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Abstract: In this paper we consider random planar maps weighted by the self-dual
Fortuin–Kasteleyn model with parameter q ∈ (0, 4). Using a bijection due to Sheffield
and a connection to planar Brownian motion in a cone we obtain rigorously the value of
the annealed critical exponent associated with the length of cluster interfaces, which is
shown to be

4

π
arccos

(√
2 − √

q

2

)
= κ ′

8
,

where κ ′ is the SLE parameter associated with this model. We also derive the exponent
corresponding to the area enclosed by a loop, which is shown to be 1 for all values of
q ∈ (0, 4). Applying the KPZ formula we find that this value is consistent with the
dimension of SLE curves and SLE duality.
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1. Introduction

Random surfaces have recently emerged as a subject of central importance in probability
theory. On the one hand, they are connected to theoretical physics (in particular string
theory) as they are basic building blocks for certain natural quantizations of gravity
[17,18,30,36]. On the other hand, at the mathematical level, they show a very rich and
complex structure,which is only beginning to be unravelled, thanks in particular to recent
parallel developments in the study of conformally invariant random processes, Gaussian
multiplicative chaos, and bijective techniques. We refer to [24] for a beautiful exposition
of the general area with a focus on relatively recent mathematical developments.

This paper is concerned with the geometry of random planar maps, which can be
thought of as canonical discretisations of the surfaces of interest (Fig. 1). The particular
distribution on planar maps that we consider was introduced in [38] and is roughly the
following (the detailed definitions follow in Sect. 2.1). Let q < 4 and let n ≥ 1. The
random map Mn that we consider is decorated with a (random) subset Tn of edges. The
map Tn induces a dual collection of edges T

†
n on the dual map of M (see Fig. 2). Let m

be a planar map with n edges, and t a given subset of edges of m. Then the probability
to pick a particular (m, t) is, by definition, proportional to

P(Mn = m, Tn = t) ∝ √
q�

, (1.1)

where � is the (total) number of loops in between both primal and dual vertex clusters
in t which is equal to the combined number of cluster in Tn and T †

n minus 1 (details in
Sect. 2.1). Equivalently given the map Mn = m, the collection of edges Tn follows the

Fig. 1. FK-weighted random map and loops for q = 0.5 (left) and q = 2 (corresponding to the Ising model,
right). The shade of loops indicates their length (dark for short and light for long loops).
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1. 2.

3. 4.

Fig. 2. A map m decorated with loops associated with a set of open edges t . Top left the map is in blue,
with solid open edges and dashed closed edges. Top right Open clusters and corresponding open dual clusters
in blue and red. Bottom left every dual vertex is joined to its adjacent primal vertices by a green edge. This
results in an augmented map m̄ which is a triangulation. Bottom right the primal and dual open clusters are
separated by loops, which are drawn in black and are dashed. Each loop crosses every triangle once, and so
can be identified with the set of triangles it crosses. See Sect. 2.1 for details (color figure online)

distribution of the self-dual Fortuin–Kasteleyn model, which is in turn closely related
to the critical q-state Potts model, see [3,25]. Accordingly, the map Mn is chosen with
probability proportional to the partition function of the Fortuin–Kasteleyn model on it.

One reason for this particular choice is the belief (see e.g. [21]) that after Riemann
uniformisation, a large sample of such a map closely approximates a Liouville quantum
gravity surface. This is the random metric obtained by considering the Riemannian
metric tensor

eγ h(z)|dz|2, (1.2)

where h(z) is an instance of the Gaussian free field. (We emphasise that a rigorous
constructionof themetric associated to (1.2) is still amajor openproblem.)Theparameter
γ ∈ (0, 2) is then believed to be related to the parameter q of (1.1) by the relation

q = 2 + 2 cos

(
8π

κ ′

)
; γ =

√
16

κ ′ . (1.3)

Note that when q ∈ (0, 4) we have that κ ′ ∈ (4, 8) so that it is necessary to generate
the Liouville quantum gravity with the associated dual parameter κ = 16/κ ′ ∈ (0, 4).
This ensures that γ = √

κ ∈ (0, 2), which is the nondegenerate phase for the associated
mass measure and Brownian motions, see [6,7,22].

Observe that when q = 1, the FKmodel reduces to ordinary bond percolation. Hence
this corresponds to the case where M is chosen according to the uniform probability



430 N. Berestycki, B. Laslier, G. Ray

distribution on planarmapswith n edges. This is a situation inwhich remarkably detailed
information is known about the structure of the planar map. In particular, a landmark
result due to Miermont [33] and Le Gall [31] is that, viewed as a metric space, and
rescaling edge lengths to be n−1/4, the random map converges to a multiple of a certain
universal random metric space, known as the Brownian map. (In fact, the results of
Miermont and Le Gall apply respectively to uniform quadrangulations with n faces and
to p-angulation for p = 3 or p even, whereas the convergence result concerning uniform
planar maps with n edges was established a bit later by Bettinelli, Jacob and Miermont
[11]). Critical percolation on a related half-plane version of the maps has been analysed
in a recent work of Angel and Curien [1], while information on the full plane percolation
model was more recently obtained by Curien and Kortchemski [16]. Related works on
loop models (sometimes rigorous, sometimes not) appear in [10,12,13,23,26].

While the model makes sense for any q > 0, we focus only on the case q ∈ (0, 4)
(in fact, the model also makes sense for q = 0 if we define 00 = 1, but in that case there
is a single space filling loop so this would not be a meaningful setup for our results).
Indeed the geometry of associated planar maps is expected to be significantly different
when q > 4: the map is expected to become tree-like and to have the continuum random
tree as its scaling limit; and no conformally invariant scaling limit is expected to take
place (note that formally when q > 4 the parameter κ in Eq. (1.3) is purely imaginary).
It is known that already on nonrandom lattices, the phase transition is discontinuous (as
recently proved in [20]) and on random lattices it is known [38] that some observable
display a phase transition at q = 4. The case q = 4, corresponding to κ = 4, is more
delicate and is not part of our analysis; it remains an open question whether the statement
of Theorem 1.1 (which is meaningful formally) is still correct in this case.

The goal of this paper is to obtain detailed geometric information about the clusters
of the self-dual FK model in the general case q ∈ (0, 4). As we will see, our results are
in agreement with nonrigorous predictions from the statistical physics community. In
particular, after applying the KPZ transformation, they correspond to Beffara’s result
about the dimension of SLE curves [4] and SLE duality.

1.1. Main results. Let Ln denote a typical loop, that is, a loop chosen uniformly at
random from the set of loops induced by (Mn, Tn) which follow the law given by (1.1).
Such a loop separates the map into an outside component which contains the root and an
inside componentwhich does not contain the root (precise definitions follow inSect. 2.1).
If the loop passes through the root, we leave Ln undefined (this is a low probability event
so the definition does not matter). Let Len(Ln) denote the number of triangles in the
loop and let Area(Ln) denote the number of triangles inside it including the triangles in
the loop (see Definition 2.2). Let

α = π

4 arccos

(√
2−√

q
2

) = κ ′

8
(1.4)

where q and κ ′ are related as in (1.3).

Theorem 1.1. We have that Len(Ln) → L and Area(Ln) → A in law. Further, the
random variables L and A satisfy the following:

P(L > k) = k−1/α+o(1), (1.5)
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and
P(A > k) = k−1+o(1). (1.6)

Remark 1.2. As we were finishing this paper, we learnt of the related work, completed
independently and simultaneously, by Gwynne, Mao and Sun [28]. They obtain several
scaling limit results, showing that various quantities associated with the FK clusters
converge in the scaling limit to the analogous quantities derived from Liouville quantum
gravity in [21]. Some of their results also overlapwith the results above. In particular they
obtain a stronger version of the length exponent (1.5) by showing that in addition that
the tails are regularly varying. Though both papers rely on Sheffield’s bijection [38] and
a connection to planar Brownian motion in a cone, it is interesting to note that the proof
techniques are substantially different. The techniques in this paper are comparatively
simple, relying principally onharmonic functions and appropriatemartingale techniques.

Returning to Theorem 1.1, it is in fact not so hard to see from the works of Sheffield
[38] and Chen [15] that when rooted at a randomly chosen edge, the decorated maps
(Mn, Tn) themselves converge for the Benjamini–Schramm (local) topology, with the
loops being all finite a.s. in the limit. (This is already implicit in the work of Sheffield
[38] and properties of the infinite local limit (M∞, T∞) have recently been analysed in a
paper of Chen [15]. In particular a uniform exponential bound on the degree of the root is
obtained; together with earlier results of Gurel Gurevich and Nachmias [27], this implies
for instance that random walk on M∞ is a.s. recurrent.) From this it is not hard to see
that Len(Ln) and Area(Ln) converge in law in Theorem 1.1. The major contributions
in this paper are therefore the other assertions in Theorem 1.1.

Our results can also be phrased for the loop L∗ going through the origin in this infinite
map M∞. Since the root is uniformly chosen from all possible oriented edges, it is easy
to see that this involves biasing by the length of a typical loop. Hence the exponents
should be slightly different. For instance, for the length Len(L∗) and Area(L∗) of L∗,
we get

P(Len(L∗) > k) = k−1/α+1+o(1), (1.7)

The exponent in (1.7) is straightforward to see from (1.5) since L∗ is a size-biased
version of L (note that α < 1 and hence E(L) < ∞). For the area, it should be possible
to show with extra work that

P(Area(L∗) ≥ k) = k−(1−α)+o(1), (1.8)

However, we did not attempt a rigorous proof in this paper. (The authors of [28] have
kindly indicated to us that (1.8), together with a regular variation statement, could prob-
ably also be deduced from their Corollary 5.3 with a few pages of work, using arguments
similar to those already found in their paper).

While our techniques could also probably be used to compute other related exponents
we have not pursued this, in order to keep the paper as simple as possible.We also remark
that the techniques in the present paper can be used to study the looptree structure of
typical cluster boundaries (in the sense of Curien and Kortchemski [16]).

Remark 1.3. In the particular case of percolation on the uniform infinite random planar
map (UIPM) M∞, i.e. for q = 1, we note that our results give α = 3/4, so that the
typical boundary loop exponent is 1/α = 4/3. This is consistent with the more precise
asymptotics derived by Curien and Kortchemski [16] for a related percolation interface.
Essentially their problem is analogous to the biased loop case, for which the exponent is,
as discussed above, 1/α − 1 = 1/3. This matches Theorem 1 in [16]. See also Theorem
2 in [1] for related results for half-plane maps.
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1.2. Cluster boundary, KPZ formula, bubbles and dimension of SLE. KPZ formulaWe
now discuss how our results verify the KPZ relation between critical exponents. We first
recall the KPZ formula. For a fixed or random independent set A with Euclidean scaling
exponent x , its “quantum analogue” has a scaling exponent�, where x and� are related
by the formula

x = γ 2

4
�2 + (1 − γ 2

4
)�. (1.9)

See [7,22,37] for rigorous formulations of this formula at the continuous level. Con-
cretely, this formula should be understood as follows. Suppose that a certain subset
A within a random map of size N has a size |A| ≈ N 1−�. Then its Euclidean ana-
logue within a box of area N (and thus of side length n = √

N ) occupies a size
|A′| ≈ N 1−x = n1/2−x/2. In particular, observe that the approximate (Euclidean) Haus-
dorff dimension of A′ is then 2 − 2x .

Cluster boundary. The exponents in (1.5) and (1.6) suggest that for a large critical FK
cluster on a random map, we have the following approximate relation between the area
and the length:

L = Aα+o(1). (1.10)

The relation (1.10) suggests that the quantum scaling exponent� = 1−α. Applying the
KPZ formula we see that the corresponding Euclidean exponent is 1/2 − κ ′/16. Thus
the Euclidean dimension of the boundary is 1 + κ ′/8. The conjectured scaling limits of
the boundary is a CLEκ ′ curve and hence this exponent matches the one obtained by
Beffara [4].

Bubble boundary. We now address a different sort of relation with its volume inside,
which concerns large filled-in bubbles or envelopes in the terminology which we use
in this paper (see Definition 2.2 and immediately above for a definition). In the scaling
limit and after a conformal embedding, these are expected to converge to filled-in SLE
loops and more precisely, quantum discs in the sense of [21]. At the local limit level,
they should correspond to Boltzmann maps whose boundaries should form a looptree
structure in the sense of Curien and Kortchemski [16]. We establish in Theorem 3.2,
items iv and v that with high probability

|∂B| = |B|1/2+o(1). (1.11)

This suggests a quantum dimension of � = 1/2 and remarkably, this boundary bulk
behaviour is independent of q (or equivalently of γ ) and therefore corresponds with the
usual Euclidean isoperimetry in two dimensions. Applying the KPZ formula (1.9), we
obtain a Euclidean scaling exponent

x = 1

2
− 1

κ ′ .

On the other hand, recall the Duplantier duality which states that the outer boundary of
an SLEκ ′ curve is an SLE16/κ ′ = SLEκ curve. This has been established in many senses
in [19,34,39]. Hence the dimension of the outer boundary should be 1 + κ/8 = 1 + 2/κ ′
which is equal to 2(1 − x). Thus KPZ is verified.
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2. Background and Setup

2.1. The critical FK model. Recall that a planar map is a proper embedding of a
(multi) graph in a 2 dimensional sphere which is viewed up to orientation preserving
homeomorphisms from the sphere to itself. Let mn be a map with n edges and tn be
the subgraph induced by a subset of its edges and all of its vertices. We call the pair
(mn, tn) a submap decorated map. Let m†

n denote the dual map of mn . Recall that the
vertices of the dual map correspond to the faces of mn and two vertices in the dual map
are adjacent if and only if their corresponding faces are adjacent to a common edge in
the primal map. Every edge e in the primal map corresponds to an edge e† in the dual
map which joins the vertices corresponding to the two faces adjacent to e. The dual map
t†n is the graph formed by the subset of edges {e† : e /∈ tn}. The map mn is endowed
with an oriented edge which we call the root edge.

Given a subgraph decorated map (mn, tn), one can associate to it a set of loops which
form the interfaces between primal and dual clusters. To define it precisely, we consider
a refinement of the map mn which is formed by joining the dual vertices in every face
of mn with the primal vertices incident to that face. We call these edges refinement
edges. Every edge in mn corresponds to a quadrangle in its refinement formed by the
union of the two triangles incident to its two sides. In fact the refinement of mn is a
quadrangulation and this construction defines a bijection between maps with n edges
and quadrangulations with n faces.

There is an obvious one-one correspondence between the refinement edges and the
oriented edges in a map. Every oriented edge comes with a head and a tail and a well
defined triangle to its left. Simply match every oriented edge with the refinement edge
of the triangle to its left which is incident to its tail. We call such an edge the refinement
edge corresponding to the oriented edge.

Given a subgraph decorated map (mn, tn) define the map (m̄n, t̄n) to be formed by
the union of tn, t

†
n and the refinement edges. The root edge of (m̄n, t̄n) is the refinement

edge corresponding to the root edge in mn oriented towards the dual vertex. The root
triangle is the triangle to the right of the root edge. It is easy to see that such a map is a
triangulation: every face in the refinement of mn is divided into two triangles either by
a primal edge in tn or a dual edge in t†n . Thus every triangle in (m̄n, t̄n) is formed either
by a primal edge and two refinement edges or by a dual edge and two refinement edges.
For future reference, we call a triangle in (m̄n, t̄n) with a primal edge to be a primal
triangle and that with a dual edge to be a dual triangle (Fig. 3).

Finally we can define the interface as a subgraph of the dual map of the triangulation
(m̄n, t̄n). Simply join together faces in the adjacent triangles which share a common
refinement edge. Clearly, such the interface is “space filling” in the sense that every face
in (m̄n, t̄n) is traversed by an interface. Also it is fairly straightforward to see that an
interface is a collection of simple cycles which we refer to as the loops corresponding
to the configuration (mn, tn). Also such loops always have primal vertices one its one
side and dual vertices on its other side. Also every loop configuration corresponds to
a unique configuration tn and vice versa. Let �(mn, tn) denote the number of loops
corresponding to a configuration (mn, tn). The critical FK model with parameter q is a
random configuration (Mn, Tn) which follows the law

P((Mn, Tn) = (mn, tn)) ∝ √
q�(mn ,tn) (2.1)

Themodel makes sense for any q ∈ (0,∞) but as explained before, we shall focus on
q ∈ (0, 4). It is also easy to see that the law of (Mn, Tn) remains unchanged if we re-root
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Fig. 3. Refined or green edges split the map and its dual into primal and dual triangles. Each primal triangle
sits opposite another primal triangle, resulting in a primal quadrangle as above (color figure online)

the map at an independently and uniformly chosen oriented edge (see for example [2]
for an argument).

Let c(tn) and c(t†n ) denote the number of vertex clusters of tn and t†n . Recall that
the loops form the interface between primal and dual vertex clusters. From this, it is
clear that �(mn, tn) = c(tn) + c(t†n ) − 1. Let v(G), e(G) denote the number of vertices
and edges in a graph G. Applying Euler’s formula to each connected component of Mn
induced by Tn shows that

P(mn) = 1

Z
(
√
q)−v(mn)

∑
G⊂mn

√
qe(G)qc(G). (2.2)

where Z denotes the partition function. It is easy to conclude from this that the model
is self-dual. Note that (2.2) corresponds to the Fortuin–Kasteleyn random cluster model
which is in turn is equivalent to the q-state Potts model on maps with n edges (see
[3,25]).

2.2. Sheffield’s bijection. We briefly recall the Hamburger–Cheeseburger bijection due
to Sheffield (see also related works by Mullin [35] and Bernardi [8,9]).

Recall that the refinement edges split the map into triangles which can be of only
two types: a primal triangle (meaning two green or refined edges and one primal edge)
or a dual triangle (meaning two green or refined edges and one dual edge). For ease
of reference primal triangles will be associated to hamburgers, and dual triangles to
cheeseburgers. Now consider the primal edge in a primal triangle; the triangle opposite
that edge is then obviously a primal triangle too. Hence it is better to think of the map
as being split into quadrangles where one diagonal is primal or dual (see Fig. 3).

We will reveal the map, triangle by triangle, by exploring it with a path that visits
every triangle once (hence the word “space-filling”). We will keep track of the first
time that the path enters a given quadrangle by saying that either a hamburger or a
cheeseburger is produced, depending on whether the quadrangle is primal or dual. Later
on, when the path comes back to the quadrangle for the second and last time, we will say
that the burger has been eaten. We will use the letters h, c to indicate that a hamburger
or cheeseburger has been produced and we will use the letters H,C to indicate that a
burger has been eaten (or ordered and eaten immediately). So in this description we will
have one letter for every triangle. A moment of thought tells us that one can reconstruct
the whole map given this sequence as the letters specify how to glue triangles one after
another as we go from the first letter to the last letter in the sequence.

It remains to specify in what order are the triangles visited, or equivalently to describe
the space-filling path. In the case where the decoration tn consists of a single spanning
tree (corresponding to q = 0 as we will see later) the path is simply the contour path
going around the tree. Hence in that case the map is entirely described by a sequence of
2n letters in the alphabet {h, c,H,C}.
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C

H

c

h

c

h

C

H

Fig. 4. From symbols tomap. The current position of the interface (or last discovered refined edge) is indicated
with a bold line. Left reading the word sequence from left to right or into the future. The map in the centre
is formed from the symbol sequence chc. Right the corresponding operation when we discover the sequence
from right to left (or into the past). The map in the centre now corresponds to the symbol sequence CHC
(color figure online)

We now describe the situation when tn is arbitrary, which is more delicate. The idea
is that the space-filing path starts to go around the component of the root edge, i.e.
explores the loop of the root edge, call it L0. However, we also need to explore the rest
of the map. To do this, consider the last time that L0 is adjacent to some triangle in the
complement of L0, where by complement we mean the set of triangles which do not
intersect L0. (Typically, this time will be the time when we are about to close the loop
L0). At that time we continue the exploration as if we had flipped the diagonal of the
corresponding quadrangle. This has the effect the exploration path now visits two loops.
We can now iterate this procedure. A moment of thought shows that this results in a
space-filling path which visit every quadrangle exactly twice, going around some virtual
tree which is not needed for what follows. We record a flipping event by the symbol
F. More precisely, we associate to the decorated map (mn, tn) a list of 2n symbols
(Xi )1≤i≤2n taking values in the alphabet 	 = {h, c,H,C,F}. For each triangle visited
by the space-filling exploration path we get a symbol in 	 defined as before if there was
no flipping, and we use the symbol F the second time the path visit a flipped quadrangle.

It is not obvious but true that this list of symbols completely characterises the deco-
rated map (mn, tn). Moreover, observe that each loop corresponds to a symbol F (except
the loop through the root).

2.3. Inventory accumulation. We now explain how to reverse the bijection. One can
interpret an element in {h, c,H,C}2n as a last-in, first-out inventory accumulation pro-
cess in a burger factory with two types of products: hamburgers and cheeseburgers.
Think of a sequence of events occurring per unit time in which either a burger is pro-
duced (either ham or cheese) or there is an order of a burger (either ham or cheese). The
burgers are put in a single stack and every time there is an order of a certain type of
burger, the freshest burger in the stack of the corresponding type is removed. The sym-
bol h (resp. c) corresponds to a ham (resp. cheese) burger production and the symbol H
(resp. C) corresponds to a ham (resp. cheese) burger order.

Reversing the procedure when there is no F symbol is pretty obvious (see e.g. Fig. 4).
So we discuss the general case straight away. The inventory interpretation of the symbol
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F is the following: this corresponds to a customer demanding the freshest or the topmost
burger in the stack irrespective of the type. In particular,whether anF symbol corresponds
to a hamburger or a cheeseburger order depends on the topmost burger type at the time of
the order. Thus overall, we can think of the inventory process as a sequence of symbols
in 	 with the following reduction rules

• cC = cF = hH = hF = ∅,
• cH = Hc and hC = Ch.
Given a sequence of symbols X , we denote by X̄ the reduced word formed via the above
reduction rule.

Given a sequence X of symbols from 	, such that X̄ = ∅, we can construct a
decorated map (mn, tn) as follows. First convert all the F symbols to either an H or a C
symbol depending on its order type. Then construct a spanning tree decorated map as
is described above (Fig. 4). The condition X̄ = ∅ ensures that we can do this. To obtain
the loops, simply switch the type of every quadrangle which has one of the triangles
corresponding to an F symbol. That is, if a quadrangle formed by primal triangles has
one of its triangles coming from an F symbol, then replace the primal map edge in that
quadrangle by the corresponding dual edge and vice versa. The interface is now divided
into several loops and the number of loops is exactly one more than the number of F
symbols.

Generating FK-weighted maps. Fix p ∈ [0, 1/2). Let X1, . . . , Xn be i.i.d. with the
following law

P(c) = P(h) = 1

4
,P(C) = P(H) = 1 − p

4
,P(F) = p

2
, (2.3)

conditioned on X1, . . . , Xn = ∅.
Let (mn, tn) be the random associated decorated map as above. Then observe that

since n hamburgers and cheeseburgers must be produced, and since #H+ #C = n − #F,

P((mn, tn)) =
(
1

4

)n (
1 − p

4

)#H+#C ( p

2

)#F

∝
(

2p

1 − p

)#F

=
(

2p

1 − p

)#�(mn ,tn)−1

(2.4)

Thus we see that (mn, tn) is a realisation of the critical FK-weighted cluster random
map model with

√
q = 2p/(1− p). Notice that p ∈ [0, 1/2) corresponds to q = [0, 4).

From now on we fix the value of p and q in this regime. (Recall that q = 4 is believed
to be a critical value for many properties of the map).

2.4. Local limits and the geometry of loops. The following theorem due to Sheffield
and made more precise later by Chen [15,38] shows that the decorated map (Mn, Tn)
has a local limit as n → ∞ in the local topology. Roughly two maps are close in the
local topology if the finite maps near a large neighbourhood of the root are isomorphic
as maps (see [5] for a precise definition).

Theorem 2.1 ([15,38]). Fix p ∈ [0, 1]. We have
(Mn, Tn)

(d)−−−→
n→∞ (M, T )

in the local topology.
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Furthermore, (M, T ) can be described by applying the infinite version of Sheffield’s
bijection to the bi-infinite i.i.d. sequence of symbols with law given by (2.3).

The idea behind the proof of Theorem 2.1 is the following. Let X1, . . . , X2n be i.i.d.
with law given by (2.3) conditioned on X1 . . . X2n = ∅. It is shown in [15,38] that the
probability of X1 . . . X2n = ∅ decays sub exponentially. UsingCramer’s large deviations
principle, one can deduce that locally the symbols around a uniformly selected symbol
from (Xi )1≤i≤n converge to a bi-infinite i.i.d. sequence (Xi )i∈Z in law. An important
property of this sequence is that every symbol in the i.i.d. sequence (Xi )i∈Z has an almost
sure unique match, meaning that every order is fulfilled and every burger is consumed
with probability 1. We will call ϕ(i) the match of the i th symbol, which will be used in
the rest of the paper. Notice that ϕ : Z �→ Z defines an involution on the integers. The
proof of Theorem 2.1 is now completed by arguing that the correspondence between the
finite maps and the symbols is a.s. continuous in the local topology.

Notice that uniformly selecting a symbol corresponds to selecting a uniform trian-
gle in (M̄n, T̄n) which in turn corresponds to a unique refinement edge which in turn
corresponds to a unique oriented edge in Mn . Because of the above interpretation and
the invariance under re-rooting, one can think of the triangle corresponding to X0 as the
root triangle in (M, T ).

The goal of this section is to explain the connection between the geometry of the
loops in the infinite map (M, T ) and the bi-infinite sequence (Xi )i∈Z of symbols with
law given by (2.3). For this, we describe an equivalent procedure to explore the map
associated to a given sequence, triangle by triangle in the refined map (M̄, T̄ ). (This is
again defined in the same way as its finite counterpart: it is formed by the subgraph T ,
its dual T † and the refinement edges.)

Loops, words and envelopes. In the infinite (or whole-plane) decorated refined map
(M̄, T̄ ), each loop is encoded by a unique F symbol in the bi-infinite sequence of
symbols (Xi )i∈Z, and vice-versa. Suppose Xi = F for some i ∈ Z, and consider the
word W = Xϕ(i) . . . Xi and the reduced word R = W̄ (recall that ϕ(i) is a.s. finite).
Observe that R is necessarily of the form H . . .H or of the form C . . .C depending on
whether Xϕ(i) = c or h, respectively. These symbols can appear any number of times,
including zero ifR = ∅.

A moment of thought shows therefore thatW encodes a decorated submap of (M̄, T̄ )

which we call the envelope of Xi , denoted by e(i) or sometimes e(Xi ) with an abuse
of notation. Furthermore, this map is finite and simply connected. Assume without loss
of generality thatR contains only H symbols. Then the boundary of this map consists a
connected arc of |R| primal edges and two green (refined) edges (see Fig. 5). Note also
that this map depends only on the symbols (X j )ϕ(i)≤ j≤i (i.e., W do not contain any F
symbol whose match is outside W ).

The complement of the triangles corresponding to a loop in (M̄, T̄ ) consists of one
infinite component and several finite components (there are several components if the
loop forms fjords). Recall that the loop is a simple closed cycle in the dual of the refined
map, hence it divides the plane (for any proper embedding) into an inside component
and an outside component.

Definition 2.2. Given a loop in the map (M̄, T̄ ), the interior of the loop is the portion
of the map corresponding to the triangles in the finite component of its complement and
lying completely inside the loop. The rest of the triangles lie in the exterior of the loop.
The length of the loop is the number of triangles corresponding to the vertices (in the
dual refined map) in the loop, or equivalently, the number of triangles that the loop goes
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past
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loop
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Fig. 5. The envelope of an F symbol matched to a c. The green quadrangle corresponds to the F and its match.
All the other blue edges on the boundary of the envelope correspond to the symbolsH in the reduced wordR.
Note that not all triangles on the boundary of the envelope are part of the loop itself. Right the corresponding
map if the F symbol is matched with an h (color figure online)

through. The area inside the loop is the number of triangles in its interior plus the length
of the loop.

We now describe an explicit exploration procedure of an envelope, starting from its F
symbol, and exploring towards the past (i.e., discovering the sequence of symbols from
right to left).

Exploration into the past for an envelope. We start with a single edge e and we explore
the symbols strictly to the left of the F symbol, reading from right to left. At every step
we reveal a part of the map incident to an edge which we explore.

1. If the symbol is aC,H or a c,hwhich is not the match of the F, then we glue a single
triangle to the edge we explore as in the right hand side of Fig. 4.

2. If the symbol is an F, we explore its envelope and glue the corresponding map as
explained above (see Fig. 5). The refined edge corresponding to the “future” in Fig. 5
is identified with the edge we are exploring and the edge corresponding to the “past”
is the edge we explore next.

3. If the symbol is a c or h and is a match of the F symbol we started with, we finish
the exploration as follows. Notice that in this situation, if the symbol is a c (or h)
then the edge we explore is incident to e via a dual (or primal) vertex. We now glue
a primal (or dual) quadrangle with two of its adjacent refined edges identified with e
and the edge we explore. This step corresponds to adding the quadrangle with solid
lines in Fig. 5.

Remark 2.3. We remark that it is possible to continue the exploration procedure above for
thewhole infiniteword to the left of X0. The only added subtlety is that some productions
have a match to the right of 0 and hence remain uneaten. The whole exploration thus
produces a half planarmapwith boundary formedby these uneatenproductions.However
this information does not reveal all the decorations in the boundary since some of the
boundary triangles might be matched by an F to the right of X0.

We now explain how to extract information about the length and area of the loop given the
symbols in an envelope. A preliminary observation is that the envelopes are nested.More
precisely, if Xi = F and X j = F for some ϕ(i) < j < i . Then e(X j ) ⊂ e(Xi ). To see
this, observe that a positive number of burgers are produced between Xϕ(i) and Xi and
hence one of them must match X j . Since it cannot be Xϕ(i) by definition, ϕ( j) > ϕ(i).

If we define a partial order among the envelopes strictly contained in e(Xi ) then there
exist maximal elements which we call maximal envelopes in e(Xi ).
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Lemma 2.4. Suppose Xi = F, and let L be the corresponding loop. Then the following
holds.

• The boundary of e(Xi ), that is the triangles in e(Xi ) which are adjacent to triangles
in the complement of e(Xi ), consists of triangles in the reduced word Xϕ(i) . . . Xi ,
plus one extra triangle (corresponding to t in Fig. 5). For an hF loop, the boundary
consists of dual triangles corresponding to C symbols. An identical statement holds
for an cF loop with dual replaced by primal.

• Let M denote the union of the maximal envelopes in e(Xi ) and let m denote the
number of maximal envelopes in e(Xi ). Then the length of L is m plus the number
of triangles in e(Xi )\M minus 1.

• All the envelopes inM of type opposite (resp. same) to that of L belong to the interior
(resp. exterior) of L.

Proof. The boundary of e(Xi ) is formed of symbols that are going to be matched by
symbols outside [ϕ(i), i]. Thus by definition, the boundary consists of the triangles
associatedwith the reducedword Xϕ(i) . . . Xi . Also for anhF loop, the boundary consists
of C symbols only since if there was an H symbol, it would have been a match of ϕ(i).
An identical argument holds for a cF loop.

For the second assertion, suppose we start the exploration procedure for a loop going
into the past as described above. For steps as in item 1, it is clear that we add a single
triangle to the loop. For steps as in item 2, i.e. when we reveal the map corresponding
to a maximal envelope E , we also add a single triangle to the loop. Indeed an envelope
consists of a single triangle t glued to a map bounded by a cycle of either primal or dual
edges (see Fig. 5). If we iteratively explore E , t is part of the quadrangle we add in step
3 of the above exploration and it is the triangle t which is added to the loop. For steps as
in item 3, we also add one triangle to the loop. This concludes the proof of the second
assertion.

Clearly, the triangles corresponding to a loop have primal vertices on one side and
dual vertices on the other side of the loop. Suppose Xi is hF type. Then, as for any such
loop, it has dual (or C) vertices adjacent to its exterior. For the same reason, every hF
type maximal envelope in e(Xi ) must have dual (or C) vertices adjacent to its exterior.
None of its triangles belong to the loop by the second assertion, and it is adjacent to L .
So the only possibility is that it lies in its exterior. The other case is similar, so the last
assertion is proved. ��

3. Preliminary Lemmas

3.1. Forward–backward equivalence. In this section, we reduce the question of com-
puting critical exponents on the decorated map to a more tractable question on certain
functionals of the Hamburger-Cheeseburger sequence coming from Sheffield’s bijec-
tion. This reduction involves elementary but delicate identities and probabilistic esti-
mates which need to be done carefully. By doing so we describe the length and area by
quantities which have a more transparent random walk interpretation and that we will
be able to estimate in Sect. 4.

Modulo these estimates, we complete the proof of Theorem 1.1 at the end of Sect. 3.1.
From now on throughout the rest of the paper, we fix the following notations:

Definition 3.1. Fix p ∈ (0, 1/2). Define

θ0 = 2 arctan

(
1√

1 − 2p

)
; α = π

2θ0
= κ ′

8
.
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Note that the value ofα is identical to the one in (1.4) (after applying simple trigonometric
formulae). Also assume throughout in what follows that (Xk)k∈Z is an i.i.d. sequence
given by (2.3).

For any k ∈ Z, we define a burger stack at time k to be {X j : j ≤ k and ϕ( j) > k}
endowed with the natural order it inherits from (Xk)k∈Z. The maximal element in a
burger stack is called the burger or symbol at the top of the stack. It is possible to see
that almost surely the burger stack at time k contains infinite elements almost surely for
any k ∈ Z (see [38]).

Define T = ϕ(0), and let E = {Xϕ(0) = F}. (In the first two sections of the paper,
we have used T to denote the collection of loops on the infinite map M , but this should
not cause confusion.)

On E , define JT = X0 . . . XT to be the corresponding reduced word, and let |JT | be
its size, i.e., the number of symbols in X0 . . . XT . We will write Sk for the burger stack at
time k. Finally, let Ps denote the probability measure P conditioned on S0 = s. Note that
conditioning on the whole past (X j ) j≤k at a given time k is equivalent to conditioning
just on the burger stack s at that time. The heart of the proof of Theorem 1.1 is the
following result:

Theorem 3.2. Let T, E, JT be as above and α = κ ′/8 be as in Definition 3.1. Fix
ε > 0. There exist positive constants c = c(ε),C = C(ε) such that for all n ≥ 1,m ≥
n(log n)3, for any burger stack s,

(i) cn2α

n1+εm4α+ε ≤ P
s(T > m2, |JT | = n, E) ≤ Cn2α

n1−εm4α−ε ,

(ii) c
n2α+1+ε ≤ P

s(|JT | = n, E) ≤ C
n2α+1−ε ,

(iii) c
m2α+ε ≤ P

s(T > m2, E) ≤ C
m2α−ε ,

(iv) c
(
n4α−ε

m4α+ε

)
≤ P

s(T > m2
∣∣|JT | = n, E) ≤ C

(
n4α+ε

m4α−ε

)
,

(v) For any p ∈ (0, 2α − ε),

cn2p−2ε ≤ E
s(T p

∣∣|JT | = n, E) ≤ Cn2p+2ε.

In particular all these bounds are independent of the conditioning on S0 = s.

Remark 3.3. A finer asymptotics than (iii) above is obtained in [28, Proposition 5.1].
More precisely, it is proved that P(T > n, E) is regularly varying with index α = κ ′/8.

Let us admit Theorem 3.2 for now and let us check how this implies Theorem 1.1.
To do this we need to relate T, E and JT to observables on the map.

We now check some useful invariance properties which use the fact that there are
various equivalent ways of defining a typical loop.

Proposition 3.4. The following random finite words have the same law.

(i) The envelope of the first F to the left of X0. That is e(Xi ) where i = max{ j ≤
0, X j = F}.

(ii) The envelope of the first c or h to the right of 0 matched with an F. That is e(ϕ(
))

where 
 = min{ j ≥ 0 : X j ∈ {c,h}, Xϕ( j) = F}.
(iii) The envelope of X0 conditioned on X0 being an F.
(iv) The envelope of Xϕ(0), conditioned on Xϕ(0) = F.

Furthermore this is the limit law as n → ∞ for the envelope of a F taken uniformly at
random from an i.i.d. sequence X1, . . . , X2n distributed as in (2.3) and conditioned on
X1 . . . X2n = ∅.
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Proof. This proposition is analogous to classical properties of spacings between points
in a Poisson point process on a line. LetW be the set of finite words {w0, . . . , wn, wn =
F, n = ϕ(0)}n≥0 of any length, that end with an F and start by its match. For w =
(w0, . . . , wn) ∈ W , let p(w) = ∏n

i=0 P(X = wi ). Let pW (w) = p(w)/Z where Z =∑
w∈W p(w). Clearly, Z = P(X = F) = p/2, since �w∈W {X−n = w0, . . . , X0 =

wn} = {X0 = F} and these events are disjoint.
Note that the word in the item (iii) has a law given by P(e(X0) = w|X0 = F) =

(2/p)
∏n

i=0 P(X = wi ) = pW (w). This is also true of the word in the item (i), since
the law to the sequence to the left of the first F left of 0 is still i.i.d.

Similarly, for the word in the item (iv), conditioning on Xϕ(0) = F is the same thing
as conditioning on e(Xϕ(0)) ∈ W hence it follows that the random word has law pW
too. This then immediately implies the result in the item (ii), since conditioned on the
kth burger produced after time 0 to be the first one eaten by an F, the envelope of the
kth burger produced has law pW , independently of k.

The final assertion is a consequence of the polynomial decay of the probability of
empty reducedword as described in [15,38]whichwe provide for completeness. Forw ∈
W be a word with k symbols. Let Nw be the number of F symbols in X1, . . . , Xn such
that its envelope is given by w. Let NF denote the number of F symbols in X1, . . . , Xn .
We can treat both NF and Nw as empirical measure of states w and F of certain Markov
chains of length n − k and n respectively. By Sanov’s theorem,

P

(
|Nw

n
− p(w)| > ε

)
≤ ce−c′n ; P

(
|NF

n
− p/2| > ε

)
≤ ce−c′n

Since P(X1 . . . X2n) = ∅) = n−1−κ/4+on(1) [29], our result follows. See for example
[15] for more precise treatment of similar arguments. ��
Let (Mn, Tn) be as in Eq. (2.1) and let Ln be a uniformly picked loop from it. One can
extend the definition of length, area, exterior and interior in Definition 2.2 to finite maps
by adding the convention that the exterior of a loop is the component of the complement
containing the root. (If the loop intersects the root edge, we define the interior to be
empty.) Let Ln be the submap of (M̄n, T̄n) formed by the triangles corresponding to the
loop Ln and the triangles in its interior. Recall that by definition, the length of the loop,
denoted Len(Ln) is the number of triangles in (M̄n, T̄n) present in the loop and the area
Area(Ln) is the number of triangles in Ln , that is, the number of triangles in the interior
of the loop plus Len(Ln).

Proposition 3.5. The number of triangles inLn is tight andLn converges to a finite map
L. The submap corresponding to triangles in Ln converges to a map L. Also

• Len(Ln)
n→∞−−−→ Len(L)

• Area(Ln)
n→∞−−−→ Area(L)

where Len(L) is the number of triangles in L and Area(L) is the number of triangles in
L. Further the law of Len(L) and Area(L) can be described as follows. Take an i.i.d.
sequence (Xi )i∈Z as in Eq. (2.3) and condition on X0 = F. Then the map corresponding
to e(X0) has the same law as L. Thus the law of Len(L) and Area(L) can be described
in the way prescribed by Lemma 2.4.

Proof. Notice that there is a one to one correspondence between the number ofF symbols
in the finite word corresponding to (Mn, Tn) except there is one extra loop. But since the
number of F symbols in the finite word converges to infinity, the probability that we pick



442 N. Berestycki, B. Laslier, G. Ray

this extra loop converges to 0. The rest follows from the last statement in Proposition 3.4
and Lemma 2.4. ��

We now proceed to the proof of Theorem 1.1. We compute each exponent separately.
In this proof we will make use of certain standard type exponent computations for i.i.d.
heavy tailed randomvariables. For clarity,wehave collected these lemmas in appendixA.

Proof of length exponent in Theorem 1.1.We see from Proposition 3.5 that it is enough
to condition on X0 = F and look at the length of the loop and area of the envelope e(X0)

as defined in Definition 2.2. We borrow the notations from Proposition 3.5. We see from
the second item of Lemma 2.4, that, to get a handle on Len(L), we need to control the
number of maximal envelopes and the number of triangles not in maximal envelopes
inside e(X0). To do this, we define a sequence (cn, hn)n≥1 using the exploration into
the past for an envelope as described in Sect. 2.4 and keeping track of the number of C
and H in the reduced word. Let (c0, h0) = (0, 0). Suppose we have performed n steps
of the exploration and defined cn, hn and in this process, we have revealed triangles
corresponding to symbols (X−m, . . . , X0). We inductively define the following.

• If X−m−1 is a C (resp. H), define (cn+1, hn+1) = (cn, hn) + (1, 0) (resp. (cn, hn) +
(0, 1)).

• If X−m−1 a c (resp. h), (cn+1, hn+1) = (cn, hn) + (−1, 0) (resp. (cn, hn) + (0,−1)).
• If X−m−1 is F, then we explore X−m−2, X−m−3 . . . until we find the match of

X−m−1. Notice that the reduced word Rn+1 = Xϕ(−m−1) . . . X−m−1 is either of
the form CC . . .C or HH . . .H depending on whether the match of the F is a h
or c respectively. Either happens with equal probability by symmetry. Let |Rn+1|
denote the number of symbols in the reduced word Rn+1. If Rn+1 consists of H
symbols, define (cn+1, hn+1) = (cn, hn) + (0, |Rn+1|). Otherwise, if Rn+1 consists
of C symbols define (cn+1, hn+1) = (cn, hn) + (|Rn+1|, 0).

For future reference, we call this exploration procedure the reduced walk.
Observe that the time ϕ(0) where we find the match of 0 in the reduced walk is

precisely the time n when the process (cn, hn) leaves the first quadrant, i.e., τ := inf{k :
ck ∧ hk < 0}. This is because τ is the first step when X−τ . . . X−1 consists of a c or h
symbol followed by a (possibly empty) sequence of burger orders of the opposite type
and hence the c or h produced is the match of F at X0. Also from second item of Lemma
2.4, τ is exactly the number of triangles in the loop (as exploring the envelope of each
F corresponds to removing the maximal envelopes in the loop of X0).

We observe that the walk (cn, hn) is just a sum of i.i.d. random variables which are
furthermore centered. Indeed, conditioned on the first coordinate being changed, the
expected change is 0 via (2.3) and the computation by Sheffield [38] which boils down
to the fact that E(|R|) = 1 (this is the quantity χ − 1 in [38], which is 1 when q ≤ 4)

Although the change in one coordinate means the other coordinate stays put, esti-
mating the tail of τ is actually a one-dimensional problem since the coordinates are
essentially independent. Indeed if instead of changing at discrete times, each coordi-
nate jumps in continuous time with a Poisson clock of jump rate 1, the two coordinates
becomes independent (note that this will not affect the tail exponent by standard con-
centration arguments). Let τ c be the return time to 0 of the first coordinate. By this
argument, P(τ > k) = P(τ c > k)2. Now, |R| has the same distribution as JT con-
ditionally given Xϕ(0) = F, by Proposition 3.4 equivalence of items iii and iv. It is a
standard fact that the return time of a heavy tailed walk with exponent b has exponent
1/b. In our slightly weaker context, we prove this fact in Lemma A.2. It follows that
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P(τ c > k) = k−1/(2α)+o(1) and hence P(τ > k) = k−1/α+o(1). This completes the proof
of the tail asymptotics for the length of the loop. ��
Proof of area exponent in Theorem 1.1. For the lower bound, let us condition on
X0 = F and set T ′ = −ϕ(0). Then we break up T ′ as T ′ = ∑τ

n=1(T
c
n + T h

n ) defined as
follows. In every reduced walk exploration step, if the walk moves in the first coordinate,
then T c

n denotes the number of triangles explored in this step otherwise T c
n = 0. Also T h

n
is defined in a similar way. Hence T c

n +T
h
n counts the number of symbols explored in step

n of the reduced walk. Observe further that translating Lemma 2.4 (third item) to this
context and these notations, we have thatArea(L) = ∑τ

n=1 T
c
n orArea(L) = ∑τ

n=1 T
h
n

depending on which coordinate hits zero first (if τ = τ c then Area(L) = ∑τ
n=1 T

c
n and

vice-versa).
Now notice that T c/h

n has a probability bounded away from zero to make a jump of
size at least k in every kα+ε steps, by Theorem 3.2. Hence using the Markov property
and a union bound over cheese and hamburgers,

P(

kα+2ε∑
i=1

T c
i ≤ k or

kα+2ε∑
i=1

T h
i ≤ k) ≤ e−ckε

. (3.1)

Hence

P(Area(L) > k) ≥ P(Area(L) > k, τ > kα+2ε)

≥ P(τ > kα+2ε) − e−ckε

≥ k−1−2ε+o(1) (3.2)

Now we focus on the upper bound. Since the coordinates are symmetric, it is enough
to prove

P(

τ c∑
n=1

T c
n > k, τ = τ c) ≤ k−1+ε+o(1). (3.3)

Since P(τ > kα) = k−1+o(1), we can further restrict ourselves to the case τ ≤ kα . Now
roughly the idea is as follows. When we condition on the event {τ = τ c = j} with
j ≤ kα , there are several ways in which the area can be larger than k.

One way is if the maximal jump size of (|Ri |)1≤i≤ j is itself large, in which case there
is a maximal envelope with a large boundary (and therefore a large area). However, this
doesn’t occur. This is because the left tail of the walk is thin, so going back to 0 after a
large jump has exponential cost.

The second way is if the maximal jump size is small and the area manages to be large
because of many medium size envelopes, but we are able to discard it by comparing a
sum of heavy-tailed random variables to its maximum.

Therefore, the following third way will be the more common. We will see that the

maximal jump size in |Ri | is at most j
1
2α with exponentially high probability, even

though the Ri are heavy-tailed. Now, if the area is to be large (greater than k) and one
maximal envelope contains essentially all of the area, then the area of that envelope will
have to be big compared to its boundary. We handle this deviation by using a Markov
inequality with a nearly optimal power and item v in Theorem 3.2.

We first convert the problem to a one-dimensional problem. To this end let ξn =
cn − cn−1, i.e., we look at the jumps only restricted to the cheeseburger coordinate.
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We now observe that on the event τ c = k, we have ξ∗ := supn≤τ c ξn ≤ k
1
2α +δ with

probability at least 1 − ke−ckδ
. To see this we use the following exponential left tail of

sums of ξn (see Lemma A.1 for a proof; in words, a big jump is exponentially unlikely
on the event τ c = j because if there is one, the walk has to come down to 0 very fast)

P(

k∑
n=1

ξn < −λk
1
2α +δ) ≤ 2e−c(δ)λ. (3.4)

Using all this, it is enough to show, with δ = ε/4 say,

P(

τ c∑
n=1

T c
n > k, ξ∗ ≤ (τ c)

1
2α +δ, τ = τ c ≤ kα) ≤ k−1+ε+o(1). (3.5)

Let T ∗
j = max1≤n≤ j T c

n . Using Markov’s inequality, for all ε > 0, δ = ε/4,

P(

τ c∑
n=1

T c
n > k, ξ∗ ≤ (τ c)

1
2α +δ, τ = τ c ≤ kα)

≤ 1

k2α−ε

kα∑
j=1

E

⎛
⎝(

j∑
n=1

T c
n )2α−ε1

ξ∗≤ j
1
2α +δ

,1τ=τ c= j

⎞
⎠

≤ 1

k2α−ε

kα∑
j=1

E

⎛
⎝(∑ j

n=1 T
c
n

(T ∗
j )

1+δ

)2α−ε (
(T ∗

j )1+δ
)2α−ε

1
ξ∗≤ j

1
2α +δ

,1τ=τ c= j

⎞
⎠ (3.6)

It is a standard fact that for heavy tailed variables with infinite expectation, the sum
is of the order of its maximum with exponentially high probability. This is stated and
proved formally in Lemma A.3. Using this fact, Holder’s inequality and the fact that
(1 + δ)(2α − ε) < 2α − ε/2 we conclude that

P(

τ c∑
n=1

T c
n > k, ξ∗ ≤ (τ c)

1
2α +δ, τ = τ c ≤ kα)

≤ C(ε)

k2α−ε

kα∑
j=1

E

(
(T ∗

j )2α−ε/41
ξ∗≤ j

1
2α +δ

,1τ=τ c= j

)

≤ C(ε)

k2α−ε

kα∑
j=1

E

⎛
⎝ ∑

1≤n≤ j

(T c
n )2α−ε/41

ξ∗≤ j
1
2α +δ

,1τ=τ c= j

⎞
⎠

Now let G be the σ -algebra generated by (Rn)n≥0. Notice that τ c, τ h , ξ∗ are G-
measurable and that T c

n is independent of (Ri )i �=n . Also notice from item v of The-
orem 3.2 that E((T c

n )2α−ε/4|G) ≤ C(ε)|Rn|4α−ε/41ξn>0. Thus we conclude

P(

τ c∑
n=1

T c
n > k, ξ∗ ≤ (τ c)

1
2α +δ, τ = τ c ≤ kα)

≤ C(ε)

k2α−ε

kα∑
j=1

E

⎛
⎝ ∑

1≤n≤ j

|Rn|4α−ε/41ξn>0,1
ξ∗≤ j

1
2α +δ

,1τ=τ c= j

⎞
⎠
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Again using Holder and Lemma A.3 similar to (3.6), we can replace
∑

1≤n≤ j

|Rn|4α−ε/41ξn>0 by (ξ∗)4α−ε/8 in the above expression and obtain that the right hand
side above is at most (moving to continuous time to get independence of τ c and τ h as
in the earlier proof of the length exponent),

C(ε)

k2α−ε

kα∑
j=1

E

(
(ξ∗)4α−ε/81

ξ∗≤ j
1
2α +δ

,1τ=τ c= j

)
≤ C(ε)

k2α−ε

kα∑
j=1

j2+ε
P(τ c = j)P(τ h > j)

≤ C(ε)

k2α−ε

kα∑
j=1

j1+2ε−
1
α

≤ C(ε)

k2α−ε
(kα)2−

1
α
+2ε = k−1+3ε+o(1)

as desired. ��

3.2. Connection with random walk in cone. We now start moving towards the proof of
Theorem 3.2. Given the sequence (Xi )i∈Z and S0, the burger stack at time 0, we can
construct the sequence (X̂i )i∈Z where we convert every F symbol in (Xi )i∈Z into the
corresponding C symbol or H symbol.

Define (Ux
n )n≥1 to be the algebraic cheeseburger count as follows:

Ux
i −Ux

i−1 =

⎧⎪⎨
⎪⎩
+1 if X̂i = c,
−1 if X̂i = C,

0 otherwise.
(3.7)

Similarly define the hamburger count U y
i by letting its increment U y

i − U y
i−1 be ±1

depending whether X̂i = h,H or 0 otherwise.
Recall our notation p defined in Eq. (2.3) so that p/2 = P(F). The main result of

Sheffield [38], which we rephrase for ease of reference later on, is as follows.

Theorem 3.6 (Sheffield [38]). Conditioned on any realisation of S0, we have the fol-
lowing convergence uniformly in every compact interval(

Ux�nt�√
n

,
U y

�nt�√
n

)
t≥0

n→∞−−−→ (Lt , Rt )t≥0

where (Lt , Rt )t≥0 evolves as a two-dimensional correlated Brownian motion with
Var(L1) = Var(R1) = (1 − p)/2 = σ 2 and Cov(L1, R1) = p/2.

Remark 3.7. Up to a scaling, this Brownian motion (Lt , Rt )t≥0 is exactly the same
which arises in the main result of [21] (Theorem 9.1). This is not surprising: indeed, the
hamburger and cheeseburger count give precisely the relative length of the boundary on
the left and right of the space-filling exploration of the map.

In order to work with uncorrelated Brownian motions, we introduce the following
linear transformation �:

� = (1/σ)

(
1 cos(θ0)
0 sin(θ0)

)
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#c

#h

V x

V y

θ0#c

#h

Ux

Uy

Λ

Fig. 6. The coordinate transformation. Note that in the new coordinates, leaving the cone C(θ0) (in red
in the picture) at some time n corresponds to having eaten all burgers of a given type between times 0 and n
(color figure online)

where θ0 = π/(2α) = 4π/κ ′ = 2 arctan(
√
1/(1 − 2p) and σ 2 = (1 − p)/2 as in

the above theorem. A direct but tedious computation shows that �(Lt , Rt ) is indeed
a standard planar Brownian motion. (The computation is easier to do by reverting to
the original formulation of Theorem 3.6 in [38], where it is shown that Ux + U y and
(Ux − U y)/

√
1 − 2p form a standard Brownian motion; however this presentation is

easier to understand for what follows).
We now perform the change of coordinates in the discrete, and thus define for n ≥ 0,

V n = (V x
n , V y

n ) = �(Ux
n ,U y

n ) (see Fig. 6).We define v0 = �(0, 1) (note that argument
of v0 is the same as that of the cone). Let C(θ) := {(r, η) : r ≥ 0, η ∈ [0, θ ]} denote the
2-dimensional closed cone of angle θ and let Cn(θ) be the translate of the cone C(θ) by
the vector −nv0. Now define T ∗

θ0,n
= T ∗

θ0,n
(V ) := min{k ≥ 1, V k /∈ Cn(θ0)}. Let E∗

n
denote the event that

E∗
n = (X0 = c) ∩ (V T ∗

θ0,n−1 = −nv0) ∩ (XT ∗
θ0,n

= F)

In words, the walk leaves the cone Cn(θ0) through its tip, and the symbol at this time is
an F. Recall the event E = {Xϕ(0) = F}.

Lemma 3.8. The events {X0 = c} ∩ {T > m2, |JT | = n} ∩ E and E∗
n ∩ {T ∗

θ0,n
> m2}

are identical.

Proof. Consider (Ux ,U y) for a moment and suppose X0 = c. Observe that ϕ(0) cor-
responds to the first time that Ux = −1. Moreover, the set of times t ≤ ϕ(0) such that
Ux
t = 0 corresponds to the times at which that initial cheeseburger is the top cheese-

burger on the stack; and the size of the infimum, | infs≤t U
y
s | gives us the number of

hamburger orders which have its match at a negative time; or in other words, the number
of hamburger orders H in the reduced word at time t .

Now the event E occurs if and only if the burger at X0 gets to the top of the stack
and this is immediately followed by an F. Hence the event E ∩ (|JT | = n) will occur
if and only if U y

t = infs≤t U
y
s = −n and Ux

t = infs≤t U x
s = 0 for some t , and we

have an F immediately after. In other words, the walk (Ux ,U y) leaves the quadrant
{x ≥ 0, y ≥ −n} for the first time at time t , and does so through the tip. Equivalently,
applying the linear map �, V leaves the cone Cn,θ0 for the first time at time t , and does
so through the tip. ��
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4. Random Walk Estimates

We call �(Z2) the lattice points, which are the points that V can visit. Let s be an
infinite burger stack and let x be a lattice point. From now on we denote by P

x,s the
law of the walk V started from x conditioned on S0 = s. In this section, we prove the
following lemma. Recall α = π/2θ0 from Definition 3.1.

Proposition 4.1. For all ε > 0 there exist positive constants c = c(ε),C = C(ε) such
that for all n ≥ 1, all m ≥ n(log n)3, and any infinite burger stack s,

cn2α

n1+εm4α+ε
≤ P

0,s(E∗
n ; T ∗

θ0,n > m2) ≤ Cn2α

n1−εm4α−ε
(4.1)

Furthermore,
c

n2α+1+ε
≤ P

0,s(E∗
n ) ≤ C

n2α+1−ε
. (4.2)

Using Lemma 3.8 and the symmetry between cheese and hamburgers, the above
lemma completes the proof of the first item of Theorem 3.2.

4.1. Sketch of argument in Brownian case. To ease the explanations we will first explain
heuristically how the exponent can be computed, discussing only the analogous question
for a Brownian motion. To start with, consider the following simpler question. Let B be
a standard two-dimensional Brownian motion started at a point with polar coordinate
(1, θ0/2) and let S be the first time that B leaves C(θ0). For this we have:

P(S > t) = t−α+o(1) (4.3)

as t → ∞. To seewhy this is the case, consider the conformalmap z �→ zπ/θ0 .This sends
the cone C(θ0) to the upper-half plane. In the upper-half plane, the function z �→ �(z)
is harmonic with zero boundary condition. We deduce that, in the cone,

z �→ g(z) := rπ/θ0 sin

(
πθ

θ0

)
; z ∈ C(θ0),

is harmonic.
Now in the cone Cn(θ0), if Brownian motion survives for a time m2 � n2, then it

is plausible that it reaches distance at least m from the tip of Cn(θ0). We are interested
in the event that the Brownian motion reaches distance m from the tip of Cn(θ0) before
reaching near the tip of Cn(θ0) while staying inside the cone.

We now decompose this event into three steps. In the first step, the Brownian motion
must first reach a distance n/2 from the origin. This is like surviving in the upper half
plane which by the heuristics above has probability roughly n−1. In the second step,
the walk reaches distance m with probability roughly (n/m)2α . This can be deduced by
using the harmonic function above which grows like r2α .

Finally for the third step, the Brownian motion must go back to the tip. Suppose now,
that we are interested in the event E that the Brownian motion leaves the cone C(θ0)

through the ball of radius 1, that is, E = {|BS| ≤ 1}. To compute the tail of S on this
event, we can use the function

z �→ g(z) := r−π/θ0 sin

(
πθ

θ0

)
; z ∈ C(θ0),
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which is harmonic for the same reason as above (note that the sign of the exponent in
the power of r is now opposite of what it was before (we flipped the images of 0 and ∞
in the choice of the conformal map). Using this we can conclude that coming back to
the ball of radius 1 from distance m costs m−2α .

Thus combining all the three steps, we obtain n−1 · (n/m)2α ·m−2α which is roughly
what is claimed in Proposition 4.1.

4.2. Cone estimates for random walk. We want to replace the Brownian motion in the
above sketch by a random walk. The difficulty here is that the functions r±π/θ0 sin(πθ

θ0
)

are not exactly harmonic for the random walk. The main idea to overcome this is to
approximate the Brownian motion by large blocks of the walk V , of an appropriate
macroscopic length (see Definition 4.2) for which the central limit theorem will apply.
To deal with the small error in this approximation, we have to give ourself some room
by perturbing the above functions so that they become strictly sub-harmonic or super-
harmonic and this explains why we lose an ε in the exponent (see Proposition 4.3). Once
we know how to get sub-martingale and super-martingale for the walk, the rest follows
quite easily. This is similar to a strategy originally devised by McConnell [32], with
some small but crucial differences.

Now we begin the proof of Proposition 4.1. Recall that �(Z2) is the set of lattice
points where V can step on. For x > 0 and a process (Zk)k≥0 define Let C(θ1, θ2) =
{z : θ1 < arg(z) < θ2}.

T ∗
θ1,θ2

= T ∗
θ1,θ2

(Z) := min{k ≥ 1, Zk /∈ C(θ1, θ2)}.

We sometimes denote T ∗
θ for T ∗

0,θ when there is no source of confusion. Also recall the
notation T ∗

θ0,n
from Lemma 3.8.

Definition 4.2. For ε > 0 we will define the following time-changed walk {Yi (ε)}i≥0
and stopping times {τi (ε)}i≥0 as follows. Start with Y0(ε) = V 0 and τ0(ε) = 0. Given
V τk (ε) = Yk(ε), we inductively define τk+1(ε) = min{t > τk(ε) : |V t−V τk (ε)| > ε|Yk |}
and Yk+1(ε) = V τk+1 .

The next proposition shows that the Brownianmotion estimates in Sect. 4.1 pass through
to the discrete walk estimates with ε error using little more than the invariance principle.
This proposition is the key step for transferring results from Brownian motion to the
discrete walk. To help alleviate notations, and since ε is fixed throughout this proposition
we will simply write τk , and Yk for τk(ε) and Yk(ε). Recall that C(θ1, θ2) = {z : θ1 <

arg(z) < θ2}.
Proposition 4.3. Fix π/2 ≤ θ < π and an infinite burger stack s. Let f : R2\{0} → R

be a continuous function such that

1. � f (x) > 0 (resp. � f (x) < 0) for all x ∈ C(θ).
2. f is homogeneous in the sense that f (λx) = λd x for some d ∈ R and all λ > 0.

There exists ε0 such that if ε ∈ (0, ε0), the following holds. There exists a constant
r0(ε) > 0 such that for all lattice points v in C(ε, θ − ε) with |v| > r0, f (Yk) is a P

v,s

submartingale (resp. supermartingale) with respect to the filtration Fk = σ(Xi : 1 ≤
i ≤ τk) until the walk Y exits C(ε, θ − ε) ∩ {z : |z| > r0}.
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Proof. First observe that it is enough to show that there exists an r0 such that for any
lattice point v in C(2ε, θ − 2ε) with |v| > r0 and any infinite burger stack s,

E
v,s( f (Y1)) − f (v) > 0 (4.4)

where Ev,s is the expectation with respect to the measure Pv,s . This is because condi-
tioned on Fk , the sequence {V τk+i }i≥1 has the law P

V τk ,Sτk . Also notice that we stop
when the walk V reaches a distance less than r0 or leaves the cone C(2ε, θ − 2ε) and
hence we only need to prove (4.4) when v is in the claimed range.

The claim (4.4) is a consequence of the invariance principle and a result of Sheffield
(Lemma 4.4 stated below). The important issue is to verify that we can pick an r0 which
does not depend on the burger stack s and the initial position of the walk Y0 = v. To
establish this, we set up a few notations. For any continuous curve γ let τ(γ, ε) denote
the exit time of γ from the ball {z : |z − x | < ε|x |} where x = γ (0). Let

Z(γ ) = Z(γ, ε) = γ (τ) where τ = τ(γ, ε) (4.5)

denote the position of the curve at time τ(γ, ε). Let D = C(2ε, θ − 2ε)∩{|x | = 1}where
C(2ε, θ − 2ε) is the closure of C(2ε, θ −2ε) (in particular, note that D is compact). With
these notations, observe that Ev,s[ f (Y1)] = E

v,s[ f (Z(V ))], so our goal (4.4) becomes

E
v,s[ f (Z(V ))

]
> f (v). (4.6)

Let B denote a standard Brownian motion. A preliminary observation is that by our
assumptions on f , Ex ( f (Z(B))) − f (x) > 0 for all x ∈ D. Moreover, since the left
hand side is obviously continuous in x , we deduce that there is a constant δ > 0 such
that

E
x[ f (Z(B))

] − f (x) > δ, ∀x ∈ D. (4.7)

Now we approximate B by the discrete walk. Let A(ε) := {x : 1 − ε ≤ |x | ≤
1 + ε, 0 ≤ arg(x) ≤ θ} and let M = max{| f (x)| : x ∈ A(ε)}. First choose K > 0 such
that

P
x (τ (B, 2ε) > K ) <

δ

16M
∀x ∈ D. (4.8)

Fix some arbitrary infinite burger stack s for now. Choose r0(s) > 0 such that for all
v ∈ C(ε, θ − ε) ∩ �(Z2) with |v| > r0, the following holds.

From the invariance principle (Theorem 3.6), we know that as v → ∞, the distribu-
tion of V (·|v|2)/|v| under Pv,s is close that of Brownian motion B started from v/|v|,
uniformly over v by translation invariance.

Hence for v sufficiently large (i.e., there is r0 = r0(s) such that if |v| > r0(s)), by
uniform continuity of f in the annulus A(1/2),∣∣Ev,s[ f (Z( V

|v| ))
] − E

v/|v|[ f (Z(B))
]∣∣ < δ/8. (4.9)

For the same reason, if |v| > r0(s) then for K as in (4.8),

P
v,s[τ(V , 2ε) > K |v|2]) <

δ

12M
. (4.10)

Nowwewill show that the conclusion Eq. (4.9) holds for |v| > r0(s) even if s is changed
into another infinite burger stack s′. For this the main tool is the following estimate due
to Sheffield (which was already at the heart of [38]).
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Lemma 4.4 (Lemma3.7 in [38]).Let Fn denote the number ofF symbols in X0X1 . . . Xn.
Then for all ε > 0,

P

(
Fn√
n

> ε

)
→ 0.

as n → ∞.

Fix η ∈ (0, ε/2) be such that for x, y in the annulus A(1/2) such that |x− y| < 2ηwe
have | f (x) − f (y)| < δ/4. Let h < η be such that Px [supτ(B,ε−h)≤t1,t2≤τ(B,ε+h) |Bt1 −
Bt2 | > η/2] < δ/(20M) for any x ∈ R

2. Reasoning as in Eq. (4.9) and Eq. (4.10), we
also have that

P
v,s [H] ≤ δ

12M
, where H =

{
sup

t1,t2∈[τ(V ,ε−h),τ (V ,ε+h)]
|V t1 − V t2 | > η|V 0|

}
(4.11)

(Note for later use that since η depends only on δ, h depends only on δ which depends
only on f ).

Using Lemma 4.4, we can assume that the choice of r0 (depending only on δ, M) is
such that for all r > r0, the number Fr of F symbols in X1 . . . Xr satisfies

P(Fr > h
√
r/K ) ≤ δ

12M
. (4.12)

Let v be a fixed lattice point in C(ε, θ0 − ε) with |v| > r0 with this choice of r0. Let
V t (s) denote the walk V under Pv,s . Observe that if s′ is another arbitrary burger stack,
then

sup
0≤t≤r

|V t (s) − V t (s
′)| ≤ Fr .

Define the bad event B to be

B = {FK |v|2 > h|v|} ∪ {τ(V (s), 2ε) > K |v|2} ∪ H

On Bc, the maximal distance between the paths V (s) and V (s′), up to time K |v|2, is at
most h|v|. Since on that eventwe also have τ(V (s), 2ε) ≤ K |v|2, and since h < η < ε/2
we deduce τ(V (s′), ε) ≤ K |v|2. These properties also imply

τ(V (s′), ε) ∈ [τ(V (s), ε − h), τ (V (s), ε + h)].
Hence by definition of H, if τ = τ(V (s), ε) and τ ′ = τ(V (s′), ε),

|V τ (s)

|v| − V τ ′(s′)
|v| | ≤ |V τ (s)

|v| − V τ ′(s)

|v| |

+ |V τ ′(s)

|v| − V τ ′(s′)
|v| |

≤ η + h ≤ 2η.

Hence by the choice of η, still on the good event Bc,∣∣∣ f (Z (
V (s)
|v|

)
) − f (Z

(
V (s′)
|v|

)
)

∣∣∣ <
δ

4
. (4.13)
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But using Eq. (4.11), (4.12) and (4.10), P(B) < δ/(4M). Hence using (4.13),∣∣∣Ev,s[ f (Z (
V
|v|

)
)
] − E

v,s′[ f (Z (
V
|v|

)
)
]∣∣∣ ≤ δ

4
+ 2M

δ

4M
= 3δ/4 (4.14)

Using (4.9) [the desired inequality for the fixed burger stack s] and (4.14),∣∣∣Ev,s′[ f (Z (
V
|v|

)
)
] − E

v/|v|[ f (Z (B))
]∣∣∣ ≤ 7δ

8

Combining with Eq. (4.7) [the inequality for Brownian motion], we deduce that

E
v,s′[ f (Z (

V
|v|

)
)
] ≥ f ( v

|v| ) + δ/8.

Using homogeneity of f ,

E
v,s′ [ f (Z(V ))] = |v|dEv,s′[ f (Z (

V
|v|

)
)
]

> |v|d f ( v
|v| ) = f (v). (4.15)

This proves our claim Eq. (4.6) which, as discussed earlier, implies the proposition. ��
We can now begin the proof of Proposition 4.1.Wewill focus on Eq. (4.1) as the proof

of Eq. (4.2) is identical (with only steps 1 and 3 below needed). We start by recalling
the formula for the Laplacian in polar coordinates which we will use repeatedly: if
f (r, θ) := rdϕ(θ) where d ∈ R,

� f (r, θ) = rd−2(d2ϕ(θ) + ϕ′′(θ)). (4.16)

We use perturbations of the harmonic functions in the cone as sketched in Sect. 4.1
to construct appropriate supermartingales.

For x > 0 and a process (Zk)k≥0 define

T +
x (Z) = min{k ≥ 1, |Zk | ≥ x},

T−
x (Z) = min{k ≥ 1, |Zk | ≤ x}, (4.17)

T−
x,n(Z) = min{k ≥ 1, |Zk + nv0| ≤ x}. (4.18)

Step 1 (Going out to distance n/2). P0,s(T +
n/2(V ) < T ∗

θ0,n(V )
) ≤ C(ε)

n1−ε
:

Proof of Step 1. Recall that this probability is roughly the probability to go to distance
n/2 in some half plane before returning to 0. Choose ε small enough so that θ0 + ε < π .
Consider the cone C(θ0 − π − ε, θ0 + ε). Consider the function

gupper1 (r, θ) := r1−ε sin
( π

π + 2ε
(θ − θ0 + π + ε)

)
.

We can assume ε > 0 is small enough so that 1− ε < π
π+2ε . It is easy to check by (4.16)

that�gupper1 < 0 and gupper1 > 0 inC(θ0−π−ε, θ0+ε). ByProposition 4.3we can choose
r0(ε) large enough (depending on gupper1 ) so that gupper1 (Y (ε)) is a supermartingale until
it leaves C(θ0 − π − ε, θ0 + ε).

Let n′ := n(1 − ε). Let

τ = T +
n′/2(Y (ε/2)) ∧ T ∗

θ0−π,θ0
(Y (ε/2)) ∧ T−

r0 (Y (ε/2))
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and let v be any lattice point in C(θ0 − π, θ0) such that r0 < |v| < 3r0. Observe that

T +
n/2(V ) < T ∗

θ0−π,θ0
(V ) ∧ T−

r0 (V ) implies T +
n′/2(Y (ε))

< T ∗
θ0−π,θ0

(Y (ε/2)) ∧ T−
r0 (Y (ε/2))

Hence since gupper1 is nonnegative, we obtain by optional stopping theorem,

(3r0)
1−ε ≥ gupper1 (v) ≥ E

v,s(gupper1 (Yτ (ε/2))

≥ a(n′/2)1−ε
P

v,s(T +
n′/2(Y (ε/2))

< T ∗
θ0−π,θ0

(Y (ε/2)) ∧ T−
r0 (Y (ε/2)))

≥ cn1−ε
P

v,s(T +
n/2(V ) < T ∗

θ0−π,θ0
(V ) ∧ T−

r0 (V )) (4.19)

where a is the minimum value of the angular part of gupper1 on Cθ0−π−ε/2,θ0+ε/2. In
particular, a and thus the constant c is bounded below independently of n, and depends
only on ε as desired. This proves the required bound for the walk starting from any vertex
v at a distance between r0 and 3r0 which is also stopped if it comes within distance r0
or the origin.

Nowwe argue that this additional stopping does notmatter. Indeed, if thewalk reaches
distance n′/2 it reaches distance more than r0 at some point. Let N be the number of
intervals of times the walk is within distance r0(ε) before T ∗

θ0,n
. Since the walk has c(ε)

probability to exit the cone from within distance r0 before reaching distance 2r0, we see
that N has exponential tail (with constants depending only on ε). So we can restrict to
the event N ≤ log2 n: more precisely, by a union bound,

P
0,s(T +

n/2(V ) < T ∗
θ0,n) ≤ P(N ≥ (log n)2) + (log n)2 sup

v
P

v,s(T +
n/2(V )

< T ∗
θ0−π,θ0

(V ) ∧ T−
r0 (V ))

where the sup is over vertices v at distance between r0 and 3r0 from the origin. We
deduce from Eq. (4.19) which is uniform over v in this range the desired upper bound.

��

Step 2 (From distance n/2 tom). Pv,s(T +
m (V ) < T ∗

θ0,n(V )) ≤ C(ε)n2α+ε

m2α−ε
for any vertex

v with n/4 < |v + nv0| < 3n/4, and m ≥ n(log n).

Proof of Step 2. This is similar to step 1, with a few differences as follows. First, by
translation invariance, it suffices to prove the result with Cn(θ0) replaced by C(θ0) and
(n/4) ≤ |v| ≤ 3n/4. Consider the function (recall 2α = π/θ0)

gupper2 (r, θ) := r2α−5ε sin

(
π

θ0 + 2ε
(θ + ε)

)

Clearly gupper2 > 0 and �gupper2 < 0 in C(−ε, θ0 + ε) by (4.16). By Proposition 4.3 we
can choose r0 such that g

upper
2 (Y (ε/2)) is a supermartingale until it leaves this cone. Let

τ = T ∗
θ0

(Y (ε/2)) ∧ T +
m(1−ε)(Y (ε/2)) ∧ T−

r0 (Y (ε/2)).
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Let v be any vertex with n/4 < |v| < 3n/4. By optional stopping theorem, writing a
similar chain of inequalities as in Step 1 :

n2α−5ε ≥ |v|2α−5ε ≥ gupper2 (v) ≥ cm2α−6ε
P

v,s(T +
m (V )

< T ∗
θ0

(V ) ∧ T−
r0 (V )). (4.20)

We complete the proof by the same argument as in step 1 (showing that the time spent
within B(0, r0) before T ∗

θ0
has exponential tail). ��

Step 3 (From distance m to the tip of the cone). Pv,s(T−
r0 (V ) < T ∗

θ0,n(V )) ≤ C(ε)

m2α−ε
for

any vertex v with |v| > m and m > n(log n).

Proof of Step 3. For this step, again by translation invariance we replace Cn(θ0) by C(θ0)

and assume that the starting point v is at a distancem from the origin sincem ≥ n(log n)3.
Consider the function

gupper3 (r, θ) := r−2α+5ε sin

(
π

θ0 + 2ε
(θ + ε)

)

and observe that now the exponent in the power of r is negative. Using a similar chain
of arguments as in steps 1 and 2 (note that the harmonic function used here is bounded
so we can use optional stopping), we obtain

m−2α+5ε ≥ gupper3 (v) ≥ cPv,s(T−
r0 (V ) < T ∗

θ0
(V )) (4.21)

for some constant c = c(ε). ��
To put together these three steps and finish the proof of the upper bound in Eq. (4.1),

we need the following observation.

Lemma 4.5. Fix an infinite burger stack s. There exist positive constants c, c′ (indepen-
dent of s) such that,

P
0,s

(
T +
m(logm)2

(V ) ≥ m2, T +
m

logm
(V ) ≤ m2

)
≥ 1 − c exp(−c′ log2 m)

Proof. We are going to drop V from T +
m(logm)2

(V ), T +
m/ logm(V ) to ease notation. Using

Lemma 3.12 of [38] (which proves that the probability of the walk |V n| being greater
than a

√
n is at most ce−c′a), we see that

P
0,s

(
T +
m(logm)2

≤ m2
)

≤ ce−c′ log2 m .

On the other hand, from any lattice point, the walk V has a positive probability to
reach a vertex v at distance r0 from the origin. By the invariance principle Theorem 3.6,

P
0,s(|Vm2/(logm)2 | ≥ m/ logm) ≥ c0.

If the walk fails to reach distance m/ logm, let v′ be the position of the walk at time
m2/(logm)2, and let s′ be the burger stack at that time. We now iterate this argu-
ment by using the Markov property and and Lemma 4.4. Let ti = im2/(logm)2,
i = 1, . . . (logm)2. Call a time ti good if the following two conditions hold:
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• the number of F symbols in the reduced word Xti . . . Xti+1−1 is less thanm/(logm);
• |V ′

ti+1−ti | ≥ 2m/(logm),whereV ′ is thewalk corresponding to the symbol sequence
(Xti+ j ) j≥1 with the fixed initial stack s.

Note that for each i ≥ 1, conditionally on (X0, . . . Xti−1), ti is good with probability at
least c0/2 by Lemma 4.4. Furthermore if one of the ti is good then V must have reached
distance m/ logm. This completes the lemma. ��
Proof of upper bound in Eq. (4.1). We combine all three steps together using Lemma
4.5. Observe that

P
0,s(T ∗

θ0,n > m2; E∗
n ) ≤ P

0,s(T ∗
θ0,n > m2; E∗

n ; T +
m/ logm ≤ m2)

+ P
0,s(T +

m/ logm > m2) (4.22)

≤ P
0,s(T +

n/2 < T ∗
θ0,n) sup

v,s′
P

v,s′(T +
m/ logm < T ∗

θ0,n) sup
v′,s′′

P
v′,s′′(T−

r0 < T ∗
θ0,n)

+ P
0,s(T +

m/ logm > m2). (4.23)

where the sups are respectively over burger stacks s′ and vertices v at distance n/2+O(1);
and burger stacks s′′ and vertices v′ at distancem/ logm +O(1). Note that the final term
on the right hand side of (4.23) is negligible compared to the first term via Lemma 4.5
which completes the proof of upper bound. ��
We now begin the proof of the lower bound of Proposition 4.1. The strategy is the
same as that in the proof of upper bound except now we need to perturb the harmonic
functions in Sect. 4.1 so as to obtain submartingales which takes negative values in a
neighbourhood of the boundary of the cone.

We will need to lower bound the probability that the walk exits the ball of radius n/2
from 0 before exiting a cone which has angle slightly less than π . Consider the following
harmonic function

glower1 (r, θ) := r1+ε sin

(
π

π − 2ε
(θ − θ0 + π − ε)

)
(4.24)

Since 1+ε > π
π−2ε for all small enough ε, we see that�glower1 > 0 in C(θ0−π+ε, θ0−ε).

Note that glower1 < 0 just outside the boundary of the cone which is desirable, but
�glower1 < 0 just outside the boundary of this cone, that is�glower1 < 0 in C(θ0−π, θ0−
π + ε) and C(θ0 − ε, θ0) which is not desirable. So we wish to modify glower1 slightly to
make �glower1 > 0 not only in the cone C(θ0 − π + ε, θ0 − ε) but also in some slightly
bigger cone. We moreover wish to do so while keeping the values of the function on the
boundaries of this bigger cone negative.

We show how to do this modification in a neighbourhood of {z : arg(z) = θ0 − ε}
while in the other boundary the modification follows the same trick which we will skip.

For notational convenience let ϕ(θ) = sin
(

π
π−2ε (θ − θ0 + π − ε)

)
to be the angu-

lar part of glower1 . The planned modification is achieved in the following tedious but
elementary single variable calculus problem.
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Lemma 4.6. For all ε > 0 small enough, there exist δ = δ(ε) ∈ (0, ε) small enough,
and constants a(ε), b(ε), c(ε), d(ε) such that, if θ̃ = θ0 − ε − δ, and if

ϕ̃(θ) =
{

ϕ(θ) if θ ≤ θ̃

s(θ) if θ ∈ [θ̃ , θ0]

where

s(θ) := a + b(θ − θ̃ ) + c(θ − θ̃ )2 + d(θ − θ̃ )3; θ ∈ [θ̃ , θ0]
then g̃(r, θ) = r1+εϕ̃(θ) defines a C2 function in the cone C(θ0−π +ε, θ0) and moreover
ϕ̃(θ0) < 0 and �g̃ > 0 in this cone.

Proof. Observe that the function above is triviallyC2 if we choose a = ϕ(θ̃), b = ϕ′(θ̃)

and c = ϕ′′(θ̃) for any choice of δ ∈ (0, ε).Wenowassume this in the following.Observe
also that by construction ϕ(θ0 − ε) = 0 so as δ → 0, a ∼ pδ where p = π/(π − 2ε),
b = −p + o(1) and c ∼ −p3δ. Furthermore all the smaller order terms can be bounded
independently of ε. In particular if we take δ = (p/3)ε, we have for ε small enough,
a <

p
2 ε, b < −2p/3 and −8ε < c < 0 (we have p < 2). Now fix d = 1/(pε). This

choice ensures that

s(θ0) = a + b(ε + δ) + c(ε + δ)2 + d(ε + δ)3 ≤ p

2
ε − 2

3
pε + 8ε2/p

which is negative for ε small enough.
Now let us control the Laplacian, recalling its expression �g̃ = r p

′−2(p′2ϕ̃(θ) +
ϕ̃′′(θ)) with p′ = 1 + ε. By a Taylor expansion with explicit remainder we have for all
ε > 0, θ ∈ [θ̃ , θ0],∣∣∣ϕ(θ) − s(θ) − (θ − θ̃ )3(ϕ′′′(θ̃) − 6d)

∣∣∣ ≤ (p4/4!)(θ − θ̃ )4

Also φ′′′(θ̃) → p3 < 6d as ε → 0. Therefore if ε is small enough, then for all
θ ∈ [θ̃ , θ0 − ε] we have s(θ) > ϕ(θ). Likewise,∣∣∣ϕ′′(θ) − s′′(θ) − (θ − θ̃ )(ϕ′′′(θ̃) − 6d)

∣∣∣ ≤ (p4/2!)(θ − θ̃ )2

and thus s′′(θ) > ϕ′′(θ) on [θ̃ , θ0 − ε]. Consequently, for θ ∈ [θ̃ , θ0 − ε), recalling
p′ = 1 + ε, we have

p′2s(θ) + s′′(θ) > p′2ϕ(θ) + ϕ′′(θ) > 0.

Furthermore for θ ∈ [θ0 − ε, θ0], we have (p/3)ε ≤ θ − θ̃ ≤ 2ε and

p′2s(θ) + s′′(θ) = (
p′2(a + b(θ − θ̃ ) + c(θ − θ̃ )2 + d(θ − θ̃ )3

)
+ 2c + 6d(θ − θ̃ )

> −p′2(|b|2ε + |c|(2ε)2) − 2|c| + 6
1

pε

p

3
ε > 0

which concludes the proof. ��
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With this lemma in hand we can start the first step of the proof of the lower bound in
Proposition 4.1.

Step 1 (Going out to distance n/2). There exists 0 < η1 < ε,

P
0,s(T +

n/2(V ) < T ∗
θ0−π+η1,θ0−η1

(V )) ≥ c(ε)

n1+ε
. (4.25)

Proof of Step 1. We choose ε small enough and δ(ε) > 0 as in Lemma 4.6 and replace
ϕ(θ) by s(θ) for θ ∈ (θ0−ε−δ, θ0] and by an analogous function in (θ0−π+δ+ε, θ0−π ]
and still call the modified function glower1 by an abuse of notation. By construction,
�glower1 > 0 in the interior of C(θ0 − π, θ0) and glower1 (r, θ0 − π) < 0, glower1 (r, θ0) < 0
for any r > 0. Further, glower1 > 0 at any point with angle θ0 − π + δ + ε or θ0 − δ − ε.
By continuity, glower1 (r, θ0 − 2δ1) = 0 for some δ1 > 0 and glower1 (r, θ0 − π + 2δ2) = 0
for some δ2 > 0. Now consider the walk Y (η) where η = δ1 ∧ δ2 and let r0 be chosen as
in Proposition 4.3 for glower1 , Y (η). Clearly, there is a probability at least c(ε) to reach a
vertex at distance 3r0 from 0 and remaining well within the cone so we can assume we
start from such a vertex v. Let τ = T ∗

θ0−2δ1,θ0−π+2δ2
(Y (η))∧T +

n/2(Y (η))∧T−
r0(1+η)(Y (η)).

Clearly

T +
n/2(Y (η)) < T−

r0(1+η)(Y (η)) ∧ T ∗
θ0−2δ1,θ0−π+2δ2(Y (η)) implies T +

n/2(V )

< T−
r0 (V ) ∧ T ∗

θ0−δ1,θ0−π+δ2
(V )

Thus applying optional stopping and the fact that glower1 (Y (η)) is a submartingale until
it leaves the cone or comes within distance r0 to the tip (note that g1(Y (η)) is bounded
up to T +

n/2(Y (η) so the application of optional stopping is valid):

(2r0)
1+ε ≤ glower1 (v) ≤ (3n/4)1+ε

P
v,s(T +

n/2(Y (η))

< T−
r0(1+η)(Y (η)) ∧ T ∗

θ0−2δ1,θ0−π+2δ2(Y (η))) + (r0)
1+ε

≤ (3n/4)1+ε
P

v,s(T +
n/2(V )

< T−
r0 (V ) ∧ T ∗

θ0−δ1,θ0−π+δ2
(V )) + (r0)

1+ε

Also notice that if T +
n/2(V ) < T−

r0 (V ) ∧ T ∗
θ0−δ1,θ0−π+δ2

(V ) then T +
n/2(V ) <

T ∗
θ0−π+η1,θ0−η1

(V ) for some η1 > 0 thereby completing the proof of this step. ��
Note that if T +

n/2(V ) < T ∗
θ0−π+η1,θ0−η1

(V ) then the walk is in a vertex v1 which is at
least distance n/2 from −nv0 and in Cn(η′

1, θ0 − η′
1) for some η′

1 > 0.

Step 2 (From distance n/2 to m). There exists 0 < η2 < η′
1 such that

P
v1,s(T +

m (V ) < T ∗
η2,θ0−η2,n(V )) ≥ cn2α−ε

m2α+ε

for any v1 ∈ Cn(θ0 − η′
1, η

′
1) with |v1| > n/4 and m ≥ n log n.

Proof of Step 2. By translation invariance and since m � n, we can replace Cn(θ0 −
η′
1, η

′
1) by C(θ0) with v1 at a distance at least n/4 from the origin. Consider the function

glower2 (r, θ) := r2α+5η
′
1 sin

(
π

θ0 − 2η′
1
(θ − η′

1)

)
. (4.26)
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As in step 1, this has positive Laplacian and takes negative values just outside the cone
C(η′

1, θ0 − η′
1). Using the same argument as in Lemma 4.6 we can modify glower2 so that

its value is positive inside C(η′
1, θ0 − η′

1) and negative just outside C(δ3, θ0 − δ4) for
some δ3 < η′

1 and δ4 < η′
1. Now following the same strategy as in Step 1 (using the

submartingale glower2 (Y )), we find the following chain of inequalities

c(n/4)2α+5η
′
1 ≤ glower2 (v1) ≤ m2α+5η′

1P
v1,s(T +

m (V )

< T−
r0 (V ) ∧ T ∗

δ3,θ0−δ4
(V )) + (r0)

2α+5η′
1

for n large enough and where r0 depends just on ε. We complete by rearranging. ��
At the end of step 2, suppose we reach a vertex v2 with |v2| > m and v2 ∈ C(η2, θ0 −

η2) where η2 = δ3 ∧ δ4. Let T0(V ) be the first time the walk hits the origin.

Step 3 (From distance m to the origin). There exist a constant c depending only on ε

such that for n large enough and m ≥ n log n,

P
v2,s(T0(V ) < T ∗

θ0,n(V )) ≥ c

m2α+5η2

for any v2 ∈ C(η2, θ0 − η2) with m ≤ |v2| ≤ 2m.

Proof of Step 3. Again by translation invariance, we can replace Cn(θ0) by C(θ0). Now
we consider the harmonic function similar to step 2, but with opposite sign in the expo-
nent.

glower3 (r, θ) := r−2α−5η2 sin

(
π

θ0 − 2η2
(θ − η2)

)
(4.27)

Proceeding as before (i.e. modifying glower3 using Lemma 4.6 and choosing a slightly
larger cone toworkwith and choosing r0 appropriately using Proposition 4.3), then using
the optional stopping theorem (note that glower3 is bounded at distances greater than r0),
we obtain

(2m)−2α−5η2 ≤ glower3 (v2) ≤ c(r0)
−2α−5η2Pv2,s(T−

r0 (V ) < T ∗
θ0

(V )) (4.28)

This completes the proof because we can reach 0 from distance r0(ε) with probability
at least c(ε). ��
Proof of lower bound of Proposition 4.1. Notice that

P
0,s(T ∗

θ0,n(V ) > m2, E∗
n ) ≥ P

0,s(T ∗
θ0,n(V ) > T +

m/ logm(V ), E∗
n )

−P
0,s(T +

m/ logm(V ) > m2) (4.29)

The first term above has the right lower bound using the three steps executed before,
while the last term above is negligible compared to the first term using Lemma 4.5. This
completes the proof. ��
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Proof of Theorem 3.2. Notice item (iv) follows easily from items (i) and (ii). Item (v)
follows easily by summing the tail estimates of item (iv). Finally we obtain item (iii)
from items (i) and (ii) by summing over n. More precisely,

P
s(T > m2, E) ≤

m1−ε∑
n=1

P
s(T > m2, |JT | = n, E) +

∑
n>m1−ε

P
s(|JT | = n, E)

≤ C
m1−ε∑
n=1

n2α−1+ε

m4α−ε
+ C

∞∑
n=m1−ε

1

n2α+1−ε

≤ C
1

m2α−2ε + C
1

m2α−3ε

The lower bound follows similarly, by ignoring terms corresponding to n ≥ m1−ε and
using the corresponding lower bound for the remaining terms. This concludes the proof
of Theorem 3.2 and therefore also the proof of Theorem 1.1. ��

A. Some Heavy Tail Estimates

In this appendix, we record some lemmas about certain exponents related to heavy-tailed
random walks. These are standard when the step distribution has regular variation, but
we need a slight extension without this assumption. A general reference for this sort of
questions is the book [14]. However, since the notations of the book take considerable
effort getting used to and the proofs are actually fairly simple, we prefer to include them
for completeness.

Lemma A.1. Let X1, X2 . . . be i.i.d. with P(X1 ≥ n) = n−b+o(1) for some b ∈ (1, 2),
E(X1) = 0 and X1 ≥ −1. Let Sn = ∑n

i=1 Xi . For all ε > 0, there exists a c = c(ε) > 0
such that for any n ≥ 1, λ > 1,

P(Sn ≤ −λn
1

b−ε ) ≤ 2e−cλ

Proof. Fix ε > 0. We are going to consider the truncated variables X ′ = X1
X≤n

1
b−2ε

.

Since X dominates X ′, it is enough to prove the bound for S′
n , the partial sum of n

i.i.d. variables distributed as X ′. Since E(X) = 0, an easy computation yields that

E(S′
n) = O(n

1−ε
b−2ε ) = o(λn

1
b−2ε ). Similarly, Var(Sn) = O(n

2−ε
b−2ε ). So applying Bern-

stein’s inequality, we see that

P(S′
n ≤ −λn

1
b−2ε ) ≤ P(S′

n − E(S′
n) ≤ −λ

2
n

1
b−2ε )

≤ 2 exp

⎛
⎝−

1
2

λ2

4 n
2

b−2ε

O(n
2−ε
b−2ε ) + 1

3
λ
2n

2
b−2ε

⎞
⎠

≤ 2e−cλ (A.1)

as desired. ��
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Lemma A.2. Fix b ∈ (1, 2). Let {Zi }i≥1 be an i.i.d. sequence of integer valued random
variables with Z1 ≥ −1 and E(Z1) = 0. Suppose for all ε > 0 such that b− ε > 1 and
b + ε < 2, there exist c(ε),C(ε) > 0 such that for all n ≥ 1

c(ε)

nb+ε
≤ P(Z1 > n) ≤ C(ε)

nb−ε

Let T0 = inf{t > 0, Z1 + . . . Zt = 0}. Then for all ε > 0 such that b − ε > 1 and
b + ε < 2, there exist constants c′(ε),C ′(ε) > 0 such that

c′(ε)
n1/b+ε

≤ P(T0 > n) ≤ C ′(ε)
n1/b−ε

.

Proof. The proof follows from fairly elementary martingale arguments. We start with
the upper bound. Let Sn = ∑

m≤n Zm and let τL = inf{n ≥ 1 : Sn ≥ L} where L will
be chosen later. Set T = T0 ∧ τL . Then

P(T0 ≥ n) ≤ P(τL < T0) + P(S remains in (0, L) for time ≥ n).

We bound each term separately. Since S stopped at T is a nonnegative martingale we
have (by Fatou’s lemma),

LP(τL < T0) ≤ E(ST ) ≤ E(S0) = 1

so P(τL < T0) ≤ 1/L . On the other hand, for the second term we simply observe that
at each step there is a probability at least L−b+o(1) of leaving the interval [0, L] hence

P(S remains in (0, L) for time ≥ n) ≤ (1 − L−b+o(1))n ≤ exp(−nL−b+o(1)).

Therefore

P(T0 ≥ n) ≤ 1

L
+ exp(−L−b+o(1)n)

Choosing L = n1/b−ε, P(T0 ≥ n) ≤ n−1/b+ε + exp(−nbε+o(1)) = O(n−1/b+ε) as
desired.

For the lower bound, we let J = inf{n ≥ 1 : Zn ≥ L} where L will be chosen later.
Note that E(Z J ) = O(L) hence if T = T0 ∧ τL ∧ J then S stopped at T is uniformly
integrable. Consequently, applying the optional stopping theorem at time T , we get

1 = E(ST ) = E(ST 1{J=τL<T0}) + E(ST 1{τL<J,τL<T0})
≤ E((L + Z J )1{J=τL<T0}) + 2LP(τL < T0)

≤ LP(J < T0) + E(Z J1{J<T0}) + 2LP(τL < T0).

Note now that J < T0 implies τL < T0 and that the event J < T0 is independent of Z J ,
because it depends only on the values Z1, . . . , Z J−1. Consequently,

1 ≤ 3LP(τL < T0) + O(L)P(J < T0) ≤ O(L)P(τL < T0).

Therefore, P(τL < T0) ≥ c/L for some constant c > 0. We now choose L = n1/b+ε.
From Lemma A.1, we see that if τL < T0 then the walk is super polynomially likely to
remain positive for time at least n. The lower bound follows. ��
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We will also need a lemma which says that the sum of heavy-tailed random variables
(with infinite expectation) is comparable to the maximum.

Lemma A.3. Let (Xi )i≥1 be i.i.d. random variables with P(X1 > k) = k−b+o(1) with
b ∈ (0, 1). Then for all m ≥ 1, λ > 0, ε > 0

P

( ∑m
i=1 Xi

(max1≤i≤m Xi )1+ε
> λ

)
≤ c(ε)e−c′(ε)λ.

In particular allmoments of
∑m

i=1 Xi

(max1≤i≤m Xi )
1+ε exist for all ε > 0 andare uniformly bounded

in m ≥ 1.

Proof. For simplicity we will assume in this proof that the random variables Xi are
continuous so that the maximum is unique a.s. (This is no loss of generality, as we can
always add a small continuous perturbation.) Fix ε > 0; we will allow every constant
c and implicit constants in O notations below to depend on ε but nothing else. We will
still write c instead of c(ε) for simplicity.

Let X∗
m := max1≤i≤m Xi . Notice that if k ≤ (m/λ)1/(α+ε), P(X∗

m ≤ k) ≤ (1 −
ck−α−ε)m ≤ e−cλ. Therefore we can restrict ourselves further to the event {X∗

m ≥
(m/λ)

1
b+ε }. Conditionally on X∗

m = k, where k is some number larger than (m/λ)1/(b+ε),
note that since Xi are assumed to be continuous,∑

1≤i≤m

Xi = k +
∑

1≤i≤m−1

X̃i

where X̃i are i.i.d. and has the law of Xi conditioned to be at most k. It is a straight-
forward computation to see that E(

∑
1≤i≤m−1 X̃i ) = O(mk1−b+ε) = O(k1+2ελ) and

Var(
∑

1≤i≤m X̃i ) = O(mk2−b+ε) = O(k2+2ελ). Therefore using these bounds and

Bernstein’s inequality, for k ≥ (m/λ)
1

b+ε :

P

(
m∑
i=1

Xi > λk1+4ε|X∗
m = k

)
≤ P

(
m−1∑
i=1

X̃i > (λ − 1)k1+4ε
)

≤ P(

m−1∑
i=1

(X̃i − E(X̃i )) > λk1+3ε)

≤ 2 exp

(
− λ2k2+6ε/2

O(k2+2ελ) + λk2+4ε/3

)
≤ 2e−cλ (A.2)

which completes the proof. ��
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