
The case for limited-preemptive scheduling in
GPUs for real-time systems

Roy Spliet, Robert Mullins
Department of Computer Science and Technology, University of Cambridge

Abstract—Many emerging cyber-physical systems, such as au-
tonomous vehicles, have both extreme computation and hard la-
tency requirements. GPUs are being touted as the ideal platform
for such applications due to their highly parallel organisation.
Unfortunately, while offering the necessary performance, GPUs
are currently designed to maximise throughput and fail to offer
the necessary hard real-time (HRT) guarantees.

In this work we discuss three additions to GPUs that enable
them to better meet real-time constraints. Firstly, we provide
a quantitative argument for exposing the non-preemptive GPU
scheduler to software. We show that current GPUs perform
hardware context switches for non-preemptive scheduling in
20-26.5µs on average, while swapping out 60-270KiB of state.
Although high, these overheads do not forbid non-preemptive
HRT scheduling of real-time task sets. Secondly, we argue
that limited-preemption support can deliver large benefits in
schedulability with very minor impact on the context switching
overhead. Finally, we demonstrate the need for a more pre-
dictable DRAM request arbiter to reduce interference caused
by processes running on the GPU in parallel.

I. INTRODUCTION

An important class of cyber-physical systems now demand
both significant compute and hard real-time (HRT) support. A
prime example is the autonomous vehicle, where low-latency
engine control systems are combined with time-critical AI
classification and decision making procedures. These clas-
sification problems are solved using massively parallel al-
gorithms such as neural networks [17]. From both a cost
and performance-per-watt perspective it is attractive to offload
these problems to massively parallel accelerators like GPUs.
NVIDIA’s introduction of Drive PX computers for assisted-
and autonomous driving [2] are evidence of the shift of GPUs
towards the domain of safety-critical HRT systems.

GPUs are designed with some real-time principles in mind,
for example to resolve contention for the DRAM bus such
that it never leads to a flickering image. Unfortunately, these
real-time provisions are not applicable to the emerging cyber-
physical use-cases. Instead, there is a strong desire to bound
execution- and response time of GPU compute workloads.

A prerequisite to bound the worst-case response time of
HRT tasks and to determine schedulability is a thorough
understanding of the task scheduling policy. NVIDIA GPUs
allow FIFO scheduling of kernels plus limited (sparsely doc-
umented) support for prioritising some kernels over others
within the same hardware context [6]. Additionally, hardware
supports non-preemptive context-switching between processes
as a means to provide security mechanisms like per-task virtual
memory spaces. Unfortunately, the criteria used for scheduling

processes are unknown and not under the control of system
developers. To achieve HRT scheduling on GPUs, systems
must instead introduce a software abstraction layer [11], [14],
[15], [16], [22]. These systems add overhead and force all tasks
in a single hardware context, sacrificing inter-task protection
mechanisms. Furthermore, their non-preemptive scheduling
still imposes large worst-case blocking times on task sets,
reducing HRT schedulability.

In this paper we present a case for three changes in GPU
architecture. Firstly, we argue that exposing control over the
current non-preemptive GPU context switching mechanisms
to systems developers can facilitate low-overhead HRT task
scheduling while providing desirable security mechanisms.
From measurements we observe an average context switching
time on NVIDIA GPUs of 20−26.5µs. Using these numbers,
we demonstrate the schedulability properties of random task
sets under overhead-aware non-preemptive earliest-deadline
first (npEDF) scheduling. Secondly, we motivate from an HRT
perspective the proposal of Tanasic et al. [24] to perform con-
text switches on the boundary of a work-group (SM draining)
rather than the compute kernel. Measured by the schedulability
of randomly generated task sets under limited-preemptive EDF
scheduling, we show that this solution provides a good trade-
off between blocking time and context switching overhead. By
contrast, we show that fully preemptive scheduling on GPUs
will perform similar or worse than non-preemptive scheduling
as a result of high expected context switch overheads when
exposed to task sets of the same parameters. Finally, we show
the need for a predictable and analysable DRAM subsystem
to provide optimistic bounds on the latency of GPU com-
pute workloads. Using our measurement set-up, we expose
interference between display scan-out and context switching
by showing that increasing the bandwidth demand of scan-
out increases the worst-case context switch time from 3.7×
average to more than 5.5×.

II. BACKGROUND AND RELATED WORK

A. GPU nomenclature

Developers implement their data-parallel algorithms in one
or more compute kernels, following the Single Program,
Multiple Data streams (SPMD) programming model. A ker-
nel typically describes the transformations on a single data
element in the data stream. Hardware will spawn one thread
or work-item for every data element.

Following OpenCL nomenclature, work-items are grouped
into work-groups. On NVIDIA hardware a work-group consist

of multiple 32-thread groups called warps (AMD: wavefronts).
Each warp will typically be executed in a SIMD fashion.

To execute SPMD programs, NVIDIA hardware implements
the Single Instruction, Multiple Threads (SIMT) execution
model [18] following a hierarchical structure. At the bottom
level, a Streaming Multiprocessor (SM) contains many compu-
tational cores on which work is dispatched by warp schedulers.
A warp scheduler issues one or two SIMD instructions per
clock cycle at a warp granularity, temporally interleaving the
instructions of multiple warps to minimise hardware stalls. A
large register file ensures that the warp scheduler can interleave
instructions of warps from the same hardware context with
zero overhead. Further up the hierarchy, one or more SMs are
contained within a Graphics Processor Cluster (GPC). A GPU
contains one or more GPCs.

B. Non-preemptive context switching on NVIDIA GPUs

On current NVIDIA hardware a context switch is performed
by dedicated custom “Falcon” microcontrollers [28], [29]: one
at the top-level called FECS (Front-End Context Switch) and
one per GPC called GPCCS (GPC Context Switch). Each
microcontroller is connected to a set of FIFO buffers, used
to coalesce register read/write actions to memory to improve
DRAM efficiency. At the top-level, a hardware scheduling unit
triggers context switches by notifying FECS.

When FECS receives a context switch request, it config-
ures all execution engines (SMs, rasterisers etc.) to pause
after finishing the currently running compute kernel. Once
engines are paused, it notifies each GPCCS to swap state.
FECS and GPCCS microcontrollers proceed by writing the
MMIO address of every register that must be saved to their
FIFOs. After all FIFOs are drained and their register values
stored, the reverse process is initiated to restore registers of
the next context. Finally the GPCCSs signal completion, after
which FECS resumes execution of all engines.

Tanasic et al. [24] explore implementations for full- and
limited-preemptive context switching on NVIDIA GPUs. They
evaluate their approach using an in-house simulator by measur-
ing average context switching times for several benchmarks.
We extend this work by presenting a baseline for context
switching under non-preemptive scheduling (henceforth “non-
preemptive context switching”) on commodity hardware and
evaluating preemption models from an HRT point of view.

C. Real-time considerations for GPUs

We consider three key differences between popular GPU
architectures and the CPU: the SIMT execution model, the lack
of direct I/O access to external devices from GPU compute
cores, and the absence of shared memory resources between
different compute kernels.

SIMT execution allows GPUs to achieve high resource
utilisation by executing the many work-items of a compute
kernel on all available GPCs in parallel. We limit ourselves to
the base case of temporal multitasking, in which case GPUs
are best analysed as a uniprocessor where each compute kernel
represents a task in the system. Limited support exists for

spatial multitasking of kernels within a context [6], but in
the absence of scheduler implementation details we consider
this a throughput optimisation without analysable worst-case
response time benefits.

NVIDIA GPUs will never encounter context switches due to
self-suspending jobs. In traditional systems we can categorise
self-suspensions in three classes: jobs waiting to be granted
access to a shared resource, jobs blocked on I/O and jobs
explicitly yielding their core. Alglave et al. [5] show that
sharing resources between different jobs on a GPU is deemed
infeasible by the weak memory consistency model found on
current GPUs. I/O blocking is impossible because the GPU
is a slave device without direct access to external devices.
Finally, NVIDIA GPUs do not support a yield instruction.
As a consequence of not encountering self-suspension we can
bound the number of context switches in a system.

D. System model
In this work we consider the periodic task model [19]

with implicit deadlines. For limited-preemptive execution, this
model defines a set of tasks τ of size n where each task τi is
described by a three-tuple (ci, pi, qi). During execution, each
task releases a series of jobs Ji,k. The period pi describes
the time between two successive job releases from the same
task. In an implicit deadline system, a job’s absolute deadline
equals its launch time plus pi. The cost ci is the worst-
case execution time (WCET) of a job. The final parameter qi
describes the maximum preemption delay or “non-preemptive
blocking period”. The utilisation of a task Ui = ci/pi and the
utilisation of a task set Uτ =

∑
1≤i≤n Ui.

We limit our experiments to EDF scheduling [19]. Al-
though not implemented by commodity GPUs, EDF’s opti-
mality among both preemptive- and non-preemptive non-idling
uniprocessor schedulers [12] removes a factor of uncertainty
from the cause of a task set’s non-schedulability. This results in
a more accurate demonstration of the influence of the context
switch times in our experiments.

Two concepts underlie EDF schedulability analysis. Firstly,
the critical instant is the instant for which a task’s response
time is maximised [19]. For preemptive EDF this instant
corresponds with the synchronous arrival sequence, releasing
the first job of each task at time t = 0 and each subsequent
job Ji,k at time t = k ∗ pi. Secondly, Baruah et al. [7] define
the concept of demand bound as the sum of the cost of all jobs
in the critical instant whose absolute deadline is on or before
t. We define h(τi, t) as the function returning this bound for
task τi.

Building on this work, Baruah [8] proved that under EDF
scheduling, limited preemptive (implicit deadline) task sets are
not schedulable iff:

∃t : 0 ≤ t :
n∑
i=1

h(τi, t) > t

or there is a τj , 1 ≤ j ≤ n, and

∃t : 0 ≤ t < pj : qj +

n∑
i=1,i6=j

h(τi, t) > t

NVIDIA SM GPC DRAM State Measured time (µs) Avg. BW util
GeForce # MHz GiB/s KiB Min Avg Max GiB/s %
GT 710 1 953 14.4 63.9 9.2 21.5 80.1 2.83 19.6%
GT 640 2 901 28.5 68.2 13.6 26.5 43.7 2.45 8.6%
GTX 650 2 1058 80.0 68.2 12.7 23.2 36.0 2.71 3.4%
GTX 780 12 992 288.4 268.6 9.7 20.0 28.6 13.76 4.8%

TABLE I
MEASURED CONTEXT SIZE AND SWITCHING OVERHEAD

For schedulability analysis of non-preemptive tasks, we can
define ∀i ∈ [1, n], qi = ci− 1, resulting in the original npEDF
schedulability conditions ([12], [13]).

To date, the best algorithm to bound the set of relevant
values for t is Zhang et al’s QPA [30]. Short’s [23] lpQPA-LL
extends QPA with schedulability analysis of implicit-deadline
periodic task sets under limited-preemptive EDF.

Under EDF scheduling, the number of context switches
is upper bound by two per job [10]. The rationale is that a
reactive implementation of this policy only takes decisions on
two types of events: job release and job completion. For non-
preemptive EDF, scheduling decisions caused by job releases
are postponed until after completion of the current job. This
tightens the upper bound to one context switch per job.

III. CONTEXT SWITCHING OVERHEAD

To make substantiated claims about the effectiveness of
preemption models for GPUs, in this section we present
the results of measuring context size and switching time on
NVIDIA GPUs. By manipulating measurement conditions, we
also demonstrate the effect of performance interference on
worst-case context switch times, motivating further research
in predictable DRAM subsystems for GPUs.

A. Measurement set-up

In this experiment we measure the size and switching
time of non-preemptive contexts on several NVIDIA Ke-
pler generation (2012-2014) graphics cards. Measurement is
performed by a modified context switching firmware. The
nature of our changes mandate the use of the open source
“nouveau” driver for NVIDIA graphics cards [1] rather than
the official driver. Source code and acquired data is available
at https://github.com/RSpliet/RTGPU-Preempt.

We modify the FECS firmware to report context switching
time in an available scratch register. This time spans from
the moment all GPCs are paused to the moment they resume.
We measure the context size and switching times using an
instrumentation tool built using the envytools suite.

The timer used for this measurement has a granularity of
32ns. Our firmware modifications increase the runtime of a

context switch by two register read operations. Based on
1,064,960 samples we determine that these operations skew
our measurement by 160-224ns, averaging at 176ns.

GPUs are connected to a monitor operating at
1600x1200@60Hz. To trigger context switches, we run
two generic workloads in separate contexts (XFCE on Xorg,
windowed OpenArena @1024x768). The choice of workload
should have minimal effect on the measured overheads, as
all SMs are paused during the measured interval. We use our
instrumentation tool to obtain 20 million samples per GPU.

B. Results
The fifth column in Table I lists the size of the state that

needs to be stored to memory on a non-preemptive context
switch. This state, significantly larger than that of a modern
CPU, includes OpenGL/CUDA/OpenCL configuration, hard-
ware settings, a pointer to the top-level page-table, and many
other undocumented pieces of information. The contents of
the register- and local-memory file are not included.

Such large state results in observed context switch times
in the order of tens of microseconds. Our measured average
context switch time (column 7) corresponds with NVIDIA’s
claim [26] of ∼25µs for the Fermi-generation of graphics
cards (2010-2012). Such overhead clearly needs to be ac-
counted for when performing schedulability analysis.

Experiments with lower GPC clocks, leaving all other
clocks (including the DRAM interface) unaltered, reveals that
average context switch time increases. This suggests that the
process of context switching is not solely memory bound.
However, the observed worst-case context switch times on
the low-end GeForce GT710 are slightly lower (<5%) when
the GPC clock is reduced by 15%. This worst case overhead
reduction rules out the theory that context switch is compute
bound in the worst case. Instead, data indicates that higher
worst-case context switch times correlate with lower DRAM
bandwidth. We will present further evidence of context switch-
ing being memory bound in the worst case in Section III-C.

Figure 1 shows a logarithmic histogram of samples for the
GeForce GT710, displaying the extent to which our maximum
sample introduces pessimism to schedulability analysis. We
observe that the vast majority of the samples lie around the
average of 21.5µs, whereas merely ∼0.3% of the samples lie
in the tail of the measurement. The observed maximum is
∼3.7× average.

In the next section we demonstrate how interference affects
the samples in this tail. In the light of these results we discuss
the limitation of empirical measurements.

#
 S

a
m

p
le

s

Context switch time (μs)

1

10

100

1K

10K

100K

1M

10M

 0 10 20 30 40 50 60 70 80

<− 99.7% −>

Fig. 1. Histogram of context switching overhead on NVIDIA GeForce GT710

99.5

99.6

99.7

99.8

99.9

100.0

 0 20 40 60 80 100 120

M
a
x 1

M
a
x 2

M
a
x 3

F
ra

c
ti
o
n
 o

f
s
a
m

p
le

s
 (

%
)

Context switch time (μs)

1: 1024x768 60Hz (180MiB/s)
2: 1600x1200 60Hz (439.5MiB/s)
3: 3840x2160 30Hz (949.2MiB/s)

Fig. 2. Cumulative histogram of context switching overhead on GeForce GT710

https://github.com/RSpliet/RTGPU-Preempt

C. Interference effects

To demonstrate interference within a GPU we repeat the ex-
periment from Section III-B with different display resolutions.
Figure 2 shows a cumulative histogram displaying the top
0.5% samples of context switch times of this experiment. From
this graph we observe that increasing the required bandwidth
for scan-out has a strong negative effect on the observed worst-
case context switching overhead.

This interference is caused by sharing the DRAM subsys-
tem between multiple workloads. If we consider a DRAM
hierarchy, we find one or more channels on the top level.
Each channel has a data bus to its RAM chips. If two mem-
ory operations transfer data from/to the same channel, these
requests need to be serialised by an arbiter. This arbiter im-
plements a prioritisation policy that makes a trade-off between
performance and latency. If this policy is predictable it could
be possible to determine a worst-case latency on individual
memory requests, but unfortunately the prioritisation policy
of GPU memory controllers is unknown.

Scan-out is merely one example of a GPU subsystem that
requires access to DRAM in parallel with context switching.
Other examples include DMA transfers and video decoding.
Indeed, our observations on interference give reason to believe
that e.g. the proposal of Verner et al. [25] to overlap DMA
transfers with execution is likely to decrease response time
predictability unless measures are taken to account for DRAM
interference. Without analysable architectures and models, it
is impossible to use quantitative measurements like these
to distinguish between the worst-case execution time of a
workload and its worst-case response time. This results in
pessimistic GPU timing analysis.

In the next section we show how measured and extrapolated
context switch times affect schedulability. We use these results
to motivate further research in GPU preemption models.

IV. SCHEDULABILITY ANALYSIS

To illustrate the effects of context switching overheads
on schedulability, we performed a schedulability analy-
sis, comparing non-preemptive, limited-preemptive and full-
preemptive EDF. Next we explain how these scheduling poli-
cies map to microarchitectural solutions.

A. Models

Based on measured context switch overheads for non-
preemptive execution on NVIDIA GeForce GT640, similar in
specifications to the embedded Tegra K1 SoC, we extrapolate
parameters for EDF and lpEDF. Resulting estimates are sum-
marised in Table II.

For these estimates we make two simplifying assump-
tions. Firstly, we disregard cache-related preemption delays
as they depend too much on the application and GPU micro-
architecture to allow substantial claims. Secondly, divergence
between warp schedulers will cause some SMs to wait idle for
the last to finish. This idle time negatively affects the WCET
of jobs. However, without knowledge of the scheduling policy
implemented within the warp-schedulers, we cannot determine

Scheduler State (KiB) Time (µs) Preempt
policy Ctx Reg Local Total Avg Max /job [10]

EDF 68.2 512 96 676.2 263 434 ×2
lpEDF 68.2 0 0 68.2 27 44 ×2
npEDF 68.2 0 0 68.2 27 44 ×1

TABLE II
PARAMETERS FOR SCHEDULABILITY ANALYSIS

a bound on the divergence of warps in flight. This prevents us
from modelling this effect in our analysis.

Non-preemptive scheduling is currently implemented on
NVIDIA GPUs. For non-preemptive EDF analysis we inflate
ci with the measured cost of one context switch.

Limited-preemptive scheduling applies to SM draining [24],
a hardware solution that allows compute kernels to be pre-
empted on the boundary of a work-group. At these boundaries
the register and local memory contents do not need to be
preserved, hence the state size and context switch time is
estimated equal to that of the non-preemptive case. We account
for this by inflating each task’s cost by 2× the measured
context switching overhead.

For (full-)preemptive scheduling we must account for the
larger context required to preserve register and local memory
contents. To estimate the context switch time, we assume
a linear correlation with the context size. Despite evidence
that the DRAM subsystem provides more efficiency for big-
ger transfers on average [24], we cannot make optimistic
assumptions for the worst-case without further research. For
preemptive scheduling we inflate each task’s cost with 2× the
projected context switching overhead.

B. Measurement set-up

For each utilisation U ∈ (0.2, 0.21..1.0), we generated
100,000 implicit-deadline periodic task sets. Tasks have a
period between 1,000 and 15,000 (µs), modelling kernels
across the range of costs observed by Tanasic et al. [24].
Utilisation is randomly assigned to each task with a uniform
distribution using the UUniFast algorithm [9].

Schedulability tests are performed using Brandenburg et
al’s schedcat, modified to support lpQPA-LL. [23] For limited
preemption, we set qi = ci/rand(5, 500), corresponding with
5− 500 work-groups per SM.

C. Schedulability

Figure 3 shows the result of this schedulability experi-
ment when generating task sets of two tasks. We draw two
conclusions from this graph. Firstly, the large overheads we
measured do not prevent HRT schedulability. However, the
large projected overhead greatly reduces the value of full-
preemptive scheduling. Assuming worst-case context switch
times, we find a minimal benefit for task sets with Uτ 6 0.71.
For full-preemptive scheduling to become feasible in a real-
time GPU, the overhead must ideally be bound to a value close
to the average projection.

Secondly, we see that a limited-preemptive scheduler can
benefit from the combination of paying the context switch-
ing overhead of non-preemptive scheduling and achieving
response times close to preemptive scheduling. In practice this

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c
h
e

d
u
la

b
ili

ty
 (

%
)

Utilisation

EDF (avg)
EDF (max)

lpEDF (avg)
lpEDF (max)
npEDF(avg)

npEDF (max)

Fig. 3. Schedulability: 2 tasks, ci ∈ [1000, 15000]µs

 0

 20

 40

 60

 80

 100

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

S
c
h

e
d

u
la

b
ili

ty
 (

%
)

Utilisation

EDF (avg)
EDF (max)

lpEDF (avg)
lpEDF (max)
npEDF (avg)
npEDF (max)

Fig. 4. Schedulability: 3 tasks, ci ∈ [1000, 15000]µs

means that for the chosen parameters, we can schedule 99%
of all task sets with Uτ 6 0.89 even when the worst case
context switching time is assumed.

To show the influence of the task set size on schedulability,
Figure 4 shows the results of this experiment when generating
task sets of size 3. For preemptive-scheduling, the maximum
projected overhead now outweighs the theoretical benefits of
preemption completely. However, under limited-preemption
EDF we would continue to be able to schedule many high-
utilisation task sets.

D. Maximum blocking exploration

To demonstrate the impact of the maximum blocking param-
eter q, we perform an lpEDF schedulability analysis on random
task sets where for a work-groups/SM ratio w ∈ [2, 30],
qi = ci/w. Figures 5 and 6 show the results of this analysis
with w on the x-axis. On the y-axis we find the maximum
utilisation for which > 90% (Figure 5) and > 99% (Figure 6)
of the task sets are schedulable. We generated task sets with
3 tasks, for each task ci ∈ [1000, 15000]µs

We see that even for two work-groups/SM, 99% of all task
sets with Uτ < 0.29 are schedulable. In Figure 4 we observe
that this outperforms non-preemptive scheduling. Furthermore,
for jobs containing 9 or more work-groups/SM, the figures
demonstrate that the deciding factor for schedulability is
not the preemption delay but rather the context switching
overhead. For reference, 9 work-groups/SM corresponds to
122,880 work-items (e.g. a 351×351 image or matrix) on the
largest Kepler generation GPU, the NVIDIA GeForce GTX780
TI. Such data sets are realistic for AI and computer vision
workloads, supporting our claim that lpEDF kernel scheduling
will result in increased GPU utilisation under HRT constraints.

V. DISCUSSION AND FUTURE WORK

A. DRAM interference

In Section III-C we explore the interference between context
switches and display scan-out to show how contention for

the DRAM subsystem reduces response time predictability.
However, interference does not solely occur between these two
tasks. Concurrent DMA- or video decoding activity further
diminishes the worst-case latency of individual requests.

There are two known ways to mitigate this interference.
Firstly, DRAM partitioning (e.g. bank privatisation [21]) could
be applied to isolate subsystems. Although this has far-
reaching consequences to the freedom a system has to allocate
memory to each workload, it could serve as a way to reduce
the worst-case interference on commodity hardware.

Secondly, designing a real-time DRAM request arbiter that
prioritises requests based on their time of arrival and/or
criticality level could make this interference predictable and
analysable. Such arbiters have been studied for traditional
multi-core architectures connected to DDR2 and DDR3 mem-
ory (e.g. [4], [20]), and prove effective at bounding the
response time of individual request. Unfortunately, as improve-
ments in DRAM latencies continue to stagnate and data buses
are becoming wider, the bandwidth utilisation of memory con-
trollers with such arbiters gets successively worse with each
DRAM generation [27]. Future research should explore the de-
sign space of bound-latency high-throughput DRAM subsys-
tems for GPUs under the constraints of present-day DRAM.

B. Task scheduling

In Section IV we describe how the limited-preemption
model is a good fit for GPUs, assuming it reduces the
maximum blocking time at a cost similar to that of non-
preemptive context switching. One reason why this assumption
could be too optimistic is that it disregards the context of
subsystems that are irrelevant for most compute workloads,
e.g. the rasteriser. The rasteriser keeps track of a lot of
state during execution and does not appear to work on the
granularity of work-groups. This raises questions on how the
state of such fixed-function components should be treated in
the preemptive execution models: Is it desirable to perform
a context switch on these components in lock-step with the

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 5 10 15 20 25 30

U
ti
lis

a
ti
o

n

Workgroups/SM

No overhead
Avg overhead
Max overhead

Fig. 5. Impact of work-groups/SM on 90% schedulability

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 5 10 15 20 25 30

U
ti
lis

a
ti
o

n

Workgroups/SM

No overhead
Avg overhead
Max overhead

Fig. 6. Impact of work-groups/SM on 99% schedulability

compute subsystem? Can we find points in time at which
these components have less state? Do we need to take the
state of these components into account for (non-rendering)
real-time compute workloads, or is it possible to take this
out of the equation? Would this require the design of new,
compute-oriented architectures?

Another avenue for research is the concept of GPU partition-
ing or “spatial multitasking” [3]. A partitioned non-preemptive
GPU could permit a cost-based grouping of tasks, providing
lower-latency guarantees to shorter tasks. Research could
determine the architectural overhead of GPU partitioning, the
implications to the context size, the schedulability implications
for HRT workloads and the implications of DRAM-related
interference on response-time analysis.

VI. CONCLUSION

In this work we have motivated the need for research in
three areas of GPU design for real-time applications. Firstly,
we show that it is possible to use existing non-preemptive
EDF schedulability analysis to prove schedulability of task
sets under the parameters we expect for massively parallel
applications in the HRT domain running on contemporary
GPUs. Prerequisite is that GPUs provide control over their
non-preemptive task scheduler to software. We show that the
measured average context switching overhead of 20-26.5µs
has only a limited influence on schedulability. Secondly, we
motivate research in limited-preemptive scheduling following
the “SM draining” approach [24] to reduce the maximum
blocking time of tasks while retaining the security benefits
of task isolation. We show that this can result in signifi-
cantly higher schedulability of task sets. Finally, we show
that interference effects caused by contention for the shared
DRAM subsystem has a negative effect on observed worst-
case execution times of individual tasks. We suggest that
further research should be conducted towards bound-latency
DRAM request arbiters that enable more optimistic worst-case
response times with minimal sacrifices to throughput.

Acknowledgements
We thank Andy Ritger (NVIDIA) and Joonas Lahtinen

(Intel OTC) for their technical discussion, and Timothy Jones
(University of Cambridge, Dept. CST) for his feedback.

REFERENCES

[1] Nouveau: Accelerated Open Source driver for NVIDIA cards. URL:
https://nouveau.freedesktop.org/wiki/.

[2] NVIDIA Tegra X1 - NVIDIA’s New Mobile Superchip, 2015.
[3] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case for

GPGPU spatial multitasking. In IEEE Int. Symp. on High-Performance
Comp. Arch., pages 1–12, Feb 2012.

[4] B. Akesson, K. Goossens, and M. Ringhofer. Predator: A Predictable
SDRAM Memory Controller. In Proc. of the 5th IEEE/ACM Int. Conf.
on Hardware/Software Codesign and System Synthesis, CODES+ISSS
’07, pages 251–256. ACM, 2007.

[5] J. Alglave, M. Batty, A. F. Donaldson, G. Gopalakrishnan, J. Ketema,
D. Poetzl, T. Sorensen, and J. Wickerson. GPU Concurrency: Weak
Behaviours and Programming Assumptions. SIGPLAN Not., 50(4):577–
591, March 2015.

[6] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith.
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. In
Proc. 38th Real-Time Systems Symp., pages 104–115, Dec 2017.

[7] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling
hard-real-time sporadic tasks on one processor. In Proc. 11th Real-Time
Systems Symp., pages 182–190, Dec 1990.

[8] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of
sporadic task systems. In 17th Euromicro Conf. on Real-Time Systems,
pages 137–144, July 2005.

[9] E. Bini and G. C. Buttazzo. Measuring the performance of schedulability
tests. Real-Time Systems, 30(1-2):129–154, 2005.

[10] A. Burns, K. Tindell, and A. Wellings. Effective analysis for engineering
real-time fixed priority schedulers. IEEE Trans. on Software Engineer-
ing, 21(5):475–480, May 1995.

[11] G.A. Elliott, B.C. Ward, and J.H. Anderson. GPUSync: A Framework
for Real-Time GPU Management. In Proc. 34th Real-Time Systems
Symp., pages 33–44, Dec 2013.

[12] L. George, P. Muhlethaler, and N. Rivierre. Optimality and non-
preemptive real-time scheduling revisited. Research Report RR-
2516, INRIA, 1995. Projet REFLECS. URL: https://hal.inria.fr/
inria-00074162.

[13] K. Jeffay, D. F. Stanat, and C. U. Martel. On non-preemptive scheduling
of period and sporadic tasks. In Proc. 12th Real-Time Systems Symp,
pages 129–139, Dec 1991.

[14] S. Kato, K. Lakshmanan, A. Kumar, M. Kelkar, Y. Ishikawa, and
R. Rajkumar. RGEM: A Responsive GPGPU Execution Model for
Runtime Engines. In Proc. 32nd Real-Time Systems Symp., pages 57–66,
Nov 2011.

[15] S. Kato, K. Lakshmanan, R. Rajkumar, and Y. Ishikawa. TimeGraph:
GPU scheduling for real-time multi-tasking environments. In USENIX
ATC11, page 17, 2011.

[16] S. Kato, M. McThrow, C. Maltzahn, and S. Brandt. Gdev: First-class
GPU resource management in the operating system. In USENIX ATC12,
volume 12, 2012.

[17] S. Kato, E. Takeuchi, Y. Ishiguro, Y. Ninomiya, K. Takeda, and
T. Hamada. An Open Approach to Autonomous Vehicles. Micro, IEEE,
35(6):60–68, Nov 2015.

[18] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A unified graphics and computing architecture. IEEE Micro, 28(2):39–
55, March 2008.

[19] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogram-
ming in a Hard-Real-Time Environment. J. ACM, 20(1):46–61, January
1973.

[20] M. Paolieri, E. Quiñones, and F. J. Cazorla. Timing Effects of DDR
Memory Systems in Hard Real-time Multicore Architectures: Issues and
Solutions. ACM Trans. Embed. Comput. Syst., 12(1s):64:1–26, Mar
2013.

[21] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee. PRET DRAM
controller: Bank privatization for predictability and temporal isolation.
In Proc. of the 9th IEEE/ACM/IFIP Int. Conf. on Hardware/Software
Codesign and System Synthesis, pages 99–108, Oct 2011.

[22] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel. PTask:
Operating System Abstractions to Manage GPUs As Compute Devices.
In Proc. of the 23rd ACM Symp. on Operating Systems Principles, SOSP
’11, pages 233–248. ACM, 2011.

[23] M. Short. Improved schedulability analysis of implicit deadline tasks
under limited preemption EDF scheduling. In ETFA2011, pages 1–8,
Sept 2011.

[24] I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez, N. Navarro, and M. Valero.
Enabling preemptive multiprogramming on GPUs. In ACM/IEEE 41st
Int. Symp. on Computer Architecture (ISCA), pages 193–204, 2014.

[25] U. Verner, A. Schuster, and M. Silberstein. Processing Data Streams
with Hard Real-time Constraints on Heterogeneous Systems. In Proc.
of the Int. Conf. on Supercomputing, pages 120–129, 2011.

[26] C.M. Wittenbrink, E. Kilgariff, and A. Prabhu. Fermi GF100 GPU
Architecture. Micro, IEEE, 31(2):50 –59, March-April 2011.

[27] Z. P. Wu, Y. Krish, and R. Pellizzoni. Worst Case Analysis of DRAM
Latency in Multi-requestor Systems. In Proc. 34th Real-Time Systems
Symp., pages 372–383, Dec 2013.

[28] J. Xie. NVIDIA RISC-V Evaluation Story. 4th RISC-V Workshop,
2016. URL: https://www.youtube.com/watch?v=gg1lISJfJI0.

[29] Y.Fujii, T. Azumi, N. Nishio, and S. Kato. Exploring Microcontrollers
in GPUs. In Proc. 4th Asia-Pacific Workshop on Systems, pages 2:1–2:6.
ACM, 2013.

[30] F. Zhang and A. Burns. Schedulability Analysis for Real-Time Systems
with EDF Scheduling. IEEE Trans. on Computers, 58(9):1250–1258,
Sept 2009.

https://nouveau.freedesktop.org/wiki/
https://hal.inria.fr/inria-00074162
https://hal.inria.fr/inria-00074162
https://www.youtube.com/watch?v=gg1lISJfJI0

	Introduction
	Background and related work
	GPU nomenclature
	Non-preemptive context switching on NVIDIA GPUs
	Real-time considerations for GPUs
	System model

	Context switching overhead
	Measurement set-up
	Results
	Interference effects

	Schedulability analysis
	Models
	Measurement set-up
	Schedulability
	Maximum blocking exploration

	Discussion and future work
	DRAM interference
	Task scheduling

	Conclusion
	References

