CS-based optimisation problem as:
(S argmuinHAu—ng—|—6H<I>(u)||1, (5.2)

where the first term, i.e. data fidelity term, ensures consistency in the observed data z
whilst ||.||; enforces sparsity in the transformed domain given by ®, and ¢ is a parameter
balancing the influence of each term.

In this work, we focus on the Total Variation (TV) regulariser [ROF92], which,
imposing edge sparsity, leads to piecewise constant reconstructions. However one can
easily replace this regulariser by any other one in a plug-and-play fashion.

Although a large body of literature has showed potential results in the context
of undersampled MRI reconstruction using CS or its extended philosophies including
[LHDJ11a, MW12, OCS15], there is a still room for improvement, and in particular,
with the problem of reconstruction a single high quality image that reflects the true
underlying anatomy.

In this context, our initial hypothesis was to model image reconstruction and registra-
tion in a unified framework, with the goal of obtaining a single, motion-corrected image
from dynamic MRI. We published our first findings in [CDAR*19] and [CARD*19a].
The main idea was that by computing the reconstruction and registration tasks jointly
one can exploit their strong correlation thus reducing error propagation and resulting
in a significant motion correction. We use this as our basis to propose our model in
[CARD™19a], which now exploits the natural correlation between motion estimation and
super-resolution. This motivate the use of two more tasks — image registration and

super-resolution, which are described next.
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5.2.2 Task 2&3: When Image Registration Meets Image Super-

Resolution

In a dynamic MRI setting, there are two tasks that show a natural strong correlation:
motion estimation and super-resolution. Therefore, our hypothesis is that by unifying
these two tasks, one can create synergies leading to error propagation reduction, and
therefore, an increase of the image quality.

In a multi-frame variational framework, super-resolution is the problem of restoring
a high-resolution image from several low quality images that are corrupted by motion.

From a variational perspective, it can be expressed as:
m
mJnZ | DBW;u — fi]|3 + AReg(u), (5.3)
i=1

where D and B are the downsampling and blurring operators correspondingly. Moreover,
W, models the geometric warp existing between the m observed images f; and the
restored image u to correct for motion. Finally, Reg(u) is a generic regulariser. In this
work, the dowsampling operator is modelled as an averaging window, the blurring kernel
is assumed to be Gaussian, and the warping operator is viewed as the deformations from
a registration task. Whilst for the regulariser we adopt the TV option, our approach
is well-suited for the plug-and-play setting. That is- one can easily replace the TV
regulariser with other options (some examples are mentioned in Subsection 2.2.4).

In particular, for our registration method we have the following. Let €2 be the image
domain, i.e. a connected bounded open subset of R?, and u :  — R be the sought single
reconstructed image depicting the true underlying anatomy. We introduce the unknown
deformations, between the ¢-th acquisition and the image u, as ¢; : Q@ — R?. We remark
that the deformations are smooth mappings with topology preserving and injectivity
properties. Moreover, let v; be the associated displacements such that ¢, = Id + v,
where Id is the identity function. At the practical level, these deformations should be
with values in ©Q, and Ball’s results [Bal81a] guarantee this property theoretically for our
model. We also consider V¢, : Q@ — My(R) to be the gradient of the deformation, where
M,(R) is the set of real square matrices of order two.

As MRI images biological soft tissues well-modelled by hyperelastic materials, which
allows for large and smooth deformations while keeping an elastic behavior, we propose
to view the shapes to be matched in the registration process as isotropic, homogeneous

and hyperelastic materials of Ogden type. For more details on this kind of materials, we
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refer to [? ]. This is reflected in our formulation as a regularisation on the deformations
¢; based on the stored energy function of such a material.
In two dimensions, the stored energy function of an Ogden material, in its general

form, is given by the following expression:

ZaZHFH + I'(det F), (5.4)
with a; >0, v, > 1foralli=1,--- , M and T :]0; 00[— R a convex function satisfying
lim I'(0) = lim ['(6) = +o0, ||.|F designating the Frobenius matrix norm.
§—0+ d—+o00

Following [CBE'19], we consider the particular energy:

a1 | F|[§ + az (det F — th) if det F > 0,

(5.5)
400 otherwise,

WOp(F) - {

with a; > 0, and as > 0. The first term penalises the changes in length, whilst the second
term enforces small changes in area. We check that this function falls within the general

formulation of the stored energy function of an Ogden material:

4
arl€lt+ax (6-13) it >0,
~+00 otherwise,

Wop(F) = W(€,8) = {

W : M3(R) x R — R is continuous since lim W(f ) = lim W(&,0) = +oo0, and is con-

6—0t 0——+00
Rf - R
2

x|—>(x—f) xr—>4( i) (73x+4x+5>>0
The design of the function I' is driven by Ball’s results [Bal81b| guaranteeing the defor-

Rf —- R
4 and ¢": >

vex with respect to 0 (

mation to be a bi-Holder homeomorphism, and therefore, preserving the topology. It
also controls that the Jacobian determinant remains close to one to avoid expansions or
contractions that are too large.

5.2.3 Variational Multi-Task Model: Reconstruction, Registra-

tion and Super-Resolution

In the body of literature, there have been different attempts of using reconstruction,
registration and super-resolution. However, they tackled the tasks separately or jointly
but up to two tasks. In this part, we describe, for the first time, how these three tasks

can be jointly computed to benefit the final reconstruction. The main idea is to exploit
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temporal redundancy in the data to compensate for motion artefacts due to breathing
and/or involuntary movements whilst increasing the resolution to retrieve finer details in
the reconstruction. In particular, we now turn to describe how (5.2) and (5.3) can be
solved in a multi-task framework.

Our variational multi-task framework takes three key factors: firstly the hyperelastic
regulariser (5.5), secondly a discrepancy measure that joins the reconstruction, super-
resolution and the registration tasks, and the TV-based regularisers for reconstruction and
super-resolution. Moreover, our model accounts for intensity changes, this, by modifying
the CS-classical TV regulariser for the weighted TV to enforce edge alignment. From now
A is acting on one single frame. We thus introduce weights g; as the Canny edge detector
applied to G, * A*x; - for each t = 1,--- ,T - where G, is a Gaussian filter of variance
o. We follow Baldi’s arguments ([Bal01]) to introduce the weighted BV -space and the
associated weighted total variation related to the weight g;, for each ¢ = 1,--- |T. Let w
be a weight function satisfying some properties (defined in [Bal01] and fulfilled here by
gi). We denote by BV,,(Q) the set of functions v € L'(€, w), which are integrable with

respect to the measure w(x)dz, such that:
sup {/ udiv(p) dx : |p| < w everywhere , p € Lz'po(Q,RQ)} < 00,
)

with Lipy(£2, R?) the space of Lipschitz continuous functions with compact support. We
denote by T'V,, the previous quantity.

Given A a bounded open set in R?, with boundary of class 42, then we have
TV, (€a) = |0A|(, gi) = Janaa 9i dH', where 4 is the characteristic function of the set
A. This quantity can be viewed as a new definition of the curve length- with a metric
depending on the observations x;. Minimising it is equivalent to locating the curve on
the edges of A*x; where g; is close to 0. We thus consider the following fidelity term and

regulariser for our high-resolved image:

B(u, (6, 1) = 7D 0 TV, (Cu) 0 67 )
= (5.6)

FaTV() + ;HA((CU o b)) — a3

where C = DB comes from the super-resolution formulation. The first term of E seeks to
align the edges of the deformed reconstruction ((Cu)o ¢; ')) with the ones of the different
acquisitions, whilst regularising it. The second quantity aims to get A((Cu) o ¢; ') close

to the acquisitions z;, and thus A*(z;) close to Cu o ¢; ' to correct for motion.
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Our variational multi-task framework is then defined as a combination of (5.5) and

(5.6), which leads to the following minimisation problem:

inf G(u, (Pt)i=1,.. 7) = E(u, (¢¢)t=1,.7)

u,(Pt)t=1,...,T

1 T

— Wo,(Vy) d
+ T;/Q OP( ¢t) X,

: 141 _
& inf 23 SJA((Cu) o ¢ ") — w3 + a TV (u)
u,(qﬁt)t:l’.‘.,T Tt:12

F 0TV, (Cu) 0 67) + [ Wop(Vor) da
We now introduce the next theorem to set the well-posedness of our model.

Theorem 5.1 (Existence of minimisers). Let A = SF : L*(R?) — L*(R?), C : L' () —
LP(Q2), be linear bounded and continuous for the strong topology operators with p €]1, %[,
and Q C ', Q and Q' connected bounded open subsets of R? with boundaries of class
C! (verified by the chosen operators). With 0, «, ai, az > 0, problem (5.7) admits
minimisers (i, (¢¢)i=1...7) on % ={u € BV(), ¢y € W, Nt =1,--- T |(Cu)o¢;' €
BV, o), Vte{1l,--- ,T}}, with W ={y € [d+W01’4(Q,R2) | det Vi € L4(9), ﬁ €
L4(Q), det Vi) > 0 a.e. on Q}.

Proof. The proof can be found in Section C.3. n

In the next section, we detail how the proposed model (5.7) can be solved in a

computational tractable form.

5.3 Optimisation

The numerical realisation of (5.7) imposes different challenges due to the nonlinearity
and nonconvexity in V¢; and the composition (Cu) o ¢; ! in the fidelity term. In this
work, we overcome this difficulties by introducing three auxiliary variables z;, hy, f;, this,
to mimic V¢y, (Cu) o ¢;* and h,. We then relax our problem using quadratic penalty

terms. This leads to the following discretised decoupled problem:
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N
min =373 Wop(a(@)) + 5 12— Vol

w,t,26,he, fr T 21 acn

+ DA — i3+ TV ()

+ 22 by (Cu o 67) /et W (00) 1

1
+ %Hft — hy|l5 + TV, (f)-

(5.8)

We now can solve our minimisation problem by splitting (5.8) into five more compu-

tational tractable problems. We now turn to give more details on each sub-problem.

Sub-problem 1: Optimisation over z;. In practice, 2, = (2;1,2:2)7 simulates the
gradient of the displacements vy = (v, ’ULQ)T associated to the deformations ¢;. For every

211 212

z, we have z; = ) . For the sake of readability, we drop here the dependency on

221 %22
t. We solve the Euler-Lagrange equation with an L? gradient flow and a semi-implicit

finite difference scheme and update z; as:

1 ovk,|
7t = T4 din, 2y 4 dt(—dar [T + 2 | 3(z5 + 1) — daa(1 + 25,)cocs +m 89; ,
1 ovk,
z’f2+1 — Tdt% zfQ + dt(—4aq || + zf||%zf2 + 4a2z§10001 +m 8y7 ,
k+1 1 k k 2k k 8@52
91 = Tdt’h 291 + dt(_4a1||zt + || 223, + 4dagzyycocr + 7% )
k+1 1 k kN2 Lk k 81’52
R9o = Tdt’h 2oy + dt(—4ay || T + %t |7 (299 + 1) — 4az(1 + 27} )coct +m ay |’

3
with ¢o = (det([+ 2F) — M) and ¢ =1+ m-

Sub-problem 2: Optimisation over ¢;. We solve the Euler-Lagrange equation in
¢y, after making the change of variable y = ¢; '(z) in the L? penalty term, for all ¢, using

an L? gradient flow scheme with a semi-implicit Euler time stepping.

sk
div 2]

0= —’V1A¢fﬂ +m (div Zé+1) + 72(hf ° ¢f - Cuk)Vhf(qﬁf),

t,2
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Sub-problem 3: Optimisation over h;. The update in h;, for all ¢, has a closed

form solution using the subsampling operator & and the Fourier operator F along with
their adjoints S* and F* = F L

1
hitt = ]—"*{ (72 det V(¢ 1) 1d + 7,58 + 51d) ™!

(f(% det V(g, ) (Gur) o (¢ + ]Z) + 738*@) }

Sub-problem 4: Optimisation over f;. This is solved via Chambolle projection

algorithm [Cha04]. For an inner loop over n =1,--- , M:

n+l _ pk+1 : n
i =h —0divpy,

= PP+ 0,V (divpy — hitt/0)
' L+ 2|V (divpy — b /0)]|

with ||.|| the Euclidean norm. After enough iterations, we set fF+! = frt1,

Sub-problem 5: Optimisation over u. Finally, using the same change of variables

as in sub-problem 2, the problem in u reads
Y2 d
min oo > e o ¢r = (Cu)ll3 +a TV (u),

and we solve it with a primal-dual algorithm [CP11a]:

max(1, ||y¥ + o VuF|)’

-1 T
Uttt = <7TZC*C + Id) (uk +7V -y 4 %C* S hitto ¢f+1>.
t=1

Y

We remark that, in this work, we solve the registration problem in z; and ¢; in a
multi-scale framework from coarser to finer grids and using a regridding technique
[CRM96a] described in Algorithm 2. The latter ensures topology preservation even
though theoretically the design of the regulariser guarantees positivity of the Jacobian

determinant. Finally, our proposed algorithm is illustrated in Algorithm 3.
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Algorithm 2: Regridding algorithm

Input: 2° =0, ¢ = 1d, regrid_ count = 0.
forn=1,---,N do
Update z" and ¢".
if detV¢™ < tol then
regrid__count = regrid_ count + 1.
h=ho¢nt
Save tab_phi(regrid_count) = ¢"~L.
o" =1d, 2" = 0.
L end if
end for
if regrid__count > 0 then
| ¢/l =tab phi(1)o---otab phi(regrid_count).
end if

Algorithm 3: Our Proposed Multi-task Method
Input: ¢, =1d, =0, hy=u, fi=u,t=1,--- T, u= F*r,.
for k=1,--- ,nblter do
fort=1,---,T do
for scale=coarse to fine do
L Solve sub-problems 1 and 2 for zﬁsﬁﬂe and be;claze including the
regridding step.
end for Solve sub-problem 3.
Solve sub-problem 4.
end for
| Solve sub-problem 5.
end for

5.3.1 Parameters Reasoning

In this section, we discuss the influence of each parameter. The parameters a; and as
control the regularisation of the deformations. Whilst the former acts on the smoothness
of the deformations, the latter can be seen as a measure of rigidity. That is- the bigger as
is, the more rigid the deformations are and the less accurate the registration becomes. It
thus behaves as a trade-off between the ability to handle large and nonlinear deformations,
and topology preservation.

Moreover, v, and 5 are chosen big, to ensure the closeness of the auxiliary variables
to the original ones, and 6 is set small for the same purpose. 73 weights the fidelity term
joining the three tasks, and it is often chosen to be close to 1. Finally, « offers a balance

between regularity and fidelity to the data for the super-resolved reconstructed image w.



98 Multi-Task Model for Motion-Compensated MRI
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Figure 5.2: User study results (in %) indicating the level of agreement of clinicians for sequen-
tial and multi-task comparisons. (a) The majority indicates that our proposed reconstructions
ranked the best. (b) Plot displays the percentage of responses indicating the worst ranked
approach. This further supports the overall agreement of clinicians, favouring our approach.

5.4 Numerical Results

In this section, we present the experimental results performed to validate our proposed

approach.

5.4.1 Data Description
We evaluate our framework on five publicly available datasets.

o Dataset 1,2 & 3'. These datasets are 2D T1-weighted data [BKM™17] acquired
during free breathing of the entire thorax. It was acquired with a 3T Philips
Achieva system with matrix size = 215 x 173, slice thickness=8mm, TR=3.1ms
and TE=1.9ms. We remark that each dataset refers to three different patients.

o Dataset 4 & 5°. The datasets are 4DMRI data acquired during free-breathing of
the right liver lobe [vSSGT07]. It was acquired on a 1.5T Philips Achieva system,
TR = 3.1 ms, coils =4, slices =25, matrix size = 195 x 166, over roughly one hour

on 22 to 30 sagittal slices and a temporal resolution of 2.6 — 2.8 Hz.

5.4.2 FEvaluation Protocol

To validate our theory, we expensively evaluate our model as follows.

Comparison against Sequential Models. For the first part of our evaluation,

we compared our variational multi-task approach against two well-known models, rigid

thttps:/ /zenodo.org/record /553454 . XBOkvi2cbUZ
2http:/ /www.vision.ee.ethz.ch /~organmot /chapter_download.shtml
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(RIGID), and hyperelastic (HYPER), for deformations. To run this comparison, we solve
the CS reconstruction model with TV, and then register all the frames to a reference
frame used as initialisation in our proposed approach. For this, we use the well-established
FAIR toolbox [Mod09], where we select rigid and hyperelastic transformations. Finally,

we perform the super-resolution task with TV.

Comparison against other Multi-task Approaches. As to the best of our knowl-
edge, this is the first variational model joining three tasks, we compare our model against

two models that only joints two tasks- reconstruction and the motion estimation. More
precisely, we compared our method against DC-CS [LDJ15] and GW-CS [RAVCGSWT16]:

o DC-CS: This approach solves a CS reconstruction and performs an elastic deforma-
tion Demons registration. After reconstructing the full sequence, we compute the

average image for our analysis.

o GW-CS: this approach solves a CS reconstruction and performs a non-rigid group
wise registration (GW) based on B-splines. After reconstructing the full sequence,

we compute the average image for our analysis.

To show robustness and generalisation capabilities of our approach, we ran the

comparisons using fully sampled data and acceleration factors = {2,4,5,6, 8}.

Metrics Evaluation. As we seek to recover a single high resolved and motion
corrected image, there is not ground truth for this task. Therefore, our evaluation is
based on a standard protocol for evaluating MRI reconstruction, that is a user-study
(expert scoring). For this, we design a a three-point Likert rating scale in which experts
were asked to indicate the level of agreement, ranging from best reconstruction to worst
reconstruction. The study is also supported by a nonparametric statistical test. Detailed
protocol can be found in Section C.2. Moreover, to further support our multi-task model,

we also offer CPU time comparison against all the compared approaches.

The experiments reported in this section were run under the same conditions in a
CPU-based Matlab implementation. We used an Intel core i7 with 4GHz and a 16GB
RAM.

5.4.3 Parameter Selection

In our experiments, we set the parameter of our approach and the compared ones as
described next. For our experiments, we set the parameters as displayed in Table 5.1.

Whilst for the sequential approaches, based on the FAIR implementation, we set the
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ai | a2 |m| 2 |0 o |k| N n Q
D1 | 1 50 | 5 [ 10° |15 |5 | 1.5 |2 ]500 | 500 | 0.01
D2 1 50 [ 5 [ 10° |15 |5 | 1.5 |2 ]500 | 500 | 0.01
D3| 1 50 | 5 [ 10° |15 |5 | 1.5 |2 ]500 | 500 | 0.01
D4a| 1 [100] 1 [10°] 1 |5| 2 | 2500500/ 0.001
D5| 1 [100| 1 |10°| 1 |5 ] 2 | 2500|500/ 0.001

Table 5.1: Parameter values used for our model and for all datasets. In this table, "D" stands
for Dataset.

hyperelastic regularisation parameter for Datasets 1,2 & 3 = 1 and for Datasets 4 & 5
=0.1.

5.4.4 Results and Discussion

We evaluate our proposed approach following the scheme described in Subsection 5.4.2.

For the sake of compactness, we show results for Dataset 4 in Appendix C.

> Is our Multi-tasking Approach Better than a Sequential one?

We start evaluating our approach against two sequential models. We remark to the reader
that sequential means to execute tasks (reconstruction registration and super-resolution)
one after another. In particular, we compared our approach against two well-known
models for deformations: rigid (RIGID) and hyperelastic (HYPER). Results of this
comparison are displayed in Figure 5.6-5.9, and using different acceleration factors.

In a closer look at those Figures, one can see that our reconstructions have better
sharp edges and retrieve fine details, in the heart and below the lung areas, than the
sequential approaches. Particularly, the rigid transformation is not able to compensate
for the whole motion and thus blurring effects are visible, especially under the lungs, for
all acceleration factors. Hyperelastic deformations however, have more degrees of freedom
and are capable of better compensating for motion which is manifested as sharp edges
in the HYPER reconstruction. Moreover, the darker structure, at the center bottom of
the heart, disappears or is much less visible in the HYPER reconstructions than in our
approach. This effect is observed for all acceleration factors.

Besides, as the acceleration factor increases, the HYPER reconstruction loses the
initial contrast, which is particularly visible for the acceleration factor of 8. In constrast
our multi-task framework is able to preserve it nicely. This shows the robustness of
our method to noise and corrupted data. The benefits of our multi-task framework is

prevalent to all datasets.
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Figure 5.6-5.9 show that hyperelastic deformations are better suited to deal with
complex physiological motions, as the RIGID reconstructions exhibits strong blurring
artefacts, this, due to residual movements amplified as the acceleration factor increases.
Also, our method is able to preserve small structures in the kidney and the white blood
vessels in the liver even for large acceleration factors contrary to the sequential HYPER
approach. For the acceleration factor of 8, the HYPER reconstruction suffers more from
staircaising effects than our approach and loses the initial contrast.

Overall, we can show that sharing representation between tasks (i.e. our multi-task
approach) leads to better MRI reconstructions than if one perform the task separately.
This is strongly supported by two factors, the computational time and the expert
agreement. Following common protocol for MRI evaluation, we performed a user-study,
in which we asked twelve experts (radiologist trainees and experienced) to evaluate
reconstructions with all acceleration factors Figure 5.6 - 5.9.

The outcome is displayed in Figure 5.2. At left side of Figure 5.2a, one can see that
overall (i.e. for all reconstruction/all acceleration factors) our approach was ranked best,
with a 44.29% of agreement, in comparison with the output from the other methods. We
also ran the nonparametric Friedman test, per acceleration and therefore accounting for
FDR, and we found that there is significant statistical difference- that is, our approach
offered the best reconstructions. Additionally, in Figure 5.2b, we display the results in

terms of % worst ranked for all compared approaches.

> Is it Three-Task Better Than Two-Task Framework? In a multi-task frame-
work a key factor is to assess if the tasks are not affecting negatively the final MRI
reconstruction. To evaluate this factor, we ran a set of experiments of our approach
against two multi-task frameworks DC-CS [LDJ15] and GW-CS [RAVCGSWT16]. These
approaches perform only two-tasks (reconstruction and motion estimation), these ap-
proaches are our baselines as, to the best of our knowledge, there exist no approaches
that joint three tasks.

The MRI reconstruction from our model against DC-CS and GW-CS can be seen
in Figure 5.10-5.13. In a closer look at these figures, one can observe very blurred
reconstructions from DC-CS, which can be interpreted as a failure of the model to
capture the complex intrinsic nature of physiological motions. In contrast, GW-CS and
our reconstructions are sharper even for very low undersampling factors and compensate
well for motion.

However, our method is more robust to noise and outliers (as displayed in the

compared reconstructions). Although, the GW-CS reconstructions preserve fine textures
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and small structures, they are noisier than ours. That is, our approach preserve improves
in terms of preserving information whilst removing noise in comparison with GW-CS.
This effect is elevated even more as the acceleration factor increases. For example, for an
acceleration factor of 8, artefacts and noise are visible in the heart and under the lungs
in the GW-CS reconstruction whereas ours is clearer.

Another example of the good performance of our approach can be seen in Figure 5.10-
5.12, in which we are able to retrieve more clinically useful texture and fine details
than the GW-CS technique. This is particularly visible in the central part of the heart
where noise is visible in the GW-CS reconstructions especially as the acceleration factor
increases.

To further support our results, we display, at the right side of Figure 5.2a, the overall
outcome of the user-study. From this plot, we can see that the majority of the expert
agreed that our reconstructions are better than the compared approaches. Although,
the second best ranked is GW-CS, it fails to correct for noise which compromises the
readability of the underlying texture. Moreover, as soon as the acceleration factor
increases, the noise level jumps, reducing drastically the readability and interpretability
of the GW-CS reconstructions whereas our method retrieves relevant small structures and
denoises the reconstruction. Again, we also report for the comparison to joint approach
the results of the user study for the worst ranked approach in Figure 5.2b (right), which

further supports the agreement to favour our proposed method.

> The CPU Cost of Our Multi-Tasking Approach - Does It Pay Off?
From previous sections, we demonstrated that our approach achieves a better reconstruc-
tion in comparison with other approaches, however, does it improvement come to pay off
in terms of computationa time? Therefore, in this section, we highlight the computational
advantages of our model. We remark to the reader that all comparisons were run under
the same conditions.

The CPU time, for all approaches, is displayed at Figure 5.3 for several acceleration
factors. Firstly, we observe that, in terms of sequential models, our model outperforms
RIGID and HYPER reporting the lower CPU time. However and in terms of the other
multi-task methods, the computational time for GW-CS is much longer compared to our
method (and only performing two-tasks). Whilst the DC-CS approach readily competes
with our approach, from the image quality standpoint our method offers by far better
results in terms of reconstruction. We emphasise that the CPU times for our model and
DC-CS are still on the same range, but the proposed method is performing three-tasks
instead of two like the DC-CS. These advantages highlight our optimisation scheme that

allows computing a complex problem in a very computational tractable form.
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Figure 5.3: Computational performance comparison between sequential (three tasks), joint
(two tasks) and our approach. Elapsed time in seconds. The sequential approaches are definitely
much slower than our proposed method. We can see that our approach is comparable and
competitive with joint approaches although slightly slower than the DC-CS, which, however,
only computes two tasks.

> Further Analysis of Our Approach
To further support our model performance, we also analyse the difference maps to assess
the quality of our registration, and therefore, its motion correction potential. To do this,
we inspect the uncorrected average of the difference image, between a reference frame
and each individual one, which is displayed at the left side of Figure 5.4. From this
column, we can observe that the motion is significant in both the datasets. However,
when we inspect the mean difference between our reconstruction and the individual
registered acquisitions (h; o ¢¢), at the middle and right sides of Figure 5.4, one can see
that the structures are very well-aligned resulting in a much smaller range in difference
maps. Overall, our approach successfully corrects for motion even at low undersampling
rates, and this effect is preserved for all datasets. Moreover, we present for two datasets
the estimated motion ¢, and its inverse ¢; ! for a given time frame in Figure 5.5. We
can see that our proposed approach produces a reasonable estimation of the motion,
where the motion fields are visualised by a deformation grid. Additionally, we show the
corresponding Jacobian determinant maps for the deformations. In these plots, we can
see that the determinants remain positive meaning that our model ensures topology
preservation both from a mathematical and practical point of view. The values are

interpreted as follows: small deformations when values are closer to 1, big expansions



104 Multi-Task Model for Motion-Compensated MRI

UNREGISTER OURS (4x) OURS (8x)

120
100
o 80
60
40
X750, 20
3 0
80
\ 60
i - 40
20
0

Figure 5.4: Difference maps. From left to right: average difference maps of the unregistered
sequence, average difference map of the corrected sequence for an acceleration factor of 4 and 8
and the colorbar for Datasets 1 and 2.

DATASET 1

DATASET 2

when values are greater than 1, and big contractions when values are smaller than 1.
Moreover, one can observe that the determinants remain positive in all cases, that is to
say, our estimated deformations are physically meaningful and preserve the topology as

required in a registration framework.

5.5 Conclusion and Outlook

In this chapter, we proposed a novel variational multi-task framework to achieve higher
quality and super-resolved reconstructions. Our method compensates for motion due to
breathing in undersampled data. To the best of our knowledge, it is the first variational
framework that allows computing three tasks jointly.

In particular, our multi-task framework is composed of four major components: an
L? fidelity term intertwining MRI reconstruction, super-resolution and registration; a
weighted TV ensuring robustness of our method to intensity changes by promoting edge
alignment; a TV regulariser of the super-resolved reconstruction; and a hyperelasticity-
based regulariser modelling biological tissue behaviour and allowing for large and smooth

deformations. With our model, we exploit the temporal redundancy to correct for blurring
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Figure 5.5: Estimated motion and determinant maps of the deformation Jacobian. This is
shown for the transformation ¢; and its inverse ¢; ' for two datasets (1 and 4).

artefacts and increase image quality. As a result, we obtain a single highly resolved and
clear image reconstruction representing the true underlying anatomy.

The advantages of our model is that we guarantee preservation of anatomical structures
whilst keeping fine details and producing less blurry and noise artefacts in the final
reconstructions. We extensively evaluated our method against sequential and another
multi-task methods from the body of literature. We demonstrated that our method
achieves the best results whilst demanding low CPU time. Our method was further
supported by a user-study (experts), favouring our solutions among other state of the

art methods. This suggests the potential of our approach for clinical applications.

Future work. This multi-task framework is indeed very well-suited for the plug-and-
play setting when one (or more) imaging tasks could be replaced by different algorithms.
For instance, the modelling of the regularisation functional for the high resolution image
reconstruction could be replaced in a plug-and-play fashion. It opens the door to hybrid

methods as deep-learning can be used for the super-resolution tasks.
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DATASET 1
RIGID HYPER

FULLY
SAMPLED

Figure 5.6: Reconstruction results for
Dataset 1 compared to sequential ap-
proaches based on rigid and hyperelastic
registration, for different acceleration fac-
tors. Our proposed reconstruction results
in sharp edges and retrieves fine details
especially for higher acceleration factors.

DATASET 2
HYPER

FULLY
SAMPLED

Figure 5.7: Reconstruction results for
Dataset 2 compared to sequential ap-
proaches based on rigid and hyperelastic
registration, for different acceleration fac-
tors. Our proposed reconstructions pre-
serve fine structures and better correct for
motion, thus resulting in sharper edges com-
pared to the sequential reconstructions.
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DATASET 3
RIGID HYPER

FULLY
SAMPLED

Figure 5.8: Reconstruction results for
Dataset 3 compared to sequential ap-
proaches based on rigid and hyperelastic
registration, for different acceleration fac-
tors. Our reconstruction results in sharp
edges and retrieves fine details especially
for higher acceleration factors.

DATASET 5
HYPER

FULLY
SAMPLED

Figure 5.9: Reconstruction results for
Dataset 5 compared to sequential ap-
proaches based on rigid and hyperelastic
registration, for different acceleration fac-
tors. Our reconstructions show sharper
edges and finer details especially for higher
acceleration factors. Additionally, we can
also notice a better contrast preservation
in our results.
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DATASET 1
GW-CS

FULLY
SAMPLED

Figure 5.10: Reconstruction results for
Dataset 1 for different acceleration factors
and different joint approaches in compari-
son to our proposed method. We can clearly
see that our approach provides the best re-
sults in terms of sharp structures and fine
texture, while DC-CS results very blurry
and GW-CS very noisy. This is particu-
larly accentuated for high undersampling
factors.

DATASET 2
GW-CS

FULLY
SAMPLED

Figure 5.11: Reconstruction results for
Dataset 2 for different acceleration factors
and different joint approaches in compari-
son to our proposed method. Our approach
results in very sharp edges and in particu-
lar we retrieve fine texture, while DC-CS
results are very blurry and GW-CS very
noisy (especially for high undersampling
factors).
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DATASET 3
GW-CS

FULLY
SAMPLED

Figure 5.12: Comparison of our multi-
task framework vs other bi-task approaches
on Dataset 3. We note that our approach
can preserve fine detail and sharp edges
whilst DC-CS fail to compensate for motion,
yielding blurring artefacts. We can also
note the GW-CS approach highly amplifies
the noise. This is more visible for high
undersampling factors.

DATASET 5
GW-CS

FULLY
SAMPLED

Figure 5.13: Comparison of our multi-
task framework vs other bi-task approaches
on Dataset 4. We can clearly see that our
approach provides the best results in terms
of sharp structures and fine texture, while
DC-CS results very blurry and GW-CS very
noisy. This is particularly accentuated for
high undersampling factors.






Chapter 6

Conclusion and Outlook

In this thesis, we dealt with variational multi-task models for image analysis. Through
three research projects, we have proposed novel solutions and demonstrated that by
sharing information across tasks, we can exploit the correlative and complementary
information of the data and improve overall performance.

By looking at different challenging imaging problems, such as image reconstruction,
segmentation, registration and super-resolution, and by carefully intertwining them
through unified variational formulations, we went beyond existing solutions from the
state of the art and presented alternatives in a multi-task framework in which we can
exploit redundancy and structure in the data to boost the final outcome. Our solutions
were strongly evaluated through theoretical analysis and numerical experiments on

simulated and real MRI data, showing the potentials of our models for applications.

6.1 Concluding Remarks

For each research topic discussed in Chapters 3, 4 and 5, in this section we summarise

the conclusions by highlighting outcomes and the possible future research directions.

6.1.1 Multi-Task Model for Reconstruction and Segmentation
with Non-Convex Bregman Iteration.
In Chapter 3, we introduced a novel mathematical approach to jointly perform image

reconstruction and segmentation with applications to undersampled MRI data. The

main idea was to inform the reconstruction with prior knowledge of the object of interest
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(e.g. tumour and healthy tissue, air and water), and simultaneously update this belief
according to the actual measurements.

With this in mind, we proposed a variational formulation that by interconnecting the
reconstruction and the segmentation tasks, yields significant improvement upon both
tasks compared to the traditional sequential approach and another popular joint model,
i.e. the Potts model. This suggests that, with our model, it is possible to reduce error
propagations that occur in the sequential analysis and to obtain sharper reconstructions
and more accurate segmentations. Our joint variational optimisation scheme is based
on Bregman iteration, for which we provide its convergence properties. Furthermore,
we have assessed the performance of our approach for two different application, which
are bubbly flow and cancer imaging. In both cases, our model compensates for error
propagation yielding to sharper reconstructions and detection of finer structures, while
the segmentations also benefit from the improvement in the reconstructions.

v" Our proposed approach provides a robust tool to achieve sharp reconstructions by
using the segmentation task as additional prior. This result motivated us to expand this
current model to the case of velocity-encoded MRI, where we are not only interested in

the magnitude image, but as well in the phase image.

6.1.2 Multi-Task Model for Phase Reconstruction and Magni-
tude Segmentation in Velocity-encoded MRI

In Chapter 4, we transitioned to dynamic MRI data and in particular to velocity-encoded
MRI, where now we are also interested in retrieving velocity information from the phase
images. Based on this, we extended our joint reconstruction and segmentation to also
tackle phase reconstruction. This leads to a non-convex and non-linear problem for which
we presented a joint optimisation scheme based on Bregman iteration.

We demonstrated that the joint model exploits the correlation and redundancy in the
data, yielding accurate estimations of the velocities, as well as an enhanced magnitude
reconstruction with sharp edges, thanks to the joint segmentation term. Furthermore,
we assessed the performance of our joint approach on synthetic and real velocity-encoded
MRI data and we show that our joint model improves the performances of the different
imaging tasks compared to the classical sequential approach. This result shows that our
proposed method is promising and can be used for real undersampled MRI data. Future
work includes the investigation of the full joint temporal and spatial optimisation. By
extending the model to the full 4D setting, we believe the performance would be further

enhanced. The current limitation is the lack of such fully 4D data.
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v Our solution can be used in different scenarios such as cardiovascular blood flow
analysis in medical imaging and assessment of complex hydrodynamics as in the case of

bubbly flow in chemical engineering.

6.1.3 Multi-Task model for motion-compensated MRI: Joint

Reconstruction, Registration and Super-resolution

In Chapter 5, we presented for the first time a multi-task framework that integrates, in a
single model, three relevant tasks, that is reconstruction, registration and super-resolution.
We went beyond bi-task models and proposed, to the best of our knowledge, the first
variational framework that allows computing three tasks jointly. Our model exploits the
temporal redundancy to correct for blurring artefacts and to increase image quality. As
a result, we obtain a single highly resolved and clear image reconstruction representing
the true underlying anatomy. Furthermore, the significance of our model is that we
guarantee preservation of anatomical structures whilst keeping fine details and reducing
blurring and noise artefacts in the final reconstruction. From a clinical point of view,
this is particularly important as we want to ensure that the biological tissues are not
deformed in unrealistic ways. We extensively evaluated our method against sequential
and other multi-task methods from the body of literature. We demonstrated that our
method achieves the best results whilst demanding low CPU time. Our method was
further supported by a user-study involving experts from the area of radiology.

v/ Our model shows promising results from a clinical perspective by producing high
quality, motion-compensated reconstructions that exhibit fine structures, while also being

computationally tractable.

6.2 Future Work

In this thesis, we have assessed the potentials and the benefit of multi-task models to solve
inverse imaging problems. Through these solutions, we set the basis for the development
of various tools that can be further investigated. Future projects and extensions related

to our proposed approaches in the thesis are discussed next.

> Hybrid Model for Multi-Task Reconstruction and Motion Estimation
In Chapter 5, we have presented a plug & play framework for motion correction in MRI,
where one or more tasks can be replaced by different algorithms. It has been showed
in [ARWGSI18] that, in dynamic MRI, that final reconstruction positively benefits from

computing simultaneously the physical motion. With this in mind, we now pose the
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question of how to improve the motion estimation with the aim of improving the MRI
reconstruction. Motivated by the successful approaches in the field of machine learning,
we propose to join variational methods and learning solutions in a unified hybrid model,
and in particular, using dictionary learning to improve motion estimation. In this context,
we start exploring a joint reconstruction and motion estimation framework with Timothée
Schmoderer, visiting the group during the summer from Normandie Université, INSA
de Rouen, France. In this project, we are interested in performing motion estimation

through optical flow improved by dictionary learning. Our proposed hybrid model reads

1
Bu,v,D,a) = [ 2 Au— fIP + x [Vl + Ao [l

reconstruction

ou
+)\4HV”UH1
1

— +Vu-v

A
T35y

optical flow
+ X5 || Tv = Dallf + Ala]

dictionary learning

where W is the wavelet operator, the image sequence is denoted by u, the optical flow is v
and f are the given data. The optical flow formulation is now linked to the reconstruction
(where the image sequence u is regularised using TV and wavelet transforms) and to a
dictionary learning. Here, we assume that u admits a sparse decomposition a in some
dictionary D, finally we impose some regularity on the flow. To obtain better learning
we use the operator T that extractd overlapping patches of the flow. Moreover we add
the constraint that the dictionary atoms (the column of D) to have norm less than 1 for

well-posedness purpose.

>Regularisation-based Plug-and-Play Compression Approach for MRI Data
In this thesis, we have proposed several multi-task models to improve the reconstruction
task through exploiting complementary information and outcomes from correlative tasks.
This led to another collaboration with Yehuda Dar, post-doc at the Computer Science
Department at Technion, Israel, in the context of optimising MRI processing through a
compression framework.
Acquisition and compression are two crucial stages in imaging systems. The acquired

data, describing the visual scene in a degraded form depending on the specific settings,
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is further processed to form images that can be compressed for storage or transmission.
The decompressed images are the important outcome of this overall process, and ideally
should be of a good quality (with respect to the original visual scene) considering the
bit-rate required for their binary compressed representations. However, this ultimate goal
of optimising the entire processing chain is often neglected and the individual tasks of
reconstruction and compression, do not interact with each other, leading to sub-optimal
overall performance. This problem is central in medical imaging, where thousands of
images are acquired every day with the need to be transferred and stored in an efficient
way. Here, we focus once again on MRI.

The MRI processing chain starts with a critical acquisition stage, providing data
for reconstruction of images required for medical diagnosis. In this project, we propose
a framework for joint optimisation of the MRI reconstruction and lossy compression,
producing medical images with an improved trade-off between quality and bit-rate.
Suppose u is the image reconstruction associated with the measurements f in the MRI
reconstruction setting that we have seen in this thesis (i.e., f = Au+n). Now we denote
by v the output of the compression/decompression of the original image w. Ideally,
we want to minimise the loss ||u — v||%, where u is unknown. Following [DEB18], we
formulate a new compression procedure in order to optimize the end-to-end rate-distortion
performance of the MRI processing system. Specifically, we want the system output v to
be the best approximation of the source signal u under the bit-budget constraint. Our
proposed model reads

v* = argmin R(v) + 1||.Av — fl5+TV(v)
ves 2

where we seek a solution v € S, where S is a discrete set of decompressed signals and
R(v) evaluates the bit-cost of the binary compressed representation associated with v.
Our method has the contemporary plug-and-play structure, implemented using the
alternating direction method of multipliers (ADMM) and the state-of-the-art standard
image compression as a module, iteratively applied. The significance of the proposed
algorithm is that, by joining the reconstruction task to the compression stage, the
multi-task process improves the decompressed images without any post-decompression
processing. Our preliminary experimental results show that our regularisation-based
approach for joint MRI reconstruction and compression significantly outperforms non-
regularised solutions to the joint task. Moreover, our approach is promising for clinical

practice, allowing low bit-cost for highly undersampled-data.






Appendix A

Mathematical preliminaries

In this chapter we recall some mathematical tools, notions, definitions and properties
which will be useful in this thesis. We start by recalling the notion of Lebesgue and
Sobolev space. Then, we give a brief summary of concepts and definitions from convex
analysis optimisation. We assume that the reader is familiar with basic real and functional
analysis, measure theory and Sobolev space theory, convex analysis and optimisation.
We refer the reader to [AFP00a, Brel0, EG91, Giu84, Rud87, ET99, BV04, Roc70].
We start by recalling the definitions of Lebesgue and Sobolev spaces, where we denote

by X an arbitrary measure space with measure .

Definition A.1. (Lebesgue space LP, LP-norm, 0 < p < oo) If f is a measurable function
on X, we define the LP-norm of f as

151, = ([ 1Pa)”

The space LP(u) consists of all f for which

1Fllp < oo

Definition A.2. (Lebesgue space L™, L*-norm) If f is a measurable function on X,
we define || f|loo to be the essential supremum of |f|. The space L*°(u) consists of all f
for which

[ flloe < o0

In this thesis, when considering n-dimensional vector space R™ with Lebesgue measure
p (see e.g. [Rud87, Chapter 2]), we write LP(R™) instead of L”(u), and use the short

notation || - ||, instead of the LP-norm for a discrete p-norm.
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The definition of Sobolev spaces (see e.g. [Eva98, Chapter 5]) will also be used in
Chapter 5.

Definition A.3. (Sobolev space W*?) Let 1 < p < oo and k € Z=°. The Sobolev space
WkP(Q) is the set of LP functions with weak derivatives of order k, i.e. it consists of all
locally summable functions u: Q — R such that for each multi-index o with |o| < k, the

weak derivative D*u exists and belongs to LP(€2).

From now on, we denote by X a finite-dimensional real vector space and recall the

notion of inner product.

Definition A.4. (Inner product) The inner product of two vectors v,w € X C R" is
defined as

n
(v,w) = vaw;.
i=1

A.1 Convex Analysis

We now state some basic definitions from convex analysis that we will used in the rest of
this thesis. We refer the reader to [ET99, BV04, Roc70] for more details.

Definition A.5 (Convex set). A subset C' of R™ is called convex if
1-Nz+AxyeC

forallz,y e C'and 0 < XA < 1.

Definition A.6 (Epigraph). The epigraph of a function f: X — R™ U {400, —0c0} is
defined as
epif ={(z,n) € X xR, = f(z)}.

Definition A.7 (Convex function). The function f is convex on X if epif is convex as

a subset of R"*1,

Definition A.8 (Effective domain). Let f be a convex function on X. Then, its effective

domain is defined as
domf = {x | 3 i+ (z,11) € epif} = { | f(x) < +o0}

and is the projection on R™ of the epigraph of f.
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Definition A.9 (Proper function). A convex function f is said to be proper if
Jz: f(r) <4oo and Vz: f(x)> —o0.

Definition A.10 (Lower semi-continuous (1.s.c.)). A proper function f: X — R is said
to be l.s.c. at a point x € X if

£(a) < lim f(a)
for every sequence w1, xa, . .. in X such that x; converges to x and the limit of f(x1), f(z2), ...
exists in [—oo, +00].
Theorem A.11. For f: R™ — [—00, 00| the following conditions are equivalent:
(a) f isl.s.c. throughout R™,
(b) {z | f(z) < a} is closed for every o € R,
(c) epif is a closed set in R™*1,

Proof. The proof can be found in [Roc70]. O

Now, let X and Y be two finite-dimensional real vector spaces equipped with an inner
product (-,-) and a norm || - || = (-,-)2and let X* and Y* be their dual space. Let us
consider I : X — Y to be a bounded continuous linear operator with operator norm
defined as

1| = sup{[|[Ca] -z € X, [lzf <1} (A1)

and let K*: Y* — X* be its adjoint operator. Let us denote with R := R U {400} the
set of extended real numbers. Now, let f : Y — R and ¢ : X — R be proper, convex and
lower semi-continuous functions. We denote as dom(f) the domain of F' as the set of

points where f is finite, i.e.
dom(f) ={zr e X : f(x < o0} (A.2)

A function f is called proper if dom(f) # 0. The Legendre—Fenchel conjugate of f is
defined as follows.

Definition A.12 (Legendre-Fenchel conjugate (convex conjugate)). For a proper, convex

and l.s.c. function f on X, its Legendre-Fenchel conjugate is defined as

f*(y) = sup(z,y) — f(x) V" e X

zeX
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We can now introduce the concept of subdifferential.

Definition A.13 (Subgradient, subdifferential). A subgradient of a convex function f
at a point x € X is a vector y in the dual space of X such that

f) > fle)+(y,z—x) ¥ .

The set of all subgradients of f at x is called the subdifferential of f at x and is denoted
by Of (x).

A.2 Primal Dual Hybrid Gradient Method

The above definitions are fundamental to describe the primal-dual hybrid gradient
(PDHG) method, proposed in [CP11a, CP16, EZC10, PCBC09] and used throughout
this thesis to solve convex problems and sub-problems. Here, we give a brief summary.

We consider the general primal problem
min F(Kz) + G(x)
and of the corresponding dual problem

max — (G*(=K*y) + F*(y)) ,

yeYy

making use of the definition of convex conjugate. We now write the correspondent
saddle-point problem
min max(Kzx,y) + G(x) — F*(y), (A.3)

zeX yey

where G: X — [0,00] and F*: Y — [0, 00] are proper, convex, l.s.c. functions. Now we

can definte the proximity operator. or resolvent operator.

Definition A.14 (Proximity operator (resolvent)). If f is a convez, proper and l.s.c.

function, then

1 _
2 = prox, ;(x) = arg min {f(z) - Z“Z — x||2} = (I +70f) ! (x),
where T > 0, is the proximity operator or resolvent of f.

When the proximity operators are easy to compute, one can solve (A.3) as follows
[CP11a]
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Algorithm 4: Primal-Dual Algorithm by Chambolle and Pock [CP11a]
Input: 7,0 >0, 0 € [0,1], 2, 3°, 20 = 2°

for £k > 0 do
yk+1 (I +c0F*)~L(y* + oKz¥)
oF L = (I 4+ 70G) " (aF + 7(=K*yF+1))
Tchrl — 2R (xRt k)

end for

Output: Z,7.

2
y* = argmin (M + F*(y)) = (I + 00F*) (z),
yey 20

o~ = .
x* = arg min < o LA G(a:)) = (I +70G) (21).

zeX

where z; and 2 are the input of the proximal operators. By setting z; and z3 as in the
explicit gradient descent method

{ZQZyk+Jq, q € OF™, (A5)

2 =1"+7p, pedG.

and from the optimality conditions of (A.3) , ¢ = Kz* and p = —K*y*, the alternating
iterative scheme reads

(I +o0F*) " (y + oK),
— (T4 70G) ™ (@ + T(~KCy ), (A.6)
T = R g(ah T — 2h),

where T is the primal variable accelerated by the acceleration parameter 6 € [0, 1].
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Appendix of Chapter 3

B.1 Numerical Results on Phantoms

In this subsection, we present additional results of our joint approach compared to the
sequenatial cases for phantoms.

) Groundtruth reconstruction, (¢) Bregman reconstruc- (d) Joint reconstruction,
a = 0 15, RRE=0.031, tion, a = 1.1, RRE=0.043, « = 0.8, RRE=0.026,
PSNR=27.44 PSNR=27.21 PSNR=28.27

(e) Sampling matrix, 15% (f) Segmentation, 3 = 0.001 (g) Bregman segmentation, (h) Joint segmentation, 8 =
RSE=0.022 5 =0.001 RSE=0.040 0.001, 6 = 2, RSE=0.022

Figure B.1: This example shows clearly the effect of the parameter § in the joint model.
The segmentation is easy to achieve and we do not see a significant improvement in joint
segmentation compared to the TV sequential segmentation, but there is a small gain compared
to the sequential Bregman segmantation. However, the joint reconstruction results improved
thanks to the parameter 6 which biases the reconstruction to be closer to the segmentation.
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(a) Groundtruth (b) TV  reconstruction, (c) Bregman reconstruc- (d) Joint reconstruction,
« = 03, RRE=0.058, tion,«=1.5, RRE=0.131, a = 15 RRE=0.071,
PSNR=21.43 PSNR=21.49 PSNR=21.87

(e) Sampling matrix, 15% (f) Segmentation, S = (g) Bregman segmentation, (h) Joint segmentation, 8 =
0.001, RSE=0.096 B = 0.001, RSE=0.121 0.001, § = 0.1, RSE=0.091

Figure B.2: In this example, we can see that the reconstructions are quite similar. However in
the joint reconstruction, the outer yellow circle, which is completely ignored by the sequential
reconstructions, is partially detected. This is also the case for the joint segmenation.

I

(a) Groundtruth (b) TV  reconstruction, (c¢) Bregman reconstruc- (d) Joint reconstruction,
« = 015 RRE=0.074, tion, @ — 2, RRE=0.071, a = 0.8, RRE=0.047,
PSNR=17.15 PSNR=17.65 PSNR=19.015

(e) Sampling matrix, 8% (f) Segmentation, 8 = 0.01, (g) Bregman segmentation, (h) Joint segmentation, 8 =
RSE=0.016 B = 0.01, RSE=0.022 0.01, § = 1, RSE=0.014

Figure B.3: In this example for the bubbly flow, we can see clearly an improvement for both
joint reconstruction and joint segmentation. The contrast in the joint reconstruction is better
recovered and the segmentation is more accurate, especially for the bubbles close to the edge of
the pipe. The joint method results particularly useful for the bubbly flow application.
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Appendix of Chapter 5

This appendix extends the experimental results and theoretical analysis of Chapter 5 to

further support our proposed multi-task framework.

C.1 Further Visual Assessment of Our Proposed Ap-

proach

In this section, we extend the reconstruction comparisons from the main chapter and
provide results for Dataset 4.

C.2 Further Details on the User-Study

To further support our results, we performed a user-study following standard protocol
in clinical settings. That is- to ask experts and trainees to evaluate the reconstructions
based on a scoring system. For this study, we had twelve experts and trainees from the
area of radiology.

Scoring Procedure. We create an electronic survey in which, after giving the
instructions to the users, they were provided with two-part evaluation. For the first
part, they evaluated the reconstructions related to sequential models. To do this, they
were provided with the reconstructions of the five dataset, for acceleration factor ={fully
sampled, 2x, 4x, 6x, 8x}, and for the approaches ={RIGID, HYPER, OURS} (see
Chapter 5 for description on these models). With the purpose of capturing they scores,
we design a three-point Likert rating scale in which experts were asked to indicate the
level of agreement, ranging from best reconstruction to worst reconstruction. Similarly,
this protocol was followed to evaluate other multi-task methods = {DC-CD, GW-CS,
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DATASET 4 DATASET 4
HYPER

FULLY
SAMPLED
FULLY
SAMPLED

Figure C.1: Reconstruction results for Figure C.2: Reconstruction results for
Dataset 4 compared to sequential ap- Dataset 4 for different acceleration factors
proaches based on rigid and hyperelastic and different joint approaches in compari-
registration, for different acceleration fac- son to our proposed method.

tors.

OURS}. Fig. 1 displays the results in terms of % the worst ranked for all compared
approaches.

Statistical Analysis. The circle plots displayed in Figure 5.2b and 5.2b, reflects the
averaged results of all scoring (i.e. for all acceleration and all reconstructions). However,
to test if there was statistical significant difference between the approaches we took into
account the the scoring per each reconstruction, and ran the nonparametric Friedman test
to compare the three approaches (for both sequential and multi-task frameworks). We
also applied corrections for multiple comparisons during the statistical analysis. Overall,
we found statistical significant difference between our approach and the compared ones.
This support our previous discussions on our model offer the best reconstruction in

comparison to the compared approached for both sequential and joint models.
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C.3 Proof of Theorem 5.1

Proof. The proof is based on arguments coming from the calculus of variations and is
divided into three steps. We recall the assumptions on g¢;: ¢; : Rt — Rt ¢,(0) = 1,
g 1s strictly decreasing, EIJP g(r) = 0, and there exists ¢ > 0 such that ¢ < g, < 1

everywhere. We also have ¢, : Q — Q thanks to Ball’s results [BalS1a] as seen later.

Coercivity inequality: We first have that G(0, (Id);=;.... 7) = 4a;meas(f2)
+21Tt§||$t||%2(R2) < +oo. Letu e BV(Y), ¢y € W, Vt € {1,--- ,T} such that (Cu)o¢, €
BV, 0(Q),Vt € {1,--- , T}, we then derive a coercivity inequality:

1 T
G(u, (t)i=1,- 1) = fZ(a1||v¢t||i4(Q,Mg(R))
t=1

)
2 1det Vo, "L
1 - p—
+ ZH(CU) o ¢y 72y + 0TV, ((Cu) o ¢y ') + a TV (u)
1
2

a
+ ;H det V|| 11(q) +

Hth%z(Rz) — 3agmeas(2)).

Indeed, ((Cu)og; ') € BV, 0(Q) C BV(Q) C L*(Q) ([Bal01]) with continuous embedding,
and ((Cu) o ¢;'). is the extension by 0 outside the domain Q of (Cu) o ¢; !, then
1((Cu) o i ellz2mey = [|(Cu) o ¢y |12 < +o0, and finally Plancherel’s theorem
gives s [LA((CH) o 67 )y < IF(Cu) 0 67 )elauay = I((Cu) o 7).y =
1(Cu) o 67 oy

The infimum is thus finite. Let (upn, (¢tn)i=1...7)n € {u € BV(Y), ¢ € W, Vt =
L,---,T|(Cu)og;' € BV, o), ¥t € {1,--- , T}} be a minimizing sequence such that

lim G(un, (Prn)i=1, N) inf %G(u, (D) 1=1,.. 1)

n—+00 ()=t 7)€
Extraction of converging subsequences: From the previous coercivity inequality

and the finiteness of the infimum we deduce that:

o (¢t.n)n is uniformly bounded according to n in W'4(Q,R?) for each t =1,--- | T
by using the generalized Poincaré’s inequality and the fact that ¢, is equal to the
identity on the boundary 0f2.

o (det Vyp)n is uniformly bounded according to n in L*(2) for each t = 1,--- , T.

o ((Cupn) o ¢1)n is uniformly bounded according to n in BV, () and thus in BV ()

since ¢ < gy < 1 everywhere for each t =1,--- | T.



128 Appendix of Chapter 5

Therefore we can extract subsequences (but for the sake of conciseness we keep the same

notations) such that :

* Dt e ¢, in WH4(Q,R?) for each t = 1,--- ,T and by continuity of the trace

operator, we deduce that ¢, € Id + W, (Q, RQ).
» det Vo, — 4 in L) forallt =1,---,T.

e ((Cuy) 0 drn) —, in L9(Q) for ¢ € [1,2[ and thus in L'(€, g;) with oy €
BV () C BV, (Q2). By continuity of the trace operator, we deduce that a; €
B‘/;Yt,U(Q)'

e ((Cuy) o ¢r) T e in L?*(Q2) for each t = 1,---,T by uniqueness of the
weak limit in L'(Q) and the continuous embedding of L?(Q) C L'(€). Also,

since o, € BV, o(Q2), we can extend it by 0 outside the domain Q and we have
((Cuy) © Prp)e = (ay)e in L?(R?), for each t = 1,--- T

Also, from [Dac08, Theorem 8.20], we have that det V¢, e det V¢, in L?*(Q) for
each t = 1,---,T, and by uniqueness of the weak limit in L?(€2) and the continuous
embedding L*(Q) C L*(Q), we deduce that 6, = det V¢, for each t = 1,--- ,T. Also,
since we have for § =2+ 1 > 2

(¥ 01)7 @) det Voo (2) da

_/ IV Gen(2)]|%(det V)~ da,
1
det Vi,

1T 0y

< Vorallts@aneyl Tor— 170

using Holder’s inequality with p = %, r= ( )

= 4. This quantity
is uniformly bounded according to n from What precedes and we deduce from [Bal81b,

Theorem 1 and 2] that (¢y,) are bi-Hélder’s homeomorphisms and therefore ¢, 1 exists.

Weak lower semi-continuity: Wy, is convex and continuous. If v, ¥ in
n—> (o.9]

Wh4(Q,R?), then Vi, -, Vi in L*(Q, My(R)) and we can extract a subsequence
still denoted (V1)) such that Vi, e V4 almost everywhere in Q. If §, — 0§ in

n——+o00

L4(€2), then we can extract a subsequenee still denoted (,,) such that d, - § almost
everywhere in 2. Then, by continuity of Wo,, we get that Wo,(Vi,(x),0,(x)) —

n—-+0o

Wo,(V(x),d(z)) almost everywhere in Q. Finally, by applying Fatou’s lemma, we
have that 1iI£l}_Ilf Jo Wop(Von(2),8n(2)) dz > [o Wo,(Vib(x),6(x)) dz. Since Wo, is
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convex, 8o is [ Wo,(&(), 6(x)) dz, and we can apply [Bré83, Corollaire II1.8] to get that
Jo Wop(&(z),6(x)) dz is lower semicontinuous in L*(Q, My(R)) x L*(Q). We deduce that
lim inf [, Wop(Véyn(x), det Vo u(x)) dz > o Wop(V (), det V() da.

Also since (Cuy,) o ¢ T in L'(Q) and so in L'(€2, g;), then by the semi-continuity
theorem from [Bal01, Theorem 3.2], we conclude that TV, (a;) < lim +120f TV, ((Cuy) o
¢im) forallt=1,--- . T.

A is a linear and operator and continuous for the strong topology from L?*(R?) to L?(R?).
Therefore, by applying [Bré83, Theorem II1.9], A is continuous from the weak topology
of L*(R?) to the weak topology of L*(R?). As ((Cuy) © ¢rn)e s (ay)e in L*(R?),
we deduce that F((Cuy,) o ¢rp)e T A(at). and thus A((Cuy) © ¢rp)e — 4 e
Alay)e — x; in L*(R?). By the lower semi-continuity of the norm, we deduce that
lim inf[|A((Cun) © drn)e — Tel| 7o gy = IMA(@r)e — 24|72 (o)

We now need to prove that (Cu,) o gb;,ll o ¢ = Cuy, W, QO ¢, = U in LP(Q) for all
t=1,---,T. We first have :

[(Cuy) o ¢;71L 0 drn —  © G| i)
< [[(Cuy) o Cbt_% O P — Q4 O gbt,nHLP(Q)

+ |l o @y —ay 0 thHLp(Q).

We now focus on the first term and make the change of variable y = ¢, (z) < = = ¢ 1 (y)

- - 1 :
and dy = det Vo ,(2) dx, dx = det Vor,n(d; - (1) dy :

/Q |(Cun) (@] QS;; (@] gzﬁt’n — QO ¢t,n|p dl’

1
= [, )(Cu) 0 01}~ e 4ot Vun(@0(0)
1

(@) </ﬂ | det Vo n(din(y))[? dy) ’

dy,

-

< [[(Cun) 0 67, — a5,

L7
1
5

1
< o — s
< [[(Cun) 0 6,5 atHLTp(Q) </Q | det Vo, (2))]* dl’) ’

using Hélder’s inequality and making another change of variable. Since (Cuy) o ¢ ! _>—+>

a; in L%(Q), as 2 < 2, and ||W||L4(Q) is uniformly bounded, we deduce that

fQ ’(Cun) © (btir% © (bt,n — o O ¢t,n| dr — 0.

n—-+00

According to [DDE12, Theorem 6.70], there exists a sequence (£F); of functions in
C2°(2) such that |jay — &1 e 0 and [, |VEF| e JolVai| + [5q |on] dz with
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Jsq ] dx = 0 since ay = 0 on 99, for all t = 1,--- ,T. Thus (£F) is uniformly bounded
according to k in BV (Q) C L(Q), for g € [1,2[, and therefore & T G in L4(Q) for
c —+00
q € [1,2[. Let ¢ > 0. Thus we fix N € N* such that [|¢ — @t"L%(Q) < £. We now have :
||Oét o ¢t,n — Q4 0 QgtHLP(Q) < HOét o ¢t,n - fiv o ¢t,n||LP(Q)

+ Hffv o ¢t,n - fiv ° QEtHLP(Q) + Hf{v ° &t — o GEtHLP(Q),
1

N |p %
<(f o= &P o G
+ Lel|@rn — QgtHLp(Q,R?)
N . p 1 %
e o T

with L. the Lipschitz constant of &V since it belongs to C2°(€2) and so is Lipschitz
continuous, and using a change of variable. As ¢, " ¢, in WHA(Q) C LP(Q,R?),
there exists K € N* such that for any n > K, ||¢yn — &l reare) < 577~ From now on,

we assume n satisfies n > K, and we use Holder’s inequality :

||04t © ¢t,n — 0t 0 QEtHLP(Q) < ||CYt - ftNHL%P(Q)

1

RN
o | det Vo n(dr0(y))]? 3

1

1 5p
N
—ay|| 3 - dy) .
e ol g </ﬂ | det Vou (o, ()P y)
o — v TS §
T3 det Voun g 3 3]det Vorlpig

with HWH 14(0) uniformly bounded according to n and ||ﬁ” LAQ) l_oounded from
what precedes. So by letting € tend to 0, we obtain that [q, [on 0 ¢y, — a0 |P dx - 0
and consequently (Cun)ogb;%ogbm = Cuy, - o forallt =1,---, N. By uniqueness
n o

of the limit, we have that U = oy 0 ¢y < ay = Uo ¢y forall t = 1,--- , T in LP(Q), with
U € LP() and U o ¢t € BV, o(Q).

We now set u,, = qu Jo up dx, and wg,, = w, — U,. We clearly have [o ug,, dr = 0 for all
n, and TV (ug,,) = TV (u,) is uniformly bounded thanks to the coercivity inequality. We
denote this uniform bound by v. Thus using Poincaré-Wirtinger’s inequality we obtain

ol L1y < a1 TV (uo,) < v,
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with ¢; > 0. We now need a bound for ||Ctiy||r(q)

1CTn 1200y = 20 Cin || o) IC I 2Lt (0,00 0,0 L1 (2
<|ICinl70 0y — 201Cn | Lr() | Crio | o),

< ([|Cn | Lo () — IComllLe(e)?,

< |IC(n + tom) 700

< |CunllZoig) < & < +oo,

as Cu, strongly converges in LP(12). Besides, we have ||C|| 1), r) |tonl @) <
ICllzr ) ryc1v = ¢z < +oo and thus [|Cly| @) < 2y/c3 +c3. But we also
know that HCﬂnHLp(Q) |Q,||fQ, Uy dz|||CL||r ) < 24/¢3 + 3. Since C1 # 0, we have

2 2
||fQ, up, dz| < 2VETE < 400, We therefore have

[ ICT]|zp (0

1
Juallsory < o + 1 [, wndalllzen,
< wonllzr —I—|/Q/ Uy, dxl,
< v+ || < +oo.

Thus u,, is uniformly bounded according to n in BV (€)') and there exists a subsequence
still denoted (u,) such that w, o U in L'(QY) with u € BV(Y'). By continuity of the

operator C and the uniqueness of the limit, we deduce that Cu,, — Cu = U in LP(Q).

n—-+o0o
By the semi-continuity theorem, we get TV (u) < llril inf TV (u,).
By combining all the results, we obtain that +oco > inf G(u, (¢t)t=1,.. 1) =

((Ge)emr,... 7)EU
i inf G, (G )ecr, ) >+ 35TV, ((€0) 0 677) + 3IA(CH) o o6~ ol +
Jo Wop(Véy) do 4+ a TV (u). Tt thus means that det Vo, € L*(), — tv¢ € LY(Q), and
det Vg, > 0 almost everywhere in Q for all t = 1,--- ,T. Indeed, since
Wop(Voi(z), det V() = +00 when det V() < 0, it means that the set on which it

happens must be of null measure otherwise we would have [, Wop(Vﬁgt, det V) dz = +oo0.

Also, by applying the same reasoning for each ¢;,, we prove that ¢, is a bi-Holder
homeomorphism and have that ¢, € # for each t =1,--- ,T.

We thus have proved the existence of minimisers for our problem (5.7).
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