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Buoyancy-driven exchange flows arise in the natural and built environment wherever
bodies of fluids at different densities are connected by a narrow constriction. In this
paper we study these flows in the laboratory using the canonical stratified inclined
duct experiment, which sustains an exchange flow in an inclined duct of rectangular
cross-section over long time periods (Meyer & Linden, J. Fluid Mech., vol. 753, 2014).
We study the behaviour of these sustained stratified shear flows by focusing on three
dependent variables of particular interest: the qualitative flow regime (laminar, wavy,
intermittently turbulent, or fully turbulent), the mass flux (net transport of buoyancy
between reservoirs), and the interfacial thickness (thickness of the layer of intermediate
density between the two counter-flowing layers). Dimensional analysis reveals five non-
dimensional independent input parameters: the duct aspect ratios in the longitudinal
direction A and spanwise direction B, the tilt angle 6, the Reynolds number Re (based
on the initial buoyancy difference driving the flow), and the Prandtl number Pr (we
consider both salt and temperature stratifications). After reviewing the literature and
open questions on the scaling of regimes, mass flux, and interfacial thickness with
A, B, 0, Re, Pr, we present the first extensive, unified set of experimental data where we
varied systematically all five input parameters and measured all three output variables
with the same methodology. Our results in the (6, Re) plane for five sets of (A, B, Pr)
reveal a variety of scaling laws, and a non-trivial dependence of all three variables on
all five parameters, in addition to a sixth elusive parameter. We further develop three
classes of candidate models to explain the observed scaling laws: (i) the recent volume-
averaged energetics of Lefauve, Partridge & Linden, J. Fluid Mech., 2019; (ii) two-layer
frictional hydraulics; (iii) turbulent mixing models. While these models provide significant
qualitative and quantitative descriptions of the experimental results, they also highlight
the need for further progress on shear-driven turbulent flows and their interfacial waves,
layering, intermittency, and mixing properties.

Key words:

1. Introduction

Buoyancy-driven exchange flows naturally arise where relatively large bodies of fluid
have different densities on either side of a relatively narrow constriction. In a gravitational
field, this difference in buoyancy, usually in the horizontal direction, results in a horizontal
hydrostatic pressure gradient along the constriction, of opposite sign above and below
a ‘neutral level’, a height at which the pressures on either side of the constriction are
equal. This pressure gradient drives a counter-flow through the constriction, in which fluid
from the negatively-buoyant reservoir flows below the neutral level towards the positively-
buoyant reservoir, and conversely, with equal magnitude. Such buoyancy-driven exchange
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2 A. Lefauve & P. F. Linden

flows result in little to no net volume transport, but crucially, in a net buoyancy transport
between the reservoirs which tends to homogenise buoyancy differences in the system (i.e.
towards equilibrium). In addition, irreversible mizing often occurs across the interface
between the two counter-flowing layers of fluid, creating an intermediate layer of partially
mixed fluid, and partially reducing the buoyancy transport. The net transport and
mixing of the active scalar field (e.g. heat, salt, or other solutes) and of other potential
passive scalar fields having different concentrations in either reservoirs (e.g. pollutants
or nutrients) have a wide range of consequences of interest. For this reason, the study of
buoyancy-driven exchange flows has a rich history. (The primary role of buoyancy being
implicit throughout the paper, we will simply refer to these flows as ‘exchange flows’.)

Aristotle offered the first recorded explanation of the movement of salty water within
the Mediterranean Sea (Deacon|{1971, pp. 8-9). Ever since, exchange flows through the
straits of Gibraltar and the Bosphorus have driven much speculation and research, due
to their crucial roles in the water and salt balances of the Mediterranean Sea, countering
its evaporation by net volume transport and allowing its very existence (as first demon-
strated experimentally by Marsigli in the 1680s (Deacon|[1971, Chap. 7)). More recently,
it has been recognised that nutrient transport from the Atlantic partially supported
primary production in Mediterranean ecosystems (Estrada [1996). The quantification,
modelling, and discussion of the past and current impact of exchange flows in straits,
estuaries, or between lakes continues to generate a vast literature.

Exchange flows of gases also have a great variety of perhaps even more tangible and
ancient applications to society in the ‘natural ventilation’ of buildings (Linden||1999)).
It would be surprising indeed if some ice-age prehistoric Homo Sapiens did not ponder
the inflow of cold outside air and the outflow of heat or fire combustion products when
choosing a cave suitable for living. More recently, engineering problems of air flow through
open doorways or ventilation ducts, or the escape of gases from ruptured industrial pipes,
have stimulated further research.

More fundamentally, exchange flows are stably-stratified shear flows, a canonical class
of flows widely used in the mathematical study of stratified turbulence, dating back at
least to (Reynolds |1883, § 12) and |Taylor| (1931)). Multi-layered stratified shear flows
have complex hydrodynamic stability and turbulent mixing properties (Caulfield||{1994;
Peltier & Caulfield|2003)). The straightforward and steady forcing of exchange flows make
them ideal laboratory stratified shear flows because of the ability to sustain, over long
time periods, high levels of turbulent intensity and mixing representative of large-scale
natural flows.

The aim of this paper is to carry out a thorough review and exploratory study of
buoyancy-driven exchange flows in inclined ducts. To do this, we will focus on the
behaviour of three key variables:

(i) the qualitative flow regime (e.g. laminar, wavy, intermittently or fully turbulent);
(ii) the mean buoyancy transport;

(iii) the mean thickness of any potential interfacial mixing layer.

The above three variables are particularly relevant in applications to predict exchange
rates of active or passive scalars (e.g. salt, heat, pollutants, nutrients) between two
different fluid bodies (e.g. rooms in a building, seas or lakes on either sides of a strait).

However, our primary motivation in this paper is to contribute to a larger research
effort into the fundamental properties of turbulence in sustained stratified shear flows
of geophysical relevance. The above three variables have thus been chosen for their
particular ability to be readily captured by simple laboratory techniques while encapsu-
lating several key flow features that are currently the subject of active research, such as:
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Ezchange flows in inclined ducts 3

(a)
2 Z
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_ 2
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po+ 7/1
(b
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%

Figure 1: (a) The Stratified Inclined Duct (SID), in which an exchange flow takes place
through a rectangular duct connecting two reservoirs at densities pg £+ Ap/2 and inclined
at an angle 6 from the horizontal. (b) Notation (in dimensional units). The z and z
axes are respectively aligned with the horizontal and vertical of the duct (hence —z
makes an angle § with gravity, here § > 0). The duct has dimensions L x W x H. The
streamwise velocity u has typical peak-to-peak magnitude AU. The density stratification
p has magnitude Ap, with an interfacial layer of typical thickness §.

interfacial ‘Holmboe” waves (Salehipour et al.|2016; Lefauve et al.|2018); spatio-temporal
turbulent intermittency (de Bruyn Kops|2015; Portwood et al.|2016; Taylor et al.|2016);
and layering and mixing (Salehipour & Peltier||2015; |Zhou et al.|2017} [Lucas et al|2017;
'Salehipour et al.|2018).

To achieve this aim, the remainder of the paper is organised as follows. In § [2| we
introduce a canonical experiment ideally suited to study the rich dynamics of exchange
flows, and analyse the a priori importance of its non-dimensional input parameters. In
§ 3] we review the current state of knowledge on the behaviour of our three key variables
in order to motivate our study. In § 4 we present our experimental results and scaling
laws. In § 5 we explain some of these results with a variety of models, and we summarise
and conclude in § 6.

2. The experiment
2.1. Setup and notation

The stratified inclined duct experiment (hereafter abbreviated ‘SID’) is sketched in
figure ( a). This conceptually simple experiment consists of two reservoirs initially filled
with aqueous solutions of different densities pp £ Ap/2, connected by a long rectangular
duct that can be tilted at an angle 6 from the horizontal. At the start of the experiment,
the duct is opened, initiating a brief transient gravity current. Shortly after, at ¢ = 0,
an exchange flow starts and is sustained through the duct for long periods of time, until
the accumulation of fluid of a different density from the other reservoir reaches the ends
of the duct and the experiment is stopped at t = T (typically after several minutes and
many duct transit times). This exchange flow has at least four qualitatively different flow
regimes, based on the experimental input parameters, as we discuss later in the paper.

Our notation is shown in figure [1(b) and largely follows that of [Lefauve et al] (2018
2019). The duct has length L, height H, and width W. The streamwise x axis is aligned
along the duct and the spanwise y axis is aligned across the duct, making the z axis tilted
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4 A. Lefauve & P. F. Linden

at an angle 0 from the vertical (resulting in a non-zero streamwise projection of gravity
gsin@). The angle 6 is defined to be positive when the bottom end of the duct sits in the
reservoir of lower density, as shown here. The velocity vector field is u(z, y, z,t) = (u, v, w)
along z, vy, z, and the density field is p(z,y, z,t). All spatial coordinates are centred in the
middle of the duct, such that (z,y, z,t) € [-L/2,L/2] x [-W/2,W/2] x [-H/2,H/2] x
[0, T7].

Next, we define two integral scalar quantities of particular interest in exchange flows:
(i) Qthe volume flur as the volumetric flow rate averaged over the duration of an

experiment

Q = <|U‘>z,y,z,t ) (21)

where (|u|)zy.t = 1/(LWHT) fOT ffIF/IZ YVW/,jQ 552 |u| dz dy dz dt. The volume
flux @ > 0 measures the magnitude of the exchange flow between the two reservoirs.
It is different from the net (or ‘barotropic’) volume flux (u)y ., .+ = 0, since, to a
good approximation, the volume of fluid in each reservoirs is conserved during an
experiment (assuming the levels of the free surface in each reservoir are carefully

set before the start of the experiment).

(ii) Qm, the mass fluz as the net flow rate of mass averaged of the duration of an
experiment

2
Qm = Kp«p - pO)u>x,y,z,t ) (2'2)

which is equivalent to a buoyancy flur up to a multiplicative constant g. By
definition 0 < @,, < Q. The first inequality holds since, in our notation, negatively-
buoyant fluid (pg < p < po + Ap/2) flows on average to the right (u > 0) and
conversely. The second inequality would be an equality in the absence of molecular
diffusion inside the duct (i.e. if all fluid moving right had density pg + Ap/2
and conversely). In any real flow, laminar (and potentially turbulent) diffusion
at the interface are responsible for an interfacial layer of intermediate density
|p — po| < Ap/2 of finite thickness § > 0 (figure[1](5)).

2.2. Non-dimensionalisation

A total of seven parameters are believed to play important roles in the SID: four
geometrical parameters: L, H, W, 6, and three dynamical parameters: the reduced
gravity ¢’ = gAp/po (under the Boussinesq approximation 0 < Ap/py < 1), the
kinematic viscosity of water (v = 1.05 x 107 m? s7!) and the molecular diffusivity
of the stratifying agent (active scalar) . In this paper, we will primarily consider salt
stratification (kg = 1.50 x 1072 m? s™1), but will also discuss temperature stratification
(k7 = 1.50 x 1077 m? s7!). From these seven parameters having two dimensions (of
length and time), we construct five independent non-dimensional parameters below.

The first three non-dimensional parameters are geometrical: 6, and the aspect ratios
of the duct in the longitudinal and spanwise direction, respectively:

L W
=5 and B= i (2.3)
We choose to non-dimensionalise lengths by the length scale H/2, defining the non-
dimensional position vector as X = x/(H/2) such that (Z,§,2) € [-A, A] x [-B, B] x
[-1,1]. As an exception, we choose to non-dimensionalise the typical thickness of the
interfacial density layer by H, for consistency with other definitions in the literature on
mixing in exchange flows: § = 0/H, such that be [0,1].
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Ezchange flows in inclined ducts 5

The last two non-dimensional parameters are dynamical. We define an ‘input’ Reynolds
number based on the velocity scale /¢’ H and length scale H/2:

_ VOHH _ V9H? [Ap (2.4)

2v 2v o

Consequently, we non-dimensionalise the velocity vector as 1 = u/y/¢’H, and time by
the advective time unit ¢ = 21/g’/Ht (hereafter abbreviated ATU). We define our last
parameter, the Prandtl number (or Schmidt number), as the ratio of the momentum to
active scalar diffusivity:

Pr

ENEIAN

(2.5)

where k takes the value kg or kr depending on the type of stratification (salt or
temperature, giving respectively Pr = 700 and Pr = 7). Finally, we define the non-
dimensional Boussinesq density field as p = (p — po)/(Ap/2), such that p € [-1,1].

We now reformulate the aim of this paper (introduced in § [} ' more spec1ﬁcally as:
exploring the behaviour of flow regimes, mass flux Q,,, and interfacial layer thickness &
in the five-dimensional space of non-dimensional input parameters (A, B, 0, Re, Pr).

In the next section we address the dimensional scaling of the velocity in the experiment.
By discussing the a priori influence of the input parameters identified above on the
velocity scale in this problem, we will provide a basis for subsequent scaling arguments
in the paper.

2.3. Scaling of the velocity

Having constructed our Reynolds number using the velocity scale y/¢g’H, here
we show that it is the relevant velocity scale to use in such exchange flows. As sketched
in figure ( b), we define the typical peak-to-peak velocity as AU. This velocity scale is
not set by the experimenter as an input parameter, rather it is chosen by the flow as an
output parameter. From dimensional analysis, we write

AU

- = VI Hfau(A, B,0, Re, Pr). (2.6)

In order to show that our Reynolds number and our non-dimensionalisation the
velocity by +/g’H are relevant (and such that @ € [—1,1]), we will show below that
we indeed expect AU/2 ~ /g’H and fay (4, B, 0, Re, Pr) ~ 1. Although some aspects
of this discussion can be found in |[Lefauve et al.| (2018} |2019)), the importance of this
dimensional analysis for this paper justifies the more detailed discussion that we offer
below.

The velocity scale AU in quasi-steady state results from a dynamical balance in
the steady, horizontal momentum equation under the Boussinesq approximation (in
dimensional units)

u-Vu = —(1/po)dsp+gsind(p—po)/po+ vVZu , (2.7)
~—— SN~
inertial (T) hydrostatic (H) gravitational (G) viscous (V)

In addition to the standard inertial (I) and viscous (V) terms, this equation highlights

the two distinct ‘forcing’ mechanisms in SID flows:

(H) a hydrostatic longitudinal pressure gradient, the minimal ingredient for exchange
flow, resulting from each end of the duct sitting in reservoirs at different densi-
ties. This hydrostatic pressure in the duct increases linearly with depth d,p =
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6 A. Lefauve & P. F. Linden
gcosAp/(4L)z, driving a flow in opposite directions on either side of the neutral
level z=0: —(1/po)0zp = g’ cos0/(4L)z;

(G) a gravitational body force reinforcing the flow by the the acceleration of the
positively-buoyant layer upward (to the left in figure [1) and of the negatively-
buoyant layer downward (to the right) when the tilt angle is positive gsing > 0
(the focus of this paper), and conversely when the tilt angle is negative.

Rewriting ([2.7)) in non-dimensional form and ignoring multiplicative constants, we obtain

(AU 0-Vi ~ (¢Hcosb)i + (¢'Lsinf)j + (vAUL2L)V?2i, (2.8)

I H G v
where ¢ is the smallest length scale of density gradients (¢ = ¢ in laminar flows, and
¢ < § in turbulent flows).

To simplify this complex ‘four-way’ balance, it is instructive to consider the four
possible ‘two-way’ dominant balances to deduce four possible scalings for AU (ignoring
constants and assuming cosf ~ 1 since the focus of this paper is on small angles).

(IH) The inertial-hydrostatic balance. First, we can neglect the gravitational (G) term
with respect to the hydrostatic (H) term if ¢’ H cosf > ¢’ Lsin 6, i.e. when the tilt
angle of the duct # is much smaller than its ‘geometrical’ angle:

<Ko (2.9)
where we define the geometrical angle as
a=tan (A1) (2.10)

Second, we can neglect the viscous (V) term if ¢’ H > v AU/~2L, i.e. if the Reynolds
number is larger than Re > HL/¢?. This corresponds to

Re> A (2.11)

in laminar flow (ignoring the case B <« 1 for simplicity), and to a larger lower
bound in turbulent flows. Under these conditions, balancing I and H gives the
scaling AU ~ +/¢g'H, i.e. fay ~ 1, which corresponds to our choice in §

(IG) The inertial-gravitational balance. Using analogous arguments, if § > « and Re >
HL/P?, we expect the scaling AU ~ /¢g’Lsin®, i.e. fay(A,0) ~+Asinf > 1.
(HV) The hydrostatic-viscous balance. If § < o and Re < A, we expect fay (A, B, Re) ~

A7'Re < 1 (some dependence on B being unavoidable in such a viscous flow).
(GV) The gravitational-viscous balance. If 6 > o and Re < A, we expect
fau(B,0, Re) ~sinfRe < A.
Figure [2] summarises the above analysis and the following conclusions.
(i) The parameters A, § and Re play particularly important roles in SID flows, since
the variation of # and Re above or below thresholds set by A can alter the scaling

of AU (i.e. fay). The parameter B appears less important in this respect (except
in narrow ducts where B < 1 and the Re threshold becomes AB~?2).

(ii) At low tilt angles 0 < § < «a, fay increases from < 1 when Re < A to ~ 1 when
Re > A. At high enough Re, fay likely retains a dependence on A, B, Re due to
turbulence (the constant ‘IH’ scaling being a singular limit for Re — 00).

(iii) At high tilt angles 8 > a and Reynolds number Re > A, fay should increase well
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Re A
IH 1G Inertial
00
fav ~1 fau(A,0)>1
[HV IGHV IGV
fau(A, B, 6, Re, Pr) ~ 1
A+
HV GV Y
Jau(A, B, Re) < 1 fav(B,0,Re) < A Viscous
; >
0 o 0
Hydrostatic Gravitational

Figure 2: Summary of the scaling analysis of AU based on the four two-way dominant
balances of the streamwise momentum equation . In each corner of the (6, Re) plane,
the IH, IG, HV, and GV balances predict the scaling of fay = AU/(2v/¢g’H) on either
extreme side of # = o = tan !(A7!) and Re = A. The region of practical interest
studied in this paper is shown in blue. Although no a prior: ‘two-way’ balance allows
us to determine accurately the scaling of fay (A4, B, 6, Re, Pr) in this region, hydraulic
control requires that fay ~ 1, as in the TH scaling (see text).

above 1, and likely retains a dependence on A, B, 0, Re (the ‘IG’ scaling being a
singular limit for Re — 00).

(iv) The blue rectangle in ﬁgurerepresents the region of interest in most exchange flows
of practical interest and in this paper. In this region, three or four physical mecha-
nisms must be considered simultaneously (IHV, IGHV or IGV). Since few flows ever
satisfy 8 < a or > «, we consider that in general fay = fav(A, B, 0, Re, Pr) (the
Pr dependence reflects the fact that the active scalar can no longer be neglected at
high Re due to its effect on turbulence and mixing). The existence and value of the
upper edge of this region, i.e. the Re value at which viscous and diffusive effects are
negligible (the ‘practical Re = co limit’) are a priori unknown.

Although the above ‘two-way’ balances do not allow us to confidently guess the scaling
of fay in the blue region, theoretical arguments and empirical evidence of hydraulic
control support fay(A, B, 0, Re, Pr) ~ 1 for THV, IGHV and IGV flows.

Hydraulic control of two-layer exchange flows dates back to [Stommel & Farmer| (1953));
Wood| (1968, |1970) and was formalised mathematically by |Armi (1986); Lawrence, (1990);
Dalziel| (1991)). In steady, inviscid, irrotational, hydrostatic (i.e. ‘IH’) exchange flows, the
‘composite Froude number’ G is unity, which using our notation and assuming streamwise
invariance of the flow (9, = 0), reads:

2y, ~ 1
6= 1 (i) = Q= (2.12)
Such exchange flows are called mazimal: the phase speed of long interfacial gravity waves
V¢"H ‘controls’ the flow at sharp changes in geometry (on either ends of the duct), and
sets the maximal non-dimensional volume flux to Q = 1/2.

In ‘plug-like’ hydraulic flows (Re — o0), the velocity in each layer AU/2 is equal to
its layer-average (), giving an upper bound fay = Q = 1/2. By contrast, in real-life
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8 A. Lefauve & P. F. Linden

finite- Re flows, the peak AU/2 is larger than the average @ (typically by a factor ~ 2),
such that the upper bound is fay ~ 2Q ~ 1. This upper bound remains approximately
valid throughout the blue region of figure 2l We thus answer the question motivating this
section: our choice of non-dimensionalising u by \/¢’H ~ AU/2 in order to have |a| <1
is indeed relevant to SID flows.

Henceforth, we drop the tildes and, unless explicitly stated otherwise, use non-
dimensional variables throughout.

3. Background

We sketch the current state of knowledge on the behaviour of flow regimes, mass flux,
and interfacial layer thickness with input parameters in §[3.1] We highlight the limitations
of previous studies and the current open questions to motivate our study in §[3.2] A more
thorough review of the literature supporting these conclusions is given in appendix [A]
and a synthesis is given in table

3.1. Current state of knowledge

The flow regimes have been observed and classified in a relatively consistent way in the
literature. Throughout this paper, we adopt the nomenclature of Meyer & Linden| (2014)):
L (laminar flow with flat interface) H (interfacial Holmboe waves), | (intermittently
turbulent), T (fully turbulent). The consensus is that the flow becomes increasingly
disorganised and turbulent with A, # and Re. At a fixed 8 > 0°, all flow regimes
(L,H,,T) can be visited by increasing Re, and conversely at fixed Re and increasing
A (Macagno & Rouse||1961; Wilkinson||{1986} Kiel [1991; Meyer & Linden||2014; [Lefauve
et al|2019) (hereafter MR61, W86, K91, ML14 and LPL19, respectively). Both K91 and
ML14 observed regime transitions scaling with Atanf = tanf/tana (or A6 for small
angles), i.e. A controls the 6 scaling. However, the scaling in Re is subject to debate,
and may change on either side of § ~ «a (LPL19). These conclusions are illustrated
schematically in figure [|(a) (the interrogation marks denote open questions).

The mass flux has a complex non-monotonic behaviour in A, 6, Re sketched in fig-
ure[3|(b). While the dependence on Re is clear at Re < 5004 (MR61, W86, ML14, LPL19)
due to the influence of viscous boundary layers, it is still debated at Re > 500A: [Mercer
& Thompson| (1975)) (hereafter MT75) and ML14 argued in favour of this dependence
on Re even above 500A whereas |Leach & Thompson| (1975) (heareafter LT75) and K91
argued against it. The mass flux reaches a maximum @,, ~ 0.4 — 0.5 at 6 =~ /2 and
‘high enough’ Re (MT75, K91, ML14, LPL19) and decays for smaller/larger # and Re
(W86, LPL19) in a poorly-studied fashion.

The interfacial layer thickness has only been studied experimentally in K91, who
observed monotonic increase of § with both A and 6, good collapse with A tan 6 (reaching
its maximum § = 1 at 6 2 2a), and independence on Re (figure [3(c)). The behaviour of
0 at low Re < 500A remains unknown.

3.2. Limitations of previous studies

Many aspects of the scaling of regimes, Q,, and § with A, B, 0, Re, Pr remain open
questions. For example, the effects of Re on 4, and the effects of B and Pr on all three
variables have not been studied at all. Moreover, despite our efforts to unify their findings
in § and appendix [A] these past studies of the SID experiment inherently provide a
fragmented view of the problem due to the following limitations (made clear by table[A.1)):
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(a) Regimes (b) Mass flux Q..

? Re A02 06 10
0, 500A--|‘l‘ (
A
0.5 9
2/ 94 )
L x )
a\\ '

A4

(c) Interfacial thickness ¢
Re A Re A

5004 T

A4 A4
: : > : >

0 « 19 0 [0} 9 0 « 9

A 4

Figure 3: Illustration of the current state of knowledge on the idealised behaviour of the
(a) flow regimes, (b) mass flux, and (¢) interfacial layer thickness with respect to A, 6, Re
(the axes have logarithmic scale). Interrogation marks refer to open questions. For more
details, see the literature review in appendix E

(i) they used slightly different setups and geometries (e.g. presence vs absence of free
surfaces in the reservoirs, rectangular ducts vs circular pipes), and slightly different
measuring methodologies (e.g. for @,,);

only one study (K91) addressed the interdependence of the three variables of interest
(regime, @y, ), while the remaining studies measured either only regimes (MR61),
only @, (LT75, MT75), or both (ML14, LPL19);

they focused on the variation of a single parameter (MR61), two parameters (W86,
K91, LPL19), or at most three parameters (MT75, ML14) in which case the third
parameter took only two different values;

they studied limited regions of the parameter space, and it is difficult to confidently
interpolate results obtained by different setups in different regions (such as Re <
500A and > 500A4).

The experimental results and models in the next two sections attempt to overcome the
above limitations by providing a more unified view of the problem.

4. Experimental results

In order to make progress on the scaling of flow regimes, Q,,, and § with A, B, 0, Re, Pr,
we obtained a comprehensive set of experimental data using an identical setup, measuring
all three dependent variables with the same methodology (described in appendix ,
and varying all five independent parameters in a systematic fashion. We introduce the
different duct geometries and data sets used in § and present our results on flow
regimes in § on mass flux in §[£.3] and on interfacial layer thickness in § [£.4]

4.1. Data sets

All experimental data presented in the following were obtained in the stratified inclined
duct (SID) setup sketched in figure |1 We used four different duct geometries and two
types of stratification (salt and temperature) to obtain the following five distinct data
sets, listed in table

LSID (L for Large) with height H = 100 mm, and A = 30, B = 1;
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Table 1: The five data sets used in this paper, using four duct geometries (abbreviated
LSID, HSID, mSID, tSID) with different dimensional heights H, lengths L = AH and
widths W = BH, and two types of stratification (salt and temperature). We emphasise
in bold the resulting differences in the ‘fixed’ non-dimensional parameters A, B, Pr with
respect to the ‘control’ geometry (top row). We also emphasise the difference in H
between LSID and mSID, to test whether or not H plays a role other than through
the non-dimensional parameters A, B, Re. We also list the range of 6, Re explored, and
the number of regime, @,, and d data points obtained in the (6, Re) plane. Some of
these data have been published or discussed in some form in ML14 (denoted by *) and
LPL19 (denoted by ') and are reused here with their permission for further analysis.
Measurements of @,, and d were not practical with heat stratification (hence the - symbol,
see text for more details). Total: 886 individual experiments and 1545 data points.

Duct scale Fixed params.  Varied params. = Number of data points

Name H (mm) Cross-section A B Pr  6(°) Re(x10%) regime Qm 0

LSID 100 30 1 700 [-1,4]  [2,20] 173*  20° 115
HSID 100 B 15 1 700 [0,4] [1,20] 74 347 58
mSID 45 |:| 30 1 700 [-1,6] [0.3,6] 360" 1627 91
tSID 90 |:| 15 Ya 700 [-1,3] [3,15] 131 92 87
mSIDT 45 |:| 30 1 7 [0,10] [0.3,1.5] 148 - -

HSID  (H for Half) which only differs from the LSID (the ‘control’ geometry) in that
it is half the length: A = 15 (highlighted in bold in table ;

mSID  (m for mini) which only differs from the LSID in its height H = 45 mm, but
keeps A, B, Pr identical (this is done by scaling down H, W, L by the same factor
100/45 such that the mSID and LSID ducts remain geometrically similar). Note
that the mSID and LSID configurations should yield identical data at identical
Re since H should only play a role through the non-dimensional parameters
A, B, Re. However, we will see in § [{.2}[4:4] that this hypothesis is challenged by
our data.

tSID (t for tall) which differs from the HSID primarily in its tall spanwise aspect ratio
B = 1/4 (and, secondarily, in a marginally smaller height H = 90 mm);

mSIDT (m for mini and T for temperature) which differs from the mSID in that the
stratification was achieved by different reservoir water temperatures (hence
Pr = T), as opposed to different salinities in the above data sets (where
Pr = 700). This limited the density difference Ap achieved, reflected in the
lower Re.
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Table [T also lists, for each data set, the range of variation of § and Re, and the number
of data points, i.e. distinct (6, Re) couples for which we have data on regime, @,,, and J.

Note that the regime and @,, data of the top three data sets have already been pub-
lished in some form by Meyer & Linden| (2014) (ML14, denoted by *) and [Lefauve et al.
(2019) (LPL19, denoted by T), as discussed in Appendix However, ML14 plotted
their LSID and HSID data together (see their figure 7-8) and did not investigate their
potential differences, while LPL19 only commented in passing on a fit of the @, data in
the (6, Re) plane (see their figure 9). The individual reproduction and thorough discussion
of these data alongside more recent data using a unified non-dimensional approach will
be key to this paper. All five data sets have been used in the PhD thesis of [Lefauve
(2018) (especially in Chapters 3 and 5), and the detailed parameters of all experiments
are tabulated in his appendix A for completeness. Most of the raw and processed data
used in this paper are available on the repository doi.org/10.17863/CAM.48821 (more
details in Appendix .

Our focus on long ducts, evidenced by our choice of A = 15 and 30, reflects our focus on
flows relevant to geophysical and environmental applications, which are typically largely
horizontal (6 ~ 0°) and stably stratified in the vertical (as opposed to the different case
of vertical exchange flow with § = 90°). The SID experiment conveniently exhibits all
possible flow regimes, including high levels of turbulence and mixing, between 6§ = 0° and
a few a at most (§ In long ducts (large A), a = tan~1 (A1) is therefore small enough
to allow us to study all the key dynamics of sustained stratified flows while keeping 6
small enough for these flows to remain largely horizontal, and thus geophysically relevant.

As a result of this focus on long ducts, in the remainder of the paper we make the
approximation that

cosf~1 and sind =4, (4.1)

This approximation is accurate to better than 2 % for the angles considered in our data
sets (6 < 10°). Unless explicitly specified by the °© symbol, § will now be expressed in
radians (typically in scaling laws).

4.2. Flow regimes

The L,H, |, T flow regimes were determined following the ML14 nomenclature as in
appendix (except for a new regime which we discuss in the next paragraph). Figure
shows the resulting regime maps in the (6, Re) plane corresponding to the five data sets.

First, we note the introduction of a ‘new’” W regime in the tSID and mSIDT data
(panels (d,e)). This W (wave) regime is similar to the H (Holmboe) regime, but describes
interfacial waves which were not recognised as Holmboe waves in shadowgraphs. These
waves were of two types. First, in the tSID geometry at positive angles 6 > 0, the waves
did not exhibit the distinctive ‘cusped’ shape of Holmboe waves and the waves appeared
to be generated at the ends of the duct and to decay as they travel inside the duct. Second,
in the mSIDT larger-amplitude, tilde-shaped internal waves were observed across most of
the height of the duct, contrary to Holmboe waves which are typically confined to a much
thinner interfacial region. Further discussion of these waves falls outside the scope of this
paper, but can be found in (Lefauve|[2018] §§ 3.2.3-3.2.4) (hereafter abbreviated L18).
This new observation highlights the richness of the flow dynamics in the SID experiment.
However, for the purpose of this paper, the H and W regimes are sufficiently similar in
their characteristics (mostly laminar flow with interfacial waves) that we group them
under the same regime for the purpose of discussing regime transitions.

The main observation of figure [ is that the transitions between regimes can be
described as simple curves in the (6, Re) plane that do not overlap (or ‘collapse’) between
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Figure 4: Regime diagrams in the (6, Re) plane (lin-log scale) using the five data sets of
table [1] (the scaled cross-section of each duct is sketched for comparison in the top right
corner of each panel). The error in 6 is of order £0.2° and is slightly larger than the
symbol size, whereas the error in Re is much smaller than the symbol size, except in (e)
at small Re.



Ezchange flows in inclined ducts 13

(a) LSID (b) HSID
10— 10°
Q 01 02 03 04 05 E
0% . 10°F .
Re 01 Re
50A
10°F o 3 10° Es0A 3
2 1 ....| 2 1 |
10 10
107 1072 “ 0! 107 102 107!
0 ]
(d) tSID

o ooooo
[ttt

001020304 0.5
2 1 1

10
103 102 “ !
0
(¢) mSIDT
10°F . .
10*F L 1
Re : Y_Y N |-1 ..... — },,.!-1/2
10} | S0A R SN i T ORe =const. O Re’=const.
2 M 1 A Ll
10
10° 10”2 “ 0!
0

Figure 5: Regime and Q,, in the (0, Re) plane (log-log scale, thus only containing the
regime and @, data of ﬁgure for which 6 > 0°). The dashed and dotted lines represent
the power law scalings § Re = const. and § Re? = const., respectively. The gray shadings
represent the special threshold values of interest 8 = & and Re = 50A. The ML14 arrow
in panel (a) denotes the | — T transition curve identified by ML14. Black contours
in panels (a-d) represent the fit to the @,, data (see § , representing (a) 20 data
points (coefficient of determination R? = 0.56), (b) 34 points (R? = 0.81), (c) 162 points
(R? = 0.80), and (d) 92 points (R? = 0.86)
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the five data sets. The slope and location of the transitions varies greatly between panels:
the difference between the LSID and HSID data (panels (a,b)) is due to A, the difference
between the HSID and tSID data (panels (b,d)) is due to B, and the difference between
the mSID and mSIDT data (panels (c,e)) is due to Pr.

However one of the most surprising differences is that between LSID and mSID data
(panel (a,c)), due to the dimensional height of the duct H (already somewhat visible in
LPL19, figure 2). It is reasonable to expect that this H-effect is responsible for the main
differences between the LSID/HSID/tSID data and the mSID/mSIDT data. In other
words, it appears that the dimensional H is the main reason why the LSID/HSID/tSID
transitions curves lie well above those for mSID/mSIDT, i.e. the same transitions occur
at higher Re for larger H. The factor of ~ 2 quantifying this observation suggests that a
Reynolds number built using a length scale identical in all data sets (rather than H/2)
would better collapse the data. However, such a length scale is missing in our dimensional
analysis (§ because we are unable to think of an additional length scale (such as the
thickness of the duct walls or the level of the free surfaces in the reservoirs) that could
play a significant dynamical role in the SID experiment.

We conclude that the transitions between flow regimes can be described by hyper-
surfaces depending on all five parameters A, B, 0, Re, Pr because their projections onto
the (6, Re) plane for different A, B, Pr do not overlap. This dependence of flow regimes
on all five parameters is interesting because it was not immediately obvious from our
dimensional analysis which concerned the scaling of the velocity fay alone (§ and
figure . Furthermore, the existence of another non-dimensional parameter involving H
and a ‘missing’ length scale is a major result that could not be predicted by physical
intuition, and which this paper unfortunately does not elucidate.

Let us now investigate in more detail the scaling of regime transitions with respect to
0 and Re, for which we have much higher density of data than for A, B, Pr. In figure
we replot the 8 > 0 data of figure 4] using a log-log scale (each panel corresponding
to the respective panel of figure |4)). To guide the eye to the two main types of regime
transition scalings observed in these data, we also plot two families of lines: dashed lines
with a §Re = const. scaling, and dotted lines with a §Re? = const. scaling. We also
show using grey shading special values of interest: § = o and Re = 50A. The former was
highlighted as particularly relevant in our scaling analysis (§ and literature review
(§ , notably as the boundary between lazy and forced flows in LPL19 (appendix [A]).
Although W86 and K91 quoted Re = 500A as a threshold beyond which the effects of
viscosity should be negligible on the turbulence in the SID, we believe that Re = 504
is a physically justifiable threshold beyond which the influence of the top and bottom
walls of the duct becomes negligible. In the absence of turbulent diffusion, laminar flow
in the duct is significantly affected by the top and bottom walls if the interfacial and
wall 99 % boundary layers overlap in the centre of the duct (z = 0), which occurs for
Re < 50 (L18, § 5.2.3). If, on the other hand, Re > 50A (Re = 5004 being a potential
threshold), the top and bottom wall laminar boundary layers (as well as the side wall
laminar boundary layers, assuming that B < 1) do not penetrate deep into the ‘core’ of
the flow (however at these Re, we expect interfacial turbulence to dominate the core of
the flow). Note that black contours representing a fit of the @,, data are superimposed
in panels (a-d); these will be discussed in §

Figure [5| shows that regime transitions scale with #Re?> = const. (dotted lines) in
LSID, tSID and mSIDT (panels (a,d,e)), and with § Re = const. (dashed lines) in HSID
(panel (b)). In mSID (panels (c)), these two different scalings coexist: O Re? for § < o
(lazy flows) and 6Re for 8 2 « (forced flows), as previously observed by LPL19, who
physically substantiated the @ Re scaling in forced flows, but not the #Re? scaling in lazy
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flows. Furthermore, these five data sets show that this dichotomy in scalings between
lazy and forced flows in mSID does not extend to all other geometries: lazy flows in the
HSID exhibit a #Re scaling and forced flows in the mSIDT exhibit a § Re? scaling. These
observations further highlight the complexity of the scaling of regime transitions with
A, B,0, Re, Pr.

4.3. Mass flux

Mass fluxes were determined using the same salt balance methodology as ML14
described in appendix

In figure |§| we plot the @,, data for mSID (full symbols) and tSID (open symbols)
as a function of Re for all the available 6 (from § = —1° in panel (a) to 6 = 3.5°
in panel (j)). The colour of each symbol denotes the regime as in figures and the
error bars denote the uncertainty about the precise duration T' of the ‘steady’ flow of
interest in an experiment (used to average the volume flux and obtain Q,,, as explained
in appendix . We do not plot the LSID and HSID data in this figure because they
are sparser and do not have error bars (these data were collected by ML14 prior to this
work).

At low angles 8 < 1° < « (where a &~ 2° in mSID and 4° in tSID) we observe low values
Qm =~ 0.2 —0.3 in the L and H regimes. At intermediate angles 8 ~ a — 2a we observe
convergence to the hydraulic limit @, — 0.5 (denoted by the dashed line), as discussed
in § 2.3} which coincides with the | and T regimes. We also note that this hydraulic limit
is not a strict upper bound in the sense that we observe values up to @,, = 0.6 in some
experiments (some error bars even going to 0.7). At higher angles 0 2> « ~ 2°, Q,,, drops
with Re while remaining fairly constant with 6.

As in the regime data, the mSID and tSID @Q,, data do not collapse with Re: all the
tSID data (open symbols) are shifted to larger Re compared to the mSID data (full
symbols) suggesting again that a Reynolds number based on a ‘missing’ length scale
independent of H would better collapse the data.

To gain more insight into the scaling of @, and its relation to the flow regimes, we
superimpose on the regime data of figure ( a-d) black contours representing the least-
squares fit of our four @), data sets using the following quadratic form:

Qm (0, Re) = Iy + I'glogf + I'yo(log #)? 4 Iy log Re + Iya(log Re)? + Ity log @ log Re
FQ() F11/2 F10/2 10g9

:[logH log Re 1] Iy /2 Toye To1/2| |logRe| . (4.2)
I'o/2 To1/2  Too 1
r

This is the general equation of a conic section, where I' is commonly referred to as
the matrix of the quadratic equation. It is well suited to describe the non-monotonic
behaviour observed above, despite the fact that the non-monotonicity in 6 (i.e. the decay
of @, at large 6 widely observed in the literature) cannot be clearly confirmed by our
data.

These contours describe hyperbolas (det I' < 0) for LSID, HSID and mSID (pan-
els (a,b,c)), and concentric ellipses (det I > 0) for tSID (panel (d)). The hydraulic limit
Qm ~ 0.5 is reached either at the saddle point of the hyperbolas (panels (a,b,c)), or at
the centre of the ellipses (panels (d)), and, encouragingly, no @,, = 0.6 contour exists
here.

We again note that these four data sets do not collapse in the (6, Re) plane. For
example, the angle at which this maximum @,, is achieved is a modest # = 0.3a in mSID
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(panel (¢)) but appears much larger in tSID. The eigenvectors of I' for each data set reveal
that the major axis of these conic sections has equation § Re” where v = 2.6,0.3,1.5,1.2
respectively for panels (a,b,c,d) (a larger exponent «y represents a larger dependence on
Re, hence a more horizontal axis).

The exponent « characterising the slope of the major axis is roughly of the same
order as the exponent characterising the lines of regime transition (which is 1 for the
ORe scaling, and 2 for the §Re? scaling), suggesting that both phenomena (regime
transition and non-monotonic behaviour of @,,) are linked. However, this agreement
is not quantitative except in mSID (panel (¢)) where v = 1.5 is precisely the average of
the two different regime transition exponents. This general lack of correlation suggests
that the relationship between regimes and @, in the SID is not straightforward and
dependent on the geometry.

4.4. Interfacial layer thickness

Interfacial layer thickness was determined using the non-intrusive shadowgraph imag-
ing technique (in salt experiments only). Shadowgraph is particularly suited to detect
peaks in the vertical curvature of the density field |9, p| which we define as the edges of
the interfacial density layer, as explained in appendix

In figure |[7| we plot d for our four duct geometries (rows) and three particular angles
(representing a subset of our data) § = 1°,2° 3° (columns). In figure [8| we plot a
quadratic fit (black contours) to all the available data (represented by the symbols)
in the (log 6, log Re) plane following ([4.2). We also added in grey shading the 6 = a and
Re = 50A values of interest for comparison between panels. In both figures, the colour
of the symbol denotes the flow regimes as in figures

In figures [7]and [§] § monotonically increases with both 6 and Re, starting from values
as low as ¢ ~ 0.05 in the L, H, and W regimes (see figure [B.T)(a) for an illustration with
0 = 0.069), and ending with values as high as § ~ 0.8 in the T regime (see figure (c)
for an illustration with § = 0.47). The upper bound corresponds to the turbulent mixing
layer filling 80 % of the duct height, with unmixed fluid only filling the remaining top
and bottom 10 %. We substantiate the lower bound by the thickness of the 99 % laminar
boundary layer resulting from the balance between streamwise advection and vertical
diffusion of an initially step-like density field. This calculation gives, at any point in the
duct, dg9 ~ 10AY/2(Re Pr)~'/2 ~ 0.03 — 0.1 in the range Re € [300,6000] where the
L,H, W regimes are found.

Figure [7] also shows a greater scatter of data points in the | and T regimes than in
the L and H regime. This scatter cannot be attributed to measurement artifacts caused
by turbulent fluctuations in the streamwise or spanwise position of the mixing layer
(appendix , but rather demonstrates the inherent physical variability and limited
reproducibility of | and T flows.

Both figures show the role of the dimensional parameter H in ‘shifting’ the
LSID/HSID/tSID data to higher Re than the mSID data and hindering their overlap,
hinting at a ‘missing’ lengthscale, as already discussed in the regimes and @,,, data. Note
that A and B play additional, more subtle roles as shown by the differences between the
LSID and HSID data and between the HSID and tSID data, respectively.

Finally, figure [8| shows good agreement between iso-6 contours and ‘iso-regime’ curves,
or regime transitions curves (not shown for clarity, but easily visualised by the different
symbols). This suggests that § is more closely correlated to regimes than @, is.
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Figure 7: Interfacial density layer thickness §(Re) in salt experiments for three selected
angles 0 = 1°,2°,3° (only a fraction of the available data) and for the four duct
geometries: (a-c) LSID, (d-f) HSID, (g-i) mSID, (j-1) tSID. Symbol colour denotes flow
regime as in previous figures.

5. Models and discussion

In this section, we attempt to explain some of the above observations with three
particular classes of models, whose prior success in the literature make them natural
candidates to tackle this problem.

In § we attempt to explain the scaling of regime transitions at high Re > 504 by
generalising the time- and volume-averaged energetics analysis of LPL19. In § [5.2] we
investigate the scaling of regimes and @),,, with a frictional two-layer hydraulic model. In
§[5.3] we tackle the scaling of ¢ in the | and T regimes by a variety of turbulence mixing
models.

5.1. Volume-averaged energetics

The simultaneous volumetric measurements of the density and three-component veloc-
ity fields of |Lefauve et alf(2019) (LPL19) confirmed their theoretical prediction that, in



539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

Ezchange flows in inclined ducts 19

(a) LSID (b) HSID
105§ — T — T 1()5§ — — —3
b 04 05 06 0.7 0225080008 5
3 1045 0.8 3
Re 07
0.6
i 3L i
10 ES0A 0.5 E
F 0.1 03
2 il N | 2 Liald T
10 10
107 102 % 10! 107 1072 *107!
9 )
(c) mSID (d) tSID
1()5E — — T 105§ — — T —3
10*F E 10*F
Re Re
S0A I -
30 | 3L 02 0.1 01 02 |
107 107 F50a
2> il \ AL SN 2 |:|. ol | ,
10 10
107 102 * 10! 107 107 *107!
) )

Figure 8: Interfacial density layer thickness  in salt experiments fitted from (a) LSID:
115 points (R? = 0.88), (b) HSID: 58 data points (R? = 0.97), (¢) mSID: 91 data points
(R? = 0.80), (d) tSID: 87 data points (R? = 0.75). Symbol denotes location of the § data
and colour denotes flow regime. Grey shading denotes 6 = o and Re = 50A.

forced flows, (8 2 «) the time- and volume-averaged norm of the strain rate tensor (non-
dimensional dissipation) followed the scaling (s?); , .+ ~ ORe (see § for a review).
They further decomposed the dissipation into:

(i) a ‘two-dimensional’ component s3, (based on the x—averaged velocity usq = (u)).
LPL19 measured flows in the mSID geometry at Re < 2500, i.e. Re % 50A = 1500,
in which case the viscous interfacial and top and bottom wall boundary layers are
well or fully developed and s3; ~ ((9,u24)?)zy,2+ = O(1). They indeed observed
that <s§d>x, Y, z,t plateaus at = 4 in the | and T regimes due to the hydraulic limit;

(i) a complementary ‘three-dimensional’ part s2;, = s? —s3, which, as a consequence of
the plateau of s3,, takes over in the | and T regime and explains the §Re scaling of
regime transitions for forced flows in mSID.

In flows at Re > 50A (well above the horizontal grey shading in figures we
expect the 99 % viscous boundary layers to be of typical thickness ~ 104/2Re~1/% « 1,
and therefore volume-averaged two-dimensional dissipation to be higher s2, ~
(((’Luzd)z)m’y,zyt ~ 1071A"1/2Re'/2 > 1. Therefore, we extend the prior results of
LPL19 that regime transitions correspond to threshold values of

(3 ) eyt ~ORe for Re< 504, (5.1)



555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

20 A. Lefauve & P. F. Linden

(a) Hydraulic setup (b) Frictional model
—>

Layer 2

u;

k}y et —

Figure 9: Schematics of the (a) hydraulic model setup and notation and (b) the frictional
model with stresses acting on the: top and bottom walls 7'12)2 (in blue), side walls Tf 5 (in
green) and interface 77 (in red) of an infinitesimally small slab of fluid dx.

by conjecturing that they correspond to threshold values of
(3)aysi ~ ORe — ATY2Rel/? for  Re > 504, (5.2)

which introduces A and a different exponent to Re into the scaling.

Unfortunately we have little regime data for forced flows at Re > 50A (upper right
quadrants of each panel in figure |5)) except in LSID (panel (a)). Nevertheless, it does not
appear that this conjectured scaling would be able to explain the observed §Re? scaling.
Detailed flow measurements would be required in this geometry to confirm or disprove
the above two assumptions that two-dimensional dissipation follows a different scaling,
and that regime transitions are tightly linked to three-dimensional dissipation.

Furthermore, we recall that the under-determination of the energy budgets of lazy
flows (6 < «, see LPL19 figure 8(a)) does not allow us to predict the rate of energy
dissipation (s?) from the rate of energy input (~ #Re) and therefore to substantiate the
transition scalings in lazy flows (left two quadrants of each panel in figure [5)).

5.2. Frictional two-layer hydraulics

We introduce the fundamentals of this model in § [5.2.1] before examining the physical
insight it provides in § and its implications for the scaling of regime transitions

and mass flux in §

5.2.1. Fundamentals

The two-layer hydraulic model for exchange flows (figure [9](a)) assumes two layers
flowing with non-dimensional velocities ui(x) > 0 (lower layer) and uz(x) < 0 (upper
layer), and separated by an interface of non-dimensional elevation n(x) € [—1,1] above
the neutral level z = 0.

In the idealised inviscid hydraulic model (i.e. in the absence of viscous friction) the
conservation of volume and of Bernoulli potential, and the requirement of hydraulic
control yield a horizontal and symmetric interface n(z) = 0 for « € [—A, A] and a volume
flux Q@ = u3 = —uz = 1/2 as already mentioned in § (see appendix for more
details).

The frictional hydraulic model is of more relevance to SID flows at finite Re. This model
parameterises the effects of viscous friction while retaining the hydraulic assumptions
(hydrostatic, steady, two-layer flow with uniform velocities uq 2(z)). Dating back to|Schijf]
& Schonfled| (1953); |Assaf & Hecht| (1974); |Anati et al.| (1977)), it was formalised by |Zhu
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& Lawrence| (2000); |Gu (2001); |Gu & Lawrence| (2005]), who considered the effects of
friction at the interface and bottom wall only, with applications to wide, open, horizontal
channels. Here we further develop this model to add the effects of gravitational forcing
(8 > 0) and friction at the top and side walls. The full development of this model can
be found in (L18, § 5.2) and we offer a summary in appendix [C| Some of its conclusions
were briefly discussed in LPL19 § 4.3.1 (e.g. the distinction between lazy /forced flows).
Below we provide a self-contained presentation of the key results of this model regarding
the particular problem of the scaling of regimes and Q..

As sketched in figure [0](b), we consider that each infinitesimal duct sub-volume da x
2B x 2 centred around x is subject to horizontal, resistive stresses at the bottom wall
7 (x), top wall 74 (z) (in blue), side walls 7)5(z) (respectively in the bottom and top
layers, in green), and interface 7! (in red). The inclusion of these stresses in the evolution
of Bernoulli potential along the duct (see § yields a nonlinear differential equation
for the slope of the interface along the duct of the form

77/(96) :77/(777Q797R67fZ7fY7fl) (53)

(see for the full expression). Here fy, fy, fr are constant friction factors parameter-
ising respectively the top and bottom wall stress, the side wall stress, and the interfacial
stress (they can be determined a posteriori from any finite-Re flow profile, see §
and ) For any set of parameters 0, Re, fz, fy, f1, this dynamical equation can be
combined with the hydraulic control condition and solved numerically using an iterative
method to yield a unique solution for @ and n(z) (§|C.3)). The volume flux @ generally
increases with the forcing 6 Re, and decreases with friction fz, fy, fr, and A.

5.2.2. Physical insight

We now consider the mid-duct slope n’(z = 0), whose simplified expression shows the
balance between the forcing § Re and the ‘composite friction parameter’ F':

7(0) = ORe — 2QF

= = 1 4
Re(l = 107) where F = fz(1+ 2ry + 8ryp), (5.4)

and ry = B~ fy/fz and r; = f1/fz are respectively the side wall friction ratio and the
interfacial friction ratio.

We further note that our model has three properties: (i) the interface must slope down
everywhere (n'(x) < 0) since the lower layer accelerates convectively from left to right
(uru)(x) > 0) and conversely (ugub(x) < 0); (ii) the interface must remain in the duct
[n(x = £A)| < 1; (#4) n' always reaches a maximum (|n’| reaches a minimum) at the
inflection point z = 0.

From these properties we deduce that the existence of a solution requires the mid-duct
interfacial slope to satisfy

—A~t < 7/(0) <0, (5.5)
and therefore, using ([5.4), we obtain the following bounds:
1 —4Q?
ORe < 2QF < (1+b)0Re where b(A,0,Q) = —ig (5.6)

The first inequality in comes from property (i) and means that the mid-duct
interfacial slope must not be too steep compared to the duct geometrical slope A~! =~ a.
The second inequality comes from (i) and (ii) and means that the mid-duct interfacial
slope must be negative for n(x) to be negative everywhere.

When suitably rescaled by 2Q € [0,1], the combined friction parameter F' must
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Figure 10: Conclusions of the frictional hydraulic model as the ‘forcing parameter’ 8 Re
is increased: (a) 2QF is bounded above and below by (5.6); (b) volume flux @, and (c)
composite friction parameter F' (a and b in the T regime denote two possible scenarios).
We conjecture that regime transitions correspond to threshold values of F'.

therefore follow a @ Re scaling, strictly bounded from below. The upper bound in (/5.6)
is loose (b > 0) in lazy flows, and tight (b — 0) in forced flows (40 ~ 6/« > 1 and

Q— 1)

5.2.3. Implications for regimes and Q,

Combining the above physical insight with our experimental observations, we conjec-
ture the following behaviour about regimes and @,,,, summarised in figure

(i)

At zero or ‘low’ fRe (i.e. at 6 = 0, since Re must be large for hydraulic theory to
hold) due to the inevitable presence of wall and interfacial friction (F > 0) and
the looseness of the upper bound b, 2QF is typically well above the forcing 6 Re.
The friction F' is independent of § Re and the flow is typically laminar (L regime).
The interface has a noticeable slope all along the duct 7'(0) < 0, associated with a
small volume flux Q < /2 (see ) Such lazy flows are underspecified, and the
scaling of @ and F with #Re is therefore impossible to predict a priori.

At moderate §Re (60 > 0): 2QF increases above its ‘default’ § = 0 value. This is
achieved, on one hand, through an increase in @ (and therefore @,,), making the
flow approach the hydraulic limit (panel (b)), and on the other hand, through an
increase in F', in particular through laminar interfacial shear (r7), rendering the flow
unstable to Holmboe waves above a certain threshold (L — H transition, panel (¢)).
The phenomenology of this transition agrees with that proposed by the energetics
of LPL19 (see their § 6.2-6.3). The fact that the L — H (or L — W) transition
exhibits different scalings in our different data sets is not presently understood. It
may come from the complex, individual roles of @ and F' in the precise flow profiles
u(y, z), p(z) responsible for triggering the Holmboe instability, and the different
scalings of @ and F' that could allow 2QF to follow a #Re scaling.



648

649

650

651

652

653

654

655

656

657

658

659

660

662

663

664

665

666

667

668

669

670

671

672

674

675

676

677

679

680

681

682

684

685

686

687

688

689

690

691

Ezchange flows in inclined ducts 23

(iii) At high #Re: the hydraulic limit is reached, the upper bound is tight (b ~ 0), the
interface is mostly flat (n(xz) = 0 everywhere), and the inequality becomes
2QF =~ F = 0ORe. In such forced flows, the friction parameter F' alone must
precisely balance the forcing. Arbitrarily large 6 Re requires arbitrarily large F,
which we conjecture is largely achieved by turbulent interfacial friction (increase in
ry responsible for the H — | and eventually the | — T transition).

From implication (iii), it is natural to conjecture that these two transitions are also caused
by threshold values of the interfacial friction ratio r;, which, as explain in appendix
can be written r; = 1 + Ky, where K is a turbulent momentum diffusivity (non-
dimensionalised by the molecular value v) parameterising interfacial Reynolds stresses
(see (C19)). Assuming that all wall shear stresses are similar (ry =~ 1), and that
interfacial Reynolds stresses eventually dominate over laminar shear (K > 1), we have
K; =~ F/(8fz). For Re < 504, fully-developed boundary layers yield fz ~ 1, implying
regime transitions scaling with (ignoring pre-factors)

K; ~0Re for Re < 50A. (5.7)

For Re > 50A, thin top and bottom wall boundary layer arguments similar to those of
§ yield fz ~ AY2Re~1/2_ implying regime transitions scaling with

K;~ AY20Re'/? for Re>> 50A. (5.8)
Comparing (5.7)-(5.8) to (5.1)-(5.2) we see that the Re < 50A scaling obtained

with frictional hydraulics is identical to that obtained by the energetics. However, the
Re > 50A scaling is different, and unfortunately it does not allow us to explain the
regime transitions data (a @Re'/? or 62 Re scaling is never observed). In addition, direct
estimations of friction coeflicients using three-dimensional, three-component velocity
measurements in all flow regimes (L18, § 5.5) suggest a posteriori that the assumption
that K7 > 1 might only hold beyond the | — T transition, undermining its usefulness to
predict the H — | and | — T transitions.

From implication (ii), we understand why the volume flux @, and hence the mass flux
Qm, both increase with 6 and Re in the L and H regimes, as observed in § [£.3] However
lazy flows are under-specified; only one equation governs both the volume flux and friction
(2QF ~ ORe), which does not allow us to obtain the value of the exponent v in the scaling
Q ~ ORe". From implication (iii), we conjecture two potential reasons for the decrease of
the mass flux @, in the T regime (labelled ‘a’ and ‘b’ in panels b,¢). In scenario ‘a’, Q.
decreases due to increasing mixing despite the volume flux () staying relatively constant
(2QF ~ F ~ 0Re). In scenario ‘b’, @, decreases partly due to mixing, and partly due
to a decrease in @) (compensated by F' increasing faster than 6 Re). Accurate @ and Q,,
data obtained by volumetric measurements of velocity and density in L18 (figure 5.12(b))
support scenario ‘b’ up to 6 Re = 132, but additional data are required to draw general
conclusions.

The above frictional hydraulic model assumes a two-layer flow without any form of
mixing, and thus ignores the behaviour of the interfacial thickness §, which is the subject
of the next section.

5.3. Mizing models
The importance and difficulty of modelling interfacial mixing in exchange flows has long
been recognised (Helfrich/[1995; Winters & Seim!2000). However, despite the existence of
hydraulic models for multi-layered or continuously-stratified flows (Engqvist||1996; Lane-
Serff et al.|2000; Hogg & Killworth|2004)), to date there exists no ‘three-layer’ hydraulic
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model allowing for the exchange of momentum or mass between the two counter-flowing
layers suitable to our problem (which would violate most hydraulic assumptions). Below
we review some experimental, numerical, and theoretical work most relevant to the scaling
of Qm, 0, and their relation to fundamental stratified turbulence properties such as
diapycnal diffusivity and mixing efficiency.

5.3.1. Turbulent diffusion models

Cormack et al| (1974a)) tackled natural convection in a shallow (A4 > 1) cavity
with differentially heated walls. This problem is analogous to SID flows in the limit
of maximum ‘interfacial’ thickness (§ = 1) in which turbulent mixing dominates to such
an extent that the exchange flow is only weakly stratified in the vertical (i.e. {|0.p|), < 1
because |p(z = £1)| < 1) and becomes stratified in the horizontal (i.e. |0yp(z = £1)| > 0
and mean isopycnals are no longer horizontal). In their model, the horizontal hydrostatic
pressure gradient is balanced only by a uniform vertical turbulent diffusion with constant
K. Using the terminology of § this balance could be called the hydrostatic-mixing
(or ‘HM’) balance where ‘mixing’ plays a similar role to ‘viscosity’ in the ‘HV’ balance
of § Cormack et al.|(1974al) solved this problem analytically and found:

— 5 -1
_ 31 -3
Qm =4AK + 1151520 (AK7)™°, (5.9b)

where we assumed a turbulent Prandtl number of unity for simplicity (i.e. the density
equation has the same turbulent diffusivity). The above equations are adapted from
equations (19) and (20) of [Hogg et al|(2001) (in their review of the results of |[Cormack
et al| (1974al)) to match our slightly different definitions of @, @,,, A and especially
our definition of Kr as being non-dimensionalised by the inertial scaling /¢’HH /2
(giving Kr = (4Gr7)~'/? where Grr is their ‘turbulent Grashof number’). We also
contrast the the uniform diffusivity K in this model and the interfacial diffusivity K
in the frictional hydraulics model of § which have different roles and different
non-dimensionalisation (v¢’HH/2 vs v, hence ‘K7 = K/Re’). The predictions (5.9)
were verified numerically and experimentally in two papers of the same series (Cormack
et al.|[19740; Imberger (1974), but only hold in the ‘high-mixing’ limit of AKy > 1/15
below which inertia becomes noticeable and the assumptions start to break down (at
AKr < 1/25, @Q and Q,, even exceed the hydraulic limit).

Hogg et al.[(2001)) built on the above results and developed a model with linear velocity
and density profiles within an interfacial layer of thickness § < 1 and a uniform turbulent
momentum and density diffusivity K. This models the ‘THM’ balance, i.e. the transition
between the |(Cormack et al| (1974al) AK7r > /15 high-mixing limit (the ‘HM’ balance
where turbulent diffusion dominates over inertia, § = 1, and holds) and the AKp —
0 hydraulic limit (the ‘TH’ balance where inertia dominates over mixing, § = 0, and
Q = Q. = 1/2 holds). Hogg et al|(2001) argued that § would increase diffusively during
the ‘duct transit’ advective timescale A, and integrated the linear velocity and density
profiles across the interfacial layer to find

§ ~ 5(AKp)'/?, (5.10a)
1
Qg - Z(AKT)”Q, (5.100)

1
Qm 5~ g(AKT)1/2, (5.10¢)
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where the prefactors 5,5/4,5/3 come from the imposed matching with the high-mixing
solution . Hogg et al.|(2001)) validated these predictions with large eddy simulations
and found good quantitative agreement for Q, Q,,, d across the range AKt € [1/2000, 1/15],
below which convergence to the inviscid hydraulic limit was confirmed.

In order to use these models to explain the scaling of @Q,, and § with A, B, 6, Re, Pr,
we need to (i) extend them to the more complex ‘THGM’ balance of SID flows in the |
and T regimes in which gravitational forcing is present (§ > 0); (i7) have a model for
the scaling of K1 on input parameters (the above models prescribed Kt as an input
parameter, but it is a priori unknown in the SID). To do so, we propose to use insight
gained by the energetics and frictional hydraulics models.

First, following the results of LPL19 and § on the average rate of turbulent
dissipation, it is tempting to model K1 using a turbulence closure scheme like the mixing
length or K — ¢ model, yet these require either a length scale or the turbulent kinetic
energy, which are both unknown (only the rate of dissipation is known, see (5.1)-(5.2)).

Second, borrowing from the frictional hydraulics results of § it seems natural to
conjecture that the ‘Reynolds stresses’ interfacial diffusivity K in the | and T regimes
may play a similar role to the uniform turbulent diffusivity in the present model. Recalling
that by definition K+ = Kj/Re, combining the scalings — with would
suggest:

1
O~ 5= Qm~ (Ag)/? for Re < 504, (5.11a)

1
0~ 5= Qm (A%0?Re™H)Y* for Re > 50A. (5.11b)

Unfortunately these scalings are not consistent with the observations of figures 0 is
clearly a function of Re for Re < 504 (less so at high Re where the Af scaling has indeed
been observed by K91), and § is clearly not a decreasing function of Re for Re > 50A.

5.3.2. Previous mizing efficiency measurements and models

In this section we discuss two studies of the interfacial layer thickness ¢ and its relation
to the Richardson number and mixing efficiency as a basis for the development of a more
suitable model for SID flows in the next section.

Prastowo et al.| (2008]) studied exchange flows through short (A ~ 2—3), wide (B > 1),
horizontal (6 = 0) contractions. Their measurements suggest an approximately constant
interfacial thickness § ~ 0.23 — 0.25 across the range Re € [10%,10°], in rough agreement
with previously quoted estimates for shear-driven mixing flows (e.g. [Sherman et al.
(1978), p. 275 and references therein). They support this observation with ‘equilibrium’ or
‘marginally stable’ Richardson number arguments that the gradient Richardson number
should be maintained near the Miles-Howard linear stability threshold, a phenomenon
commonly observed subsequently in the observational literature on shear-driven mixing
(Thorpe & Liu/2009; |Smyth & Moum/[2013|). Assuming a linear profile for u(z) and p(z)
across the mixing layer yields Ri, ~ § ~ 0.25.

Prastowo et al.| (2008) also measured the time-averaged mixing efficiency in their
exchange flow using density profile measurements in the reservoirs at the end of the
experiments, defined as M = (Py—P,)/(P;— P,) € [0,1], where P; is the initial potential
energy in the system (before the exchange flow starts), Py is the final measured potential
energy in the system, and P, is the ‘reference’ or ‘minimum’ potential energy obtained
by adiabatic (‘no-mixing’) rearrangement of fluid parcels from the initial conditions (i.e.
P,— P, is the initially available potential energy). They found collapse of the M data with
ARe and M — 0.11 for ARe — 10° (using our notation). Finally, they supported this
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observation and linked M to ¢ by estimating mixing efficiency as the ratio of potential
energy gain to kinetic energy deficit caused by the presence of a linear mixing layer,
which yielded M ~ Ri,/2 ~ §/2 ~ 0.125.

Hughes & Linden| (2016) studied horizontal lock exchange gravity currents, which
behave similarly to our exchange flows for part of their life cycle. They measured 6 ~ 0.33
in the range Re € [10%,10°]. Using similar measurements to |Prastowo et al. (2008)), they
found M — 0.08 asymptoting from below as Re — 10°. They supported this asymptotic
value using a simple mixing model based on idealised linear profiles in the mixing layer,
which yielded M = (262/3)(1 — 2§/3)(1 — §/2)~2 ~ §% =~ 0.08.

However, we have seen that exchange flows in inclined ducts have § monotonically
increasing not only with A and Re, but also with . In addition, much higher values of
d>> 0.3 (up to 0.8, and even 1 in K91) can be achieved even at moderate values of 6 of
a few o and Re < 10%. Therefore, the above models supporting values of § = 0.2 — 0.3
and M = 0.08 — 0.12 in the T regime disagree with our data, despite (i) the similarity
of SID flows to the flows assumed above (shear-driven mixing flows with the same ‘TH’
velocity scaling —1 < uw < 1) and (i) the fact that these models would apparently not
be modified by the presence of gravitational forcing (6 > 0).

5.3.3. New mixing efficiency model

To address this, we propose a different model of mixing based on the energetics
framework of LPL19. As sketched in figure ( a), we consider that the duct is composed
of three volume-averaged energy reservoirs (in bold): potential energy P, kinetic energy
K, and internal energy I (heat). We further decompose the potential energy reservoir
into an available potential energy P4, and a background potential energy Pp (such that
P = P4 + Pp), as is customary in the study of mixing (see e.g. Winters et al| (1995)).

As explained in LPL19 (see their § 4.1-4.3 and figure 8 (b)), forced flows have, to a good
approximation, the following quasi-steady-state energetics: the external fluid reservoirs
provide an advective flux of potential energy into the duct, which we identify here as
being an advective flux of awailable potential energy @;‘3‘;" ~ Q.,0/8, which is then
converted to kinetic energy by the horizontal buoyancy flux B,, and to heat by the
viscous dissipation D a (2/Re)(s%)s 4,2+~ When turbulent mixing is neglected, all these
fluxes have equal magnitude, and D ~ (1/8)Q,,8. When turbulent mixing is included,
a net vertical buoyancy flux B, converts part of K back to P4, and a net irreversible
diapycnal flux ¢ converts part of P4 to P, at a steady-state rate equal to the advective
flux of Pp out of the duct, back into the external reservoirs |#%!¥| = |#9|. The mixing
efficiency quantifies the percentage of total time- and volume-averaged power throughput
@z}i" that is spent to irreversibly mix the density field inside the duct:

gpd Qjaj)dv
M=——-=—-2. 5.12
D+od  gylv (5.12)
It is expected that M <« 1 in such flows, as represented by the respective thickness of
the arrows in figure [11](a), representing the order of magnitude of the fluxes.

As sketched in figure [LT)(b), we propose piecewise-linear flow profiles u(z) = p(z) at
either end of the duct as a minimal model to estimate the magnitude of $%! as a function
of the interfacial layer thickness J, and eventually link it to input parameters A, 0, Re.
We consider that fluid comes from the external reservoirs into the duct unmized below
(resp. above) the interfacial mixing layer at the left (resp. right) end of the duct, and
leaves the duct mized with a linear profile, going from 0 at the bottom (resp. top) edge
of the mixed layer to —1 (resp. 1) at the top (resp. bottom) edge of the mixed layer. (In
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(a) ¢;dv dj[zidv (b)

—-rr E e r\:
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u(z)=p()

reservoirs A4

Figure 11: Mixing model for SID flows: (a) Time- and volume-averaged energetics
model developing on that in LPL19 (their figure 8(b)) by subdividing the potential
energy reservoir as P = P4 + Pg. We also show the kinetic energy K, internal energy
I, and all relevant fluxes: horizontal buoyancy flux B,, vertical buoyancy flux B,,
viscous dissipation D, diapycnal flux &% and advective fluxes with the external reservoirs
@‘}3‘?,@%}3". The direction of the arrows denotes the net (time-averaged) transfer, and
the thickness of the arrows denotes the expected magnitude of the fluxes (with the
expectation that %Y ~ B, ~ D and B, ~ & ~ #%!). (b) Simplified flow model in
the duct to estimate the mixing rate from Qi?)‘;v and link it to . The in-flow of unmixed
fluids from the external reservoirs and the out-flow of mixed fluid back into them are
modelled by the broken line profiles u(z) = p(z) drawn at the left and right ends of the
duct (consistent with the typical mid-duct profile drawn, equal to u = p = £1 above and
below the mixing layer and v = p = —22/4 in the mixing layer, assumed elsewhere in
the literature).

more central sections of the duct, mixing smoothes out the discontinuities at the edges of
the mixing layer present at the ends, and we expect the continuous linear profile drawn
in the centre, but it is irrelevant to the following calculations.) The outflow of mixed fluid
creates the following net flux of background potential energy out of the duct:

1 2 [0 5.2 B
qsadv _ g = —)'dz = — 1
W = Lol n = 1 /5/2z(z+ ) de = o, (5.13)
where |;,_gr denotes the difference between the values at the left and right boundary,
and the prefactor 1/(4A4) comes from the non-dimensionalisation of the energy budget

equations (see LPL19, equation (4.14a)). From (5.12)-(5.13) and % ~ Q,,0/8, we now
deduce:

6~ (340Q, M)'/3. (5.14)
Encouragingly, this estimation has the potential to be consistent with our data in the
SID. Assuming that @,, ~ 0.5 throughout most of the | and T regimes, we conjecture
that most of the dependence on Re observed in the § data of figure [7] is due to the
underlying monotonic increase of M(Re), which is a priori unknown, but consistent with
the observations of [Prastowo et al.| (2008) and [Hughes & Linden| (2016)). The observation
of K91 and figure [7|(a-b) that § primarily scales with the group A6 at Re >> 5004 (as
sketched in figure |3)(¢)) would suggest that M asymptotes to a constant value at high
Re, which is also consistent with the observations of |Prastowo et al.|(2008) and [Hughes
& Linden| (2016) at ARe > 10° and Re > 10° respectively. Assuming their high-Re
asymptotic value of M = 0.1, we obtain

5 0.5(2)1/3. (5.15)
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This gives, for example, § ~ 0.4 when 6/« &~ 1/2. This value agrees with the K91 data
(figure (f—g)) and our LSID data (figure (a), at Re > 10* and ARe > 10°). However,
this value does not agree well with our HSID, tSID, and mSID ¢ data (figure (b—d)7
in which § remains dependent on Re. This is presumably due to the lower values of A
and/or Re in these data sets, which remain below the asymptotic values of Re > 10°
and ARe > 10°. In other words, we believe that our § data and are consistent and
provide further (albeit indirect) evidence for the monotonic increase of M with Re.

6. Conclusions
6.1. Problem and approach

In this paper, we investigated buoyancy-driven exchange flows taking place in inclined
rectangular ducts (figure . We focused on the behaviour of three key dependent
variables: the qualitative flow regime (laminar, wavy, intermittently turbulent, or fully
turbulent), the non-dimensional mass (or buoyancy) flux @,,, and the non-dimensional
thickness of the interfacial layer § as the five non-dimensional input parameters were
varied: the duct longitudinal aspect ratio A, spanwise aspect ratio B, tilt angle 6,
Reynolds number Re, and Prandtl number Pr.

Dimensional analysis (figure [2) and the experimental literature (figure (3| appendix
and table showed that the rich dynamics of these sustained stratified shear flows
were accessible for a wide range of Re and for 6 of at most a few duct aspect ratios
a = tan"t(A~1). Our focus on ‘long’ ducts (A > 1) allowed us to explore these dynamics
while keeping 6 = O(«) small enough to remain relevant to largely-horizontal, stably-
stratified geophysical flows and turbulence, which are our ultimate motivation.

To overcome the limitations of previous studies of the problem, we presented extensive
experimental results for all three variables of interests (regimes, @Q,,, and §) in the (6, Re)
plane for five different data sets, between which A, B, Pr were varied systematically

(table [)).

6.2. Experimental results

First, our data (figures confirmed the conclusions of past studies: that increasingly
disordered and turbulent regimes are found as A, 6, Re are increased, that @,, is non-
monotonic in 6 and Re, and that § is monotonic in A, 6, Re. Second, our data revealed
the existence and importance of at least one additional non-dimensional input parameter
involving the dimensional height of the duct H and a ‘missing’ length scale, because our
regime, @,,, and § data at the same A, B, 6, Re, Pr but different H do not collapse. This
missing length scale has been an enduring puzzle that remains unsolved. Third, our data
highlighted the complex dependence of all variables on all five parameters A, B, 0, Re, Pr.
Regime transition, iso-Q,,, and iso-d curves are not only shifted in the (6, Re) plane at
different A, B, or Pr, but they also generally exhibit different power law scalings in 0
and Re at different A, B, Pr.

Given the breadth of our observations summarised above, and the relative richness of
our data in the (6, Re) plane compared to the few values of A, B, Pr studied, we focused
specifically on the very last observation above, i.e. on the various scalings of the form
OReY = const. governing the regime transitions curves and the major axis of hyperbolas
best fitting @, in the (log 6, log Re) plane. Even within this specific focus, we discovered
that vy not only varies between data sets (at different A, B, Pr) but that it also varies
within a given data set (at fixed A, B, Pr): (i) v is generally different for the regime data
(v =1 or 2) and the @, data (0.3 < v < 2.6) implying that regime and @,, are not well
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correlated (whereas regimes and ¢ are); and (7) in one regime data set, v even takes two
different values (of 1 and 2) in different regions of the (6, Re) plane.

6.3. Modelling results and outlook

To provide a modelling framework to understand the above observations (i)-(ii), we
first split the (0, Re) plane into four quadrants delimited by 6 = « (the ‘lazy/forced’ flow
boundary, based on the respective dominance of hydrostatic/gravitational forcing) and
Re = 50A (the ‘low/high Re’ boundary, based on whether or not boundary layers are
fully developed across the duct). We then discussed three families of candidate models.

In § we considered the volume-averaged energetics framework of [Lefauve et al.
(2019) (LPL19). LPL19 physically explained the § Re = const. scaling of regime transi-
tions of forced (6 2 a), low-Re (Re < 50A4), salt-stratified (Pr = 700) flows as being
caused by threshold values of the three-dimensional kinetic energy dissipation (equation
). We carried out the natural extension of their argument to high-Re (Re > 50A)
flows, by accounting for two-dimensional, laminar boundary layer dissipation. However,
the resulting predicted scaling in §Re — A~1/2Rel/2 (equation (5.2)) did not agree with
any of our regime data. Detailed measurements of dissipation in these high-Re flows (not
found in LPL19) would be valuable to understand why this is the case, but they are very
challenging to perform due to the required spatio-temporal resolution.

In § we developed a two-layer frictional hydraulics model of SID flows (figure E[)
from |Gu & Lawrence] (2005)) and showed that the existence of a solution imposed a lower
and upper bound on the product of the volume flux by a parameter quantifying wall and
interfacial friction (equation (5.6)). This model explained the qualitative behaviour of
Q. with ORe, and the fact that regimes and @,,, could have different scalings (ﬁgure.
This model also provided a quantitative scaling for the interfacial friction parameter
and, in turn, for regime transitions, based on our conjecture that regime transitions were
directly linked to interfacial turbulent stresses. Although the resulting low-Re scaling in
ORe (equation ) was identical to that predicted by the energetics model and correct
(at least for Pr = 700), the high-Re scaling in A'/20Re'/? (equation (5.8)) did not agree
with our regime data.

Neither the energetics nor the frictional hydraulics model could predict the observed
scalings in @Re or ORe? observed in lazy flows (6 < «) because these flows are under-
specified in either model (they have more unknowns than equations). In addition, scalings
laws deduced from plots in the (log#,log Re) plane break down for lazy flows at slightly
negative angles (—a < 6 < 0), which we largely ignored in this paper.

In § we focused on the scaling of § underpinned by turbulent mixing. We first
considered a model with constant turbulent diffusivity imposed throughout the domain
(Cormack et al.|[1974a; Hogg et al.|2001)). We attempted to link this diffusivity to input
parameters following insights gained from frictional hydraulic theory, but the resulting
scalings (equation ) did not agree with our data. We then explained why previous
measurements and models of ¢ in related stratified shear flows (Prastowo et al.|/2008}
Hughes & Linden|[2016)) were inconsistent with our results on exchange flows in inclined
ducts. We thus developed a new model that explicitly represents the rate of mixing in
the energy budget analysis of LPL19, and quantifies this mixing as a function of known
input parameters and an unknown mixing efficiency M using a simplified flow profile
(figure equation (5.13)). The resulting expression for § (equations (5.14)-(5.15)) is
qualitatively consistent with our observations, but it involves M (not measured in these
experiments) whose scaling on Re is critical. Our model and data indirectly support
previous observations of [Prastowo et al| (2008) and [Hughes & Linden| (2016]) that M
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monotonically increases with Re to reach asymptotic values of M = 0.1 at very high Re,
but direct measurements of M are needed to confirm this.

While these models have allowed us to make significant progress by providing useful
physical insights and partial quantitative results regarding scaling laws in A, 0, Re, our
experimental observations have raised an even larger number of questions which remain
open. Among these are the elusive existence of an sixth non-dimensional input parameter,
the influence of the spanwise aspect ratio B and Prandtl number Pr, and the scaling of
the mixing efficiency M.
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Appendix A. Literature review

In this section we support and complement the conclusions of § [3] by reviewing the
experimental literature on the questions of flow regimes (§ , mass flux (§ , and
interfacial layer thickness (§ . We limit the discussion to the results that are most
relevant to this paper, and give further details about the geometry and parameters used
in each study in table

A.1. Flow regimes

Macagno & Rouse| (1961) (MR61) constitutes, to our knowledge, the first experimental
study in a setup similar to the SID. MR61 used dye visualisations to describe four
qualitatively different regimes:

L ‘uniform laminar motion with straight streamlines’;
W ‘laminar motion with regular waves’;

I ‘incipient turbulence, with waves which break and start to show irregularity and
randomness’;

T ‘pronounced turbulence and active mixing across the interface’
MR61 mapped the above regimes together with measurements of the interfacial stress



958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

990

991

992

994

995

996

997

999

1000

1001

1002

1003

Ezchange flows in inclined ducts 31

and mixing coefficients in the plane (F,, R,), where F, ~ 2v/2Q and R, ~ 4QRe (using
our notation) are ‘effective’ Froude and Reynolds numbers. Arguing that flows above a
certain R, and F, would be unstable, they proposed and verified experimentally that
the ‘transition curves’ separating the flow regimes and the iso-curves of interfacial shear
and mixing coefficients scaled with R, F, ~ Re Q? (i.e. these curves are Re Q% = const.).
As we have seen in § [2.3] @ is in reality a dependent variable, not an input parameter.
This confusion in MR61 comes from the fact that their setup (which they attribute to
Helmbholtz) differs from the SID in that they were able to prescribe the volume flux @ by
controlling the inflow of salt water by a piston communicating with one of the reservoirs
(their system was closed, i.e. it had no free surface). They varied @, 6 to reach target
values of R., F,, without apparently realising that the flow was hydraulically controlled
and that 6 and Re were the relevant independent input parameters.

Wilkinson| (1986)) (W86) used shadowgraph and observed regime transitions similar to
MR61 in a horizontal, circular pipe: ‘shear-induced instabilities [...] initially in the form
of cusp-like waves, but as the shear was further increased, Kelvin-Helmholtz billows were
seen to grow and collapse creating a turbulent shear layer’. He suggested a scaling in Re
alone, independent of A: laminar flow under Re < 2450, ‘interfacial waves radiating in
both directions’ for Re € [2600, 2700], and turbulence for Re > 2700, but his experiments
were limited in number (= 18).

Kiel (1991) (K91) used shadowgraph and laser sheet visualisations at larger Re, and
classified the regimes differently: laminar; turbulent with 6 < 1; and turbulent with
0 = 1. Using a semi-empirical model based on the ratio of ‘IG’ to ‘IH’ kinetic energy
scales (see § , he proposed regime transitions scaling with a ‘geometric Richardson
number’ Rig ~ Atanf (more details in § independently of Re, i.e. the opposite of
WS6.

Meyer & Linden| (2014) (ML14) used shadowgraph visualisations, and (unaware of
MR61) described essentially the same four regimes of MR61:

L  laminar flow with a thin, flat density interface;

H  mostly laminar flow with quasi-periodic waves on the density interface, identified
as Holmboe waves;

| spatio-temporally intermittent turbulence with small-scale structures and noticeable
mixing between the two layers;

T  statistically-steady turbulent flow with a thick interfacial density layer.

Interestingly, the only difference between the MR61 and ML14 nomenclatures lies in the
letter characterising the wavy regime (W in MR61 and H in ML14), simply because MR61
observed Holmboe waves (see their figure 5) before they were explained by Holmboe
(1962). ML14 mapped these regimes in the (8, Re) plane for two different A = 15, 30.
They argued that, because the flow was hydraulically controlled, the ‘excess kinetic
energy’ gained by the flow at § > 0 (i.e. the square of the ‘IG’ velocity scaling ¢’ L sin 6)
should be dissipated turbulently. By non-dimensionalising this excess energy by (v/H)?,
ML14 proposed and verified that regime transitions scale with a Grashof number (see
their equation 4.4)
_ g'Lsinf _ 9
Gr = wiH)? ~ 4A0Re”, (A1)
This scaling has two limitations: the ‘IG’ energy does not explain the transitions at § = 0,
and its non-dimensionalisation by (v/H)? lacks a physical basis.
Lefauve et al| (2019) (LPL19) repeated the shadowgraph observations of ML14 in a
smaller duct (H = 45 mm vs H = 100 mm) with otherwise equal parameters (A, B, Pr) =
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(30,1,700) and mapped the regimes in the (0, Re) plane. LPL19 observed two distinct
scalings: a ORe? scaling for # < a (in agreement with ML14), and a #Re scaling for
0 2 « (not observed in ML14). They developed from first principles energy budgets
which they applied to 16 experiments in which the full density field and three-component
velocity field were simultaneously measured in a three-dimensional volume of the duct
(for visualisations of flow fields in all four regimes, see their figures 2-3). They showed that
for 8 Z « (for so-called ‘forced flows’), the time- and volume-average rate of dissipation
of kinetic energy could be predicted a priori as

1
(SijSij)a,y,zt EGRe, (A2)

where s is the non-dimensional strain rate tensor. Because the magnitude of stream-
wise velocities and wall shear stresses are bounded to O(1) by hydraulic control, the
requirement of high strain rates at high ORe caused transitions to increasingly three-
dimensional (turbulent) flow regimes with smaller-scale gradients. The #Re scaling of
energy dissipation matched the observed regime transitions in ‘forced flow’ (6 2 «), but
the O Re? transition scaling in ‘lazy flows’ (§ < «) remains unexplained.

A.2. Mass flux

Leach & Thompson| (1975) (LT75) measured Q,, = 0.23 in horizontal circular pipes
for high Reynolds number Re = O(10* —10°), and Pr = 1 and 700 (respectively COs /air
and salt/fresh water). Surprisingly, they observed no dependence on A, Re, Pr.

Mercer & Thompson| (1975) (MT75) reported dramatic non-monotonicity of Q. (A, 6):
Qm ~=0.2—-0.3 at § = 0° (in agreement with LT75), increasing to Q,, ~ 0.4 at 0 ~ a/2,
and decreasing to @, =~ 0.01 — 0.1 at § = 90° (we reproduce some of their data in
figure [A.1)(3)). In a small set of experiments at § = 30° in a larger pipe (Re = 2 x 10*
vs 2 x 10%, and A = 6), they reported dependence on Re even in the ‘very high’ range
Re € [3004,30004] (though it might be due to subtle differences in apparatus).

W86 developed a Bernoulli model in a horizontal circular pipe which predicted an
upper bound of @ = 7/8 ~ 0.39 (non-dimensionalised using the pipe diameter), making
the analogy with the hydraulic control arguments inWood| (1970)) who predicted @ = 0.5
in rectangular ducts. Including viscous boundary layers at the circular walls, he predicted
and verified experimentally a monotonic increase of Q with A~'Re (as the thickness of
boundary layers decreases): @, = 0.13 at Re ~ 20A to Q,, = 0.35 at Re ~ 500A (larger
than LT75), in agreement with the dimensional analysis of § (conclusion (ii)).

K91 developed an inviscid Bernoulli model in an inclined duct for two counter-flowing
layers of equal thickness and predicted @ ~ 1/(4/9)cosf + Asinf. In agreement with
our dimensional analysis in § 2.3] this expression predicts a transition from an ‘TH’
balance at 0 < 6§ < « with @ =~ 2/3 to an ‘IG’ balance at 6 > « with Q ~ v Asin#.
K91 showed, however, that this ‘IG’ scaling could only be observed experimentally
when communication and mixing between the two counter-flowing layers was artificially
suppressed by a rigid ‘splitter plate’ along the duct. He argued that the non-realisation
of the IG scaling was due to a turbulent transition occurring when the IG scaling for @
‘that potentially exists’ exceeds a threshold dependent on the ‘stabilising effect of g’ cos 6’,
leading to his definition of ‘geometric Richardson number’ whose inverse we interpret as
being the square ratio of the ‘potential’ (‘IG’) to the ‘maximal’ (‘TH’) volume flux Q:

_ 4/9)cosf + Asinf\> 16 16 tan 6
Ri' = VA > = — +4Atanf = — 4+ 4 . A3
@ ( (1/2)v/cos 9 no=gine A3

K91’s unpublished data in reproduced in figure K91 obtained good collaspe of his
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Figure A.1: Unpublished experimental data in [Kiel (1991), reproduced with his
permission. (a) Independence of @Q,,, on Re at A = B = 4. Left panels: (b)) MT75’s
Qm(A,0) data in a circular pipe, (d) K91's Q,,(A4,0) data and (f) 6(A,0) data, both at
B = 2. Right panels (c,e,g): collapse of the data in the respective left panel with Rig).
These data have been converted to follow our notation and non-dimensionalisation.

and MT75’s Q,,, data with Rig ~ Atan, with a peak at § ~ «/2, and a decay at larger
0 for a range of A and 6 (figure b—e corresponding to his figures 2.6 and 5.2). Further,
in agreement with W86’s arguments, K91 reported independence of his results with Re
above Re > 4004 (figure a) and intentionally focused on these high Re throughout.

ML14 observed monotonic increase of @Q,,(0) with @Q,, =~ 0.2 — 0.3 at § = 0° and
Qm ~ 0.5 at § = «/2. They did not comment on the hint of non-monotonic behaviour
suggested by their data for 6 = 2a.

LPL19 observed (in passing) non-monotonic behaviour of @,,(0, Re). Their data are
well fitted by a hyperbolic paraboloid in the log# — log Re plane, where @Q,, = const.
curves are hyperbolas, with Q,, ~ 0.5 along the major axis #Re/? = 100 (6 in radians),
and @), decays on either side of it.
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A.3. Interfacial layer thickness

K91 performed conductivity probe measurements, observed monotonic increase of §
with both A and 6 (figure [A.1]((f)), good collapse with Rig ~ Atan6 (figure [A.1)(g)),
and independence on Re (presumably because of his focus on Re > 500A4). The interfacial
mixing layer is turbulent and thick (§ ~ 0.4 — 0.7) at § ~ «/2 and fills the whole duct
height (6 = 1) at 6 2 2a. At even larger tilt angles, the mean vertical density gradient
|o(z = 1) — p(z = —1)|/2 drops below 1 (this ‘extreme’ turbulent scenario falls outside
the scope of this paper).
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Appendix B. Experimental methodology

B.1. Flow regimes

Regimes were largely determined by shadowgraph observations over a subsection of
the length of the duct, following the qualitative description of each regimes of ML14 (see
their § 3.1 and figure 3). For a schematic of the shadowgraph setup, see L18, § 2.1.

In the mSID data set, 48 out of 360 regime identifications were not made by shad-
owgraph, but rather by direct visualisation of the density field by planar laser induced
fluorescense (PLIF), since more detailed measurements of the velocity and density fields
(incompatible with simultanenous shadowgraph) have been performed in this geometry
(Lefauve et al.||2018; |Partridge et al.|2019; |Lefauve et al.|[2019).

All raw video data, including those obtained by other experimenters (acknowledged at
the end of the paper), were reprocessed in an effort to ensure that regimes were identified
as consistently as possible across all five data sets of table|l| (especially in the cases where
the distinction between regimes can be subtle).

Most of the shadowgraph data (still images and movies) are available on the repository
doi.org/10.17863/CAM.48821, and some of the velocity and density data are available
on the repository doi.org/10.17863/CAM.41410 (linked to [Lefauve et al.| (2019))).

B.2. Mass flux

Mass fluxes were determined, as in ML14, by measuring the average initial (‘i’) and
final (‘f") density in each reservoir: reservoir ‘1’, initially at density pi = po + Ap/2 and
finally at a well mixed density ,0'{ and ‘2’, initially at pg — Ap/2 and finally at pg , giving
the following two estimations

—(pl — PIVh (ph — Ph)Va
Ap(H2[2) g BT Ap(H2J2) g HT’
where V;, V5 are the (typically approximately equal) volumes of fluid in the respective
reservoirs, and the tilde on Q,, stresses the fact that they are non-dimensional (despite
all quantities on the right side of the = sign being dimensional). Experiments in which
both estimates differed by more than (Qmm1—Q@m.2)/(Qm,1+ Qm,2) > 10 % were rejected
(typically due to an initial misadjustment of the free surfaces resulting in a net volume
flux (u)g.y,.¢ # 0). All data shown in this paper thus have near-zero net volume flux,
and we only use the average value Q,, = (Qm,1 + Qm,2)/2.

We recall that T" in is the (dimensional) duration of an experiment. The determi-
nation of the relevant T was made carefully but remains subject to intrinsic uncertainties
which affect @,, as we explain next. The duct is opened at time ¢ initiating a gravity
current lasting until the exchange flow is considered fully established by shadowgraph
visualisations at time t*. The exchange flow of interest continues until the levels of the
discharged fluids approach the ends of the duct, at which point one end of the duct
is closed at time t¢, shortly before the other end of the duct is closed at t*. To avoid
under- and over-estimations of @Q,, by the intervals ¢t — t® and t¢ — t° (respectively), we
choose to use the average of the two T = (t¢ — t* + ¢ — t*)/2, and to use error bars to
indicate the magnitude of the resulting uncertainty (the difference between the over- and
under-estimation). Note that error bars tend to be larger at high Re (figure [7]) because
the overall duration T of an experiment is inversely proportional to the magnitude of
the dimensional exchange velocities (scaling with v/¢’H, and hence with Re) due to the
finite size of the reservoirs. A smaller duration 7" increases the relative duration of initial
transients (typically fixed) and therefore the uncertainty about T'.

Note that measurements of @,, in temperature-stratified experiments (mSIDT data

Qm,l = and C?m,2 = (B 1)
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Figure B.1: Example of the determination of ¢ from shadowgraph snapshots in the
(a) H regime (LSID) where 6 = 0.069; (b) | regime (mSID), where 6 = 0.14; (¢) T
regime (LSID), where 6 = 0.47. At a randomly chosen streamwise position (dotted blue
line), the greyscale intensity I(z) (solid red curve) is automatically overlaid using a
convenient horizontal scale. The positions of the interfacial density layer and of the top
and bottom walls are carefully clicked by hand (identified by the yellow circles and crosses
respectively), and ¢ is determined as the ratio of the spacing between the pair of circles
and crosses.

set) could not be performed due to the practical impossibility to control the heat loss
occurring through the boundaries of the reservoir and the free surface.

For more details on these measurements, see L18, § 2.2.

All mass flux data (including @y, 1 and Qu, 2, and for mSID and tSID the upper and
lower bound estimations using 7' = t% — t% or t¢ — t* ) are available on the repository
doi.org/10.17863/CAM.48821.

B.3. Interfacial layer thickness

The interfacial density layer thickness § was estimated from shadowgraph images. To a
reasonable approximation, the refraction of near-parallel light beams by inhomogeneities
in the density field results in a recorded greyscale light intensity I(x, z) proportional to
the second vertical derivative of the density field integrated in the spanwise direction
I(z,2) x fsz_ p 0z.pdy (for a full derivation and discussion of the approximations, see
L18, § 2.1). This makes shadowgraphy particularly well-suited to detect the average
location of large-scale curvatures in the density field, which are precisely the edges of the
interfacial density layer.

Due to the nature of shadowgraph images, and to its sensitivity to air bubbles or
scratches on the walls of the reservoirs, the identification of minima and maxima of
I(z) could only be semi-automated according to the following methodology, illustrated
in figure
(i) A random sample of typically three to five snapshots per movie were selected and

averaged (although in rare cases only one still image was available);

(ii) A randomly-generated location in the streamwise direction was selected (dotted
blue lines) and they greyscale intensity profile I(z) at this particular « location was
superimposed onto the image (solid red curves);

(iii) The profile I(z) was carefully interpreted, and the local extrema representing the
top and bottom duct boundaries (yellow crosses) and edges of the interface to
measure (circles) were carefully selected by a click.

(iv) The ratio of pixel distances between the selected edges of the density interface and
the top and bottom walls was computed to yield 6.
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All images were processed by the first author to ensure consistency, and yielded a total
of 351 values of § for all four duct geometries (table .

This methodology has at least two potential sources of error which we estimated to be
relatively modest by performing an ad hoc set of additional measurements as we explain
next.

First, the determination of § from averages of shadowgraph images may give artifically
large results in flow with significant streamwise variations in the vertical position of the
interfacial layer. To quantify this effect, we compared measurements of § made using a
single snapshot to those made using an average of three snapshots in five H flows and
five T flows (including those in figure [B1](a),(c)), and performing each measurement
at 10 random z locations (rather than one) to increase statistical robustness (total:
(54 5) x 2 x 10 = 200 measurements). We found that H flows were most prone to this
effect (as expected from waves distorting the interface), with § being estimated in three-
snapshot averages an average of 14 % above its single-snapshot value, compared to a
more modest average of 7.5 % in T flows.

Second, the determination of § at a single x location may not give representative results
in flows with significant streamwise variations in the thickness of their interfacial layer.
To quantify this effect, we investigated the streamwise variability of § using the same set
of 200 additional measurements by focusing on the standard deviation (spread) around
the mean of each set of 10 different = locations. We found that H flows had an average
streamwise spread of 12 % of their mean, compared to a more modest 8.5 % in T flows.

Note that measurements of ¢ in temperature-stratified experiments (mSIDT data
set) could not be performed since the refractive index of water is a weaker function
of temperature than salinity at comparable density differences, resulting in insufficient
contrast and thus noisier I(z) (sufficient to determine the flow regime but not ¢).

All interfacial thickness data (including a large number of still images, the code
to determine §, and the quantification of errors) are available on the repository
doi.org/10.17863/CAM.48821.

Appendix C. Frictional two-layer hydraulic model

In this section we give details of the two-layer frictional hydraulic model introduced in
§ and sketched in figure @ This model is based on |Gu/ (2001)); |Gu & Lawrence| (2005)
but includes non-zero tilt angles and a wider range of frictional stresses suited to the
SID. We cover the model formualtion in § [C.I] the parameterisation of frictional effects
in § and the solution to the full problem in §

C.1. Model formulation

The frictional hydraulic model appears at first inconsistent because it is based on
velocities that are uniform in the cross-sectional plane (9, ,u12 = 0), while implicitly
acknowledging and parameterising the effects of viscous stresses resulting from 0, ,u1 2 #
0. This model is however consistent provided that the departure from hydrostaticity is
small (vertical and spanwise accelerations are negligible) and that viscous stresses are
localised in relatively narrow boundary layers at the walls and interface (Re >> 50A4),
rather than rather than through the whole volume (Re < 504).

Following standard hydraulic practice, the effective ‘hydraulic’ velocities u 2(z) that
will be used to compute the total Bernoulli head (kinetic energy) of each layer need to
be defined in a way that accounts for the non-uniformity of the underlying ‘real’ velocity
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profile in the SID wu(z,y, 2)

u12(w) =/ M2(x) (u(@,9,2))y,20 29 (C1)

where (-).,, denotes averaging over the lower/upper layer (z € [-1,7] and z € [n,1]
respectively, see figure |§|( a)), and the velocity distribution coefficient A; o (also called
kinetic energy correction coefficient or Coriolis coefficient) is defined as

Malo) = @Y ©2)

(u(,y,2)) 2

respectively in the lower and upper layer (see e.g. |Chow||1959, § 2.7-2.8 and |Chanson
2004} § 3.2.2). The greater the non-uniformity of the velocity profile u, the larger A is.
For the SID flows considered in this paper, volumetric velocity measurements showed
that A\ varies over a relatively relatively small range 1 < A < 2 (see L18, § 5.5.2). To
simplify the following discussion, and since the effects of A are not central here (they
quantitative rather than qualitative), we make the approximation that A;2(z) ~ 1,
effectively assuming that uy 2 (x) = (u(z,y,2))y,z, , in the following.

First, the conservation of Bernoulli potential in two-layer hydraulic flows is commonly
expressed using the so-called ‘internal energy’ of the system

E(z) = (@) + uj(z) — ui(2). (C3)

Second, the conservation of volume and zero-net flux conditions are expressed all along
the duct as

ur () (1 +n(z)) = —uz(x)(1 —n(z)) = Q. (C4)

The third important ingredient of two-layer hydraulics is the condition of hydraulic

control, which requires that the composite Froude number G is unity at sharp changes
in geometry, i.e. at the duct ends (Armi|[1986; |[Lawrence,|1990):

2 2 1+ 372
G2x52< oy “2)=427=1 at z = +A, C5
) l+n 1-n Q(l—n2)3 (©9)

where the second equality uses (C4)) and the third equality is the control condition.
In horizontal, frictionless ducts, E(x) = 0, hence n = 0 and u; = —us = Q = 1/2 all

along the duct.
When the combined effects of a small positive tilt angle # > 0 and frictional stresses
are added, the slope of the internal energy becomes

E'(z) =n'(z)(1 - G*(z)) = — S(x) (C6)

(this is the two-layer equivalent of single-layer ideas found in (Henderson (1966, § 4.4-
4.5)). By analogy with the topographic slope 6, the ‘frictional’ slope S(x) is computed
by a balance of all the stresses acting on an infinitesimal slice of thickness dz (figure

©lrv)):
Zstressesj Tf A{ Zstressesj Tg A%

S((ﬂ) _ layc;/i + layc;z ) (C 7)

The subscript ¢« = 1, 2 represents respectively the bottom and top layers, the superscript
j = Z,Y, I represents the origins of the stresses in the model: top and bottom wall stresses
(Z, shown in blue in the figure), side wall stresses (Y, in green) and interfacial stresses
(I, in red), A represents the surface area over which the respective stresses act, and
V; the volume of each layer. Note that the interfacial stresses have equal magnitudes on
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either sides of the interface |r{| = |4| = 7. Following figure [0]b) and after elementary
algebra, the balance in (C 7)) can be rewritten as:

1 1 1
S(x) = rZ +2B 7Y + ——71 4 7 +2B ') + L. Cs8
@) = 1yt e Y ()
where all the stresses in this equation and henceforth are norms and have positive values.
For further details about the development of this model from first principles, see L18,

§ 5.2.

C.2. Parameterisation of shear stresses

We now tackle the relation between the stresses Tij and the underlying ‘real’ flow
profiles u(z,y, z). We start by considering the bottom wall stress of the lower layer 77
in order to introduce the key concepts and definitions, before extending them to the
other stresses. Using non-dimensional variables for 7 and u(z,y, ), we first write the

dimensional equation for this stress as a simple function of the local shear
AUN?2 AU/2 71 0u(z,y, 2)
() @ { ), (©9)

2 ) MV 0z
where the AU/2 and H/2 factors come from non-dimensionalising 77, u, z, and simplify
to

Z 1 8U(I, Y, Z)

T =g (175 L)y ©10
In order to correctly parameterise 7 (z) and all other relevant stresses using well-defined,
constant friction coefficients, we follow the following five steps.

(i) First, we define the cross-sectional ‘shape’ (y — z dependence) of the local velocity

profile in the lower layer as

X u(z,y, 2)
uy(x,y,2) = ————— C11
such that (@ (z,y, 2))y,., = 1. This decomposition allows us to rewrite (C10) as
1 0ty (x,y, 2)
zoy_ L 1(Z, Y, > C12
n (x) RGU1 <x)<‘ 0z z=—1 y’ ( )

which is an exact expression for the local shear stress that does not require any assump-
tions about the value of the velocity gradient or flow profile.
(ii) Second, we define a ‘layer-rescaled’ coordinate 21 as

. z Q
B z

- — , C13
LTI 7 u(x) ( )
in which layer 1 always has thickness one (2; € [—1,0]), giving us
1 ui(z) /0t (2, y, %1)
Z(x) = L aa : 14
() Re @ <‘ 0z 21:71>y (C14)

(iii) Third, we define a constant, bottom friction parameter fz, to parameterise the stress:

rZ(x) = % U%C(;) with  fz, = <’76111(:32y,21) 21:_1>xy. (C15)

We note that despite the rescaling of u(x,y,z) by uj(x) and the stretching of z to 2;
such that the interface is located at 2;(x) = 0, 4y still has a weak residual = dependence.
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Since for simplicity, we choose to model fz, as independent of z, the velocity gradient
Oty (x,y, 2)/0%|s,=—1 must now technically be averaged not only over y but over z and
y, as shown in (C15)). We also note that the u?(z)/Q factor in results from the
product of uj(z) (by definition of @) by wi(x)/Q (by definition of 2;). Physically, this
quadratic dependence corresponds to the vertical shear being enhanced not only by the
magnitude of uy, but also by the enhanced vertical gradient due to the thinner layers
where u; is larger. This u?(x)/Q scaling will be found in the interfacial stress 77 too.
However, the equivalent formulation to for the side wall stress in layer 1, 77, is
1 w1 (x,y, 2
o @) = (| 2aer)
where we assume identical shear at y = £1. We emphasise that since the y derivative
does not experience any rescaling due to the layer thickness, it follows a u(z) scaling
(as opposed to u?(z)/Q for z derivatives).
(iv) Fourth, we generalise the above definitions of 4; and 2; to both layers by defining a
global 4 as

y:i1>z1’ (C16)

u(,y,2)
—2= for ze€[-1,7),
1 (2) (1,7
w(z,y, z) = (C17)
w(@,y,2)
—>—= for z¢€[n,1],
() [, 1]
and a global 2 as
z Q
= £ e[-1,n],
0 Zul @ or z€[-1,7]
2= (C18)
GR @ for =z € [n,1].

1—7 uz(x)

(v) Fifth, we consider the role of turbulence at the interface, caused by Reynolds stresses
which we parameterise, by analogy with (C10]), as follows

. 1 O(0) gyt
0 )y = o K (S C19
< U'UJ> Y215t Re I 82 21 ( )
where ' = u — (u); is the perturbation around the temporal mean and K the

turbulent momentum diffusivity non-dimensionalised by the molecular value v. Under
these conditions, the total (molecular + turbulent) interfacial stress 7/ can be expressed
precisely as:

() = 1+ K7 (u1(x) — uz(z))? <‘ 811(1‘,Ay, 2)
Re Q 0z
where Z; denotes averaging over the interfacial mixed layer.
Based on the five above steps, we propose the following parameterisation of frictional
effects in the hydraulic model

> o (C20)

u? 5(z
Tia(2) = % Q() (C21a)
7'1},/2(@ = % lut,2(z)|, (C21b)
i (x) = 74 (x) = Ji (@) = uz(a:))2' (C21¢)

Re Q
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where the vertical, spanwise and interfacial friction parameters are, respectively,

po= (2522 (€220
fIE(l+K1)<‘W> N (C22¢)

The y and Z derivatives at y,Z = %1 should be very similar, and the average of the
two is implied. The three parameters can be computed from three-dimensional, three-
component velocity measurements, as was done in L18, § 5.5.

C.3. Key equations and solution method

We can now rewrite the frictional slope S(z) in using ) and ( . as

2Qfz { v g fi

14392 + 22X B1(1 - +8—} C23
G (st 2 B ) s (©23)
By combining this expression for S(x) with the expression for the composite Froude
number G?(z) in (CH) we finally obtain an expression for the differential equation

governing the evolution of the interfacial slope 7'(x) in (C 6))

o (z) = ORe(1 —n(2)*)° — 2Qfz{1 + 3n*(z) + 2ry (1 — n*(2))* + 8/}
Re{(1 —n(x))?)? —4Q>(1 + 3n*(z ))} ’
where the spanwise friction ratio ry and interfacial friction ratio r; are defined under
(5.4). This equation was simplified to for the discussion in §

The idea behind the solution to this kind of problem can essentially be found in |Gu
& Lawrence| (2005). However, contrary to their model (which had no tilt angle and no
top and side wall friction 8 = fz, = fy = 0), our model does not allow us to find an
analytical solution to . We must therefore resort to an iterative numerical approach
which we briefly outline below.

By symmetry of the problem (guaranteed under the Boussinesq approximation), 7 is
an odd function of x. We impose the boundary condition 7(0) = 0 and need only solve
in half of the domain (say x € [0, 4]).

However, since the volume flux @ in @[) is a priori unknown, we must solve a
coupled problem imposing the additional condition of hydraulic control at each duct end
(denoted by the superscript *)

Re S(x) =

(C24)

1+ 39" (1—n*2)3
G2=G*(—n")=4Q° ———— =1 —_— C25
(1= =1 = o=y STy ()
where n* is the result of the forward integration of (C 24)
A
77* = 77<_A> = _77(‘4) = _/ 77,(@>07fZ77"Ya7"I) dz > 0. (C 26)
0

The coupled problem for n(x) and @ for any given set of forcing and friction parameters
(0, Re, fz,ry,rr) can then be solved by the following iterative algorithm (illustrated in
L18, figure 5.4).

(i) Guess Q;
(ii) Integrate numerically (C24)) from = =0 to A to get n* as in (C 26);
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(iii) Get the @ corresponding to this n* by the criticality condition (C 25);
(iv) Compare this  with the initial guess and update the guess;

(v) Repeat until convergence of Q.

This model and its solution were validated using parameters (6, Re, fz,ry,r) from an
experiment in the L regime, and quantitative agreement with 7n(x) and @) measurements
was found L18, § 5.5.3.

REFERENCES

ANATI, D. A., AssAF, G. & THOMPSON, R. 1977 Laboratory models of sea straits. Journal of
Fluid Mechanics 81, 341-351.

ARrMI, L. 1986 The hydraulics of two flowing layers with different densities. Journal of Fluid
Mechanics 163, 27-58.

Assar, G. & HECHT, A. 1974 Sea straits: a dynamical model. Deep-sea Research 21, 947-958.

DE BRUYN Kops, S. M. 2015 Classical scaling and intermittency in strongly stratified Boussinesq
turbulence. Journal of Fluid Mechanics 775, 436-463.

CAULFIELD, C. P. 1994 Multiple linear instability of layered stratified shear flow. Journal of
Fluid Mechanics 258, 255—-285.

CHANSON, H. 2004 The hydraulics of open channel flows: an introduction, 2nd edn. Elsevier.

Cuow, V. T. 1959 Open-channel hydraulics. McGraw-Hill, New York.

CoORMACK, D. E., LEAL, L. G. & IMBERGER, J. 1974a Natural convection in a shallow cavity
with differentially heated end walls. Part 1. Asymptotic theory. Journal of fluid Mechanics
65, 209-229.

CorMACK, D. E., LEAL, L. G. & SEINFELD, J. H. 1974b Natural convection in a shallow
cavity with differentially heated end walls. Part 2. Numerical solutions. Journal of Fluid
Mechanics 65, 231-246.

DaLzieL, S. B. 1991 Two-layer hydraulics: a functional approach. Journal of Fluid Mechanics
223, 135-163.

DEACON, M. 1971 Scientists and the Sea 1650-1900, A Study of Marine Science. Academic
Press, London.

ENcqQvisT, A. 1996 Self-similar multi-layer exchange flow through a contraction. Journal of
Fluid Mechanics 328, 49-66.

EsTRADA, M. 1996 Primary production in the northwestern Mediterranean. Scientia marina
60, 55—64.

Gu, L. 2001 Frictional exchange flow through a wide channel with application to the Burlington
ship canal. PhD thesis, The University of British Columbia.

Gu, L. & LAWRENCE, GREGORY A. 2005 Analytical solution for maximal frictional two-layer
exchange flow. Journal of Fluid Mechanics 543, 1-17.

HEeLFRICH, K. R. 1995 Time-dependent two-layer hydraulic exchange flows. Journal of Physical
Oceanography 25 (3), 359-373.

HENDERSON, F. M. 1966 Open channel flow. MacMillan, New York.

Hoca, A. M., Ivey, G. N. & WINTERS, K. B. 2001 Hydraulics and mixing in controlled
exchange flows. Journal of Geophysical Research: Oceans 106 (C1), 959-972.

Hoca, A. McC. & KIiLLWORTH, P. D. 2004 Continuously stratified exchange flow through a
contraction in a channel. Journal of Fluid Mechanics 499, 257-276.

HoLMBOE, J. 1962 On the behavior of symmetric waves in stratified shear layers. Geophys. Publ.
24, 67-113.

HucuEes, G. O. & LINDEN, P. F. 2016 Mixing efficiency in run-down gravity currents. Journal
of Fluid Mechanics 809, 691-704.

IMBERGER, J. 1974 Natural convection in a shallow cavity with differentially heated end walls.
Part 3. Experimental results. Journal of Fluid Mechanics 65, 247-260.

KieL, D. E. 1991 Buoyancy driven counterflow and interfacial mixing. PhD thesis, University
of Cambridge.

LANE-SERFF, G. F., SMEED, D. A. & POSTLETHWAITE, C. R. 2000 Multi-layer hydraulic
exchange flows. Journal of Fluid Mechanics 416, 269-296.



1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398

1399

44 A. Lefauve & P. F. Linden

LAWRENCE, G. A. 1990 On the hydraulics of Boussinesq and non-Boussinesq two-layer flows.
Journal of Fluid Mechanics 215, 457-480.

LeAcH, S. J. & THOMPSON, H. 1975 An experimental investigation of some aspects of flow
into a gas cooled nuclear reactors following an accidental depressurization. Journal of the
British Nuclear Energy Society 14 (3), 243-250.

LEFAUVE, A. 2018 Waves and turbulence in sustained stratified shear flows. PhD thesis,
University of Cambridge. doi:10.17863/CAM.24648.

LEFAUVE, A., PARTRIDGE, J. L. & LINDEN, P. F. 2019 Regime transitions and energetics of
sustained stratified shear flows. Journal of Fluid Mechanics 875, 657—698.

LEFAUVE, A., PARTRIDGE, J. L., ZHOU, Q., CAULFIELD, C. P., DALZIEL, S. B. & LINDEN, P. F.
2018 The structure and origin of confined Holmboe waves. Journal of Fluid Mechanics
848, 508-544.

LinpEN, P. F. 1999 The fluid mechanics of natural ventilation. Annual Review of Fluid
Mechanics 31, 201-238.

Lucas, D., CAULFIELD, C. P. & KERSWELL, R. R. 2017 Layer formation in horizontally forced
stratified turbulence: connecting exact coherent structures to linear instabilities. Journal
of Fluid Mechanics 832, 409-437.

Macacno, E. O. & Rousg, H. 1961 Interfacial mixing in stratified flow. Journal of the
Engineering Mechanics Division. Proceeding of the American Society of Civil Engineers
87 (EM5), 55-81.

MERCER, A. & THOMPSON, H. 1975 An experimental investigation of some further
aspects of buoyancy-driven exchange flow between carbon dioxide and air following a
depressurization accident in a Magnox reactor; Part 1: The exchange flow in inclined
ducts. Journal of the Britisch Nuclear Energy Society 14 (4), 327-334.

MEYER, C. R. & LINDEN, P. F. 2014 Stratified shear flow: experiments in an inclined duct.
Journal of Fluid Mechanics 753, 242—253.

PARTRIDGE, J. L., LEFAUVE, A. & DALzIEL, S. B. 2019 A versatile scanning method
for volumetric measurements of velocity and density fields. Measurement Science and
Technology 30, 055203.

PELTIER, W. R. & CAULFIELD, C. P. 2003 Mixing efficiency in stratified shear flows. Annual
Review of Fluid Mechanics 35 (1), 135-167.

PorTrwooD, G. D., DE BrRuyN Kops, S. M., TAYLOR, J. R., SALEHIPOUR, H. & CAULFIELD,
C. P. 2016 Robust identification of dynamically distinct regions in stratified turbulence.
Journal of Fluid Mechanics 807, R2.

Prastowo, T., GRIFFITHS, R. W., HUGHES, G. O. & Hoca, A. M. 2008 Mixing efficiency in
controlled exchange flows. Journal of Fluid Mechanics 600.

REYNOLDS, O. 1883 An experimental investigation of the circumstances which determine
whether the motion of water shall be direct or sinuous, and of the law of resistance in
parallel channels. Philosophical Transactions of the Royal Society of London 174, 935-982.

SALEHIPOUR, H., CAULFIELD, C. P. & PELTIER, W. R. 2016 Turbulent mixing due to the
Holmboe wave instability at high Reynolds number. Journal of Fluid Mechanics 803,
591-621.

SALEHIPOUR, H. & PELTIER, W. R. 2015 Diapycnal diffusivity, turbulent Prandtl number and
mixing efficiency in Boussinesq stratified turbulence. Journal of Fluid Mechanics 775,
464-500.

SALEHIPOUR, H., PELTIER, W. R. & C. P. CAULFIELD, C. P. 2018 Self-organized criticality of
turbulence in strongly stratified mixing layers. Journal of Fluid Mechanics 856, 228—256.

ScHUJF, J. B. & SCHONFLED, J. C. 1953 Theoretical considerations on the motion of salt and
fresh water. In Proceedings Minnesota International Hydraulic Convention. IAHR.

SHERMAN, F. S., IMBERGER, J. & CoORrRcos, G. M. 1978 Turbulence and mixing in stably
stratified waters. Annual review of fluid mechanics 10 (1), 267-288.

SMyTH, W. D. & Mouwm, J. N. 2013 Marginal instability and deep cycle turbulence in the
eastern equatorial Pacific Ocean. Geophysical Research Letters 40 (23), 6181-6185.
STOMMEL, H. & FARMER, H. G. 1953 Control of salinity in an estuary by a transition. Journal

of Marine Research 12 (1), 13-20.
TAYLOR, G. I. 1931 Effect of Variation in Density on the Stability of Superposed Streams



1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

Ezchange flows in inclined ducts 45

of Fluid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Sciences 132 (820), 499.

TAYLOR, J. R., DEUSEBIO, E., CAULFIELD, C. P. & KERSWELL, R. R. 2016 A new method
for isolating turbulent states in transitional stratified plane Couette flow. Journal of Fluid
Mechanics 808, R1.

THORPE, S. A. & Liu, ZHIYU 2009 Marginal Instability? Journal of Physical Oceanography
39 (9), 2373-2381.

WILKINSON, D. L. 1986 Buoyancy driven exchange flow in a horizontal pipe. Journal of
Engineering Mechanics 112 (5), 485-497.

WINTERS, K. B., LOMBARD, P. N., RILEY, J. J. & D’AsAro, E. A. 1995 Available potential
energy and mixing in density-stratified fluids. Journal of Fluid Mechanics 289, 115-128.

WINTERS, K. B. & SEeiM, H. E. 2000 The role of dissipation and mixing in exchange flow
through a contracting channel. Journal of Fluid Mechanics 407, 265-290.

Woob, I. R. 1968 Selective withdrawal from a stably stratified fluid. Journal of Fluid Mechanics
32 (02), 209-223.

Woob, I. R. 1970 A lock exchange flow. Journal of Fluid Mechanics 42 (04), 671-687.

ZHou, Q., TAYLOR, J. R., CAauLFIELD, C. P. & LINDEN, P. F. 2017 Diapycnal mixing in
layered stratified plane Couette flow quantified in a tracer-based coordinate. Journal of
Fluid Mechanics 823, 198-229.

Znu, D. Z. & LAWRENCE, GREGORY A. 2000 Hydraulics of exchange flows. Journal of Hydraulic
Engineering 126 (12), 921-928.



	Introduction
	The experiment
	Setup and notation
	Non-dimensionalisation
	Scaling of the velocity

	blackBackground
	Current state of knowledge
	Limitations of previous studies

	Experimental results
	Data sets
	Flow regimes
	Mass flux
	Interfacial layer thickness

	Models and discussion
	Volume-averaged energetics
	Frictional two-layer hydraulics
	Fundamentals
	Physical insight
	Implications for regimes and Qm

	Mixing models
	Turbulent diffusion models
	Previous mixing efficiency measurements and models
	New mixing efficiency model


	Conclusions
	Problem and approach
	Experimental results
	Modelling results and outlook

	Appendix A
	Flow regimes
	Mass flux
	Interfacial layer thickness

	Appendix B
	Flow regimes
	Mass flux
	Interfacial layer thickness

	Appendix C
	Model formulation
	Parameterisation of shear stresses
	Key equations and solution method


