
 

 

 

 

 

Essays in Energy Economics: A global empirical examination of decarbonization 

policies and of trade in energy technology materials 

 

 

 

 

 

Clara Galeazzi 

Department of Land Economy 

Emmanuel College 

University of Cambridge 

 

October 2021 

 

This dissertation is submitted for the degree of Doctor of Philosophy  



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This dissertation is the result of my own work and includes nothing which is the outcome of work done 

in collaboration except as declared in the Preface and specified in the text.  

It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a 

degree or diploma or other qualification at the University of Cambridge or any other University or 

similar institution except as declared in the Preface and specified in the text. I further state that no 

substantial part of my dissertation has already been submitted, or, is being concurrently submitted for 

any such degree, diploma or other qualification at the University of Cambridge or any other University 

of similar institution except as declared in the Preface and specified in the text.  

This thesis does not exceed the regulation length of 80,000 words, including footnotes, references and 

appendices but excluding bibliographies.  

Clara Galeazzi  

October 2021  



 

iii 

 

Essays in Energy Economics: A global empirical examination of decarbonization 

policies and of trade in energy technology materials 

Clara Galeazzi 
 

Deep reductions in CO2 emissions are needed in energy production and use, which constitute two-

thirds of the emissions responsible for climate change. Achieving such reductions requires concerted 

government policy in all countries, with attention to interrelated challenges like inclusive and 

sustainable growth. 

Introductory Chapter 1 of this dissertation on the economics of decarbonization proposes that the 

four stand-alone analytical chapters can be understood together along the cross-disciplinary technology 

innovation process: (1) the evolution public energy research, development, and demonstration 

(ERD&D) across technologies and countries (Chapter 2); (2) the effects of policies aimed at creating 

markets for low carbon energy on decarbonization (Chapter 3); and, (3) the changes in trade of materials 

used in energy technologies (energy technology materials, ETMs) for technologies in early adoption 

and diffusion (Chapters 4 – 5).  

Existing statistical and econometric studies on these topics tend to focus on high-income (World 

Bank classification) OECD countries, which we define as “developed.” Instead, this dissertation takes 

a broad geographical view by creating new datasets, using existing ones in new ways, and proposing 

changes to established methodologies to better understand the developments and challenges of the 

energy transition in a wider set of countries.  

Chapter 2 ascertains that the evolution of global ERD&D is several times too small compared to 

existing estimates of what is needed to meet climate goals, even when accounting for previously 

unavailable data on China and India. Volatility of funding by country and technology groups (fossil 

fuels, nuclear, and clean plus (CP)) points towards innovation systems patterns over the United 

States/United Kingdom, continental Europe, and Asia. With some caveats, the years after two windows 

of opportunity for changes in funding patterns were not associated with significant changes in funding 

allocation towards CP.  

Chapter 3 finds that the policies with the most immediate positive impact on energy 

decarbonization in developing countries from 1980-2018 dealt with counterparty risk, referring to the 

bankability of private participation. The impacts on decarbonization of other policy instrument 

categories (e.g.  legal frameworks for renewable energy) are low but tend to increase with time, and we 

discuss possible reasons why.  

Chapter 4 identifies 30 traded products related to ETMs. It finds that over the two decades between 

1998-2018, trade trends (such as growth, volatility, importer concentration, and exporter concentration) 

in two groups, clean and refined products, display relatively beneficial changes for exporters than 

traditional and unrefined products do. In accordance with existing literature, however, developing 

countries are underrepresented as exporters of clean and refined products. The results make a case for 

enhancing clean and refined ETM trade and capabilities in developing countries. 

Chapter 5 proposes a methodological modification to the estimation of existing structural trade 

demand price elasticities (defined as a change in quantity traded due to change in price). The 

modification allows for a comparison of the trade demand price elasticities for exporter-ETM pairs in 

almost 30 traded products and 20 major developing and developed country exporters over the two 

decades between 1998-2018. We find, amongst other things, a convergence between developing and 

developed countries over the past two decades and discuss possible reasons for this pattern. 

Chapter 6 considers the implications of the results and reflects on directions for future research.  
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“The Population Reference Bureau predicts that the world’s total population will double to 

7,000,000,000 before the year 2000. 

‘I suppose they will all want dignity,’ I said. 

‘I suppose,’ said O’Hare.” 

 

Slaughterhouse-Five, or, The Children's Crusade: A Duty-Dance with Death, 1969 

Kurt Vonnegut  
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1 CHAPTER 1: INTRODUCTION 

1.1 MOTIVATION 

Climate Change 2021: The Physical Science Basis of the Intergovernmental Panel on Climate Change 

(IPCC) 6th Assessment Report confirmed that “global warming of 1.5°C and 2°C will be exceeded 

during the 21st century unless deep reductions in carbon dioxide (CO2) and other greenhouse gas 

emissions occur in the coming decades,” (IPCC 2021) with broad implications for the global economy 

(Nordhaus 2019). Energy production and use in power, heat, and transport are responsible for close to 

two-thirds of greenhouse gas emissions, which is why decarbonizing the sector is crucial (International 

Renewable Energy Agency (IRENA) 2019).  

Energy decarbonization can be achieved through a range of efforts. These include, but are not limited 

to, pricing emissions to align market incentives to make existing low-carbon technologies competitive 

with those that dominate the sector, and allocating public investment to accelerate the innovation of 

technologies that are not yet ready for deployment (Peñasco, Anadón, and Verdolini 2021), where 

innovation is defined as the “process by which technology is conceived, developed, codified, and 

deployed” and technology is defined as “the subset of knowledge that includes the full range of devices, 

methods, processes, and practices that can be used ‘to fulfill certain human purposes in a specifiable 

and reproducible way’” (Brooks 1980; Anadón, Chan, et al. 2016). In addition to serving climate goals, 

innovation is “a key driver of long-term productivity growth” (International Monetary Fund (IMF) 

2016).  

Several estimates exist for the innovation gap to meet decarbonization goals. According to the 

International Energy Agency (IEA), almost 75% of the cumulative CO2 emissions by 2070 compared 

to business as usual come from technologies that will not become available at scale without further 

research, development, and demonstration (RD&D), or that “have not yet been commercially deployed 

in mass‑market applications” (IEA 2020a) (Figure 1.1). 

Recognizing the need to incentivize the development and deployment of nascent technologies, the Paris 

Agreement of the United Nations (UN) Framework Convention on Climate Change, which aimed at 

“holding the increase in the global average temperature to well below 2°C above pre-industrial levels 

and pursuing efforts to limit the temperature increase to 1.5°C above pre-industrial levels” was 

accompanied by the creation of Mission Innovation (MI). MI is an international cooperation agreement 

between more than 20 countries to double their clean energy research, development and demonstration 

(ERD&D) investment by 2020-2021 (amongst other goals), with varying levels of success to date 

(Hannon and Bolton 2021; Myslikova and Gallagher 2020).  
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Figure 1.1. Global energy sector CO2 emissions reductions percentages, 2019-2070, by current technology readiness level 

(TRL) category. The vertical axis represents the percentage of emissions reductions needed under the Sustainable 

Development Scenario relative to the Stated Policies Scenario from mature versus not mature technologies. 

 
Source: Adapted from International Energy Agency (2020a). 
 

Decarbonization efforts must involve both developed and developing countries (Nordhaus 2019). 

Unless otherwise specified, we define developed countries as those that are both members of the 

Organization for Economic Development (OECD) and classified as World Bank high-income with a 

gross national income per capita above 12,535 USD in 2020 (World Bank 2020a). As a group, OECD 

high income countries hold exceptionally high scores in quality of life indicators such as the UN Human 

Development Indicator and regulatory metrics such as the World Bank Doing Business (UN 

Development Programme 2020; World Bank 2020b). Although developed countries have higher 

historical emissions, China and India are amongst the top three emitters today, along with the United 

States. Furthermore, about 50% of the top 20 emitters are developing countries; and, within the top 20 

countries, developing countries make up 64% of emissions (Figure 1.2) (Global Carbon Atlas 2021).  

Figure 1.2. Fraction of top 20 country emissions in 2019 from developed (blue) versus developing (red) countries. 

 
Source: Authors’ elaboration based on data from Global Carbon Atlas (2021). 
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However, Nationally Determined Contributions (NDCs), the emissions reductions pledges by countries 

under the Paris Agreement, are inadequate (Robiou du Pont et al. 2016). A recent study finds that the 

probability of staying below 2°C of warming if all countries meet their NDCs and continue to reduce 

emissions at the same rate after 2030 is 26% (and 2% if countries continue current trends) (Liu and 

Raftery 2021).  

Amongst other forces at play, real or perceived trade-offs related to decreasing emissions contribute to 

the gap between emissions reduction pledges and what is required, as well as between pledges and 

progress towards achieving them (Deng et al. 2018). As an unexpected global shock, the COVID-19 

pandemic illustrated the compromise between short-term economic performance and emissions, barring 

policies that support structural economic change and the development and deployment of new 

technologies (UN Conference on Trade and Development (UNDP) 2021). Early estimates show that in 

2020, the Covid-19 pandemic decreased emissions by 4-7% (Le Quéré et al. 2020). What is worrisome 

is that this large shock reduced annual emissions less than the 7.6% yearly estimated decrease needed 

from 2020-2030 to keep global temperatures below 1.5 degrees (UN Environment Programme (UNEP) 

2019). These decreases were also accompanied by an economic recession of about 3.59% of GDP 

(World Bank 2021a).  

Ultimately, we must improve our understanding of how to use government policy as a tool to transition 

to a globally decarbonized energy system in the coming decades while also pursuing other objectives, 

including inclusive and sustainable and the other interrelated UN Sustainable Development Goals 

(Anadón, Chan, et al. 2016; Mazzucato 2018). Failure to address climate change with other objectives 

may compromise several societal goals at once (Anadón, Chan, et al. 2016). 

Through four stand-alone chapters (or papers), this dissertation in energy economics uses empirical 

methods to contribute to our understanding of policies and other areas of policy consideration (i.e., 

trade), for energy decarbonization at a global level. This introductory chapter begins with a general 

literature background in three parts. First, it presents the market failure rationale and policy 

prescriptions for climate change and decarbonization. Second, it considers the importance of competing 

policy priorities between climate change and other challenges that policymakers face. Third, it 

introduces the Energy Technology Innovation Systems (ETIS) conceptual framework that helps bridge 

the first two literatures together. The introduction then situates the research questions of the dissertation 

within ETIS and describes the methods and data of each chapter, concluding with a summary of the 

contributions. 
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1.2 BACKGROUND 

1.2.1 Climate change as a market failure 

Economics perspectives applied to energy and environmental challenges build upon and adapt the 

neoclassical economic concepts of upward-facing supply and downward-facing demand curves that 

meet at one point, the market equilibrium, due to profit-maximizing (and wellbeing-optimizing) 

decisions of (at least bounded) rational agents (Samuelson and Nordhaus 2009; Steinmueller 2010). 

In this framework, the market fails when it does not allocate scarce resources in a Pareto-efficient way 

(simply, in which no individual can be better off without making another worse off), causing a decrease 

in aggregate social welfare, or a “deadweight loss” (Samuelson and Nordhaus 2009). Government 

intervention is justified if it can increase aggregate welfare in such a way that lowers the deadweight 

loss (Steinmueller 2010). In other words, the marginal cost of the intervention should be smaller than 

the marginal benefit of its outcome. 

Externalities are a specific type of market failure that occur when the market fails to price the effects 

(both positive or negative) of a certain economic activity (Samuelson and Nordhaus 2009). Climate 

change is caused by negative environmental externalities where the market fails to “internalize” the 

environmental and human health costs of fossil fuel production. This is a result of “free-riding” global 

environmental resources that are “nonrivalrous” and “nonexcludable” (Jaffe, Newell, and Stavins 2005; 

Popp 2019; Samuelson 1954). In that sense, climate change is also a case of the Tragedy of the 

Commons (Hardin 1968), where uncoordinated self-interest results in negative externalities that deplete 

a collective resource in a way that harms all agents. 

The general prescription to address environmental externalities is to intervene in the market so that the 

negative aggregate environmental and health costs are either internalized by the firms causing the 

externalities (market-based approach) or are minimized (through regulation) (Samuelson and Nordhaus 

2009). The possible policies (also referred to as policy instruments) to directly address the 

environmental externalities include (Pigouvian) taxation (or pricing emissions) and cap and trade (or 

limiting the quantity) of emissions (Jaffe, Newell, and Stavins 2005).  

However, other externalities contribute to or reinforce climate change. RD&D in technologies that 

might mitigate environmental problems is underprovided by the market largely due to the 

“appropriability problem,” consisting of two interrelated sub-issues (Teece 1986). The first is that 

scientific knowledge frequently has positive externalities so that the investor cannot internalize the 

entire stream of returns on their investment (Nelson 1959; Arrow 1962). The second portion of the 

appropriability problem is that scientific knowledge can have knowledge spillovers and may be used 

by rival firms. In this case, competitors may free-ride on the investment, making scientific research a 

public good (Popp 2019). Based on the arguments above, three science and technology policy 
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interventions can increase the rate of technological change: subsidies to RD&D producers, intellectual 

property rights, and government procurement where the RD&D is in a public good for which the 

government is the main customer (Steinmueller 2010). The first increases the supply of research, the 

second increases private returns to investment in research, and the third sees the government translating 

social preferences into market demand (Dalpé, DeBresson, and Xiaoping 1992).  

Several additional market failures contribute to the overproduction of fossil fuels and the 

underproduction of knowledge. These include adoption externalities (related to dynamic increasing 

returns through learning-by-using, learning-by-doing, or network externalities of technologies), 

incomplete information, a divergence of social and private discount rates, and the failure of markets to 

translate social preferences (especially those of future generations) into market demand (Steinmueller 

2010; Jaffe, Newell, and Stavins 2005). The severity of these market failures is exacerbated by the “fat 

tail” shape predicted by climate models of the probability of exceeding “dangerous” warming, and the 

costs associated with such warming (Weitzman 2011). Policies ranging from renewable performance 

standards, feed-in tariffs, auctions, and other regulations have been put in place to address externalities 

related to learning by doing and using the infant industry argument (Peñasco, Anadón, and Verdolini 

2021; Grubb et al. 2021).  

Overall, it is widely acknowledged that a portfolio of policies that address several externalities are 

needed, a perspective espoused in this dissertation. Said policies, however, may interact with one 

another, as well as with the externalities they are trying to address, making the estimation of the cost 

and benefits of each intervention complex (Jaffe, Newell, and Stavins 2005). For instance, taxing 

emissions alters the cost-benefit of production and may lead to innovation in a polluting firm (Popp, 

Newell, and Jaffe 2010), which may also be influenced by other coexisting policies focusing on 

innovation. 

Note that while this brief discussion on externalities is not meant to be exhaustive, the existing theory 

is incomplete. For instance, the current theory fails to recognize that policy today shapes future markets 

that do not yet exist (Stern and Stiglitz 2021). In fact, while the “market failure” perspective provides a 

versatile theoretical framework, it can generally lack a conceptual background of how the market is 

shaped and changes over time, where policies come from, and how they evolve (Coase 1991). This 

finding is shared by the cross-disciplinary literature that focuses on innovation systems, as discussed in 

the following sections. 

1.2.2 Competing policy priorities 

As the targeted discussion above suggested, there are compounding relationships between externalities 

and the effects of policies that can be applied to rectify them. Policymakers also have several competing 

rationales for implementing decarbonization policies (IPCC 2001). For instance, because it affects a 

myriad of sectors in both developing and developed countries, efforts to address climate change are 
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often pursued along with other objectives like inclusive and sustainable growth, or UN Sustainable 

Development Goal 8. This has contributed to research and policymaking on climate change as a 

“complex,” “systemic,” and “urgent,” or “wicked,” problem (or “grand challenge”) (Mazzucato 2018).  

A crucial component for continued growth in both developing and developed countries is international 

trade (Lopez 2005; Krugman, Obstfeld, and Melitz 2014). To this end, several studies have considered 

how decarbonization policies affect export competitiveness. For instance, Costantini and Mazzanti 

(2012) test strong and weak versions of the Porter hypothesis, which posits that environmental policies 

can foster competitiveness by inducing technological innovation, in five manufacturing sectors within 

the European Union (EU). They find that environmental policies generally have positive effects on 

competitiveness. However, reviews by Dechezleprêtre and Sato (2017) and Peñasco, Anadón, and 

Verdolini (2021) found mixed results. Dechezleprêtre and Sato (2017) suggest that complex 

relationships may explain these mixed results, such as the possibility that policy is endogenously 

determined, “governments [may] strategically set stringency levels to be low (high) where there is a 

high (low) risk of competitiveness distortions.”  

The effects of decarbonization on trade are not limited to the industrial and manufacturing sectors. Over 

the last ten years, annual growth in renewable capacity installations has increased steadily, while annual 

installations for electricity from fossil fuels have decreased (Figure 1.3), a trend that must continue and 

accelerate if we are to reach climate goals (IRENA 2021a). This increased rate of growth in energy 

derived from renewable sources versus fossil fuels will affect trade patterns in several raw and refined 

materials at varying levels of the manufacturing spectrum across energy technologies, or what we refer 

to in this dissertation as energy technology materials (ETMs) (Bazilian 2018; Lee et al. 2020). 

Figure 1.3. Annual installed capacity from renewable versus non-renewable sources (left axis) and share of renewable 

installed capacity over total annual installations (right axis) (2001-2020). 

 
Source: Renewable energy statistics data from IRENA (2021). “Renewable” includes bio, geothermal, hydropower, marine, 
solar, wind, and other. Non-renewable includes fossil fuel, nuclear, pumped storage, and other. 
 

Galeazzi, Steinbuks, and Cust (2020) consider the possible implications of decarbonization on ETM 

trade in Sub-Saharan Africa (SSA), a region where the export of natural resources (natural gas, crude 
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oil, and metals) generates approximately 25% of government revenue on average. We forecast the value 

of SSA trade for ETMs like cobalt, a material used in lithium-ion batteries. Amongst other things, we 

find that countries with reserves of materials used in clean energy have an opportunity to expand their 

exports and that hydrocarbon producing countries will need to adapt. Reviews on co-benefits and trade-

offs of decarbonization policies, such as Peñasco, Anadón, and Verdolini (2021), ascertain that 

transforming trade, competitiveness, and other economic development trade-offs into co-benefits is 

possible, with targeted consideration. However, the extent to which countries may be well-positioned 

to benefit from this opportunity (in other words, to achieve both climate and development goals) based 

on trade trajectories over the past two decades has not been systematically investigated.  

1.2.3 Energy technology innovation systems (ETIS)  

Due to the grand challenge of climate change, it behooves researchers and policymakers to assess 

courses of action from multiple theoretical frameworks (Grubb, Hourcade, and Neuhoff 2014). A 

growing appreciation for endogeneity between different actors, their actions, the development of 

knowledge, and the diffusion of technologies, promoted a theoretical examination of decarbonization 

from a comprehensive perspective in what was initially called the “national innovation systems” 

framework. In that framework, institutions, “habits and practices, or routines,” shape the interplay of 

complementary inputs, and coordinating, performing, and cooperating actors (Winter and Nelson 1982).  

The innovation systems conceptualization of innovation is different from Bush's (1945) “linear” model 

where discoveries are successively made through basic research, demonstrated through applied 

research, refined through prototypes, and commercialized. It includes a range of models, like 

national/sectoral/regional/global “systems of innovation” (Edquist 1997; Lundvall 1992; Freeman 

1987; Nelson 1993; Malerba 2004; Binz and Truffer 2017), “techno-economic networks” (Callon et al. 

1992) and “technological infrastructure policy” (Justman and Teubal 1986) that treat innovation as a 

non-linear and systemic complex process involving dynamic feedbacks and heterogeneous actors.  

Innovation systems analysis characterizes innovation as occurring in complex feedback loops between 

actors (a heterogeneous group, from university systems to lone entrepreneurs, of those responsible for 

developing, diffusing, and implementing new technologies), networks (that connect actors), and 

institutions (informal and formal “rules of the game” that characterize actors’ behavior, expectations, 

and values [North 1990; Anadón, Chan, et al. 2016; Hannon and Bolton 2021]). Innovation occurs 

through stages that “can be tightly linked, often overlap, and do not necessarily occur in a specific 

sequence;” as a result, “innovation systems are complex adaptive systems characterized by codependent 

innovation stages with multiple feedbacks, positive and negative ripple effects, and the potential for 

nonlinear impacts” (Anadón, Chan, et al. 2016).  

Coupled with the chain-linked model of the innovation process, espousing the stages of research, 

development, demonstration, market formation, and diffusion, the innovation systems model is “an 
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interactive process involving a network of firms and other economic agents that, together with the 

institutions and policies that influence their innovative behavior and performance, bring new products, 

processes, and forms of organization into economic use” (Grübler et al. 2012).  

Note the conceptual difference between the perspective we discussed in Section 1.2.1, where profit-

maximizing agents act in response to market forces and government-mandated incentives, and the 

innovation systems perspective where “markets do not play the overarching role of generating an 

optimal state. Instead, nonmarket-based institutions are an important ingredient in the ‘macro’ 

innovation outcome” (Soete, Verspagen, and Weel 2010).  

The ETIS framework applies innovation systems specifically to energy technologies (Gallagher, 

Holdren, and Sagar 2006; Grübler et al. 2012; Grübler and Wilson 2014). It is a “systemic perspective 

on innovation comprising all aspects of energy transformations (supply and demand); all stages of the 

technology development cycle; and all the major innovation processes, feedbacks, actors, institutions, 

and networks” (Gallagher et al. 2012). Some recurring characteristics of ETIS are (1) interdependence 

between components; (2) uncertainty of the outcomes; (3) complexity (due to the interdependency and 

uncertainty); and, (4) inertia, at least partially due to existing capital stock (Gallagher et al. 2012). 

Three main types of metrics can help characterize ETIS: (1) inputs (“financial and labor inputs to the 

innovation process”) like RD&D expenditure; (2) outputs (“products of the innovation process”) like 

patents and publications; and, (3) outcomes (“sector or economy-wide impacts of the successful 

diffusion of innovations into the marketplace”) like the market penetration of a technology (Gallagher 

et al. 2011). We discuss these metrics below in the context of the dissertation.  

1.3 DISSERTATION RESEARCH QUESTIONS, METHODS, AND DATA 

1.3.1 Dissertation structure 

This introductory dissertation chapter proposes that the four analytical dissertation chapters, which 

apply questions, methods, and assumptions from economics, can be understood together within the 

cross-disciplinary ETIS conceptual framework.  

Before proceeding, observe the differences in the lexicon and focus between the market failure and the 

ETIS perspectives, as they may label and interpret the same policy interventions differently. For 

example, in the market failure framework “policies aimed at stimulating cooperation […] between 

university and industry, would be motivated in the market failure-based approach by internalizing 

externalities” (in this case related to knowledge spillovers and/or networks); instead, “in a systems 

approach, such policies could be aimed at influencing the distribution of knowledge, to achieve 

coordination (not provided by markets), or to increase the cognitive capacity of firms” (Soete, 

Verspagen, and Weel 2010).  
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The market failure of positive knowledge externalities discussed previously is closely associated with 

the earlier stages of the TIS innovation process. Aside from securing intellectual property rights, the 

market failure approach prescribes public RD&D support as a fiscal expenditure aimed at providing 

“critical innovation that firms are unlikely to undertake” to increase total factor productivity (IMF 

2016). Viewed from the ETIS perspective, the same ERD&D policies would be classified as “pushing” 

technology through the chain-linked model of innovation, or as “technology-push” policy.  

On the other hand, negative environmental externalities are more closely associated with the actions of 

firms and technologies in the later innovation stages. As discussed, these externalities can be corrected 

by policies that increase the price of polluting (making non-polluting actions cost-competitive) or by 

regulations that “pull” low-carbon technologies through the innovation process, otherwise called 

“market-pull” policy. 

Visual representations of ETIS vary. Figure 1.4 is adapted from Grübler et al. (2012) for this 

dissertation. It is composed of the following stages: (1) RD&D; (2) market formation (the “application 

of a technology in a specific limited market setting […] by harnessing either a specific comparative 

advantage […] or via public early deployment incentives […]”); and, (3) diffusion and trade (or the 

“widespread uptake of a technological innovation throughout the market of potential adopters”) 

(Grübler et al. 2012).  

The four stand-alone analytical chapters (or papers) of this dissertation reflect the challenges of 

supporting technologies across the innovation process stages (Figure 1.4, bottom). The first analytical 

chapter of this dissertation (Chapter 2) focuses on supply-push policies, and information related to it 

will be easy to distinguish in the rest of the figures and tables in this introduction by the color blue. 

Chapter 3 poses research questions mostly related to the market formation stage of the innovation 

process and will be distinguishable in the rest of the figures and tables in this introduction by the color 

red. Chapters 4-5 engage with the diffusion stage of mature decarbonization technologies. Those 

chapters consider the cross-country implications of decarbonization on international trade, and can be 

distinguished in figures and tables of this introduction by the color green.  
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Figure 1.4. Policy types relating to the non-linear stages of the innovation process (top); simplified Energy Technology 

Innovation System (ETIS) model of the innovation process (middle); and how the dissertation chapters relate (bottom). 

 
Source: Simplified model of the ETIS innovation process, adapted from Grübler et al. 2012. 

1.3.2 Research questions organized by ETIS stages 

Chapter 2 – RD&D 

 

Public investment in ERD&D is a crucial component of climate policy (Cunliff 2019). More broadly, 

public RD&D investment is a type of fiscal expenditure that helps expand total factor productivity 

through innovation in areas where firms are unwilling to invest (IMF 2016).  

ERD&D supply-push expenditure data is available for OECD countries since the 1970s (IEA 2020b) 

and it is the most commonly used ETIS input metric used in “international comparative assessments” 

(Gallagher et al. 2011). Over the past two decades, India and China have grown into both large emitters 

and a growing part of the global economy (Global Carbon Atlas 2021), but comparable ERD&D data 

is not readily available for them (Gallagher et al. 2011). Chapter 2 contributes to our understanding of 

the ERD&D efforts by including data on India and China in a format that corresponds to the 

technologies covered in existing data from the IEA.  

The additional data on India and China allows researchers to answer some new questions, outlined in 

blue in Figure 1.4. For instance, how have expenditures evolved by country and technologies over time, 

and are current efforts large enough compared to existing forecasted needs? Are there any patterns over 

regions? The Multiple Streams Framework suggests that “windows of opportunity” can help 

policymakers deal with crises (Kingdon 1984). Since the Paris Agreement, have the years after MI been 

associated with a statistically significant change in expenditure efforts, or to a reallocation of spending 

towards certain technologies? How does expenditure after MI compare to expenditure after other 

opportunities for policy change, like the Financial Crisis?  

To answer these questions, we draw on and engage with various disciplines and a diverse set of 

literatures, including how large ERD&D expenditures should be according to Integrated Assessment 
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Models (IAMs), innovation systems and ERD&D funding trends, and Multiple Streams Framework of 

policymaking.  

Chapter 3 – Market formation 

 

Improving our understanding of the effects of different decarbonization policies on decarbonization 

itself (as measured through the deployment, or market share, of non-fossil fuels) is crucial to meeting 

climate goals. Just like in ERD&D, we know much more about the effects of such market-pull 

decarbonization policies in developed countries than in developing countries (Peñasco, Anadón, and 

Verdolini 2021).  

To answer this question, we compare the causal effects of seven energy policy instrument categories 

(PICs), such as legal frameworks for renewable energy, on more than 100 developing countries over 

time. We also ask: How do such effects change from the short to medium term after implementation, 

by policy category?  

The questions lead us to interact and contribute to two broad literatures. The first is the policy evaluation 

literature that evaluates different decarbonization policies (mostly centered on developed countries); 

the second is the literature focusing on specific power sector reforms that took place in the 1980s and 

1990s (and includes both developing and developed countries). 

Chapter 4 – Diffusion and trade  

 

Deep energy decarbonization will change the materials (a general term that refers to the matter from 

which a thing is or can be made) demanded for energy technologies. Real or forecasted potential supply 

chain vulnerabilities and reserve shortages motivate many existing studies on the materials used in 

energy technologies from the point of view of importers. Changing demand patterns of materials from 

the point of view of exporters, however, is relatively unexplored and relevant to macroeconomic goals 

such as competitiveness, growth, and fiscal sustainability, which interact with climate change goals.  

In Chapter 4, therefore, we ask: How have the characteristics of growth, volatility, and importer and 

exporter concentration in trade value and volume evolved for the products in the two decades between 

1999-2018? What are the products (and product groups) that have exhibited characteristics that are more 

beneficial to exporters?  

We divide ETMs into those that support decarbonization, and those that represent the existing 

traditional energy paradigm. We also divide the same products into those that are unrefined versus are 

refined. We show that this characterization is important because it can aid countries in setting policies 

to best direct their position in trade according to their existing export profile. 
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Our questions lead us to interact with and further the ETM literature, which we broadly divide into three 

streams: criticality assessments as they relate to national security, general reserve and resource 

assessments, and resource governance.  

Chapter 5 - Diffusion and trade 

  

A key concept in economics is the elasticity, or the change in one variable due to the change in another. 

A common elasticity is the “price elasticity of demand,” which refers to how much demand changes for 

a given change in price. It can be understood as the slope of the demand curve on a quantity (horizontal) 

and price (vertical) graphical representation of the market. The lower the elasticity of demand, the less 

change in demand with a given change in price.  

Knowing the price elasticity of demand is useful in many ways. For instance, an exporting country that 

knows the price elasticity of demand for their exports is in a better position to tax their exports 

appropriately for optimal fiscal revenue. Conversely, an exporting firm that knows the price elasticity 

of demand for their product is in a better position to price their product appropriately.  

In Chapter 5, we ask: What is the price elasticity of import demand (simplified as “trade demand 

elasticity”) for each product-and-main-exporter pair of ETMs (e.g., gas from Russia or lithium from 

Argentina)? And, is there a difference between developed and developing exporters in ETM trade 

demand elasticities? 

Despite their importance in economics, calculating price elasticities of demand and supply from existing 

data is a complex and frequently elusive task. This is because existing data only tells you where the 

curves meet (the market equilibrium), and nothing about the slopes of the curves. In other words, it is 

difficult to “identify” the demand and supply curves.  

Our questions regarding the elasticities lead us to consider and advance the literature that explores how 

to calculate trade elasticities in a low-data environment for many countries and products at once, 

including how to “structurally” (i.e., from first-principles) identify supply and demand functions from 

trade data. For this, we modify and calculate existing elasticity methods based on a series of seminal 

methodological and theoretical improvements including Armington (1969), Leamer (1981), Feenstra 

(1994); Krugman (1979), Broda and Weinstein (2006), Soderbery (2015), and more. To our knowledge, 

we are the first to modify them in this way, and also to ask the question in the context of ETMs. 

In the literature review, we explore how that the aim of structural elasticity methods is (usually) to 

calculate the benefits of trade in the whole economy. And, while we focus on the methodological 

portions of the literature to measure the elasticities relevant to ETMs in the context of energy 

decarbonization, the conclusions of that literature largely support economic theory on the benefits of 

trade. Therefore, the literature both provides a springboard for the calculations and upholds our 
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exploration of ETM trade in the context of the transition to decarbonized energy and competing policy 

priorities. 

Chapters 4 and 5 have distinct perspectives. Chapter 4 focuses on identifying trends over products and 

product groups at the market equilibrium. Chapter 5 attempts to identify supply and demand curves 

from the trade data and looks at product-exporter pairs instead of products and product groups. Just like 

Chapters 2 and 3, Chapters 4-5 attempt to elucidate economic and climate policy implications from the 

results for developing and developed countries. Figure 1.5 summarizes the chapters, research questions, 

and literatures used to answer the research questions. 

Figure 1.5. Chapter titles, research questions, and literatures. 

 
Source: Authors’ elaboration. 
Note: Energy Research, Development & Demonstration (ERD&D); Energy technology materials (ETMs). 

1.3.3 Methods and data 

We answer the questions introduced in Figure 1.5 with empirical (statistical and econometric methods), 

summarized in Figure 1.6. These include descriptive statistics (all chapters), parametric and non-

parametric tests to determine differences between groups (Chapter 4), and linear regression analysis 

with a range of robustness checks and specifications, including intercept-only fixed effects regressions 

to instrumental variables (IVs) (Chapters 2 and 3) and the estimation of parameters from structural 

models (Chapter 5).  

Ch.

2

3

4

5

Title

Characterizing and 
assessing the evolution of 

public ERD&D 
investments in eight 
major economies, 

including China and 
India

Comparing the causal 
effects of seven energy 

policy instrument 
categories on energy 

decarbonization in 100+ 
developing countries 3-7 

years after 
implementation

The evolution of trade in 
30 energy technology 

materials spanning 
traditional and clean 
technologies and its 

implications

A novel estimation of 
structural trade 

elasticities and an 
application to ETMs

Question 1

How have expenditures 
evolved by country and 
technologies over time, 
and are current efforts 

large enough compared 
to existing forecasts of 

needs? 

How do the effects of 
seven major policy 

instrument categories on 
the deployment of clean 

energy technologies 
compare in developing 

countries?

How have metrics in 
trade value and volume 
evolved for the products 

in the two decades 
between 1999-2018? 

What are the trade 
demand elasticities for 

each product-and-main-
exporter pair of ETMs 

(e.g. gas from Russia or 
lithium from Argentina)? 

Question 2

How does the volatility 
in China, India, and other 
major countries compare 
overall and over major 
technology groups? Are 

there patterns over 
regions?

How do such effects 
change from the short to 

medium term after 
implementation, by 

policy category?

What are the products 
that exhibit 

characteristics that are 
more beneficial to 

exporters?

Is there a difference 
between developed and 
developing exporters in 

ETM trade demand 
elasticities? 

Question 3

Have the years after MI 
been ass. with changes in 

expenditure, or to a 
reallocation of spending 
towards certain tech.? 

How does it compare to 
other opportunities, like 

the Financial Crisis? 

What are the product 
groups that exhibit 

characteristics that are 
more beneficial to 

exporters?

Literatures

Integrated Assessment 
Modelling

Innovation systems & 
funding trends

Multiple Streams 
Framework

Decarbonization policy 
and evaluation

Power sector reform and 
evaluation

Criticality assessments

Reserve and resources 
assessments

Resource governance

New trade theory

Trade elasticity methods
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Figure 1.6. Summary of statistical and regression methods in the dissertation. 

 
Source: Authors’ elaboration. 
Note: Energy Research, Development & Demonstration (ERD&D); Energy technology materials (ETMs). 
 

The data selection, creation, and handling for empirical analyses are, along with the methods, a major 

component of the efforts behind this dissertation. Figure 1.7 displays a non-exhaustive list of data 

sources. 

In Chapter 2, we are among the first to include India and China in public ERD&D estimates by 

technology since 2000 and 2010 (respectively) to 2018. Amongst other things, this inclusion allows us 

to more adequately compare aggregate ERD&D expenditures with estimates of what is needed to meet 

climate goals. This study is also the first to subject this data regression analysis to detect structural 

changes around two major potential windows of opportunity for policy change. 

Chapter 3 compares the causal effect of a wide range of demand-pull policy instruments in developing 

countries for several decades from 1980-2018. This unique coverage is made possible by the first causal 

analysis of the comprehensive Regulatory Indicators for Sustainable Energy (RISE) dataset that spans 

more than one hundred and thirty countries. 

In Chapter 4, we take a unique and comprehensive view of ETM traded products. We are the first to 

distinguish 30 unrefined and refined traded products used as materials in energy technologies using the 

Harmonized System classification of UN Comtrade, a database with yearly bilateral trade flows 

between 170+ countries from 1998-2018. To provide the most inclusive analysis possible, we consider 

both clean energy and traditional energy materials. Our methods yield a product code list that may be 

useful to other researchers willing to undertake subsequent ETM studies with trade data. Unlike most 

Ch.

2

3

4

5

Title

Characterizing and assessing 
the evolution of public 

ERD&D investments in eight 
major economies, including 

China and India

Comparing the causal effects of 
seven energy policy instrument 

categories on energy 
decarbonization in 100+ 

developing countries 3-7 years 
after implementation

The evolution of trade in 30 
energy technology materials 

spanning traditional and clean 
technologies and its 

implications

A novel estimation of structural 
trade elasticities and an 

application to ETMs

Methods

Design and comparison of four indices to quantify 
volatility.

Intercept-only fixed effects regression analysis. Several 
robustness checks, including: stratified and non-

stratified models, regional samples.

Instrumental variable (IV) regression with fixed effects 
and interaction terms. Several robustness checks, 

including: different methods to measure independent 
and dependent variables, used of different lags and 
moving averages, different IVs, regional samples.

Average growth, volatility, and market concentration 
measures of value and volume of trade for 30 ETMs. 
Parametric and non-parametric statistical inference.

IV regression with a limited information maximum 
likelihood (LIML) estimation strategy, based on Leamer 
(1981)’s supply and demand identification strategy and 

Feenstra (1994)’s estimation strategy, which was 
improved by Broda and Weinstein (2006) and 

Soderbery (2015).

Method is used to study:

Stability of funding by country and 
technology.

Relationship between windows of policy 
opportunity (the 2008 Financial Crisis and 
Mission Innovation) on the growth rate of 

public ERD&D expenditures.

Effect of different renewable energy policy 
instruments on the deployment of clean 

energy technologies over time.

Which product groups and products seem to 
be accelerating their involvement in trade for 

the transition to decarbonized energy.

The trade demand elasticty, by ETM and 
exporter. 
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ETM studies, we are one of few to consider the viewpoint of developing and developed countries 

equally.  

Last, previous trade elasticity of demand analysis is from the point of view of one importer, usually a 

developed country, to the products from the rest of the world. To apply the elasticities to our broader 

ETM perspective, we make an analytical contribution in Chapter 5 that makes it possible to calculate 

the trade elasticity of demand of a product by the whole world towards one exporter. This is the first 

application of this change and the first application to ETMs. 

Figure 1.7. Key datasets created or used in this dissertation. 

 
Source: Authors’ elaboration. 
Note: Energy Research, Development & Demonstration (ERD&D); Energy technology materials (ETMs); Regulatory 
Indicators for Sustainable Energy (RISE), World Development Indicators (WDI). 

1.4 SUMMARY 

1.4.1 Chapter summaries 

To aid in the navigation of the dissertation, the sections below provide a summary of each chapter. 

Chapter 2: Characterizing and assessing the evolution of public ERD&D investments in eight 

major economies, including China and India, from 2000-2018 

 

Public efforts in energy research, development, and demonstration (ERD&D) is a crucial component of 

both economic and climate policy. Yet characterizing and assessing the evolution of ERD&D has been 

limited by missing data on two major countries and emitters, China and India, except for a recent paper 

that does not explicitly provide data over time for the two countries.  

Chapter 2: Characterizing and assessing the evolution of public ERD&D investments in eight major economies, including China and India

• Creation of own India public ERD&D expenditure from Government of India Union Budgets and Web of Science citations

• Use of new public ERD&D expenditure data based on Chinese Chinese Statistical Yearbook

• ERD&D Budgets from the IEA

Chapter 3: Comparing the causal effects of seven energy policy instrument categories on energy decarbonization in 100+ developing 
countries 3-7 years after implementation

• First use of RISE dataset from Energy Sector Management Program (ESMAP), World Bank 

• The Affinity of Nations dataset on the Similarity of State Voting Positions in the UN General Assembly from Bailey et al. (2017)

• Bilateral EU Trade agreements from the EU Commission

• UN International Trade Statistics Database (UN Comtrade) from UN Statistics Division

• World Development Indicators (WDI) from World Bank

Chapter 4: The evolution of trade in 30 energy technology materials spanning traditional and clean technologies and its implications

• Creation of sub-dataset on traded products based on UN Comtrade and ETM literature through a systematic process to identify 
relevant trade product codes across traditional and clean energy technologies

• Product code list may be useful to other researchers willing to undertake subsequent ETM studies as broad as ours with trade data 

Chapter 5: A novel estimation of structural trade elasticities and an application to ETMs

• Focus on development of elasticities methods. An exemplification of the application of the product code list created in Chapter 4
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We ask what the expenditure has been for China and India, and, once including them, how global close 

spending is to the estimated ERD&D amounts needed to reach climate goals. Focusing on a group of 

eight major countries, including China and India, we also ask how public ERD&D funding volatility 

compares by country, overall and by major technology groups. Last, we ask whether past “windows of 

opportunity” for policy change materialized, and what this can tell us about upcoming ERD&D policy 

challenges. 

Combining the new data on China and India with existing open-access data, we show that public 

ERD&D is at less than half of what previous estimates say is necessary. We design four indices to study 

the volatility of funding by country and three technology groups (fossil fuels including carbon capture 

and sequestration, nuclear, and all the rest, entitled clean plus, CP). The results point towards innovation 

systems characteristics over three regions: the United States/United Kingdom, continental Europe, and 

Asia. Last, we evaluate the possible effects of two windows of opportunity for policy change, the 2008 

financial crisis (FC) and Mission Innovation (MI). The years after the FC are associated with changes 

in total funding and minimal increases in CP; the years after MI are associated with minimal increases 

in CP, but only in a select group of countries. Our results show that public ERD&D requires sustained 

attention and impetus if we are to reach climate goals.  

Chapter 3: Comparing the causal effects of seven energy policy instrument categories on energy 

decarbonization in 100+ developing countries 3-7 years after implementation 

 

There is a variety of energy policies, all over the world, aiming to advance one or several environmental, 

economic, security, or equity policy goals. We offer the first consistent attempt to identify how seven 

energy policy instrument categories (PICs), representing 75+ policies for energy decarbonization, each 

individually affect the energy mix across 100+ developing countries over time (three, five, and seven 

years after implementation).  

We apply 2SLS with country interactions and country and time fixed effects in regional panels to 

account for a host of well-documented issues in existing comparable research. These issues include 

omitted variables that relate to country and regional characteristics and simultaneity and reverse 

causality between policy enactment and outcomes. Additionally, we design the variables that represent 

each of the seven PICs using three indices that help account for the degree of reform and collinearity of 

policies.  

We find that generally the effects of PICs improve with time and that policies that address counterparty 

risks (those that help improve bankability for private participation, including backstops for government 

auction guarantees) have the most immediate positive effect on energy decarbonization. We suggest 

that incumbent forces could be behind the immediately lackluster or negative effects in other PICs and 

consider the effects that long-term country-specific characteristics, like enforcement, are likely to have 

on the effects of PICs.   
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Chapter 4: The evolution of trade in 30 energy technology materials spanning traditional and 

clean technologies and its implications 

 

Deep energy decarbonization will require a shift in the materials used in energy technologies. Many 

existing ETM studies are motivated by perceived supply chain vulnerabilities or potential reserve 

shortages from the point of view of importers of ETMs. The effect of changing demand on exporters of 

materials is relatively less explored, but still relevant to growth, competitiveness, and other policy 

priorities that coexist with climate change goals in both developing and developed countries.  

We ask whether there are ETM products (and product groups) that exhibit characteristics in growth, 

volatility, and importer and exporter concentration metrics in trade value and volume from 1999-2018 

that are beneficial to exporters, and what the policy implications of these metrics may be. The product 

groups we study are: (1) clean and traditional materials; and, (2) unrefined and refined materials. 

To do this, we systematically isolate and categorize 30 relevant traded products in UN Comtrade, an 

open-access dataset of bilateral trade flows spanning more than two decades, five thousand products, 

and almost all countries. The product codes and product group definitions can be re-used by other 

researchers willing to undertake an ETM study with trade data. We establish the direction of each metric 

that benefits exporters and identify and interpret existing trade trends, employing parametric and non-

parametric inferential statistical methods where appropriate.  

We find that, of the 30 products, lithium carbonate exhibits the most beneficial metrics for exporters 

over time. Additionally, among other results, clean energy and refined materials are disproportionately 

represented in the high-performing products for exporters, compared to traditional and unrefined 

materials that developing countries tend to export more frequently. Although there are some subtleties, 

if trends continue, the results make a case for directed policy attention towards enhancing clean and 

refined ETM trade and capabilities in developing countries. 

Chapter 5: A novel estimation of structural trade elasticities and an application to energy 

technology materials 

 

Elasticities of demand and supply are a core concept in economics with far-reaching applications. For 

the first time, and in the context of trade and energy decarbonization, we ask: what are the price 

elasticities of import demand (or the change in trade demand due to a change in price, simplified as 

“trade demand elasticity”), for each energy technology material (ETM)-and-exporter pair (e.g., gas from 

Russia or lithium from Argentina)? Additionally, is there a difference between developed and 

developing exporters in these ETM elasticities?  

Despite their importance in economics, calculating trade elasticities is frequently an elusive task 

because of the difficulty of identifying supply and demand curves from existing data. To answer the 

research questions, we propose modifications to current structural trade demand and supply price 

elasticities building on the methods developed by Broda and Weinstein (2006), based on Feenstra 
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(1994). With a mean trade demand elasticity of 3.94, our trade demand elasticities are broadly in line 

with the methods on which ours is based.  

Our main result is to present the trade elasticities over two decades for 29 products and 22 exporters, 

which can be used by researchers and policymakers in a variety of settings, including IAMs. 

Additionally, we find that developed countries have weakly statistically significantly lower ETM trade 

demand elasticities than developing countries, which we discuss in context of the portfolio of ETM 

products exported by the two groups.  

Nevertheless, there are indications of a convergence of ETM elasticities between developed and 

developing countries over time. This convergence is at least partially explained by the characteristics 

of the exporters - i.e., a change how the importer perceives the quality differential between exports from 

developing and developed countries - rather than a change in the portfolio of exports of the two 

exporting country groups. The convergence implies that developed country exporters may have lost 

competitive edge over time. Continued surveillance with more trade data over time is necessary. 

1.4.2 Contributions 

This dissertation in energy economics is motivated by the urgent, global, and systemic challenge of 

climate change. Research questions cover technology-push policies, demand-pull policies, and trade 

considerations in decarbonizing the energy sector, which is the major contributor to climate change. 

We pose geographically inclusive questions and make every effort to use inclusive data in all chapters. 

This leads us to create new datasets or to apply existing ones in novel ways. Because we try to discuss 

the energy sector of developing economies that are underrepresented in the literature, some portions of 

the analysis can contribute to the field of applied development economics. We summarize the 

contribution of each analytical chapter below. 

Chapter 2: Characterizing and assessing the evolution of public ERD&D investments in eight 

major economies, including China and India 

 

• Public ERD&D, even when including China and India, is at least less than half of what IAM 

estimates say is necessary. 

• The volatilities of national ERD&D allocations point to regional innovation systems 

characteristics over three groups: the United States/United Kingdom, continental Europe, and 

Asia.  

• Despite some technology-specific trends, the years after Mission Innovation do not generally 

correlate with a statistically significant change in funding allocation towards non-fossil fuel and 

non-nuclear ERD&D.  

• Public ERD&D requires sustained attention and impetus if we are to reach climate goals.  
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Chapter 3: Comparing the causal effects of seven energy policy instrument categories on energy 

decarbonization in 100+ developing countries 3-7 years after implementation 

 

• The effects of policies on decarbonization are limited and can be negative, though they tend to 

improve within the time period studied (3-7 years).  

• Policies that address counterparty risks (those that help improve bankability for private 

participation, including backstops for government auction guarantees) have the most immediate 

positive effects on energy decarbonization.  

• We consider the roles of the Sailing Ship Effect and long-term country-specific characteristics, 

like the ability to secure financing, on the abovementioned results on the effects of policies. 

Chapter 4: Identifying and interpreting the trade trends of 30 energy technology materials  

 

• Clean energy materials and refined products have held relatively larger promise than traditional 

energy materials and unrefined products for exporters. However, in accordance with existing 

literature, these are markets in which developing countries are generally underrepresented.  

• Of the 30 products analyzed, lithium carbonate exhibits the most beneficial trade patterns, 

putting its major exporters in a position to benefit the most from trade trends. 

• If existing patterns have any bearing on the future, the usual industrial and trade giants are best 

positioned to continuing reaping the benefits from decarbonization.  

• If trends continue, the results make a case for directed policy attention towards enhancing clean 

and refined ETM trade and capabilities in developing countries. We discuss other options.  

Chapter 5: A novel estimation of structural trade elasticities and an application to ETMs 

 

• We make an analytical contribution to empirical trade analysis by proposing modifications to 

current structural trade demand and supply price elasticities building on the methods developed 

by Broda and Weinstein (2006), based on Feenstra (1994). The modifications make it possible 

for us to study the elasticity of demand ETMs, by material and exporter. With a mean trade 

demand elasticity of 3.94, our trade demand elasticities are broadly in line with analyses with 

methods on which ours is based.  

• Our main result is a visualization with the elasticities over two decades for 29 products and 22 

exporters, which can be used by researchers and policymakers.  

• A low trade elasticity of demand is beneficial to exporters because it is related to stability that 

has impacts on a range of economic indicators. Developed countries have weakly statistically 

significantly lower ETM elasticities overall (which is expected due to the nature of the products 

they export).  

• There are also indications of a convergence of ETM elasticities between developed and 

developing over the last two decades (not expected). We hypothesize that the changes are at 

least partly due to product and country characteristics, not the portfolio of ETMs exported by 

each group. This result implies that ETM trade demand elasticity reassessment and surveillance 

over time are relevant across the board of countries, for competitiveness and other 

considerations.  
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2 CHAPTER 2: CHARACTERIZING AND ASSESSING PUBLIC 

ERD&D INVESTMENTS IN EIGHT MAJOR ECONOMIES, 

INCLUDING CHINA AND INDIA 

 

Abstract 

 

Energy research, development, and demonstration (ERD&D) is a crucial component of both economic 

and climate policy. Yet characterizing and assessing the evolution of ERD&D has been limited by 

missing data on two major countries and emitters, China and India, except for a recent paper that does 

not explicitly provide data over time for the two countries.  

We ask what the expenditure has been for China and India, and, once including them, how close global 

spending is to the estimated ERD&D amounts needed to reach climate goals. Focusing on a group of 

eight major countries, including China and India, we also ask how public ERD&D funding volatility 

compares by country, overall and by major technology groups. Last, we ask whether past “windows of 

opportunity” for policy change materialized, and what this can tell us about upcoming ERD&D policy 

challenges. 

Combining the new data on China and India with existing open-access data, we show that public 

ERD&D is at less than half of what previous estimates say is necessary. We design four indices to study 

the volatility of funding by country and three technology groups (fossil fuels including carbon capture 

and sequestration, nuclear, and all the rest, entitled clean plus, CP). The results point towards innovation 

systems characteristics over three regions: the United States/United Kingdom, continental Europe, and 

Asia. Last, we evaluate the possible effects of two windows of opportunity for policy change, the 2008 

financial crisis (FC) and Mission Innovation (MI). The years after the FC are associated with changes 

in total funding and minimal increases in CP; the years after MI are associated with minimal increases 

in CP, but only in a select group of countries. Our results show that public ERD&D requires sustained 

attention and impetus if we are to reach climate goals.  

2.1 INTRODUCTION 

Government involvement in research, development and demonstration (RD&D) efforts has long filled 

a vacuum of investment that is undersupplied by the market but contributes to priorities like economic 

growth (Jaffe, Newell, and Stavins 2005) through technology-push policies, or policies that direct and 

finance technological innovation (Nemet 2009). By several accounts, stable increases in public energy 

RD&D (ERD&D) expenditure are necessary to meet climate goals (IEA 2020a; Narayanamurti, 

Anadón, and Sagar 2009).  

Previous analysis has been hampered by missing or incomplete data for two large emitters: China and 

India. This chapter aims to characterize and assess the evolution of technology-push policies since the 

turn of the 21st century, including China and India. We ask the following research questions: (1) How 

have expenditures evolved by country and technologies over time, including China and India; and are 

current efforts large enough compared to existing forecasts of needs?; (2) How does the volatility in 

China, India, and other major countries, compare overall and over major technology groups? Are there 

any patterns over regions?; and, (3) Since the Paris Agreement, have the years after MI been associated 

with a statistically significant change in expenditure efforts, or to a reallocation of spending towards 
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certain technologies? How does expenditure after MI compare to expenditure after other opportunities 

for policy change, like the Financial Crisis?  

In addition to China and India, we focus on six major economies (M6), composed of France, Germany, 

Japan, Korea, the United Kingdom, and the United States. The M6 accounted for almost 80% of global 

public clean ERD&D investment in 2016 according to 2020 IEA estimates (IEAb 2020). To make the 

analysis possible over technologies and countries given data coverage, we use three technology 

categories: fossil fuels (FF), which includes CCS (the process of capturing and geologically storing 

carbon dioxide from power generation and industrial processes), nuclear, and all the rest, or “clean plus” 

(CP).  

We build upon and adapt concepts and metrics from three literature streams. First, we discuss estimates 

by integrated assessment models (IAM) on the amount of public spending in RD&D necessary to meet 

our climate goals. We argue that despite the consensus that public ERD&D expenditure should see an 

increase several times over, it is impossible to assess our progress without including data on major 

emerging economies (and emitters), including China and India.  

To address this gap, we design methods to acquire public ERD&D expenditure data on China (external 

source is provided) and India (methodology described here). This chapter was written before Zhang et 

al. (2021) published estimates for China and India, but we find it impossible to recreate their data 

because it lacks methodological details and the bulk of their data is provided only in graphs. As a result, 

we present the longest and most complete public ERD&D investment data for China and India overall 

and by technology since 2001 and 2010, respectively, in a format that allows us to combine with the 

existing data on OECD countries to compare the size of investments today and what is needed to reach 

climate goals. 

Second, we consider and engage with two contributions from the innovation studies literature: the need 

for stable ERD&D funding and systems of innovation. We design four indices to characterize and assess 

the evolution volatility overall and by technology groups in the M8. The indices allow us to characterize 

volatility of funding across countries and technologies, as well as to examine whether the evolution of 

funding displays geographical patterns.  

Last, we consider the literature on windows of opportunity for policy change following Kingdon 

(1984)’s Multiple Streams Framework of the policy process. We focus on two windows of opportunity, 

a crisis and an international agreement, for increased public ERD&D finding since the turn of the 21st 

century. The first window of opportunity is the fiscal stimuli related to the 2008-2009 financial crisis 

(FC). The second is the signing of Mission Innovation (MI) alongside the Paris Agreement in 2015. 

Amongst other things, MI involved 24 member countries committing to doubling their public ERD&D 

from 2015-2020. We subject the data to regression analysis to detect potential structural changes in total 

funding amounts and allocation across technologies. 



 

43 

 

Our findings are threefold. First, we find that ERD&D investments are less than half of the amounts 

that IAMs consider is optimal. Expectedly, China has played an increasing role in global ERD&D 

expenditure. However, the role of India has declined. Importantly, China seems to singlehandedly 

maintain the global share of FF despite decreases in expenditure from the M6.  

Second, we find that China’s ERD&D is relatively stable even in its large growth. While India is 

relatively unstable compared to the rest of the M8, its consistent growth in FF funding is second only 

to China’s. Confirming previous literature, we also find that the United States and the United Kingdom 

are relatively unstable. They also showed more consistent growth in FF and nuclear over CP, compared 

to their Western counterparts of our country sample (Germany and France). These results hint at 

regional innovation systems patterns (US/UK, continental Europe, and Asia).  

Third, our regression analysis suggests that voluntary cooperation through MI has not resulted in 

significant changes in terms of funding amounts and reallocation towards clean energy. The FC has had 

an impact, although the changes have been small compared to recommended amounts and efforts. MI 

had an impact only for a select group of countries. 

The extent to which voluntary cooperation efforts, as well as crises, could yield changes commensurate 

with the challenge remains to be seen and should be the subject of additional research. However, the 

analysis above rings an alarm, as even the FC has not produced ERD&D increases commensurate with 

the climate challenge and policy goals. It is imperative to continue to surveil RD&D efforts as Covid-

related stimulus packages continue to shape the direction of economic recovery and the clean energy 

transition (Jaeger, Westphal, and Park 2020; Barbier 2019; Larsen et al. 2020). 

2.2 LITERATURE REVIEW 

In this Literature Review, we first briefly discuss the challenges of estimating the optimal amounts and 

technological allocation for ERD&D and we show that despite the challenges, the subset of analyses 

that attempt to make these estimates suggest a real need for major increases in public ERD&D 

investment. We also point that, until now, it has been difficult to compare these estimates with reality 

due to the lack of data on non-OECD countries. In the Methods section, we will show that we contribute 

to this literature by providing data on two major developing countries, China and India. These estimates 

allow us to better assess current amounts with what is considered optimal in the literature. 

In addition to the need for increased ERD&D public investment, we substantiate the need for it to be 

stable overall, and by technology. We show there have been recent contributions on patterns in 

developing countries (such as China) in the literature, but that the bulk of existing work focuses on 

OECD countries. In the Methods section, we propose four volatility indices across countries and 

technologies to help assess and compare the efforts that have been made in ERD&D.  
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Last, we ascertain that in accordance with existing research, the FC and MI can be considered potential 

windows of opportunity for structural change in ERD&D funding. In the Methods section, we will 

propose subjecting the data regression analysis to compare their potential effects. 

2.2.1 Optimal ERD&D investment and technological allocation 

Optimal ERD&D investment 

 

Despite the essential role of public ERD&D expenditure in energy innovation (Gallagher, Holdren, and 

Sagar 2006; Murray 2017), there is no unifying structural theory behind how RD&D, prices, and 

learning influence the stock of knowledge and growth or other policy priorities (Popp 2019). As a result, 

designing and evaluating the relationship between these components is complex.  

Energy-economy models and climate-economy models are types of integrated assessment models 

(IAMs) that simulate the relationship between technological change, growth, and the environment. They 

can help clarify how policies can be applied to incentivize technology diffusion, decrease environmental 

damage, and sustain long-term growth (Anadón, Baker, and Bosetti 2017). Among the array of model 

inputs and goals, the way that technological change is treated (broadly, endogenously versus 

exogenously, but also with variations of these) plays an especially important role in model outputs 

(Gillingham, Newell, and Pizer 2008). In fact, it is “one of the most important determinants of the results 

of climate policy analyses” (Popp, Newell, and Jaffe 2010).  

Notably, models also differ on the relative strengths given and effects attributed to knowledge spillovers 

(both over time and firms) in different sectors, and the crowding out of RD&D from sectors unrelated 

to climate change policy. Growth can occur if spillovers in sectors related to climate change policy are 

large enough to compensate for the crowding out of RD&D from the remaining sectors (Nemet and 

Johnson 2012). Amongst a wide array of additional design alternatives, models also differ in their 

treatment of uncertainty, substitutability, and complementarity between production and innovation. As 

a result, the appropriate way of incorporating endogenous technological change through R&D, and how 

this interacts with climate policy and growth, is far from settled (Popp, Newell, and Jaffe 2010). 

Despite these difficulties, calls for increases in ERD&D efforts are not new, especially in developed 

countries (see Schock et al. 1999; Margolis and Kammen 1999a; 1999b). More recently (but still several 

years before net-zero goals were in place), Nemet and Kammen (2007) asserted that 6 to 9-fold increases 

in ERD&D investment were necessary and achievable in the United States. They estimate an annual 

need for 17–27 billion 2002 USD, in the United States (24.16-38.37 billion 2019 USD, which is the 

unit used in the rest of this chapter).  

Today, the subset of models that explicitly include energy and climate RD&D investment have arrived 

at a consensus regarding the fact that significant increases are needed (Anadón, Bunn, and 

Narayanamurti 2014). For instance, Marangoni and Tavoni (2014) estimate the RD&D strategy needed 
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for scenarios that are consistent with 2 degrees of warming. They estimate that there is a need for 

cumulative spending of 1 trillion in 2005 USD (about 1.42 trillion in 2019 USD) between 2010-2030. 

This is equivalent to 71 billion 2019 USD per year.  

Marangoni and Tavoni (2014) estimate a need for about 1.6 trillion in 2005 USD (about 2.27 trillion in 

2019 USD) between 2030-2050, and that spending should be evenly split between industrialized and 

non-industrialized countries after 2030. Notably, progress towards this recommendation would be 

impossible to verify without the data on non-OECD economies. The need is bound to be larger if 

analyses (like ours) show that we are already behind. 

Marangoni et al. (2017) address the problem of uncertainty in ERD&D by combining input parameters 

derived from expert elicitations into WITCH, an IAM widely used for policy assessment. They find a 

need for a 10-fold increase in total budget, and that overlooking uncertainty severely decreases 

investment estimates. They also find that the optimal RD&D portfolio is dominated by batteries for 

transportation. Among several limitations, they note that the scope of their inputs is restricted to public 

expenditure in Europe, and that ignoring public-private and regional spillovers may lead them to 

overestimate the funding amounts needed. 

Technological allocation 

 

Probabilistic assessments of expert elicitations on the optimal technological portfolio of RD&D 

investments have shown a relative disagreement and should be viewed in the context of macroeconomic 

policy priorities (Anadón, Baker, et al. 2016). In a review of IAMs that incorporated expert elicitations 

and decision frameworks, Anadón, Baker, and Bosetti (2017) indicate some salient points on 

technological allocation.  

For instance, as climate stringency increases, technologies that provide flexibility, like storage 

(facilitating the deployment of intermittent technologies), vehicles (facilitating the abatement of 

transportation), and CCS (facilitating ex-post emissions abatement) receive higher RD&D investments. 

As an example of the range of attributes of these technologies, CCS can provide short and long-term 

flexibility to the power system, enable low-carbon hydrogen, support a just transition, deliver net-

negative emissions when combined with bioenergy, and use captured carbon dioxide to manufacture 

goods or aid in industrial processes, helping offset emissions from hard-to-abate sectors (International 

Energy Agency 2020b). Under fiscal (compared to emissions) constraints, the portfolios become less 

diverse. A salient disagreement in IAMs that consider budgetary constraints is in the relative proportion 

devoted to nuclear versus CCS, because these technologies tend to be substitutes and are both sensitive 

to factors like public acceptance. Factors such as these “are likely to play a role on whether one or the 

other technology receives the largest share of R&D portfolios” (Anadón, Baker, and Bosetti 2017). 
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Importantly, these models lack information about public efforts occurring outside the OECD. We 

contribute to this conversation with data on the evolution of ERD&D funding in China and India. 

Adding these two large emerging economies allows us to more accurately assess progress and the 

magnitude of the efforts needed in public ERD&D. 

2.2.2 Funding volatility and systems of innovation  

Volatility  

 

The need for more expenditure coexists with the need for it to be stable (Cohen and Noll 1991). New 

technologies can take decades to develop (Grübler, Nakicenovic, and Victor 1999). Volatility in public 

ERD&D funding also has a detrimental effect on private investors, as they are uncertain of the direction 

of public support (Norberg-Bohm 2000; Fuss et al. 2008; Anadón, Chan, et al. 2016; Guellec and Van 

Pottelsberghe De La Potterie 2003; Nemet 2009). 

In a study that includes both developed and developing countries, Anadón (2012) discusses the need 

for stability in funding in her comparative analysis of the structure and relationships of institutions for 

ERD&D in China, the United Kingdom, and the United States. Relatedly, Narayanamurti, Anadón, and 

Sagar (2009), Chan et al. (2017), and Weiss and Bonvillian (2009) include stable funding within 

elements that are essential to successful innovation institutions.  

There are already several studies that specifically quantify and assess ERD&D volatility in specific 

OECD countries (see Godin (2000)’s paper series and Kassouri et al. (2021)). For instance, Schuelke-

Leech (2014) finds high volatility of overall and technology US ERD&D expenditure between 2000-

2012 and maintains that volatility may be as much a concern as funding levels. Winskel et al. (2014) 

find that energy public funding levels have been erratic in the United Kingdom.  

More broadly, Baccini and Urpelainen (2012) analyze the causes of “boom and busts” in public 

ERD&D funding in IEA member states between 1981-2007. They find that volatility is exacerbated by 

“legislative fractionalization”, or competition by several parties, and executive power changes toward 

the left. We contribute to the discussion by proposing four measures of volatility and comparing the 

results of these indices across the M6 plus China and India.  

Energy RD&D funding volatility has also been researched by technology. Apart from national 

idiosyncrasies, technological characteristics can play a role in volatility. The capital-intensive nature of 

some technologies, like CCS demonstration projects, means that capital disbursements can be peak and 

fall more than others (Wilson et al. 2020; Nemet, Zipperer, and Kraus 2018). Our four indices also 

allow us to compare volatility across technologies. 
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Systems of innovation 

 

As suggested in Baccini and Urpelainen (2012)’s analysis mentioned above, support for specific 

technologies depends on a confluence of factors, including the intermittent alignment of incumbent 

interest and national needs (Weiss and Bonvillian 2009; Cohen and Noll 1991).  

In systems of innovation perspectives, investments in RD&D depend on national (and other) 

characteristics and complex feedback loops between various types of actors (Anadón, Chan, et al. 2016; 

Hannon and Bolton 2021). These perspectives are frequently attributed to the work of Freeman (1987); 

Lundvall (1992); and Nelson (1993) summarized in Table 2.1, and have been further characterized 

along national (Nelson 1993), sectoral (Malerba 2004), regional (Cooke 2001) and global (Binz and 

Truffer 2017) horizons. 

Table 2.1. Summary of the founding systems of innovation perspectives. 

Paper Focus Output 

Freeman 

(1987) 

Broad interaction between 

“technology, social embedment 

and economic growth” as well 

as their feedback loops. 

Coined “national innovation systems”. Categorizes and explores the 

role of four main elements in Japanese NIS: 

1.      Policy; 

2.      Corporate R&D; 

3.      Human capital and organization; and, 

4.      Conglomerates.  

Lundvall 

(1992) 

“The elements and relationships 

which interact in the 

production, diffusion, and of 

new, and economically useful 

knowledge…and are either 

located within or rooted inside 

the borders of a nation state” 

(Lundvall 1992).  

Three major themes: 

1.      Sources of innovation through types of activities by actors 

(learning-by-doing routine activities versus R&D efforts); 

2.      The nature of innovation as either incremental or radical; and 

3.      The role of nonmarket institutions, including non-monetary user-

producer interactions and institutions that provide stability to the 

system. 

Nelson 

(1993) 

“Intertwining of science and 

technology” and formal R&D 

institutions 

The architecture of the formal R&D system helps to determine how 

well the system works. 

Source: Within table and Steinmueller (2010). 
 

There is a relatively rich discussion of these systems (or parts of these systems) for OECD countries. 

For instance, from most specific to broader, Winskel et al. (2014) find that the business sector has had 

a growing influence in moving the focus toward the nearer term and from niche to mainstream 

technologies in the United Kingdom. Comparing European Union members, Grafström et al. (2020) 

identify a divergence in RD&D growth rates and find that countries with low dependence on imports in 

the energy sector and deregulated power markets display lower growth rates in public renewable 

RD&D. Archibugi and Filippetti (2018) find that overall RD&D is decreasing with respect to private 

expenditure in OECD countries, and that levels are decreasing overall. 

However, as the literature review thus far has shown, there is a growing focus on gathering information 

and understanding innovation governance in large developing economies (Kempener, Anadón, and 

Tarco 2010; Yu, Lazonick, and Sun 2016). Two relevant expositions on the complexity of Chinese 

technological innovation specifically in clean energy include Binz and Anadón (2018) and Lewis 



 

48 

 

(2013). These two deep dives demonstrate the confluence of national and extra-national factors that 

affect the development of solar and wind technologies, respectively. In characterizing volatility of 

technology funding by countries, our analysis engages with systems of innovation literature and finds 

some support for regional patterns of national innovation systems. 

2.2.3 Windows of opportunity 

Several researchers indicate that contingent historical shocks affect ERD&D investment in 

unpredictable ways (Runci and Dooley 2004). Energy RD&D spending peaks of the late 1970s, based 

on oil crises, energy security, and Cold War concerns, is one of several historical examples (Sagar 2004; 

Nemet and Kammen 2007; Center and Bates 2019).  

These shocks can be opportunities for priority setting and coordination (Gross and Sampat 2020) that 

can be viewed through Kingdon (1984)’s Multiple Streams Framework of the policy process. In the 

framework, three proposed streams (of problems, policies, and politics), usually operate independently 

of one another. However, factors align during “windows of opportunity,” and “policy entrepreneurs” 

may successfully combine the streams and create major policy change (Zahariadis 2007).  

One such window for opportunity for ERD&D was the FC of 2008 (Anadón 2012; Narayanamurti, 

Anadón, and Sagar 2009). Narayanamurti, Anadón, and Sagar (2009) posit that the FC marked “a 

historical point where the energy innovation system is being examined” in the United States; on the 

other hand, Anadón (2012) questions the feasibility of continuing the increases in RD&D seen after the 

FC. Today, the unprecedented shock of COVID-19 has galvanized new and renewed fiscal stimuli, 

including for ERD&D (Huenteler et al. 2017; Nuclear Energy Agency 2021; IEA 2020c). This makes 

our question of potential long-term structural effects of the fiscal stimuli related to the FC a topical 

concern in current policy work.  

MI, where 24 member countries (several OECD and others, including China and India) committed to 

doubling their ERD&D from 2015-2020, alongside the Paris Agreement in 2015, is another potential 

window of opportunity. Note that while MI includes some collaboration between countries, the 

initiative falls short of the “deep coordination” strategy of “coordinated research” advocated by 

Keohane and Victor (2016) and others. Additionally, IAMs have also shown that alone, a deal like MI 

is unlikely to solve the climate problem (Marangoni and Tavoni 2014). However, this does not mean 

MI has had no tangible effect in ERD&D investment, immediately or over the longer term. In fact, 

Keohane and Victor (2016) argue that “serious international cooperation [like coordinated research] 

will have to emerge incrementally” and that “shallow coordination [as MI could be] can create vital 

conditions for deeper cooperation.”  

Evaluating the early success (or failure) of MI as a window of opportunity to galvanize structural change 

in its member countries to increase the pace of ERD&D would provide information on the intensity of 
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the policy push still needed to achieve our climate goals. In light of the literature, we compare and 

contrast the potential effects of these two distinct (crisis and cooperation) windows of opportunity. We 

subject the data to regression analysis and ask whether the FC and/or MI, are correlated to statistically 

significant structural changes on ERD&D spending. A recent paper by Myslikova and Gallagher (2020) 

finds that MI is “succeeding in its quest,” in part because it finds that expenditure increased 38% since 

MI begun. Our aim is instead to assess structural change, defined as statistically significantly differences 

in growth rates after MI. 

In sum, IAMs and related literature indicate that increased ERD&D spending several times over is 

needed globally but assessing our progress has been difficult without data on emerging economies, 

especially large ones like China and India. We help close that gap by assessing the progress of global 

ERD&D expenditure by contributing data on China and India. The innovation literature also maintains 

that such spending should be stable. To this effect, we design four volatility indices that allow us to 

compare and assess the overall volatility and direction of spending across countries, and technologies. 

Last, the policy literature supports the idea that windows of opportunity may help drastically change 

the course of government ERD&D. We subject the data to regression analysis to discern whether two 

windows of opportunity, a crisis (the FC) and cooperation (MI), are related to changes ERD&D 

spending. 

2.3 METHODS 

Most OECD countries provide estimates of RD&D expenditures on an annual basis by technologies to 

the IEA. In this chapter, we focus on the six major spenders in the IEA dataset (France, Germany, 

Korea, Japan, UK, and US) separately and aggregate all other countries into three regions: Americas, 

Europe, and Asia (including Oceania). As new countries join the OECD and provide data, the 

aggregates may include more countries over time. For instance, the Rest of Americas group consists 

only of Canada until 2015 and includes Mexico after 2015.  

Table 2.2 presents the main IEA technology groups behind the data that underlies our analysis. As will 

be explained in the Data section, some technology-country combinations are missing. To make the 

analysis possible over technologies and countries, we use three technology categories: (1) FF, which 

includes CCS; (2) nuclear; and (3) all the rest, or “clean plus” (CP). 
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Table 2.2. Main technology categories in the 2020 IEA Energy Technologies RD&D Budgets dataset, and our technological 

classification for the rest of the analysis. 

Our 

classification 
IEA technology IEA definition 

Clean plus (CP) Energy efficiency 

Industry, Residential and commercial buildings, appliances and 

equipment, Transport, Other energy efficiency, Unallocated energy 

efficiency 

Fossil fuels (FF) Fossil fuels Oil and gas, Coal, CO2 capture and storage, Unallocated fossil fuels 

CP Hydrogen and fuel cells Hydrogen, Fuel cells, Unallocated hydrogen and fuel cells 

Nuclear Nuclear  Nuclear fission, Nuclear fusion, Unallocated nuclear 

CP 

Other cross-cutting 

technologies and 

research 

Energy system analysis, Basic energy research that cannot be allocated to 

a specific category, Other 

CP Other power and storage 

Electric power conversion, Electricity transmission and distribution, 

Energy storage (non-transport applications), Unallocated other power and 

storage technologies  

CP Renewables 

Solar energy, Wind energy, Ocean energy, Biofuels (including liquid 

biofuels, solid biofuels and biogases), Geothermal energy, 

Hydroelectricity, Other renewable energy sources, Unallocated renewable 

energy sources 

CP Unallocated   
Source: Authors’ elaboration based on IEA (2020b). 
 

As explained in the Literature Review, the lack of data representing major non-OECD emerging 

economies has been a blind spot in understanding the evolution of global RD&D governance 

(Kempener, Anadón, and Tarco 2010), and this is a gap we attempt to address in this chapter by 

acquiring and including data on China and India. Although the IEA recently published data across five 

technology categories for China between 2015 and 2019, the level of disaggregation and the timeframe 

are insufficient for our analysis. MI and IEA data aggregate all energy technologies for India between 

2015 and 2019, which again is insufficient for analysis.  

Dr. Tong Xu and Professor Laura Díaz Anadón conducted their own data collection effort relying on 

China’s official statistics to provide a consistent picture of the evolution of the relevant ERD&D 

programs between 2001 and 2018. Since the collection of China ERD&D data is not my work, the 

reader can refer to the methodology created and executed by my coauthors in the Supplementary 

Information of “The Evolution of Energy Innovation Governance for Decarbonization," a paper that 

has been submitted to Nature Energy. 

Below, we first describe the methods employed to construct the dataset for India. We then explain how 

we constructed indices to study the volatility of funding, by country and technology. Third, we detail 

the methods we employed to detect structural change after two windows of opportunity, the FC and MI. 

2.3.1 Compiling public ERD&D data for the Government of India 

India does not regularly publish what it spends on ERD&D by technology. The National Science and 

Technology Management Information System (NSTMIS), a part of the Department of Science and 

Technology (DST), tracks RD&D performance. However, a major shortcoming is that it does not break 

down funding by type of energy technology. Past literature that has attempted to compile RD&D 

estimates for energy with similar limitations includes Sagar (2002) and Kempener, Anadón, and Tarco 

(2010). We discuss Zhang et al. (2021)’s recent estimates below.  
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Union Budgets (UBs) as the main source of data 

 

Our main sources of data are Union Budgets (UBs) “Notes on Demand for Grants”, or government 

expenditure documents, by Ministries and Departments (Ministry of Finance, Government of India 

2020a). This is similar to Zhang et al. (2021). Figure 2.1 demonstrates that a major strength of UB 

documentation is that it covers all Indian government expenditures. Specifically, Figure 2.1 (top) 

sourced from Open Budgets India (an initiative led by the Centre for Budget and Governance 

Accountability) show the total annual expenditure classifications of the government of India. 

Comparing it with Figure 2.1 (bottom), we can see that UB expenditure budget documents cover the 

entirety of “Total Budgetary Expenditure” in the top of the figure.  

Another key strength of using yearly UBs is that they compile funding data using similar methods over 

the same timeframe across all Ministries and Departments. Therefore, they allow for a robust and 

consistent overview of the evolution of how much each Department or Ministry is spending and 

comparison across types of energy technologies. The exact source of data is the “Total” column of the 

“Actuals” heading, which shows what was certified to be spent two years before the current UB. For 

instance, the section shown in Figure 2.1 (bottom) shows the 2017-2018 expenditure and was published 

in 2019. 

Figure 2.1. Expenses covered in “Expenditure Budget” documents of the Government of India Union Budgets (top) and an 

extract of the 2019 “Summary of expenditure (bottom). 

 

 
Source: Top: Centre for Budget and Governance Accountability (2019). Bottom: Extract from Summary of Expenditure Profile 
2019-2020 (Ministry of Finance, Government of India 2020b). 
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We retain the following information for budget lines when they demonstrate relation to both RD&D 

and energy: expenditure values, description, and line number. To maintain consistency with the bulk of 

existing data on RD&D expenditures, we attempt to populate expenditure by the main technology 

categories in the IEA dataset enumerated in Table 2.2. Where possible, budget lines are categorized into 

IEA headings. Otherwise, they are deemed “unallocated.” Appendix 2.1 shows an example of 

background documentation for the Ministry of Power for 2010. Due to a change in reporting, this 

“Actuals” heading is available after 2009. 

A line-by-line examination of documentation for each Ministry/department by year through 2010-18 

yielded the following list of seven institutions that mention energy and RD&D (Table 2.3).  

Table 2.3. Institutions of interest for ERD&D in Indian Union Budget documents. 

Institutions of interest 

1 Department of Atomic Energy 

2 Ministry of Coal 

3 
Department of Heavy Industry (within Ministry of Heavy Industries and 

Public Enterprises) 

4 Ministry of New and Renewable Energy 

5 Ministry of Petroleum and Natural Gas 

6 Ministry of Power 

7 
Department of Water Resources, River Development, and Ganga 

Rejuvenation (within Ministry of Jal Shakti) 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
 

Despite the strengths of using UBs as our main data sources, we identify at least four challenges 

associated with them, summarized in Table 2.4. For instance, some obvious contenders for ERD&D 

research, like the Department of Science and Technology, are missing from Table 2.3. This is due to 

Challenge 1 and is likely to cause an underestimation of the true ERD&D expenditure for that 

department. As a result, we expand the list of included ministries/departments by using a 

complementary methodology, described generally below and in detail in Appendix 2.2.  

Table 2.4. Challenges of using Indian Union Budgets as the main source of data. 

Challenge Description Result 

1 
When a budget line description does not include a mention of both 

RD&D and some type of energy, we cannot attribute it to ERD&D.  
Possible underestimation 

2 

Budget lines include overhead costs, and in some cases, it is 

difficult to isolate ERD&D from other RD&D if both are 

mentioned.  

Possible overestimation 

3 

Lack of data or detail of data on expenditure by State-Owned 

Enterprises (SOEs). Current SOE data available in Union Budgets is 

self-reported and non-standardized (F. Zhang et al. 2021). 

Possible underestimation 

4 Compiled over fiscal years instead of calendar years 
Possible mis-categorization over 

time  
Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
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Complementing UBs with Web of Science searches 

 

We attempt to mitigate Challenge 1 of the UB data by complementing the ERD&D expenditure data 

acquisition process with Web of Science (WS), a multidisciplinary database of bibliographic 

information. In this portion of the data collection, we assume that the percentage of overall funding by 

the funding body that is attributed to energy is proportional to the percentage of their publications 

relevant to energy. We summarize our method in Figure 2.2. 

Figure 2.2. Design of Web of Science method to determine ERD&D data expenditure by the Government of India. 

 
Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
 

This complementary method is especially useful for institutions that conduct research in various fields 

because these institutions sometimes do not specify areas of research in UB expenditure budget lines. 

The method allows us to incorporate estimates for: the Ministry of Science and Technology (specifically 

the Department of Science and Technology, the Department of Biotechnology, the Department of 

Scientific and Industrial Research), the Ministry of Human Resource Development (specifically the 

Department of Higher Education), the Ministry of Defence (specifically the Defence Research and 

Development Organisation, DRDO).  

Appendix 2.2 provides further methodological details. Table 2.16, and the surrounding text, in the 

Appendix discusses limitations of the method, including possible underestimation and an inability to 

account for changes in proportion of ERD&D within overall RD&D over time.  

Combining UB and WS methods 

 

Table 2.5 shows the final list of ministries that our UB and WS methods indicate are supporting ERD&D 

in India, and that are included in all analytical sections of this chapter. 

Step 1: Identify the WS 
categories that can be 

matched with IEA 
energy categories

Step 2: Search for 
publications within the 

categories, and 
identify the main 

institutions producing 
research in each 

technology category

Step 3: Search quantity 
of total and relevant 

publications. Estimate 
the proportion of the 

two, by institution and 
technologies identified 

in Steps 1 and 2.

Step 4: Multiply 
estimate from Step 3 

by total instutional 
RD&D spending 

identified in UBs. 
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Table 2.5. Final list of Government of India institutions included in this analysis. 

Ministries and institutions 

1 Department of Atomic Energy 

2 Ministry of Coal 

3 Ministry of Defence, specifically the Defence Research and Development Organisation (DRDO) 

4 Department of Heavy Industry (within Ministry of Heavy Industries and Public Enterprises) 

5 Department of Higher Education (within Ministry of Human Resource Development) 

6 
Department of Water Resources, River Development, and Ganga Rejuvenation (within Ministry of Jal 

Shakti) 

7 Ministry of New and Renewable Energy 

8 Ministry of Petroleum and Natural Gas 

9 Ministry of Power 

10 Department of Science and Technology (within Ministry of Science and Technology) 

11 Department of Biotechnology (within Ministry of Science and Technology) 

12 Department of Scientific and Industrial Research (within Ministry of Science and Technology) 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
 

Zhang et al. (2021) do not provide a complete list of institutions in their analysis, or how they gathered 

their information. Overall, they seem to have a more narrow scope because they cover the Ministry of 

Petroleum and Natural Gas, Ministry of Power, Ministry of Earth Science, Ministry of Coal, and 

Department of Atomic Energy (Zhang et al. 2021). 

UB data is presented current crores (10 million rupees). We use the World Bank’s WDI CPI index and 

the crore to rupee relationship to bring all expenditures to constant 2019 rupees (World Bank 2021a). 

Last, we used the WDI 2019 USD exchange rate to constant 2019 USD million.  

2.3.2 Measuring volatility 

In the Literature Review, we discussed the academic consensus that ERD&D expenditure “booms and 

busts,” or volatility, are detrimental to innovation, though some margin of volatility is expected in 

technologies with large capital costs, like CCS demonstration projects. In addition to curtailment of 

extreme swings, the academic literature and actors in the ERD&D space (like MI), call for sustained 

growth in ERD&D. We explore volatility in several different ways, considering both size of the change 

and the direction, summarized in (Table 2.6) and discussed below.  

Table 2.6. Statistics and indices to study public ERD&D expenditure volatility by country and technologies. 

Statistics Description Focus on 

Index 1 The country sum years of change greater than an absolute value of 50%, by 

technology 

Size of change 

Index 2 The country sum of standard deviations of the percentage of expenditure 

growth, by technology 

Size of change 

Index 3 The country sum of squares of consecutive counts of years of growth, by 

technology 

Consistency of direction of 

change 

Index 4 The country sum of squares of consecutive counts of years of growth in CP, 

and decrease in FF and nuclear 

Consistency of direction of 

change 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
 

We begin simply. We assume that an annual change above an absolute value of 50% is too much 

volatility for any technology. To construct Index 1, we sum the number of years for which there is a 

change of more than 50% in either direction for any technology. We complement it with Index 2, which 

is more sensitive to the size of changes by technology.  
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In Index 2, we make use of the standard deviation (SD), a widespread measure of volatility represented 

by the square root of the sum of the squared difference between each number and the mean divided by 

the number of observations. Like Index 1, Index 2 uses the percentage change of yearly funding, by 

technology, which helps to account for country size and allows us to compare across countries. By 

country, we sum the SDs of the three technologies. Last, we rank countries in ascending order of the 

sum of the SDs. In the Results, we produce a visualization that shows the make-up of country scores, 

so that it is possible to tell which technologies each country scored highest and lowest in. A limitation 

of Index 2 is that despite its increased sensitivity, it can be led by outliers. 

We also propose focusing on the annual directions of growth since 2010 by country in Indices 3 and 4. 

To do this, we sum the squares of consecutive years of positive changes for each technology, by country 

(Index 3 in Table 2.6). In Index 3, an increase in FF or nuclear RD&D helps boost the country’s position 

as much as CP. To capture the need to pivot from traditional R&D, as put forth in the literature, we also 

present Index 4, which rewards years that countries decrease funding in fossil fuels (FF) and nuclear 

energy, and rewards increases in CP. 

Last, we compare the rank of countries and technologies by index. The differences between them can 

help us understand the patterns behind RD&D funding. For instance, a negative difference between 

rankings in Indices 3 and 4 means that the country relied more on FF and nuclear funding to place 

higher than others in Index 3.  

2.3.3 Identifying structural change through regression analysis 

We run intercept-only regressions with country fixed-effects (FE) to investigate the extent to which the 

years following the FC and MI are associated with significant changes in funding growth rates, for all 

technologies and for CP.  

The dataset is organized in a panel format across countries and time. The dependent variables are the 

annual percentage funding changes in million 2019 USD of total energy or CP. The independent 

variables are dummies for the years in which the windows of opportunity occurred: FC (2009-2011 

with three variations, 2009, 2009-2010, and 2009-2011, depending on the specification), and MI (2016-

2018). We do not have any control variables, other than applying country FE. We study the FC and MI 

separately Eq. 2.1) and together Eq. 2.2). These methods should give similar results, and we run both 

to give additional robustness to our conclusions. 

Eq. 2.1 shows technology growth 𝑔 (total or CP, depending on the outcome of interest) as a function of 

𝑑, which stands for the FC or MI time dummy (depending on the specification) and an error term 휀. In 

addition, 𝑐 stands for country and 𝑡 stands for time. Eq. 2.2 does the same but includes both time 

dummies. Our interest is in the estimation of coefficients 𝛽1, 𝛽2, and 𝛽3. 
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𝑔𝑡𝑐 = 𝛽1𝑑𝑡𝑐 + 휀𝑡𝑐 , 𝑓𝑒 Eq. 2.1 

𝑔𝑡𝑐 = 𝛽2𝑓𝑐𝑡𝑐 +  𝛽3𝑚𝑖𝑡𝑐 + 휀𝑡𝑐 , 𝑓𝑒 Eq. 2.2 

We perform the analysis on three sub-samples of country groups: All IEA plus China and India (in other 

words, all countries, AC), MI, and M8. See Appendix 2.3 for a list of the countries in the samples. Last, 

the time sample used depends on the dummy variable of the specification: the FC is studied over 2000-

2012; the MI is studied from 2013-2018; and MI+FC is studied over 2000-2018. To improve the data 

coverage, we interpolate using Stata’s “ipolate” function. It linearly interpolates missing observations 

between non-missing observations by country. The technology, dummy, and country sample variations 

and robustness checks described in the paragraphs above are summarized in Table 2.7. 

Table 2.7. Regression specifications used to test the presence of structural change in growth rates of ERD&D in several 

country sub-samples. 

Regression term Variable and unit Specifications 

Dependent variable Expenditure growth rate 
1. All technologies 

2. Clean plus (CP) 

Independent 

variable 

FC and/or MI, dummy that is 

equal to one at the year of 

interest 

1. FC1= 2009-2011 (medium-term 

effect)  

2. FC2=2009-2010 (medium-term 

effect) 

3. FC3=2009 (shock) 

4. MI = 2016-2018  

5. FC+MI: 2009 and 2016-2018 

Countries included NA 

1. All countries (AC) 

2. Mission Innovation (MI) 

3. Major 8 (M8) 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 

 

There are, of course, alternative approaches. One would be to apply an econometric technique called 

“differences-in-differences”, in which the mean of a “treatment” group is compared to a “control” 

group, before and after the treatment. We found this method to be inconsistent with our needs for at 

least two reasons. First, while the FC affected some countries more than others, it would be difficult to 

isolate a control group that was not party to crisis. Second, the countries that are in the MI are larger 

overall economies and EDR&D spenders compared to those outside of the MI. Appendix 2.3 provides 

a list of countries in each group. Therefore, while differences-in-differences is best practiced using 

balanced groups with “matching” data, this is not possible in our dataset. Due to these limitations, 

comparing existing groups to themselves before and after treatment is a better option. 

2.4 DATA 

Our funding data draws first on the 2020 IEA Energy Technologies RD&D database. We then construct 

comparable datasets for China and India using public official spending records and combine our data 

with the IEA dataset.  
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The volatility analysis focuses on the time period for which we have data for all countries (2010-2018). 

We study structural change with regression analysis for a variety of periods within 2000-2018, 

depending on the regression specification. The regression analysis may be affected by some missing 

data by country between 2000-2010, which is summarized in Table 2.8 (we further discuss the ways in 

which our results may be affected in the Discussion section). 

Table 2.8. Data availability by country. 

Country Missing data on ERD&D spending Reason for the missing data 

China 2000 

Data for 2000 was not included because there were changes in how 

the government published data in that year, which means that the 

analysis including 2000 numbers would be inconsistent with the 

rest. 

Korea 1999-2001 and 2003 
IEA data is incomplete (South Korea did not submit data to the IEA 

RD&D data collection for those years). 

India 2000-2010 
Differences in how the government of India published budget data 

before 2010. 

Source: Authors’ elaboration based on the methods and data sources described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b). 
 

By technology, we also have some missing data. Although we attempted to populate all IEA technology 

categories with data for China and India, this was not always possible. More specifically, for India, the 

budget reporting documentation (including the notes at the end of each Demand for Grants) did not 

make it possible for the data-gathering effort to distinguish or find funding for energy efficiency and 

hydrogen and fuel cells. We note that it is possible that some funding for these technology areas is 

captured in the “other cross-cutting” or “unallocated” categories, but it is not possible to confirm this, 

and it would not change the results of the analysis given the three high-level technology categories (FF, 

nuclear, and CP) chosen for the analysis. 

For China, the documentation used to construct the dataset did not make it possible for us to have 

separate categories for “renewables” and “hydrogen.” According to our estimates, some of the 

expenditure in these categories is likely categorized under “Other cross-cutting technologies” in our 

2001-2018 dataset. For completeness in Appendix 2.4, we show the 2015-2019 RD&D funding that 

China reported to MI for Renewals, Hydrogen, and Other Cross-Cutting. Like for India, it would not 

change the results of the analysis given the three high-level technology categories (FF, nuclear, and CP) 

chosen for the analysis. 

2.5 RESULTS  

2.5.1 Funding amounts and allocation over time 

Overall funding levels 

 

Figure 2.3 displays the entirety of available total public ERD&D expenditures for the M8 and allows 

us to understand the role of China and India, shaded light and dark shades of blue, respectively, in the 

global public ERD&D expenditure. Asian countries (except for China and India) are in shades of red; 
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European countries are in shades of green; and countries in the Americas are in shades of yellow. 

Integrating India and China to the current OECD data shows that total funding was about 24 billion 

USD in 2019, less than half of the 71 billion 2019 USD per year estimated by Marangoni and Tavoni 

(2014) for 2010-2030. The real gap is bound to be much larger, as the amounts indicate that we have 

not met the optimal amount in any previous year.  

Figure 2.3. Total public ERD&D expenditure, IEA and our data for China and India in million 2019 USD. China=blue; 

India=light blue; Asian countries = shades of red; European countries=green; Countries in the Americas= shades of yellow. 

 
Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b). 
 

The jump in 2009 is a result of the U.S. stimulus packages to address the FC and (to a lesser extent) the 

fact that data for India is not available before 2010 as indicated in Table 2.8. While there seems to be 

an increase in RD&D funding levels after 2009, a sustained increase in growth rates between 2010 and 

2018 is not visibly obvious. Changes in levels of growth rates for the years 2016-2018 are also not 

evident. Statistical analysis in the following subsections will help clarify potential structural changes.  

China and India compared to existing open-access IEA data 

 

Integrating data from China and India with the existing open-access data available in the IEA dataset is 

an important contribution of our work. Figure 2.3 shows that at the beginning of available data, India 

was the sixth largest spender, comparable to that of France and the Rest of Americas (which only 

includes Canada in 2010 as Mexico started reporting to the IEA in 2015). However, the level of 

expenditure in India decreased over time. By 2018, it was the eighth largest spender, and its overall 

public ERD&D funding effort was most comparable to that of the United Kingdom. On the other hand, 

China was the fourth-largest spender at the beginning of the series. In 2001, it placed fourth after the 
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United States, Japan, and the Rest of Europe, and the size of expenditure was closest to the Rest of 

Europe. By the end of the series, in 2018, China was the second-largest spender, and closest to the 

United States. 

We now focus on India because the methodological work behind it is part of the contributions of this 

chapter. The data acquisition methods for ERD&D expenditure by the Government of India yielded the 

following ERD&D expenditure in India between 2010-2018, by technology (Table 2.9 and Figure 2.4) 

Following historical patterns, nuclear has been the main component of ERD&D expenditure in India. 

Over time, India has experienced a decrease in overall funding, mostly led by a decrease in the size (and 

a resulting decrease in the share) of nuclear. In direct contradiction to MI ambitions, all funding levels 

decreased in 2015, except FF.  

Table 2.9. India ERD&D, 2010-2018, million 2019 USD.  

Year EE FF RE Nuclear HFC OPS OCC UN Total 

2010 - 2.56 36.89 880.73 - 15.76 59.47 244.37 1,239.78 

2011 - 2.50 33.77 904.06 - 15.06 87.94 264.66 1,307.99 

2012 - 2.45 29.95 813.07 - 8.69 75.39 239.70 1,169.26 

2013 - 2.26 29.30 828.19 - 3.45 49.29 225.44 1,137.92 

2014 - 3.28 30.95 818.04 - 14.57 48.03 193.82 1,108.68 

2015 - 11.38 25.60 609.73 - 6.43 7.75 107.23 768.12 

2016 - 23.08 24.63 577.93 - 10.81 70.78 110.82 818.05 

2017 - 40.32 26.21 635.74 - 8.07 53.08 116.05 879.47 

2018 - 41.01 16.31 640.82 - 14.42 63.42 111.92 887.89 

Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a). 
Note: EE=Energy Efficiency; FF= Fossil fuels; RE=Renewable energy sources; HFC= Hydrogen & fuel cells; OPS= Other 
power and storage technologies; OCC=Other cross-cutting technologies and research; UN=Unallocated. 
 
Figure 2.4. India's ERD&D funding by technology, million 2019 USD. 

 
Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a). 
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We compare the results for India with Zhang et al. (2021) when they exclude SOEs. They report explicit 

results only for 2018 in million 2018 USD prices and PPP, the rest of the years are in graphs. To 

adequately compare data, we convert our estimates into their units using OECD conversion rates. As 

shown in Table 2.10, our methods are able to distinguish one technology category missing from Zhang 

et al. (2021) (“other cross-cutting technologies and research”).  

For the technologies in which we both have data, we find that Zhang et al. (2021) is higher in some 

instances (fossil fuels, nuclear, and unallocated), similar to ours in “other power and storage 

technologies,” and lower in renewables. Overall, our estimates are substantially lower, just over half of 

theirs (which would rank India third after the United States and China in our data). The largest 

difference stems from the “unallocated” column, but we do not have access to detailed information 

about the source of this discrepancy.  

We attempt but cannot verify the source of the overall or particular divergences. Zhang et al. (2021) 

provide no detailed access to more annual data, or their methods (apart from listing UBs as their main 

source). As a result, we continue the analysis in chapter with our estimates. 

Table 2.10. Comparison of the results of the methods in this chapter and Zhang et al. (2021). 

 EE FF RE Nuclear HFC OPS OCC UN Total 

Zhang et al. 

(2021) 
- 277.1 33.6 2,534 - 44.95 - 1,888.3 4,918.5 

Methods in 

this chapter 
- 128.25 51.01 2,004.31 - 45.10 198.36 350.05 2,777.10 

Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a) and Zhang et al. (2021). 
Note: EE=Energy Efficiency; FF= Fossil fuels; RE=Renewable energy sources; HFC= Hydrogen & fuel cells; OPS= Other 
power and storage technologies; OCC=Other cross-cutting technologies and research; UN=Unallocated. 
 

Technology groups 

 

The data behind Figure 2.3 can be disaggregated into technology groups and viewed within our country 

groups of interest. Figure 2.5 offers a simplified breakdown of the shares of three technology areas 

(nuclear, FF, and CP) for 2002 and 2018. In 2002, we use four country groups ordered in decreasing 

size: all countries, MI countries, M6+China, and M6 (note that in 2002, there is no data available for 

India). In 2018, we show the same groups for an accurate comparison. Because we also have data for 

India in 2018, we include two more: M8 and M6+India.  

In 2002, almost all groups had a similar allocation between nuclear, CP, and FF. By 2018 All countries, 

MI, and M6+China had changed towards giving a larger role to CP and decreasing nuclear. However, 

when we remove China from the analysis (while both including and excluding India, in M6+India and 

M6, respectively), the allocation of funding to FF decreases, to the benefit of CP. The figure suggests 

that while the rest of the sample countries have generally reallocated funding to CP, this is not notable 

in the aggregate level because of China. In short, China’s investment in FF is so large that has made up 

for the decrease of all other countries, largely maintaining FF shares as they were in 2002. 



 

61 

 

Figure 2.5. Shares of technology groups in 2002 and 2018, by country groups. Fossil fuels=red; nuclear=blue; clean 

plus=green. 

 
Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b). 
 

Figure 2.6 further helps elucidate the finding of increases in China in FF, and its role in that technology 

compared to other countries. It shows a crosscut of expenditure in 2010, 2015, and 2018, by country 

and technology. Over the three years of interest, there is consistent growth in FF, energy efficiency, 

other power and storage technologies, and unallocated technologies. The colors by country are the same 

as in Figure 2.3. Despite decreases in other countries (like Japan, the Rest of Europe, and France), the 

increase in FF is due to China. Notably, China went from 61 to 1,673 million USD in FF between 2001 

and 2018.  

The growth in energy efficiency seems to be led by China and Japan. The increase in other power and 

storage technologies is mostly due to the United States and the magnitude of change calls for a detailed 

exploration, which can be found in Appendix 2.5. Last, looking specifically at clean expenditure (non-

nuclear and FF), the momentum shifted to energy efficiency and storage technologies over the last 

decade. Renewables, nuclear, and hydrogen declined. Expected government initiatives, like the UK 

“Hydrogen Strategy”, may attenuate the downward trend. 
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Figure 2.6. World ERD&D expenditure by technology, 2010, 2015 and 2018. China=blue; India=light blue; Asian countries 

= shades of red; European countries=green; countries in the Americas= shades of yellow. 

 
Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b). 
 

2.5.2 Funding volatility by country and technology 

Figure 2.7 depicts the results of Indices 1 and 2 (left and right, respectively), in which we compare the 

size of changes across countries. Index 1 (Figure 2.7, left) stacks up years of growth above an absolute 

value of 50% in FF spending (red), nuclear (blue), and green (CP). Index 2, (Figure 2.7, right) stacks 

the SDs of FF, nuclear, and CP, using the same colors. Index 2 is more sensitive to size to change but 

can be disproportionately affected by outliers.  

Both the rankings themselves Figure 2.7 (top) and the differences between them Figure 2.7 (bottom) 

aid our understanding of the patterns behind ERD&D funding. Because the regional aggregates contain 

an increasing number of countries over time, we concentrate on findings across the M8. For further 

information, Appendix 2.6 provides visualizations of the background data. 

First, Indices 1 and 2 support Winskel et al. (2014) in that UK funding has been unstable (Figure 2.7, 

top). Our findings somewhat support Schuelke-Leech (2014) who claim the same but for the United 

States. The United States is tied with several countries in Index 1 but is towards the middle of volatility 

in Index 2. Korea also suffers in Index 2. The results for the United States and Korea suggest that while 

changes remain below an absolute value of 50%, they are large and frequent compared to France, 

Germany, and China.  

The tie over four of the M8 countries (US, Korea, Germany, France) in Index 1 makes comparisons 

relatively difficult but Germany and France are consistently among the least volatile countries in both 
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indices (Figure 2.7, bottom). Importantly, China is the only M8 country that is relatively better placed 

in Index 2 compared to Index 1, suggesting that while it has a relatively high number of changes above 

an absolute value of 50%, these changes are consistent with a high average growth rate, and not outliers. 

This is coherent with the findings of the previous section, where we saw that China has grown into the 

second-largest spender in ERD&D, after the United States.  

Figure 2.7. Top: Indices 1 and 2, left and right, respectively. Based on growth rates of data 2010-2018, left to right = most to 

least volatile. Red depicts FF spending, blue depicts nuclear spending, and green depicts CP spending. Bottom: Comparison 

of Index 1 and 2. High= more volatile; Reds and long-dash-short-dash=Asia; Yellows and solid=Americas; Greens and 

dashes=Europe; Blue and dotted=China and India. 

  

 
Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b). 
Note: Zero expenditure levels are treated as missing. ROAM = Rest of Americas, ROE= Rest of Europe, ROAS = Rest of 
Asia, including Oceania.  
 

In addition to the size of the change, the literature reviewed showcased the consensus that public 

ERD&D expenditure growth must be steady to achieve effective climate change mitigation. Index 3 

treats all technology growth positively, and we reward more years of consecutive growth by squaring 

the number of consecutive years. Therefore, in Index 3, an increase in FF or nuclear RD&D helps boost 

the country’s index as much as renewables (and more years of growth in any technology reward the 

country even further). To capture pivoting from traditional ERD&D, as put forth in the literature, we 
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propose Index 4, which is the same as Index 3 except that it counts countries that refrain from increasing 

funding in FF and nuclear energy. These are shown in Table 2.8 (top). Red depicts FF spending, blue 

depicts nuclear spending, and green depicts CP spending. 

China India, Japan, the United States, and the United Kingdom, fall when comparing Indices 3 and 4 

(Table 2.8, bottom). Of these, China and India changes the most. The color-coding by technology in the 

figure helps to show the difference between the two indices is mostly due to FF funding. Germany, 

France, and Korea fare the same or better from Index 3 to 4. In France, this improvement is due to a 

decrease in FF funding; in Korea, it is due to a decrease in nuclear.  

Figure 2.8. Top: Indices 3 and 4, left to right. Based on the consistency of growth expenditure, 2010-2018. Red depicts FF 

spending, yellow depicts nuclear spending, and green depicts CP spending. Bottom: Comparison of Index 3 and 4. High= 

more volatile; Reds and long-dash-short-dash=Asia; Yellows and solid=Americas; Greens and dashes=Europe; Blue and 

dotted=China and India. 

 

 

 

 
Source: Authors’ elaboration based on dataset and methods described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b). 
Note: Zero expenditure levels are treated as missing. ROAM = Rest of Americas, ROE= Rest of Europe, ROAS = Rest of 
Asia, including Oceania.  
 

Last, the indices can give us an insight into patterns by technologies. Averaging the sum of years above 

an absolute value of 50% (Index 1) over the M8 yields, 2, 1.25, and 1.125 for FF, nuclear, and CP, 
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respectively. Nuclear and CP trade places when we use the average SD of growth rates (Index 2) (0.32, 

0.193, and 0.189 for FF. CP and nuclear, respectively). Despite being the least volatile in Indices 1 and 

2, CP scores the highest average of the squared sum years of consecutive funding (Index 3) and nuclear 

experienced the fewest average years of consistent growth (16.75, 14.25, and 6 for CP, FF, and nuclear, 

respectively). 

Overall, we extract three important points from the indices. First, China’s ERD&D expenditure is unlike 

the other Major 8: it is growing much more than the rest and relies heavily on FF. Without scoring at 

the top of any of the indices, India is relatively unstable and its reliance on FF in Index 3 is second only 

to China’s. Second, Germany and France are both relatively stable and “clean” compared to the rest of 

the M8, while the United States and UK are relatively unstable and rely more on FF and nuclear than 

their “Western” counterparts. Third, CP is the most stable technology group and sustained the highest 

average sum of squares for consecutive growth in funding; nuclear suffered the fewest years of 

consecutive funding growth compared to the other technology groups. 

2.5.3 Impact of crisis and cooperation on funding 

We evaluate whether the FC and the MI are associated (correlated) with significant changes in funding 

growth rates through regression analysis. Appendix 2.7 provides a visual representation of the data. 

Table 2.11 synthesizes the regression output; a dash means that there was no significant coefficient. 

The columns indicate country groups (All countries, M8 and MI) and technologies (all technologies 

and CP). The rows indicate the window of opportunity (the FC, MI, or both). 

One year after the FC (FC3=2009), there seems to have been an increase in total spending that was 

significantly different from usual spending across several groups studied (AC, M8, and MI). This result 

across three country groups is robust across two model specifications (FC and FC+MI). In the M8 and 

MI country groups, there is evidence that there was a significant increase in total funding that lasted 

two or three years after the FC (FC1 and FC2), albeit the effect is lower the more years after the FC. 

The evidence for an increase in CP after the FC is less pervasive but present in M8 and MI groups. Note 

that the effect of the FC on CP is always lower than its effect on all technologies (for the same FC 

dummy and region).  
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Table 2.11. Regression summary results. Columns indicate country groups (All countries, M8 and MI) and technologies (total 

and CP). The rows indicate the window of opportunity being studied (the FC, MI, or both). 

 All countries (AC) 

(except outliers) 
M8 countries MI countries 

 All 

technologies 

Clean 

plus 

All 

technologies 
Clean plus All technologies Clean plus 

FC only 
0.368** 

(FC3) 
- 0.279** (FC3) - 

0.110 * (FC1) 

0.249*** (FC2) 

0.373*** (FC3) 

0.231** (FC2) 

0.370*** (FC3) 

MI only - - - 0.0904* - - 

FC + MI 
0.356** 

(FC3) 
- 

0.158** (FC2) 

0.310*** (FC3) 
0.248** (FC3) 

0.148*** (FC1) 

0.280*** (FC2) 

0.406*** (FC3) 

0.147* (FC1) 

0.258*** (FC2) 

0.398*** (FC3) 

-0.126* (MI with 

FC3) 

Source: Authors’ elaboration based on dataset and methods described in this chapter. 
Note: FC= 2009-2011, FC2=2009-2010, FC3=2009; MI=2016-2018. ***= <1%, **=<5%, *=<10%. A dash means that there 
was no significant output. 
 

Arguably, the effect of the FC on MI countries is irrelevant, because the FC occurred before they signed 

on to the MI in the first place. However, we include it because it is possible that significant and positive 

output in this combination for the FC, as well as a positive and significant potential effect related to MI, 

could capture that these countries were already more likely to increase spending, and therefore a self-

selecting group.  

Evidence for changes in funding growth rates after MI is nonexistent for total funding and weak for CP. 

The only two significant coefficients obtained are not robust across model specifications and they are 

both only weakly significant. One is negative and the other is closer to zero than any significant 

coefficient obtained from the analysis. 

Last, there would be evidence for reallocation towards CP if there was evidence of a statistically 

significant change in CP and no statistically significant change for total energy. In the MI case, there is 

no evidence for changes in either technology category, and therefore no reallocation towards CP. In 

Appendix 2.8, we provide a detailed discussion of each coefficient. 

2.6 DISCUSSION 

ERD&D is a crucial component of government policy to decarbonize energy. As discussed in the 

Literature Review, little has been known about ERD&D spending in two major emitters and developing 

economies: China and India. We estimate and show the results of India and China alongside existing 

OECD data from the IEA over time. We ask the following additional research questions: How does the 

volatility in China, India, and other major countries, compare overall and over major technology 

groups? Are there patterns over regions? Since the Paris Agreement, have the years after MI been 

associated with a statistically significant change in expenditure efforts, or to a reallocation of spending 

towards certain technologies? How does expenditure after MI compare to expenditure after other 

opportunities for policy change, like the Financial Crisis?  
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The results show that the recent efforts we see in the literature to include emerging economies, like 

China and India, are justified. We find that the estimates that exclude China miss the world’s second-

largest spender in ERD&D, after the United States. Despite having aggregate funding comparable to 

some M6 countries in 2010, the relative size of spending in India has declined over time. This finding 

should help buttress the efforts to increase existing efforts to gather more information about ERD&D, 

and increase ERD&D itself, in the world’s third largest emitter. Importantly, the findings support 

increased ERD&D investment overall too. Even accounting for China and India, total ERD&D funding 

is at least several times below the level suggested by IAMs discussed in the Literature Review.  

China seems to maintain the global share of FF funding at a share of around 13%. As discussed in the 

Literature Review, the optimal portfolio of RD&D by technology is still unsettled. One salient point 

from an effort to combine expert elicitations, integrated assessment models, and decision frameworks 

is that as climate stringency increases, CCS (included in FF spending) has a role in providing flexibility 

to abate emissions (Anadón, Baker, and Bosetti 2017). Due to China’s scale and the dominant role of 

FF in its energy portfolio, ERD&D investment that leads to advances in clean coal or CCS could have 

larger tangible effects on emissions than CP investment in countries that play a smaller role in global 

emissions.  

Although it is found to be a complement to CCS (included in FF) (Anadón, Baker, and Bosetti 2017), 

we find that nuclear has lost relative importance to CP. Within CP, expenditure over the last decade has 

shifted to energy efficiency and storage technologies. The increase in energy efficiency (mostly 

attributable to China) may be related to technologies that are in demonstration in hard to decarbonize 

industry and transport (including shipping and aviation) sectors. As stated, further research is needed to 

come to a consensus on the optimal allocation of ERD&D; however, investment in transport is likely 

to be key to deep decarbonization (Anadón, Baker, and Bosetti 2017). 

The volatility analysis suggests patterns of innovation systems along the major regions represented in 

the M8 (America/Asia/Europe) with the United Kingdom as an exception, which is more like the United 

States. China’s ERD&D is consistently growing more than the rest of the M8. India is relatively 

unstable, but its consistent growth in FF funding is second only to China’s. At the same time, Germany 

and France are both relatively stable and “clean” compared to the rest of the M8. The other “Western” 

counterparts, the United States and the United Kingdom, are relatively unstable and rely more on FF 

and nuclear. These patterns along regions underline nuances in the relative focus of efforts needed in 

the coming years. For instance, the United States and the United Kingdom need to pay relatively more 

attention to their volatility in ERD&D, if they are to reap the longer-term benefits of stable innovation 

efforts highlighted in existing literature. 

Last, the regression analysis shows that there was an increase in total spending that was significantly 

different from usual increases across several country groups after the FC, although the effects decreased 



 

68 

 

every subsequent year we studied after the FC. There is also evidence for an increase of spending in 

CP. However, evidence for changes in funding growth rates after MI is nonexistent for total funding 

and almost negligible for CP. While the degree to which voluntary efforts and crises can produce 

changes proportionate with the challenge remains to be seen, the results of our analyses imply that 

neither window of opportunity has galvanized changes commensurate with the decarbonization 

challenge. The finding, in conjunction with the magnitude of changes needed, reinforces the calls for 

increased ERD&D attention underpinning the existing literature. 

We consider a range of limitations. First, as shown and discussed in the Methods Table 2.4, India’s UBs 

may under and over-estimate funding in some areas (refer to Appendix 2.1 for a detailed discussion) 

and we lack estimates from SOEs. We apply the complementary WS method to help deal with some 

data challenges, though this method also has its own limitations, discussed in Appendix 2.2. In the 

future, analyzing the institutional provenance of relevant patents could further aid in the quest to 

estimate India’s ERD&D funding. This patents analysis could help both verify and strengthen the 

current WOS method. We show that our estimates are lower than Zhang et al. (2021), but we are unable 

to attribute that to any particular methodological error due to insufficient information. 

Second, as shown in Table 2.2, the IEA provides detailed information to members on how to categorize 

their spending by technology, and this helps reduce the risk of misidentified funding data. While we 

attempted to replicate funding data for China and India, we do not have access to internal government 

budgets or other program descriptions. Therefore, as detailed in the Data section, some technology 

groups were impossible to distinguish. In the analysis, we dealt with this limitation by using three 

simplified groups (FF, nuclear, and CP).  

Third, while we made a concerted effort to choose the strongest methods possible for our research 

questions, our regression specification does not establish causality between the FC/MI and changes in 

ERD&D funding. This is because our econometric choices are bounded by a short, limited, and 

aggregate dataset, which lacks definition on drivers behind national ERD&D decisions in a diverse set 

of countries. The length of the dataset is discussed in the sections related to India and China, and it is 

also relevant to countries included in the IEA dataset. As a result, we consistently refer to the results as 

associations and correlations instead of causal relationships. 

Last, as introduced in the Data section (summarized in Table 2.8), the chosen regression analysis may 

be affected by some countries missing data by year. We partially deal with this by interpolating data. 

This means, for instance, that Korea’s missing 2002 data is unlikely to have caused a disturbance. 

However, interpolation cannot overcome India’s shorter time series. Viewed within the entirety of the 

dataset, it is unlikely that India alone would have changed the course of the results. Additionally, we 

considered several groups and temporal cuts as robustness checks. Because of the consistency of the 

results, these limitations are not likely to affect the conclusions, even if resolved. 
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2.7 CONCLUSION 

The results of this analysis confirm that we must increase ERD&D spending several times over, even 

when including previously unavailable data for China and India. Additionally, the analysis helped 

clarify some potential areas for direct focus. These include addressing India’s decreasing ERD&D 

budget and volatility in the United States and the United Kingdom. Last, the analysis confirmed that 

neither the Financial Crisis nor Mission Innovation led to structural changes in RD&D. The results 

highlight the importance of efforts to increase and stabilize ERD&D, as well as continued attempts to 

continue to gather information on China and India.  

There are numerous ways this analysis can continue to contribute to the academic literature and 

ultimately advise government policy for deep decarbonization and growth priorities. First, further 

studies can dig deeper into specific technologies. We are already working on extending the analysis to 

CCS. The Shared Socioeconomic Pathways (SSP) used as input to the IPCC 6th Assessment Report 

show that carbon capture and storage (CCS), is crucial in pathways consistent with 1.5°C (Rogelj, 

Shindell, and Jiang 2018). A part of that research goal is to help identify how ERD&D can best drive 

innovation in the technology.   

Furthermore, the data on China and India in this chapter can be updated with new annual government 

data, in the spirit of the Database on the U.S. Department of Energy (DOE) Budgets for Energy 

Research, Development, & Demonstration (1978–2021R) by Gallagher and Anadón (2020). With time, 

that additional data may, for instance, help us understand the effectiveness of COVID-19 stimuli as a 

window of opportunity for structural change in ERD&D, compared to the FC and MI.  

The data can also help address new research questions. For instance, we are already exploring whether 

there is a relationship between ERD&D in incumbent countries for a specific technology (say Germany 

and Spain for wind technology) and competitive threats (for instance, Chinese growth of market share 

in wind). This may help further our understanding and support theory on competition as a driver of 

increased ERD&D efforts. 
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APPENDIX 2.1. EXAMPLE OF GOVERNMENT OF INDIA UNION BUDGET DATA 

We extracted line by line information for each relevant Ministry and Department, by year. Figure 2.9 

is an example from the Ministry of Power and year 2010. In this case, we extracted the information 

under the “Actual 2010-2011” column group for line 4, which constitutes funding to RD&D in the 

power sector through the Central Power Research Institute, Bengalaru. 

In addition to line notes, we read the notes at the end of each Demand for Grants. These notes provide 

more information for specific lines. Figure 2.10 shows the notes that correspond to line 4, used in our 

database. 

Figure 2.9. Example of Union Budget spending data for ERD&D expenditure by the Ministry of Power for the year 2010. 

 
Source:  Ministry of Finance, Government of India (2020a). 
 
Figure 2.10. Example of Union Budget source for extra information on spending lines for ERD&D expenditure by the Ministry 

of Power for the year 2010. 

 

Source:  Ministry of Finance, Government of India (2020a).  
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APPENDIX 2.2. WEB OF SCIENCE METHOD DETAILS 

Step 1: Identification of WS categories 

 

Of 255 available options, we identify WS categories that are suitable for our analysis, i.e., that are 

unlikely to refer to non-ERD&D (Table 2.12). One drawback is that the first two do not fit neatly into 

IEA categories and will be classified as “unallocated.” 

Table 2.12. Web of Science categories assumed to qualify in IEA technology categories. 

WS categories 

1 Energy and Fuels 

2 Green Sustainable Science & Technology 

3 Physics, Nuclear 

4 Nuclear Science and Technology 

Source: Authors’ elaboration based on data sources and methods described in this chapter. 
 

We attempted to add more categories that would fit the IEA categories. However, they were either 

negligible, like “Engineering, Petroleum” (which contributed 29 publications out of a total of 63,000 in 

the biggest funding institutions), or too broad. Table 2.13 shows some categories that were excluded 

from our analysis, unless a publication was already cross-categorized in one of the four selected 

categories in Table 2.12.  

Table 2.13. Technology categories excluded from Web of Science analysis. 

WS categories 

1 Engineering, Petroleum 

2 Transportation Science & Technology 

3 Water Resources 

4 
Engineering (various, incl. civil, mechanical, 

multidisciplinary) 

5 Materials Sciences (various)  

Source: Authors’ elaboration based on data sources and methods described in this chapter. 
 

Step 2: Identification of funding bodies 

 

WS allows users to enter Boolean searches and identify institutions that fund research in energy 

technologies in specific countries. Figure 2.11 shows the output of a Boolean search of the funding 

bodies related to publications between 2010-2018 for the abovementioned WS categories. These may 

include departments within larger ministries. 
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Figure 2.11. Main funders of citations related to Selected Web of Science categories and India. 

 

 
Source: Web of Science searches using the specified search criteria. 
Note: Top search criteria: CU=(India) AND WC= (Energy and Fuels OR Green & Sustainable Science & Technology). 
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC 
Timespan=2010-2018. Bottom search criteria: CU=(India) AND WC= (Nuclear Science & Technology OR Physics, Nuclear). 
Indexes=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, BKCI-S, BKCI-SSH, ESCI, CCR-EXPANDED, IC 
Timespan=2010-2018. 
 

Table 2.14 shows the key institutions that we identified through the WS analysis of public entities 

funding Indian publications on energy technologies.  

Table 2.14. Key institutions identified through Web of Science relevant for Web of Science energy categories. 

Key institution 

1 

Ministry of Science and Technology 

Department of Science and Technology  

Department of Scientific and Industrial Research, including the Council of Scientific Industrial 

Research (CSIR) and  

Department of Biotechnology (DBT) 

2 
Ministry of Human Resource Development,  

Department of Higher Education, including the University Grants Commission India 

3 Ministry of New and Renewable Energy (MNRE) 

4 Department of Atomic Energy (DAE), including the Board of Research in Nuclear Sciences (BRNS)  

5 Ministry of Defence, including the Defence Research and Development Organisation (DRDO) 

Source: Authors’ elaboration based on data sources and methods described in this chapter. 
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Step 3: Estimation of the proportion of publications in energy 

 

Having identified the relevant institutions, we searched their total citations, and those within the WS 

categories identified in Step 1. Table 2.15 summarizes the contributions of our categories of interest 

within total publications, by institution.  

Table 2.15. Citations by main funders in Web of Science categories.  

Relevant WS 

categories 

Indian public organizations within top 10 funding 

bodies 

Publications in 

categories 

Total 

publications 
% 

“Energy and 

Fuels” and 

“Green or 

Sustainable 

Science & 

Technology”* 

Department of Science and Technology 1,935 63,191 3.06 

Council of Scientific Industrial Research CSIR, 

India 
1,669 62,262 2.68 

University Grants Commission, India 1,059 51,424 2.06 

Department of Biotechnology, DBT, India 367 17,791 2.06 

Ministry of New and Renewable Energy 143 341 41.94 

Board of Research in Nuclear Sciences, BRNS*** 116 5,086 2.28 

Department of Atomic Energy, DAE** 100 6,776 1.48 

Ministry of Human Resource Development 

(MHRD)** 
136 1,781 7.64 

Defence Research Development Organisation 

(DRDO) 
94 4,189 2.24 

“Nuclear 

Science & 

Technology” or 

“Physics, 

Nuclear” 

Department of Science and Technology 1,061 63,191 1.68 

Department of Atomic Energy, DAE 805 6,776 11.89 

Council of Scientific Industrial Research CSIR, 

India 
689 62,262 1.11 

University Grants Commission, India 576 51,424 1.12 

Source: Authors’ elaboration based on the methods and data sources described in this chapter, and WS searches. 
Note: *These WS categories corresponds to the “unallocated” MI category. **Assumed to be from University Grants 
Commission. *** Assumed to be from the Board of Research in Nuclear Sciences, BRNS. Estimates for nuclear are added to 
the Atomic Energy funding found in the Department of Atomic Energy. 
 

Last, in Step 4, we multiplied the institutional percentage of allocation to energy estimated from the 

WS method by the total RD&D in the UBs for the institutions from WS Step 2.  

WS method limitations 

 

There are potential drawbacks to our WS methods, summarized in Table 2.16. 

Table 2.16. Limitations to the Web of Science methods described in this section. 

Challenge Description Result 

1 

WS does not homogenize funding body names. Sometimes, there are 

multiple names for one entity, and this may mask its true importance. 

For example, “DST SERB”, “SERB”, “Science and Engineering 

Research Board Serb New Delhi”, “SERB New Delhi”, “Science and 

Engineering Research Board”, “Science and Engineering Research 

Board India” and “SERB India” are all considered separate entities, 

each with less than 20 publications. 

Possible underestimation 

2 
We assume that the proportion of ERD&D per institution is static 

over time. 

Masks changes in importance of 

ERD&D over time 

3 
The search only covers publications in India, while Indian institutions 

publish outside of India too. 

Obfuscates true proportion of 

publications in the different 

categories, if national and 

international proportions differ 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
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To help mitigate Challenge 1 in Table 2.16, we use the top five alternative names for the same 

institution. As an example, in Figure 2.12, we show the results for the top 5 alternatives to MNRE that 

came up within the top 50 funding institutions for the energy technology “Fuels & Energy”.  

Figure 2.12. Web of Science categories to which the Ministry of New and Renewable Energy contributed. 

 
Source: Authors’ elaboration based on the methods and data sources described in this chapter, and WS searches. 
 

To help mitigate Challenge 2 of Table 2.16, we also considered repeating the exercise at a yearly level 

to obtain time-disaggregated proportions. However, it would be impossible to attribute publications to 

the correct funding years because there are lags between investment and output, as discussed in the 

literature.  

Last, we do not consider Challenge 3 to be a major impediment. We believe that this search gives a 

representative understanding of the relative importance of allocation of expenditure by technologies 

within institutions.   



 

75 

 

APPENDIX 2.3. COUNTRY SAMPLES IN REGRESSION ANALYSIS 

Some MI countries are not included in the IEA dataset (Table 2.17). While some information on non-

IEA MI countries is available through MI documentation, it is incomplete and therefore excluded from 

this paper and our MI regression sample. The countries in the IEA dataset (and our “all country” sample) 

that do not participate in MI are in the right-most column.  

Table 2.17. Country samples and data availability. 
 MI IEA dataset 

Australia Yes Yes 

Austria Yes Yes 

Canada Yes Yes 

Denmark Yes Yes 

European Union Yes Yes 

Finland Yes Yes 

France Yes Yes 

Germany Yes Yes 

Italy Yes Yes 

Japan Yes Yes 

Korea Yes Yes 

Mexico Yes Yes 

Netherlands Yes Yes 

Norway Yes Yes 

Sweden Yes Yes 

The United Kingdom Yes Yes 

The United State Yes Yes 

Brazil Yes No 

Chile Yes  

China Yes No 

India Yes No 

Morocco Yes No 

Saudi Arabia Yes No 

UAE Yes No 

Indonesia Yes No 

Belgium No Yes 

Czech Republic No Yes 

Estonia No Yes 

Greece No Yes 

Hungary No Yes 

Ireland No Yes 

Luxembourg No Yes 

New Zealand No Yes 

Poland No Yes 

Portugal No Yes 

Slovak Republic No Yes 

Spain No Yes 

Switzerland No Yes 

Turkey No Yes 
Sources: Mission Innovation (2020), (IEA 2020b). 
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APPENDIX 2.4. FUNDING IN CHINA ACCORDING TO MI 

Table 2.18 shows ERD&D funding in China for technology categories missing in our source, according 

to MI. 

Table 2.18. China renewables, hydrogen, and cross-cutting RD&D funding (technologies our methods do not differentiate) 

between 2015-2019 as reported in the 2020 Mission Innovation Country Highlights Report, million 2019 USD. 

Year Renewables Hydrogen/fuel cells 
Other cross-cutting 

techs/research 

2015 831.8 18.9 491.5 

2016 710.6 46.3 523.7 

2017 1231.3 106.4 636.9 

2018 1447.1 125.1 748.9 

2019 910.3 651.2 784.4 

Source: Mission Innovation (2020), adjusted using World Development Indicators (World Bank 2021a). 
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APPENDIX 2.5. DISCUSSION OF INCREASES IN US UNALLOCATED FUNDING 

The size of RD&D funding reported by the U.S. government unallocated category in their submissions 

to the IEA RD&D statistics in 2018 was 3.3 billion USD. Since the number is very large, we leverage 

a more detailed database that keeps track of US investments in public RD&D at the U.S. Department 

of Energy: Database on U.S. Department of Energy (DOE) Budgets for Energy Research, Development, 

& Demonstration (1978–2021R) (Gallagher and Anadón 2020). This database was built from the 

Statistical Tables of Budget Justification documents, similar to the documentation we used for India.  

We went through a process of matching funding amounts in both data sources for the United States and 

suggest that most of the 3.3. billion allocated to this category in 2018 is likely to be attributed as follows: 

2.1 billion USD dedicated to the Basic Energy Sciences (BES) program, 418 million USD for the fusion 

program, and 360 million USD for ARPA-E. 

However, the evolution in these categories in the database does not seem to explain the jump of 2.3 

USD billion between 2010 and 2015 in the ‘unallocated’ category in the IEA RD&D database. Instead, 

we find that BES funding decreased slightly between 2010 and 2015 to 1.9 and 1.8 billion USD, 

respectively and fusion stayed more or less constant (489 and 493 million USD in 2010 and 2015, 

respectively).  

Changes in ARPA-E funding can only explain a small part of the jump. In 2015 ARPA-E received 360 

million USD. In 2010, it received 0 dollars from the normal request and about half of the funding that 

was secured as part of the stimulus package (around 194 USD). Thus, we suspect that during that period 

there may have been changes in reporting, which may include changes in categorizations or reporting 

for relevant projects in Departments other than DOE.  

We also used the database to contrast the renewables category with the renewables data reported to the 

IEA. We find that the datasets are aligned on this in terms of the decrease between 2010 and 2015.  The 

database reports a decrease from 1.1 billion USD in 2010 to 827 million USD in 2015. US funding for 

renewables RD&D then increased to 928 million USD in 2018.  These numbers are of a similar 

magnitude (and similar trend between 2010 and 2015) but they are somewhat different from those 

reported in the IEA database: 1.5 billion, 966 million and 769 million in 2010, 2015 and 2018, 

respectively.  

Because the overall trends do not change substantially, we chose to keep the data the United States 

submitted to the IEA for consistency with other countries.  
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APPENDIX 2.6. GROWTH RATES BY TECHNOLOGY AND COUNTRY 

The panels in Figure 2.13 depict percentage changes of funding by technology after 2010.  

Figure 2.13. Percentage changes in funding, by technology and country. 

 

 

 

Source: Authors’ elaboration based on the methods and data sources described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b).  
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APPENDIX 2.7. DETAILED REGRESSION INPUT 

As expressed in the Methods section, we use country FE, or demeaned values, in all our regression 

specifications. Country FE subtracts the average of each country from every data point, in other words 

it “demeans” the data, and this helps control for country-specific variation.  

Figure 2.14 is a visual representation of the demeaned data, barring three outliers, Poland, Estonia, and 

Hungary. The datapoints in years 2009-2011 (in red) had FC dummies. The datapoints in years 2016-

2018 (in green) had MI dummies. The regression serves to test whether the reds and greens (separately 

and together) were statistically significantly different from the blues.  

Figure 2.14. Demeaned annual percentage changes of spending, by technology (all technology and CP) and country groups 

(All countries, MI, and M8), excluding outliers. 2009-2011 FC dummies= red; 2016-2018 MI dummies= green. The left 

column corresponds to total funding; the right column corresponds to clean plus. The rows correspond to All countries, M8, 

and MI countries, top to bottom. 

 
Source: Authors’ elaboration based on the methods and data sources described in this chapter, including Ministry of Finance, 
Government of India (2020a) and International Energy Agency (2020b).  
Note: Excludes Poland, Estonia and Hungary, which are outliers. 
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APPENDIX 2.8. DETAILED DISCUSSION OF REGRESSION RESULTS  

Table 2.19 summarizes the significant coefficients. The table does not include the coefficients from AC 

with outliers. The text below details and discusses the results.  

Table 2.19. Technology, country groups, and coefficients for regressions with significant results.  

Reg Technology Dummy included in the regression Country groups FC dummy MI dummy 

(4) Total FC3 All exc. Outliers 0.368**  

(7) Total FC3 M8 0.279**  

(8) Total FC MI 0.110*  

(9) Total FC2 MI 0.249***  

(10) Total FC3 MI 0.373***  

(19) Clean FC2 MI 0.231**  

(20) Clean FC3 MI 0.370***  

(29) Clean MI M8  0.0904* 

(37) Total FC3 MI All exc. Outliers 0.356** -0.0900 

(39) Total FC2 MI M8 0.158** -0.0157 

(40) Total FC3 MI M8 0.310*** -0.0161 

(41) Total FC MI MI 0.148*** -0.0333 

(42) Total FC2 MI MI 0.280*** -0.0272 

(43) Total FC3 MI MI 0.406*** -0.0370 

(56) Clean FC3 MI M8 0.248** -0.0221 

(57) Clean FC MI MI 0.147* -0.122 

(58) Clean FC2 MI MI 0.258*** -0.118 

(59) Clean FC3 MI MI 0.398*** -0.126* 

Source: Authors’ elaboration based on the methods and data sources described in this chapter.  
Note: FC= 2009-2011, FC2=2009-2010, FC3=2009; MI=2016-2018. ***= <1%, **=<5%, *=<10%. 
 

FC only, 2000-2012. Three variations of FC dummy: FC= 2009-2011, FC2=2009-2010, FC3=2009 

 

• For M8 countries, the change in total funding was positive (0.279) and significant (0.022) 

only when we limited the dummy to 2009.  

• For M8 countries, the change in clean energy funding was insignificant for all lengths of 

the FC dummy. 

• For All countries, the change in total funding was positive (0.93) and significant (0.002) 

only when we limited the dummy to 2009. It decreases to (0.368 & p-value of 0.012) when 

we exclude outliers (Poland, Estonia and Hungary).  

• For All countries, the change in clean energy funding was positive (1.13) and significant 

(0.026) only when we limited the dummy to 2009. It decreases and becomes insignificant 

when we exclude outliers. 

MI only, 2012-2018. MI dummy: 2016-2018 

 

• For All countries total funding and clean energy funding, the change in the years after MI 

is always insignificant. This holds when we exclude outliers. 

• For M8 countries and total funding, changes were insignificant. But clean energy funding 

change was positive (0.09) and significant at the 10% level (p-value of 0.06). 

• For MI countries, the change in total funding and clean energy was insignificant. 

• For non-MI countries, the change in total funding and clean energy was insignificant. 
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MI + FC, 2000-2018. Three variations of FC dummy: FC=2009-2011, FC2=2009-2010, FC3=2009. 

MI dummy: 2016-2018 

 

• For All countries and total funding, FC and MI, FC is significant when it is limited to two 

and three years (0.44 and 1.08, p-value of 0.04 and 0.00, respectively). Coefficients become 

(0.1235 and 0.356) and (p-value of 0.26 [note it increased and the coefficient is no longer 

significant] and 0.016, respectively) when we exclude outliers. 

• When we exclude outliers, the same occurs to non-MI, which was significant for one year 

after the FC (1.85, p-value of 0.005), and is no longer significant without outliers. 

• For M8 countries and total funding, coefficients are significant after 2 years and one year 

after the FC. Coefficients are 0.158 and 0.310 with p-values of 0.026, and 0.001, 

respectively.  

• For MI countries and total funding, the FC was significant for all versions of the FC 

dummy. The coefficients for the longest to shortest FC dummy were: 0.148, 0.280, and 

0.406, with p-values of 0.001, 0.000, 0.000, respectively. MI was never significant. 

• For All countries and clean energy funding, the FC was significant one year after the FC, 

1.44 (p-value of 0.003); but it becomes insignificant without outliers, (coefficient of 0.16, 

p-value of 0.93). The same occurs with non-MI (2.64, p-value of 0.012). 

• For M8 countries and clean energy funding, there is a significant change in clean energy 

expenditure one year after the FC (0.24, p-value of 0.46). 

• For MI countries and clean energy funding, the  FC was significant for all versions of the 

FC dummy. The coefficients for the longest to shortest FC dummy were: 0.398, 0.258, and 

0.147, with p-values of 0.002, 0.003, 0.062, respectively. MI was negative and significant 

(-0.125, p-value of 0.092) when FC was shortest. 

Results summary 

 

• In summary, we look at FC alone for All countries*, M8 and MI countries. These three 

country groups show a significant** change in total funding one year after the FC, and MI 

countries retained growth longer. The growth rate of All countries in 2009 increased more 

than M8 and MI, but we need to remember that this analysis can only compare groups with 

themselves. In other words, All countries increased more compared to themselves than M8 

and MI compared to themselves one year after the FC. As opposed to All countries and M8, 

MI clean energy experienced an increase in funding one and two years surrounding the FC. 

• When we look at MI alone, M8 exhibits a very small growth of clean energy funding 

surrounding MI, while All countries and MI countries do not. 

• When we look at FC and MI together, All countries, MI, and M8 exhibit growth in total 

funding in the year of the FC, with the largest to smallest change (always compared to 

itself) as follows: MI, All and M8 countries. In MI and M8 countries, the FC remained 

significant when we extended the FC to two years. It remained significant three years after 

for MI countries. 

• For MI countries and clean energy funding, there are significant effects of all lengths after 

the FC. Additionally, there is a small decrease surrounding MI when FC dummy is longest. 

M8 countries significantly increased their spending in clean energy one year after the FC. 

Note: *We exclude output with outliers from the summary. **This summary does not differentiate 

between significance levels, but the preceding text within this Appendix does.  
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3 CHAPTER 3: COMPARING THE CAUSAL EFFECTS OF 

SEVEN ENERGY POLICY INSTRUMENT CATEGORIES ON 

ENERGY DECARBONIZATION IN 100+ DEVELOPING 

COUNTRIES 3-7 YEARS AFTER IMPLEMENTATION 

 

Abstract 

 

There is a variety of energy policies, all over the world, aiming to advance one or several environmental, 

economic, security, or equity policy goals. We offer the first consistent attempt to identify how seven 

energy policy instrument categories (PICs), representing 75+ policies for energy decarbonization, each 

individually affect the energy mix across 100+ developing countries over time (three, five, and seven 

years after implementation).  

We apply 2SLS with country interactions and country and time fixed effects over regional panels to 

account for a host of well-documented issues in existing comparable research. These issues include 

omitted variables that relate to country and regional characteristics and simultaneity and reverse 

causality between policy enactment and outcomes. Additionally, we design the variables that represent 

each of the seven PICs using three indices that help account for the degree of reform and collinearity of 

policies.  

We find that generally the effects of PICs improve with time and that policies that address counterparty 

risks (those that help improve bankability for private participation, including backstops for government 

auction guarantees) have the most immediate positive effect on energy decarbonization. We suggest 

that incumbent forces could be behind the immediately lackluster or negative effects in other PICs and 

consider the effects that long-term country-specific characteristics, like enforcement, are likely to have 

on the effects of PICs.   

3.1 INTRODUCTION 

Countries have enacted a plethora of renewable energy policies at different points in time and in 

different combinations to advance one or several environmental, economic, security, or equity policy 

goals. More recently, they are also incentivized by the growing challenge of mitigating climate change. 

We offer the first comprehensive and systematic assessment of how each of seven policy instrument 

categories (PICs) individually perform in energy decarbonization over the short to medium term across 

more than 100 developing countries 3 to 7 years after their implementation. 

The PICs are: (1) Legal framework (LF); (2) Planning for expansion (PE); (3) Incentives and regulatory 

support (IR); (4) Attributes of financial and regulatory incentives (AI); (5) Network connection and use 

(NC); (6) Counterparty risk (CR); and (7) Carbon pricing and monitoring (CP). We consider the effects 

of PICs on five inter-related indicators of energy mix (outcomes): (1) fossil fuel energy consumption 

(FFC); (2) electricity production from fossil fuels (EFF); (3) electricity production from oil sources 

(EOS); (4) renewable energy consumption (REC); and (5) renewable electricity output (REO), all as a 

percentage of generation and/or consumption of electricity and/or energy.  

Our study mainly engages with two topical literature streams. The first is the literature that evaluates 

and compares the outcomes of policy instruments (which we refer to simply as “policies”) for energy 
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decarbonization. A recent interdisciplinary systematic review of 10 decarbonization policies pointed to 

geographical inclusion as a major research gap (Peñasco, Anadón, and Verdolini 2021). We address 

this gap by leveraging the Regulatory Indicators for Sustainable Energy (RISE) policy database, which 

is created by the Energy Sector Management Assistance Program (ESMAP) at the World Bank (WB) 

and which covers more than 130 developing and developed countries.  

ESMAP catalogs 75+ policies nested within the seven aforementioned PICs. We operationalize the 

seven PICs into an index (which we call the RISE index) that is suitable for econometric analysis by 

attributing weights to the policies as provided to us by ESMAP. We also create two alternative indices, 

further explained below.  

The second literature stream considers the effects of power sector reform (PSR), which we define as a 

slew of structural changes to the power sector that occurred as a result of the Washington Consensus in 

the 1980s and 1990s (Besant-Jones 2006). We focus on a sub-stream of the literature that subjects 

country panel data consisting of policies and their intended outcomes to econometric analysis.  

We identify common oversights in the design of PSR studies that use data comparable to ours. These 

include overlooking (or insufficiently considering) the following: omitted variables that relate to 

country and regional characteristics (Challenge 1), endogeneity due to simultaneity and reverse 

causality between policy enactment and outcomes (Challenge 2), lack of accounting for the degree of 

reform (Challenge 3), and collinearity of policies (Challenge 4) (Bacon 2018). We design our study to 

systematically engage with each of these challenges in three ways.  

First, we reduce the possibility of omitted variable bias (Challenge 1) by, amongst other things, running 

regressions in six regional panels, and by including time and country fixed effects (FE). Second, to 

address endogeneity (Challenge 2), we build onto the small body of PSR research (including Cubbin 

and Stern, 2006; Nagayama, 2009; Urpelainen, Yang, and Liu, 2018; and Sen, Nepal, and Jamasb; 

2016) that uses instrumental variables (IVs) through two-stage least squares (2SLS). 

To select an appropriate IV, we consider that developing countries are more likely to implement PICs 

when they exhibit “closeness” to World Bank major donors (MDs) that champion today’s good 

practices, which is how ESMAP describes the RISE dataset (Foster et al. 2018). While achieving perfect 

identification in cross-country panel regressions is difficult if not impossible, we believe these 

“closeness” measures are plausibly exogenous to developing countries’ energy mix and reduce the 

endogeneity biases. Our main IV is developing countries’ foreign policy political proximity to the major 

donors (France, Germany, Japan, the United Kingdom, and the United States) as estimated in (Bailey 

et al. 2017) database on voting in the UN General Assembly. For robustness purposes, we also consider 

two alternative IVs that measure closeness associated with trade, described in detail in the Methods 

section.  
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Third, we design two alternatives to the RISE index to operationalize the PICs. The first index addresses 

the degree of reform (Challenge 3) because it weighs all policies within each PIC equally. Compared 

to the default weighting by ESMAP, it is comparatively more sensitive to the number of policies 

implemented. The second index addresses collinearity of policies (Challenge 4) within each PIC by 

weighting uncorrelated policies more than those that are highly correlated to others. 

These combinations of IVs, indices, and other alternatives further detailed in the Methods section, create 

18 “base” regression specifications. We run each of these over the seven PICs, five outcomes, and six 

regions leading to 3,780 regressions. Additionally, we apply 2SLS country interactions following 

(Wooldridge 2001), rendering tens of thousands first (S1) coefficients.  

When we restrict the sample to the IV regressions that plausibly meet the relevance criterion and are 

theoretically consistent, we obtain 540 first-stage regressions and 85 second-stage regressions, which 

constitute the basis of our results. 

Analyzing our results suggests that, controlling for time and regional differences, the effects of most 

policy packages in developing countries are negative 3 years after their enactment. That is, renewable 

energy policies, counterintuitively result in a higher share of fossil fuel sources in developing countries’ 

energy mix. However, the performance of these policies improves to achieve their goals five and seven 

years afterward.  

We interpret these results as evidence of a combination of the Sailing Ship Effect, where in the short 

term effects of policies are dampened by incumbent forces (Ward 1967; Gilfillan 1935), and the relative 

inability of developing countries to secure financing (Egli, Steffen, and Schmidt 2019; Moner-Girona 

et al. 2021).  

A notable exception is the CP policy package, which yields an increase of the renewables in developing 

countries’ energy mix 3 years after implementation. This goes some way in supporting the importance 

of policies that make projects bankable for private investors, including backstops for government 

guarantees for auctions. In direct juxtaposition to the rest, the effects of CP tend to moderate over time.  

The temporal findings could suggest that some PICs (like CP) may be prerequisites for the others to 

have their intended effects. However, our methods do not address this question. We suggest that a 

subsequent analysis could consider interactions between PICs.  As we discuss in the Limitations section, 

this has been increasingly reflected in the interdisciplinary “policy mixes” literature, which spans 

economics, public policy, and innovation studies (Rogge and Reichardt 2016). 

Last, we show that country characteristics are likely to play a large part in the direction of effects and 

acknowledge the possibility that, while we have conducted extensive checks and sensitivity analysis, 

our IVs and econometric controls may not sufficiently address other patterns shaping the energy sector 
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in developing countries. These include changes in enforcement capabilities over time, which cannot be 

controlled by static country FE. 

Section 2 of this chapter reviews the literature, Section 3 explains the Methods, and Section 5 presents 

the Data. Section 5 presents and discusses results while Section 6 considers limitations. Section 7 

concludes. 

3.2 LITERATURE REVIEW 

This literature review has three parts. First, we position our study within the current and broad social 

science literature that analyzes the effect of individual energy decarbonization policies and their 

outcomes. We show that there is a dearth of systematic studies on developing countries and discuss the 

overarching results of the literature relevant to our PICs.  

Second, we focus on applied economics studies that study the effects of PSR. This literature is relevant 

because of the resemblance of the underlying datasets (including the structure, source, and their role in 

policymaking). Last, we discuss the two existing studies that use the RISE dataset.  

3.2.1 Energy decarbonization policy review 

Peñasco, Anadón, and Verdolini (2021) conduct a systematic review (SR) of 211 studies that evaluate 

“the effect of a specific policy instrument [related to energy decarbonization] into a specific outcome” 

across all the social sciences. Their work is relevant to us because each of our PICs represents a group 

of related policies, and is not a “policy mix” as per Rogge and Reichardt (2016).  

Additionally, we do not look at the interactions between PICs (both policy mixes and interactions are 

further discussed in the Limitations). Last, although we have chosen five dependent variables for 

robustness, they all represent the expansion of the share of low carbon energy technologies.  

Peñasco, Anadón, and Verdolini (2021)’s SR framework helps show that our paper considers a 

relatively narrow range of possible outcomes and a comparatively broader range of possible policies. 

Additionally, their sector and methodological typologies reveal that the sectoral focus and methods of 

our paper (power sector and quantitative, respectively) are relatively common in the literature. On the 

other hand, our broad geographical coverage is rare.  

After having situated our study within the broader literature, we make use of the INNOPATHS 

Decarbonisation Policy Evaluation Tool (DPET) and the SR itself to discuss the current state of 

knowledge on how the policies represented in the seven PICs affect the deployment of low carbon 

energy technologies.  
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Range of outcomes and policies in this chapter compared to existing literature 

 

Table 3.1 shows the range of outcomes covered and systematically identified by Peñasco, Anadón, and 

Verdolini (2021). When compared to the broad social sciences literature, the scope of this study lies 

squarely within the “technological effectiveness” of PICs.   

Table 3.1. Outcomes of energy decarbonization policies studied in social sciences according to an SR by Peñasco, Anadón, 

and Verdolini (2021). 

Criteria Outcomes Indicators (examples) Included in this study 

Effectiveness 

Environmental 

effectiveness  
GHG emission reductions No 

Technological effectiveness  
Electricity generated with 

RE 

Yes, the share of 

energy/electricity 

generated/consumed with 

RE/FF 

Efficiency 
Cost-related  Euro saved per kWh No 

Innovation  Patents No 

Economic co-benefits Competitiveness  Net job creation No 

Social acceptability 

Distributional  Incidence of support costs No 

Other 
Perceived transparency 

from consumers 
No 

Based on Figure S2 of Peñasco, Anadón, and Verdolini (2021). Definitions are found in Table SI.2. 
 

In contrast to our relatively narrow outcomes focus, our study covers a significant share of the policy 

instruments identified by Peñasco, Anadón, and Verdolini (2021).  

Table 3.2 shows the classification of policies addressed in their sample of 211 studies. In growing level 

of specification, policies are divided into three main categories, eight meso-level policy types, and 21 

policy instruments. Table 3.2 maps our policies onto their framework and provides examples of PICs 

in which they are found (the full policy list will be introduced in the Data section). Overall, we consider 

some (not all) regulatory and economic and financial instruments identified in their review.  
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Table 3.2. Energy decarbonization policies studied in social sciences according to Peñasco, Anadón, and Verdolini (2021) 

(first three columns), and whether we include them in this study (last column). 

Categories (not to be 

confused with the 

categories used in this 

study) 

Meso-level policy types Policy instruments 

Included in this study and 

example of a PIC in which 

it is found 

Regulatory 

Codes/standards/mandates 

Building codes and 

standards 
No 

Product standards No 

Vehicle fuel-economy and 

emissions standards 
No 

Obligation schemes/quotas RE obligations 

Yes, Legal framework for 

renewable energy (LF); 

Planning for renewable 

energy expansion (PE). 

Economic and financial 

instruments 

Direct investment 
Government procurement No 

R&D funding No 

Fiscal/financial incentives 

Feed-in tariffs and feed-in 

premiums (FITS/FIPs) 

Yes, Incentives and 

regulatory support for 

renewable energy (IR).  

Auctions 

Yes, Attributes of financial 

and regulatory incentives 

(AI).  

Taxes and tax exemptions 
Yes, Carbon pricing and 

monitoring (CP).  

Grants, subsidies, and 

other tax allowances 

Yes, Incentives and 

regulatory support for 

renewable energy (IR).  

Loans and soft loans No 

User charges No 

Market-based instruments 

GHG emissions allowance 

trading schemes (ETS) 

Yes, Carbon pricing and 

monitoring (CP).  

Green certificates No 

White certificates No 

Soft instruments 

Performance labels 
Comparison labels No 

Endorsement labels No 

Information campaigns 
By government agencies, 

government departments 
No 

Voluntary approaches 

Negotiated agreements 

(public-private sector) 
No 

Public voluntary schemes No 

Unilateral commitments 

(private sector)/EMSs 
No 

Source: Based on Table S2 of Peñasco, Anadón, and Verdolini (2021). Definitions can be found in Table SI.1. 
 

Range of industry, methods, and geographies in this chapter compared to existing literature 

 

Within the 211 publications reviewed by Peñasco, Anadón and Verdolini (2012), the power sector, 

which is the focus of this article, made up more than 50% of studies. Quantitative studies such as ours 

made up the largest group (44.1%).  

However, international reviews made up only 15.3% of publications, third after national and 

state/regional studies. Overall, the SR covered 50 countries, with a bias toward the OECD (Peñasco, 
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Anadón, and Verdolini 2021). Instead, we look only at non-OECD and cover about 100 countries (we 

devote a discussion to country coverage in the Data section). 

State of knowledge on effects of the PICs 

 

Last, we consider the state of knowledge on technological effectiveness and policies covered in this 

paper. Note that it is impossible to review the effects of all 75+ policies on technological effectiveness 

given space constraints. Therefore, we consider the evidence only for the policies that were mapped 

onto the SR framework in Table 3.2.  

The DPET online interface based on Peñasco, Anadón, and Verdolini (2021) allows us, amongst other 

things, to search papers along several key characteristics such as (1) policies; (2) outcomes; (3) methods 

(randomized, observational/quantitative, qualitative, and ex-ante studies); (4) jurisdiction (national, 

regional, international); and (5) sector (power, building, construction, etc.). We include results from all 

methodologies and all jurisdictions but concentrate only on the power sector. 

Table 3.3 summarizes the effects of the PICs that we mapped onto the SR framework in Table 3.2. 

Feed-in tariffs and feed-in premiums (broadly, subsidies for renewable energy) boast the highest 

support, but today, they are losing ground to auctions (competitive bidding processes for private sector 

investment in renewable energy deployment). While there is relatively less data to assess auctions, it 

seems like design elements are crucial to success. Of our seven PICS, AI includes several of the design 

elements thought to be important today, and CR includes the bankability of all private financial 

investments, including those in auctions. 
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Table 3.3. Energy decarbonization categories and policies in Peñasco, Anadón, and Verdolini (2021) (first two columns), 

whether they are covered in this study (third column), and their effect on our outcome of interest, technological effectiveness 

(last column). 

Categories Policies 

Included in this 

study and example 

of a Policy 

Instrument Category 

in which it is found 

Effect on technological effectiveness 

Regulatory RE obligations 

Yes, Legal 

framework for 

renewable energy 

(LF) 

Inconclusive. 50% of the evaluations report that 

RPS’s have no impact on technology outcomes. 

Economic and 

financial instruments 

Feed-in tariffs and 

feed-in premiums 

(FITS/FIPs) 

Yes, Incentives and 

regulatory support 

for renewable 

energy (IR) 

Generally positive. 86% of the evaluations of 

FITs report a positive effect on technology-

related outcomes. 

Auctions 

Yes, Attributes of 

financial and 

regulatory incentives 

(AI) 

Mixed. 59% report a positive impact, 41% 

report negative or no impact. Relatively short 

time series compared to FITs/FIPs. Design is 

especially important. Due diligence of projects 

from commercial or investment banks seems 

imperative, which is related to the Counterparty 

risk (CR) PIC. 

Taxes and tax 

exemptions 

Yes, Carbon pricing 

and monitoring (CP) 
Generally positive. 75% agreement. 

Grants, subsidies, 

and other tax 

allowances 

Yes, Incentives and 

regulatory support 

for renewable 

energy (IR) 

Same as above. 

GHG emissions 

allowance trading 

schemes (ETS) 

Yes, Carbon pricing 

and monitoring (CP) 

Mixed. 58% report no impact, 33% positive 

impact, and 8% negative impact. 

Source: Based on Supplementary Information of Peñasco, Anadón, and Verdolini (2021) and DPET database. 
 

3.2.2 Evolving prescriptions for power sector regulation  

In contrast with the literature reviewed by Peñasco, Anadón, and Verdolini (2021), PSR related studies 

cover a more geographies, including developing countries. More importantly, the PSR literature matters 

to us due to the type of data used and methodological issues it addresses. 

Supported and advised by international development organizations and developed country 

governments, almost half of 150 developing countries initiated PSRs since the early 1990s (Besant-

Jones 2006). For our purposes, PSR refers broadly to the implementation of a slew of policies under 

four key elements: (1) increasing private sector participation; (2) establishing regulation; (3) increasing 

competition; and (4) unbundling monopolies in the power sector.  

Based on neoclassical microeconomic theory, the implementation of PSR was considered to be the 

panacea to address a range of power sector challenges, including the technical and financial 

underperformance of utilities, as well as a lack of public financing needed to expand capacity (Besant-

Jones 2006; Sen, Nepal, and Jamasb 2016).  
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Today, the wealth of information on the PSR experiences of more than one hundred countries over more 

than three decades has allowed for an animated “introspection” in several overlapping disciplines, 

including political science, development, sociology, and applied economics (Sen, Nepal, and Jamasb 

2016). The “introspection” covers a myriad of aspects of PSR, including the mechanisms underlying 

reform decisions and coercion and conditionality of loans from donors and international development 

institutions (see Henisz, Zelner, and Guillén (2005); Domah, Pollitt, and Stern (2002); Lee and Usman 

(2018); Wamukonya (2003); Williams and Ghanadan (2006) for examples of this range). In fact, the 

literature summarizing theory and power sector impacts of PSR has become rich enough for several 

reviews, including Jamasb, Nepal, and Timilsina (2015) and Jamasb et al. (2005).  

A sub-stream of the PSR literature subjects the supposed benefits of PSR to empirical econometric 

examination covering a range of both developing and developed countries over various decades using 

panel datasets with dummy variables as policies, exactly as captured by RISE.  

However, note that PSR studies are not interested in climate-related outcomes. Consequently, we refrain 

from taking up space discussing their conclusions (although we do provide several in a table format). 

Our main interest is instead on the methods that different authors propose to address potential 

shortcomings associated with similar datasets. Therefore, in this section, we identify and discuss 

methodological challenges behind PSR studies and focus on how past studies inform the methods we 

apply to our data.  

Incidentally, we note that the similarities found between PSR studies and RISE is not coincidental. The 

current structure of ESMAP is organized along the three pillars of the 2015 UN Sustainable 

Development Goal 7 (SDG7) of Energy Access (EA), Renewable Energy (RE), and Energy Efficiency 

(EE). ESMAP provides 133 aggregate country “traffic light” scores of red, yellow, and green in a way 

that is reminiscent of the ESMAP scorecard of the 1990s (World Bank ESMAP 1999) for each pillar. 

The “traffic light” colors represent the lower, middle, and upper third of scores, normalized to a 

theoretical minimum of 0 and a maximum of 100. As an example, in 2015 the score ranged from 2 to 

90 (Somalia and Germany, respectively).  

According to ESMAP, the scores communicate the “strength and breadth of government support for 

sustainable energy and the actions they have taken to turn that support into reality.” Though today’s 

UN SDG7 is more holistic than power sector goals of the 1990s (and ESMAP candidly acknowledges 

that policies exist in an ecosystem that influences their quality and enforcement), the underlying dataset, 

and its source, are similar to those behind PSR studies. 
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Methodological PSR challenges relevant to our data and studies that address those challenges 

 

Recently, Rethinking Power Sector Reform, a World Bank knowledge program by ESMAP and the 

Public-Private Infrastructure Advisory Facility, published five literature review working papers taking 

stock of lessons learned from several aspects of PSR, including Bacon (2018).  

Bacon (2018) is the most recent review of studies that apply regression analysis to evaluate the links 

between several sub-elements of PSR and utility performance, and as well as broader economic 

development indicators.  

Broadly, Bacon (2018) finds that the literature associates private sector involvement with improvements 

in sector performance indicators (labor productivity and operational efficiency), though other elements 

like regulation and competition remain contested. Most importantly, the review identifies 14 

overarching conclusions, including challenges related to econometric studies.  

Here we summarize the five most relevant methodological design oversights for our study and briefly 

describe how we address them. A more detailed discussion is found in the Model and methods section. 

Some studies tend to overlook important country characteristics (like country income or system size), 

which might partially determine the success of PSRs (Challenge 1, an issue discussed extensively in 

(Levy and Spiller 1994)). This can be at least partially addressed by adding adequate control variables 

or accounting for country and regional effects in the regression specification. Additionally, there may 

be potential endogeneity between policy enactment and outcomes (Challenge 2) due to reverse or 

simultaneous causality in the implementation of a reform (eg, the decision to implement reform is 

influenced by the past performance of the system). IVs can help address this issue.  

There is also difficulty in accounting for the degree of reform because the data is usually set up as a 

country panel of dummy variables. Most studies include only four variables (one for each element of 

PSR mentioned above – privatization, regulation, competition, and unbundling) represented with a 0 

when the element is not enacted, and 1 when the policy is enacted (Challenge 3). We address this issue 

by aggregating RISE’s 75+ variables into three different indices.  

Additionally, there may be interaction effects of implementing several policies at the same time 

(collinearity of the independent variable) (Challenge 4). In the Methods, we explain how we consider 

the collinearity of policies within categories. However, we do not account for interactions across PICs, 

like policy mix studies do (which we discuss in the Limitations section). 

Last, although not an econometric design problem, Bacon (2018) identifies the lack of quality data on 

pre-reform and post-reform performance indicators as limiting the accuracy of results (Challenge 5).Our 

data stretches farther back than the current climate-related objectives. We further discuss our approach 

to these challenges in the Methods and Data Section.  
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Studies that address several methodological challenges 

 

Table 3.4 summarizes four studies that address several of the five relevant challenges discussed in this 

section of the Literature Review. 

Table 3.4. Selected power sector reform studies that use instrumental variables (IVs) to address endogeneity (Challenge 2), 

as well as how they address other challenges. 

Author Objective Method/data Vars Output 

Cubbin and 

Stern 

(2006), 

World 

Bank 

Economic 

Review 

To assess 

whether a 

regulatory 

law and 

higher quality 

regulatory 

governance 

are associated 

with superior 

outcomes in 

the electricity 

industry, 

defined as 

increases in 

the rated 

generation 

capacity per 

capita. 

Country FE, 

error correction, 

and IV 

regression for 

robustness.  

28 African, 

Asian, 

Caribbean, and 

Latin American 

countries over 

1980–2001.  

Dependent: Net electricity generation 

per capita of the population; Installed 

generation capacity per capita of the 

population; Net electricity generation 

per employee in the industry; 

Electricity generation to average 

capacity (capacity utilization). 

Independent: Regulatory, a four-

component index of regulatory 

governance in the electricity sector 

(Elements 1-3 are dummies), 4 is 0-1. 

Based on Domah, Pollitt, and Stern 

(2002). 

Controls: Privatization, % of generating 

capacity owned by private investors; 

Competition, market share of the three 

largest generators in the sector; Real 

GDP/capital (log); Debt payments (% 

of national income); Industry value-

added, (% of GDP) from World 

Governance Indicators (WDI). 

Controlling for 

privatization and 

competition and allowing 

for country-specific FE, 

both regulatory law and 

higher quality regulatory 

governance are positively 

and significantly 

associated with higher per 

capita generation capacity. 

The results are robust to 

estimating alternative 

dynamic specifications 

(including error correction 

models), to the inclusion 

of economy governance 

political risk indicators, 

and to controlling for 

possible endogeneity 

biases. 

Nagayama 

(2009), 

Energy 

Economics 

To study the 

relationship 

of power 

prices on PSR 

(Model 1), 

and PSR on 

power prices 

(Models 2-3). 

Country FE, 

ordered probit 

random effects 

lagged model, 

and IV 

regression 

(Model 3). 

78 countries by 

power sector 

structure over 

1985-2003. 

Original dataset. 

Dependent: Price (Models 2-3); 

Original power sector transition data 

using four types: monopoly, single 

buyer market, wholesale market, and 

retail market (Model 1).  

Independent: Price (Model 1); Original 

power sector transition data (Models 2-

3) 

Controls: GDP/capita. 

High power prices tended 

to impulse PSR (Model 1). 

Liberalization rose prices 

in every region modeled 

(Model 3). 

Sen, Nepal, 

and Jamasb 

(2016), 

Oxford 

Institute for 

Energy 

Studies 

Working 

Paper 

To 

systematically 

examine 

technical, 

economic, 

and welfare 

impacts of 

individual 

PSR policies 

in non-OECD 

Asian 

developing 

economies 

accounting 

for cross-

country 

Country FE and 

IV regression. 

17 non-OECD 

developing 

Asian 

economies over 

1990-2013. 

Dependent: Transmission and 

distribution losses/capita, GDP/capita, 

electricity trade/capita, Gini coefficient, 

Human Development Index 

Independent: Independent reform 

measures (not indexed); index of 

political reform (IV) 

Controls: electric power 

consumption/capital; transparency 

index; installed capacity/capita. 

First, early structural 

reform measures carried 

appear to have had a 

greater influence on the 

outcomes of electricity 

reforms in the region. 

Second, the reform 

measures associated with 

positive economic growth 

appear to be associated 

with negative effects 

welfare indicators. Third, 

country-specific 

institutional factors have 

strongly influenced 
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Author Objective Method/data Vars Output 

institutional 

differences. 

outcomes in non-OECD 

Asia. 

Urpelainen, 

Yang, and 

Liu (2018), 

Review of 

Policy 

Research 

To investigate 

the impact of 

power sector 

reforms on 

efficiency in 

the power 

sector. 

Country FE, IV 

regression. 

184 countries 

over 1982-2011 

based on 

Erdoğdu (2011). 

Dependent: T&D losses- % power lost 

between power generation and actual 

use, total power generation capacity – 

ln of installed capacity in megawatts.  

Independent: Extent of regulatory 

reform, OECD membership dummy, 

IV-regional power sector reforms (the 

number of reforms enacted by other 

countries in that region and the average 

numbers of reforms that neighboring 

countries have enacted, with very 

similar results). 

Control: log of GDP/capita, population, 

Polity score, ICRG, % population 

urban, value-added by industrial sector, 

% of GDP, electricity exports and 

imports over total electricity 

production, log net bilateral and 

multilateral aid. 

Each additional reform 

increases installed capacity 

in megawatts by 5% and 

decreases power lost 

between generation and 

consumption by 2 

percentage points. 

 

Source: Authors’ elaboration and work cited in the table. 
 

Cubbin and Stern (2006) analyze the relationship between the quality of regulatory governance and the 

level of generation capacity per capita for electricity supply industries in 28 African, Asian, Caribbean, 

and Latin American countries over 1980–2001, a similar time frame to us. They control for privatization 

and competition using Henisz, Zelner, and Guillén (2005)’s data, and applying Domah’s regulatory 

quality survey from Domah, Pollitt, and Stern (2002).  

Due to collinearity between the four independent variables on regulatory characteristics (Challenge 3), 

they create the “Cubbin-Stern” regulatory index. The index communicates the extent of PSR 

implementation better than a dummy variable, and in the Methods section of this paper, we call it the 

“Summation” index. However, the Cubbin-Stern index assumes each component has the same bearing 

on the outcome of the model (Challenge 4), an issue we also address in our methods.  

Based on the model’s lag structure, the authors suggest an underlying causal relationship, especially 

given the use of country FE to control for the myriad of differences that might lead to different country 

behaviors (Challenge 1). The authors attempt to correct for weak evidence of endogeneity (Challenge 

2) by instrumenting the lag of the predicted value of the Cubbin-Stern index, producing similar results.  

Nagayama (2009) proposes three models to study the relationship between power prices and PSR using 

an original dataset that categorizes 78 countries by power sector structure (monopoly, single buyer, 

wholesale market, or retail market, and combinations where necessary) between 1985-2003. In the 

second model, Nagayama (2009) proposes that PSR affects power prices, and employs both random 

and FE (the second would help address Challenge 1).  
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The author also notes the problem of simultaneity between power prices and PSR (Challenge 2) and 

uses the political democratic degree index from the Polity IV dataset as an IV. We tried and discarded 

this IV in earlier versions of this analysis. Urpelainen, Yang, and Liu (2018) argue that these IVs violate 

the exclusion restriction because democratic governments have an interest in reducing consumer prices. 

Urpelainen, Yang, and Liu (2018) investigate the effects of PSR on total power generation capacity and 

T&D losses using a comprehensive dataset of 184 countries between 1982 (the start of the Chilean 

power market reform) and 2011 (end of available data). They propose addressing endogeneity 

(Challenge 2) by using the number (and average number) of reforms enacted by other countries in a 

country’s region as an IV, in addition to time and country FE (Challenge 1) in both 2SLS stages.  

Similar to the Cubbin-Stern (and our Summation) index, Urpelainen, Yang, and Liu (2018)’s 

independent variable is computed as the yearly sum of PSR enacted, by country. The latter is taken 

from Erdoğdu (2011) who puts forth a dummy panel dataset for eight PSR reforms (such as 

corporatization of electric utilities and privatization).  

One limitation of using the sum of dissimilar reforms by year and country is the inability to distinguish 

between different types of reforms. Importantly, our approach is an improvement because we group 

75+ policies within similar PICs.   

3.2.3 Studies that discuss or use the RISE dataset 

As primarily a policymaker tool codifying policies related to EA, EE, and RE, RISE has been the main 

thrust behind three WB institutional policy reports (World Bank 2014; World Bank 2018; Banerjee et 

al. 2017). RISE data is also used as evidence of policy advancement towards SDG7 by Sustainable 

Energy for All, an independent international organization established by the UN in 2011.  

However, RISE has not been without critics. In an Energy Research and Social Science perspective 

piece, Urpelainen (2018) argues that “the idea of global practices, codified in an elegant and easily 

understandable scorecard [behind RISE], should be abandoned as largely irrelevant and potentially 

counterproductive” to the outcomes the SDG7. Urpelainen (2018) contends that impacts depend on the 

country context, including the governmental capacity to implement them.  

However, instead of making normative assumptions of the RISE indicators, our analysis attempts to 

find causality between PICs and energy decarbonization. As explained, we do not use the scoreboard 

itself. Instead, we group similar policies into PICs. In that sense, we ignore the question of whether (or 

not) the policies in RISE should (or should not) be considered global standards. We simply use the 

dataset to empirically discuss which PICs led to desired incomes, and whether this changed over time 

after implementation. 

In the only existing empirical exercise using RISE data, Foster et al. (2017) take on our perspective. As 

an overview paper to the Rethinking Power Sector Reform initiative, Foster et al. (2017) use RISE to 
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depict trends in policy implementation globally between 1995-2015. Unlike us, Foster et al. (2017) 

avoid attempting to establishing a causal connection; instead, they discern trends in economic and 

political characteristics that may affect policy deployment. Specifically, Foster et al. (2017) use 

statistical tests of differences in values between country groupings (N-1 two-proportion tests for binary 

variables, and Analysis of Variance [ANOVA] for continuous variables).  

They find that characteristics like geography, income group, power system size, and political economy 

all influenced the pattern of implemented policies, further supporting the need to use regional groups 

and country FE, like we do. The authors also find that the spread of policies slowed in the second decade 

(2005–2015) and experienced some reversal. 

3.3 MODEL AND METHODS 

We posit a linear relationship between a renewable energy policy 𝑥 and an energy mix outcome, 𝑦 in a 

country 𝑐 and a year 𝑡.  Energy sector policies take time to implement, so we assume that policy 

enaction does not have an immediate effect on the outcome variable and consider three-year, five-year, 

and seven-year lags, 𝑙. Each regression equation can be summarized as follows: 

𝑦𝑐,𝑡 = 𝛼𝑐 + 𝛽𝑥𝑐,𝑡−𝑙 + 𝛾𝑡 + 휀𝑐,𝑡 Eq. 3.1 

where 𝛽 is the coefficient of interest, 𝛼 and 𝛾 are the country- and time- FE, and 휀 is the unobserved 

error term. 

In the following three sub-sections, we describe further specifications: (1) To limit omitted variable 

bias (Challenge 1), we include time and fixed effects and run the regressions within regions. (2) We 

address the possibility of reverse or simultaneous causality (Challenge 2) with three different IVs. (3) 

Finally, we account for the degree of reform and address collinearity, or the fact that multiple policies 

may act at the same time, by using indices that aggregate PICs in different ways (Challenge 3 and 4).  

3.3.1 Addressing omitted variables (Challenge 1) 

The literature we cited in our review has posited that country size, income per capita, and other socio-

economic variables may play a part in policy outcomes and that some studies fail to consider these 

omitted variables. For instance, when interest rates are low in the United States, there may be an influx 

of foreign direct investment in developing countries, and this may vary according to regional 

characteristics, such as historical (cultural and colonial) ties as well as geographical proximity to the 

United States and Europe. To mitigate this problem, we control for group characteristics by estimating 

regression models separately for each World Bank region (Table 3.5).  
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Table 3.5. Regions and acronyms. 

Region Acronym 

East Asia & the Pacific  EAP 

Europe & Central Asia ECA 

Latin America & Caribbean LAC 

Middle East & North Africa MENA 

South Asia SAS 

Sub-Saharan Africa SSA 

Sources: Subset of World Bank country categories 2020. 
 

Additionally, we include country FE to control for long-term country-specific characteristics. Each 

variable used in a country FE regression is transformed to measure a country’s deviation from its own 

average.  

We also apply time FE. In time FE, the data is demeaned over each period. Since our estimations are 

performed separately across regions, the regional average at each point in time will be subtracted from 

each observation.  

Note that country and time FE do not capture non-uniform changes in country-level variables over time, 

such as the business environment, financing conditions, or enforcement capability. 

To obtain comparable estimations of 𝛽, which is the coefficient that indicates the effect of the policies 

over regions and countries, the data is standardized using the z-score. Each variable is therefore rescaled 

to have a mean of zero and a standard deviation of one.  

3.3.2 Addressing simultaneity and reverse causation (Challenge 2) 

As discussed in the literature review, panel data analysis on PSR and policy packages has suffered from 

simultaneity between the independent (policy) and dependent (result of policy) variable of interest, 

violating classical OLS assumptions and resulting in potentially biased estimators (Challenge 2).  

In our case, the enactment of the PICs is at least partially (endogenously) determined by current 

emissions. In the Literature Review, we discussed several studies that attempted to correct for 

endogeneity using IVs.  

In theory, IVs successfully attribute causality by isolating the non-endogenous portion of the 

relationship between the independent variable of interest, 𝑥, and the dependent variable, y. This is done 

by using a measurable third variable, 𝑧, that affects the enactment of PICs, but not the energy-mix, 

except through the PICs. The main challenge in implementing this method is to find a suitable IV, a 

topic we discuss in depth in the upcoming data section.  

Two-stage least squares (2SLS) is the most common IV approach and the one we apply in this paper. 

Stage 1 (Eq. 3.2) consists of regressing the independent variable on our IV, generating a coefficient that 

predicts the behavior of 𝑥 based on 𝑧.  
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The behavior of 𝑥 that is unrelated to 𝑧 is captured by the error term, 휀. Stage 2 (Eq. 3.3) uses the 

predicted values of 𝑥, 𝑥 to estimate its effect on the dependent variable of interest, 𝑦 (Stock and Watson, 

2002).  

A typical 2SLS regression model in a panel dataset with country 𝑐, time 𝑡, an IV 𝑧, an independent 

variable 𝑥, and a dependent variable 𝑦, is as follows: 

𝑆𝑡𝑎𝑔𝑒 1 (𝑆1): 𝑥𝑐,𝑡 = 𝛼 + 𝛽𝑧𝑐,𝑡 + 휀𝑐,𝑡 Eq. 3.2 

𝑆𝑡𝑎𝑔𝑒 2 (𝑆2): 𝑦𝑐,𝑡 = 𝜃 + 𝜗𝑐𝑥�̂� + 𝑛𝑐,𝑡 Eq. 3.3 

Where ε and  represent error terms. Note that lags and/or moving averages of the IV, the independent, 

or the dependent variables can be added at each stage, depending on the research question and the data.  

In our model, we introduce country dummy interaction variables into the two stages of the IV model to 

obtain 2SLS estimations by country, following Chapter 9 of Wooldridge (2001).  

Following the literature (Wooldridge 2001; Stock and Watson 2011) we estimate the model (Eq. 3.1) 

in the following two stages: 

𝑥𝑐,𝑡 = 𝛼𝑐 + 𝛽𝑧𝑐,𝑡 + ∑ 𝛿𝑐𝑧𝑐,𝑡𝐷𝑐

𝑛

𝑐=1

+ 𝛾𝑡 + 𝑢𝑐,𝑡 Eq. 3.4 

𝑦𝑐,𝑡 = 𝜃𝑐 + ∑ 𝜗𝑐𝑥𝑐,𝑡−�̂�

𝑛

𝑐=1

𝐷𝑐 + ∑ 𝜌𝑥𝑐,𝑡−�̂�

𝑛

𝑐=1

+ 𝜇𝑡 + 𝑛𝑐,𝑡 Eq. 3.5 

where D is a country dummy variable, 𝑥  is the instrumented policy variable, 𝛼, 𝜃, 𝛾, and 𝜇 are the 

country- and time- FE, and 𝑢 and v are the unobserved error terms.  

The key coefficients of interest are the second-stage estimates of policy variables interacted by country 

fixed effects, 𝜗𝑐.  

We restrict our analysis to the sub-set of the second-stage estimates that are likely to satisfy the IV 

relevance condition (i.e., z must be strongly correlated with x) and the exclusion restriction (i.e., z only 

affects y through its impact on x). Assessing the IV relevance criterion is straightforward by checking 

the F-statistic of the first-stage regression (Eq. 3.2). As there is no valid statistical test for the exclusion 

restriction, we keep the first stage estimates that are statistically significant and have theoretically 

consistent signs.  

Stata supports interactions in its ivreg2 command. However, the pre-loaded command did not allow us 

to extract the F-statistic results of S1. As a result, we manually created the interaction terms and 

replicated the first stage of each regression.  



 

98 

 

Additionally, if a researcher is interested in replicating our findings, it is important to note that in our 

commands, we omitted including the independent variable’s base term in S1, and the policy variable’s 

base term in S2. In this way, we avoid having to compare each extracted interacted coefficient with a 

base term. 

An instrumental variable approach is not the only method that can test causality. A differences-in-

differences approach, for instance, compares the means of the outcome variable in a group of countries 

in which a policy was implemented (the treatment group), with the means a group in which the policy 

was not implemented (the control group). This method may be a possible avenue of further exploration 

of the impact of policies reviewed in RISE.  

The method does not align with our current research question, however. The current research question 

focuses on the effect of seven PICs. Because PICs are made up of a variety of component policies, they 

are not applied on a binary basis. Instead, they are applied to varying extents in different countries. The 

current IV method adequately captures ordinal and continuous changes in the application of each PIC. 

3.3.3 Addressing degree of reform and policy collinearity (Challenges 3 and 4) 

Our independent variables for regression analysis are measurements of the seven PICs listed in the 

introduction. The PICs themselves (RISE refers to them as “Headings”) and the policies included in 

each are pre-defined in the dataset. We use the pre-determined PICs to group 75+ policies so that 

comparisons between them make theoretical, statistical, and practical sense and reflect the extent to 

which they are used together. In other words, using RISE PICs has the effect of reducing highly 

dimensional policy data in a manner appropriate for regression analysis and interpretation.  

There are different methods to aggregate policies (or operationalize and design) each PIC, with the 

potential to affect the regression results. Our default option is to use the RISE index, which is based on 

how ESMAP weighs the policies and is fully described in the Data section. In the next paragraphs, we 

discuss Challenges 3 (addressing the degree of reform) and 4 (policy collinearity) as well as how 

alternate PIC policy aggregation methods (or “indices”), can help address these challenges. Note that 

because a granular discussion of the indices requires a deeper understanding of the RISE database, the 

Data section contains a detailed description and analysis of each index.  

A single binary variable that indicates, for example, the existence of planning for renewable energy 

expansion, provides limited information about the degree of the effort behind the measure (Challenge 

3). However, there is a relative depth to the RISE dataset. For instance, the PE PIC on planning for 

renewable energy expansion includes general questions like “Does an official renewable energy target 

exist?” alongside others such as “Is the target legally binding?”, “Is the target based on a transparent 

methodology?”, “Is there a renewable energy action plan or strategy to attain the target?”, etc. Due to 

the detail of the RISE dataset, a simple summation (or counting) implemented policies within each PIC 
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is arguably a proxy for the scope of the energy decarbonization policy effort. This is what we capture 

in the aptly named Summation index. 

At the same time, policies within PICs are alike in content and may be implemented at the same time, 

which may lead to collinearity in our estimations (Challenge 4). Within our running example of the PE 

PIC, consider the similarity between the two policies: “Does an official renewable energy target exist?” 

And “Is there a target for renewables in electricity?”. Following the logic in Cubbin and Stern (2006), 

estimates of the effects of the PICs could be biased upward, depending on the correlation of policies 

within each group, because they may reinforce one another and work together. Other research has shown 

that policies could work against each other, but this is more likely to occur across PICs, because of the 

similarity of policies within them. The Composite index engages with the idea of policy collinearity 

through correlation analysis. 

In summary, we operationalize the seven PICs by using one main index (RISE) and two alternatives, 

Summation and Composite. RISE is provided to us and the last two engage with the need to address the 

degree of reform (Challenge 3) and collinearity between policies (Challenge 4) within PICs.  

3.4 DATA 

3.4.1 Outcome (dependent) variables 

We use the World Bank World Development Indicators (WDI) as a source of data for our dependent 

variables spanning over the last four decades and more than a hundred developing countries. For 

robustness, we consider five relevant variables (Table 3.6).  

We expect that the PICs negatively affect the first three energy mix measures in Table 3.6, which are 

FCC, EFF, and EOS PICs. On the contrary, we expect the PICs to positively affect the remaining two 

energy mix measures in Table 3.6, which are REC and REO. To make our estimation results comparable 

across different specifications we multiply estimated coefficients of interest for the first three energy 

mix measures by minus one.  

Table 3.6. Outcome variables, their units, and their expected relationships with the policy instrument categories (PICs). 

 Outcome Acronym Unit 
Expected PIC 

relationship 

1 
Fossil fuel energy (oil, gas & coal) 

consumption 
FCC Percent of total Negative 

2 
Electricity production from fossil fuel 

(oil, gas & coal) sources 
EFF Percent of total electricity output Negative 

3 Electricity production from oil sources  EOS Percent of total electricity output Negative 

4 Renewable energy consumption REC 
Percent of total final energy 

consumption 
Positive 

5 Renewable electricity output REO Percent of total electricity output Positive 

Source: World Bank World Development Indicators (WDI) database 2021. 
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An in-depth descriptive discussion of the changes of these variables over hundreds of countries and 

several decades is beyond the scope of this chapter. We offer descriptive statistics in a visual format for 

each dependent variable over time. These summaries are in Appendix 3.1 because they would take up 

a substantial amount of space and affect the flow of the main text. 

The graphs in Appendix 3.1 include all countries used in our regressions but aggregate over regions due 

to space constraints. There are patterns over regions that further support the rationale to run the 

regressions over regions, which we explained in the Methods section dedicated to addressing omitted 

variable bias. For example, there is a clear difference in all the outcome variables when comparing oil-

dominated versus hydro-dominated regions like MENA and LAC, respectively. 

3.4.2 RISE dataset 

Our explanatory variables are based on the renewable energy policy instrument portion of the novel 

RISE database created by ESMAP at the World Bank.  To create these variables, we use the background 

data behind the RISE renewable energy “traffic light” indicators that ESMAP has published and updated 

annually since 2010. Below, we discuss the dataset and explain the three alternative methods, or indices, 

we designed to create our independent variables.  

Introduction to the dataset 

 

The primary dataset contains 75+ policies that are each addressed in two variables: one indicating the 

existence of the policy through yes/no answer, and the second specifying the year of the first instance 

of the policy, if applicable. For instance, “Does a legal framework for renewable energy development 

exist?” and the year for the first legal framework.  

When restructuring the primary dataset, we combine the two variables for each policy instrument into 

one, so that the value changes from 0 to 1 when the first policy was put into place. This creates the 

country panel dataset needed for the rest of the analysis. 

The 75+ policies are classified within seven RISE PICs listed in (Table 3.7). As an example, carbon 

pricing and monitoring contains two questions (from now on, “questions” and “policies” will be used 

interchangeably): “Is there a carbon pricing mechanism […] implemented in the country, covering part 

or all of the country’s greenhouse gas emissions?”, and “Is there a monitoring, reporting and verification 

system for greenhouse gas emissions in place?” 
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Table 3.7. Headings/PICs in RISE. 

 Heading/PIC Acronyms 

1 Legal framework for renewable energy LF 

2 Planning for renewable energy expansion PE 

3 Incentives and regulatory support for renewable energy IR 

4 Attributes of financial and regulatory incentives AI 

5 Network connection and use NC 

6 Counterparty risk CR 

7 Carbon pricing and monitoring CP 

Source: RISE website and authors’ acronyms. 
 

Primary dataset challenges 

 

Each PIC contains a different number of policies, and sometimes contains clusters of policies. In fact, 

PICs contain up to three levels of sub-PICs that we call “groups”, where the final individual 

policy/question resides. For instance, IR, on Incentives and regulatory support for renewable energy, 

contains four groups, with three to five questions each.  

Aside from its asymmetric nested structure, there are at least three further challenges to preparing the 

primary dataset for use. First, we find several different discrepancies between the yes/no and years 

variables for the same policy. For instance, the policy may be marked as inexistent, but there is a year 

for the enactment of the same policy. Table 3.8 shows seven discrepancies we found in the primary 

dataset and describes the algorithm we followed to handle each. This should make it possible for other 

researchers to recreate our dataset.  
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Table 3.8. Discrepancies in RISE primary data. 

 Type of 

discrepancy 
Dummy* Year Decision Rationale 

1 

Dummy and 

year 

discrepancy 

0 

Year should not be 

specified, but is 

specified 

Favored the 

year’s 

column 

The year column is more specific information 

than the dummy column. If there is input for the 

more specific column, then we assume that it has 

been verified and is correct.  

2 

Potential 

dummy and 

year 

discrepancy 

0 

Year should be 0, 

but it is NA, N/A, 

not applicable, or 

missing 

Favored the 

dummy 

column, 

treated Year 

as “0” 

We cannot use a year if we do not have it. 

3 

Dummy and 

year 

discrepancy 

1 
Year should be 

specified, but is 0 

Treated year 

as NA (“.”) 

Treating them as no’s would be incorrect because 

the reform seems to have been made. However, 

without a year, we cannot count them in a panel.  

4 

Dummy and 

year 

discrepancy 

1 

Year should be 

specified, but is 

missing 

Treated year 

as NA (.) 

Treating years as no’s (with 0) would be 

incorrect because the reform was made according 

to the dummy column. However, without a year, 

we cannot count them in a panel. 

5 
Year looks 

suspicious 
1 Year seems too old No action 

Some years are very early, examples re.2.1.6 

(1895) or re.6.3.1.3 (1923). We give the dataset 

the benefit of the doubt. 

6 

Dummy and 

year 

discrepancy 

NA 

Year should be 

NA, but is 

specified 

Favored the 

year’s 

column 

The year column gives more specific information 

than the dummy column. If there is input for the 

more specific column, then we assume that it has 

been verified and is correct. 

7 

Potential 

dummy and 

year 

discrepancy 

NA 

Year should be 

NA, but is 0, as if 

“no”  

Favored the 

dummy 

column, 

treated year 

as NA (“.”) 

Seems like the year column was given a “0” 

because it was “NA” in the dummy column. But 

we treat missing in the dummy column as “NA”. 

So, we favored the dummy column. 

Source: RISE dataset and authors’ elaboration based on methods described in this chapter. 
Note: *Dummy (0=no; 1=yes; blank = NA). 
 

Second, there are occasional continuous variables in the dataset, and variables that cannot be 

transformed into panel data. These occasional continuous variables disrupt our efforts to address 

collinearity and reduce the dimensionality of the dataset, as discuss in the Methods sections. Third, 

there are constant variables that cannot be transformed into panel data. This is the case with several 

variables within CP.  

The final dataset contains binary indicators for 76 policies over a panel of 133 countries (this includes 

developed and developing countries). Although the dataset starts in 1875, we limit it to 1980-2018, as 

most policies were not implemented before then. Table 3.9 contains descriptive information for the 

primary and the final datasets.  
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Table 3.9. Attributes of the primary and final datasets. 

Dataset Primary Final 

Countries 133 133 

Period 1875 1980-2018 

Variables 168 76 

Policies directly in headings/PICs (final) - 4 

Policies nested once (final) - 66 

Policies nested twice (final) - 6 

Source: RISE dataset and authors’ elaboration based on methods described in this chapter. 
Note: *“Is there any provision for consultation with the public on the renewable plan?” 
 

Table 3.10 contains a list of all PICs and policies included in our final dataset. The nested structure of 

the data is preserved in the IDs of each policy where the first digit refers to the PIC and subsequent 

digits related to different grouping levels. 

Final primary dataset 

 
Table 3.10. PICs and policies covered in the RISE dataset, as well as their structure. 

Headings/PIC RISE ID Our ID Question 

Legal 

framework 
for renewable 

energy (LF) 

1.1.1 re_1_1 Does a legal framework for renewable energy development exist? 

1.2.1 re_1_2 Does the legal framework allow private sector ownership of renewable energy generation? 

Planning for 

renewable 

energy 
expansion 

(PE) 

2.1.1 re_2_1_1 Does an official renewable energy target exist? 

2.1.2 re_2_1_2 Is the target legally binding? 

2.1.3 re_2_1_3 Is the RE target linked to international commitments (eg. NDC or regional commitment)? 

2.1.4 re_2_1_4 Is the target based on a transparent methodology? 

2.1.5 re_2_1_5 Is there a renewable energy action plan or strategy to attain the target? 

2.1.6 re_2_1_6 Is there any provision for consultation with the public on the renewable plan? 

2.2.1 re_2_2_1 Is there an assessment of the role of renewables in electricity supply? 

2.2.2 re_2_2_2 Is there a target for renewables in electricity? 

2.3.1 re_2_3_1 
Is there an assessment of the needs for heating and cooling in buildings and industry in the 
country and of how renewables can contribute? 

2.3.2 re_2_3_2 Is there a specific target for renewables for heating and cooling? 

2.4.1 re_2_4_1 
Is there an assessment of the potential role for renewables in transport including biofuels and 

electrification? 

2.4.2 re_2_4_2 Is there a specific target for renewables in transport? 

2.5.1 re_2_5_1 
Does the renewable plan or strategy estimate the amount of investment necessary to meet the 

RE target? 

2.5.2 re_2_5_2 Is there an institution responsible for tracking progress in renewable energy development? 

2.5.3 re_2_5_3 Is there any periodic reporting mechanism for renewable energy progress? 

2.5.4 re_2_5_4 
Is there a mechanism for adjusting the plan based on reporting of renewable energy 

deployment? 

2.5.5 re_2_5_5 Is current policy environment conducive to renewable energy deployment? 

2.6.1 re_2_6_1 Is generation and transmission planning integrated? 

2.6.2 re_2_6_2 Is planning for dispatch included in the generation and transmission plan? 

2.6.3 re_2_6_3 Is the generation plan based on a probabilistic approach? 

2.6.4 re_2_6_4 Does the current transmission planning consider renewable energy scale-up? 

2.7.1 re_2_7_1 

Does the government endorse and use the solar/wind resource maps and data applicable to 

their country that are available through the Global Solar Atlas / Global Wind Atlas, or have 

they published some other solar/wind resource map that conforms to best practice in the last 

five years? 

2.7.2 re_2_7_2 
Has the country carried out geospatial planning or produced zoning guidance to inform the 
commercial development of the RE resource? 

2.7.3 re_2_7_3 

Has the geospatial planning or zoning guidance been carried out according to best practice by 

i) being undertaken as part of a strategic environmental and social assessment or equivalent 

process; and ii) by making the outputs publicly available?  

Incentives 
and 

regulatory 

support for 
renewable 

energy (IR) 

3.1.1 re_3_1_1 
Does the country offer long term PPA’s for renewable electricity production for large scale 

producers (e.g. via. Feed-in-tariffs, PPA’s awarded through auctions etc.) 

3.1.2 re_3_1_2 
Does the country offer long term PPA’s for renewable electricity production for small scale 

producers (e.g. via. Feed-in-tariffs, PPA’s awarded through auctions etc.) 

3.1.3 re_3_1_3 
Does the government publish clear and practical guidance on what permissions are required 

to develop a RE electricity project? 
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Headings/PIC RISE ID Our ID Question 

3.1.4 re_3_1_4 
Does the government offer other direct fiscal incentives for renewable electricity (e.g. capital 
subsidies, grants or rebates, investment tax credits, tax reductions, production tax credits, FITs 

for large producers?) 

3.2.1 re_3_2_1 Does the country provide prioritized access to the grid for RE? 

3.2.2 re_3_2_2 Do RE projects receive priority in dispatch? 

3.2.3 re_3_2_3 Are there provisions to compensate seller if offtake infrastructure is not built in time? 

3.2.4 re_3_2_4 
Are there mechanisms to compensate RE projects for lost generation due to certain 

curtailments after project commissioning? 

3.2.5 re_3_2_5 Is the compensation due because of curtailment actually given out. 

3.3.1 re_3_3_1 Is there a biofuels blending mandate or other obligation to use biofuels? 

3.3.2 re_3_3_2 Are there sustainability criteria which biofuels which contribute to the mandate must meet? 

3.3.3 re_3_3_3 

If there is a plan for producing biofuels in the country, has this included an assessment of 

sustainability impacts (e.g. against the GBEP Sustainability indicators) including an 

assessment of impacts on food security. 

3.3.4 re_3_3_4 
Is there at least one scheme to encourage use of electric/hybrid vehicles? (e.g. Tax benefit to 

consumers and manufacturers, etc.) 

3.4.1 re_3_4_1 
Are there any policies to encourage deployment of any renewable energy heating and cooling 

technologies? 

3.4.2 re_3_4_2 
Are there specific measures (financial support or promotion) designed to encourage the use 

of renewables in the heating and cooling sectors? 

3.4.3 re_3_4_3 
Are opportunities for renewable heat promoted alongside energy efficiency measures in 

buildings and/or industry? 

Attributes of 

financial and 
regulatory 

incentives 

(AI) 

4.1.1 re_4_1_1 
Is competition used to ensure large scale RE generation (projects >10MW) is cost competitive 

(e.g. through auctions for PPA’s)? 

4.1.1.1 re_4_1_2_1 Is there a schedule for future bids/auctions available for investors? 

4.1.1.2 re_4_1_2_2 Is there a pre-qualification process to select bidders? 

4.1.2.3 re_4_1_2_3 Are tariffs indexed (in part or in whole) to an international currency or to inflation? 

4.1.1.4 re_4_1_2_4 
Are there provisions to ensure full and timely project completion (e.g. bid-bonds, project 

milestones) 

4.1.1.5 re_4_1_2_5 Are projects awarded through auctions/bids online/on track to be online on stated date? 

4.1.1.6 re_4_1_2_6 Have auctions/bids met stated target for installations? 

4.2.1 re_4_2_1 Can small producers (residential, commercial rooftop PV,etc ) connect to the grid? 

4.2.2 re_4_2_2 Are contracts with fixed tariffs available for such producers? 

4.2.3 re_4_2_3 
Is there a schedule or clear rules (e.g. capacity based limits) for adjusting the tariff level over 

time? 

4.2.4 re_4_2_4 Are different tariffs available for different technologies and sizes of the generation plant? 

4.2.5 re_4_2_5 Is there a mechanism to control the capacity built under each tariff? 

4.2.6 re_4_2_6 Are tariffs indexed (in part or in whole) to an international currency or to inflation? 

Network 

connection 
and use (NC) 

5.1.1 re_5_1_1 Does the country have a grid code that clearly specifies connection procedures? 

5.1.2 re_5_1_2 Do the connection procedures meet international best practices? 

5.1.3 re_5_1_3 Does the grid code include measures or standards addressing variable renewable energy? 

5.1.4 re_5_1_4 Are there rules defining the allocation of connection costs? 

5.1.5 re_5_1_5 
Is the type of the connection cost allocation policy considered shallow (grid operator pays for 

connection costs)? 

5.2.1 re_5_2_1 
Are there rules that allow electricity customers to purchase power directly from a third party 

(i.e. an entity other than the designated utility in a service area)? 

5.2.2 re_5_2_2 
Do the rules define the size and allocation of costs for use of the transmission and distribution 

system (e.g. wheeling charges, locational pricing?) 

5.3.1 re_5_3_1 
Does the country carry out regular assessments of the flexibility of the electricity grid and the 

issues relating to renewables integration? 

5.3.2 re_5_3_2 Can renewable energy projects sell into balancing/ancillary services? 

5.3.3 re_5_3_3 

Are there rules for exchanging power between balancing areas that penalize variable 

renewable energy, e.g. through imbalance penalties? (only scored in countries with multiple 
balancing areas) 

5.3.4 re_5_3_4 
Are there provisions in the power exchange rules that allow for plant forecasting? (only scored 

in countries with multiple balancing areas) 

5.3.5 re_5_3_5 
Does the country integrate high quality forecasting for any variable RE resources (either 

through subscription service or provided by national agencies) into their dispatch operations? 

5.3.6 re_5_3_6 Are dispatch operations being carried out in real time? 

Counterparty 

risk (CR) 

6.1.1 ** Are the following financial ratios of the counterparty deemed creditworthy? 

6.1.1.1 ** Current ratio, <1 – 0 in between – scale >= 1.2 – 25 

6.1.1.2 ** EBITDA margin; <0 – 0 in between – scale >= 15% -- 25 

6.1.1.3 **  Debt service coverage ratio; <1 – 0 in between – scale >= 1.2 – 25 

6.1.1.4 ** Days payable outstanding ; >180 – 0 in between – scale <=90 – 25 

6.2.1 re_6_2_1 

Is the counterparty underwritten by a government guarantee or are there other mechanisms to 

ensure credit worthiness (e.g. through a letter of credit, escrow account, payment guarantee, 

or other)? 

6.2.2 re_6_2_2 Are standard PPAs bankable? 

6.3.1.1 re_6_3_1 
Generation, Are the financial statements of the largest utility publicly available in the 

following categories? 

6.3.1.2 
** 

Transmission, Are the financial statements of the largest utility publicly available in the 
following categories? 
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Headings/PIC RISE ID Our ID Question 

6.3.1.3 
** 

Distribution, Are the financial statements of the largest utility publicly available in the 
following categories? 

6.3.1.4 ** 
Retail sales, Are the financial statements of the largest utility publicly available in the 

following categories? 

6.3.2.1  re_6_3_2 
Generation, If yes, are they audited by an independent auditor for the following categories of 
utilities? 

6.3.2.2 
** 

Transmission, If yes, are they audited by an independent auditor for the following categories 

of utilities? 

6.3.2.3 ** 
Distribution, If yes, are they audited by an independent auditor for the following categories 
of utilities? 

6.3.2.4 ** 
Retail sales, If yes, are they audited by an independent auditor for the following categories of 

utilities? 

6.3.3.1  re_6_3_3 
Generation – Electricity available for sale to end-users, Are the following metrics published 
in a primary official document (by the utility, regulator or ministry and/or government)? 

6.3.3.2 ** 
Transmission – Transmission loss rate, Are the following metrics published in a primary 

official document (by the utility, regulator or ministry and/or government)? 

6.3.3.3 ** 
Distribution – Distribution loss rate, Are the following metrics published in a primary official 
document (by the utility, regulator or ministry and/or government)? 

6.3.3.4 ** 
Retail Sales – Bill collection rate, Are the following metrics published in a primary official 

document (by the utility, regulator or ministry and/or government)? 

6.3.4 re_6_3_4 
Is the utility operating an incidence/outage recording system (or SCADA/EMS with such 
functionality)? 

6.3.5 ** 
Is the utility measuring the SAIDI and SAIFI or any other measurements for service 

reliability? 

6.3.5.1 ** Are the measurements reported to the regulatory body? 

6.3.5.2 **  Are the measurements available to public? 

Carbon 

pricing and 
monitoring 

(CP) 

7.1 re_7_1 
Is there a carbon pricing mechanism (eg carbon tax, emissions trading scheme) implemented 

in the country, covering part or all of the country’s greenhouse gas emissions?) 

7.2 re_7_2 Is there a monitoring, reporting and verification system for greenhouse gas emissions in place? 

Source: RISE dataset and authors’ elaboration based on methods described in this chapter.  
Note: **Do not contain the year, cannot be used in a panel format. 
 

Discussion on using pre-determined RISE PICs 

 

Having introduced the data structure of the RISE dataset and its components, we challenge our use of 

the pre-determined RISE PICs as the base from which to build our independent variables by creating a 

dendrogram visualization.  

Dendrograms are widely used to find homogeneous groups in observations, or in our case, policies, that 

differ from each other. They can help the researcher to identify the structure of the data or to group 

variables based on their similarity. The results of the dendrogram support our methodological choice to 

groups policies within the PICs that were provided to us in the dataset. 

To depict how the policies relate to one another, we first create a dissimilarity (1-similarity) matrix 

based on the Jaccard coefficient. In brief, the Jaccard coefficient (Eq. 3.6) is the proportion of 

occurrences in which both variables (policies) take a value of one in the panel dataset, over the 

occurrence of all other combinations, except both variables taking a value of zero.  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 𝑎/(𝑎 + 𝑏 + 𝑐) Eq. 3.6 

 

Table 3.11. Variables in the Jaccard coefficient. 
 Var1, 1 Var1, 0 

Var2, 1 a b 

Var2, 0 c d 

Source: Jaccard (1908). 
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We then systematically merge similar policies into groups, creating an agglomerative hierarchical 

clustered visualization. In the resulting dendrogram, each policy is placed along the y-axis and is 

connected to other policies via a horizontal line that ends at their corresponding similarity value. The 

shorter the lines, the more similar the policies.  

The shape of dendrograms changes according to the method linking groups. The methods pertinent to 

binary data are single, complete, and average linkages. Single (nearest neighbor or minimum) linkage 

defines the distance between two clusters as the minimum distance found for any pair of policies that 

includes one case from each cluster (Yim and Ramdeen 2015). Complete (farthest neighbor and 

maximum) considers the furthest distance between pairs of cases. In short, single and complete linkages 

rely on the smallest or largest distance that can be found between pairs of cases to define the distance 

between two clusters, respectively. Last, the Unweighted Pair-Group Method with Arithmetic Mean 

linkage averages the distances between cases in each cluster. 

Each method has its limitations. Single linkage may produce “chaining”, in which several clusters are 

joined because one of their cases is within proximity of a case from a separate cluster. However, in 

complete linkage, outlying cases prevent close clusters from merging. We choose the third method, 

average linkages, as in theory it provides a compromise between single and complete linkage (Yim and 

Ramdeen 2015; Greenacre and Primicerio 2013). At the same time, it is important to keep in mind that 

some information is lost in all three linkage methods. Taking a bottom-up approach helps reduce the 

influence of information lost in creating linkages across groups.  

In Figure 3.1, the three vertical lines dashed red lines allow the reader to visually compare 

dissimilarities. In our case, the dendrogram helps further support the idea that policies within PICs are 

most alike to each other, and not most alike to policies in other PICs. Overall, it supports our theoretical 

rationale to operationalize the independent variables (PICs) using the structure that was pre-determined 

by the dataset we acquired.  
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Figure 3.1. Dendrogram cluster visualization of policies in the RISE dataset. 

 
Source: RISE dataset and authors’ elaboration based on methods described in this chapter. 
 



 

108 

 

3.4.3 PICs indices (independent variables)  

As described in the Methods section, we create three different indices to operationalize the PICs for 

regression analysis. This section discusses the three indices in detail. The end of the section provides a 

visualization that compares the PICs based on each index. For robustness, Appendix 3.2 considers and 

discards Principle Component Analysis (PCA) as a last alternative to reduce dimensionality of the 

dataset. 

RISE index 

 

The first alternative is what we call the RISE index reported by ESMAP. The RISE index sums policies 

within policy groups over the entire dataset. Since we are interested in running regressions at the PIC 

level, we aggregate policies within groups but stop short of summing groups across different PICs. 

While the RISE index weighs policy groups equally, each group itself contains a different number of 

policies. Therefore, in the RISE index, the number of policies in each group affects the weight given to 

each policy . For instance, when there are four policies in a group, each of them is worth 25 percent, 

and when there are two policies, each is worth 50 percent. This arbitrary aspect of weighing the policies 

within groups is part of our motivation to seek alternative methods to create indices that will be used as 

our independent variables.  

Summation index 

 

The first alternative to the RISE index is to create an index that sums the enacted policies at each point 

in time. Such an index, which we will call the “Summation index,” has been tried before and discussed 

in our literature review (Cubbin and Stern 2006). The Summation index weighs all policies equally 

within PICs. 

Composite index 

 

Last, we propose a third, “Composite index,” which is based on correlation analysis. The Composite 

index first reduces dimensionality by dropping highly correlated variables so that highly collinear 

policies are not counted several times over. It then sums the remaining variables by Heading. 

There are several ways to approach the task of isolating and merging similar variables through 

correlation. We design and compare two methods that apply to our analysis, which we entitle the 

“Survival” and “Average” methods. We use the phi statistic, which is suitable for truly dichotomous 

variables.   

In the “survival” method we assume that keeping one of two highly correlated policies retains enough 

information to represent both. We start the exercise at the most disaggregated group level. At this level, 

we keep one of each highly correlated policies. We then compare any ‘surviving’ policies against the 

ones that reside at higher aggregation levels within the same PIC. When there are no highly correlated 
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policies left in a PIC, we attribute the same weight to each. For instance, if there are four uncorrelated 

policies left in a given PIC, each policy is weighted 0.25 when a country implements it. 

An alternative is to use group averages. We first obtain phi statistics for all pairs within a PIC and 

compute the average phi statistic for that PIC. When the average phi statistic is higher than a 

predetermined cutoff, the PIC variable is computed as the average of the policies at each point in time. 

However, if the phi statistic is below the cutoff, we repeat the exercise by sub-groups. In that case, we 

sum the averages within subgroups to create the final PIC variable. 

By definition, averaging correlated policies at any point in time retains more information than the 

survival method, but it may obscure underlying disparities in the averaged variables. Specifically, using 

group averages fails to identify policies that are different from others in their group. This drawback 

seems to nullify the point of the analysis, which is to count sufficiently different policies separately. 

Therefore, we implement the Survival method.  

In sum, the “Composite” index is composed of two steps. First, we reduce dimensionality through 

correlation analysis of policies over the entire dataset with a p value<0.05. We disregard highly 

correlated variables so that highly collinear policies are not counted several times. Second, we sum the 

variables that “survived” the first step, by PIC. 

An important factor for the composite index is the cut-off used to determine “high” correlation. We 

further discuss this in Appendix 3.3.  

Index Summary 

 

Each independent variable is a representation of the policies within the seven PICs. PICs include 

thematically and statistically-related policies. Both policies and packages are predetermined in the 

original RISE dataset. We use three different methods to aggregate the policies and create three 

alternative PIC indices: the RISE, the Summation, and the Composite indices. Appendix 3.4 compares 

the final weights given to each policy in the RISE versus Composite index (this is unnecessary for the 

Summation index, which weighs all policies equally).  

Because we are working in a panel format, each country has three versions of each of the seven 

independent variables, over several decades. Figure 3.2 provides a visualization comparing the three 

indices across all PICs. Each boxplot represents the distribution of an index by PIC and region. Since 

showing all years between 1980-2018 is too unwieldy, we only display 2015. The RISE index is shown 

in blue, the Summation index is in red, and the Composite index is in green.  
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Figure 3.2. Comparison of the RISE, Summation, and Composite Indices, by heading/PIC, over region, for 2015. 

 
Source: RISE dataset and authors’ elaboration based on methods described in this chapter. 
 

EAP ECA LAC MENA SAS SSA
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The visualization clearly shows that all indices yield the same distribution across countries for the first 

PIC, or RE heading 1. In all other cases, the RISE index tends to have the smallest ranges overall while 

the Summation index has the biggest ranges.  

PICs one and seven depict the smallest ranges, with a minimum of zero and the maximum is two. We 

expect the relatively small ranges because PICs one and seven contain fewer policies. 

3.4.4 Instrumental variables 

The main challenge in implementing the IV method in any analysis is to find a suitable IV. The IV must 

be uncorrelated with the dependent variable, Yi, except through its effect on the endogenous variable, 

Xi. This is known as the exogeneity condition. Additionally, the IV must satisfy the relevance condition. 

This means that it Zi must be correlated with Xi. 

To propose suitable IVs, we take advantage of international political economy aspects highlighted in 

the rich literature on PSR that spans several decades and regions. We posit that countries are more likely 

to implement regulatory energy policies when they display a relatively higher level of closeness with 

developed countries that champion increased private sector participation when extending loans related 

to power markets, which broadly satisfies the relevance condition.  

The conditionality of reform for loans is discussed in existing research. For example, in a 

comprehensive study of governance in power and telecommunications sectors, Henisz, Zelner, and 

Guillén (2005) argue that “the domestic adoption of market-oriented reforms is strongly influenced by 

international pressures of coercion and emulation […in] as many as 205 countries and territories 

between 1977 and 1999 [with] the coercive effect of multilateral lending from the IMF, the World Bank 

or Regional Development Banks […] increasing over time.” 

We consider two channels that could indicate closeness to the World Bank major donors (MDs, which 

are France, Germany, Japan, the United Kingdom, and the United States). These two channels are: (1) 

similarity in foreign policy; and, (2) connection through trade. We then pinpoint three measurable ways 

through which this rapport may be measured and evidenced over time. Table 3.12 summarizes the 

chosen IVs, which we describe and support in the paragraphs that follow.  
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Table 3.12. Summary of IVs that capture relations with major donors. 

Changes in closeness to donors 

may be reflected through 
IV Supported in Data source 

Foreign policy 

Closeness to the MDs 

through UNGA 

voting 

Bailey et al. (2017) 
Affinity of Nations dataset 

by Bailey et al. (2017) 

Trade 

Relative trade value 

aggregates 

Rufín (2003) 

UN Comtrade (United 

Nations Statistics Division 

(UNSD) 2020) 

Trade agreements in 

place 

European Commission, 

trade agreements in place 

(European Commission 

2021) 

Source: Authors’ elaboration based on the methods described in this chapter and the sources in the table. 
 

Like in the previous section on outcome variables, we produce figures of the descriptive statistics of the 

three IVs over time. With the flow of the chapter in mind, the visualizations can be found in Appendix 

3.5. For the figures showing United Nations General Assembly (UNGA) and trade aggregate IVs, it is 

necessary to aggregate over regions due to the large scope of our data, so the figures inevitably mask 

underlying changes at the country level.  

Importantly, we consider the possibility that it may take time to implement policies following an 

increase of closeness measured through our IV. Therefore, we use a moving average of five years of 

the IVs. Although bilateral relationships can be relatively slow to change, changes of administration in 

democracies may result in more abrupt changes, so we also consider a moving average of three years. 

The Results section compares the outcomes of the two different moving averages. 

Foreign policy instrumental variable 

 

To represent changes in foreign policy preferences, we use the dyadic (country to country) dataset 

behind the Affinity of Nations index by Bailey et al. (2017). The authors use a dynamic ordinal spatial 

model on a single dimension to estimate state preferences toward the U.S.-led liberal order, as reflected 

through UNGA voting. They refer to this measure as the Ideal Point Index.  

The Ideal Point Distance, on the other hand, is the difference between the Ideal Points for all country 

dyads that participate in the UNGA (e.g., France and Gabon). The Ideal Point Distance, therefore, 

suggests the difference between the preference for the U.S.-led liberal order for any two countries in 

any given year.  

It is important that the dataset does not simply provide a measure of similarity in all voting, and instead 

produces an estimate of the distance of voting towards a specific topic, or the U.S.-led liberal order. 

Anchoring the content of the estimates in one topic helps address the issue that the World Bank MDs 

do not always vote the same as each other. Additionally, note that while the U.S.-led liberal order is 

related to the Washington Consensus and relevant regulatory measures in our dataset, we are instead 

interested in identifying changes in closeness to our MDs, and to be able to do this over time.  
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To understand how preferences in our sample changed in comparison to the five MDs over time, we 

sum the Ideal Point Distance between each country and the five MDs at a yearly frequency.  

Last, since we want a closeness indicator rather than a distance indicator (we want our IV to be 

positively associated with relative closeness to the MDs), we multiply the summed Ideal Point Distance 

by negative one.  

Trade instrumental variables 

 

Rufín (2003) discusses how “countries imitate their trade-related peers.” To capture changes in 

closeness through trade we compute the percentage of aggregate trade value that corresponded to 

exchange with the MDs, for each country, by year. The data is based on the comprehensive bilateral 

trade dataset UN Comtrade published by the UN Statistics Division.  

We also generate a panel dataset on the existence of Trade Agreements with the EU. The source of the 

data is the EU Commission’s “current state of play” agreements in place. The variable is binary and 

takes on a 1 for all the years after a trade agreement comes into force. If there is no trade agreement, 

the variable is 0 for the entirety of the time series.  

3.4.5 Country coverage 

Our literature review shows that previous literature has centered on developed countries. This 

illuminated the direction of our work and one of our contributions is the focus of our analysis on 

developing countries.  

Moreover, we have to exclude developed countries from our regression analysis due to the rationale 

behind our IVs. The logic behind our selected instruments relies on the conditionalities that developed 

countries can impose on developing counterparts to implement power sector reforms and renewable 

energy policies. Hence, it would be inconsistent to include them. As a result, our country sample 

excludes European Union members, Australia, Norway, Great Britain, Japan, Korea, and Switzerland.   

Table 3.13 provides a list of all the countries in the RISE dataset, and whether they are included in the 

regressions. On two occasions, we excluded a developing country available in RISE because of 

inconsistent or missing WDI data.  
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Table 3.13. Countries in the RISE dataset, organized by the regions previously introduced, and whether they are included in the regression analysis of this chapter. 

Count Country Reg Kept Count Country Reg Kept Count Country Reg Kept 

1 Cambodia 

E
as

t 
A

si
a 

&
 P

ac
if

ic
 (

E
A

P
) 

1 49 Australia 

O
E

C
D

 

0 92 Afghanistan 

S
o

u
th

 A
si

a 

1 

2 China 1 50 Austria 0 93 Bangladesh 1 

3 Indonesia 1 51 Belgium 0 94 India 1 

4 
Lao PDR 

1 52 
Canada 

0 95 
Maldives 

0, missing 

data 

5 
Malaysia 

1 53 
Chile 

1, moved to 

LAC 
96 

Nepal 
1 

6 Mongolia 1 54 Czech Republic 0 97 Pakistan 1 

7 Myanmar 1 55 Denmark 0 98 Sri Lanka 1 

8 Papua New Guinea 1 56 Finland 0 99 Angola 

S
u

b
-S

ah
ar

an
 A

fr
ic

a 
(S

S
A

) 

1 

9 Philippines 1 57 France 0 100 Benin 1 

10 Singapore 1 58 Germany 0 101 Burkina Faso 1 

11 Solomon Islands 1 59 Greece 0 102 Burundi 1 

12 Thailand 1 60 Hungary 0 103 Cameroon 1 

13 Vanuatu 1 61 Ireland 0 104 Central African Republic 1 

14 Vietnam 1 62 Israel 0 105 Chad 1 

15 Armenia 

E
u

ro
p

e 
&

 C
en

tr
al

 A
si

a 
(E

C
A

) 

1 63 Italy 0 106 Congo, Dem. Rep. 1 

16 Azerbaijan 1 64 Japan 0 107 Congo, Rep. 1 

17 Belarus 1 65 Korea, Rep. 0 108 Côte d’Ivoire 1 

18 Bulgaria 0, EU member 66 Netherlands 0 109 Eritrea 1 

19 Croatia 0, EU member 67 New Zealand 0 110 Ethiopia 1 

20 Kazakhstan 1 68 Norway 0 111 Ghana 1 

21 Kyrgyz Republic 1 69 Poland 0 112 Guinea 1 

22 Romania 0, EU member 70 Portugal 0 113 Kenya 1 

23 Russian Federation 1 71 Slovak Republic 0 114 Liberia 1 

24 Serbia 1 72 Spain 0 115 Madagascar 1 

25 Tajikistan 1 73 Sweden 0 116 Malawi 1 

26 Turkey 1 74 Switzerland 0 117 Mali 1 

27 Turkmenistan 1 75 United Kingdom 0 118 Mauritania 1 



 

115 

 

Count Country Reg Kept Count Country Reg Kept Count Country Reg Kept 

28 Ukraine 1 76 United States 0 119 Mozambique 1 

29 Uzbekistan 1 77 Algeria 

M
id

d
le

 E
as

t 
&

 N
o

rt
h

 A
fr

ic
a 

(M
E

N
A

) 

1 120 Niger 1 

30 Argentina 

L
at

in
 A

m
er

ic
a 

&
 C

ar
ib

b
ea

n
 (

L
A

C
) 

1 78 Bahrain 1 121 Nigeria 1 

31 Bolivia 1 79 Egypt, Arab Rep. 1 122 Rwanda 1 

32 Brazil 1 80 Iran, Islamic Rep. 1 123 Senegal 1 

33 Colombia 1 81 Jordan 1 124 Sierra Leone 1 

34 Costa Rica 1 82 Kuwait 1 125 Somalia 1 

35 Dominican Republic 1 83 Lebanon 1 126 South Africa 1 

36 
Ecuador 

1 84 
Morocco 

1 127 
South Sudan 

0, missing 

data 

37 El Salvador 1 85 Oman 1 128 Sudan 1 

38 Guatemala 1 86 Qatar 1 129 Tanzania 1 

39 Haiti 1 87 Saudi Arabia 1 130 Togo 1 

40 Honduras 1 88 Tunisia 1 131 Uganda 1 

41 Jamaica 1 89 United Arab Emirates 1 132 Zambia 1 

42 Mexico 1 90 West Bank and Gaza 1 133 Zimbabwe 1 

43 Nicaragua 1 91 Yemen, Rep. 1   
 

 

44 Panama 1   
 

   
 

 

45 Paraguay 1   
 

   
 

 

46 Peru 1   
 

   
 

 

47 Uruguay 1   
 

   
 

 

48 Venezuela, RB 1   
 

   
 

 
Source: RISE dataset and authors’ elaboration. 
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3.5 RESULTS 

In this section, we present the results and robustness tests of the empirical specification (Eq. 3.4 and 

Eq. 3.5) estimated over six regions, five dependent outcomes, seven policy variables, three IVs, two IV 

moving averages, and three aggregation indices.  

Altogether we estimate 3,780 regressions, to which we also apply country interactions. This renders 

thousands of S1 coefficients that constitute the foundation of the analysis in this section, summarized 

in Table 3.14.  

Table 3.14. Regression specifications resulting from the Methods and Data sections of this chapter. 

Base or other 

specification 
Variable Options 

Base IVs 
1. Affinity the MDs through UNGA voting (main) 

2. Affinity with the MDs through trade (alternate 1) 

3. Affinity with the MDs through EU trade agreements (alternate 2) 

Base 
Moving averages 

for IV 
1. 5 years moving average (main) 

2. 3 years moving average (alternate) 

Base 

Indices to quantify 

our independent 

variables  

1. RISE (main) 

2. Composite (alternate 1) 

3. Summation (alternate 2) 

Other Regions 

1. East Asia & the Pacific (EAP) 

2. Europe & Central Asia (ECA) 

3. Latin America & Caribbean (LAC) 

4. Middle East & North Africa (MENA) 

5. South Asia (SAS) 

6. Sub-Saharan Africa (SSA) 

Other 

Dependent 

variables 

(indicators of the 

energy mix) 

1. Fossil fuel energy consumption % of total, (FFC) 

2. Electricity production from fossil fuels (oil, gas & coal sources), 

% of total (EFF) 

3. Electricity production from oil sources, % of total (EOS) 

4. Renewable energy consumption, % of total final energy 

consumption (REC) 

5. Renewable electricity output, % of total electricity output (REO) 

Other 
Independent 

variables (PICs) 

1. Legal framework for renewable energy (LF) 

2. Planning for renewable energy expansion (PE) 

3. Incentives and regulatory support for renewable energy (IR) 

4. Attributes of financial and regulatory incentives (AI) 

5. Network connection and use (NC) 

6. Counterparty risk (CR) 

7. Carbon pricing and monitoring (CP) 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
 

S1 results 

 

As per standard practice, we define the S1 of 2SLS as significant when it has a p-value at or below 5% 

and an f-statistic above 10 (Stock and Watson 2011). Additionally, for theoretical relevance, the 

relationship between the IV and the endogenous variable must be positive (i.e., closeness to donors 

increases the likelihood of adopting a renewable energy policy).  
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Table 3.15 is ordered by based specifications that, in addition to being significant at a p-value of 0.05 

with an f statistic of at least 10, had the sign we theorized for the .  

We were puzzled by the number of S1 coefficients that fulfilled the relevance condition and had a 

negative coefficient. For instance, these are 244 (784-540) when we use a moving average of 5, the 

UNGA affinity IV, and the RISE index. A negative coefficient would seem to indicate that 

implementing decarbonization policies is less likely when countries are linked to the MDs through  

UNGA voting and trade. 

Table 3.15. Eligible S1 coefficients for base specifications; green is higher, red is lower. 

Index IVs Moving average Significant, f>10 Significant, f>10, positive 

Rise UNGA aff. 5 784 540 

Rise UNGA aff. 3 698 516 

Composite UNGA aff. 5 713 479 

Composite UNGA aff. 3 656 471 

Summation UNGA aff. 5 703 471 

Summation UNGA aff. 3 640 449 

Summation EU agreements 5 262 194 

Rise EU agreements 5 248 180 

Rise EU agreements 3 245 177 

Composite EU agreements 5 243 175 

Summation EU agreements 3 242 174 

Composite EU agreements 3 240 172 

Rise Trade w. donors 3 953 31 

Rise Trade w. donors 5 934 28 

Composite Trade w. donors 3 914 25 

Summation Trade w. donors 5 907 24 

Composite Trade w. donors 5 885 23 

Summation Trade w. donors 3 897 21 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
Note: Column four indicates the number of coefficients with a p-value below 5% and an f-statistic above 10. Column five 
contains the same information filtered for coefficients with a positive sign. 
 

While the exogeneity of the second stage estimates cannot be established with certainty, we perform 

additional robustness tests to establish the validity of chosen instrumental variables. One established 

finding in the economics literature is that “getting similar results from alternative instruments enhances 

the credibility of instrumental variable estimates” (Murray 2006). 

Our empirical approach allows us to conduct a formal test of the differences in the S2 estimates resulting 

from different IVs. We regress a vector of estimated S2 coefficients for each of the five energy mix 

outcomes, on dummies for each of the IVs, PICs, indices.  

Table 3.16 shows the estimated regression results. Only for one of the five energy mix outcomes 

(electricity production from oil sources, EOS) did we observe statistically significant differences 

between the S2 estimates obtained from affinity through UNGA and the other two IVs. For all other 
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energy mix outcomes, there are either no statistically significant differences across estimated S2 

coefficients and the three chosen IVs, or the differences are only marginally significant.  

Admittedly, this exercise would be strongest if performed over three IVs with different underlying 

justifications. Still, our IVs do represent two different channels (foreign policy and commercial trade) 

by which coercion and emulation take place. These results give us greater confidence that our S2 

estimates do indeed reflect the causal outcome of decarbonization policy reforms.  

Table 3.16. IV exogeneity robustness regression test. 
 (1) (2) (3) (4) (5) 

FCC EFF EOS REC REO 

IV: EU Agreements 0.27 0.78** 1.85 -0.43 -0.22 
 (0.16) (0.34) (1.44) (0.30) (0.24) 

IV: Affinity through bilateral trade 0.79 6.34* 4.23*** -0.15 -1.27* 
 (0.67) (3.27) (0.72) (0.42) (0.67) 

Policy: Planning for renewable energy expansion  -1.11* -2.95*** -2.5* 1.8** 3.06** 
 (0.57) (0.93) (1.48) (0.68) (1.33) 

Policy: Incentives and regulatory support for RE   -0.33 -1.02 -1.02 0.21 1.16 
 (0.69) (1.06) (1.56) (0.44) (0.94) 

Policy: Attributes of financial and regulatory incentives  -0.47 -0.9* -0.95 0.73 2.21* 
 (0.33) (0.52) (0.87) (0.73) (1.13) 

Policy: Network connection and use -0.14 -0.39 1.38 0.74** 2.19** 
 (0.33) (0.39) (1.00) (0.35) (0.89) 

Policy: Counterparty risk 0.15 0.47 0.73 -0.26 0.51 
 (0.36) (0.96) (1.86) (0.44) (0.84) 

Policy: Carbon pricing and monitoring   -0.45 0.81*** 1.68** 
   (0.84) (0.29) (0.80) 

Index: Composite -0.22** -0.1 -0.98** 0.67** .99** 
 (0.08) (0.30) (0.46) (0.32) (0.38) 

Index: Summation -0.05 0.14 -0.28 -0.09 0.02 
 (0.07) (0.23) (0.45) (0.12) (0.14) 

Constant -0.62* -1.65*** -3.61*** 0.24 -0.2 
 (0.33) (0.50) (0.84) (0.36) (0.88) 

Observations 707 717 726 947 923 

R-squared 0.071 0.146 0.075 0.01 0.055 

Country Fixed Effects YES YES YES YES YES 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
Notes. FFC= Fossil fuel energy consumption % of the total; EFF= Electricity production from fossil fuels (oil, gas & coal 
sources), % of the total; EOS= Electricity production from oil sources, % of the total; REC: Renewable energy consumption, 
% of total final energy consumption; REO= Renewable electricity output, % of total electricity output. Robust standard errors 
in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1. 
 

We also perform Kruskal-Wallis H tests to determine whether there is a statistically significant 

difference between the number of eligible S1 results obtained by using any of the indices, IVs, and IV 

moving averages above. The Kruskal-Wallis H test is sometimes also called the “one-way ANOVA on 

ranks,” and it is applicable here because it is impervious to the normality assumption.  

The results shown in Table 3.17, (left) suggest that despite our hypothesis that different ways of tallying 

policies within PICs would make a difference in the regressions, there was no significant difference 

between the three indices in the number of eligible S1 regressions. The choice of IV does make a 

significant difference in the number of eligible S1 regressions Table 3.17, (middle). However, as shown 

in Table 3.16, these first-stage differences do not consistently affect the second-stage estimates 
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themselves. Last, there is no significant difference in the number of eligible output when comparing 

moving averages of 3 and 5 periods for our IVs Table 3.17, (right). 

Table 3.17. Kruskal-Wallis H tests for the three options in the regression base specifications: Indices, IVs, and IV moving 

averages. 

Indices IVs IV moving averages 

chi-squared = 0.880 with 2 d.f. 

probability = 0.6440 

chi-squared with ties = 0.881 with 2 

d.f. 

probability = 0.6437 

chi-squared = 15.158 

probability = 0.0005 

chi-squared with ties = 15.174 

probability = 0.0005 

chi-squared = 0.195 with 1 d.f. 

probability = 0.6588 

chi-squared with ties = 0.195 with 1 

d.f. 

probability = 0.6587 

Source: Authors’ elaboration based on the methods and data described in this chapter. 
 

Based on the outcomes of the tests above, we continue our analysis with the base combination that 

yields the highest number of eligible and positive S1 coefficients. This choice increments the probability 

of having a larger sample of S2 coefficients to analyze.  

The S2 analysis in the following paragraphs uses the following S1 base specification: (i) the RISE 

index; (ii) the IV based on affinity through United Nations General Assembly voting; and (iii) the IV 

moving average of 5 years. Of the 1902 first-stage regressions in the chosen empirical specification, 28 

percent (or 540 coefficients) are eligible for the second-stage estimation.  

S2 results overall 

 

The S2 coefficients represent the effect of the seven PICs on the five outcomes, by country, through the 

UNGA IV. As explained in the Methods, the input data was standardized and the relationship is 

measured in units of standard deviation distance from the mean so as to be comparable across policy 

packages and energy mix outcomes.  

Overall, only 15.7 percent (or 85 coefficients) of the estimated second-stage regressions meet the 

statistical significance threshold of p-value < 0.10. In other words, the vast majority of reforms had no 

measurable impact. A mere 4.8 percent (or 26 coefficients) of the estimated second-stage regressions 

are positive and statistically significant, so the majority of policies that had an impact were harmful to 

decarbonization.  

Consistent with the literature on the energy sector reform in developing countries (Foster and Rana 

2020; Jamasb, Nepal, and Timilsina 2017; Jamasb et al. 2005), these results point to the low 

effectiveness of renewable energy policies to achieve decarbonization of energy mix. They are also 

consistent with several of the studies identified by Peñasco, Anadón, and Verdolini (2021) that was 

summarized in Table 3.3 of the Literature Review. 

Appendix 3.6 summarizes the number of available coefficients for analysis by PIC and the energy mix 

outcomes. There are no significant regressions for CO2 pricing and monitoring, likely because of 

limited application to the countries in our sample.  
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Figure 3.3 plots a scatter of the coefficients by PIC (horizontal axis) and outcome (color), for the SSA 

region and a lag of 3. As expected, the figure suggests that coefficients related to different outcomes for 

the same country tend to cluster together. This is due to the inherent similarity of the outcome variables, 

chosen for robustness. We have circled three country examples: Kenya, Eritrea, and Angola.  

We take a moment to note that of our three fossil fuel variables, only one of them (electricity from oil 

sources) excludes natural gas. However, in some of the countries that we study, natural gas may have 

been considered a transition fuel. Therefore, lumping gas in with other fossil fuels could theoretically 

be driving the pessimistic results.  

Figure 3.3 helps us consider this possibility. As shown in the figure, the results of the PICs on fossil 

fuels (red) and renewables (blues) tend to all cluster together. Thus, a potential misclassification of 

natural gas is unlikely to be driving the counterintuitive results. 

Figure 3.3. S2 coefficients of outcomes by country tend to cluster. Scatter of S2 coefficients for SSA region including country 

labels, by PICs (x-axis) and outcomes (colors). S2 lag 3.  

  
Source: Authors’ elaboration based on the methods and data described in this chapter.  
Note: LF=Legal framework; PE= Planning for expansion; IR=Incentives and regulatory support; AI=Attributes of financial 
and regulatory incentives; NC=Network connection and use; CR= Counterparty risk. AGO=Angola; BEN= Benin; CIV=Cote 
d’Ivoire; ERI=Eritrea; KEN=Kenya. To avoid an overpopulated graph, we show one region only. Regression specification: 
RISE index, UNGA affinity IV with five years moving average. 
 

To avoid biasing the plots towards the countries for which there are several coefficients by PIC, we 

keep only one outcome coefficient at random by PIC and country in all subsequent figures and analyses, 

keeping 53 coefficients of which only 32% are positive. Appendix 3.7 shows that more than half pertain 

to the SSA region, and that lower and lower-middle income countries are equally represented. 

LF PE IR AI NC CR
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S2 results, over PIC and time 

 

In addition to the default lag of 3 years, we consider the possibility that the effect of each PIC changes 

with time and analyze lags of 5 and 7 years. Figure 3.4 shows distributional boxplots of the effects of 

each PIC aggregated across all regions. Appendix 3.8 provides the coefficients.  

Patterns from Figure 3.4 and Table 3.18, which summarizes the means of estimated second-stage 

coefficients across packages, regions, and income categories, show that all policy packages except for 

CR had consistently higher average effects over time. Moreover, PE, IR, AI, and NC overcome negative 

medians seven years after their implementation (Figure 3.4 and Table 3.18). 

Figure 3.4. Boxplot of all S2 coefficients, by PICs (x-axis), outcomes (colors), and S2 lags.  

 
Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
Note: LF=Legal framework; PE= Planning for expansion; IR=Incentives and regulatory support; AI=Attributes of financial 
and regulatory incentives; NC=Network connection and use; CR= Counterparty risk. Regression specification: RISE index, 
UNGA affinity IV with five years moving average. 
 
Table 3.18. Average effect of PIC, by S2 lag. 

Policy instrument category (PIC) 3 5 7 

Legal framework (LF) -0.66 -0.25 0.90 

Planning for expansion (PE) -2.20 0.48 3.02 

Incentives and regulatory support (IR) -0.30 -0.92 2.04 

Attributes of financial and regulatory incentives (AI) -5.35 5.48 19.17 

Network connection and use (NC) -0.08 -0.43 1.48 

Counterparty risk (CR) 0.38 -2.24 -0.67 

Source: Authors’ elaboration based on the methods and data described in this chapter. 
Note: Regression specification: RISE index, UNGA affinity IV with five years moving average. 
 

Unlike other policy packages, we note that CR has the only positive median and mean closest to 

implementation (lag 3). Its median is higher in lag 5, too (except when compared to attributes of 
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financial and regulatory incentives). CR includes government guarantees or other means to ensure the 

creditworthiness of projects procured through auctions or otherwise.  

One interpretation is that mitigating CR could have comparatively immediate effects. Another is that 

CR positively influences outcomes while supporting other PICs that take more time to have the intended 

outcomes. Either way, this result gives credence to the idea that policies that address the bankability of 

private investment in renewable energy are crucial for energy decarbonization. 

Challenging the S2 results over time 

 

Observe that our analysis of the S2 results across time relies on the assumption that methods such as 

country FE and regional panels were truly able to remove all country-specific characteristics from the 

data, making cross-country comparisons possible. Otherwise, the country sample by PIC is not 

homogenous across all lags and the interpretation of results is weaker. For instance, there are 

coefficients related to LF for Ghana only in lag 3 and for Peru only in lag 5.  

We therefore challenge our results by narrowing the comparison only to countries for which there are 

significant coefficients in all three lags. There are only nine countries that fulfill this criterion. (Figure 

3.5) plots SSA, (Figure 3.6) plots all the other regions.  

The results in the restricted sample with the relaxed assumption about our methods still point to a 

temporal dimension of effects across PICs. Examples of consistent improvements by PIC are evidenced 

in AI and IR for Kenya and Ukraine, respectively.  

Unfortunately, the small size of the data sample restricts us from reasonably averaging over PICs 

separately. However, if we average the effects of all PICs in this sample, we see increases over time 

(0.73,1.72, 3.83 in lags 3, 5, and 7, respectively). The result holds even when we remove AI for Kenya, 

which is relatively higher than the rest (in this sample, averages are 0.14, 0.24, 0.29 in lags 3, 5, and 7, 

respectively).  
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Figure 3.5. S2 coefficients, lag 3, 5, and 7 (blue, red, and green, respectively) by PIC. Only Sub-Saharan Africa.  

  
Source: Authors’ elaboration based on the methods and data described in this chapter. 
Note: LF=Legal framework; PE= Planning for expansion; IR=Incentives and regulatory support; AI=Attributes of financial 
and regulatory incentives; NC=Network connection and use; CR= Counterparty risk. To avoid an overpopulated graph, we 
show one region only. AGO=Angola; KEN=Kenya; ERI=Eritrea; NIC=Nicaragua; TUR=Turkey; UKR=Ukraine. 
Regression specification: RISE index, UNGA affinity IV with five years moving average. We separate SSA from all other 
regions to avoid an overpopulated graph. 
 
Figure 3.6. S2 coefficients, lag 3, 5, and 7 (blue, red, and green, respectively) by PIC. All regions except Sub-Saharan Africa.  

  
Source: Authors’ elaboration based on the methods and data described in this chapter. 
Note: LF=Legal framework; PE= Planning for expansion; IR=Incentives and regulatory support; AI=Attributes of financial 
and regulatory incentives; NC=Network connection and use; CR= Counterparty risk. To avoid an overpopulated graph, we 
show one region only. AGO=Angola; KEN=Kenya; ERI=Eritrea; NIC=Nicaragua; TUR=Turkey; UKR=Ukraine. 
Regression specification: RISE index, UNGA affinity IV with five years moving average. We separate SSA from all other 
regions to avoid an overpopulated graph. 
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3.6 DISCUSSION 

Achieving climate goals worldwide requires a sound understanding of how effective different 

decarbonization policies are, including in developing countries that are relatively understudied. We 

shed light on these important issues by conducting a thorough systematic assessment of how variation 

in decarbonization policy affects changes in the developing countries’ energy mix. Specifically, we 

address the following questions: How do the effects of seven major PICs on the deployment of clean 

energy technologies compare in developing countries? And, how do such effects change from the short 

to medium term after implementation, by policy category? 

The literature on PSR includes several studies applying comparable methods to similar datasets. Our 

data leverages highly disaggregated decarbonization policy indicators collected by the World Bank, and 

we account for the degree of reform and potential collinearity between policies by testing different PIC 

aggregation methods (indices). Additionally, we include time and country FE and run the regressions 

within regions to limit omitted variable bias. To address reverse or simultaneous causality between 

policies and the energy mix, we exploit different sources of arguably exogenous variation in 

decarbonization policies using three separate IV.  

Overall, we estimate thousands of indicator-instrument-outcome-level FE regressions over the panel of 

more than 100 developing countries over four decades. The scope of our data allows us to concentrate 

the analysis on developing countries, helping breach the geographical gap on the analysis of 

decarbonization policy (Peñasco, Anadón, and Verdolini 2021). 

We evaluate the robustness of indicators’ measurement, the quality of the IVs, and significance and 

direction of estimated policy-level coefficients. The results show no major measurement differences 

based on the alternatives for aggregation (indices). This allows us to conclude that the aggregation 

method used by the World Bank is robust to potential under- and overweighting problems and does not 

result in major double-counting or significant loss of other relevant information. Additionally, we find 

no major differences in the second-stage estimates by IV, which adds robustness to our identification 

approach.  

Our findings of the effects of PICs on decarbonization outcomes in developing countries are quite 

pessimistic. Only one-sixth of the PICs coefficients have even modest statistical significance, and most 

of them have the sign opposite to what one would expect. All in all, as they stand, these results seem to 

suggest that, at least within 3-7 years studied, decarbonization policies in developing countries fail to 

deliver on their goals of reducing the share of fossil fuels in their energy mix.   

The findings are not out of scope based on Peñasco, Anadón, and Verdolini (2021)’s work on developed 

countries. They may be driven by a host of interrelated issues in developing countries, including and 

culminating in an inability to secure finance (Egli, Steffen, and Schmidt 2019; Moner-Girona et al. 
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2021), despite the crucial role it plays in decarbonization (Buchner et al. 2019; Steckel et al. 2017; 

IRENA and Climate Policy Initiative (CPI) 2020; Macquarie et al. 2019).  

The importance of securing finance is in line with our results surrounding the counterparty risk PIC. 

Indeed, it is the only PICs that yields an increase of renewables in developing countries’ energy mix 

three years after implementation. This result again ties in with existing research. According to the 

review by Peñasco, Anadón, and Verdolini (2021), “due diligence of projects from commercial or 

investment banks” is crucial for the success of auctions (see Table 3.3 of this chapter) in developed 

countries. 

In addition to the relatively positive effects of policies that address counterparty risk, there is some 

further basis for optimism, as the effectiveness of PICs improves over time overall. We posit that the 

Sailing Ship Effect (Ward 1967; Gilfillan 1935) could be a potential driver for these dynamics, wherein 

the short-term effects of renewable energy policies are dampened by incumbent fossil fuel technologies. 

Despite our efforts to identify the causal relationship between PICs and decarbonization, our analysis 

is limited by the extent that our methods, through IVs and controls, can address other patterns shaping 

the energy sector in developing countries. These include, for example, changes in enforcement 

capabilities over time, which cannot be controlled by static country FE.  

Another limitation potentially driving the results is that our IVs may not completely fulfill the exclusion 

criteria. In that case, closeness to major donors as measured through foreign policy and trade IVs could 

have affected policies outside the power sector. Those non-power sector policies may in turn have had 

some effects on the energy mix. Nevertheless, we were unable to find alternative instruments and data 

that covered the breadth of geography, power sector policy, and outcomes that our research questions 

entailed. Further research may be able to consider other instruments, especially if the analysis is 

narrower in scope.  

Future research could apply our methods to convert RISE data into a panel dataset and to create and 

evaluate different indices. Future studies might want to use the World Bank WDI dataset to study 

electricity from coal and natural gas separately. The World Bank WDI also provides a breakdown of 

electricity from hydropower and “modern renewables,” whereas we bundle them together. Last, there 

is also an indicator for electricity from nuclear power.  

Last, the possibility of findings driven by interrelated factors (for instance, the effect of CR on other 

PICs) evidences the limitations of our analysis which does not allow for interactions between PICs. The 

evolving interdisciplinary analytical framework of policy mixes spearheaded by Rogge and Reichardt 

(2016) may help address this limitation. It is a descriptive conceptual framework about how policies 

and the policy-making process can be understood and is appropriate for social science research 

questions in multiple fields that consider a range of interacting policies. The limited empirical work in 
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energy based on this framework includes Schmidt and Sewerin (2019), who analyze policy mixes in 

nine developed countries (although their study does not consider policy interactions). 

3.7 CONCLUSION 

We offer the first comprehensive and systematic assessment of how each of seven policy instrument 

categories individually affect energy decarbonization. Our analysis covers just over 100 developing 

countries 3 to 7 years after policy implementation and helps breach the literature gap of coverage for 

developing countries.  

While the results of the effects of PICs on decarbonization are pessimistic overall, they suggest 

improvements over time (3-7 years), and the relative immediate strength of policies that account for 

counterparty risk. Therefore, our analysis contributes further evidence to the notion that climate finance 

in developing countries is paramount and supports the importance of industrialized countries fulfilling 

their climate finance commitments under the Paris Agreement.  

We find several venues for future research. Future research could study the same outcomes comparing 

over regions and income levels, which was beyond our research question on the PICs themselves. 

Additionally, while we establish the limited effectiveness of the PICs in achieving decarbonization in 

developing countries, the causal mechanism of this result remains unclear. Studies that utilize less 

aggregate data at the developing countries’ industry level may elucidate the effects of unobserved 

factors such as, for example, the extent to which PICs are enforced and how industry players respond 

to these policies.  

Another important direction for future research is to study the macroeconomic effects of PICs, including 

implications for productivity, entry and exit, the turnaround of capital stock, and constraints to adoption 

of low carbon energy technologies. 

Last, our results point to the possibility of complementarity and interaction between PICs. Rogge and 

Reichardt (2016)’s policy mix framework would be a pertinent future sub-stream to which the dataset 

could be applied.   
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APPENDIX 3.1. OUTCOME VARIABLES, DESCRIPTIVE STATISTICS  

Figure 3.7 and Figure 3.8 And provide an overall view of the dependent variable over time. Due to the 

scale of the data used in this paper, it is expected that country-level specifics are overlooked in these 

visualizations. The figures are meant to provide an aggregate summary, over all regions. 

Figure 3.7. Dependent variables that should be positively affected by energy decarbonization policies. 

 

 

Source: World Bank WDI database and authors’ elaboration based on the methods described in this chapter.  
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Figure 3.8. Dependent variables that should be negatively affected by energy decarbonization policies. 
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Source: World Bank WDI database and authors’ elaboration based on the methods described in this chapter. 
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APPENDIX 3.2. PRINCIPLE COMPONENT ANALYSIS (PCA) 

Principal component analysis (PCA) is a method used to reduce dimensionality in large datasets. Cubbin 

and Stern (2006) apply in the PSR context . PCA makes use of how variables relate to each other in 

their correlation matrix, summarizing the directions in which the data is dispersed (Eigenvectors) and 

the relative importance of the directions (Eigenvalues). Based on the input, PCA creates the same 

number of new variables (“components”) but orders them in decreasing amount of information 

contained. Using only the first few computed components, it is possible to both reduce dimensionality 

of the dataset and retain its information (Brems 2017).  

The default PCA analysis uses a Pearson correlation matrix. Technically, the phi statistic is suitable for 

truly dichotomous variables like ours. However, the phi statistic is equivalent to Pearson’s rho 

(Pearson’s rho=sqrt (chisquare/N)) in a 2x2 contingency table, and the output is equivalent to Cramer’s 

V, Spearman’s rho, and Pearson’s correlation (Warner 2007). Another option is to create a tetrachoric 

correlation matrix and input that into the PCA analysis. However, a tetrachoric correlation matrix 

assumes an underlying normal distribution, which does not apply to our data.  

Figure 3.9 (left) summarizes the number of components that explain 0.5-0.9 of the variation of all 

policies when we ignore the PICs they are in. At the 0.6 level, there are fewer components than there 

are RISE PICs. Nevertheless, it is hard to justify the use of PCA because its components lack meaning, 

which is essential to our research question. This is exactly the problem that Cubbin and Stern (2006) 

run into when running regressions with output from PCA analysis. They find that the principal 

components are impervious to interpretation.  

PCA is therefore useful only when variables subjected to it do not need to be understood separately. In 

our case, it makes sense to run a PCA within PICs. Figure 3.9 (right) summarizes the number of 

components needed to explain each PIC, depending on the amount of variability of the data we would 

like to keep. We find that PCA retains too many components and loses too much information compared 

to the RISE and Summation indices.  

Figure 3.9. Number of components needed (y-axis) to explain the proportion of information (color); Overall (left), by 

heading/PIC (right)  

 

 
 

 Components Reduction, % 

0.5 11 87% 

0.6 15 82% 

0.7 21 75% 

0.8 30 65% 

0.9 48 48% 
 

Source: RISE dataset and authors’ elaboration based on methods described in this chapter.  
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APPENDIX 3.3. PICS, COMPOSITE INDEX CORRELATION CUT-OFFS 

An important determinant of the behavior of results of both the Survival and Average correlation 

methods is the cut-off for what should be considered a sufficiently “high” enough correlation. The trade-

off is between retaining information or nearing the recreation of the Summation index, where each 

policy is weighed the same.  

As an additional robustness check, we run the analysis (disregarding headings/PIC) at cut-off levels 

between 0.5-0.9 for both methods to see whether there is an embedded tipping point in the data that 

minimizes cutting data and maximizes information retention. Figure 3.10 suggests the higher the cut-

off, the more variables we keep, which is expected. However, there also does not seem to be a 

unilaterally optimal cut-off point, which would have occurred if increasing the cut-off point did not 

alter the aggregate number of variables retained by the analysis, especially for the Survival method. We 

therefore choose the middle-of-the-road cutoff of 0.7. 

Figure 3.10. Number of variables/groups/headings remaining (y-axis), by cut-off point (x-axis), Survival method (dashed), 

Average method (solid) (left); data (right). 

 

Source: RISE dataset and authors’ elaboration based on methods described in this chapter. 
 

Both the Average and Survival methods may mask and compound errors. On average, at the p=0.05 

level, five out of every 100 correlations erroneously fail to reject the null hypothesis, a Type II error. If 

these variables are carried into the subsequent rounds, then the possibility of rejecting the null 

hypothesis is carried with them. 
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APPENDIX 3.4. PICS, RISE VS COMPOSITE INDEX WEIGHTS  

Table 3.19. RISE and Composite index weights used to create the PIC (independent) variables in the PIC column. 

PIC Our ID Composite RISE PIC Our ID Composite RISE 

Legal framework 

for RE 

re_1_1 1 1 

Network 

connection and 

use 

re_5_1_1 0.5 0.2 

re_1_2 1 1 re_5_1_2 0.5 0.2 

Planning for 

renewable energy 

expansion 

re_2_1_1 0.333 0.167 re_5_1_3 1 0.2 

re_2_1_2 1 0.167 re_5_1_4 0.5 0.2 

re_2_1_3 1 0.167 re_5_1_5 0.5 0.2 

re_2_1_4 1 0.167 re_5_2_1 1 0.5 

re_2_1_5 0.333 0.167 re_5_2_2 1 0.5 

re_2_1_6 1 0.167 re_5_3_1 1 0.167 

re_2_2_1 1 0.5 re_5_3_2 1 0.167 

re_2_2_2 0.333 0.5 re_5_3_3 1 0.167 

re_2_3_1 1 0.5 re_5_3_4 1 0.167 

re_2_3_2 1 0.5 re_5_3_5 1 0.167 

re_2_4_1 0.5 0.5 re_5_3_6 1 0.167 

re_2_4_2 0.5 0.5 

Counterparty 

risk 

6.1.1 ** ** 

re_2_5_1 1 0.2 6.1.1.1 ** ** 

re_2_5_2 1 0.2 6.1.1.2 ** ** 

re_2_5_3 1 0.2 6.1.1.3 **  ** 

re_2_5_4 1 0.2 6.1.1.4 ** ** 

re_2_5_5 1 0.2 6.2.1 1 0.5 

re_2_6_1 1 0.25 6.2.2 1 0.5 

re_2_6_2 1 0.25 6.3.1.1 0.25 0.03125 

re_2_6_3 1 0.25 6.3.1.2 ** ** 

re_2_6_4 1 0.25 6.3.1.3 ** ** 

re_2_7_1 1 0.333 6.3.1.4  ** ** 

re_2_7_2 0.5 0.333 6.3.2.1 0.25 0.03125 

re_2_7_3 0.5 0.333 6.3.2.2 ** ** 

Incentives and 

regulatory support 

for renewable 

energy 

re_3_1_1 0.5 0.25 6.3.2.3 ** ** 

re_3_1_2 0.5 0.25 6.3.2.4 ** ** 

re_3_1_3 1 0.25 6.3.3.1 0.25 0.03125 

re_3_1_4 1 0.25 6.3.3.2 ** ** 

re_3_2_1 0.5 0.2 6.3.3.3 ** ** 

re_3_2_2 0.5 0.2 6.3.3.4 ** ** 

re_3_2_3 1 0.2 6.3.4 0.25 0.03125 

re_3_2_4 0.5 0.2 6.3.5 ** ** 

re_3_2_5 0.5 0.2 6.3.5.1 ** ** 

re_3_3_1 0.5 0.25 6.3.5.2 **  ** 

re_3_3_2 0.5 0.25 Carbon pricing 

and monitoring 

re_7_1 0.5 0.5 

re_3_3_3 1 0.25 re_7_2 0.5 0.5 

re_3_3_4 1 0.25 

 

re_3_4_1 0.5 0.333 

re_3_4_2 0.5 0.333 

re_3_4_3 1 0.333 

Attributes of 

financial and 

regulatory 

incentives 

re_4_1_1 1 Not scored 

re_4_1_2_1 1 0.167 

re_4_1_2_2 1 0.167 

re_4_1_2_3 1 0.167 

re_4_1_2_4 0.333 0.167 

re_4_1_2_5 0.333 0.167 

re_4_1_2_6 0.333 * 

re_4_2_1 1 0.167 

re_4_2_2 1 0.167 

re_4_2_3 1 0.167 

re_4_2_4 1 0.167 

re_4_2_5 1 0.167 

re_4_2_6 1 0.167 
Source: RISE dataset and authors’ elaboration based on methods described in this chapter.  
Note: *Not scored; **Do not contain the year, cannot be used in a panel format. 
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APPENDIX 3.5. INSTRUMENTAL VARIABLES, DESCRIPTIVE STATISTICS 

Figure 3.11. Closeness to major donors through UNGA voting (top); Closeness with major donors through trade, 1995-2015, 

% of total (bottom). 

 

 

Source: Author’s elaboration based on Bailey et al. ( 2017) (top); UN Comtrade via the CEPII BACI dataset (bottom). 
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Table 3.20. Trade agreements in place with the EU Commission. 

Country Year in place Country kept in sample 

Armenia 1999 1 

Azerbaijan 1999 1 

Canada 2017 0 

Switzerland 1980 0 

Chile 2003 1 

Côte d’Ivoire 2016 0 

Comoros 2014 0 

Colombia 2013 1 

Costa Rica 2013 1 

Dominican Republic 2008 1 

Algeria 2005 1 

Ecuador 2013 1 

Egypt 2004 0 

Ghana 2016 1 

Guatemala 2013 1 

Honduras 2013 1 

Israel 2000 1 

Jamaica 2008 1 

Jordan 2002 1 

Japan 2019 0 

Kazakhstan 2016 1 

Korea 2015 0 

Lebanon 2006 1 

Morocco 2000 1 

Madagascar 2012 1 

Mexico 2000 1 

Mozambique 2016 1 

Nicaragua 2013 1 

Norway 1994 0 

Peru 2013 1 

Singapore 2019 1 

Solomon Islands 2020 1 

El Salvador 2013 1 

Serbia 2013 1 

Tunisia 1998 1 

Turkey 1995 1 

Ukraine 2016 1 

South Africa 2016 1 

Zimbabwe 2012 1 

Source: EU Commission website. 
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APPENDIX 3.6. S2 COEFFICIENTS BY PIC AND OUTCOME  

Table 3.21 shows the number of S2 eligible coefficients, by PIC and outcome, for the default lag of 3. 

There are no significant regressions for CP (CO2 pricing and monitoring), likely because of limited 

application to the countries in our sample. In lag 3, CP and AI PICs are clear leaders by the number of 

output coefficients.  

Table 3.21. Number of S2 eligible coefficients, by PICs and outcomes, lag 3. Higher numbers are green, lower are red. 

PIC FFC EFF EOS  REC REO Total 

Legal framework  1  3 2 6 

Planning  2 1 5 2 10 

Inc/reg. support 5 1  1 5 12 

Attributes of fin/reg inc 5 6 1 4 3 19 

Network conn. & use 6 4 1 2 2 15 

Counterparty risk 5 6 3 3 6 23 

Co2 price & mon.      0 

Total 21 20 6 18 20 85 
Source: Authors’ elaboration based on the methods and data described in this chapter. 
Note: Regression specification: RISE index, UNGA affinity IV with five years moving average. 
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APPENDIX 3.7. S2 COEFFICIENTS FOR ANALYSIS, BY REGION AND INCOME GROUP 

Table 3.22. Coefficients for analysis, by region. 

WB region Total S2 Positive S2 

SSA 37 11 

EAP 4 1 

ECA 9 4 

LAC 2 0 

MENA 1 1 

SAS 0 0 

Total 53 17 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
 
Table 3.23. Coefficients for analysis, by World Bank income group. 

WB Income classification Total S2 Positive S2 

Lower income 23 8 

Lower middle income 23 8 

Upper middle income 7 1 

Total 53 17 

Source: Authors’ elaboration based on the methods and data sources described in this chapter. 
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APPENDIX 3.8. S2 COEFFICIENTS FOR ANALYSIS 

Table 3.24. S2 coefficients with a p-value <0.1 with a positive S1 coefficient with a p-value<0.05 and an f-statistic>10.  

Country code PIC number PIC Region Lag 3 Lag 5 Lag 7 Income group 

AFG re_6 CR SAS  -7.289  LI 

AGO re_1 LF SSA -0.425 -0.379 -0.462 LM 

AGO re_4 AI SSA -2.175   LM 

AGO re_2 PE SSA -1.26 -3.966 -4.32 LM 

AGO re_5 NC SSA  -3.714  LM 

AGO re_3 IR SSA -1.061 -1.369 -2.39 LM 

BEN re_3 IR SSA -0.72   LI 

BEN re_2 PE SSA -0.45   LI 

BEN re_5 NC SSA -0.99 -0.875  LI 

BEN re_4 AI SSA -3.487 -2.23  LI 

BEN re_6 CR SSA -9.693   LI 

BFA re_2 PE SSA -1.58   LI 

BLR re_5 NC ECA   0.141 UM 

CIV re_2 PE SSA -30.15   LM 

CIV re_6 CR SSA 5.697 -30.13  LM 

CMR re_3 IR SSA -2.435   LM 

CMR re_5 NC SSA -0.971   LM 

CMR re_4 AI SSA -0.747   LM 

CMR re_1 LF SSA -0.286   LM 

ERI re_3 IR SSA 0.186 0.298  LI 

ERI re_5 NC SSA 3.686 6.156 4.734 LI 

ETH re_6 CR SSA 2.039 5.823  LI 

GHA re_1 LF SSA -1.838   LM 

GHA re_4 AI SSA -20.41   LM 

GHA re_5 NC SSA   3.45 LM 

GHA re_3 IR SSA  -0.813  LM 

GTM re_2 PE LAC   4.941 UM 

HND re_3 IR LAC   3.703 LM 

HND re_4 AI LAC  22.86  LM 

HND re_2 PE LAC   3.495 LM 

IND re_5 NC SAS  0.186  LM 

JOR re_6 CR MENA 0.213   UM 

KEN re_6 CR SSA 3.461 10.42  LM 

KEN re_1 LF SSA   3.234 LM 

KEN re_4 AI SSA 7.156 18.02 42.7 LM 

KEN re_2 PE SSA  13.09 30.56 LM 

KHM re_6 CR EAP 5.883 2.291  LM 

KHM re_1 LF EAP  0.752  LM 

KHM re_2 PE EAP -3.15   LM 

MLI re_3 IR SSA  -2.326  LI 

MNG re_4 AI EAP   16.27 LM 

MOZ re_6 CR SSA 2.228   LI 

NIC re_5 NC LAC -1.338 -1.114 -1.035 LM 

PER re_5 NC LAC -0.731 -3.558  UM 
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Country code PIC number PIC Region Lag 3 Lag 5 Lag 7 Income group 

PER re_6 CR LAC   -4.356 UM 

PER re_1 LF LAC  -1.126  UM 

PER re_2 PE LAC   -5.535 UM 

PHL re_6 CR EAP -0.237   LM 

PNG re_2 PE EAP -1.106   LM 

RWA re_1 LF SSA -4.178   LI 

RWA re_3 IR SSA -2.45   LI 

RWA re_4 AI SSA -29.26   LI 

RWA re_2 PE SSA   -2.988 LI 

RWA re_6 CR SSA -2.035   LI 

SLE re_1 LF SSA 3.042   LI 

SLE re_2 PE SSA 24.85   LI 

SRB re_2 PE ECA   0.891 UM 

SRB re_3 IR ECA  -1.752  UM 

SRB re_4 AI ECA -4.124 -6.939  UM 

SRB re_1 LF ECA  -0.26 -0.0761 UM 

TGO re_3 IR SSA 3.989   LI 

TGO re_6 CR SSA 11.21   LI 

TUR re_1 LF ECA -0.271   UM 

TUR re_5 NC ECA -0.135 -0.12 0.0946 UM 

TUR re_2 PE ECA   -0.753 UM 

TUR re_6 CR ECA -0.653 -1.146 -0.843 UM 

TUR re_4 AI ECA -1.125 -2.584 -1.457 UM 

TZA re_3 IR SSA  -2.471  LI 

TZA re_6 CR SSA -14.97   LI 

TZA re_2 PE SSA -8.044 -8.614  LI 

UGA re_6 CR SSA -0.187   LI 

UGA re_4 AI SSA -0.487   LI 

UGA re_3 IR SSA -0.287 -0.212  LI 

UKR re_4 AI ECA 1.175 3.733  LM 

UKR re_2 PE ECA 1.102 1.43 0.889 LM 

UKR re_6 CR ECA 2.362 4.384 3.203 LM 

UKR re_3 IR ECA 0.415 1.3 4.794 LM 

Source: Authors’ elaboration based on the methods and data described in this chapter. 
Note: Regression specification: UNGA IV; 5 year moving average; RISE index. LF=Legal framework; PE= Planning for 
expansion; IR=Incentives and regulatory support; AI=Attributes of financial and regulatory incentives; NC=Network 
connection and use; CR= Counterparty risk. KEN=Kenya; ERI=Eritrea; CIV=Cote d’Ivoire; AGO=Angola; BEN= Benin. 
AFG=Afghanistan; AGO=Angola; BEN=Benin; BFA= Burkina Faso; BLR=Belarus; CIV=Cote d’Ivoire; CMR=Comoros; 
ERI=Eritrea; ETH=Ethiopia; GHA=Ghana; GTM=Guatemala; HND=Honduras; IND= JOR=Jordan; KEN=Kenya; 
KHM=Cambodia; MLI=Mali; MNG=Mongolia; MOZ=Mozambique; NIC=Nicaragua; PER=Peru; PHL=Philippines; 
PNG=Papua New Guinea; RWA=Rwanda; SLE SRB=Serbia; TGO=Togo; TUR=Turkey; TZA=Tanzania; UGA=Uganda; 
UKR=Ukraine. 

  



 

139 

 

4 CHAPTER 4: THE EVOLUTION OF TRADE IN 30 ENERGY 

TECHNOLOGY MATERIALS SPANNING TRADITIONAL AND 

CLEAN TECHNOLOGIES AND ITS IMPLICATIONS 

 

Abstract 

 

Deep energy decarbonization will require a shift in the materials used in energy technologies, or energy 

technology materials (ETMs). Many existing ETM studies are motivated by perceived supply chain 

vulnerabilities or potential reserve shortages from the point of view of importers of ETMs. The effect 

of changing demand on exporters of materials is relatively less explored, but still relevant to 

competitiveness, growth, and other economic priorities that coexist with climate change goals in both 

developing and developed countries.  

We ask whether there are ETM products (and product groups) that exhibit characteristics in growth, 

volatility, and importer and exporter concentration in trade value and volume from 1999-2018 that are 

beneficial to exporters, and what the policy implications of these metrics may be. The product groups 

we study are: clean and traditional materials, and unrefined and refined materials. 

To do this, we systematically isolate and categorize 30 relevant traded products in UN Comtrade, an 

open-access dataset of bilateral trade flows spanning more than two decades, five thousand products, 

and almost all countries. The product codes and product group definitions can be re-used by other 

researchers willing to undertake an ETM study with trade data. We establish the direction of each metric 

that benefits exporters and identify and interpret existing trade trends, employing parametric and non-

parametric inferential statistical methods where appropriate.  

We find that, of the 30 products, lithium carbonate (used in rechargeable batteries) exhibits the most 

beneficial metrics for exporters over time. Additionally, among other results, clean energy and refined 

materials are disproportionately represented in the high-performing products for exporters, compared 

to traditional and unrefined materials that developing countries tend to export more frequently. 

Although there are some subtleties, if trends continue, the results make a case for directed policy 

attention towards enhancing clean and refined ETM trade and capabilities in developing countries, 

although we discuss other policy options. 

4.1 INTRODUCTION 

By 2050, the “Middle of the Road” Shared Socioeconomic Pathway used as input to the IPCC 6th 

Assessment Report conservatively predicts that modern renewables will grow to about 10% of world 

energy supply from about their current 6%. Oil and gas will stay relatively constant, from about 57 to 

58% (Riahi et al. 2017). As a result, even without accounting for Paris Agreement targets, oil and gas 

are likely to cede relative magnitude in world trade to materials (a general term that refers to the matter 

from which a thing is or can be made) for technologies that convert primary renewable sources (wind, 

solar, etc.) into secondary energy sources (electricity, heat, etc.), such as Rare Earth Elements (REE) 

for wind turbines. If we were to align with the Paris Agreement, then the Sustainable Development 

Scenario of the IEA predicts that oil and gas will need to decline to just over 20% of total energy supply 

(IEA 2020d), thereby reinforcing the change to occur in energy technology materials (ETM) markets.  

Climate goals coexist and interact with other policy priorities. These include boosting economic 

competitiveness and development, as well as maintaining fiscal sustainability (Anadón, Chan, et al. 
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2016; IPCC 2001; Mazzucato 2018; IMF 2019), in which a country’s export base plays a central role. 

For the first time, we use trade data to interpret changes in the value and volume of traded products, 

defined as materials that cross country boundaries, and product groups along ETM supply chains. We 

ask: How have the characteristics of growth, volatility, and importer and exporter concentration in trade 

value and volume evolved for the products in the two decades between 1999-2018? What are the 

products (and product groups) that exhibit characteristics that are more beneficial to exporters? 

In line with the policy priorities discussed, we interpret the trends from the point of view of main 

exporters and include both developed (defined here as those that are classified as both World Bank 

high-income and OECD members) and developing countries in our analysis, overall between 1999-

2018 and comparing Decade 1 (1999-2008) and Decade 2 (2009-2018). We look in detail at major 

exporters, defined as those either within the top five in total value for a certain good during the 20 years, 

or those included in the cumulative top 90% of exporters, whichever comes first. 

Considering the Paris Agreement targets, the related literature on supply chains, availability, and 

geopolitics of EMTs is blossoming. We frame our study within three inter-related existing ETM 

research streams: (1) Criticality studies (e.g. Erdmann and Graedel (2011), Achzet et al. (2013)); (2) 

Reserve and resource models (e.g. Speirs et al. (2014) and Olivetti et al. (2017)); and (3) Resource 

governance (e.g. Lee et al. (2020), and Sovacool (2019)).  

The first stream is focused on understanding the extent to which developed countries may face 

challenges of mineral (defined by the United States Geological Survey, USGS, as “naturally occurring 

inorganic elements or compounds with an orderly internal structure and characteristic chemical 

composition, crystal form, and physical properties” (USGS 2021)) supply for their own industrial 

activity. The second is concerned with modeling reserves and resources necessary for different energy 

decarbonization scenarios. Data used for both streams includes production, consumption, reserves, and 

prices at international exchanges. The third stream discusses the complex relationship between exports 

and governance. To our knowledge, our work is the first one to ask whether there are existing 

discernable trade patterns over ETM products that can guide the intersection between climate, energy, 

and industrial policy for countries. 

To this end, we first systematically identify 17 materials from the existing ETM literature and map these 

onto 30 traded products available in UN Comtrade, a comprehensive open-access dataset of bilateral 

trade flows spanning more than two decades, five thousand products, and hundreds of countries (UNSD 

2020). While the dataset is already widely used, to the best of our knowledge it has not been employed 

to study the evolution of trade in traditional and clean ETMs over time, except in a study by Galeazzi, 

Steinbuks, and Cust (2020) (topically related but not part of the dissertation and presented and 

summarized in the introductory chapter of this dissertation), and a descriptive industry report by UN 

Comtrade (only on products related to lithium-ion batteries and only 2010 onwards, from the point of 



 

141 

 

view of importers and criticality) (UNCTAD 2020). The product code list may therefore be useful to 

other researchers willing to undertake subsequent ETM studies as broad as ours with trade data. 

Having identified relevant UN Comtrade products, we categorize them according to their: 1. Role in 

energy decarbonization (Classification 1) and 2. Level of refinement (Classification 2). Under 

Classification 1, products are either Clean Energy Materials (CEMs) or Traditional Energy Materials 

(TEMs, or those that facilitated the energy paradigm of the 19th and 20th centuries). We place platinum 

group metals in TEMs due to their historical role in internal combustion engines, though we 

acknowledge and discuss their future uses under CEMs. Under Classification 2, products are either raw 

ore and concentrates (Ocs, defined as “the naturally occurring material from which a mineral or minerals 

of economic value can be extracted” (USGS 2016), or refined metals and chemicals (MCs). We compare 

groups within the same classification (CEMs versus TEMs and Ocs versus MCs), or the same group 

over time (CEMs in Decade 1 versus CEMs in Decade 2). 

Classification 2 shows how our perspective expands existing literature, which is mostly focused on 

minerals. We consider that each ETM is related to a range of traded products that involve different 

country exporters along the way. For example, an increase in the demand for “cobalt” for use in lithium-

ion batteries will impact trade in minerals (unrefined cobalt ores and concentrates), and a range of 

refined chemicals derived from cobalt (cobalt oxide/hydroxide and cobalt metal). While existing 

literature discusses the implications related to the Democratic Republic of the Congo, (a major exporter 

of unrefined cobalt ores), we show that Europe and China surpass it in exporting cobalt chemicals, and 

include this in our discussion.  

As the first study using historical trade data in the ETMs literature over all countries, we analyze and 

compare the following metrics: average of yearly growth rates of trade value, the volatility of growth 

in trade value, and the importer and exporter market concentration in trade volume (akin to the export 

and import market concentration index. We also identify major exporters by product, defined above. 

For the average growth and volatility analysis, we use parametric and nonparametric tests of statistical 

significance to gauge whether the differences in these metrics between groups and over time may be 

due to chance. For the importer and exporter concentration and major exporters analysis, we study 

changes over time dynamically (i.e., Decade 2 minus Decade 1). 

Finally, we synthesize the results. Our interpretation of the results rests on the assumption that exporters 

benefit from exporting products that display high growth but low growth volatility in trade value 

(Renner and Wellmer 2019; McCullough and Nassar 2017). Exporters also benefit when products are 

highly concentrated over exporters (supply) and unconcentrated by importers (demand) in value. We 

discuss these assumptions with greater nuance in the Literature Review and Methods sections.  

Our main results suggest that overall changes that occurred between Decades 1 and 2 have been 

unfavorable to exporters of ETMs. Growth rates were generally lower in Decade 2, and the statistical 
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tests we ran to compare these metrics overall and within groups (e.g., CEMs in Decade 1 versus CEMs 

in Decade 2) imply that the differences are unlikely to be due to chance. In the Discussion, we consider 

why this might be and how this differs from what we expected given the existing literature. 

Additionally, in the dynamic analysis of concentration, there was an overall change towards exporter 

dispersal and importer concentration, exactly the opposite of what would benefit major exporters.  

Second, CEMs are disproportionately represented in the products with high growth rates in Decade 2, 

a trend that mostly benefits developed countries. Our exporter analysis confirms existing literature 

indicating that major developed exporters of TEMs tend to be major exporters in other ETM products. 

However, developing TEM exporters tend to have less export diversification. This brings to the fore the 

importance of continued efforts in strengthening governance and capabilities for large developing TEM 

exporters.  

We also take a sub-sample of top-performer “notable” products. The sub-sample combines those with 

high growth during Decade 2, favorable importer and exporter concentration during 1998-2018, and 

favorable changes in importer and exporter concentration in the dynamic analysis. We find that MCs 

are overrepresented within “notable” products (as well as in the smaller group of top growth products 

in Decade 2). Additionally, our exporter analysis supports existing literature on industrialization and 

development, showing that developed countries tend to specialize in MCs (Behrens et al. 2007). 

Therefore, in line with the result pertaining to TEMs above, this leads us to argue that without 

coordinated, holistic, and sustained policy, it is likely that developed countries will benefit 

disproportionally from trade in ETMs in the transition towards decarbonized energy.  

Third, we further identify the specific major exporters that stand to benefit the most from the trends in 

notable products: 1. The European Union (EU), because it is a major exporter in all the notable products 

(which is expected given the size of the trading bloc); 2. China, because it holds the highest average 

market share rank across all notable products; and 3. The United States (US), which plays a higher role 

in the notable products than in the overall sample, although we discuss subtleties. Of the 30 products, 

lithium [carbonate] exhibits the most beneficial trade patterns, putting its major exporters (Chile, 

Argentina, the European Union, and China) in a favorable position as energy decarbonization continues. 

Our conclusions support the broader existing literature on the importance of efforts to create managed 

co-benefits of energy decarbonization in developing countries (Deng et al. 2018). We note that trade is 

only one of several issues related to ETMs. We encourage further research to explore the connection of 

ETM trade with topics such as the human rights implications of mining and domestic recycling that are 

outside the scope of our research questions. 

Section 2 reviews relevant ETM literature and lays out the research questions; Section 3 details the 

methods we employ; Section 4 reviews the data; Section 5 presents the results; Section 6 presents the 

results; Section 7 discusses the results and limitations, and Section 7 concludes.  
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4.2 LITERATURE REVIEW 

We consider three interrelated existing streams of research: 1. Criticality studies, 2. Reserve and 

resource models, and 3. Resource governance, and conclude with the key research questions that emerge 

as a result. 

Given that the three literature streams span national security, supply chains (management and industrial 

organization), resources and reserves (geology), and governance, the papers and reports across these 

areas refer to different but related terms (like materials, raw materials, minerals, non-fuel minerals, raw 

minerals, commodities, metals, minor metals, major metals, etc.). A useful discussion comparing the 

listed terms can be found in Chapter 1 of the Critical Materials Handbook by Gunn (2014). To keep 

the review manageable and focused, we refer to materials and minerals using the definitions provided 

in the introduction. When necessary, we introduce and define new terms used in specific studies.  

4.2.1 Criticality assessments: focus on vulnerability to supply disruptions 

In the past decade, the need to understand the dynamics and implications of decarbonization on energy 

technology supply chains has become increasingly clear. In 2010, China honored existing export quotas 

for rare earth elements (REE) due to a conflict with Japan, and the world saw the price impacts of an 

interruption of ETMs (the underlying factors are more complex and discussed in detail in Renner and 

Wellmer (2019)). The disruption galvanized policy attention to ETMs, amongst other things, to the 

creation of the U.S. Department of Energy Critical Materials Institute in 2013 to “assure supply chains 

of materials critical to clean energy technologies”  (Speirs, Houari, and Gross 2013).  

Though they have been used for decades outside of the premise of the energy transition, “criticality” 

assessments dominate the ETM literature (Glöser et al. 2015). These assessments evaluate “the 

economic and technical dependency on a certain material, as well as the probability of supply 

disruptions, for a defined stakeholder group within a certain time frame” and tend to plot materials on 

a ‘criticality matrix’ where the risk of disruption in supply is plotted against the impact of that disruption 

(Schrijvers et al. 2020; Brown 2018). Such visualizations serve as an “early-warning” device and advise 

policymakers on priorities for basic research and development in material substitutes, processing, 

exploration, recycling, and more (Gunn 2014; Graedel et al. 2015; McCullough and Nassar 2017).  

Criticality studies have usually been commissioned by institutions in large developed countries and 

each has its own methods (Speirs, Houari, and Gross 2013). Examples include National Research 

Council (2008) and Department of Energy (2011) in the United States; and Resnick Institute (2011) and 

European Commission (2010) in the European Union, although there are more “international” 

perspectives, like UNCTAD (2020) on lithium-ion batteries. 

ETM criticality assessments are also published in peer-reviewed journals. As opposed to government 

reports, peer-reviewed criticality assessments often: 1. Expand the geographical focus, 2. Compare 
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results between assessments, and 3. Evaluate the suitability of different methodologies. These include 

Erdmann and Graedel (2011), Achzet et al. (2013), Dewulf et al. (2016), Brown (2018), Glöser et al. 

(2015), Zhang, Kleit, and Nieto (2017), and Nuss et al. (2014).  

Measuring concentration 

Although the methods behind criticality studies are diverse, there are some unifying themes. For 

instance, criticality assessments assume that high production concentration increases the risk of supply 

disruption for importers. The rationale is that exporter market power and competition for access 

between importers may cause prices to rise or become more volatile, making investments and future 

planning costly (De Groot et al. 2012).  

Concentration is also a focus of this dissertation chapter. However, as opposed to criticality studies, we 

use export quantity instead of production, because that is what is possible with our data. Observe as 

well that we take the opposite (exporter) perspective because we are interested in finding product 

characteristics that are beneficial for major exporters. We assume that a high exporter concentration 

translates to greater market power allowing for exporters to set terms of trade, as per standard trade 

theory (although to capture benefits, this must be coupled with stable growth in export value, which we 

discuss further in the Methods section). 

Based on a methodological review for all markets by Acar and Bhatnagar (2003), Brown (2018) applies 

and compares seven concentration metrics by decades over the past century in five materials (fluorspar, 

lithium, coal, copper, and nickel). The aim is to understand what concentration metrics researchers on 

should use.  

Brown (2018)’s central argument is that “simple” metrics compared over decades should be the best 

practice in criticality assessments. We also apply simple metrics here. Metrics tend to communicate 

more information than other more sophisticated concentration metrics calculated at only one point in 

time, as is often practiced in criticality assessments. Brown’s results are summarized in detail in Table 

4.1. 
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Table 4.1. Summary and comparison of concentration metrics used in criticality studies and evaluated in Brown (2018). 

Index 
Metric and 

reference 
Description Brown (2018) discussion Calculated 

1 
Number of 

producers 

The number of existing 

producers 

Does not consider the size of producers 

relative to the total amount produced.  

Calculated for 

the HHI, but not 

discussed 

2 
Percentage of the 

dominant producer 

Percentage of the 

dominant producer 

Can only communicate information on 

the largest producer.  

Calculated and 

displayed, but 

only for the 

exporter analysis 

3 Concentration ratio 

Sums the market share 

(percentage of total) of 

the top producers 

Naturally closer to 100% when there 

are fewer producers. Increasing the 

number of producers included in the 

calculation will result in higher 

percentages so the selection of how many 

is particularly important. Brown (2018) 

finds it is similar to the HHI (see next 

line). 

Calculated and 

displayed, but 

only for the 

exporter analysis 

4 

Hirschman-

Herfindahl Index 

(HHI) based on 

Hirschman (1945) 

and  (Herfindahl 

1951) 

Sums the square of the 

market share of each 

market player.  

Fully discussed in the Methods section. 

It is sensitive to the number of producers, 

and the result should be compared to the 

minimum possible for the number of 

players in the market. Monopolistic=0.25; 

Less concentrated=lower, minimum 

depends. 

Calculated as a 

measure of 

concentration 

5 

Normalized 

Hirschman -

Herfindahl Index 

(HHI*) 

Normalizes the HHI to 

the number of players.  

Does not adequately capture changes in 

the number of producers. Where the 

number of producers changes over time, 

there is a clear disadvantage to using 

HHI*. Monopolistic=1; Complete 

competition=0. 

No 

6 

Kwoka’s 

Dominance Index 

(Kwoka 1977) 

Sum of the squares of 

market share 

differences when 

producers are ranked 

by size.  

Measures ‘inequality’ in the size of 

companies within a market. Like HHI, it 

is sensitive to the number of producers, 

and the result should be compared to the 

minimum possible for the number of 

players in the market. 

High inequality=1; equality=lower 

No 

7 
Entropy measure of 

diversification 

Sum of the 

multiplication of the 

market share of each 

producer by the 

logarithm of that 

market share, 

multiplied by negative 

one 

Compared to the rest, measures 

diversity, not concentration. Like HHI, 

it is sensitive to the number of producers, 

and the result should be compared to the 

maximum possible for the number of 

players in the market. 

High diversity=maximum; low 

diversity=0. 

No 

Source: Author’s elaboration based on Brown (2018). 
 

As noted in the right-most column of Table 4.1, we calculate and/or discuss Indices 1-3 in this chapter, 

but outside the context of concentration. For the purposes of concentration, we use the most popular 

concentration metric, the un-normalized Herfindahl-Hirshmann index (HHI) (Index 4 in Table 4.1). It 

is less specialized than Kwoka’s Dominance Index and the Entropy Measure of Diversification (Indices 

6 and 7 in Table 4.1). The HHI also captures more information than, and has a high correlation to, the 

Concentration Ratio that Brown (2018) endorses (Index 3 in Table 4.1).  
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The ETM literature widely uses the HHI in criticality reports. As examples, see European Commission 

(2010, 2014), and Habib, Hamelin, and Wenzel (2016), who map primary ferrous, non-ferrous, 

precious, and specialty metals production in 1994 and 2013, finding a shift from developed economies 

to developing economies over this time period. We fully explain the application of the HHI in the 

Methods section of this chapter.  

4.2.2 Resource/reserve assessments and market models 

Another complementary ETM research stream deals with the availability and distribution of physical 

availability (resources), commercially viable resources (reserves), and production.  

The Energy Transition Institute (2017) and Gruber et al. (2011) are examples of the large literature on 

resource assessments comparing estimates of future demand with the physical availability of ETMs. 

As opposed to resource assessments, reserve assessments consider economic variables like production 

ability and recyclability. Examples of reserve assessments in the ETM space include Speirs et al. (2014) 

and Olivetti et al. (2017). Conclusions vary, Reuter et al. (2014) and Weil et al. (2018) conclude that 

lithium and/or cobalt markets could face supply constraints, but find these alleviated under time-varying 

assumptions of technology innovation in materials recycling or the development of substitute 

technologies. Others, like Narins (2017) take a more nuanced approach, pointing to the importance of 

the quality, not the quantity of metals, deeming there is the possibility of short, if not long-term, supply 

disruptions.  

World Bank (2017) calculates the material demand expected to achieve the 2 degree, 4 degree, and 6 

degree global warming targets for many technologies. Amongst other analyses, World Bank (2020) 

presents the results of an estimation of global demand growth to 2050 by ETM, according to the IEA 

Sustainable Development Scenario (SDS), with at least a 50% chance of limiting the average global 

temperature increase to 2°C by 2100. The difference between World Bank (2017) and World Bank 

(2020) and many other assessments that attempt to predict demand (e.g. Watari et al. (2019)) is that like 

us they consider the role that all world regions will play in supplying materials for all renewable energy 

technologies. 

Note that while resource, reserve, and demand assessments may aid in short-term public and private 

sector planning, the economics literature on exhaustible resources has successfully posited in theory 

and subsequent empirical analysis that demand and supply do not exist independently of each other. In 

a study of mineral imbalances over the last 100 years, Renner and Wellmer (2019) find that “short-term 

market imbalances are generally neutralized by a dynamic reaction on the demand side via substitution, 

efficiency gains or technological change.” 

Along these lines, some studies have estimated the future demand and supply of ETMs dynamically. 

Methods include spatial-temporal multi-product allocation, partial equilibrium models, and agent-based 



 

147 

 

models. For instance, Zhang, Kleit, and Nieto (2017) present a bottom-up analysis of rare earth flows 

using agent-based modeling, which features interacting but autonomous agents in complex systems.  

Other relevant work includes Labys and Yang (1991), Macal and Hill (1985), and Andriamasinoro and 

Angel (2012). These empirical and focused assessments show that while geopolitical supply risk should 

attract some concern from specific governments and industries, globally and in the long run, price 

signals and technological advances often circumvent physical shortages.  

This result does not necessarily undermine criticality assessments, but highlights their role in “early-

warning” screening (McCullough and Nassar 2017). Indeed, Solow (1974) notes that exhaustible 

resource pricing, demand, and supply depend on the “ease with which other factors of production […] 

can be substituted for exhaustible resources in production”. And, while technological innovation is 

notoriously hard to predict, moments of acute prices can spur innovation within firms, in a process 

called “induced innovation” where “a change in the relative prices of the factors of production is itself 

a spur to invention, and to invention of a particular kind—directed to economizing the use of a factor 

which has become relatively expensive” Hicks (1932). Therefore, an example of endogeneity between 

innovation and perceived (or real) bottlenecks are the very efforts by developed countries to identify 

and substitute away from the materials that are most “critical.” 

Long-term evidence for induced innovation in the broader energy sector exists too. Fouquet (2015) uses 

500 years of data for non-renewable energy resource use in the United Kingdom and finds that 

innovation, due to price increases, appears as the ultimate non-exhaustible resource. Popp (2002)’s 

seminal paper finds a strong and positive impact of energy prices on innovation.  

Overall, while criticality, resources, reserves, and forecasting studies have contributed to an 

understanding of dynamics behind several ETM markets and actions that can help prepare supply chains 

for short-term disruptions, there is evidence that market forces tend to lead to innovation and bypass 

long-term shortages (Renner and Wellmer 2019). Our work contributes to our understanding of what 

countries are poised to benefit from energy decarbonization by assuming this endogeneity and focusing 

instead on relative benefits across different geographies from trade trends in ETMs in general and 

groups of ETMs (with a particular focus on CEMs vs TEMs and Ocs versus MCs) between 1998-2018. 

4.2.3 Resource governance 

Governance, defined as “the traditions and institutions by which authority in a country is exercised 

[…including] the capacity of the government to effectively formulate and implement sound policies” 

(World Bank 2021b) is central to and imbedded in ETM criticality literature. That literature infers that 

countries with low governance can generate supply shocks in importer countries (Bazilian 2018). 

Vulnerability to supply shocks leads Ali et al. (2017) to suggest a need for “environmental diplomacy” 

and a “planetary policy for metals.”  
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Renner and Wellmer (2019) question the “seller’s market” narrative. They find that “neither high 

country concentration nor poor governance seem to have a substantial or lasting impact on market 

balance” except in some contained examples with limited market impacts. They even find a “tendency 

of diminishing volatility with increasing country concentration.”  

Instead, they posit that demand-side volatility has had noxious effects on exporters themselves. 

Demand-side price volatility interacts with the infamous Dutch Disease (in which, amongst other 

effects, real exchange appreciation from resource exporters weaken the country’s export 

competitiveness and industrial sectors) (Frankel 2012). Therefore, the importance of effective ETM 

governance can: (1) be framed around the benefits it provides to exporters; and, (2) links to the larger 

literature on governance in resource-rich countries.  

Common policy suggestions include export diversification and turning mining (unrefined products, 

Ocs) into manufacturing (including refined products, MCs). However, challenges include a lack of 

skilled labor and technological gaps, in addition to the macroeconomic challenges discussed above 

(Frankel 2012; Renner and Wellmer 2019). Other options include establishing a local industry around 

the extractive sector and using it for skilled knowledge development and an expansion of services 

(Renner and Wellmer 2019).  

Renner and Wellmer (2019) make a distinction between minor metals (e.g., gallium, which may occur 

alone or coupled with others) and coupled elements (e.g. rare earth elements and platinum group metals 

that occur together in deposits), on the one hand, with major metals (e.g. copper, lead, zinc, and tin) on 

the other. In the case of minor and coupled elements, volatility and technological change may fail to 

translate into long-term demand, and fiscal returns from export taxes and royalties may be the extent of 

resource benefits to exporters.  

Despite the issues that the burgeoning ETM literature has already touched upon, there is (yet) no study 

that attempts to answer questions on the changing characteristics of growth, volatility, and importer and 

exporter concentration in trade value and volume across the technologies that will play a role in energy 

decarbonization using historical data between 1999-2008, identifying patterns over groups and 

products.  

The relationship between governance and institutional capacity and the evolution of competitiveness 

and exports is a rich area of literature. While this study does not try to explain the drivers behind the 

trends, it lays the groundwork for future governance research by trying to explain the key patterns that 

may be linked and driven by various governance characteristics.  
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4.3 METHODS 

Our methods consist of four parts. First, we refer to the existing ETM literature to select the most 

relevant energy technology materials according to pre-set requirements. Second, we match the key 

materials to the list of traded products (another non-trivial task). Third, we generate the product groups 

according to Classifications 1 and 2 introduced above. Fourth, we calculate the metrics for the analysis 

subject them to robustness checks with statistical tests. 

4.3.1 Selecting relevant ETMs  

The ETM literature covers a vast set of materials, and the selection of ETMs included in each study is 

a function of the subject of analysis (for instance US criticality assessments select the ETMs that are 

relevant to US industry). World Bank (2020) is our main source of eligible ETMs. This is because the 

publication considers a wide range of energy technologies, it has a global outlook, and it is timely.  

While World Bank (2020) contains several analyses, the most relevant to us is an estimation of global 

production growth to 2050 by ETM, according to the IEA Sustainable Development Scenario (SDS), 

with at least a 50% chance of limiting the average global temperature increase to 2°C by 2100. Table 

4.2 summarizes estimates for growth of demand in 2050 in comparison to 2018as well as the relevant 

energy technologies for each ETM. 

To focus on the materials most likely to play a non-negligible role in the coming decades, we follow 

two criteria. Criterion 1: materials with an estimated non-negligible increase in annual demand, defined 

as at least 30%. Criterion 2: materials used in more than five technologies. Criteria 1 and 2 identify 13 

materials located above the horizontal line in Table 4.2. The technologies in which the materials are 

found are marked in green.  

These two criteria ensure that our sample is comprehensive (Criteria 1 alone leads to eight materials) 

while excluding materials with negligible changes and roles in energy decarbonization. If we were to 

increase the stringency of the criteria, for instance increase Criteria 1 to 50%, the results would not 

change drastically. In that case, we would exclude neodymium. This is a rare earth element that is 

included in the sample through another route, explained below. 
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Table 4.2. Materials analyzed in World Bank (2020), including their projected annual demand from energy technologies as a 

percent of 2018 annual production, the technologies in which materials are used, and whether they were selected (green) or 

not selected (grey). 

  
Source: Adapted from World Bank (2020) Tables 3.1 and B.2. 
Note: *2050 projected production from energy technologies to achieve under 2DS*, % of 2018 annual production. ** 
Information for iron and zinc are incomplete in the source. CCS= carbon capture and storage. 
 

We extend our ETM sample past World Bank (2020) in several important ways and identify a total of 

17 materials, shown in Table 4.3. First, observe that the World Bank (2020) excludes some ETMs (like 

rare earth elements including dysprosium, cadmium, tellurium, selenium, gallium) covered in other 

publications such as National Research Council (2008) and Department of Energy (2011) based on the 

United States. We include these materials in our analysis because of the way trade data is aggregated, 

fully explained below.  

Second, note from Table 4.2 that World Bank (2020) considers minerals that are crucial for the use of 

oil, gas, and coal technologies (including carbon capture and storage), but not fossil fuels themselves. 

Due to our research question on the different groups of ETMs, we include oil and gas in our analysis. 

We  exclude coal for two reasons: (1) the IEA SDS shows a marked phase-out of coal in several regions 

in accordance with government policies, and this decline is larger than the decline of other fossil fuels; 

and, (2) in comparison to other materials in this section, coal tends to be consumed domestically and 

the SDS forecasts that trade will decrease even further due to large coal regions primarily in Asia, led 

by India and China, prioritizing internal demand (International Energy Agency (IEA) 2020d). 

Last, we expand the materials used for oil and gas by considering platinum group metals (PGMs), which 

consist of platinum, palladium, rhodium, iridium, ruthenium, and osmium. While PGMs have a variety 

of uses today, half of their use is in catalytic converters for internal combustion engines. A smaller use 

of PGMs is as catalysts to create high-octane gasoline for cars from crude oil (Renner and Wellmer 

2019). They also help improve the quality of hydrocarbons through processes like hydro processing and 
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1 Graphite 494 1

2 Lithium 488 1

3 Cobalt 460 3

4 Indium 231 2

5 Vanadium 189 3

6 Nickel 99 8

7 Silver 56 3

8 Neodymium 37 1

9 Lead 18 5

10 Molybdenum 11 7

11 Aluminum 9 5

12 Copper 7 9

13 Manganese 4 6

14 Chromium 1 8

15 Titanium 0 5

16 Iron** 1 2

17 Zinc** 5
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hydrocracking (Shaffer 2015). Throughout the text, we acknowledge and consider the fact that PGMs 

are also present in hydrogen fuel cells. Eventually they could become CEMs. 

As the following sections will demonstrate, our ETM selection process makes it possible for us to 

explicitly compare trade trends between CEMs and TEMs across countries, as well as between refined 

and raw materials. In turn, it allows us to extract conclusions of short to medium-term impacts (or 

winners and losers) from the energy transition given historical trends as measured by key trade 

indicators. 

Table 4.3. Final materials selection. Check=Sourced from World Bank (2020). X=Explained in the text. 

Number Materials 
Sourced from 

World Bank (2020) 

1 Graphite ✓ 

2 Lithium ✓ 

3 Cobalt ✓ 

4 Indium ✓ 

5 Vanadium ✓ 

6 Nickel ✓ 

7 Silver ✓ 

8 Neodymium ✓ 

9 Lead ✓ 

10 Molybdenum ✓ 

11 Aluminum ✓ 

12 Copper ✓ 

13 Manganese ✓ 

14 Rare earth elements X 

15 Oil X 

16 Gas X 

17 Platinum group metals X 

Source: Author’s elaboration based on the methods described in this chapter and World Bank (2020).  
 

4.3.2 Selecting trade products and generating product groups 

Methods for selecting relevant trade data 

 

As briefly discussed in the introduction, we define materials as descriptive categories that contain a 

range of physically traded products.  

When materials are traded, national custom offices log and classify them according to several pre-

established international and national product nomenclatures. The UN Statistics Division (UNSD) 

gathers and standardizes self-reported annual customs data from over 170 countries since 1995 using 

two international trade product nomenclatures: the Harmonized System (HS) and the Standard 

International Trade Classification (SITC) (UNSD 2020). In this study, we use the HS nomenclature 

because it provides a more disaggregated product differentiation for our materials compared to the 

SITC.  

The HS nomenclature is updated every four to five years to keep up with technological and other 

changes. In addition to compiling yearly data, the UNSD also converts the data reported in the most 

recent nomenclature into each previous nomenclature. Therefore, the longest data series is reported in 
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the first HS version, called “HS 1992.” The agency then converts all data reported by customs offices 

into metric tons (quantity) and current US dollars (USD) using exchange rates from customs offices 

(value). The data is accessible to all through the United Nations International Trade Statistics Database, 

also called UN Comtrade.  

Despite the invaluable information provided by UNSD, data reported by customs is not checked for 

errors. There are several discussions of the size and effects of such errors. The methods of the Terms of 

Trade indicators used in the Integration and Trade Department of the Inter-American Development 

Bank contain an in-depth review of trade data errors (Galeazzi 2015). Additionally, in UN Comtrade, 

import data is reported in CIF format (which includes cost, insurance, and freight), and export data is 

reported in FOB (free on board) format. Usually, the researcher chooses the data format most aligned 

with the research question (here, we would use FOB).  

A second database, the Database for International Trade Analysis (BACI), published yearly by the 

Center for Prospective Studies and International Information (CEPII), reconciles importer and exporter 

declarations into freight on board (FOB) import values and weights the data by the reliability of its 

exporter (Gaulier and Zignago 2012), using differences between CIF and FOB to fix several issues in 

UN Comtrade data. Like UNSD, BACI provides the value of trade in thousands of current USD and the 

quantity in metric tons. Their longest nomenclature version is HS 1992, and the latest 2020 dataset 

ranges from 1995-2018. We, therefore, employ BACI as the direct data source.  

BACI’s dataset contains more than 1.5 million observations that reflect more than five thousand 

products, over more than 150 countries and more than 20 years. Selecting the relevant trade products 

for our study requires an explanation of the available typologies in the HS product classification system 

and a systematic identification of relevant product groups, described next.  

The HS uses six digits to classify traded products. As an example, HS code 282520 refers to lithium 

oxide and hydroxide. While developed countries tend to disaggregate products into eight (and even 10) 

digits, data beyond six-digit HS codes is not comparable across countries. It becomes necessary to use 

only one country’s data at a time or else harmonize across the developed countries that report data at 

that level, which would restrict the data only to developed countries. To the extent that we wish to 

define varieties as importers from a world demand, this option is not useful to us. 

From left to right, each two-digit pair classifies a good in increased detail. In our running example for 

lithium hydroxide and oxide, the first two digits (also referred to as a chapter), 28, indicate “inorganic 

chemicals; organic and inorganic compounds of precious metals; of rare earth metals, of radio-active 

elements and of isotopes.” Chapters themselves are aggregated into the broadest possible product 

categories, sections. There 21 sections, ranging from Live Animals (Section 1) to Works of Art and 

Antiques (Section 21).  
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To narrow the scope of analysis, we first identify HS sections that correspond to our materials. These 

are: (1) mineral products; (2) chemicals or allied industries; (3) precious or semiprecious stones and 

metals; and, (4) base metals. Sections relevant to our analysis are summarized in Table 4.4. Table 4.4 

also includes their chapters. 

Table 4.4. HS Sections and chapters containing the materials we identified in the literature. 

HS 

Section 
Section summary 

HS 

Chapter 
Section summary 

5 Mineral products 

25 
Salt; sulfur; earths and stone; plastering materials, lime and 

cement 

26 Ores, slag and ash 

27 
Mineral fuels (oil, gas), mineral oils and products of their 

distillation; bituminous substances; mineral waxes 

6 
Chemicals or allied 

industries 
28 

Inorganic chemicals; organic or inorganic compounds of precious 

metals, of rare-earth metals, of radioactive elements or of isotopes 

14 
Precious or Semiprecious 

Stones, Precious Metals 
71 

Natural or cultured pearls, precious or semi-precious stones 

(diamond, etc.), precious metals (silver, gold, platinum, 

palladium etc.), metals clad with precious metal, etc. 

15 
Base metals and articles of 

base metals 

74 Copper and articles thereof 

75 Nickel and articles thereof 

76 Aluminum and articles thereof 

78 Lead and articles thereof 

72-83 
Rest of base metals, incl. iron and steel, zinc, tin, etc.; cermets 

and articles thereof 

Sources: Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
 

The four relevant sections contain a total of 18 HS chapters for further review. We use a UN Comtrade 

search functionality to identify products related to the materials in the ETM literature. The process 

allows us to break each HS chapter into its component products. For example, the next two digits in our 

running example, 25, indicate “hydrazine and hydroxylamine and their inorganic salts; other inorganic 

bases; other metal oxides, hydroxides and peroxides.” The final two digits, 20, indicate “lithium oxide 

and hydroxide.”   

We identify 30 trade products that contain references to the materials chosen from Table 4.4. Table 4.5 

summarizes their codes and descriptions.  

As we described above, the more HS digits, the more specialized the product. However, the more 

specified the product, the fewer trade flows, and the less data available for the analysis. Therefore, we 

used the minimum level of aggregation to sufficiently define a product.  

For example, 2709 is a 4-digit product that sufficiently defined “Crude oil” from others in its Chapter 

(27) of “Mineral products.” However, it is necessary to use 6-digits, 282520, to identify lithium 

chemicals from the rest in its group. Overall, we have 19 four-digit HS and 11 six-digit HS products, 

placed in the top and bottom of Table 4.5, respectively. 
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Table 4.5. Selected UN Comtrade 4 and 6-digits products that correspond to materials identified in the literature. 
C

o
u

n
t 

C
h

ap
te

r 
HS Code Harmonized System product description 

1 25 2504 Graphite powders and flakes 

2 

26  

2602 Manganese ores and concentrate 

3 2603 Copper ores and concentrates 

4 2604 Nickel ores and concentrates 

5 2605 Cobalt ores and concentrate 

6 2606 Aluminum ores and concentrate 

7 2607 Lead ores and concentrate 

8 2613 Molybdenum ores and concentrate 

9 2615 Niobium, tantalum, vanadium, and zirconium ores and concentrates 

10 
27 

2709 Crude oil 

11 2711 Natural gas 

12 

28 

2822 Cobalt chemical (oxide and hydroxide) 

13 2846 
Compounds, inorganic or organic, of rare-earth metals, of yttrium or of scandium, 

or of mixtures of these metals in unwrought, powder and waste and scrap form 

14 74 7401 Copper matte 

15 75 7501 Nickel matte 

16 76 7601 Aluminum unwrought 

17 78 7801 Lead unwrought 

18 

81  

8105 
Cobalt mattes and other intermediate products of cobalt metallurgy, unwrought 

cobalt, powders and waste and scrap 

19 8112 

Beryllium, chromium, germanium, vanadium, gallium, hafnium, indium, niobium 

(columbium), rhenium and thallium metals; unwrought, waste and scrap, other than 

unwrought, including not elsewhere specified 

20 

26 

261610 Silver ores and concentrates 

21 261690 
Rhodium, platinum and palladium (platinum group metals, PGM) ores and 

concentrates, and other precious metals 

22 

28 

280530 
Earth-metals, rare and scandium and yttrium, whether or not intermixed or 

interalloyed 

23 282520 Lithium chemicals (oxide and hydroxide) 

24 282530 Vanadium oxides and hydroxides 

25 283691 Lithium chemicals (carbonate) 

26  710691 Silver unwrought 

27 

71  

711011 and 711019  Platinum unwrought, powder and semi-manufactured  

28 711021 and 711029  Palladium unwrought, powder and semi-manufactured 

29 711031 and 711039  Rhodium unwrought, powder and semi-manufactured 

30 81 810291 Molybdenum unwrought, waste and scrap 

Sources: Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
 

It is crucial to note that, while the HS nomenclature is usually more detailed than the materials identified 

in the ETM literature, the typology is a model, or abstraction, of the physical product space. Because 

of this, the HS nomenclature sometimes fails to differentiate products into the materials we identified. 

In the example used in the previous paragraphs, HS 282520, contains two types of lithium chemicals, 

oxide and hydroxide. As a result, it is impossible to differentiate between these two products in trade 

data. In practice, this is usually not a major issue. Both types of lithium are precursors for materials in 

the same energy technologies (UNCTAD 2020).  
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As another example, while dysprosium and neodymium are sometimes referred to separately in the 

ETM literature, the HS nomenclature groups several rare earth elements together (see 2846 and 8112 

in Table 4.5). Therefore, as mentioned previously, our analysis includes all rare earth elements, despite 

World Bank (2020) excluding some of them.  

Last, some of the identified materials are so diverse that they exist in dozens of 4 to 6 digit HS products. 

This is the case for copper, nickel, aluminum, and lead. In fact, each of these has its own HS chapter, 

and includes several derivative products. To keep our analysis manageable and focused, we keep only 

mattes (an unrefined stage) and no other associated derivative products such as scraps and alloys of 

these metals. 

Generating product groups 

 

Apart from looking at trade trends overall and by individual products, we look at groups of products.  

We first classify products according to their role in the energy transition (Classification 1): Chemical 

and Mineral Clean Energy Materials (CEMs) versus Traditional Energy Materials (TEMs). In 

Classification 2, we classify products according to their level of refinement: Ore and Concentrates 

(Ocs), versus refined Metals and Chemicals (MCs). This is summarized in Figure 4.1.  

Figure 4.1. Classifications and product groups used in this chapter. 

 
Source(s): Authors’ elaboration based on the methods described in this chapter. 
 

As we discussed in the Introduction and the Literature Review, we have not seen a division of the 

materials into unrefined versus refined products. This leads to a relevant clarifying question regarding 

Classification 2: Should MCs (like cobalt chemicals from China) theoretically display the same trends 

as their inputs (like unrefined cobalt from the Democratic Republic of the Congo)?  

Consider that an increase in prices of raw materials may spur increased efficiency, recycling through 

induced innovation (discussed in the Literature Review), and stockpiling. This is especially true if the 

origin of a raw mineral is perceived to be an area of supply risk, like the Democratic Republic of the 

Identified traded 
products

Classification 1: Role 
in energy transition

Chemical and mineral 
clean energy materials 

(CEMS)

Traditional energy 
materials (TEMs)

Classification 2: Level 
of refining

Ores and concentrates 
(OCs)

Metals and chemicals 
(MCs)
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Congo (Lee et al. 2020). Indeed, the perceived supply risks of ETMs that spurred the criticality literature 

have also materialized into efforts by governments and private firms to localize and vertically integrate 

suppliers. Such an effort includes, for instance, the U.S. Federal Strategy to Ensure Secure and Reliable 

Supplies of Critical Minerals “with the intention of progressing toward mineral independence” (Lee et 

al. 2020).  

As a result, the relationship between Ocs and their respective MCs may not easily be summed through 

a simple linear correlation and can be studied separately. In the Discussion section, we acknowledge 

another potential issue with our scope. An analysis of each market (for instance, lithium carbonate and 

not lithium oxide/hydroxide) is relevant but beyond the scope and research questions posed in this 

chapter. Overall, the distinction between MCs and Ocs remains valid. 

We refer to product descriptions in Table 4.5, from UN Comtrade, as the main source in the 

categorization of products, shown in Table 4.6, following the same colors as Figure 4.1. CEMs make 

up 80% of the products according to Classification 1. Ocs make up 40% of products according to 

Classification 2.  

Table 4.6. Product, HS codes, and groups. Following the colors in Figure 4.1, Clean Energy Materials (CEMs) are blue, 

Traditional Energy Materials (TEMs) are light blue; Ores and concentrates (Ocs) are red, Metals and chemicals (MCs) are 

light red. 
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Harmonized System product description 
CEMs (1) or 

TEMs (2) 

Ocs (1) or 

MCs (2) 

1 25 2504 Graphite powders and flakes 1 2 

2 

26 

2602 Manganese ores and concentrate 1 1 

3 2603 Copper ores and concentrates 1 1 

4 2604 Nickel ores and concentrates 1 1 

5 2605 Cobalt ores and concentrate 1 1 

6 2606 Aluminum ores and concentrate 1 1 

7 2607 Lead ores and concentrate 1 1 

8 2613 Molybdenum ores and concentrate 1 1 

9 2615 
Niobium, tantalum, vanadium, and zirconium ores and 

concentrates 
1 1 

10 
27 

2709 Crude oil 2 1 

11 2711 Natural gas 2 1 

12 

28 

2822 Cobalt chemical (oxide and hydroxide) 1 2 

13 2846 

Compounds, inorganic or organic, of rare-earth metals, of 

yttrium or of scandium, or of mixtures of these metals in 

unwrought, powder and waste and scrap form 

1 2 

14 74 7401 Copper matte 1 2 

15 75 7501 Nickel matte 1 2 

16 76 7601 Aluminum unwrought 1 2 

17 78 7801 Lead unwrought 1 2 

18 

81 

8105 
Cobalt mattes and other intermediate products of cobalt 

metallurgy, unwrought cobalt, powders and waste and scrap 
1 2 

19 8112 
Beryllium, chromium, germanium, vanadium, gallium, 

hafnium, indium, niobium (columbium), rhenium and 
1 2 
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Harmonized System product description 
CEMs (1) or 

TEMs (2) 

Ocs (1) or 

MCs (2) 

thallium metals; unwrought, waste and scrap, other than 

unwrought, including not elsewhere specified 

20 

26 

261610 Silver ores and concentrates 1 1 

21 261690 
Rhodium, platinum and palladium (platinum group metals, 

PGM) ores and concentrates, and other precious metals 
2 1 

22 

28 

280530 
Earth-metals, rare and scandium and yttrium, whether or not 

intermixed or interalloyed 
1 2 

23 282520 Lithium chemicals (oxide and hydroxide) 1 2 

24 282530 Vanadium oxides and hydroxides 1 2 

25 283691 Lithium chemicals (carbonate) 1 2 

26  710691 Silver unwrought 1 2 

27 

71  

711011 and 

711019  
Platinum unwrought, powder and semi-manufactured  2 2 

28 
711021 and 

711029  
Palladium unwrought, powder and semi-manufactured 2 2 

29 
711031 and 

711039  
Rhodium unwrought, powder and semi-manufactured 2 2 

30 81 810291 Molybdenum unwrought, waste and scrap 1 2 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; Ocs=ores and concentrates; MCs=metals and 
chemicals. 
 

4.3.3 Trade value growth and volatility 

Exporters prefer for their exports to experience a growth in value over time and to expand the number 

of products that they export, with the promotion of exports being a key role for government departments 

and ministries in many countries around the world. For example, the UK Department for International 

Trade aims to “enable the UK to trade its way to prosperity […] by helping businesses export […] 

opening up markets, and championing free trade” (Department for International Trade 2018).  

To capture the importance of growth in trade value , we average annual growth rates in value (the 

“average growth rate”). While annual growth is the most disaggregated time unit our data allows, it also 

allows us to capture longer-term trends instead of shorter-term cycles driven, for example, by 

seasonality or speculation (Renner and Wellmer 2019). We calculate the average of value growth rates 

separately over twenty years (1999-2018) and over two ten-year periods (1999-2008 and 2009-2018, 

Decade 1 and Decade 2, respectively).  

The growth in export value is important regardless of the differences in prices across products. Note 

that although their prices tend to be lower, unrefined products can be more profitable on a per unit basis 

than refined products, depending on the cost of production by product and exporter.  

Also note from our description of trade data above that value is defined as price times quantity. 

Therefore, the data already captures the endogeneity between prices and quantity that we discussed in 

the Literature Review. Additionally, trade literature tends to make a distinction between large and small 
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players, where large (small) set (and accept) trade terms, respectively. We assume that the major 

exporters in our dataset have already affected the value of the products that were traded, and that this 

point does not affect their preference for growth in traded value. 

There is a nuance to the notion that exporters prefer export value growth, however. For exporters to 

reap long-term benefits, export increases must be stable. Amongst other detrimental effects, if the 

increase in the value of exports is driven by volatile increases in prices, importers may invest in product 

recycling, efficiency, or alternative sources. Such changes can be irreversible and are detrimental to 

exporters (Habib et al. 2016; Renner and Wellmer 2019). The importance of keeping prices accessible 

and stable stands in direct contradiction to some high-profile policy decisions, such as the Democratic 

Republic of the Congo declaring cobalt a ‘strategic’ mineral and nearly tripling its royalties in 2018 

(Reuters 2018).  

We consider the advantage of stability to exporters by using a straightforward measure of volatility, the 

standard deviation (SD). The SD is defined as the square root of the average of the squared differences 

from the mean. Metrics using the mean and SD have already been used to study the volatility of ETM 

in McCullough and Nassar (2017), but have been applied to prices and not trade values.  

We display the continuum of growth rates and volatility for all groups and products in graphs and tables 

in the main text and appendixes. We also focus on products that stand out in either metric, and especially 

on those that are high growth and low volatility. We focus on products that are among the top 20% (top 

quintile) products in either metric because the metric is broad enough to capture more than only 

potential outliers, but low enough to allow us to focus on top-performers. In the Discussion section, we 

focus on the products that stand out in the most recent decade and also discuss how this heuristic can 

affect our results.  

Tests of statistical significance 

  

In the analysis of trade value growth and volatility, we attempt to compare whether changes over groups 

or decades are statistically significantly different from one another. For this, we employ parametric and 

non-parametric paired and unpaired tests. 

To compare the growth and volatility metrics over groups within the same Classification (for instance 

TEMs versus CEMs in Decade 1), we use two statistical tests for unmatched data. Specifically, we 

employ: (1) The Wilcoxon rank-sum test (often used as an alternative to the Student’s t-test) and (2) the 

Nonparametric equality-of-medians test. Both tests are non-parametric inferential statistical methods, 

which means that amongst other characteristics, they do not assume anything about the underlying 

distribution of the data. This allows it to be applied to data that is not approximately normally 

distributed, or in small samples such as ours.  
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The two-sided Wilcoxon rank-sum test (also known as the Mann–Whitney two-sample statistic) tests 

whether two samples are likely to come from the same population using the following hypotheses: 

H0: The two independent samples are from populations with the same distribution  

H1: The two populations are not equal  

Rejecting the H0 (when the p-value > 0.05) means that there is evidence the two populations have 

different distributions. If we obtain a p-value greater than 0.05 in this test, we can assume that there is 

a difference between the metrics of groups within a classification, for instance, a difference between 

growth rates of groups in Classification 1 (CEMs versus TEMs). We use the “ranksum” function in 

Stata (StataCorp 2021).  

Tests that compare two groups that contain different items (as opposed to comparing the same items 

over time) have lower statistical power (StataCorp 2021). Therefore, we supplement the Wilcoxon rank-

sum test with the Nonparametric equality-of-medians test. It tests the following hypotheses:  

H0: The k number of samples were drawn from populations with the same median 

H1: At least one sample was drawn from a population with a different median 

In this case, rejecting the H0 (when the p-value > 0.05) implies that there is evidence the two populations 

have different medians. Like above, if we get a p-value greater than 0.05 in this test, we can assume 

that there is a difference between the metrics of groups within a classification, for instance, a difference 

in the volatility of growth rates of groups in Classification 2 (Ocs versus MCs). We use the “median” 

function in Stata (StataCorp 2021).  

Over decades within the same group, we make a different comparison. Here, we compare items within 

the same groups over time, for instance lithium carbonate within CEMs in Decade 1 versus lithium 

carbonate within CEMs in Decade 2. This allows us to use a paired test. If differences between pairs 

are normally distributed, it is possible to use the paired Student’s t-test on the equality of the means (a 

two-sample case of ANOVA), with the following hypotheses: 

H0: The samples have equal means 

H1: The samples have different means 

Rejecting the H0 (when the p-value > 0.05) implies that there is evidence the two populations have 

different means, with the same implications as described for the previous two tests. We employ a 

Shapiro-Wilk test to confirm normality (“swilk” in Stata), and the “ttest” function (StataCorp 2021).  
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4.3.4 Export and import quantity concentration 

Following the literature we reviewed, we calculate the popular un-normalized Herfindahl–Hirschman 

Index (HHI-index) over exporters and importers, by ETM. In the trade literature, this metric is akin to 

the un-normalized Export (Import) Market Concentration Index that is usually calculated over value 

(UNCTAD 2018a, 2018b). However, we align ourselves with the existing ETM literature that we 

reviewed in the discussion on concentration indices, which uses production. The closest equivalent of 

production in our data is quantity of traded product. 

The HHI is calculated by summing the square of the market share of each market player (Eq. 4.1).  

𝐻𝐻𝐼 = ∑ 𝑠𝑖
2

𝑁

𝑖

 Eq. 4.1 

Where 𝑠𝑖 is the market share of exporter i, and 𝑁 is the number of exporters or importers. 

It is desirable to be a major exporter of an ETM within a highly concentrated export market. This can 

be evidenced in the fluctuation of price-setting power by countries in the Organization of the Petroleum 

Exporting Countries (OPEC) over time (Fattouh and Mahadeva 2013). It is also evidenced in a variety 

of policy documents that consider the share of exports of a certain country in a certain product (UK 

Department of Business Innovation and Skills 2012). The same exporter prefers the opposite when it 

comes to the importer concentration of the same product.  

Observe from Eq. 4.1 that the HHI depends partly on the number of exporters. This can make 

comparisons of the same product over time, or other products, difficult (Brown 2018). There are two 

ways to solve this. First, the researcher can cap the number of exporters included in the calculation. The 

U.S. Department of Justice tops it at 50. Second, they can calculate the difference between the HHI and 

the HHI minimum given the number of exporters for the given period, (1/ number of exporters).  

At a large N, as is the case with trade, the minimum HHI is very small and there should not be much of 

a difference between the two options. However, so as not to lose any information, we opt for the latter. 

We, therefore, report the HHI score minus the minimum possible for the HHI (Eq. 4.2). 

𝐻𝐻𝐼 = ∑ 𝑠𝑖
2

𝑁

𝑖

−  
1

𝑁
 Eq. 4.2 

Where 𝑠𝑖 is the market share of exporter i, and 𝑁 is the number of exporters. 

We calculate both the importer and exporter concentration of products over the entire time period and 

dynamically. We consider how the products overall have shifted, what products are best positioned, and 

what products have had beneficial changes over the last two decades. 
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As explained in Brown (2018) the United States Department of Justice (2010) considers a score of more 

than 0.25 as high concentration, between 0.15 and 0.25 as moderate concentration, and lower than 0.15 

as low concentration. For ease of interpretation, these are the cut-offs we adopt.  

Nevertheless, they are necessary heuristics used to simplify analyses and they may be relatively 

arbitrary at the margins. For instance, the UK Competition and Market Authority (CMA) uses slightly 

different cutoffs. Ideally, the HHI is best discussed in a continuum and complemented with a market-

by-market understanding of each of the 30 products (Brown 2018).As we contemplate further in the 

Discussion section, is not possible to study each product in such depth due to the breadth of the products 

studied in this chapter. 

4.3.5 Major exporters 

We identify and discuss the main exporters of our selected products. To do so, we rank exporters in 

descending order by value of exporters during the 20-year period, by product. We then choose either 

the top five, or those that cumulatively make up 90% of all the traded value for the particular product, 

whichever criterion occurs first. Like we did for concentration, we plot the number of goods each 

exporter was a top exporter in during the entire period (e.g., Brazil exported an average of three of the 

30 products during the entire sample), and also the changes over decade in the number of products the 

exporters were major exporters (e.g. Brazil exported two products in Decade 1 and four in Decade 2). 

For each major exporter, we also determine the percentage of the overall ETM products in each group 

within Classifications 1 and 2 (MC versus OC and CEMs versus TEMs).  After doing so, we ask whether 

developing/developed countries are more likely to play a role as major exporters in some product 

groups, as expected based on the wider product space (Behrens et al. 2007). For instance, we expect 

that developing countries are more likely to be major exporters of OC (unrefined) and not MC (refined) 

products. 

4.3.6 Summary of metrics 

Following the literature, we assume that exporters prefer to face high growth rates and low volatility 

for their products, as well as a concentrated market (by supply) and a dispersed market (by demand). 

We also assume that exporters prefer a change over time towards higher growth, lower volatility, higher 

export concentration, and lower importer concentration. Table 4.7 lists each metric and summarizes key 

characteristics discussed in this Methods section. 
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Table 4.7. Summary of assumptions and metrics used in the analysis of this chapter. 

Item Metric 
Exporters 

prefer 

Measured 

over 
Measured using Time period Measured over 

1 Growth rates High Value 

Average of annual 

growth rates in time 

sample 

1999-2018  

1999-2008  

2009-2018 

Product groups 

and products 

2 Volatility Low Value 

Standard deviation of 

annual growth rates 

in time sample 

1999-2018 

1999-2008 

2009-2018 

Product groups 

and products 

3 
Importer 

concentration 
Low Quantity HHI 

1999-2018 and 

changes over 

decade 

Products 

(product groups 

in Appendix 

4.5) 

4 
Exporter 

concentration 
High Quantity HHI 

1999-2018 and 

changes over 

decade 

Products 

(product groups 

in Appendix 

4.5) 

5 
Identification of 

major exporters 
NA Value 

Top five exporters, or 

those cumulatively 

make up 90% of all 

value for a particular 

product 

1999-2018 and 

changes over 

decade 

Products 

(product groups 

in Appendix 

4.6) 

Source(s): Authors’ elaboration based on the methods described in this chapter. 
 

We identify and discuss implications for the major exporters behind these products (Item 5). The 

Discussion section synthesizes the static and dynamic trends (overall, by product group, and by 

individual product) and it reflects on how trends may affect exporters. 

4.4 DATA  

As described in the Methods section, UN Comtrade reports yearly bilateral flows of exporters, 

importers, value in thousand USD, and quantity in metric tons, by HS product code. Therefore, our 

dataset is composed of a panel of country exporters between 1995 and 2018. However, UN Comtrade 

reports some exporters in groups (Table 4.8). Additionally, we aggregate that the Economic and 

Monetary Union of the European Union as one exporter because the bloc acts as one for trade purposes.  

Table 4.8. Country groups in the trade dataset. 

Country group Countries in groups 

Southern African Customs Union Botswana, Lesotho, Namibia, South Africa and Swaziland 

Belgium (irrelevant due to EU aggregation, see below) Belgium and Luxembourg 

France (irrelevant due to EU aggregation, see below) France and Monaco 

Switzerland Switzerland and Lichtenstein 

Taiwan 
Not recognized by China, referred to as ‘Asia, not 

elsewhere specified’ in UN Comtrade 

Economic and Monetary Union of the European Union (as 

of 2019) 

Austria, Belgium, Bulgaria, Croatia, Republic of Cyprus, 

Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Ireland, Italy, Latvia, 

Lithuania, Luxembourg, Malta, Netherlands, Poland, 

Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, 

and United Kingdom 

Sources: Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
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From now on, we simplify the product description in HS Comtrade in figures: (1) ores and concentrates 

are denoted by “[OC];” (2) oxides and hydroxides are denoted by “[OH],” (3) unwrought metals are 

denoted by “[UW];” and, (4) powders and flakes are denoted by “[PF].” Additionally, we denote REE 

compounds by REE1, and denote alloys by REE2 (Table 4.9). 

Table 4.9. UN Comtrade description and simplified labels. 

UN Comtrade description Simplified label 

Ores and concentrates OC 

Oxides and hydroxides OH 

Unwrought metals UW 

Powders and flakes PF 

REE compounds REE1 

REE alloys REE2 

Sources: Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
 

We deflate values to 2018 dollars using official US government statistics. The average trade value for 

the selected products is 120 million USD. The data for values has heavy tails and is highly positively 

skewed. In other words, the median is much lower than the average of 34 thousand USD, with a standard 

deviation of 1,460 million USD. The data for quantity displays the same pattern. 

Figure 4.2 and Figure 4.3 show the value of TEMs and CEMs, respectively. Oil/gas dominate the 

aggregate trade value of our selected products and made up almost 90% of value in 2018.  

World aggregate trade value for TEMs grew every year from 2001-2008, falling markedly after the 

2008 financial crisis (Figure 4.2). From 2009-2012, TEMs experienced a period of growth and 

stabilization, reaching a 20-year peak in 2012. The aggregate values for TEMs decreased in the second 

half of 2014, hitting a nadir in 2016 due to the global collapse in commodity prices. A confluence of 

industry, macroeconomic, and financial conditions, including changing geopolitical risks and the U.S. 

dollar appreciation caused the commodity price collapse (World Bank 2015). Most recently, the 

aggregate value grew consistently from 2016-2018, approximating 2006 levels. 
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Figure 4.2. Traditional energy materials (TEMs), world trade value, 1999-2018, constant USD trillion. Left of vertical red 

line = Decade 1. Right of vertical red line=Decade 2. 

 
Source: Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020) 
Note: UW=Unwrought metals. 
 

Trends over time are similar for CEMs, except that the group reached its 20-year peak in 2011 (Figure 

4.3). Copper [OC] and aluminum [UW] make up the biggest share of this group but are small compared 

to TEMs because they correspond to 4.66% and 4.44% of oil/gas in 2018, respectively. In the interest 

of space, we do not repeat the figures by cutting the data into OCs and MCs. 

Figure 4.3. Clean energy materials (CEM), world trade value, 1999-2018, constant USD trillion. Left of vertical red line = 

Decade 1. Right of vertical red line=Decade 2. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: REE= Rare Earth Elements; OC= Ores and concentrates; PF= powders and flakes; REE1=REE compounds; RE2=REE 
alloys; UW=Unwrought metals. 
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In both TEMs and CEMs, trade value mean and median grew over the decades of interest (Table 4.10). 

Volume decreased slightly in TEMs and increased in CEMs. The data is highly positively skewed, 

making a boxplot visualization of the metrics in Table 4.10 unwieldy. As an alternative, plotting 

logarithms and removing outliers yields very similar boxplots. Standard deviation (SD) increased in 

both groups over time. Appendix 4.1 contains the detailed statistics of the overall data, and summary 

statistics by product.  

Table 4.10. Descriptive statistics, value (in constant USD million) and volume, by decade and groups. 

TEMs Decade N Mean Std. Dev. skewness p5 Median p95 

Value 
Decade 1 

26,315 387.27 2,764.74 18.80 0.00 1.31 1,159.22 

Volume 26,315 1,002,092.00 6,914,507.60 15.05 0.00 81.58 3,066,373.60 

Value 
Decade 2 

32,469 502.88 3,384.97 17.32 0.00 1.64 1,468.71 

Volume 32,469 953,914.31 8,816,579.20 54.21 0.00 41.18 2,829,437.30 

CEMs Decade N Mean Std.Dev. skewness p5 Median p95 

Value 
Decade 1 

69,182 16.04 159.47 35.36 0.00 0.15 42.16 

Volume 69,182 15,355.13 201,989.92 49.37 0.05 30.00 26,336.00 

Value 
Decade 2 

85,274 22.21 191.21 27.23 0.00 0.19 65.09 

Volume 85,274 26,890.01 594,645.36 58.02 0.03 31.08 28,578.41 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials. 

4.5 RESULTS 

4.5.1 Growth and volatility 

Over the entire period of 1999-2018, the average growth rate for all products was 14.30%, and the 

standard deviation (or volatility) was 0.40. Figure 4.4 shows average growth rates in circles (left axis) 

and their volatility in diamonds (right axis). The average of yearly growth rates (which we call “average 

growth rates”) were higher for CEMs (blue) than for TEMs (light blue) but CEMs were also more 

volatile. OCs (red) were best positioned than MCs (light red) in both metrics, with a higher average 

growth rate overall and a lower volatility. Appendix 4.2 contains the data at the product level. 
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Figure 4.4. Average of yearly growth rates (circles) and the volatility of yearly growth rates (diamonds, right axis), by product 

groups. All products (green); CEMs (blue) versus TEMs (light blue); OCs (red) versus MCs (light red). 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 

To compare whether the groups are statistically different from one another, we use the nonparametric 

equality-of-medians test and the Wilcoxon rank-sum test. We compare growth and volatility in the 

CEMs versus TEMs, and OCs versus MCs and use two tests for robustness. Using the conventional cut-

off p-value of 0.05, we fail to reject the null hypothesis that the groups are the same as one another 

(Table 4.11) suggesting that the differences between groups seen in Table 4.11 may be due to chance. 

Table 4.11. P-values of nonparametric equality-of-medians test and Wilcoxon rank-sum test/Mann–Whitney two-sample 

statistic for the difference in growth rates and volatility of growth rates. 

Group Nonparametric equality-of-medians 
Wilcoxon rank-sum test/Mann –Whitney 

two-sample statistic (exact p-value) 

 Growth Volatility Growth Volatility 

CEMs versus TEMs 0.539 0.648 0.442 0.210 

OCs versus MCs 0.526 0.264 0.386 0.545 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 

We also compare the growth and volatility of each group over the two decades of our data. In Figure 

4.5, Decade 2 is differentiated from Decade 1 with a black outline. Like before, circles represent average 

growth rates and diamonds (in the right axis) represent volatilities. Green represents all products, blues 

represent Classification 1, and reds represent Classification 2. Solid arrows depict a change over time 

that was detrimental to exporters, and dashed arrows depict a change over time that was beneficial to 

exporters. Appendix 4.3 contains the data behind the figure. 

Classification 1 Classification 2



 

167 

 

Figure 4.5. Average of yearly growth rates (circles) and volatility of yearly growth rates (diamonds, right axis), by product 

group and decade. All products (green); CEMs (blue) versus TEMs (light blue); OCs (red) versus MCs (light red). No outline= 

Decade 1. Black outline=Decade 2. Solid arrows = change between decades is detrimental to exporters. Dashed arrows = 

change between decades is beneficial to exporters. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 

Within groups, all changes in the average growth changes over decade were detrimental to exporters. 

We run the same tests as above, which compared the average growth and volatility across groups, by 

decade. The results of unpaired tests within decades are the same as in Table 4.11. In other words, the 

differences in growth rates and volatility across groups are not statistically significantly different from 

one another in either decade (see Appendix 4.4).  

We subject the detrimental changes over time to statistical analysis by comparing the average growth 

rates of Decade 1 with the same metric in Decade 2 (Table 4.12). A Shapiro-Wilk test shows the 

differences between paired averages by product are normally distributed, so we employ paired t-Tests. 

These t-Tests show that differences over time are statistically significant in all groups at a p-value of 

0.10, and all groups except TEMs at a p-value of 0.05. In other words, in Decade 2 the products 

experience less growth than Decade 1, and this change is unlikely to be due to chance. 

Table 4.12. Paired t-Tests comparing Decades 1 and 2.  

Indicator Overall CEMs TEMs OCs MCs 

Average of growth rates 0.000 0.000 0.0973 0.000 0.031 

SD of growth rates 0.818 0.718 0.257 0.128 0.240 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 

Classification 1 Classification 2 
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Admittedly, paired tests (comparing same item over time) are more powerful than unpaired tests 

(comparing different groups) (StataCorp 2021). Therefore, the difference in the statistical significance 

of the results of Table 4.11 and Table 4.12 could reflect the power of the tests themselves. We attempted 

to mitigate this by employing two tests for robustness when working with unpaired data. 

The result of statistically lower growth in Decade 2 is visually supported in Figure 4.6, which displays 

all underlying data points. In Figure 4.6, CEMs are in green, TEMs are in red. OCs are marked in 

crosses, and MCs are marked in x’s. Figure 4.6 shows that in Decade 2, no selected products surpass an 

average growth rate of 30%. It also shows that there is a positive relationship between growth rates and 

volatility. Therefore, products with high growth and low volatility would be positive anomalies for 

exporters. 
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Figure 4.6. Average yearly growth (x axis), volatility of average yearly growth rates (y axis), Decade 1 (left); Decade 2 (right) Red = TEMs, Green=CEMS; + markers = OCs; X markers=MCs. 

  
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and chemicals; OC= Ores and concentrates; PF= powders and flakes; 
REE1=REE compounds; RE2=REE alloys; UW=Unwrought metals. 
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Table 4.13 lists the top 20% products in terms of growth and volatility, by decade, which can be visually 

verified in Figure 4.6. Note that there is no overlap between the top growers in Decades 1 and 2. All the 

top growers within Decade 1 lose their position to REE2 [Metal], vanadium [OH], cobalt [OH], lithium 

[OH], lithium [carbonate] and REE1 [Metal]. This change coincides with the adoption of smartphones 

(and the materials found in the lithium-ion battery found therein) in developed countries in 2007-08 

(Gündüç 2019). Additionally, while in Decade 1, all high-growth products except for nickel [OC] were 

also highly volatile (Figure 4.6, left), lithium products stand out as top growers that are not in the top 

20% by volatility in Decade 2.  

Observe also that in Decade 2, TEMs played a smaller role as high-growth products (overall and by 

decade) than they do in the overall sample (0 versus 20%). OCs played a larger role within high-growth 

products than within the product sample in Decade 1 (66.67 versus 40%), but this fell to zero in Decade 

2. Within high-growth products, CEMs and MCs are the winners of Decade 2.  

This result suggests that there has been a measurable change in trends of top growing materials traded 

over the past decades, and energy decarbonization may play a role. Given the direction of change in 

energy technologies and the materials used in them, energy decarbonization may reinforce these trends 

in the coming years. Additionally, if our upcoming exporter analysis supports the literature in that 

developing countries tend to export more TEMs and OCs, then this first result may help strengthen the 

rationale for targeted policy consideration to help balance industry towards CEMs and MCs. 

Table 4.13. Top growth (green check) and top volatility (red X) products, in Decades 1 and 2. Ordered by growth in each 

decade. CEMs are blue, TEMs are dark blue; OCs are red, MCs are light red. 

    Decade 1 Decade 2  

 Classification 1 Classification 2 
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1 Molybdenum [OC] CEM OC ✓ X 
  

2 Cobalt [OC] CEM OC ✓ X 
  

3 Molybdenum [UW] CEM MC ✓ X 
  

4 Manganese [OC] CEM OC ✓ X 
  

5 Copper [Matte] CEM MC ✓ X 
  

6 Nickel [OC] CEM OC ✓ 
   

7 REE2 [Metal] CEM MC 
  

✓ X 

8 Vanadium [OH] CEM MC 
  

✓ X 

9 Lithium [OH] CEM MC 
  

✓ 
 

10 Cobalt [OH] CEM MC 
  

✓ X 

11 Lithium [Carbonate] CEM MC 
  

✓ 
 

12 REE1 [Metal] CEM MC 
  

✓ X 

13 Rhodium [UW] CEM MC 
 

X 
 

X 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals; UW=Unwrought metals. 
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4.5.2 Importer and exporter concentration 

Figure 4.7 shows the results of the import and exporter HHI metrics. Area 1, in green, contains the most 

favorable metrics for exporters because it represents high exporter market concentration and low 

importer market concentration. Higher numbers indicate worsening conditions for exporters with area 

5, in red, being the most unfavorable.  

Figure 4.7. Exporter and importer concentration (HHI), by product, 1999-2018; Red = TEMs, Green=CEMS; + markers = 

OCs; X markers=MCs. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals; OC= Ores and concentrates; PF= powders and flakes; REE1=REE compounds; RE2=REE alloys; UW=Unwrought 
metals. 
 

Figure 4.7 shows that exporter HHI is more spread out than importer HHI, and that importer HHI is 

relatively more concentrated, opposite to the interests of exporters. In fact, 28 products are either 

concentrated or highly concentrated by importers, compared to 18 by exporters (see the Methods section 

for a discussion on the cutoffs for concentration that we chose. Additionally, there are no products in 

the first-best combination (Area 1) for exporters, and there are products in the worst possible 

combination for exporters (Area 5).  

The products in Area 2 (the second-best section) are palladium [UW], platinum [UW], lithium 

[carbonate], graphite [PF], and cobalt [OH]. Of these, lithium [carbonate] and cobalt [OH] were within 

the top 20% growers in Decade 2 of the growth and volatility analysis. Appendix 4.5 contains the results 

by groups. 
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We turn to a dynamic analysis of changes in the HHI in quantity traded between Decades 1 and 2 in 

Figure 4.7. The horizontal axis of Figure 4.8 shows the change in exporter concentration, Decade 2 

minus Decade 1. A positive value on the x-axis means that exporter concentration in the second decade 

grew in comparison to the first decade. Likewise, the vertical axis shows the change in importer 

concentration. Hence, a positive value on the y-axis means that importer concentration in the second 

decade is higher than in the first decade.  

Like before, colors help us understand the results. Favorable conditions for exporters are found in Area 

1 (green), representing increasing exporter market concentration and decreasing importer market 

concentration. The opposite is true for products in the top left quadrant (red, Area 3). 

The products are disproportionately found to the left of the y-axis (17 versus 13), suggesting an overall 

decrease in exporter concentration, which is detrimental to exporters. Products are also 

disproportionately found on the top quadrants (18 versus 12), suggesting an increase in importer 

concentration, also detrimental to exporters. The top quadrants each share 9 products, more than each 

of the bottom two quadrants. 

On top of being highly concentrated by exporters, and relatively unconcentrated by importers in the 

static analysis, the changes in concentration over the last two decades have been beneficial to exporters 

of lithium [carbonate]. Molybdenum [OC], natural gas, and rhodium [UW] have also benefited from 

changes in importer and exporter concentration in these decades.  
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Figure 4.8. Change in market concentration by exporter (x-axis), importer (y-axis), Decade 2 minus Decade 1. CEMs are in green, TEMs are in red. OC markers are crosses, and MC markers 

are x’s. The colors of quadrants represent the preference for exporters. Green indicates an increase in the export concentration and a decrease in the import concentration. The opposite happens 

on the red quadrant. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020).  
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and chemicals; OC= Ores and concentrates; PF= powders and flakes; 
REE1=REE compounds; RE2=REE alloys; UW=Unwrought metals. 

1

2

2

3



 

174 

 

4.5.3 Major exporters over time and over product groups 

To pinpoint major exporters of each product, we rank exporters in descending order by export value 

during the 20-year period, by product. We then choose the top five, or those that cumulatively make up 

90% of all value for the particular product, whichever criterion occurs first. Figure 4.9 summarizes the 

top exporters per product, and individual market shares.  

There are 40 major exporters for the 30 selected products. It is worth noting that some developing 

countries have a big share of exports in several products, for instance, note the Republic of the Congo 

and the Democratic Republic of the Congo’s position in cobalt [OC], Bolivia’s position in lead [OC] 

and silver [OC], or Guinea’s position in aluminum [OC]. In all products except crude oil, the top five 

exporters made up more than 50% of the total world traded value for the product. Although we do not 

employ it for this purpose in this paper, Figure 4.9 could also be used as an alternative to the HHI as a 

measure of concentration because it is the equivalent of the Concentration Ratio recommended in 

Brown (2018) that we discussed in the Literature Review.  

Figure 4.9. Major exporters by product 1999-2018. Exporters are ordered in descending order of exporter size in the market, 

left to right. Green = first, light green= second, gray= third, light red= fourth, and red= fifth major exporter. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: ARE, United Arab Emirates; ARG, Argentina; ARM, Armenia; AUS, Australia; BOL, Bolivia; BRA, Brazil; CAN, 
Canada; CHE, Switzerland; CHL, Chile; CHN, China; COD, Democratic Republic of the Congo; COG, Republic of the Congo; 
CUB, Cuba; EUN, European Union; GAB, Gabon; GHA, Ghana; GIN, Guinea; GTM, Guatemala; IDN, Indonesia; IRN, Iran; 
JPN, Japan; KOR, Korea; MEX, Mexico; MYS, Malaysia; NCL, New Caledonia; NGA, Nigeria; NOR, Norway; PER, Peru; 
PHL, Philippines; QAT, Qatar; RUS, Russia; RWA, Rwanda; SAU, Saudi Arabia; TWN, Taiwan; TZA, Tanzania; USA, 
United States; VNM, Vietnam; ZAF, Southern Africa Customs Union; ZMB, Zambia; ZWE, Zimbabwe. 
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Looking at the composition of major exporters by product, we find that developed countries tend to 

have a lower representation of OCs as part of their exports, as opposed to processed MCs (see Appendix 

4.6 for a visualization of this). This finding is in line with the relatively higher level of industrialization 

in developed countries and it supports existing literature (Behrens et al. 2007). The one exception is 

Australia, a global mining hub.  

Appendix 4.6 also shows that major oil and gas exporters that are not in the OECD (Saudi Arabia, 

Nigeria, United Arab Emirates, and Qatar, as opposed to Canada, Europe, Norway) tend to have less 

diversification of goods and are 100% made up of TEMs. The only OECD country that is 100% made 

up of TEMs is Switzerland, which is a major exporter of unwrought palladium and platinum. These are 

refined products that may also become CEMs over time however, as discussed in the Methods section. 

Last, we perform a dynamic analysis of major exporters. The vertical axis of Figure 4.10 shows the 

average number of goods for which a country was a major exporter by value during the two decades 

included in our analysis. We find that most countries are major exporters of fewer than five goods. 

There are seven countries that export more than five goods, however. These countries are: Australia, 

Canada, China, the European Union, Russia, the Southern African Customs Union, and the United 

States. The European Union outperforms all countries. 

The horizontal axis of Figure 4.10 shows the change in the number of products for which the country 

saw a status change (turning into or stopped been a major exporter) over the decades of interest. Red 

labels indicate that an exporter lost products; orange indicate no change; green labels indicate that a 

country gained products over time. Most countries gained or lost their position as a major exporter in 

at most one good. However, the United States stands out as a top major exporter that lost major exporter 

status in three goods over the decades of interest. This result  may help support the motivation behind 

the blossoming criticality literature. 
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Figure 4.10. Number of products for which major exporters gained/lost major exporter status, Decade 2 minus Decade 1 (x-

axis) and average number of products across decades for which each country was a major exporter (y-axis). Red 

labels=country lost products; orange=no change; green labels=country gained products. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: ARE, BOL,GAB,GIN,GTM,NCL,NGA,PHL,QAT,SAU,TZA are missing from the graph because they are major 
exporters in one product, and have not seen a change in that over the decades. 
ARE, United Arab Emirates; ARG, Argentina; ARM, Armenia; AUS, Australia; BOL, Bolivia; BRA, Brazil; CAN, Canada; 
CHE, Switzerland; CHL, Chile; CHN, China; COD, the Democratic Republic of the Congo; COG, Republic of the Congo; 
CUB, Cuba; EUN, European Union; GAB, Gabon; GHA, Ghana; GIN, Guinea; GTM, Guatemala; IDN, Indonesia; IRN, Iran; 
JPN, Japan; KOR, Korea; MEX, Mexico; MYS, Malaysia; NCL, New Caledonia; NGA, Nigeria; NOR, Norway; PER, Peru; 
PHL, Philippines; QAT, Qatar; RUS, Russia; RWA, Rwanda; SAU, Saudi Arabia; TWN, Taiwan; TZA, Tanzania; USA, 
United States; VNM, Vietnam; ZAF, Southern Africa Customs Union; ZMB, Zambia; ZWE, Zimbabwe. 
 

4.6 DISCUSSION  

Energy decarbonization is a crucial objective but it cannot be pursued in isolation from other priorities. 

It interacts with other areas, including economic competitiveness and development, in which trade plays 

a central role. The energy transition will bring about a change in trade patterns in the materials that are 

used in energy but current literature on the materials for energy decarbonization has focused on other 

issues.  

Our study advances the literature by using trade data to interpret changes in the value and volume of 

traded products and product groups along ETM supply chains across developed and developing 

countries with a unique exporter perspective. We consider products are either traditional or clean energy 

materials (CEMs or TEMs). We also distinguish between unrefined (OCs, ores and concentrates) and 

refined products (MCs, metals and chemicals). We engage with the following questions: How have the 

characteristics of growth, volatility, and importer and exporter concentration in trade value and volume 

Number of products for which major exporters gained/lost their status in Decade 2 compared to Decade 1
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evolved for the products in the two decades between 1999-2018? What are the products (and product 

groups) that exhibit characteristics that are more beneficial to exporters? 

We find that changes over time do not benefit the exporters of the selected ETM products. Growth rates 

were generally lower in Decade 2, and the changes are statistically significant. This is likely to be the 

result of the deep crisis in commodities during 2014, seen in the Data section. At the same time, the 

results point to an overall change towards exporter dispersal and importer concentration.  

The movements in both metrics are exactly the opposite of what would benefit major exporters. They 

also seem to be in direct contradiction to the premise and findings of the criticality literature, in which 

importing countries will suffer from demand jumps and supply bottlenecks in materials for clean energy 

technologies (Ali et al. 2017). The contradiction may be explained by differences in methods 

(estimation of historical metrics instead of forecasting), data (trade instead of reserves and production), 

perspective (exporters instead of importers), and material coverage (narrow [i.e., minerals for clean 

energy technologies] instead of broad [i.e. refined and unrefined materials for clean and traditional 

energy technologies]). 

Table 4.14 helps synthesize some of our main results for the purposes of discussion. In the most recent 

decade, CEMs appear disproportionately represented in the products with higher growth rates (Table 

4.14, column 2). This result is an indication that the transition to decarbonized energy may already be 

affecting the trade of materials. Viewed in conjunction with the analysis of exporters, developing 

country exporters of TEMs must continue to strive towards capturing enriching the opportunities around 

TEMs, such as services and knowledge, if not export diversification, as discussed in Renner and 

Wellmer (2019).  

The rest of Table 4.14 summarizes the sub-sample of top-performing “notable” products across the 

analyses of the Results section. Of the 30 products, lithium [carbonate] exhibits the most beneficial 

trade patterns, putting its major exporters (Chile, Argentina, the European Union, and China) in a 

position to benefit the most from current trade trends as energy decarbonization continues.   

Making up 10 of the 12 products, MCs are more highly represented in Table 4.14 than in the overall 

product sample. MCs are also disproportionately represented in the group of top growth products in 

Decade 2 (column two). These patterns reinforce the importance of thorough planning for developing 

countries, which are more likely to be exporters of OCs. We found this result is not borne out in the 

existing literature, but this may be because, to the best of our knowledge, we are the first to divide 

ETMs between unrefined and refined products while the existing literature concentrates on minerals, or 

unrefined materials.  
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Table 4.14. Notable products that stand out in the static and dynamic analyses.  
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CEMs/ 

TEMs 

OCs/ 

MCs 

Graphite [PF] 
  

✓ 
 

1 494 CEM MC 

Lithium [OH] ✓ ✓  
 

1 488 CEM MC 

Lithium [Carbonate] ✓ ✓ ✓ ✓ 1 488 CEM MC 

Cobalt [OH] ✓ 
 

✓ 
 

1 460 CEM MC 

Vanadium [OH] ✓ 
 

 
 

3 189 CEM MC 

REE1 [Metal] ✓ 
 

 
 

1 37 CEM MC 

REE2 [Metal] ✓    1 37 CEM MC 

Molybdenum [OC] 
  

 ✓ 8 11 CEM OC 

Palladium [UW] 
  

✓ 
 

1 
 

TEM MC 

Platinum [UW] 
  

✓ 
 

1 
 

TEM MC 

Rhodium [UW] 
  

 ✓ 1 
 

TEM MC 

Natural gas 
  

 ✓ 1 
 

TEM OC 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 1 Table 4.13 2 Table 4.13 3 Area 2 in Figure 4.7. 4 Area 1 in Figure 4.8. 5 See description of Table 4.2. 
 

Table 4.15 further summarizes the results by showing the countries that stand to benefit the most from 

the trends in these specific notable products. The results are ordered by the number of notable products 

for which a country is a major exporter.  

The European Union is a major exporter of all notable products, although this finding was expected due 

to the size of the trading bloc and analysis of major exporters. Also expectedly, China and the United 

States come next. Certainly, it is unreasonable to compare these countries with the other major exporters 

without considering the sizes of their economies. However, observe two additional points. China holds 

the highest average market share rank compared to all countries that export any of the notable products 

(column 3). And, on top of coming second to the European Union, the United States plays a higher role 

in the notable products than in the overall sample (75% versus 25%). These two points show that these 

two countries are not only large exporters generally (which is expected) but also that they are relatively 

well-positioned for changes in ETM trade. To its benefit, the Southern African Customs Union closely 

follows China in column 3 due to its role in the platinum group metals. This is an exceptional position 

to be in, as we discussed that those products may shift from TEMs to CEMs. 
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Table 4.15. Major exporter market share rank, by notable product. Count of notable products for which each main exporter 

is a main exporter, and average rank across notable products. Green = first, light green= second, gray= third, light red= 

fourth, and red= fifth major exporter. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: ARG, Argentina; AUS, Australia; BRA, Brazil; CAN, Canada; CHE, Switzerland; CHL, Chile; CHN, China; COD, the 
Democratic Republic of the Congo; EUN, European Union; MEX, Mexico; MYS, Malaysia; NOR, Norway; PER, Peru; QAT, 
Qatar; RUS, Russia; TWN, Taiwan; TZA, United States; VNM, Vietnam; ZAF, Southern Africa Customs Union.  
 

It behooves developing countries to consider strengthening policy towards CEMs and MCs export 

capabilities. However, comparable policy advice has proven difficult to materialize in the past (Renner 

and Wellmer 2019). If the trends found in this chapter have any bearing on the future, then the chances 

of success may become even slimmer, especially for TEMs exporters because TEMs have historically 

been a potential long-term and growing source of state assets that could be used to invest, direct, and 

develop industrial capabilities.  

We consider three limitations to our work, mostly related to the tradeoffs between broad and detailed 

analyses. First, as mentioned in the Methods section, the level of detail with which we can study ETMs 

in a wide range of countries over several decades using trade data depends on the product differentiation 

provided by trade product classifications. This means that there may be products that we cannot isolate 

as well as other ETM studies (for example, those that differentiate some REE).  

Simplifications do not only come from the structure of our primary dataset. As we explained in the 

Methods, the breadth of the data leads us to create predetermined rules to translate continuous data into 
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discrete data for analysis (e.g., HHI into low, medium, and high concentration products or average 

product growth into top-performers and the rest). However, while the definitions we created may affect 

some of the top-performer and notable products that may lie on the margin, they do not affect the overall 

results of the discussion. 

Second, UN Comtrade data provides information on the quantity and value of traded products at the 

equilibrium between supply and demand, and we do not attempt to identify and isolate demand or supply 

sources of change. For instance, the high volatility in cobalt [OC] could be related to the fact that it is a 

byproduct of copper (Nassar, Graedel, and Harper 2015).  

Third, cross-comparisons of equilibrium value and volume are challenging in absence of a detailed 

discussion of each market and substitution between ETMs under current technological conditions, 

which is not possible when covering 30 products over two decades. We discuss future avenues for 

research that address this in the Conclusion. 

4.7 CONCLUSION 

According to our analysis of historical ETM trade data, we find that CEMs and MCs hold relatively 

larger promise than TEMs and OCs for exporters as energy decarbonization advances. However, in 

accordance with existing literature and our own data, these are markets in which developing countries 

are generally underrepresented. While some developing countries may still benefit from trade trends in 

individual OC and TEM products, it is imperative to further consider and evaluate policy that 

strengthens trade capabilities in refined and clean energy materials.  

Future research could narrow the scope of analysis of trade patterns in greater granularity. For instance, 

it could use the same data to analyze and compare countries in specific regions (e.g., Sub-Saharan 

Africa) and specific technologies (including a detailed consideration of possible substitutions between 

different ETMs by technology). It could otherwise veer closer towards focused topics in resource 

economics and macroeconomic policy. In this case, it could engage with considerations on fiscal 

resources and terms of trade in a given country and ETM market, and be accompanied by a discussion 

on the extent, direction, and results of existing export, industrialization, and innovation policies. 
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APPENDIX 4.1. DATA, ADDITIONAL STATISTICS  

Table 4.16. Detailed statistics, value (constant 2018 USD mil) and quantity, 1995-2018, all selected products.  

 value, USD mil quantity, metric tons  value, USD mil 
quantity, 

metric tons 

N 213,240 213,240 iqr 4 1,184 

Mean 120 284,646 1st Perc. 0 0 

Std. Dev. 1,460 4,251,106 p5 0 0 

range 129,345 838,800,000 p10 0 0 

min 0 0 p25 0 1 

max 129,345 838,800,000 Median 0 34 

variance 2,131,649 18,070,000,000,000 p75 4 1,185 

cv 12 15 p90 56 44,161 

skewness 35 82 p95 213 278,607 

kurtosis 1,854 13,321 p99 2,336 4,899,092 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
 
Table 4.17. Summary trade statistics v (value, in constant 2018 USD million) and q (quantity), 1995-2018, by product. 

Product HS  Mean SD Median 

Graphite [powders/flakes] 2504 v 0.762 4.79 0.026 
  q 1372.44 10353.161 22.5 

Manganese [ore/concentrate] 2602 v 10.2 61.057 0.148 
  q 68943.35 467951.87 458.239 

Copper [ore/concentrate] 2603 v 102.353 411.604 1.331 
  q 56853.04 220256.85 1301.478 

Nickel [ore/concentrate] 2604 v 19.053 86.964 0.085 
  q 276674.25 2443238.3 56.777 

Cobalt [ore/concentrate] 2605 v 6.888 46.291 0.1 
  q 3115.311 19142.672 28.344 

Aluminum [ores/concentrates] 2606 v 8.412 54.619 0.15 
  q 206533.78 1614446.8 320.212 

Lead [ore/concentrate] 2607 v 20.293 65.348 0.36 
  q 14374.702 41253.776 537.157 

Molybdenum [ore/concentrate] 2613 v 23.766 106.335 0.731 
  q 1489.077 4980.633 83.96 

Niobium tantalum vanadium zirconium 

[ore/concentrate] 
2615 v 3.11 14.199 0.196 

  q 3043.089 17675.03 84.15 

Silver [ore/concentrate] 261610 v 15.018 45.82 0.436 
  q 2716.031 11222.395 20.336 

PGM [ore/concentrate] 261690 v 13.112 47.324 0.149 
  q 3448.922 16752.099 3.447 

Crude oil 2709 v 1220.069 5038.755 72.284 
  q 2841234.2 10754529 173312 

Natural gas 2711 v 188.431 1540.974 0.783 
  q 630825.72 8985540 1269.115 

Earth-metals, rare and scandium and yttrium, whether 

or not intermixed or interalloyed 
280530 v 1.95 15.937 0.037 

  q 145.595 1436.489 1.741 

Cobalt chemical [oxide/hydroxide] 2822 v 2.752 20.069 0.062 
  q 152.763 1299.757 3.555 

Lithium chemicals [oxide/hydroxide] 282520 v 0.911 6.087 0.05 
  q 124.042 669.026 7.75 

Vanadium chemical [oxide/hydroxide] 282530 v 2.778 12.357 0.083 
  q 257.26 909.721 8 

Lithium chemicals [carbonate] 283691 v 2.018 12.389 0.028 
  q 339.758 1601.662 4.635 
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Product HS  Mean SD Median 

Compounds, inorganic or organic, of rare-earth 

metals, of yttrium or of scandium, or of mixtures of 

these metals [unwrought, powder, waste/scrap] 

2846 v 2.87 20.185 0.036 

  q 259 1556.228 2.688 

Silver [unwrought] 710691 v 28.005 177.77 0.274 
  q 147.813 3772.52 0.77 

Platinum [unwrought, powder, semi-manufactured] 711011 v 28.535 127.973 0.366 
  q 2.499 46.908 0.029 

Palladium [unwrought, powder, semi-manufactured] 711021 v 20.507 91.247 0.268 
  q 3.844 72.106 0.036 

Rhodium [unwrought, powder, semi-manufactured] 711031 v 15.094 68.022 0.236 
  q 0.696 4.583 0.023 

Copper [matte] 7401 v 3.577 18.382 0.052 
  q 1351.567 5159.475 23.637 

Nickel [matte] 7501 v 37.321 163.291 0.089 
  q 4028.672 14754.092 13.187 

Aluminum [unwrought] 7601 v 37.392 296.009 0.576 
  q 18514.265 134500.4 267.8 

Lead [unwrought] 7801 v 6.645 55.221 0.312 
  q 4025.006 28643.756 200.584 

Molybdenum [unwrought] 810291 v 1.826 8.874 0.067 
  q 71.298 323.231 3.51 

Cobalt mattes and other intermediate products of 

cobalt metallurgy [unwrought, powders, waste/scrap] 
8105 v 5.953 46.975 0.114 

  q 314.716 4412.124 3.425 

Beryllium, chromium, germanium, vanadium, 

gallium, hafnium, indium, niobium (columbium), 

rhenium and thallium [metals] 

8112 v 2.8 14.6 0.053 

  q 209.873 2106.129 2.821 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 

  



 

183 

 

APPENDIX 4.2. GROWTH AND VOLATILITY RESULTS, BY PRODUCT 

Table 4.18. Average yearly growth and average yearly growth standard deviation, 1999-2018, Decade 1, and Decade 2. 

HS 

code 
Product 

Avg growth 
Avg growth standard 

deviation 

TEMs 

(1) 

OCs 

(1) 

1999-

2018 

Decade 

1 

Decade 

2 

1999-

2018 

Decade 

1 

Decade 

2 

CEMs 

(2) 

MC 

(2) 

2709 Crude Oil 10.55 22.76 -0.44 0.28 0.24 0.29 1 0 

2711 Natural Gas 11.43 23.66 0.42 0.28 0.27 0.24 1 0 

283691 [Carbonate] Lithium 17.92 15.99 19.65 0.28 0.13 0.37 0 0 

8105 [Matte & more] Cobalt 14.58 19.28 10.35 0.44 0.45 0.44 0 0 

7401 [Matte] Copper 23.21 35.59 12.07 0.60 0.81 0.31 0 0 

7501 [Matte] Nickel 10.78 23.19 -0.40 0.39 0.40 0.35 0 0 

2846 
[Metal compounds/mixtures] 

REE 
13.75 8.10 18.27 0.58 0.15 0.79 0 0 

280530 
[Metals, incl 

intermixed/alloyed] REE 
20.14 14.85 24.91 0.67 0.42 0.86 0 0 

8112 
[Metals, incl. waste/scrap] 

Others 
8.86 15.69 2.72 0.32 0.31 0.34 0 0 

2606 [Ore/concentrate] Aluminum 8.44 10.18 6.88 0.22 0.16 0.26 0 1 

2605 [Ore/concentrate] Cobalt 25.69 42.93 10.17 0.87 1.09 0.64 0 1 

2603 [Ore/concentrate] Copper 13.75 22.64 5.75 0.24 0.28 0.16 0 1 

2607 [Ore/concentrate] Lead 12.78 21.87 4.59 0.25 0.26 0.22 0 1 

2602 [Ore/concentrate] Manganese 23.49 38.06 10.38 0.58 0.66 0.49 0 1 

2613 
[Ore/concentrate] 

Molybdenum 
22.02 45.62 0.78 0.63 0.76 0.41 0 1 

2604 [Ore/concentrate] Nickel 18.50 34.99 3.67 0.43 0.46 0.36 0 1 

2615 
[Ore/concentrate] Niobium, 

tantalum, vanadium, & zirc. 
9.91 12.54 7.55 0.29 0.19 0.37 0 1 

261690 
[Ore/concentrate] Platinum, 

Palladium, Rhodium 
9.22 11.79 6.90 0.18 0.19 0.17 0 1 

261610 [Ore/concentrate] Silver 14.82 23.51 7.00 0.30 0.33 0.27 0 1 

2822 [Oxide/hydroxide] Cobalt 19.51 18.26 20.63 0.65 0.44 0.82 0 0 

282520 [Oxide/hydroxide] Lithium 16.99 12.51 21.02 0.23 0.21 0.25 0 0 

282530 [Oxide/hydroxide] Vanadium 24.05 25.25 22.97 0.58 0.47 0.69 0 0 

2504 [Powders/flakes] Graphite 6.76 8.52 5.18 0.21 0.17 0.26 0 0 

7601 [Unwrought] Aluminum 5.15 9.62 1.13 0.18 0.12 0.22 0 0 

7801 [Unwrought] Lead 9.59 17.12 2.82 0.24 0.28 0.18 0 0 

810291 [Unwrought] Molybdenum 23.09 41.40 6.61 0.60 0.66 0.51 0 0 

711021 [Unwrought] Palladium 5.02 -3.85 12.12 0.35 0.37 0.35 1 0 

711011 [Unwrought] Platinum 3.18 13.85 -5.34 0.15 0.13 0.10 1 0 

711031 [Unwrought] Rhodium 15.99 32.24 2.98 0.60 0.66 0.54 1 0 

710691 [Unwrought] Silver 9.72 19.91 1.56 0.29 0.22 0.33 0 0 

 Mean 14.30 21.27 8.10 0.40 0.38 0.39   

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: REE= Rare earth elements; TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and 
concentrates; MCs=metals and chemicals. 
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APPENDIX 4.3. GROWTH AND VOLATILITY, ADDITIONAL VISUALIZATION 

Figure 4.11 disaggregates the data of Figure 4.11 into products. Products are plotted along a horizontal 

axis representing average growth rates, and the vertical axis representing volatility. CEMs are in green, 

TEMs are in red. OCs are marked in crosses, and MCs are marked in x’s.  

Those in the top 20% by growth overall are: cobalt [OC], vanadium [OH], manganese [OC], copper 

[matte], molybdenum [UW] and molybdenum [OC]. Half of these, vanadium [OH], manganese [OC], 

and molybdenum [UW] were not among the top 20% by volatility. 

Figure 4.11. Average yearly growth (x axis), average yearly growth standard deviation (y axis), 1999-2018; Red = TEMs, 

Green=CEMS; + markers = OCs; X markers=MCs. 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals; OC= Ores and concentrates; PF= powders and flakes; REE1=REE compounds; RE2=REE alloys; UW=Unwrought 
metals. 
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APPENDIX 4.4. GROWTH AND VOLATILITY, ADDITIONAL STATISTICS AND TESTS 

Table 4.19. Average growth rates and volatility by groups, 1999-2018. 

  Average of growth rates Volatility 

All 14.34 0.43 

TEMs 9.26 0.33 

CEMs 15.58 0.45 

OCs 15.05 0.42 

MCs 13.86 0.44 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 
Table 4.20. Average growth rates and volatility by groups and decade.  

 Average of yearly growth rates  SD of yearly growth rates  

  Decade 1 Decade 2 Dec2-Dec1 Decade 1 Decade 2 Dec2-Dec1 

All 21.4 8.1 -13.31 0.43 0.42 -0.01 

TEMs 16.9 2.78 -14.12 0.35 0.31 -0.04 

CEMs 22.48 9.43 -13.05 0.45 0.44 -0.01 

Difference -5.58 -6.65   -0.1 -0.14 - 

OCs 25.88 5.31 -20.57 0.48 0.33 -0.14 

MCs 18.33 9.96 -8.37 0.4 0.47 0.07 

Difference 7.55 -4.65 - 0.08 -0.13 - 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 
Table 4.21. Differences in growth rates and volatility of growth rates, P-values of nonparametric equality-of-medians test and 

Wilcoxon rank-sum test/ Mann –Whitney two-sample statistic. 

 Nonparametric equality-of-medians 
Wilcoxon rank-sum test/ Mann –Whitney 

two-sample statistic (exact p-value) 

 Decade 1 Decade 2 Decade 1 Decade 2 

Growth 
CEMs versus TEMs 0.976 0.665 0.818 0.563 

OCs versus MCs 0.240 0.906 0.203 0.964 

Volatility 
CEMs versus TEMs 0.648 0.648 0.494 0.143 

OCs versus MCs 0.709 0.709 0.755 0.249 

Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
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APPENDIX 4.5. IMPORTER AND EXPORTER CONCENTRATION, GROUP 

COMPARISONS 

Figure 4.12 shows the percentages of products within each group that are in each area of Figure 4.7. 

The colors of the stacks in the bars are the same as the colors in the areas of Figure 4.7. The results are 

nuanced. Observe that TEMs have more than double the percentage of products than CEMs in Area 2 

(the second-best overall). However, as can be seen in Figure 4.7, this pattern is likely led by the platinum 

group metals (which may become CEMs over time, see the Methods section). Additionally, CEMs have 

a smaller fraction of materials in Area 5. Relatedly, neither OCs nor MCs are better positioned. MCs 

have a wider range of exporter and importer HHI combinations, whereas OCs are evenly split between 

the extremes.   

Figure 4.12. Export and import concentration by CEMs and TEMs and OCs versus MCs, using the same Area colors as Figure 

4.7. 

  
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
 

We also discuss the products by Classifications 1 and 2 based on Figure 4.7. Exporter and importer 

concentration (HHI), by product, 1999-2018; Red = TEMs, Green=CEMS; + markers = OCs; X 

markers=MCs30% of CEMs are in Area 3, which is opposite to the interests of major exporters. Yet no 

TEMs are found here. Instead, 33% of TEMs are in Area 1 (the first-best option), compared to about 

7% of CEMs. We alternatively cut the data by Classification 2. OCs are less likely to lie in Area 3 (25% 

versus 33.33%), and they are more represented in Area 1 (17% versus 11%).  
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APPENDIX 4.6. EXPORTER ANALYSIS, ADDITIONAL VISUALIZATIONS 

Figure 4.13 summarizes the percentage of a country’s products that belong to each product group within 

the 30 products selected in the Methods section of this chapter. As discussed in the text, CEMs versus 

TEMs and OCs versus MCs make up different proportions of exporters’ product portfolios, and 

generally run along developed/developing country lines.  

Figure 4.13. Percentage of a country's export made up of OCs versus MCs (top) and TEMs versus CEMs (bottom), by 

developing (orange) or developed countries (green). 

 
Source(s): Author’s elaboration based on the methods described in this chapter and UN Comtrade version HS92; cleaned by 
CEPII published in the BACI database (2020). 
Note: TEMs=traditional energy materials; CEMs=clean energy materials; OCs=ores and concentrates; MCs=metals and 
chemicals. 
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5 CHAPTER 5: A NOVEL ESTIMATION OF STRUCTURAL 

TRADE ELASTICITIES AND AN APPLICATION TO ENERGY 

TECHNOLOGY MATERIALS 

 

Abstract 

 

Elasticities of demand and supply are a core concept in economics with far-reaching applications. For 

the first time, and in the context of trade and energy decarbonization, we ask: what are the price 

elasticities of import demand (or the change in trade demand due to a change in price, simplified as 

“trade demand elasticity”), for each energy technology material (ETM)-and-exporter pair (e.g. gas from 

Russia or lithium from Argentina)? Additionally, is there a difference between developed and 

developing exporters in these ETM elasticities?  

Despite their importance in economics, calculating trade elasticities is frequently an elusive task 

because of the difficulty of identifying supply and demand curves from existing data. To answer the 

research questions, we propose modifications to current structural trade demand and supply price 

elasticities building on the methods developed by Broda and Weinstein (2006), based on Feenstra 

(1994). With a mean trade demand elasticity of 3.94, our trade demand elasticities are broadly in line 

with the methods on which ours is based.  

Our main result is to present the trade elasticities over two decades for 29 products and 22 exporters, 

which can be used by researchers and policymakers in a variety of settings, including IAMs. 

Additionally, we find that developed countries have weakly statistically significantly lower ETM trade 

demand elasticities than developing countries, which we discuss in context of the portfolio of ETM 

products exported by the two groups.  

Nevertheless, there are indications of a convergence of ETM elasticities between developed and 

developing countries over time. This convergence is at least partially explained by the characteristics 

of the exporters–- i.e., a change how the importer perceives the quality differential between exports 

from developing and developed countries–- rather than a change in the portfolio of exports of the two 

exporting country groups. The convergence implies that developed country exporters may have lost 

competitive edge over time. Continued surveillance with more trade data over time is necessary. 

5.1 INTRODUCTION 

Elasticity is an important concept in economics. It measures the percentage change of one economic 

variable in response to a change in another. A common elasticity is the “price elasticity of demand,” 

which refers to how much demand changes for a given change in price. It can be understood as the slope 

of the demand curve on a quantity (horizontal) and price (vertical) graphical representation of the 

market. The lower the elasticity of demand, the less change in demand with a given change in price.  

Knowing the price elasticity of demand has both specific and general applications. However, despite 

their importance in economics, calculating price elasticities of demand and supply is an often complex 

and frequently elusive task. This is because existing data only tells you where the curves meet (the 

market equilibrium), and nothing about the slopes of the curves. In other words, it is difficult to 

“identify” the demand and supply curves. 
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Given the importance of trade for growth, and the potential impacts of energy decarbonization on trade, 

we ask: What are the price elasticities of import demand, the change in trade demand due to a change 

in price, for each ETM-and-exporter pair (example gas from Russia or lithium from Argentina)? Is there 

a difference between developed and developing exporters in ETM trade demand elasticities? 

These questions lead us to make an analytical contribution to empirical trade analysis by proposing 

modifications to structural trade demand and supply price elasticities building on theory and 

identification strategies developed by Broda and Weinstein (2006) and Soderbery (2015), as well as 

Feenstra (1994), Krugman (1979), Leamer (1981), Armington (1969), and more. The method behind 

the elasticities in the literature we engage and contribute to is based on the idea that the trade elasticity 

of products is related to the physical product characteristics, but that the origin also matters for importers 

(e.g., wine from France is not the same as wine from Sweden).  

As we will see in the Literature Review, the elasticities in question were originally conceived to study 

questions on gains from trade and their conclusions largely support economic theory on the economic 

benefits of trade. While such conclusions may seem tangential to our research questions, we argue that 

they offer added support to the motivation behind our research questions on ETM trade, due to the 

importance of trade to competing policy priorities such as sustainable growth. 

To adjust the model to our aims, we adapt the interpretation of the underlying Constant Elasticity of 

Substitution (CES) utility function in a way that allows us to interpret the result of our model as the 

price elasticity of import demand (simplified as “trade demand elasticity”) an exporter faces when 

supplying towards the rest of the world, instead of the trade demand elasticity of an importer for a given 

product from the rest of the world.  

To give a concrete example, this means that we study how world trade demand for oil from Norway 

reacts to prices, instead of how the U.S. demand for oil from anywhere in the world reacts to prices. 

(We shall see that the most literal interpretation of our results is the trade elasticity of substitution for 

the demand of a certain product from a certain exporter, between importers. However, we show that 

we can interpret the estimates as the trade elasticity of demand for a product from a certain exporter 

when calculated over many countries.) In other words, we estimate the trade demand elasticity of the 

world for a given ETM-exporter pair. To our knowledge, we are the first to modify them in this way, 

and also to ask the question in the context of ETMs. 

We apply Soderbery's (2015) limited information maximum likelihood (LIML) estimation strategy for 

the identification of the supply and demand curves. We use an open-access Stata code he provided with 

the paper. In doing so, we catch a small error that may have affected the elasticities in Soderbery (2015).  

Although our contribution can be used for any traded product, we limit the application of our methods 

to ETMs for the purposes of our research questions. We use UN Comtrade and apply the ETM code list 
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produced by our research in the previous chapter. The length and nature of available trade data also 

allow us to look at changes over time.  

As reflected in the broader literature, several ETMs suffer price fluctuations (Renner and Wellmer 

(2019), and “uncertainty about the export earnings accruing to a country (sometimes referred to as 

export instability) is an important source of macroeconomic uncertainty” (Ghosh and Ostry 1994). Our 

discussion, therefore, assumes that exporters prefer a low trade demand elasticity because, by definition, 

a low trade demand elasticity has a low impact on the quantity demanded. 

The stability in demand granted by a low trade demand elasticity in ETMs allows, ceteris paribus, for a 

range of actors (from government officials to investors and project developers) to efficiently allocate 

policy, assets, and efforts for production over the long term, and this facilitates meeting interrelated 

policy goals. Indeed, energy decarbonization is a long-term project requiring policy coordination 

(Surana and Anadón 2015) and large capital investments over decades (Yeo 2019). Therefore, a low 

trade demand elasticity means that assets surrounding ETM exports are relatively less likely to be 

stranded and investments are more likely to have expected returns, making decarbonization efforts work 

for development, and for decarbonization itself. 

Our first finding is the ETM trade demand elasticities themselves. We find that our method results in 

elasticities that are broadly in line with the papers with which we engage, and the final sample that we 

analyze spans two decades, 29 ETMs, and 22 major exporters. The individual results that we present 

could be used by subsequent researchers to help answer a range of ETM or country-specific research 

questions. They could, for instance, be used in integrated assessment models (IAMs) to determine 

economic indicators for different countries under a range of climate scenarios that necessitate different 

amounts of ETMs (World Bank 2017). 

Our second question revolves around differences between developed or developing country exporters. 

We hypothesize that, if differences exist, they can be due to at least two factors (or their interaction): 

(1) differences in the portfolio of ETMs exported by developed and developing countries (e.g., Bolivia 

exports copper and silver and Switzerland exports the platinum group metals); and, (2) differences in 

the characteristics of the same ETMs perceived by importers (e.g. natural gas from Norway versus 

natural gas from Russia). 

The results indicate that developed countries have weakly statistically significantly lower ETM 

elasticities, which is expected. However, there are indications of a convergence in ETM elasticities 

between developed and developing countries over time, and that that this convergence is at least 

partially due to the characteristics of the exporters, not the portfolio of ETMs. 

Importantly, the elasticities are applicable only to trade, and disregard internal markets, which may be 

large in some countries. Nevertheless, we show that a major strength of the method is that it addresses 
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identification issues in trade data. This is important because trade data is an accessible source of 

information for small or developing countries that export ETMs in an otherwise poor-data environment.  

While we discuss several shortcomings to the method, the most glaring unresolved issue is the time 

length of available trade data. As we shall see, this is the reason for several missing elasticities by 

decade, ETM, and main exporters, which makes definitive comparisons and conclusions limited. 

However, over time, longer trade data may help to solidify the method.  

Section 2 of this chapter reviews the relevant trade elasticities literature and explains how we fit in it; 

Sections 3 and 4 describe our methods and data, respectively; Section 5 presents our data; Section 6 

discusses the results, and Section 7 concludes, suggesting avenues for future research.  

5.2 LITERATURE REVIEW 

The three parts of this Literature Review focus on trade theory that directly underpins our empirical 

strategy on supply and demand substitution elasticities at the product level. 

We first introduce the idea of “varieties,” a concept that allows us to estimate elasticities over product 

and country. We then discuss Krugman’s love-of-variety monopolistic competition trade framework, a 

theory that underpins our methods, and Feenstra (1994), which found a way to empirically test 

Krugman’s theoretical contributions.  

More recently, Broda and Weinstein (2006) seminally improved on Feenstra (1994)’s empirical 

strategy, making it possible for researchers to use trade data to easily compute trade elasticities in a 

low-data environment for many countries and products at once. Their methods allow us to “structurally” 

(i.e., from first-principles) identify supply and demand functions from trade data without needing to 

study specific markets and countries individually. We fully discuss the robustness and applicability of 

Broda and Weinstein (2006), especially to “commodity” products, a category in which many of our 

products fall. We also show that the perspective that previous research has taken is not suitable for our 

analysis of the exporters of ETMs. Last, we discuss how Soderbery (2010, 2015) improved Broda and 

Weinstein (2006)’s estimation, and explain why we use his estimation method for our elasticities. 

We summarize the review in [Table 1] at the end of the section. Importantly, most contributions we cite 

below are motivated by broad macroeconomic questions. We are interested in elasticities in the context 

of energy decarbonization. In the review, we focus on the methodological questions of the literature, 

although the results of the literature on gains from trade helps to show the importance of studying ETM 

trade for an economically sustainable transition to decarbonized energy.  

5.2.1 Varieties  

In the traditional comparative advantage framework dating at least as far back as David Ricardo in the 

18th century, consumers are indifferent to the origin of a good and are sensitive only to price. However, 



 

192 

 

Armington (1969) posited a trade model where the same goods are differentiated by country of origin. 

He suggests French and Japanese machinery are considered dissimilar goods for a given importer, and 

they are thus imperfect substitutes, different “varieties.” The idea of “variety” underpins most 

international computable general equilibrium models of trade today, our research question, and the rest 

of this review.  

Employing a Constant Elasticity of Substitution (CES) utility function (used in all studies mentioned 

here and widely in the literature for its tractability) to model bilateral trade, Armington (1969) develops 

the “Armington elasticity,” which is a measure of the substitutability between home and foreign goods. 

However, our research question does not intend to find the “Armington elasticity;” instead, we are 

interested in how demand changes with price, for a certain ETM and exporter. Armington (1969)’s 

relevant contribution is the idea of variety, and the use of a CES utility function, which are common to 

all the papers discussed below.  

5.2.2 The love-of-variety monopolistic competition trade framework  

In a Ricardian comparative advantage framework, consumers substitute goods from different countries 

according to price. As a result, the elasticity of demand substitution between varieties, defined as a 

country origin, is infinite and gains from trade for importers occur only with price decreases.  

In Krugman (1979) and (1980), contributions for which he was awarded the 2008 Nobel Memorial Prize 

in Economic Sciences, Krugman proposes a “love-of-variety” monopolistic competition trade 

framework. (The definition of variety used in different models is of crucial importance and Krugman 

(1980) refers specifically to firm-level imports.) The relevant contribution of his research is that 

monopolistic competition leads to new varieties, and consumers like variety. Contrary to the Ricardian 

model, Krugman’s framework proposes a small elasticity of demand substitution. His theory also 

implies that welfare can increase without price decreases. For instance, welfare can improve either 

through decreasing trade costs or through the growth of a foreign country and their subsequent export 

of more varieties. Albeit framed around macroeconomic questions, the love-of-variety monopolistic 

competition trade framework is the basis for the most relevant empirical work related to our research 

question on trade elasticities, by ETMs-and-exporter pairs.  

5.2.3 Feenstra (1994)’s empirical application 

Feenstra (1994) bridges the gap between Krugman’s theory and empirical work. His model calculates 

the elasticities of new varieties, defined as exporters (e.g., for the United States, importing the same 

product from France or the United Kingdom constitute different ‘varieties’), for six manufactured 

products. His use for these elasticity estimates is to create a CES aggregate of import price and quantity 

indices. These indices are then used to analyze gains from varieties in trade.  
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In favor of the monopolistic competition trade framework proposed by Krugman, Feenstra (1994) finds 

that the failure to account for new varieties of products that were otherwise treated as identical, 

“seriously overestimated” the income elasticity of demand for imports in the USA. 

What makes Feenstra (1994) relevant to our analysis is the development of a method to consistently 

and structurally  quantify the elasticity of substitution between varieties of a traded product, e.g., lithium 

carbonate, with only trade data as an input. Refer to Koopmans (1949) for a discussion on structural 

versus reduced-form modeling. 

Given that most countries report import and export data and the data is posted publicly, it is possible to 

systematically estimate trade elasticities over varieties for thousands of products for many instances in 

which there is otherwise missing data. All the papers discussed in the rest of this review refine Feenstra 

(1994)’s empirical strategy.  

Feenstra (1994)’s method for calculating trade elasticities is based on comparing deviations in prices 

and quantities with respect to the dominant “reference” exporter for each good. For this, he builds upon 

Leamer (1981)’s supply and demand curve identification strategy. Leamer (1981) had shown that, 

assuming upward and downward sloping supply and demand curves, respectively, with independent 

errors between them, price and quantity data can be used to define the bounds of a hyperbola in which 

the true values of supply and demand elasticities lie. However, using time-series data, this method can 

only yield information on either the supply or the demand curve, and not both.  

Feenstra (1994) addresses Leamer (1981)'s limitation by exploiting the panel nature of the product-level 

trade data. He plots the hyperbola of each variety for a given importer and product pair. When doing 

so, there are as many hyperbolae as there are varieties for a given importer and product pair. Because 

of the CES assumption first used in Armington (1969), each variety is part of the same underlying 

supply and demand elasticities for a specific importer, and has a common elasticity of supply.  

Ideally, the estimates of multiple hyperbolae made possible through trade data would all intersect, and 

do so at exactly one point, which would precisely indicate the demand or supply elasticity. In reality, 

the hyperbolae may intersect various times, or never. In that case, Feenstra (1994) proposes choosing 

the elasticity estimates that minimize the sum of weighted least squares of residuals of the line of best 

fit between the hyperbolae.  

To do so, he applies a two-stage least squares (2SLS) instrumental variables estimation, where exporters 

are the instrumental variable. The aim of the 2SLS procedure is atypical. It is simply to convert the 

hyperbolae into data points. To account for the possible measurement error in the unit value, which is 

computed by dividing the quantity by value and is used as a proxy to price in trade literature, Feenstra 

(1994) uses shares of trade value from each exporter instead of quantity and price data. 
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Despite its important contribution, a major impediment of Feenstra (1994) is the creation of infeasible 

estimates when theoretical assumptions of declining and increasing supply and demand curves, 

respectively, are violated. Broda and Weinstein (2006) seminally, and Soderbery (2015), further 

improve upon Feenstra (1994)’s empirical approach, and are what we apply in our model. 

5.2.4 Improvements on Feenstra (1994)’s empirical specifications 

Broda and Weinstein (2006) 

   

Between 2006-2008, Broda and Weinstein coauthored three separate but related papers that are relevant 

to our analysis, including the seminal “Globalization and the Gains from Variety.” Harking back to 

Krugman (1980), the goal of their 2006 paper is to quantify the impact that new varieties have had on 

national welfare between 1972-2001 in the USA, as measured by their effect on GDP.  

Broda and Weinstein (2006)’s most relevant contribution was to address the creation of infeasible 

estimates in Feenstra (1994)’s 2SLS method, which occurs in about 40% of products (Soderbery 2015). 

To address this, Broda and Weinstein (2006) impose a constrained optimization grid search within a 

feasible region of 1.05 to 80, over increments of 0.05, for the demand substitution elasticity of the 

products that created infeasible estimates. This means that they find the point of smallest distance 

between hyperbolae in a space where imports, e.g., unrefined molybdenum, decrease by 1.05% - 80% 

when its price changes by 1%.  

There are several economic theories against which researchers have assessed the robustness of the 

elasticities estimated using Broda and Weinstein (2006)’s method. One way is by comparing the 

elasticities of different types of products against the way that economic theory would predict their 

elasticities to behave.   

Economic theory postulates that, despite differentiation by country of origin, the lower the degree of 

differentiation between goods, the higher the degree of substitutability between them. Rauch (1999) 

proposes a popular typology that helps define goods: (1) Goods, or commodities, sold in organized 

exchanges (like the London Metals Exchange), (2) goods that have a reference price in the US; and, (3) 

all other goods.  

Although our research questions focus on groups of exporters and not types of products, Rauch’s 

classification of good is relevant to our analysis because several ETMs are sold in organized exchanges 

(e.g., oil and refined cobalt metal) and if the methods are shown to work for them, our results are likely 

to reflect reality. The next section of this Literature Review evaluates the estimates published in Broda 

and Weinstein (2006) in the context of our ETMs. 



 

195 

 

Robustness checks and applicability of Broda and Weinstein (2006) to our ETMs 

 

Broda, Greenfield, and Weinstein (2006) and Broda, Limao, and Weinstein (2008) apply and evaluate 

the elasticity estimation methods in Broda and Weinstein (2006). Their robustness checks help us gauge 

the reasonableness and usability of the methods. Both papers find the elasticity estimates behave as 

expected when they separate product estimates into Rauch (1999)’s product groups.  

Broda, Greenfield, and Weinstein (2006) apply the elasticity methodology of Broda and Weinstein 

(2006) to 73 countries from 1994-2003 for all available products in UN Comtrade. They attempt to 

reconcile detailed micro and macro evidence for the benefits of trade of new varieties on growth across 

countries and their results suggest that 15 percent of total factor productivity growth stems from new 

imported varieties on average, with larger effects on developing versus developed countries, at 20 and 

5 percent, respectively. To assess the elasticities, they include a comparison of their descriptive statistics 

by Rauch (1999) product groups. When subject to this analysis, Broda, Greenfield, and Weinstein 

(2006) strongly reject the null hypothesis that the median or mean for commodities, where many of our 

ETMs would be categorized into, are lower than in the other groups, with an average elasticity of 12.1 

and 7.2, respectively.  

Amongst other questions, they also ask whether elasticities remain in the expected range for their Rauch 

product groups over time. To study this, they calculate elasticities over two decades (as we do) and 

regress the logs of the latter decade on the first, including good fixed-effects. They find that 

differentiated goods in one period are also differentiated in the second, robust to several specifications. 

In their words, “we conclude that our elasticity estimates are reasonable by a number of criteria.” 

Broda, Limao, and Weinstein (2008) extends the application of Broda and Weinstein (2006). Unlike us, 

they publish supply (and not demand) elasticities, but because both our elasticities stem from the same 

methods and because they assess the behavior of the elasticity estimates against economic rationale, the 

paper is relevant to us.  

Broda, Limao, and Weinstein (2008) evaluate the relationship between the supply elasticity (interpreted 

as the inverse of importer market power) and the consequent import tariffs set by importing countries. 

According to them, higher market power should translate to higher import tariffs. Amongst several 

findings, they posit that tariffs by WTO non-members are 9 percentage points higher on inelastically 

supplied imports. Specifically, Broda, Limao, and Weinstein (2008) expect importers to have lower 

market power in commodities because it is relatively easier to substitute across varieties of commodities 

than other products. Again following Rauch (1999), Broda, Limao, and Weinstein (2008) find that the 

descriptive statistics over the three different groups follow the theory. The inverse supply elasticity for 

commodities is 0.5 and 2.4 for differentiated products.  
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Soderbery (2010, 2015): Limitations and improvements on Broda and Weinstein (2006) 

 

Soderbery (2010) and Soderbery (2015) show that 2SLS used in Broda and Weinstein (2006) and 

Feenstra (1994) suffers from small sample bias as a result of the small number of years inherent to trade 

data. This problem is directly relevant to the UN Comtrade database we are using, which is only 

available as of 1995 for most countries. The small number of years in the trade data leads to the 

generation of outlier hyperbolae and weak instruments, which trigger infeasible estimates and the grid 

search first presented in Broda and Weinstein (2006). 

To avoid triggering a grid search in the first place, Soderbery (2015) suggests using limited information 

maximum likelihood (LIML) estimation instead of 2SLS. LIML is a form of instrumental variable 

estimation that predates but is similar to 2SLS based on Anderson and Rubin (1949). While 

asymptotically equivalent to 2SLS, LIML has been shown to perform better with weak instruments, 

thereby helping to mitigate the small time sample of trade data (Hahn and Inoue 2002). The difference 

lies in that 2SLS weighs all hyperbolae equally, while LIML weighs them by the estimated residuals. 

At t=15, LIML triggers a grid search 20% of the time versus 70% for 2SLS.  

It is inevitable that LIML still yields some infeasible estimates. Here, Soderbery (2015) proposes 

triggering a nonlinear LIML search instead of the grid search in Broda and Weinstein (2006). According 

to Monte Carlo experiments on simulated data, the second stage grid search bias ranges from 15-40%, 

depending on t, the time length of the sample, due to weak identification of the supply elasticity and the 

coarseness of the grid. However, the bias is about 5% using the nonlinear LIML search.  

The resulting ‘hybrid estimators’ (HE), by Soderbery (2015) for US trade data at the 8-digit level 

between 1993-2007 have a 35% lower median demand elasticity than the Broda and Weinstein (2006) 

‘standard estimators’ (SE). Our study uses the HE. 

Some limitations to HE remain. Theory based on Feenstra (1994) assumes that the supply and demand 

errors are uncorrelated. In reality, they often are. But, according to Soderbery (2015), this does not stop 

HE from overperforming compared to the SE.  

For instance, when errors are negatively correlated, Soderbery (2015) shows that the demand elasticity 

from the SE is upward biased by 50-125%, while the HE is only moderately biased. When errors are 

negatively correlated, we can interpret the existence of hidden varieties due to the nature of the 

aggregation of trade data. In this case, consumers appear to be more responsive to price changes than 

they are (Hallak and Schott 2008).  

When errors are positively correlated, Soderbery (2015) shows that both SE and HE exhibit a moderate 

bias of 10-15%. When supply and demand errors are positively correlated, we can interpret the group 

of goods as possessing a hidden quality (Feenstra 1994). In this case, consumers would appear to be 

less responsive to price changes than they really are (Hallak and Schott 2008).    
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5.2.5 Summary  

While it is possible to calculate trade demand elasticities bilaterally while attempting to control for 

various characteristics of individual markets (an example is Anderson (1979)), it is not easily done over 

various countries and ETMs, and so does not align with our research question. Additionally, a bilateral 

approach quickly runs into simultaneity and identification issues, which our method resolves by 

applying Leamer (1981).  

Trade elasticities by Broda and Weinstein (2006) have helped trade economists subject theory to 

empirical analysis and deepen their understanding of gains from trade and varieties. Table 5.1 

summarizes the papers that led or are directly related to the methods we use. These methods make it 

possible for researchers to circumvent low-data environments for many countries and products at once 

and allow them to calculate elasticities without needing to specify methods for each market and country 

individually. We contribute to the literature by presenting a useful adaptation of the Broda and 

Weinstein (2006) model to calculate trade demand elasticities for products and main exporters. We also 

demonstrate an application of the methods Broda and Weinstein (2006) to the discussion of ETMs. 

Table 5.1. Key publications that advanced trade theory and methods relevant to this paper, and their main takeaways. 

Paper(s) Goal Data used 
Definition of 

variety 

Relevance to this 

chapter 
Result 

Armington (1969), 

“A Theory of 

Demand for 

Products 

Distinguished by 

Place of 

Production” 

To posit a trade 

model where the 

same goods are 

differentiated by 

country of origin 

based on CES 

preferences 

None 

A product from 

a particular 

country. Not 

explicitly 

referred to as 

variety. 

Provides 

theoretical 

rationale for the 

differentiation of 

goods by origin. 

A theory of 

demand for 

products 

distinguished by 

good and place 

of production 

Krugman (1979) 

and Krugman 

(1980), 

“Increasing 

returns, 

monopolistic 

competition, and 

international 

trade” and “Scale 

Economies, 

Product 

Differentiation, 

and the Pattern of 

Trade” 

To develop a 

general 

equilibrium model 

of non-

comparative 

advantage trade, 

and to incorporate 

several the 

elements of: 1) 

economies of 

scale, 2) product 

differentiation, and 

3) imperfect 

competition into a 

cohesive trade 

model. 

None 

A product 

category from a 

particular firm 

Introduced the 

love-of-variety 

trade framework, 

supporting the 

idea of 

monopolistic 

competition and 

varieties in 

trade.  

Showed that, 

contrary to 

comparative 

advantage trade 

framework, 

gains from trade 

can occur 

without price 

decreases. 

Leamer (1981), 

“Is it a Demand 

Curve, or is it a 

Supply Curve? 

Partial 

Identification 

through Inequality 

Constraints” 

To describe the 

“sets of maximum 

likelihood 

estimates of 

parameters in two-

equation under-

identified 

simultaneous 

equation systems”. 

None Not applicable 

Showed how 

hyperbolae can 

help identify 

either the supply 

and demand 

curve, but not 

both. 

If demand and 

supply have an 

independent 

error structure, 

maximum 

likelihood 

estimates of the 

demand and 

supply 

elasticities lie 
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Paper(s) Goal Data used 
Definition of 

variety 

Relevance to this 

chapter 
Result 

on a hyperbola 

defined by the 

second 

moments of the 

data. 

Feenstra (1994), 

“New product 

varieties and the 

measurement of 

international 

prices” 

To bridge the gap 

between 

theoretical trade 

models with 

product 

differentiation and 

empirical analysis 

Data used: 6 

products 1969-

1987, 7-digit 

Tariff System of 

the USA;  

Output: demand 

substitution 

elasticity 

An HS product 

category from a 

particular 

country 

Used panel data 

at 2SLS to 

estimate both 

supply and 

demand 

elasticities from 

Leamer’s (1981) 

hyperbolae. 

The failure to 

account for new 

varieties 

seriously 

overestimated 

the income 

elasticity of 

demand for 

imports in the 

USA. 

Broda and 

Weinstein (2006), 

“Globalization 

and Gains from 

Variety” 

To quantify the 

impact that new 

varieties have had 

on national 

welfare in the 

USA 

Data used: 7-digit 

Tariff System of 

the USA (1972-

1988) and 10- 

digit, 

COMTRADE, 

1990-2001 for 

USA 

Output: demand 

substitution 

elasticity 1972-

2001 for USA 

An TSUSA/HS 

product 

category from a 

particular 

country 

Showed how a 

grid search could 

estimate supply 

and demand 

elasticities when 

Feenstra (1994) 

yielded 

infeasible 

estimates. 

Value of new 

varieties to USA 

consumers is 

2.6 percent of 

GDP between 

1997-2001 

Broda, Greenfield, 

and Weinstein 

(2006), “From 

Groundnuts to 

Globalization: A 

Structural 

Estimate of Trade 

and Growth” 

To estimate the 

impact that trade 

in new and better 

varieties has had 

on growth around 

the world 

Data used: 6 

digit, 

COMTRADE, 

1994-2003, 73 

countries 

Output: 4-digit 

demand 

substitution 

elasticities  

An HS product 

category from a 

particular 

country 

Review of 

reasonableness 

of Broda and 

Weinstein 

(2006) methods  

Average of 15 

percent of TFP 

growth 

stemming from 

new imported 

varieties 

Broda, Limao, and 

Weinstein (2008), 

“Optimal Tariffs 

and Market 

Power: The 

Evidence” 

To quantify the 

importance of the 

market power 

(inverse elasticity 

of supply, or 

terms-of trade) 

motive in trade 

policy 

Data used: 6 

digit, 

COMTRADE, 

1994-2003, 15 

non WTO 

members 

Output: 4-digit 

demand 

substitution and 

supply elasticities 

An HS product 

category from a 

particular 

country 

Review of 

reasonableness 

of Broda and 

Weinstein 

(2006) methods 

Strong evidence 

that importers 

with market 

power set higher 

tariffs    

Soderbery (2010), 

“Investigating the 

Asymptotic 

Properties of 

Import Elasticity 

Estimates” 

To establish the 

presence of weak 

instruments in 

trade data, and that 

the instruments 

appear to drive 

significant small 

sample biases in 

the estimator. 

Data used: 

Simulated data 

based on 

underlying 

elasticity 

estimates, 

drawing 

heteroskedastic 

variances from a 

Uniform 

A product 

category from a 

particular 

country 

Identifies 

problems with 

and improves 

Broda and 

Weinstein 

(2006) 

estimation 

strategy 

There are weak 

instruments in 

trade data. 

These 

instruments 

appear to drive 

significant small 

sample biases in 

the estimator. 
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Paper(s) Goal Data used 
Definition of 

variety 

Relevance to this 

chapter 
Result 

distribution and 

imposing random 

missing values; 

Output: none 

Soderbery (2015), 

“Estimating 

Import Supply and 

Demand 

Elasticities: 

Analysis and 

Implications” 

To analyze and 

improves the 

technique to 

provide a unified 

estimator of 

import supply and 

demand 

elasticities. 

Data used: 8 and 

10 digit, 

COMTRADE, 

1993-2007, USA 

Output: Standard 

and hybrid 

demand 

substitution and 

supply elasticities 

for USA 

An HS product 

category from a 

particular 

country 

Improves Broda 

and Weinstein 

(2006) 

estimation 

strategy; review 

of 

reasonableness 

of estimates 

Estimation 

strategy yields a 

35% lower 

median demand 

elasticity than 

Broda and 

Weinstein 

(2006)  

Sources: In the table. 

5.3 MODEL AND METHODS 

In this methods section, we explain why we must conceive an alternative interpretation of “variety” and 

introduce the demand and supply curves behind our model. Importantly, we also explain how the new 

interpretation of the variety alters the meanings of the curves. Second, we review the theory linking the 

demand and supply curves to the estimating equation. Last, we summarize the estimating strategy.  

Note that the model composed of demand, supply, and estimating equations builds on theory published 

in Feenstra (1994) and Broda and Weinstein (2006). We follow the model and the notation used in 

Soderbery (2015) because our estimation adapts code by Soderbery (2015), but it is the same model 

proposed in works before that (Feenstra (1994) and Broda and Weinstein (2006)). We simplify Feenstra 

(1994)’s econometric contribution in the estimating equation. 

5.3.1 Demand 

A representative consumer faces nested CES preferences over goods, 𝑔,  and set of varieties,  𝑣 , 

denoted by 𝐼𝑔𝑡  ∈  {1, … , 𝑣 … , 𝑉}.  The elasticity of substitution between varieties is 𝜎𝑔 > 1.   𝑏𝑔𝑣𝑡 

represents a good and time variety-specific taste shock, and the aggregate quantity consumed of a 

certain variety at time 𝑡 is 𝑥𝑔𝑣𝑡 . The demand for a certain variety of a good at time 𝑡, 𝑥𝑔𝑣𝑡 , is a function 

of its price, 𝑝𝑔𝑣𝑡, taste for that variety, 𝑏𝑔𝑣𝑡, and a good-specific price index, 𝜙𝑔𝑡(𝑏𝑔𝑡).  

The good price index frames the variety within all available varieties of that good, and is defined as: 

𝜙𝑔𝑡(𝑏𝑔𝑡) ≡ ∑ (𝑏𝑔𝑣𝑡

𝑣 ∈𝐼𝑔𝑡

𝑝𝑔𝑣𝑡
1−𝜎𝑔)

1
1−𝜎𝑔 

Eq. 5.1 
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Total demand for the variety is: 

𝑥𝑔𝑣𝑡 =  𝑝𝑔𝑣𝑡

−𝜎𝑔  𝑏𝑔𝑣𝑡 (𝜙𝑔𝑡(𝑏𝑔𝑡))
𝜎𝑔−1

 
Eq. 5.2 

The utility derived from consumption of good g is: 

𝑋𝑔𝑡 = ( ∑ 𝑏𝑔𝑣𝑡

1/𝜎𝑔𝑥𝑔𝑣𝑡

𝜎𝑔−1/𝜎𝑔

𝑣 ∈𝐼𝑔𝑡

)

𝜎𝑔

𝜎𝑔−1

 Eq. 5.3 

Where: 

𝜎𝑔=good-specific constant elasticity of substitution 

𝑔= good 

𝑣 = varieties (exporter for previous literature, importer for us) 

𝑡 =time 

𝑥𝑔𝑡= quantity consumed of good over all varieties 

𝑥𝑔𝑣𝑡= aggregate quantity of each variety consumed in period t  

𝑏𝑔𝑣𝑡= variety-specific taste shock 

The original interpretation of 𝜎𝑔  is of an importer-and-good-specific elasticity of substitution of 

imports, over varieties of exporters. Concretely, how much an importer (e.g., USA) shifts their 

purchases of a good (e.g. oil) from one exporter (variety) to another, due to a price change (expressed 

through the price index 𝜙𝑔𝑡(𝑏𝑔𝑡)).  

As is, despite being an applicable model for structural trade elasticities, it does not apply to our research 

questions because it gives us information on the demand substitution elasticity of a specific importer, 

over various exporters. Our aim instead is to understand how the demand for different traded ETMs 

differs amongst main exporters, and how it has evolved over the past decades.  

To address this incompatibility, we propose a modification of the interpretation of varieties where the 

model and data may be adapted and used to analyze the demand for a good from a specific exporter 

instead of to a specific importer. In our modification, the utility function embodies the world aggregate 

utility as the sum of quantities of goods (e.g., oil) imported by all countries, from a specific exporter 

(e.g. Saudi Arabia). This implies that importers become the variety.  

What is the impact of this change on the definition of 𝜎𝑔? We propose that we interpret 𝜎𝑔 as a good-

and-exporter specific world aggregate elasticity of substitution of imports over all importers (varieties). 

In other words, 𝜎𝑔 embodies how much demand is shifted among importers as price changes, for a 

certain good-exporter combination. It is a measure of the price sensitivity of an aggregate world 

importer to an exporter-good pair, or the elasticity. 

In our running example, the estimated value of 𝜎𝑔 would quantify how much world importers shift their 

demand (between themselves) when there is an increase in the price of oil from Saudi Arabia. Krugman 
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(1979) showed that at a large number of varieties, 𝑣, 𝜎𝑔 can be considered a measure of the demand 

elasticity. In this case, the estimate can thus be considered the world demand elasticity of a good from 

a specific exporter.  

5.3.2 Supply 

We define supply through price, 𝑝𝑔𝑣𝑡, with an inverse export supply elasticity of 𝜔𝑔 ≥ 0, and a good-

variety-time specific technology factor, 𝜂𝑔𝑣𝑡:  

𝑝𝑔𝑣𝑡 = (
𝜎𝑔

𝜎𝑔 − 1
) exp(𝜂𝑔𝑣𝑡) (𝑥𝑔𝑣𝑡)𝜔𝑔 

Eq. 5.4 

Where:  

𝜔𝑔= good-specific inverse export supply elasticity   

𝑔= good 

𝑣 = varieties (exporter) 

𝑡 =time 

𝑝𝑔𝑣𝑡 =price of variety at time t 

𝑥𝑔𝑡= quantity consumed of good over all varieties 

𝑥𝑔𝑣𝑡= quantity consumed of varieties at time t 

𝜂𝑔𝑣𝑡= random technology factor 

 

The interpretation of 𝜔𝑔  is of a good-and-importer-specific inverse export supply elasticity. As 

discussed in the Literature Review, it is analyzed extensively in Broda, Limão, and Weinstein (2006). 

𝜔𝑔 can be considered the importer market power, as it captures how changes in the quantity demanded 

by one importer affects prices of that variety. 

Our discussion focuses only on the estimation of 𝜎𝑔; however, it is useful to note that when the variety 

represents importers, 𝜔𝑔 becomes the good-and-exporter-specific inverse export supply elasticity of 

each variety (importer). It can be thought of as the market power of the exporter (a parameter that 

influences how quantity exported, 𝑥𝑔𝑣𝑡, by one country affects prices of goods it exports).  

5.3.3 Estimating equation 

As explained in the Literature Review, Feenstra (1994) converts the demand for a product by one 

country in a particular year into shares. This is done to mitigate the measurement error caused by 

utilizing unit values (trade quantities divided by trade values) as a proxy for prices because shares of 

expenditure should be uncorrelated with the measurement error of the unit value.  

In this section, we continue to use the notation of (Soderbery 2015). The market share of a variety, 𝑠𝑔𝑣𝑡, 

it is a function of the taste parameter, 𝑏𝑔𝑣𝑡, and the relation of its price, 𝑝𝑔𝑣𝑡 to the price index 𝜙𝑔𝑡(𝑏𝑔𝑡): 
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𝑠𝑔𝑣𝑡 ≡
(𝑝𝑔𝑣𝑡𝑥𝑔𝑣𝑡)

∑ (𝑝𝑔𝑣𝑡𝑥𝑔𝑣𝑡𝑣 ∈𝐼𝑔𝑡
)

= (
𝑝𝑔𝑣𝑡

𝜙𝑔𝑡(𝑏𝑔𝑡)
)

1−𝜎𝑔

 ∙ 𝑏𝑔𝑣𝑡 
Eq. 5.5 

Like we did with demand, we also convert supply into shares: 

𝑝𝑔𝑣𝑡 = ( ∑ 𝑒𝑥𝑝

𝑣 ∈𝐼𝑔𝑡

(
−𝜂𝑔𝑣𝑡

𝜔𝑔
) 𝑝𝑔𝑣𝑡

1+𝜔𝑔

𝜔𝑔 )

𝜔𝑔

1+𝜔𝑔

𝑒𝑥𝑝 (
𝜂𝑔𝑣𝑡

1 + 𝜔𝑔
) 𝑠𝑔𝑣𝑡

𝜔𝑔

1+𝜔𝑔
 Eq. 5.6 

To make the equations more workable, Feenstra (1994) first-differences, takes logs, and generates an 

error term. Shares (demand) become:  

∆𝑙𝑛(𝑠𝑔𝑣𝑡) = 𝜑𝑔𝑡 − (𝜎𝑔 − 1)∆𝑙𝑛(𝑝𝑔𝑣𝑡) + 휀𝑔𝑣𝑡 
Eq. 5.7 

 

Where 𝜑𝑔𝑡 ≡ (𝜎𝑔 − 1)∆ ln (𝜙𝑔𝑡(𝑏𝑔𝑡)), is a random shock specific to time and product based on taste 

parameter, 𝑏𝑔𝑡. In contrast, the random shock 휀𝑔𝑣𝑡 = ∆ ln(𝑏𝑔𝑣𝑡), is variety-specific taste shock.  

Eliminating good-specific unobservables from the price (supply) in natural logs, we are left with: 

∆𝑙𝑛𝑝𝑔𝑣𝑡 = 𝜓𝑔𝑡 + (
𝜔𝑔

1 + 𝜔𝑔
) ∆𝑘 ln(𝑠𝑔𝑣𝑡) + 𝛿𝑔𝑣𝑡 

Eq. 5.8 

Where 𝜓𝑔𝑡 =
𝜔𝑔

1+𝜔𝑔
∆𝑙𝑛 (∑ 𝑒𝑥𝑝𝑣 ∈𝐼𝑔𝑡

(
−𝜂𝑔𝑣𝑡

𝜔𝑔
) 𝑝𝑔𝑣𝑡

1+𝜔𝑔

𝜔𝑔 ) are time-product specific shocks to production. 

On the other hand, 𝛿𝑔𝑣𝑡 =  (
𝜂𝑔𝑣𝑡

1
+ 𝜔𝑔)  are random technology shocks to the production of each 

variety. 

Leamer (1981)’s contribution to the identification of supply and demand curves was to show that, given 

independent error structures in the demand and supply equations, a hyperbola of the second moments 

of the data would contain the set of possible maximum likelihood estimates. Building upon Leamer 

(1981), Feenstra (1994) eliminates the time-product shock, 𝜑𝑔𝑡 , by differencing over reference country, 

𝑘, resulting in the following structural demand curve where demand shock 휀𝑔𝑣𝑡
𝑘 = ∆𝑘ln(𝑏𝑔𝑣𝑡):  

∆𝑘𝑙𝑛𝑠𝑔𝑣𝑡 ≡  ∆𝑙𝑛𝑠𝑔𝑣𝑡 − ∆𝑙𝑛𝑠𝑔𝑘𝑡 = (𝜎𝑔 − 1)∆𝑘 ln(𝑝𝑔𝑣𝑡) + 휀𝑔𝑣𝑡
𝑘  

Eq. 5.9 

The same is done for the supply curve. We eliminate the time-product shock, 𝜓𝑔𝑡  by differencing over 

reference country, 𝑘, 𝑤here supply shock 𝛿𝑔𝑣𝑡
𝑘 = ∆𝑘ln (

𝜂𝑔𝑣𝑡

1+𝜔𝑔
). 
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∆𝑘𝑙𝑛𝑝𝑔𝑣𝑡 ≡  ∆𝑙𝑛𝑝𝑔𝑣𝑡 − ∆𝑙𝑛𝑝𝑔𝑘𝑡 = (
𝜔𝑔

1 + 𝜔𝑔
) ∆𝑘 ln(𝑠𝑔𝑣𝑡) + 𝛿𝑔𝑣𝑡

𝑘  
Eq. 5.10 

As discussed in the review, the reference country plays a central role in Feenstra (1994)’s elasticities. 

In fact, to be able to compare elasticities of a good by exporter (importer in the original model), both 

estimates must be based on the same reference importer (exporter in the original model). For instance, 

if we are comparing the trade elasticity of demand for oil from Saudi Arabia and the same estimate from 

Qatar, we must make sure that the reference importer is the same in both estimates. This is built into 

the method and automated in our code.  

The method for choosing the reference country itself is ultimately up to the implementing researcher. 

For computational purposes, it must be a variety sold every year. Yet, if there are several such varieties, 

Mohler (2009) suggests that the variety with the largest value yields the most stable elasticities. 

In principle Feenstra (1994), Broda and Weinstein (2006), Soderbery (2015) all choose the variety with 

the largest market share as the reference. However, upon close inspection, modification, and 

implementation of Soderbery (2015)’s code that we use as the basis for our estimates, the original code 

fails to consistently choose the variety with the largest market share as the reference when there are 

multiple varieties sold every year. We amend this, and the change is reflected in our final estimates.  

Estimating strategy 

Following Feenstra (1994), we now transform the above into a single equation. We abridge Feenstra 

(1994)’s (econometric) contribution in the interest of space. Multiplying the demand and supply shocks, 

we generate a combined shock: 

𝑢𝑔𝑣𝑡 = 𝑔𝑣𝑡
𝑘 𝛿𝑔𝑣𝑡

𝑘

(1−𝜌𝑔)
, where 

Eq. 5.11 

𝜌𝑔 ≡
𝜔𝑔(𝜎𝑔−1)

1+𝜔𝑔𝜎𝑔
 for ∈ [0,

𝜎𝑔−1

𝜎𝑔
] 

Eq. 5.12 

Further scaling by 
1

(1−𝜌𝑔)
, and rearranging , we arrive at Feenstra (1994)’s estimating equation: 

𝑌𝑔𝑣𝑡 = 𝜃1𝑋1𝑔𝑣𝑡 + 𝜃2𝑋2𝑔𝑣𝑡 +  𝑢𝑔𝑣𝑡 
Eq. 5.13 

Coefficients 𝜃1 and 𝜃2 are functions of 𝜎𝑔 and 𝜌𝑔: 

𝜃1 ≡
𝜌𝑔

(𝜎𝑔−1)
2

(1−𝜌𝑔)
 and 

Eq. 5.14 

𝜃2 ≡
2𝜌𝑔−1

(𝜎𝑔−1)(1−𝜌𝑔)
  

Eq. 5.15 

And, 𝑌𝑔𝑣𝑡 ≡ (∆𝑘𝑙𝑛𝑝𝑔𝑣𝑡)
2
; 𝑋1𝑔𝑣𝑡 ≡ (∆𝑘𝑙𝑛𝑠𝑔𝑣𝑡)

2
 and 𝑋2𝑔𝑣𝑡 ≡ (∆𝑘𝑙𝑛𝑝𝑔𝑣𝑡)(∆𝑘𝑙𝑛𝑠𝑔𝑣𝑡).  
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Most conservatively, we can interpret the model output as an elasticity of substitution for the demand 

of a certain product from a certain exporter, between varieties of importers. More broadly, we could 

interpret that, in a large group of n countries, our estimates become the trade elasticity of demand for a 

product from a certain exporter (Krugman 1979). Therefore, even at the broadest level, our output is 

strictly an elasticity of demand for the trade of a certain product from a certain exporter, not an elasticity 

of demand by product and country of production.  

Because the trade demand elasticities are applicable only to trade, they may have a relatively narrow 

application for countries that have large internal demand for the ETMs. It is still useful for countries 

that have negligible internal demand, or for the export sectors of economies with large internal demand.  

Appendix 1 explains how we input the data into the empirical model so that it respects the theoretical 

interpretation we propose. Our work breaks the second assumption of the model that states that supply 

and demand elasticities are identical across varieties (i.e., exporting countries) within goods. However, 

in running a Kolmogorov-Smirnov test on his data, Soderbery (2015) finds this is not the case for export 

supply elasticities and writes Soderbery (2018) on it. The code was implemented in Stata 15.0. It is 

available upon request.  

5.4 DATA 

We use 30 ETMs products in UN Comtrade that were systematically identified in the methods of 

Chapter 4. In the interest of space, we refrain from describing the dataset, but we note that this is an 

example of an application of the contributions that chapter. In this section, we discuss characteristics of 

the dataset that are relevant only to the questions and methods unique to this chapter.  

As discussed in the Literature Review, the elasticities are best calculated in a data-rich environment, so 

we consider only major exporters, defined as either within the top five in total value for a certain good 

during the 20 years, or those included in the cumulative top 90% of exporters, whichever comes first.  

Additionally, Broda, Limão, and Weinstein (2006) maintain that the more varieties (importers for us) 

available, the more precise the elasticities (though this is called into question in (Soderbery 2010)). As 

you may recall: (1) HS nomenclature is standardized internationally up to six digits; (2) the more 

disaggregated the HS codes (e.g., six- instead of four-digit HS codes), the fewer the number of varieties 

per ETM; and, (3) the greater the aggregation used (four- instead of six-digit HS codes), the more data 

the researcher has.  

Broda and Weinstein (2006) and subsequent papers that discussed their methods empirically tested 

behaviors predicted by trade theory over all products. As a result, they chose products according to only 

one level of aggregation, say 6-digit products, for their analysis. The research questions of this chapter 

relate to a specific subset of all available traded products, so we actively consider the level of 
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aggregation needed to isolate each ETM. For instance, HS 2616 refers to ores and concentrates of all 

precious metals, including silver (HS 261610), gold, and the platinum group metals (HS 261690). 

However, crude oil is sufficiently differentiated at the four-digit HS level (HS 2709). We, therefore, 

choose the adequate level of aggregation, between four- and six-digit HS codes, according to each ETM.  

Remember that in our data, varieties are given by both the ETM and the importer.  In our case and over 

all decades, ETMs face an average of 104 importers, with a minimum of 31 (cobalt [OC]) and a 

maximum of 165 (aluminum [UW]) (Table 5.2). However, the sample is somewhat smaller when we 

slice the data by decade, with an average of 87 importers in Decade 1 and of 91 in Decade 2. 

Table 5.2. Varieties, by ETM and decade. Ordered by highest to lowest, overall. 

Energy technology material HS Overall 
Decade 

1 

Decade 

2 

Growth 

by 

decades 

Aluminum [UW] 7601 168 145 154 9 

Natural gas 2711 165 156 158 2 

Beryllium, chromium, germanium, vanadium, gallium, hafnium, 

indium, niobium (columbium), rhenium and thallium [metals] 
8112 158 138 148 10 

Graphite [PF] 2504 153 135 138 3 

Lead [UW] 7801 149 137 132 -5 

Cobalt mattes and other intermediate products of cobalt metallurgy 

[UW, powders, waste/scrap] 
8105 143 133 128 -5 

Compounds, inorganic or organic, of rare-earth metals, of yttrium or 

of scandium, or of mixtures of these metals [UW] 
2846 137 115 127 12 

Platinum [UW] 711011 133 115 119 4 

Crude oil 2709 127 104 106 2 

Niobium tantalum vanadium zirconium [OC] 2615 122 107 103 -4 

Silver [UW] 710691 118 100 109 9 

Cobalt chemical [OH] 2822 115 95 100 5 

Lithium chemicals [OH] 282520 113 94 96 2 

Earth-metals, rare and scandium and yttrium, whether or not 

intermixed or interalloyed 
280530 108 85 86 1 

Lithium chemicals [carbonate] 283691 108 86 98 12 

Palladium [UW] 711021 108 96 92 -4 

Copper [matte] 7401 104 93 84 -9 

Lead [OC] 2607 96 76 75 -1 

Aluminum [OC] 2606 88 74 78 4 

Molybdenum [OC] 2613 87 70 68 -2 

Rhodium [UW] 711031 84 66 66 0 

Manganese [OC] 2602 83 67 72 5 

PGM [OC] 261690 77 55 70 15 

Vanadium chemical [OH] 282530 77 68 65 -3 

Molybdenum [UW] 810291 67 48 61 13 

Copper [OC] 2603 64 45 55 10 

Nickel [matte] 7501 58 48 39 -9 

Nickel [OC] 2604 40 20 38 18 

Silver [OC] 261610 32 20 27 7 

Cobalt [OC] 2605 31 28 25 -3 

Mean  103.77 87.3 90.57 3.27 

Sources: Author’s elaboration based on UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020). 
 

There are 40 major exporters of the products (Table 5.3). On average, major exporters face about 51 

importers. As with ETMs, the number of importers drops when slicing the data by decade, with an 
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average of 42 and 43 varieties per exporter. Over the 20 years, the European Union stands with the 

highest number of importers (173), which is not surprising. In contrast, Armenia and Guatemala stand 

out as having the lowest number of importers, with 4 varieties in both cases. 

Table 5.3. Varieties, by major exporter and decade. 

Major exporter 
Major exporter 

(ISO code) 
Overall Decade 1 Decade 2 

Change over 

decades 

European Union EUN 173 169 165 -4 

USA, Puerto Rico and US Virgin Islands USA 149 133 135 2 

China CHN 140 118 134 16 

Canada CAN 124 94 108 14 

Australia AUS 111 83 94 11 

Russian Federation RUS 109 83 105 22 

Southern African Customs Union ZAF 93 78 80 2 

Norway, Svalbard and Jan Mayen NOR 86 69 78 9 

Chile CHL 75 63 61 -2 

Brazil BRA 71 56 68 12 

Republic of Korea KOR 66 51 51 0 

Nigeria NGA 65 43 54 11 

United Arab Emirates ARE 63 50 52 2 

Switzerland, Liechtenstein CHE 59 49 52 3 

Japan JPN 58 45 52 7 

Qatar QAT 48 34 44 10 

Saudi Arabia SAU 45 37 35 -2 

Mexico MEX 40 33 34 1 

Peru PER 40 29 35 6 

Gabon GAB 39 31 24 -7 

Zambia ZMB 37 33 27 -6 

Indonesia IDN 35 26 31 5 

Taiwan (Other Asia, not elsewhere 

specified) 
TWN 30 24 22 -2 

Argentina ARG 28 18 26 8 

Malaysia MYS 25 18 19 1 

Guinea GIN 24 18 15 -3 

Rwanda RWA 24 20 20 0 

Plurinational State of Bolivia BOL 23 17 20 3 

Philippines PHL 23 7 22 15 

Ghana GHA 20 19 8 -11 

United Republic of Tanzania TZA 19 14 14 0 

Cuba CUB 17 17 3 -14 

Democratic Republic of the Congo COD 16 15 14 -1 

Congo COG 12 12 5 -7 

New Caledonia NCL 12 10 7 -3 

Viet Nam VNM 9  9  

Iran IRN 8 5 4 -1 

Zimbabwe ZWE 7 3 6 3 

Armenia ARM 4 3 3 0 

Guatemala GTM 4 3 3 0 

Mean 
 

50.78 41.8 43.48 2.56 
Sources: Author’s elaboration based on UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020). 

5.5  RESULTS 

5.5.1 Descriptive statistics of the calculated elasticities  

In the second column of Table 5.4, we present the summary statistics of trade demand elasticity 

estimates output by our model. By design, Broda, Limao, and Weinstein (2008) limit sigma at 131.05, 

and Soderbery (2015) does so as well to compare his proposed estimation method with the original. 

When we impose the limit, the mean trade demand elasticity, or the average percentage decline of 
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demand for a one percent change in price, is 5.70, just above Soderbery (2015)’s mean, at 5.26 (third 

column of Table 5.4). Soderbery includes all available products, but as we discussed in the Literature 

Review, commodities (which are highly represented in our study) tend to have slightly higher 

elasticities, both theoretically and empirically, so our results are broadly in line with what is expected. 

To keep the discussion manageable, we exclude outlier estimates, over the 95th percentile (fourth 

column of Table 5.4) from our analysis.  

Within that sample, some product-exporter pairs have trade demand elasticity values for only one 

decade. Keeping them in our output would allow for a greater representation of the trade demand 

elasticities by product. However, including product-exporter pairs that have trade demand elasticities 

in only one decade would bias the analysis. Therefore, we restrict the sample to ETM-exporter pairs for 

which there is output for both Decade 1 and Decade 2, understanding that the statistics below are 

representative of the restricted sample only (last column of Table 5.4.).  

This yields trade demand elasticities over two decades for 29 of the initial 30 products (crude oil did 

not output two decades for any exporter), with a mean trade demand elasticity of 3.94, a standard 

deviation of 5.40, and positive skewness visually evidenced (last column of Table 5.4 and Figure 5.1). 

Additionally, the final trade demand elasticity sample contains 22 of the 40 major exporters (we 

consider the results from this perspective in detail in subsequent sections and the discussion). The 

analysis in the subsequent section uses this sample. 

Table 5.4. Trade demand elasticities summary statistics, by sample. 

 Raw data All except sigma ≥131.5 All except ≥p95 

All except ≥p95 

and exporter contains both 

decades 

N 229 221 217 158 

Mean 216.64 5.703 4.332 3.937 

Std. Dev. 2479.599 11.983 6.178 5.403 

skewness 14.45 5.238 3.711 4.055 

iqr 4.129 2.608 2.441 1.978 

p5 1.143 1.143 1.134 1.134 

Median 2.229 2.175 2.121 1.984 

p95 61.833 21.272 18.019 14.303 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
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Figure 5.1 Frequency of trade demand elasticities. 

 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
 

The appendixes provide more information and analysis. Appendix 5.2 contains detailed statistics of 

each of the columns in Table 5.4, additional analysis by product, and over time. Appendix 5.3 compares 

all possible exporter and product combinations in the primary dataset with the results of our model and 

code.  

5.5.2 Product-exporter pairs 

Our first research question was to estimate the trade demand price elasticities for each product-and-

main-exporter pair of ETMs. To visualize the elasticities by product-exporter pair, we first divide the 

dataset into a five-bin histogram based on each ETM’s median value. We denominate the bins into low, 

low-medium, medium, high, very-high trade demand elasticity ETM groups from green, to orange, to 

red in Figure 5.2.  

Figure 5.2. Frequency of ETMs according to median ETM trade demand elasticity. 

 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
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Figure 5.3 allows us to compare trade demand elasticities by exporter, ETM, and decade. The colors of 

the backgrounds follow the bins in Figure 5.2. The x-axis contains the trade demand elasticity value. 

The y-axis indicates the market share of the exporter by value, and the bubble size is the market share 

of the exporter by quantity. The color of the bubble denotes the decade; red is Decade 1, and blue is 

Decade 2.  

As an example of how to read the figure, we look at lithium carbonate, which is used in lithium-ion 

batteries with wide applications and is expected to grow 488% in quantity produced by 2050 in 

comparison to 2018 (World Bank 2020b). In descending order, its major exporters between 1999-2018 

have been Chile, Argentina, the European Union, and China. We have trade demand elasticities in this 

product for all except the European Union (Figure 5.3). The background color of the figure indicates 

that its median trade demand elasticity across countries is in the low-medium group.  

As per Mohler (2009), researchers investigating individual elasticities instead of broad macroeconomic 

questions should compare relative differences in  elasticities instead of the exact number. Chile, the 

country with the highest market share by value, has experienced an increase in trade demand elasticity 

over time. However, the opposite occurred in Argentina and China. The interpretation of this result is 

that, if the trends of the last decade continue, Argentina and China will suffer less from volatility in 

prices lithium [carbonate] than Chile. 

Despite our efforts, it is still difficult to visually differentiate all the elasticities by exporters in the 

graphs. We provide the results in table format in Appendix 5.4. 
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Figure 5.3. Trade demand elasticity (x-axis), market share by value, % (y-axis), market share by volume (bubble size); Decade 1 (blue); Decade 2 (red) for all available countries output by the 

model; background colors correspond to bins from Figure 5.2. 
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Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); calculations based on the modification of Broda and Weinstein (2006) and 
Soderbery (2015) described in the chapter.
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5.5.3 Exporters 

Our second objective is to compare the position of developing and developed exporters in ETM 

elasticities. Table 5.5 summarizes the elasticities by exporter. Seven of these only have data for one 

product. The exporters for which we have trade demand elasticity data for the most quantity of products 

are: China, Europe, and the United States, with 10, 15, and 9 products, respectively. This result is 

expected as they are major exporters of many products over the entire product space.  

Observing the difference between the number of products for some exporters (e.g., China has 10 and 

Tanzania only one), we consider whether there may be a relationship between the mean trade demand 

elasticity and the number of products (observations) by exporter. If such a relationship exists, there 

would be a bias in our results. We subject this to statistical testing by using a Pearson correlation 

between the mean and the number of products that each mean represents. The results suggest that there 

is a negative correlation between the size of the sample and the mean of the products, but that it cannot 

be distinguished from zero at a p-value of 5% (correlation of -0.25 and a p-value of 0.26).  

Table 5.5. Summary statistics, by exporter. 

ISO code Products Mean SD 
Country 

group 

EUN 15 2.32 1.37 Developed 

CHN 10 2.67 2.00 Developing 

USA 9 2.51 2.10 Developed 

ZAF 6 7.12 9.12 Developing 

AUS 6 4.19 3.87 Developed 

CAN 4 1.89 0.68 Developed 

CHL 4 5.13 4.22 Developed 

BRA 3 2.63 2.73 Developing 

JPN 3 2.54 1.69 Developed 

ARG 2 3.02 2.37 Developing 

MEX 2 11.38 18.48 Developing 

PER 2 3.21 2.41 Developing 

ZMB 2 9.23 4.00 Developing 

KOR 2 8.66 6.90 Developed 

NOR 2 1.85 0.80 Developed 

COD 1 6.28 5.49 Developing 

COG 1 2.57 0.62 Developing 

GIN 1 19.53 22.85 Developing 

IDN 1 2.06 1.00 Developing 

MYS 1 5.52 2.88 Developing 

PHL 1 2.27 0.05 Developing 

TZA 1 2.59 1.18 Developing 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
 

Table 5.5 shows that the highest mean trade demand elasticity by country is 19.53 (Guinea) and the 

lowest is 1.85 (Norway). The average for developing countries is 5.92 and the average for developed 

countries is 3.64. The data therefore naturally leads to our research question, pointing towards 

developed countries having lower elasticities, visually depicted in the boxplots of Figure 5.4.  
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Figure 5.4. Boxplots of elasticities, by developed and developing country exporters. 

 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
 

We subject the question of whether developing countries have higher elasticities than developed 

countries to statistical tests. A t-test is not applicable to our data because (as shown in the histogram of 

Figure 5.1) it is not normally distributed. We, therefore, apply a non-parametric test of medians called 

the Wilcoxon rank-sum test (or the Mann–Whitney two-sample statistic) and the nonparametric k-

sample test on the equality of medians. The first tests whether the distribution of the groups are the 

same, and we reject the null hypothesis when p-values are low. The second tests the null hypothesis that 

the k samples were drawn from populations with the same median, and we reject the null hypothesis 

when p-values are low. Note that, as can be intuited from the boxplots of Figure 5.4 visually displaying 

summary statistics, in the case of this data, a test of medians will be less likely to show statistical 

differences between the two groups than a t-test of means.  

The result of the Wilcoxon test is on the cusp of being significant at a p-value of 10% (Table 5.6). This 

means that the distribution of the groups are weakly different from one another. As hypothesized, the 

ETM trade demand elasticity patterns over developed and developing countries could be due to at least 

two separate factors or their interaction: (1) the ETM make-up of the portfolios of the exporters1; and, 

(2) the characteristics of the products from the point of view of importers, when developing and 

developed countries export the same ETM. We will take a closer look at these factors below. 

For robustness, we check whether the finding holds when we remove the three trading giants of China, 

the European Union, and the United States. When we exclude China, the likelihood of the distributions 

being different increases, and the similarity between the medians (as per the Nonparametric k-sample 

test on the equality of medians) becomes statistically significant. Therefore, China may be a special 

 
1 We discussed in the Literature Review that Broda, Greenfield, and Weinstein (2006) show that commodities 

(goods sold on international exchanges) tend to have higher elasticities. In previous analyses outside of this 

chapter, we showed that developing countries portfolios were more heavily made up of unrefined products. Note 

that while “unrefined products” and “commodities” have similarities, they are not equal. For instance, metal 

powders are refined products, which are sold on exchanges.  
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type of developing country, which is closer to its developed counterparts. When we exclude the 

European Union or US, the likelihood of the distributions being different decreases, which shows that 

they partly drive the differences between the two country groups. 

Table 5.6. P-values of statistical tests comparing the ETM trade demand elasticities, developing versus developed country 

exporters. 

Wilcoxon rank-sum 

test/ Mann–Whitney 

two-sample statistic 

(exact p-value) 

Nonparametric 

equality-of-medians 
Sample 

0.1077 0.259 (nc 0.197) All 

0.0132 0.021 (nc 0.013) All minus China 

0.1802 0.377 (nc 0.289) All minus EU 

0.2796 0.236 (nc 0.176) All minus US 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
Note: nc= not continuity corrected. 
 

We turn back to the question of whether the differences in the distributions of the groups are due to the 

ETM make-up of the exporters’ portfolios, or the characteristics of the products or exporters from the 

point of view of importers. Recall that the sample is balanced so that each product-exporter combination 

exists in both decades. When we cut the data into decades to look at changes, this allows us to rule out 

the first option and allows us to consider the second. Changes over decades are represented in the 

boxplots in Figure 5.5.  

Figure 5.5. Boxplots of elasticities, by developed and developing country exporters, and decades. 

 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
 

We repeat the tests by decade (Table 5.7). Over the whole sample, the changes in significance point 

towards a convergence in the distribution of the elasticities and medians between the two groups. This 

is because in Decade 1, the difference was more statistically significant than in Decade 2 in both tests. 

This means that, given the same ETMs on either side of each decade (within each country group), their 

elasticities converged.  
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Table 5.7. P-values of statistical tests comparing the ETM trade demand elasticities, developing versus developed country 

exporters, by decade. 

Wilcoxon rank-sum 

test/ Mann–Whitney 

two-sample statistic 

(exact p-value) 

Nonparametric 

equality-of-medians 
Decade Sample 

0.1460 0.055 (nc 0.032) 1 
All 

0.3008 0.924 (nc 0.746) 2 

0.0394 0.009 (nc 0.004) 1 
All minus China 

0.1036 0.554 (nc 0.400) 2 

0.2082 0.133 (nc 0.080) 1 
All minus EU 

0.4959 1.000 (nc 0.802) 2 

0.3928 0.338 (nc 0.231) 1 
All minus US 

0.3863 1.000 (nc 0.811) 2 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
Note: nc= not continuity corrected. 
 

Removing China reinforces the convergence, suggesting that China’s pattern is different from its group. 

Removing the United States or the European Union again decreases the likelihood of the distributions 

being different, with a marked decrease in Decade 2 for the European Union, suggesting that the 

European Union has comparatively lower elasticities than its group, and that they went down further 

over time. In the next section, we discuss how further research may continue to investigate this topic. 

5.6 DISCUSSION 

Elasticity is an important concept in economics and has a variety of uses. This paper aimed to calculate 

the trade demand price elasticities (the change in trade demand due to a change in price) for product-

and-main-exporter pairs of ETMs. This means that our proposed metric can help a country understand 

the sensitivity of demand to its exports for a given change in price. A low trade demand elasticity is 

beneficial to exporters because it leads to more stable returns on investments, fiscal resources, and more. 

Amongst other applications, calculating trade elasticities across all ETMs and major exporters is a 

springboard from which exporters can compare their performance with others and identify points of 

opportunity or improvement. 

We set out to find the trade demand price elasticities, or the change in trade demand due to a change in 

price, for each product-and-main-exporter pair of ETMs (example cobalt ore and concentrate from the 

Democratic Republic of the Congo or platinum group metals from South Africa). For this, we modify 

and calculate existing elasticity methods based on a series of methodological and theoretical 

improvements including Armington (1969), Leamer (1981), Feenstra (1994); Krugman (1979), Broda 

and Weinstein (2006), Soderbery (2015), and more. Because we aimed to calculate these elasticities 

over a large group of countries and products, we modified existing structural models to our needs. A 

major strength of structural methods such as this one is it only requires trade data and deals with 
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identification issues. This is crucial when estimating elasticities for country exporters that have limited 

data, and because using disaggregated data limits the scope of other analyses. 

We find that our modification of the elasticities yields results that are broadly in line with papers 

published before ours. Our final sample of ETM trade demand elasticities covers two decades over 29 

products and 22 major exporters, with a mean trade demand elasticity of 3.94. The trade giants of the 

European Union, China, and the United States are most represented in our final elasticities sample. This 

was expected and is simply a reflection of the number of products in which they were major exporters.  

The results of each product and exporter pair are available for researchers to use as inputs in a variety 

of product or country-specific research questions. We also asked whether developed or developing 

country exporters demonstrate different elasticities patterns. Developed countries have weakly 

statistically significantly lower mean ETM elasticities. We expected this result either as a reflection of 

their ETM portfolio (biased towards differentiated goods), or the perceived or concrete quality of the 

same ETM products (which may have “irreplaceable” differentiating qualities stemming from superior 

industrial power and capabilities). 

However, we also find indications of a convergence of the distribution and means of ETM elasticities 

between developed and developing countries over time, which was unexpected. We put forth the 

hypothesis that the changes are at least partly due to characteristics of the products and exporter 

countries, as perceived by importers, and not due to the portfolio of ETMs exported by each group. This 

is because the results are based on a sample of goods for which we have data over both decades. In 

other words, within each country group, we are comparing over the same basket of goods.  

The convergence implies there may have been a leveling of the playing field in the stability of ETM 

export demand between the two groups of countries, making the issue of trade demand elasticities 

relevant across the board for competitiveness and other considerations. More years of trade data may 

help future researchers confirm or deepen our understanding of this finding. Additionally, by focusing 

on China, the United States, and the European Union, we show that specific countries may be affected 

differently.  

We acknowledge the related issue of missing trade demand elasticities by decade, product, and 

exporters, which we explore in the first section of the Results. As introduced in the Literature Review, 

Soderbery (2010) establishes the presence of weak instruments in trade data through Monte Carlo 

simulations. He shows that short length (as opposed to the number of varieties) appears to drive 

significant small sample biases in the estimator. Therefore, while we are limited by the lack of available 

data before 1995, future researchers with more years of data will likely have increasingly robust results.  

We used various simplifying assumptions in our estimations that also limit the scope of our results, 

starting from rational agents that exhibit a downward (upward) sloping demand (supply) function based 
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on neoclassical economic theory. When the data yields theoretically unsound results (for instance, 

upward-facing demand), our estimation strategy is to force the relationship between price, demand, and 

supply using a grid search over a restricted area. Additionally, agents maximize their utility based on 

CES preferences, a utility function chosen for its theoretical tractability and ease of estimation when 

faced with identification issues (Broda, Limão, and Weinstein 2006). A possible criticism is that, for 

the types of goods we select, there may not be price competition between exporters. Yet, by definition 

in the CES utility function, agents “care about varieties” (Broda, Limão, and Weinstein 2006).  

For ETMs, this theory can be backed up by real-world events. For instance, Tesla has announced intent 

to no longer use cobalt in its batteries because of the implications of relying on supply based in the 

Democratic Republic of the Congo, with associated human and environmental concerns (Forbes 2020). 

Another example of importers concerned about the source of ETMs is the very existence of literature 

on criticality, spawning from developed countries (like the United States, the European Union, Japan, 

and Australia) (Bazilian 2018). These countries have launched technology initiatives to substitute away 

from some products entirely and/or secure their supply internally. Last, despite general similarity across 

crudes, the preference for oil from one exporter over another is reflected in the rich literature on energy 

security and geopolitics of oil (Kharrazi and Fath 2016).  

Additional criticisms to our model are likely to stem from the use of a CES supply function. On the one 

hand, Leontief production functions may be better suited for brownfield mines over greenfield products, 

and overall supply may be very slow to react (securing investment, environmental and social impact 

assessment, land tenure, exploration, and project development, etc.). On the other hand, supply will be 

very different for main or co- or by-product production. We also acknowledge that co- or by-product 

supply is limited by the production of the main product (Nassar, Graedel, and Harper 2015), a salient 

example being cobalt, which is a co-product of nickel and copper mining. By their nature, the elasticity 

of supply for these products can be both very high within a certain range because producers can make 

small changes to recover the by-product of their main mining activity, and low because there is little 

ability to increase production beyond the amount available from the main mining activity.  

While these supply-side and ETM-specific attributes are better suited for more focused analysis, it is 

limitations related to these attributes that motivate our emphasis on interpreting the results as trade 

elasticities, not demand and supply elasticities. They also motivate our decision to analyze the demand 

elasticities instead of the supply elasticities that were also output by the model. 

5.7 CONCLUSION 

Our final sample of trade demand elasticities covers two decades over 29 ETMs and 22 major exporters, 

with a mean trade demand elasticity of 3.94. We encourage researchers to use the results of each ETM 

and exporter pair as inputs to a variety of ETM or country-specific research questions, including IAMs. 
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A low trade elasticity of demand is beneficial to exporters because it is related to stability that has 

impacts on a range of economic indicators. Developed countries have weakly statistically significantly 

lower ETM elasticities overall (as expected) but there are also indications of a convergence of ETM 

elasticities between developed and developing over the last two decades (not expected). We hypothesize 

and show why the changes are likely to be at least partly due to country characteristics, not the portfolio 

of ETMs exported by each group. The results imply that ETM trade demand elasticities and their 

changes are relevant across the board of countries, not only developing countries.  

More years of trade data or complementary analysis across other datasets may help clarify the issue. 

New data sources may be able another avenue that can complement and provide additional insights on 

the research questions of this study. For instance, geographical Information Systems (GIS) is providing 

some new avenues for data collection on international trade. A dataset entitled OILX provides real-time 

data on shipments and inventory of oil, and DBX is evolving to do the same for dry bulk commodities, 

which includes coal and metals. Once fully available, this data could provide new and relatively timely 

answers to related research questions. While UN Comtrade is slower to be updated, it would still provide 

a wider product and time coverage and includes landlocked countries like the Democratic Republic of 

the Congo, which would be unavailable with shipping data. 
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APPENDIX 1. AMENDING TRADE DATA TO FIT THE MODEL AND EXISTING CODE 

Despite the change in theoretical interpretation, we continue to use a large part of Soderbery (2015)’s 

estimation code by amending the structure of the data we input in to it. Table 5.8 shows the variables 

and structure of the panel data used in previous papers. Each code loop estimates the trade elasticities 

𝜎𝑔 (demand) and 𝜔𝑔 (supply) for an importer-good pair (e.g., oil entering the US). In each loop, the 

importer is constant (third column) and the exporter changes (first column).  

Table 5.8. Original layout of the input data layout. 

Exporter Year Importer Product Value Quant 

SAU t=1 US Oil V, t=1 Q, t=1 

SAU …t=20 US Oil V, t=20 Q, t=20 

ARE t=1 US Oil V, t=1 Q, t=1 

ARE …t=20 US Oil V, t=20 Q, t=20 

KWT t=1 US Oil V, t=1 Q, t=1 

KWT …t=20 US Oil V, t=20 Q, t=20 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
Note: ARE=United Arab Emirates; KWT= Kuwait; SAU=Saudi Arabia. 
 

As we explain in the methods in this chapter, we want to estimate calculate 𝜎𝑔  (demand) and 𝜔𝑔 

(supply) elasticities for each exporter and product (e.g., oil leaving Saudi Arabia). It is possible to do 

so without inventing a new code to Soderbery (2015), but we must iterate loops of data by exporters 

instead of importers, for a given product. An immediate limitation to this is that the observations in the 

exporter variable (first column) must be unique in each loop iteration, and the importer variable must 

constant be constant (just like Table 5.8).  

To do this, we make the following changes: (1) keep data for a certain exporter-product pair; and, (2) 

amend the data layout. In the first column of Table 5.9, the exporter is constant (Saudi Arabia), but the 

code runs because each observation is “unique” and labelled by exporter-importer pair (e.g. Saudi 

Arabia-US, Saudi Arabia-China, etc.). The importer remains constant and is dubbed as one, the “world.”  

Table 5.9. Layout for the input data necessary to obtain the modified elasticities.  

Exporter (exporter-importer pair) Year Imp Product Value Quant 

SAU-US t=1 World Oil V, t=1 Q, t=1 

SAU-US …t=20 World Oil V, t=20 Q, t=20 

SAU-CHN t=1 World Oil V, t=1 Q, t=1 

SAU-CHN …t=20 World Oil V, t=20 Q, t=20 

SAU-UK t=1 World Oil V, t=1 Q, t=1 

SAU-UK …t=20 World Oil V, t=20 Q, t=20 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
Note: CHN=China; SAU=Saudi Arabia; US=United States; UK=United Kingdom.  
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APPENDIX 2. DETAILED RESULTS AND FURTHER ANALYSIS 

Table 5.10. Trade demand elasticities, detailed statistics. 

   Raw data 

All except 

sigma 

≥131.5 

All except 

≥p95 

All except 

≥p95 and 

exporter 

contains 

both 

decades  

 Raw data 

All except 

sigma 

≥131.5 

All except 

≥p95 

All except 

≥p95 and 

exporter 

contains 

both 

decades 

  N 229 221 217 158   iqr 4.129 2.608 2.441 1.978 

  Mean 216.64 5.703 4.332 3.937   1st Perc. 1.063 1.063 1.063 1.077 

  Std. 

Dev. 
2479.599 11.983 6.178 5.403   p5 1.143 1.143 1.134 1.134 

  range 37044.105 98.099 42.057 38.075   p10 1.249 1.249 1.23 1.31 

  min 1.002 1.002 1.002 1.002   p25 1.492 1.486 1.484 1.489 

  max 37045.107 99.101 43.06 39.078   Median 2.229 2.175 2.121 1.984 

  variance 6148410.4 143.59 38.169 29.196   p75 5.622 4.094 3.924 3.467 

  cv 11.446 2.101 1.426 1.373 p90 18.019 10.168 8.882 8.131 

 skewness 14.45 5.238 3.711 4.055 p95 61.833 21.272 18.019 14.303 

  kurtosis 214.475 34.121 18.736 22.519 p99 2537.613 73.160 35.69021 26.156 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
 

Table 5.11 offers further insight and statistics by product. The greatest number of available country 

comparisons for any one product is five (lead [UW]). We investigate whether there may be an inherent 

bias over products between the mean and the number of observations. The Pearson correlation yields a 

value of -0.12 and p-value of 0.53). This result points towards no statistically significant inherent bias 

to the results of the mean trade demand elasticity by ETM and the number of datapoints that we have. 

Table 5.11. Trade demand elasticity summary statistics for ETMs for which there are two decades, by ETM. 

Product HS code Exporters Mean SD 

[UW] Lead 7801 5 5.026 5.34 

[UW] Molybdenum 810291 4 4.234 2.676 

[OC] Copper 2603 4 3.377 3.08 

[OC] Lead 2607 4 3.069 2.201 

[Metal compounds/mixtures] REE 2846 4 2.495 2.166 

[PF] Graphite 2504 4 2.204 2.3 

[UW] Palladium 711021 3 5.755 7.925 

[UW] Platinum 711011 3 5.148 6.514 

[OC] Cobalt 2605 3 5.097 3.181 

[OC] Molybdenum 2613 3 3.669 2.713 

[Carbonate] Lithium 283691 3 3.544 2.578 

[UW] Aluminum 7601 3 2.603 2.3 

[Metals, incl. waste/scrap] Others 8112 3 2.267 1.97 

[OC] Niobium, tantalum, vanadium, & zirc. 2615 3 1.967 0.908 

Natural Gas 2711 3 1.903 0.651 

[Metals, incl intermixed/alloyed] REE 280530 3 1.547 0.311 

[OC] Aluminum 2606 2 12.351 15.769 

[Matte] Nickel 7501 2 12.149 10.562 

[OC] Silver 261610 2 11.487 18.412 

[Matte & more] Cobalt 8105 2 7.118 6.156 

[OH] Lithium 282520 2 3.197 3.943 

[OH] Vanadium 282530 2 3.156 2.575 

[OH] Cobalt 2822 2 2.332 0.688 

[OC] Nickel 2604 2 2.18 0.287 

[Matte] Copper 7401 2 2.136 1.014 

[UW] Rhodium 711031 2 2.041 0.684 

[UW] Silver 710691 2 1.779 0.633 

[OC] Platinum, Palladium, Rhodium 261690 1 2.59 1.182 

[OC] Manganese 2602 1 1.399 0.178 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
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Having kept ETM product-exporter pairs with both decades, we also break down trade demand 

elasticities by decade. We find that between our decades of interest in our restricted sample, the mean 

trade demand elasticity for ETMs increased by 1.05, which is detrimental to exporters. Note that while 

the mean increased, the median decreased slightly -0.13, which can be explained by the changes in 

skewness (Table 5.12). 

Table 5.12. Summary statistics, by decade and product groups. 

Decade 1 2 Difference 

N 79 79 - 

mean 3.41 4.46 1.05 

SD 4.79 5.94 1.16 

skewness 4.69 3.62 -1.07 

iqr 1.64 4.75 3.11 

p5 1.11 1.27 0.16 

Median 2.05 1.92 -0.13 

p95 14.30 18.28 3.97 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
 

We determine whether the change over time was statistically significant, or whether there is a 

sufficiently large probability that it could be due to chance. We first obtain a p-value of less than 0.05 

on a Shapiro-Wilk Test and we reject the null hypothesis that the differences of the paired trade demand 

elasticity observations over decades are normally distributed.  

We therefore apply non-parametric paired t-Test alternatives. Specifically, we apply a non-parametric 

test that the median of differences between matched pairs is zero (“signtest” function in Stata) and 

obtain a p-value of 0.2604. For robustness, we repeat with the alternative Wilcoxon rank-sum test (also 

known as the Mann –Whitney two-sample statistic, “ranksum” function in Stata), which confirms our 

previous results (Table 5.13). In this case, we cannot reject the null hypothesis that the median and 

distributions of the difference between paired samples over Decades 1 and 2 are statistically the same. 

Therefore, it is possible that the changes are due to chance. 

Table 5.13. P-values of nonparametric test that the median of differences between matched pairs is zero and the Wilcoxon 

matched-pairs signed-rank test. 

 
Test that the median of differences 

between matched pairs is zero 

Wilcoxon matched-pairs signed-rank 

test 

Overall 0.2604 0.2185 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
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APPENDIX 3. EXPORTER-ETM COMBINATIONS FOR WHICH WE HAVE RESULTS 

IN THE FINAL RESULTS SAMPLE 

Table 5.14. ETM (columns) and exporter (rows) combinations, and whether trade demand elasticities are included in the final 

sample (green), not included or not output by the model (red), not applicable (blank). 

 
Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
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ARE x
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ARM x
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BOL x

BRA 1 x 1 1 x

CAN x x 1 x x x 1 1 1

CHE x x

CHL 1 1 x 1 1

CHN 1 x 1 1 1 1 1 x 1 1 1 x

COD 1 x x

COG 1

CUB x x

EUN x 1 1 1 1 x 1 1 1 1 x x x 1 1 1 x x 1 x x x

GAB x

GHA x

GIN 1

GTM x

IDN 1 x x x x

IRN x

JPN 1 1 x

KOR 1 x x

MEX 1 x 1 x

MYS 1

NCL x

NGA x

NOR 1 1 x

PER 1 1 x x

PHL 1

QAT x

RUS x x x x x x x x x x

RWA x

SAU x

TWN x

TZA 1

USA 1 x 1 1 1 1 1 x x x x x

VNM x

ZAF 1 1 1 1 x x x x x

ZMB 1 1

ZWE x



 

226 

 

APPENDIX 4. EXPORTER-ETM ELASTICITIES 

Table 5.15. Elasticities by exporter-product pair and decade, calculated by the methods described in this chapter. 

Group Country ISO code Decade 

Trade 

demand 

elasticity 

HS 

code 
ETM label 

Developing Argentina ARG 1 2.41 261610 [Ore/concentrate] Silver 

Developing Argentina ARG 1 6.50 283691 [Carbonate] Lithium 

Developing Argentina ARG 2 1.22 261610 [Ore/concentrate] Silver 

Developing Argentina ARG 2 1.94 283691 [Carbonate] Lithium 

Developed Australia AUS 1 2.54 2603 [Ore/concentrate] Copper 

Developed Australia AUS 1 2.41 2604 [Ore/concentrate] Nickel 

Developed Australia AUS 1 3.28 2607 [Ore/concentrate] Lead 

Developed Australia AUS 1 14.30 7501 [Matte] Nickel 

Developed Australia AUS 1 7.22 7601 [Unwrought] Aluminum 

Developed Australia AUS 1 1.41 7801 [Unwrought] Lead 

Developed Australia AUS 2 3.58 2603 [Ore/concentrate] Copper 

Developed Australia AUS 2 1.76 2604 [Ore/concentrate] Nickel 

Developed Australia AUS 2 1.27 2607 [Ore/concentrate] Lead 

Developed Australia AUS 2 2.80 7501 [Matte] Nickel 

Developed Australia AUS 2 1.56 7601 [Unwrought] Aluminum 

Developed Australia AUS 2 8.14 7801 [Unwrought] Lead 

Developing Brazil BRA 1 1.11 2504 [Powders/flakes] Graphite 

Developing Brazil BRA 1 2.21 2606 [Ore/concentrate] Aluminum 

Developing Brazil BRA 1 1.14 8112 [Metals, incl. waste/scrap] Others 

Developing Brazil BRA 2 1.42 2504 [Powders/flakes] Graphite 

Developing Brazil BRA 2 8.13 2606 [Ore/concentrate] Aluminum 

Developing Brazil BRA 2 1.78 8112 [Metals, incl. waste/scrap] Others 

Developed Canada CAN 1 1.95 2711 Natural Gas 

Developed Canada CAN 1 1.85 7801 [Unwrought] Lead 

Developed Canada CAN 1 1.32 8105 [Matte & more] Cobalt 

Developed Canada CAN 1 2.65 710691 [Unwrought] Silver 

Developed Canada CAN 2 1.08 2711 Natural Gas 

Developed Canada CAN 2 1.48 7801 [Unwrought] Lead 

Developed Canada CAN 2 3.12 8105 [Matte & more] Cobalt 

Developed Canada CAN 2 1.68 710691 [Unwrought] Silver 

Developed Chile CHL 1 10.80 2603 [Ore/concentrate] Copper 

Developed Chile CHL 1 1.20 2613 [Ore/concentrate] Molybdenum 

Developed Chile CHL 1 1.00 282520 [Oxide/hydroxide] Lithium 

Developed Chile CHL 1 1.13 283691 [Carbonate] Lithium 

Developed Chile CHL 2 1.88 2603 [Ore/concentrate] Copper 

Developed Chile CHL 2 8.88 2613 [Ore/concentrate] Molybdenum 

Developed Chile CHL 2 9.10 282520 [Oxide/hydroxide] Lithium 

Developed Chile CHL 2 7.05 283691 [Carbonate] Lithium 

Developing 
Congo, Dem. 

Rep. 
COD 1 2.40 2605 [Ore/concentrate] Cobalt 

Developing 
Congo, Dem. 

Rep. 
COD 2 10.17 2605 [Ore/concentrate] Cobalt 

Developing Congo, Rep. COG 1 2.13 2605 [Ore/concentrate] Cobalt 
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Group Country ISO code Decade 

Trade 

demand 

elasticity 

HS 

code 
ETM label 

Developing Congo, Rep. COG 2 3.00 2605 [Ore/concentrate] Cobalt 

Developing Guinea GIN 1 35.69 2606 [Ore/concentrate] Aluminum 

Developing Guinea GIN 2 3.37 2606 [Ore/concentrate] Aluminum 

Developing Indonesia IDN 1 2.76 2603 [Ore/concentrate] Copper 

Developing Indonesia IDN 2 1.35 2603 [Ore/concentrate] Copper 

Developed Japan JPN 1 1.44 2504 [Powders/flakes] Graphite 

Developed Japan JPN 1 3.06 2822 [Oxide/hydroxide] Cobalt 

Developed Japan JPN 1 5.76 711011 [Unwrought] Platinum 

Developed Japan JPN 2 1.61 2504 [Powders/flakes] Graphite 

Developed Japan JPN 2 2.02 2822 [Oxide/hydroxide] Cobalt 

Developed Japan JPN 2 1.36 711011 [Unwrought] Platinum 

Developing Korea, Rep. KOR 1 2.54 7801 [Unwrought] Lead 

Developed Korea, Rep. KOR 1 5.07 810291 [Unwrought] Molybdenum 

Developing Korea, Rep. KOR 2 18.28 7801 [Unwrought] Lead 

Developed Korea, Rep. KOR 2 8.77 810291 [Unwrought] Molybdenum 

Developing Malaysia MYS 1 3.48 2846 [Metal compounds/mixtures] REE 

Developing Malaysia MYS 2 7.55 2846 [Metal compounds/mixtures] REE 

Developing Mexico MEX 1 1.44 2607 [Ore/concentrate] Lead 

Developing Mexico MEX 1 3.24 261610 [Ore/concentrate] Silver 

Developing Mexico MEX 2 1.78 2607 [Ore/concentrate] Lead 

Developing Mexico MEX 2 39.08 261610 [Ore/concentrate] Silver 

Developed Norway NOR 1 1.56 2711 Natural Gas 

Developed Norway NOR 1 1.33 7601 [Unwrought] Aluminum 

Developed Norway NOR 2 3.04 2711 Natural Gas 

Developed Norway NOR 2 1.49 7601 [Unwrought] Aluminum 

Developing Peru PER 1 2.49 2603 [Ore/concentrate] Copper 

Developing Peru PER 1 1.93 2607 [Ore/concentrate] Lead 

Developing Peru PER 2 1.63 2603 [Ore/concentrate] Copper 

Developing Peru PER 2 6.77 2607 [Ore/concentrate] Lead 

Developing Philippines PHL 1 2.31 2604 [Ore/concentrate] Nickel 

Developing Philippines PHL 2 2.24 2604 [Ore/concentrate] Nickel 

Developing South Africa ZAF 1 1.52 2602 [Ore/concentrate] Manganese 

Developing South Africa ZAF 1 1.13 2615 
[Ore/concentrate] Niobium, tantalum, 

vanadium, & zirc. 

Developing South Africa ZAF 1 1.42 7401 [Matte] Copper 

Developing South Africa ZAF 1 5.34 7501 [Matte] Nickel 

Developing South Africa ZAF 1 18.02 711011 [Unwrought] Platinum 

Developing South Africa ZAF 1 2.61 711021 [Unwrought] Palladium 

Developing South Africa ZAF 2 1.27 2602 [Ore/concentrate] Manganese 

Developing South Africa ZAF 2 1.61 2615 
[Ore/concentrate] Niobium, tantalum, 

vanadium, & zirc. 

Developing South Africa ZAF 2 3.64 7401 [Matte] Copper 

Developing South Africa ZAF 2 26.16 7501 [Matte] Nickel 

Developing South Africa ZAF 2 1.40 711011 [Unwrought] Platinum 

Developing South Africa ZAF 2 21.27 711021 [Unwrought] Palladium 
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Group Country ISO code Decade 

Trade 

demand 

elasticity 

HS 

code 
ETM label 

Developing Tanzania TZA 1 3.43 261690 
[Ore/concentrate] Platinum, Palladium, 

Rhodium 

Developing Tanzania TZA 2 1.75 261690 
[Ore/concentrate] Platinum, Palladium, 

Rhodium 

Developing Zambia ZMB 1 5.81 2605 [Ore/concentrate] Cobalt 

Developing Zambia ZMB 1 14.85 8105 [Matte & more] Cobalt 

Developing Zambia ZMB 2 7.08 2605 [Ore/concentrate] Cobalt 

Developing Zambia ZMB 2 9.19 8105 [Matte & more] Cobalt 

Sources: Author’s elaboration. UN Comtrade version HS92; cleaned by CEPII published in the BACI database (2020); 
calculations based on the modification of Broda and Weinstein (2006) and Soderbery (2015) described in the chapter. 
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6 CHAPTER 6: CONCLUSION 

Deeply decarbonizing energy is a crucial precondition to avoiding increases in global temperatures 

above 1.5-2°C in this century (IPCC 2021; IRENA 2019). While deep decarbonization is an 

environmental and innovation challenge in its own right (IEA 2020a), it also interacts with other policy 

priorities, making it a “grand challenge” (Anadón, Chan, et al. 2016; Mazzucato 2018). The point of 

departure for the research questions that guide the research in this dissertation is that we must hone our 

understanding of how to use government policy as a tool to transition to a globally decarbonized energy 

system in the coming decades, while also pursuing other objectives like sustainable and inclusive 

economic growth.  

The diverse set of literatures that we consult and contribute to - such as innovation systems, 

decarbonization policy and evaluation, and criticality assessments - in relation to our research questions 

are usually and expectedly relatively more advanced in developed countries. All countries will need to 

redirect decarbonize their energy systems and economies if we are to achieve climate goals, however 

(Nordhaus 2019). Therefore, one important contribution of this this dissertation is that across all 

chapters it takes a broader geographical perspective compared to previous literature.  

We frame the research questions and chapters on the economics of energy decarbonization along the 

stages of the ETIS conceptual framework, specifically RD&D, market formation, and diffusion and 

trade. In the first stages (RD&D) we focus on evaluating the inputs to ETIS, and in the subsequent 

stages (market formation and diffusion and trade), we focus on evaluating the outcomes. The 

geographical and topical breath of the research questions allows the dissertation to consider several 

gaps in the literature in understanding how policy can best address energy and economic goals. 

6.1 MAIN RESULTS  

1. Public ERD&D expenditure requires sustained attention and impetus. Additionally, 

some countries should monitor and improve expenditure stability. 

Increased and stable technology-push ERD&D expenditure is widely understood to be crucial to 

meeting innovation and economic goals (Cohen and Noll 1991; Anadón, Chan, et al. 2016; 

Narayanamurti, Anadón, and Sagar 2009). However, despite a recent collaborative agreement to 

drastically increase ERD&D efforts called Mission Innovation, public ERD&D is at least less than half 

of what existing estimates say is necessary, even when including major developing countries and 

emitters such as China and India.  

Additionally, our fixed-effects regression analysis of ERD&D expenditure growth rates shows that 

despite some technology-specific trends, neither the years after 2009 Financial Crisis nor the years after 

Mission Innovation show a statistically significant change in funding allocation towards non-fossil fuel 

and non-nuclear (or clean plus, CP) ERD&D in all except one group. This finding is robust across 

several regression specifications.  
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Last, four metrics of volatility across technology categories (fossil fuels including carbon capture and 

sequestration, nuclear, and CP) and countries point towards regional innovation systems characteristics 

over three groups: the United States/United Kingdom, continental Europe, and Asia. They also highlight 

the relative volatility and a need for increased focus on ERD&D stability and growth in the United 

States, UK, and India relative to the other major ERD&D spenders we focused on, France, Germany, 

China, Japan, and Korea.  

2. The effects of seven decarbonization policy instrument categories (PICs) on 

decarbonization are often negligible or negative in developing countries. However, 

policies that address counterparty risk have more immediate positive effects than other 

policies, pointing to the importance of policies that address the abilities of developing 

countries to secure climate financing.  

Increasing our understanding of the effect of demand-pull policies aimed at the market formation ETIS 

stage on ETIS outcomes, such as decarbonization of the energy mix, is crucial to efficiently and 

effectively reaching deep decarbonization.  

Broad and systematic studies are relatively lacking for developing countries. We offer the first 

consistent attempt to identify how seven energy PICs representing 75+ policies for energy 

decarbonization each individually perform across a wide spectrum of developing countries over time 

(three, five, and seven years after implementation). To do so, we apply 2SLS with country interactions 

and country and time fixed effects in regional panels. The methods attempt to address a host of 

challenges like omitted variables and endogeneity (reverse causality and simultaneity) between PICs 

and outcomes. We also create several alternative representations of PICs to consider collinearity and 

the degree of reform between policies.  

The effects of PICs are pessimistic overall, with widespread low statistical significance and negative 

effects. In other words, the PICs result in a higher share of fossil fuel sources in the developing 

countries' energy mix. This result is borne out in some previous research on the effects of 

decarbonization policies on technological effectiveness, as evidenced in our reviewed of Peñasco, 

Anadón, and Verdolini (2021) and the DPET dataset. In developing countries, such lackluster results 

may be due to a combination of the Sailing Ship Effect (Ward 1967; Gilfillan 1935), in which incumbent 

forces react to policies by entrenching themselves against competitors, and a difficulty in securing 

climate finance (as a result of several interrelated issues, including institutional quality and 

infrastructure) (Egli, Steffen, and Schmidt 2019; Moner-Girona et al. 2021). 

Yet our results are not all negative. For instance, the effects of PICs improve with time. Additionally, 

policies that address counterparty risk have the most immediate positive effect on energy 

decarbonization. This provides further evidence of the importance of climate finance, and the 

importance of policies that strengthen the abilities of countries to secure it.   
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3. Over the past two decades, clean and refined energy materials have held relatively 

larger promise for exporters than those that are traditional and unrefined. The result 

highlights the need for enhancing clean and refined ETM trade and capabilities in 

developing countries. 

Deep energy decarbonization will require a shift in the materials used in energy technologies. The 

changing trade patterns on a broad range of exporters are relatively unexplored, despite being an 

economy-wide ETIS outcome that interacts with other policy priorities such as sustainable growth.  

Lithium carbonate (which exhibits the most beneficial trade patterns of the 30 products analyzed) is an 

example of a clean and refined energy material. Clean and refined energy products have experienced 

relatively higher growth in trade value, lower volatility of growth in trade value, and a higher exporter 

concentration and lower concentration over importers of trade quantity than their counterparts 

(traditional and unrefined products) over the past two decades. However, as per existing literature and 

our own analysis, these are groups of materials in which developing country exporters are generally 

underrepresented.  

We argue that, while developing countries may still benefit from trade trends in some individual energy 

technology materials, trade trends over the past two decades are relatively better for products in which 

they are relatively less represented. As a result, developing countries would benefit from policies that 

strengthen trade capabilities in clean energy and refined materials.  

4. We present trade elasticities for energy technology materials. We also observe a 

convergence of ETM trade elasticities between developing and developed countries over 

the last two decades.  

Elasticities of demand and supply are a core concept in economics with far-reaching applications. 

Nevertheless, it is difficult to identify supply and demand curves from existing data of prices and 

quantities that reflect bilateral exchanges made in the market equilibrium. We propose modifications to 

current structural trade demand and supply price elasticities building on the methods developed by 

Broda and Weinstein (2006), based on Feenstra (1994) to calculate the “trade demand elasticities” (or 

the change in exports demanded due to a change in price) from a certain exporter and ETM product. 

Our main result is a visualization with the evolution of trade elasticities over two decades for 29 

products and 22 exporters, which can be used by researchers and policymakers in several settings, 

including integrated assessment models. As expected based on previous literature, developed countries 

have -weakly- statistically significantly lower ETM elasticities overall. A low trade elasticity of demand 

is beneficial to exporters because it is related to export stability that has impacts on a range of economic 

indicators.  However, there are also indications of a convergence of ETM elasticities between developed 

and developing over the last two decades, which was not expected or reflected in the literature.  

We discuss the possible reason for the convergence. The results can be attributed either to changing 

characteristics of the exporters and products according to importers, or to the portfolio of the products 

exported by the groups. Our discussion shows that the changes are likely due to the former. The results 
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imply that surveilling ETM trade demand elasticities (and their changes) is relevant across the board of 

countries as governments position their industrial and trade policy to benefit from the energy transition.  

6.2 CROSS-CHAPTER CONSIDERATIONS FOR FUTURE RESEARCH 

The results of Chapter 2 on the failure of windows of opportunity to provide needed change in ERD&D 

can also be extended to other ETIS stages and raise the question of what it may take to reach deep 

decarbonization, overall and for developing countries.  

Our broad set of analyses relating to the different ETIS stages, inputs, and outcomes over many regions 

point to the need for government to take both supply-push and demand-pull approaches, and to focus 

on identifying synergies with understudied areas, such as trade. Overall, the chapters therefore 

demonstrate the importance of a systems-wide understanding for achieving decarbonization alongside 

economic goals. They show the need for the adoption of evidence-based adaptive and holistic energy, 

technology, and environmental policy that considers the broader SDG context, with a focus on climate 

investment and inclusive institutions that can deliver these goals (Anadón, Chan, et al. 2016).  

Areas for future research are discussed in each chapter in the context of the specific topics and ETIS 

stages, but there are additional questions that run across ETIS stages and/or relate to several topics at 

once.  

ERD&D volatility has been measured previously (for example by Schuelke-Leech 2014; Winskel et al. 

2014; and Baccini and Urpelainen 2012), and the importance of stable funding has been established 

(Norberg-Bohm 2000; Fuss et al. 2008; Anadón, Chan, et al. 2016; Guellec and Van Pottelsberghe De 

La Potterie 2003; Nemet 2009). We have not yet seen a cross-country econometric evaluation of the 

relationship between volatility (pertaining to ETIS inputs and ERD&D stage) and the creation of 

domestic markets for specific energy technologies and trade capabilities, or the relative export 

dominance of country-technology combinations several decades later (pertaining to ETIS outcomes and 

the Diffusion and Trade stage). Such an analysis is possible for OECD countries that have been 

providing data to the IEA since the 1970s. One key methodological challenge to answering this question 

would be in matching trade categories to ERD&D categories. 

Furthermore, now that one decade has passed since the price increases of rare earth elements in 2011 

and almost a decade has passed since the creation of the Critical Materials Institute in the United States 

in 2013, it may be possible to specifically investigate the degree of success of the industrial policies 

that addressed potential criticality (or security of supply) in countries like the United States and the 

European Union. Such an analysis could combine output metrics such as patent analysis and qualitative 

work such as process tracing. 

Relatedly, in Chapter 5, we discussed the concept of “induced innovation,” or the change of use in one 

factor of production due to a change of prices in another (Hicks 1932). One potential question that has 

not been explored yet, to our knowledge, is the extent to which changes in prices of ETMs have affected 

private and public ERD&D expenditure (ETIS inputs). This question can also be extended to cover the 
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effects of the trade elasticities towards innovation outputs such as patents (Gallagher et al. 2011). . This 

question would join the topics covered in Chapters 2, 4, and 5. 

The literature on innovation systems points to possible interactions between decarbonization policies 

and the evolution of low carbon industry. Our work lays the groundwork for such investigation. For 

instance, to our knowledge there is a lack of systematic research on the effects of renewable energy 

market formation policies (such as electricity auctions in Chile and Argentina) on the upstream export 

capabilities of energy technology materials (such as lithium carbonate) that are already available and 

exploited in the same country. This research question would allow us to study the relationships and 

overlaps between the Market Formation (Chapter 3) and Diffusion and Trade (Chapters 4 and 5) ETIS 

stages for ETMs. 

Last, in addition to trade elasticities (already discussed), the outcomes of Chapter 2 on ERD&D, Chapter 

3 on policies for decarbonization, and Chapter 4 on trade trends can be used as inputs to integrated 

assessment models. This would allow, amongst other things, to extrapolate how trends over time affect 

economic outcomes in all countries in different global warming scenarios. 

The overall arch for future research recommendations suggests that we must continue to pose and 

analyze questions through a systems perspective, linking energy and broader economic development 

questions alongside the ETIS conceptual framework. For such questions to be resolved adequately, 

there is also a pointed need for high-quality data on the range of policies relating to decarbonization, as 

well as sufficiently granular data on energy supply and consumption, and economic indicators, 

especially in developing countries.  
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